1
|
Wu H, Qian X, Liang G. The Role of Small Extracellular Vesicles Derived from Mesenchymal Stromal Cells on Myocardial Protection: a Review of Current Advances and Future Perspectives. Cardiovasc Drugs Ther 2024; 38:1111-1122. [PMID: 37227567 PMCID: PMC10209575 DOI: 10.1007/s10557-023-07472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
Small extracellular vesicles (SEVs) secreted by mesenchymal stromal cells (MSCs) are considered one of the most promising biological therapies in recent years. The protective effect of MSCs-derived SEVs on myocardium is mainly related to their ability to deliver cargo, anti-inflammatory properties, promotion of angiogenesis, immunoregulation, and other factors. Herein, this review focuses on the biological properties, isolation methods, and functions of SEVs. Then, the roles and potential mechanisms of SEVs and engineered SEVs in myocardial protection are summarized. Finally, the current situation of clinical research on SEVs, the difficulties encountered, and the future fore-ground of SEVs are discussed. In conclusion, although there are some technical difficulties and conceptual contradictions in the research of SEVs, the unique biological functions of SEVs provide a new direction for the development of regenerative medicine. Further exploration is warranted to establish a solid experimental and theoretical basis for future clinical application of SEVs.
Collapse
Affiliation(s)
- Hongkun Wu
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou China
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou China
- Department of Cardiac Surgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou China
| | - Xingkai Qian
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou China
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou China
| | - Guiyou Liang
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou China
| |
Collapse
|
2
|
Gong X, Jiao Y, Hu H, Zhang R, Jia W, Zhao J, Liu Z, Xin Y, Han W. A prospective randomized controlled study of multi-intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure and reduced ejection fraction (PRIME-HFrEF) trial: Rationale and design. Contemp Clin Trials Commun 2024; 41:101350. [PMID: 39246626 PMCID: PMC11377133 DOI: 10.1016/j.conctc.2024.101350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/12/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024] Open
Abstract
Background and objective The use of mesenchymal stem cells for heart failure treatment has gained increasing interest. However, most studies have relied on a single injection approach, with no research yet confirming the effects of multiple administrations. The present trial aims to investigate the safety and efficacy of multi-intravenous infusion of umbilical cord-mesenchymal stem cells (UC-MSCs) in patients with heart failure and reduced ejection fraction (HFrEF). Methods The PRIME-HFrEF trial is a single-center, prospective, randomized, triple-blinded, placebo-controlled trial of multi-intravenous infusion of UC-MSCs in HFrEF patients. A total of 40 patients meeting the inclusion criteria for HFrEF were enrolled and randomized 1:1 to the MSC group or the placebo group. Patients enrolled will receive intravenous injections of either UC-MSCs or placebo every 6 weeks for three times. Both groups will be followed up for 12 months. The primary safety endpoint is the incidence of serious adverse events. The primary efficacy endpoint is a change in left ventricular ejection fraction (LVEF) measured by left ventricular opacification (LVO) with contrast echocardiography and magnetic resonance imaging (MRI) at 12 months. The secondary endpoints include a composite of the incidence of death and re-hospitalization caused by heart failure at the 12th month, serum NT-proBNP, growth stimulation expressed gene 2 (ST2), and a change of right ventricular structure and function. Conclusions The PRIME-HFrEF study is designed to shed new light on multiple UC-MSC administration regimens for heart failure treatment.
Collapse
Affiliation(s)
- Xin Gong
- Department of Heart failure, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yuheng Jiao
- Department of Heart failure, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Hao Hu
- Department of Heart failure, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Rongzhen Zhang
- Department of Heart failure, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Wenwen Jia
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zhongmin Liu
- Department of Cardiovascular Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yuanfeng Xin
- Department of Cardiovascular Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Wei Han
- Department of Heart failure, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| |
Collapse
|
3
|
Quarato ER, Salama NA, Calvi LM. Interplay Between Skeletal and Hematopoietic Cells in the Bone Marrow Microenvironment in Homeostasis and Aging. Curr Osteoporos Rep 2024; 22:416-432. [PMID: 38782850 DOI: 10.1007/s11914-024-00874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE OF THE REVIEW In this review, we discuss the most recent scientific advances on the reciprocal regulatory interactions between the skeletal and hematopoietic stem cell niche, focusing on immunomodulation and its interplay with the cell's mitochondrial function, and how this impacts osteoimmune health during aging and disease. RECENT FINDINGS Osteoimmunology investigates interactions between cells that make up the skeletal stem cell niche and immune system. Much work has investigated the complexity of the bone marrow microenvironment with respect to the skeletal and hematopoietic stem cells that regulate skeletal formation and immune health respectively. It has now become clear that these cellular components cooperate to maintain homeostasis and that dysfunction in their interaction can lead to aging and disease. Having a deeper, mechanistic appreciation for osteoimmune regulation will lead to better research perspective and therapeutics with the potential to improve the aging process, skeletal and hematologic regeneration, and disease targeting.
Collapse
Affiliation(s)
- Emily R Quarato
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Noah A Salama
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Laura M Calvi
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
4
|
Du J, Dong Y, Song J, Shui H, Xiao C, Hu Y, Zhou S, Wang S. BMSC‑derived exosome‑mediated miR‑25‑3p delivery protects against myocardial ischemia/reperfusion injury by constraining M1‑like macrophage polarization. Mol Med Rep 2024; 30:142. [PMID: 38904206 PMCID: PMC11208993 DOI: 10.3892/mmr.2024.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Myocardial ischemia/reperfusion injury (MIRI) is a significant challenge in the management of myocardial ischemic disease. Extensive evidence suggests that the macrophage‑mediated inflammatory response may play a vital role in MIRI. Mesenchymal stem cells and, in particular, exosomes derived from these cells, may be key mediators of myocardial injury and repair. However, whether exosomes protect the heart by regulating the polarization of macrophages and the exact mechanisms involved are poorly understood. The present study aimed to determine whether exosomes secreted by bone marrow mesenchymal stem cells (BMSC‑Exo) harboring miR‑25‑3p can alter the phenotype of macrophages by affecting the JAK2/STAT3 signaling pathway, which reduces the inflammatory response and protects against MIRI. An in vivo MIRI model was established in rats by ligating the anterior descending region of the left coronary artery for 30 min followed by reperfusion for 120 min, and BMSC‑Exo carrying miR‑25‑3p (BMSC‑Exo‑25‑3p) were administered through tail vein injection. A hypoxia‑reoxygenation model of H9C2 cells was established, and the cells were cocultured with BMSC‑Exo‑25‑3p in vitro. The results of the present study demonstrated that BMSC‑Exo or BMSC‑Exo‑25‑3p could be taken up by cardiomyocytes in vivo and H9C2 cells in vitro. BMSC‑Exo‑25‑3p demonstrated powerful cardioprotective effects by decreasing the cardiac infarct size, reducing the incidence of malignant arrhythmias and attenuating myocardial enzyme activity, as indicated by lactate dehydrogenase and creatine kinase levels. It induced M1‑like macrophage polarization after myocardial ischemia/reperfusion (I/R), as evidenced by the increase in iNOS expression through immunofluorescence staining and upregulation of proinflammatory cytokines through RT‑qPCR, such as interleukin‑1β (IL‑1β) and interleukin‑6 (IL‑6). As hypothesized, BMSC‑Exo‑25‑3p inhibited M1‑like macrophage polarization and proinflammatory cytokine expression while promoting M2‑like macrophage polarization. Mechanistically, the JAK2/STAT3 signaling pathway was activated after I/R in vivo and in LPS‑stimulated macrophages in vitro, and BMSC‑Exo‑25‑3p pretreatment inhibited this activation. The results of the present study indicate that the attenuation of MIRI by BMSC‑Exo‑25‑3p may be related to JAK2/STAT3 signaling pathway inactivation and subsequent inhibition of M1‑like macrophage polarization.
Collapse
Affiliation(s)
- Jingxia Du
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Yibo Dong
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Jingjing Song
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Hanqi Shui
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Chengyao Xiao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Yue Hu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Shiyao Zhou
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Shanshan Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| |
Collapse
|
5
|
Seow KS, Ling APK. Mesenchymal stem cells as future treatment for cardiovascular regeneration and its challenges. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:73. [PMID: 39118948 PMCID: PMC11304428 DOI: 10.21037/atm-23-1936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/04/2023] [Indexed: 08/10/2024]
Abstract
Cardiovascular diseases (CVDs), particularly stroke and myocardial infarction (MI) contributed to the leading cause of death annually among the chronic diseases globally. Despite the advancement of technology, the current available treatments mainly served as palliative care but not treating the diseases. However, the discovery of mesenchymal stem cells (MSCs) had gained a consideration to serve as promising strategy in treating CVDs. Recent evidence also showed that MSCs are the strong candidate to be used as stem cell therapy involving cardiovascular regeneration due to its cardiomyogenesis, anti-inflammatory and immunomodulatory properties, antifibrotic effects and neovascularization capacity. Besides, MSCs could be used for cellular cardiomyoplasty with its transdifferentiation of MSCs into cardiomyocytes, paracrine effects, microvesicles and exosomes as well as mitochondrial transfer. The safety and efficacy of utilizing MSCs have been described in well-established preclinical and clinical studies in which the accomplishment of MSCs transplantation resulted in further improvement of the cardiac function. Tissue engineering could enhance the desired properties and therapeutic effects of MSCs in cardiovascular regeneration by genome-editing, facilitating the cell delivery and retention, biomaterials-based scaffold, and three-dimensional (3D)-bioprinting. However, there are still obstacles in the use of MSCs due to the complexity and versatility of MSCs, low retention rate, route of administration and the ethical and safety issues of the use of MSCs. The aim of this review is to highlight the details of therapeutic properties of MSCs in treating CVDs, strategies to facilitate the therapeutic effects of MSCs through tissue engineering and the challenges faced using MSCs. A comprehensive review has been done through PubMed and National Center for Biotechnology Information (NCBI) from the year of 2010 to 2021 based on some specific key terms such as 'mesenchymal stem cells in cardiovascular disease', 'mesenchymal stem cells in cardiac regeneration', 'mesenchymal stem cells facilitate cardiac repairs', 'tissue engineering of MSCs' to include relevant literature in this review.
Collapse
Affiliation(s)
- Ke Sin Seow
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Fatehi Hassanabad A, Zarzycki AN, Fedak PWM. Cellular and molecular mechanisms driving cardiac tissue fibrosis: On the precipice of personalized and precision medicine. Cardiovasc Pathol 2024; 71:107635. [PMID: 38508436 DOI: 10.1016/j.carpath.2024.107635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Cardiac fibrosis is a significant contributor to heart failure, a condition that continues to affect a growing number of patients worldwide. Various cardiovascular comorbidities can exacerbate cardiac fibrosis. While fibroblasts are believed to be the primary cell type underlying fibrosis, recent and emerging data suggest that other cell types can also potentiate or expedite fibrotic processes. Over the past few decades, clinicians have developed therapeutics that can blunt the development and progression of cardiac fibrosis. While these strategies have yielded positive results, overall clinical outcomes for patients suffering from heart failure continue to be dire. Herein, we overview the molecular and cellular mechanisms underlying cardiac tissue fibrosis. To do so, we establish the known mechanisms that drive fibrosis in the heart, outline the diagnostic tools available, and summarize the treatment options used in contemporary clinical practice. Finally, we underscore the critical role the immune microenvironment plays in the pathogenesis of cardiac fibrosis.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Anna N Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
7
|
Jiang Z, Yu J, Zhou H, Feng J, Xu Z, Wan M, Zhang W, He Y, Jia C, Shao S, Guo H, Liu B. Research hotspots and emerging trends of mesenchymal stem cells in cardiovascular diseases: a bibliometric-based visual analysis. Front Cardiovasc Med 2024; 11:1394453. [PMID: 38873270 PMCID: PMC11169657 DOI: 10.3389/fcvm.2024.1394453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Background Mesenchymal stem cells (MSCs) have important research value and broad application prospects in cardiovascular diseases (CVDs). However, few bibliometric analyses on MSCs in cardiovascular diseases are available. This study aims to provide a thorough review of the cooperation and influence of countries, institutions, authors, and journals in the field of MSCs in cardiovascular diseases, with the provision of discoveries in the latest progress, evolution paths, frontier research hotspots, and future research trends in the regarding field. Methods The articles related to MSCs in cardiovascular diseases were retrieved from the Web of Science. The bibliometric study was performed by CiteSpace and VOSviewer, and the knowledge map was generated based on data obtained from retrieved articles. Results In our study, a total of 4,852 publications launched before August 31, 2023 were accessed through the Web of Science Core Collection (WoSCC) database via our searching strategy. Significant fluctuations in global publications were observed in the field of MSCs in CVDs. China emerged as the nation with the largest number of publications, yet a shortage of high-quality articles was noted. The interplay among countries, institutions, journals and authors is visually represented in the enclosed figures. Importantly, current research trends and hotspots are elucidated. Cluster analysis on references has highlighted the considerable interest in exosomes, extracellular vesicles, and microvesicles. Besides, keywords analysis revealed a strong emphasis on myocardial infarction, therapy, and transplantation. Treatment methods-related keywords were prominent, while keywords associated with extracellular vesicles gathered significant attention from the long-term perspective. Conclusion MSCs in CVDs have become a topic of active research interest, showcasing its latent value and potential. By summarizing the latest progress, identifying the research hotspots, and discussing the future trends in the advancement of MSCs in CVDs, we aim to offer valuable insights for considering research prospects.
Collapse
Affiliation(s)
- Zhihang Jiang
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiajing Yu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Houle Zhou
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaming Feng
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zehui Xu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Melisandre Wan
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Zhang
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing He
- Department of Preventive Medicine, College of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengyao Jia
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Shuijin Shao
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haidong Guo
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baonian Liu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Kumar R, Mishra N, Tran T, Kumar M, Vijayaraghavalu S, Gurusamy N. Emerging Strategies in Mesenchymal Stem Cell-Based Cardiovascular Therapeutics. Cells 2024; 13:855. [PMID: 38786076 PMCID: PMC11120430 DOI: 10.3390/cells13100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Cardiovascular diseases continue to challenge global health, demanding innovative therapeutic solutions. This review delves into the transformative role of mesenchymal stem cells (MSCs) in advancing cardiovascular therapeutics. Beginning with a historical perspective, we trace the development of stem cell research related to cardiovascular diseases, highlighting foundational therapeutic approaches and the evolution of cell-based treatments. Recognizing the inherent challenges of MSC-based cardiovascular therapeutics, which range from understanding the pro-reparative activity of MSCs to tailoring patient-specific treatments, we emphasize the need to refine the pro-regenerative capacity of these cells. Crucially, our focus then shifts to the strategies of the fourth generation of cell-based therapies: leveraging the secretomic prowess of MSCs, particularly the role of extracellular vesicles; integrating biocompatible scaffolds and artificial sheets to amplify MSCs' potential; adopting three-dimensional ex vivo propagation tailored to specific tissue niches; harnessing the promise of genetic modifications for targeted tissue repair; and institutionalizing good manufacturing practice protocols to ensure therapeutic safety and efficacy. We conclude with reflections on these advancements, envisaging a future landscape redefined by MSCs in cardiovascular regeneration. This review offers both a consolidation of our current understanding and a view toward imminent therapeutic horizons.
Collapse
Affiliation(s)
- Rishabh Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Nitin Mishra
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Talan Tran
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328-2018, USA
| | - Munish Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | | | - Narasimman Gurusamy
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
9
|
Barrère-Lemaire S, Vincent A, Jorgensen C, Piot C, Nargeot J, Djouad F. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. Physiol Rev 2024; 104:659-725. [PMID: 37589393 DOI: 10.1152/physrev.00009.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/05/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.
Collapse
Affiliation(s)
- Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Anne Vincent
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Christophe Piot
- Département de Cardiologie Interventionnelle, Clinique du Millénaire, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Farida Djouad
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| |
Collapse
|
10
|
Gill JK, Rehsia SK, Verma E, Sareen N, Dhingra S. Stem cell therapy for cardiac regeneration: past, present, and future. Can J Physiol Pharmacol 2024; 102:161-179. [PMID: 38226807 DOI: 10.1139/cjpp-2023-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Cardiac disorders remain the leading cause of mortality worldwide. Current clinical strategies, including drug therapy, surgical interventions, and organ transplantation offer limited benefits to patients without regenerating the damaged myocardium. Over the past decade, stem cell therapy has generated a keen interest owing to its unique self-renewal and immune privileged characteristics. Furthermore, the ability of stem cells to differentiate into specialized cell types, has made them a popular therapeutic tool against various diseases. This comprehensive review provides an overview of therapeutic potential of different types of stem cells in reference to cardiovascular diseases. Furthermore, it sheds light on the advantages and limitations associated with each cell type. An in-depth analysis of the challenges associated with stem cell research and the hurdles for its clinical translation and their possible solutions have also been elaborated upon. It examines the controversies surrounding embryonic stem cells and the emergence of alternative approaches, such as the use of induced pluripotent stem cells for cardiac therapeutic applications. Overall, this review serves as a valuable resource for researchers, clinicians, and policymakers involved in the field of regenerative medicine, guiding the development of safe and effective stem cell-based therapies to revolutionize patient care.
Collapse
Affiliation(s)
- Jaideep Kaur Gill
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Sargun Kaur Rehsia
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Elika Verma
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| |
Collapse
|
11
|
Iqbal F, Johnston A, Wyse B, Rabani R, Mander P, Hoseini B, Wu J, Li RK, Gauthier-Fisher A, Szaraz P, Librach C. Combination human umbilical cord perivascular and endothelial colony forming cell therapy for ischemic cardiac injury. NPJ Regen Med 2023; 8:45. [PMID: 37626067 PMCID: PMC10457300 DOI: 10.1038/s41536-023-00321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Cell-based therapeutics are promising interventions to repair ischemic cardiac tissue. However, no single cell type has yet been found to be both specialized and versatile enough to heal the heart. The synergistic effects of two regenerative cell types including endothelial colony forming cells (ECFC) and first-trimester human umbilical cord perivascular cells (FTM HUCPVC) with endothelial cell and pericyte properties respectively, on angiogenic and regenerative properties were tested in a rat model of myocardial infarction (MI), in vitro tube formation and Matrigel plug assay. The combination of FTM HUCPVCs and ECFCs synergistically reduced fibrosis and cardiomyocyte apoptosis, while promoting favorable cardiac remodeling and contractility. These effects were in part mediated by ANGPT2, PDGF-β, and VEGF-C. PDGF-β signaling-dependent synergistic effects on angiogenesis were also observed in vitro and in vivo. FTM HUCPVCs and ECFCs represent a cell combination therapy for promoting and sustaining vascularization following ischemic cardiac injury.
Collapse
Affiliation(s)
- Farwah Iqbal
- Create Fertility Centre, Toronto, ON, Canada
- Virginia Tech Carillion School of Medicine, Roanoke, VA, USA
| | | | | | | | | | | | - Jun Wu
- Toronto General Research Institute (TGRI), University Health Network (UHN), Toronto, ON, Canada
| | - Ren-Ke Li
- Toronto General Research Institute (TGRI), University Health Network (UHN), Toronto, ON, Canada
| | | | | | - Clifford Librach
- Create Fertility Centre, Toronto, ON, Canada.
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Obstetrics and Gynecology, Women's College Hospital, Toronto, ON, Canada.
| |
Collapse
|
12
|
Zhuo D, Lei I, Li W, Liu L, Li L, Ni J, Liu Z, Fan G. The origin, progress, and application of cell-based cardiac regeneration therapy. J Cell Physiol 2023; 238:1732-1755. [PMID: 37334836 DOI: 10.1002/jcp.31060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/29/2023] [Indexed: 06/21/2023]
Abstract
Cardiovascular disease (CVD) has become a severe threat to human health, with morbidity and mortality increasing yearly and gradually becoming younger. When the disease progresses to the middle and late stages, the loss of a large number of cardiomyocytes is irreparable to the body itself, and clinical drug therapy and mechanical support therapy cannot reverse the development of the disease. To explore the source of regenerated myocardium in model animals with the ability of heart regeneration through lineage tracing and other methods, and develop a new alternative therapy for CVDs, namely cell therapy. It directly compensates for cardiomyocyte proliferation through adult stem cell differentiation or cell reprogramming, which indirectly promotes cardiomyocyte proliferation through non-cardiomyocyte paracrine, to play a role in heart repair and regeneration. This review comprehensively summarizes the origin of newly generated cardiomyocytes, the research progress of cardiac regeneration based on cell therapy, the opportunity and development of cardiac regeneration in the context of bioengineering, and the clinical application of cell therapy in ischemic diseases.
Collapse
Affiliation(s)
- Danping Zhuo
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ienglam Lei
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Wenjun Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li Liu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Li
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyu Ni
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihao Liu
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
13
|
Alhejailan RS, Garoffolo G, Raveendran VV, Pesce M. Cells and Materials for Cardiac Repair and Regeneration. J Clin Med 2023; 12:jcm12103398. [PMID: 37240504 DOI: 10.3390/jcm12103398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
After more than 20 years following the introduction of regenerative medicine to address the problem of cardiac diseases, still questions arise as to the best cell types and materials to use to obtain effective clinical translation. Now that it is definitively clear that the heart does not have a consistent reservoir of stem cells that could give rise to new myocytes, and that there are cells that could contribute, at most, with their pro-angiogenic or immunomodulatory potential, there is fierce debate on what will emerge as the winning strategy. In this regard, new developments in somatic cells' reprogramming, material science and cell biophysics may be of help, not only for protecting the heart from the deleterious consequences of aging, ischemia and metabolic disorders, but also to boost an endogenous regeneration potential that seems to be lost in the adulthood of the human heart.
Collapse
Affiliation(s)
- Reem Saud Alhejailan
- Cell Biology Department, King's Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| | - Gloria Garoffolo
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| | - Vineesh Vimala Raveendran
- Cell Biology Department, King's Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| |
Collapse
|
14
|
Todorova VB, Baxan N, Delahaye M, Harding SE, Rankin SM. Drug-based mobilisation of mesenchymal stem/stromal cells improves cardiac function post myocardial infarction. Dis Model Mech 2023; 16:dmm049630. [PMID: 36263604 PMCID: PMC10655717 DOI: 10.1242/dmm.049630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022] Open
Abstract
There is an unmet need for treatments that prevent the progressive cardiac dysfunction following myocardial infarction. Mesenchymal stem/stromal cells (MSCs) are under investigation for cardiac repair; however, culture expansion prior to transplantation is hindering their homing and reparative abilities. Pharmacological mobilisation could be an alternative to MSC transplantation. Here, we report that endogenous MSCs mobilise into the circulation at day 5 post myocardial infarction in male Lewis rats. This mobilisation can be significantly increased by using a combination of the FDA-approved drugs mirabegron (β3-adrenoceptor agonist) and AMD3100 (CXCR4 antagonist). Blinded cardiac magnetic resonance imaging analysis showed the treated group to have increased left ventricular ejection fraction and decreased end systolic volume at 5 weeks post myocardial infarction. The mobilised group had a significant decrease in plasma IL-6 and TNF-α levels, a decrease in interstitial fibrosis, and an increase in the border zone blood vessel density. Conditioned medium from blood-derived MSCs supported angiogenesis in vitro, as shown by tube formation and wound healing assays. Our data suggest a novel pharmacological strategy that enhances myocardial infarction-induced MSC mobilisation and improves cardiac function after myocardial infarction.
Collapse
Affiliation(s)
- Veneta B. Todorova
- Imperial College London, Faculty of Medicine, National Heart and Lung Institute, Myocardial Function, 72 Du Cane Road, London W12 0NN, UK
| | - Nicoleta Baxan
- Imperial College London, Faculty of Medicine, National Heart and Lung Institute, Myocardial Function, 72 Du Cane Road, London W12 0NN, UK
| | - Matthew Delahaye
- Imperial College London, Faculty of Medicine, National Heart and Lung Institute, Myocardial Function, 72 Du Cane Road, London W12 0NN, UK
| | - Sian E. Harding
- Imperial College London, Faculty of Medicine, National Heart and Lung Institute, Myocardial Function, 72 Du Cane Road, London W12 0NN, UK
| | - Sara M. Rankin
- Imperial College London, Faculty of Medicine, National Heart and Lung Institute, Myocardial Function, 72 Du Cane Road, London W12 0NN, UK
| |
Collapse
|
15
|
Administration of stem cells against cardiovascular diseases with a focus on molecular mechanisms: Current knowledge and prospects. Tissue Cell 2023; 81:102030. [PMID: 36709696 DOI: 10.1016/j.tice.2023.102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Cardiovascular diseases (CVDs) are a serious global concern for public and human health. Despite the emergence of significant therapeutic advances, it is still the leading cause of death and disability worldwide. As a result, extensive efforts are underway to develop practical therapeutic approaches. Stem cell-based therapies could be considered a promising strategy for the treatment of CVDs. The efficacy of stem cell-based therapeutic approaches is demonstrated through recent laboratory and clinical studies due to their inherent regenerative properties, proliferative nature, and their capacity to differentiate into different cells such as cardiomyocytes. These properties could improve cardiovascular functioning leading to heart regeneration. The two most common types of stem cells with the potential to cure heart diseases are induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs). Several studies have demonstrated the use, efficacy, and safety of MSC and iPSCs-based therapies for the treatment of CVDs. In this study, we explain the application of stem cells, especially iPSCs and MSCs, in the treatment of CVDs with a focus on cellular and molecular mechanisms and then discuss the advantages, disadvantages, and perspectives of using this technology in the treatment of these diseases.
Collapse
|
16
|
Ayran M, Karabulut H, Deniz KI, Akcanli GC, Ulag S, Croitoru AM, Tihăuan BM, Sahin A, Ficai D, Gunduz O, Ficai A. Electrically Triggered Quercetin Release from Polycaprolactone/Bismuth Ferrite Microfibrous Scaffold for Skeletal Muscle Tissue. Pharmaceutics 2023; 15:pharmaceutics15030920. [PMID: 36986781 PMCID: PMC10056538 DOI: 10.3390/pharmaceutics15030920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Skeletal muscle tissue engineering presents a promising avenue to address the limitations pertaining to the regenerative potential of stem cells in case of injury or damage. The objective of this research was to evaluate the effects of utilizing novel microfibrous scaffolds, containing the compound quercetin (Q), on skeletal muscle regeneration. Morphological test results showed us that the combination of bismuth ferrite (BFO), polycaprolactone (PCL), and Q were bonded and well-ordered with each other, and a uniform microfibrous structure was obtained. Antimicrobial susceptibility testing of PCL/BFO/Q was conducted, and microbial reduction was found to be over 90% in the highest concentration of Q-loaded microfibrous scaffolds with the most inhibitory effect on S. aureus strains. Further, biocompatibility was investigated by performing MTT testing, fluorescence testing, and SEM imaging on mesenchymal stem cells (MSCs) to determine whether they could act as suitable microfibrous scaffolds for skeletal muscle tissue engineering. Incremental changes in the concentration of Q led to increased strength and strain, allowing muscles to withstand stretching during the healing process. In addition, electrically conductive microfibrous scaffolds enhanced the drug release capability by revealing that Q can be released significantly more quickly by applying the appropriate electric field, compared with conventional drug-release techniques. These findings suggest a possible use for PCL/BFO/Q microfibrous scaffolds in skeletal muscle regeneration by demonstrating that the combined action of both guidance biomaterials was more successful than Q itself acting alone.
Collapse
Affiliation(s)
- Musa Ayran
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
- Institute of Pure and Applied Sciences, Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Hatice Karabulut
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
- Institute of Pure and Applied Sciences, Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Kudret Irem Deniz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
- Institute of Pure and Applied Sciences, Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Gamze Ceren Akcanli
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
| | - Songul Ulag
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
- Institute of Pure and Applied Sciences, Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Alexa-Maria Croitoru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Bianca-Maria Tihăuan
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, 050567 Bucharest, Romania
- Research & Development for Advanced Biotechnologies and Medical Devices, SC Sanimed International Impex SRL, 087040 Calugareni, Romania
| | - Ali Sahin
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul 34722, Turkey
| | - Denisa Ficai
- National Centre for Micro- and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
- Institute of Pure and Applied Sciences, Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
- Correspondence:
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov St. 3, 050044 Bucharest, Romania
| |
Collapse
|
17
|
Qayyum AA, Mouridsen M, Nilsson B, Gustafsson I, Schou M, Nielsen OW, Hove JD, Mathiasen AB, Jørgensen E, Helqvist S, Joshi FR, Johansen EM, Follin B, Juhl M, Højgaard LD, Haack-Sørensen M, Ekblond A, Kastrup J. Danish phase II trial using adipose tissue derived mesenchymal stromal cells for patients with ischaemic heart failure. ESC Heart Fail 2023; 10:1170-1183. [PMID: 36638837 PMCID: PMC10053281 DOI: 10.1002/ehf2.14281] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
AIMS Patients suffering from chronic ischaemic heart failure with reduced left ventricular ejection fraction (HFrEF) have reduced quality-of-life, repetitive hospital admissions, and reduced life expectancy. Allogeneic cell therapy is currently investigated as a potential treatment option after initially encouraging results from clinical autologous and allogeneic trials in patients with HFrEF. We aimed to investigate the allogeneic Cardiology Stem Cell Centre Adipose tissue derived mesenchymal Stromal Cell product (CSCC_ASC) as an add-on therapy in patients with chronic HFrEF. METHODS AND RESULTS This is a Danish multi-centre double-blinded placebo-controlled phase II study with direct intra-myocardial injections of allogeneic CSCC_ASC. A total of 81 HFrEF patients were included and randomized 2:1 to CSCC_ASC or placebo injections. The inclusion criteria were reduced left ventricular ejection fraction (LVEF ≤ 45%), New York Heart Association (NYHA) class II-III despite optimal anti-congestive heart failure medication and no further revascularization options. Injections of 0.3 mL CSCC_ASC (total cell dose 100 × 106 ASCs) (n = 54) or isotonic saline (n = 27) were performed into the viable myocardium in the border zone of infarcted tissue using the NOGA Myostar® catheter (Biological Delivery System, Cordis, Johnson & Johnson, USA). The primary endpoint, left ventricular end systolic volume (LVESV), was evaluated at 6-month follow-up. The safety was measured during a 3-years follow-up period. RESULTS Mean age was 67.0 ± 9.0 years and 66.6 ± 8.1 years in the ASC and placebo groups, respectively. LVESV was unchanged from baseline to 6-month follow-up in the ASC (125.7 ± 68.8 mL and 126.3 ± 72.5 mL, P = 0.827) and placebo (134.6 ± 45.8 mL and 135.3 ± 49.6 mL, P = 0.855) group without any differences between the groups (0.0 mL (95% CI -9.1 to 9.0 mL, P = 0.992). Neither were there significant changes in left ventricular end diastolic volume or LVEF within the two groups or between groups -5.7 mL (95% CI -16.7 to 5.3 mL, P = 0.306) and -1.7% (95% CI -4.4. to 1.0, P = 0.212), respectively). NYHA classification and 6-min walk test did not alter significantly in the two groups (P > 0.05). The quality-of-life, total symptom, and overall summary score improved significantly only in the ASC group but not between groups. There were 24 serious adverse events (SAEs) in the ASC group and 11 SAEs in the placebo group without any significant differences between the two groups at 1-year follow-up. Kaplan-Meier plot using log-rank test of combined cardiac events showed an overall mean time to event of 30 ± 2 months in the ASC group and 29 ± 2 months in the placebo group without any differences between the groups during the 3 years follow-up period (P = 0.994). CONCLUSIONS Intramyocardial CSCC_ASC injections in patients with chronic HFrEF were safe but did not improve myocardial function or structure, nor clinical symptoms.
Collapse
Affiliation(s)
- Abbas Ali Qayyum
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mette Mouridsen
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Brian Nilsson
- Department of Cardiology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ida Gustafsson
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Morten Schou
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Olav Wendelboe Nielsen
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens Dahlgaard Hove
- Department of Cardiology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anders Bruun Mathiasen
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Erik Jørgensen
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Helqvist
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Francis Richard Joshi
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ellen Mønsted Johansen
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bjarke Follin
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Morten Juhl
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth Drozd Højgaard
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mandana Haack-Sørensen
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Annette Ekblond
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Kastrup
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Wu Z, Li W, Cheng S, Liu J, Wang S. Novel fabrication of bioengineered injectable chitosan hydrogel loaded with conductive nanoparticles to improve therapeutic potential of mesenchymal stem cells in functional recovery after ischemic myocardial infarction. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102616. [PMID: 36374915 DOI: 10.1016/j.nano.2022.102616] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/19/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
In recent decades, myocardial regeneration through stem cell transplantation and tissue engineering has been viewed as a promising technique for treating myocardial infarction. As a result, the researcher attempts to see whether co-culturing modified mesenchymal stem cells with Au@Ch-SF macro-hydrogel and H9C2 may help with tissue regeneration and cardiac function recovery. The gold nanoparticles (Au) incorporated into the chitosan-silk fibroin hydrogel (Au@Ch-SF) were validated using spectral and microscopic examinations. The most essential elements of hydrogel groups were investigated in detail, including weight loss, mechanical strength, and drug release rate. Initially, the cardioblast cells (H9C2 cells) was incubated with Au@Ch-SF macro-hydrogel, followed by mesenchymal stem cells (2 × 105) were transplanted into the Au@Ch-SF macro-hydrogel+H9C2 culture at the ratio of 2:1. Further, cardiac phenotype development, cytokines expression and tissue regenerative performance of modified mesenchymal stem cells treatment were studied through various in vitro and in vivo analyses. The Au@Ch-SF macro-hydrogel gelation time was much faster than that of Ch and Ch-SF hydrogels, showing that Ch and SF exhibited greater intermolecular interactions. The obtained Au@Ch-SF macro-hydrogel has no toxicity on mesenchymal stem cells (MS) or cardiac myoblast (H9C2) cells, according to the biocompatibility investigation. MS cells co-cultured with Au@Ch-SF macro-hydrogel and H9C2 cells also stimulated cardiomyocyte fiber restoration, which has been confirmed in myocardial infarction rats using -MHC and Cx43 myocardial indicators. We developed a novel method of co-cultured therapy using MS cells, Au@Ch-SF macro-hydrogel, and H9C2 cells which could promote the regenerative activities in myocardial ischemia cells. These study findings show that co-cultured MS therapy might be effective for the treatment of myocardial injury.
Collapse
Affiliation(s)
- Zheng Wu
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, PR China; Department of 28 Division of Cardiovascular, Beijing Institute of Heart, Lung and Blood Vessel Diseases, PR China
| | - Wenzheng Li
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, PR China; Department of 28 Division of Cardiovascular, Beijing Institute of Heart, Lung and Blood Vessel Diseases, PR China
| | - Shujuan Cheng
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, PR China; Department of 28 Division of Cardiovascular, Beijing Institute of Heart, Lung and Blood Vessel Diseases, PR China
| | - Jinghua Liu
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, PR China; Department of 28 Division of Cardiovascular, Beijing Institute of Heart, Lung and Blood Vessel Diseases, PR China.
| | - Shaoping Wang
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, PR China; Department of 28 Division of Cardiovascular, Beijing Institute of Heart, Lung and Blood Vessel Diseases, PR China
| |
Collapse
|
19
|
Chang T, Liu C, Yang H, Lu K, Han Y, Zheng Y, Huang H, Wu Y, Song Y, Yu Q, Shen Z, Jiang T, Zhang Y. Fibrin-based cardiac patch containing neuregulin-1 for heart repair after myocardial infarction. Colloids Surf B Biointerfaces 2022; 220:112936. [DOI: 10.1016/j.colsurfb.2022.112936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/11/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
|
20
|
Sadeghi B, Ringdén O, Gustafsson B, Castegren M. Mesenchymal stromal cells as treatment for acute respiratory distress syndrome. Case Reports following hematopoietic cell transplantation and a review. Front Immunol 2022; 13:963445. [PMID: 36426365 PMCID: PMC9680556 DOI: 10.3389/fimmu.2022.963445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung disease. It may occur during the pancytopenia phase following allogeneic hematopoietic cell transplantation (HCT). ARDS is rare following HCT. Mesenchymal stromal cells (MSCs) have strong anti-inflammatory effect and first home to the lung following intravenous infusion. MSCs are safe to infuse and have almost no side effects. During the Covid-19 pandemic many patients died from ARDS. Subsequently MSCs were evaluated as a therapy for Covid-19 induced ARDS. We report three patients, who were treated with MSCs for ARDS following HCT. Two were treated with MSCs derived from the bone marrow (BM). The third patient was treated with MSCs obtained from the placenta, so-called decidua stromal cells (DSCs). In the first patient, the pulmonary infiltrates cleared after infusion of BM-MSCs, but he died from multiorgan failure. The second patient treated with BM-MSCs died of aspergillus infection. The patient treated with DSCs had a dramatic response and survived. He is alive after 7 years with a Karnofsky score of 100%. We also reviewed experimental and clinical studies using MSCs or DSCs for ARDS. Several positive reports are using MSCs for sepsis and ARDS in experimental animals. In man, two prospective randomized placebo-controlled studies used adipose and BM-MSCs, respectively. No difference in outcome was seen compared to placebo. Some pilot studies used MSCs for Covid-19 ARDS. Positive results were achieved using umbilical cord and DSCs however, optimal source of MSCs remains to be elucidated using randomized trials.
Collapse
Affiliation(s)
- Behnam Sadeghi
- Translational Cell Therapy Research (TCR), Division of Paediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Behnam Sadeghi,
| | - Olle Ringdén
- Translational Cell Therapy Research (TCR), Division of Paediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Britt Gustafsson
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Markus Castegren
- Center for Clinical Research, Sörmland, Uppsala University, Uppsala, Sweden
- Department of Anesthesiology and Intensive Care, CLINTEC, Karolinska Institutet, Stockholm, Sweden
- Section of Infectious Diseases, Department of Medical Science, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Rajabi H, Mortazavi D, Konyalilar N, Aksoy GT, Erkan S, Korkunc SK, Kayalar O, Bayram H, Rahbarghazi R. Forthcoming complications in recovered COVID-19 patients with COPD and asthma; possible therapeutic opportunities. Cell Commun Signal 2022; 20:173. [PMID: 36320055 PMCID: PMC9623941 DOI: 10.1186/s12964-022-00982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/01/2022] [Indexed: 11/21/2022] Open
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been growing swiftly worldwide. Patients with background chronic pulmonary inflammations such as asthma or chronic obstructive pulmonary diseases (COPD) are likely to be infected with this virus. Of note, there is an argument that COVID-19 can remain with serious complications like fibrosis or other pathological changes in the pulmonary tissue of patients with chronic diseases. Along with conventional medications, regenerative medicine, and cell-based therapy could be alternative approaches to compensate for organ loss or restore injured sites using different stem cell types. Owing to unique differentiation capacity and paracrine activity, these cells can accelerate the healing procedure. In this review article, we have tried to scrutinize different reports related to the harmful effects of SARS-CoV-2 on patients with asthma and COPD, as well as the possible therapeutic effects of stem cells in the alleviation of post-COVID-19 complications. Video abstract.
Collapse
Affiliation(s)
- Hadi Rajabi
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Deniz Mortazavi
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Nur Konyalilar
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Gizem Tuse Aksoy
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Sinem Erkan
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Seval Kubra Korkunc
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Ozgecan Kayalar
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Hasan Bayram
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey.
- Department of Pulmonary Medicine, School of Medicine, Koç University, Istanbul, Turkey.
| | - Reza Rahbarghazi
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Nageeb MM, Saadawy SF, Attia SH. Breast milk mesenchymal stem cells abate cisplatin-induced cardiotoxicity in adult male albino rats via modulating the AMPK pathway. Sci Rep 2022; 12:17554. [PMID: 36266413 PMCID: PMC9585145 DOI: 10.1038/s41598-022-22095-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/10/2022] [Indexed: 01/13/2023] Open
Abstract
Myocardial injury influenced by cisplatin (Cis) is a compelling reason to hunt out a treatment modality to overcome such a threat in cisplatin-treated patients. Breast Milk mesenchymal stem cells (Br-MSCs) are a non-invasive, highly reproducible source of stem cells. Herein, we investigate Br-MSCs' role in cardiotoxicity induced by cisplatin. Rats were divided into; control, Cis-treated (received 12 mg/kg single intraperitoneal injection), BrMSCs-treated (received single intraperitoneal injection of 0.5 ml sterilized phosphate-buffered saline containing 2 × 107 cells of Br-MSCs); metformin-treated (received 250 mg/kg/day orally) and BrMSCs + metformin + Cis treated groups. At the experiment end, serum creatine kinase (CK-MB) and cardiac troponin T (cTnT) activates were estimated, cardiac malondialdehyde (MDA), superoxide dismutase (SOD), interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α) levels were measured, cardiac expression of Bax and Bcl-2 and AMP-activated protein kinase (AMPK), as well as heart histopathology, were evaluated. Study results showed that Cis explored acute cardiotoxicity evidenced by deteriorated cardiac indices, induction of oxidative stress, and inflammation with myocardium histological alterations. Treatment with Br-MSCs restored heart function and structure deteriorated by Cis injection. The antioxidant/anti-inflammatory/anti-apoptotic results of Br-MSCs were supported by AMPK activation denoting their protective role against cisplatin-induced cardiac injury. These results were superior when metformin was added to the treatment protocol.
Collapse
Affiliation(s)
- Mahitab M Nageeb
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sara F Saadawy
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Seba Hassan Attia
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
23
|
Sharma V, Manhas A, Gupta S, Dikshit M, Jagavelu K, Verma RS. Fabrication, characterization and in vivo assessment of cardiogel loaded chitosan patch for myocardial regeneration. Int J Biol Macromol 2022; 222:3045-3056. [DOI: 10.1016/j.ijbiomac.2022.10.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
24
|
Wan H, Sun C, Zhang J, Hu X, Wang Y. Recent advances in implantable hydrogels for treating heart failure. J Appl Polym Sci 2022. [DOI: 10.1002/app.53156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Huining Wan
- National Engineering Research Center for Biomaterials Sichuan University Chengdu Sichuan China
| | - Chenwei Sun
- National Engineering Research Center for Biomaterials Sichuan University Chengdu Sichuan China
- School of Chemical Engineering Hebei University of Technology Tianjin China
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials Sichuan University Chengdu Sichuan China
| | - Xuefeng Hu
- National Engineering Research Center for Biomaterials Sichuan University Chengdu Sichuan China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials Sichuan University Chengdu Sichuan China
| |
Collapse
|
25
|
Yue T, Xiong S, Zheng D, Wang Y, Long P, Yang J, Danzeng D, Gao H, Wen X, Li X, Hou J. Multifunctional biomaterial platforms for blocking the fibrosis process and promoting cellular restoring effects in myocardial fibrosis therapy. Front Bioeng Biotechnol 2022; 10:988683. [PMID: 36185428 PMCID: PMC9520723 DOI: 10.3389/fbioe.2022.988683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Myocardial fibrosis is the result of abnormal healing after acute and chronic myocardial damage and is a direct cause of heart failure and cardiac insufficiency. The clinical approach is to preserve cardiac function and inhibit fibrosis through surgery aimed at dredging blood vessels. However, this strategy does not adequately address the deterioration of fibrosis and cardiac function recovery. Therefore, numerous biomaterial platforms have been developed to address the above issues. In this review, we summarize the existing biomaterial delivery and restoring platforms, In addition, we also clarify the therapeutic strategies based on biomaterial platforms, including general strategies to block the fibrosis process and new strategies to promote cellular restoring effects. The development of structures with the ability to block further fibrosis progression as well as to promote cardiomyocytes viability should be the main research interests in myocardial fibrosis, and the reestablishment of structures necessary for normal cardiac function is central to the treatment of myocardial fibrosis. Finally, the future application of biomaterials for myocardial fibrosis is also highlighted.
Collapse
Affiliation(s)
- Tian Yue
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Shiqiang Xiong
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
| | - Dezhi Zheng
- Department of Cardiovascular Surgery, The 960th Hospital of the PLA Joint Logistic Support Force, Jinan, China
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Pan Long
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jiali Yang
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Dunzhu Danzeng
- Department of Basic Medicine, Medical College, Tibet University, Lhasa, China
| | - Han Gao
- Department of Basic Medicine, Medical College, Tibet University, Lhasa, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People’s Hospital, Chengdu, China
- *Correspondence: Xudong Wen, ; Xin Li, ; Jun Hou,
| | - Xin Li
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
- *Correspondence: Xudong Wen, ; Xin Li, ; Jun Hou,
| | - Jun Hou
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
- *Correspondence: Xudong Wen, ; Xin Li, ; Jun Hou,
| |
Collapse
|
26
|
Therapeutic Potential of Mesenchymal Stem Cells versus Omega n − 3 Polyunsaturated Fatty Acids on Gentamicin-Induced Cardiac Degeneration. Pharmaceutics 2022; 14:pharmaceutics14071322. [PMID: 35890218 PMCID: PMC9319609 DOI: 10.3390/pharmaceutics14071322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/28/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
This study compared the cardioprotective action of mesenchymal stem cells (MSCs) and PUFAs in a rat model of gentamicin (GM)-induced cardiac degeneration. Male Wistar albino rats were randomized into four groups of eight rats each: group I (control group), group II (gentamicin-treated rats receiving gentamicin intraperitoneally (IP) at dose of 100 mg/kg/day for 10 consecutive days), group III (gentamicin and PUFA group receiving gentamicin IP at dose of 100 mg/kg/day for 10 consecutive days followed by PUFAs at a dose of 100 mg/kg/day for 4 weeks), and group IV (gentamicin and MSC group receiving gentamicin IP at dose of 100 mg/kg/day followed by a single dose of MSCs (1 × 106)/rat IP). Cardiac histopathology was evaluated via light and electron microscopy. Immunohistochemical detection of proliferating cell nuclear antigen (PCNA), caspase-3 (apoptosis), Bcl2, and Bax expression was performed. Moreover, cardiac malonaldehyde (MDA) content, catalase activity, and oxidative stress parameters were biochemically evaluated. Light and electron microscopy showed that both MSCs and PUFAs had ameliorative effects. Their actions were mediated by upregulating PCNA expression, downregulating caspase-3 expression, mitigating cardiac MDA content, catalase activity, and oxidative stress parameters. MSCs and PUFAs had ameliorative effects against gentamicin-induced cardiac degeneration, with MSCs showing higher efficacy compared to PUFAs.
Collapse
|
27
|
Miloradovic D, Miloradovic D, Ljujic B, Jankovic MG. Optimal Delivery Route of Mesenchymal Stem Cells for Cardiac Repair: The Path to Good Clinical Practice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022:83-100. [PMID: 35389200 DOI: 10.1007/5584_2022_709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Research has shown that mesenchymal stem cells (MSCs) could be a promising therapy for treating progressive heart disease. However, translation into clinics efficiently and successfully has proven to be much more complicated. Many questions remain for optimizing treatment. Application method influences destiny of MSCs and afterwards impacts results of procedure, yet there is no general agreement about most suitable method of MSC delivery in the clinical setting. Herein, we explain principle of most-frequent MSCs delivery techniques in cardiology. This chapter summarizes crucial translational obstacles of clinical employment of MSCs for cardiac repair when analysed trough a prism of latest research centred on different techniques of MSCs application.
Collapse
Affiliation(s)
- Dragica Miloradovic
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Miloradovic
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Ljujic
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia
| | - Marina Gazdic Jankovic
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia.
| |
Collapse
|
28
|
Decellularization of Full Heart—Optimizing the Classical Sodium-Dodecyl-Sulfate-Based Decellularization Protocol. Bioengineering (Basel) 2022; 9:bioengineering9040147. [PMID: 35447709 PMCID: PMC9032179 DOI: 10.3390/bioengineering9040147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 12/05/2022] Open
Abstract
Compared to cell therapy, where cells are injected into a defect region, the treatment of heart infarction with cells seeded in a vascularized scaffold bears advantages, such as an immediate nutrient supply or a controllable and persistent localization of cells. For this purpose, decellularized native tissues are a preferable choice as they provide an in vivo-like microenvironment. However, the quality of such scaffolds strongly depends on the decellularization process. Therefore, two protocols based on sodium dodecyl sulfate or sodium deoxycholate were tailored and optimized for the decellularization of a porcine heart. The obtained scaffolds were tested for their applicability to generate vascularized cardiac patches. Decellularization with sodium dodecyl sulfate was found to be more suitable and resulted in scaffolds with a low amount of DNA, a highly preserved extracellular matrix composition, and structure shown by GAG quantification and immunohistochemistry. After seeding human endothelial cells into the vasculature, a coagulation assay demonstrated the functionality of the endothelial cells to minimize the clotting of blood. Human-induced pluripotent-stem-cell-derived cardiomyocytes in co-culture with fibroblasts and mesenchymal stem cells transferred the scaffold into a vascularized cardiac patch spontaneously contracting with a frequency of 25.61 ± 5.99 beats/min for over 16 weeks. The customized decellularization protocol based on sodium dodecyl sulfate renders a step towards a preclinical evaluation of the scaffolds.
Collapse
|
29
|
Poomani MS, Mariappan I, Perumal R, Regurajan R, Muthan K, Subramanian V. Mesenchymal Stem Cell (MSCs) Therapy for Ischemic Heart Disease: A Promising Frontier. Glob Heart 2022; 17:19. [PMID: 35342702 PMCID: PMC8916054 DOI: 10.5334/gh.1098] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/26/2022] [Indexed: 01/07/2023] Open
Abstract
Although tremendous progress has been made in conventional treatment for ischemic heart disease, it still remains a major cause of death and disability. Cell-based therapeutics holds an exciting frontier of research for complete cardiac recuperation. The capacity of diverse stem and progenitor cells to stimulate cardiac renewal has been analysed, with promising results in both pre-clinical and clinical trials. Mesenchymal stem cells have been ascertained to have regenerative ability via a variety of mechanisms, including differentiation from the mesoderm lineage, immunomodulatory properties, and paracrine effects. Also, their availability, maintenance, and ability to replenish endogenous stem cell niches have rendered them suitable for front-line research. This review schemes to outline the use of mesenchymal stem cell therapeutics for ischemic heart disease, their characteristics, the potent mechanisms of mesenchymal stem cell-based heart regeneration, and highlight preclinical data. Additionally, we discuss the results of the clinical trials to date as well as ongoing clinical trials on ischemic heart disease.
Collapse
Affiliation(s)
- Merlin Sobia Poomani
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli 627012, Tamil Nadu, India
| | - Iyyadurai Mariappan
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli 627012, Tamil Nadu, India
| | | | - Rathika Regurajan
- Center for Marine Science and Technology, Manonmaniam Sundaranar University, Tirunelveli 627012 Tamil Nadu, India
| | - Krishnaveni Muthan
- Center for Marine Science and Technology, Manonmaniam Sundaranar University, Tirunelveli 627012 Tamil Nadu, India
| | - Venkatesh Subramanian
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli 627012, Tamil Nadu, India
| |
Collapse
|
30
|
Tang J, Cui X, Zhang Z, Xu Y, Guo J, Soliman BG, Lu Y, Qin Z, Wang Q, Zhang H, Lim KS, Woodfield TBF, Zhang J. Injection-Free Delivery of MSC-Derived Extracellular Vesicles for Myocardial Infarction Therapeutics. Adv Healthc Mater 2022; 11:e2100312. [PMID: 34310068 DOI: 10.1002/adhm.202100312] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/09/2021] [Indexed: 12/17/2022]
Abstract
As emerging therapeutic factors, extracellular vesicles (EVs) offer significant potential for myocardial infarction (MI) treatment. Current delivery approaches for EVs involve either intra-myocardial or intravenous injection, where both have inherent limitations for downstream clinical applications such as secondary tissue injury and low delivery efficiency. Herein, an injection-free approach for delivering EVs onto the heart surface to treat MI is proposed. By spraying a mixture of EVs, gelatin methacryloyl (GelMA) precursors, and photoinitiators followed by visible light irradiation for 30 s, EVs are physically entrapped within the GelMA hydrogel network covering the surface of the heart, resulting in an enhanced retention rate. Moreover, EVs are gradually released from the hydrogel network through a combination of diffusion and/or enzymatic degradation of the hydrogel, and they are effectively taken up by the sprayed tissue area. More importantly, the released EVs further migrate deep into myocardium tissue, which exerts an improved therapeutic effect. In an MI-induced mice model, the group treated with EVs-laden GelMA hydrogels shows significant recovery in cardiac function after 4 weeks. The work demonstrates a new strategy for delivering EVs into cardiac tissues for MI treatment in a localized manner with high retention.
Collapse
Affiliation(s)
- Junnan Tang
- Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Henan Province Key Laboratory of Cardiac Injury and Repair Zhengzhou Henan 450052 China
| | - Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group Department of Orthopaedic Surgery & Musculoskeletal Medicine University of Otago Christchurch 8011 New Zealand
| | - Zenglei Zhang
- Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Henan Province Key Laboratory of Cardiac Injury and Repair Zhengzhou Henan 450052 China
| | - Yanyan Xu
- Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Henan Province Key Laboratory of Cardiac Injury and Repair Zhengzhou Henan 450052 China
| | - Jiacheng Guo
- Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Henan Province Key Laboratory of Cardiac Injury and Repair Zhengzhou Henan 450052 China
| | - Bram G Soliman
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group Department of Orthopaedic Surgery & Musculoskeletal Medicine University of Otago Christchurch 8011 New Zealand
| | - Yongzheng Lu
- Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Henan Province Key Laboratory of Cardiac Injury and Repair Zhengzhou Henan 450052 China
| | - Zhen Qin
- Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Henan Province Key Laboratory of Cardiac Injury and Repair Zhengzhou Henan 450052 China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials Sichuan University Chengdu Sichuan 61004 China
| | - Hu Zhang
- Henry E. Riggs School of Applied Life Sciences Keck Graduate Institute Claremont CA 91711 USA
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group Department of Orthopaedic Surgery & Musculoskeletal Medicine University of Otago Christchurch 8011 New Zealand
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group Department of Orthopaedic Surgery & Musculoskeletal Medicine University of Otago Christchurch 8011 New Zealand
| | - Jinying Zhang
- Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Henan Province Key Laboratory of Cardiac Injury and Repair Zhengzhou Henan 450052 China
| |
Collapse
|
31
|
Sharma A, Gupta S, Archana S, Verma RS. Emerging Trends in Mesenchymal Stem Cells Applications for Cardiac Regenerative Therapy: Current Status and Advances. Stem Cell Rev Rep 2022; 18:1546-1602. [PMID: 35122226 DOI: 10.1007/s12015-021-10314-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 12/29/2022]
Abstract
Irreversible myocardium infarction is one of the leading causes of cardiovascular disease (CVD) related death and its quantum is expected to grow in coming years. Pharmacological intervention has been at the forefront to ameliorate injury-related morbidity and mortality. However, its outcomes are highly skewed. As an alternative, stem cell-based tissue engineering/regenerative medicine has been explored quite extensively to regenerate the damaged myocardium. The therapeutic modality that has been most widely studied both preclinically and clinically is based on adult multipotent mesenchymal stem cells (MSC) delivered to the injured heart. However, there is debate over the mechanistic therapeutic role of MSC in generating functional beating cardiomyocytes. This review intends to emphasize the role and use of MSC in cardiac regenerative therapy (CRT). We have elucidated in detail, the various aspects related to the history and progress of MSC use in cardiac tissue engineering and its multiple strategies to drive cardiomyogenesis. We have further discussed with a focus on the various therapeutic mechanism uncovered in recent times that has a significant role in ameliorating heart-related problems. We reviewed recent and advanced technologies using MSC to develop/create tissue construct for use in cardiac regenerative therapy. Finally, we have provided the latest update on the usage of MSC in clinical trials and discussed the outcome of such studies in realizing the full potential of MSC use in clinical management of cardiac injury as a cellular therapy module.
Collapse
Affiliation(s)
- Akriti Sharma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India
| | - Santosh Gupta
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India
| | - S Archana
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India.
| |
Collapse
|
32
|
Mehanna RA, Essawy MM, Barkat MA, Awaad AK, Thabet EH, Hamed HA, Elkafrawy H, Khalil NA, Sallam A, Kholief MA, Ibrahim SS, Mourad GM. Cardiac stem cells: Current knowledge and future prospects. World J Stem Cells 2022; 14:1-40. [PMID: 35126826 PMCID: PMC8788183 DOI: 10.4252/wjsc.v14.i1.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/02/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Regenerative medicine is the field concerned with the repair and restoration of the integrity of damaged human tissues as well as whole organs. Since the inception of the field several decades ago, regenerative medicine therapies, namely stem cells, have received significant attention in preclinical studies and clinical trials. Apart from their known potential for differentiation into the various body cells, stem cells enhance the organ's intrinsic regenerative capacity by altering its environment, whether by exogenous injection or introducing their products that modulate endogenous stem cell function and fate for the sake of regeneration. Recently, research in cardiology has highlighted the evidence for the existence of cardiac stem and progenitor cells (CSCs/CPCs). The global burden of cardiovascular diseases’ morbidity and mortality has demanded an in-depth understanding of the biology of CSCs/CPCs aiming at improving the outcome for an innovative therapeutic strategy. This review will discuss the nature of each of the CSCs/CPCs, their environment, their interplay with other cells, and their metabolism. In addition, important issues are tackled concerning the potency of CSCs/CPCs in relation to their secretome for mediating the ability to influence other cells. Moreover, the review will throw the light on the clinical trials and the preclinical studies using CSCs/CPCs and combined therapy for cardiac regeneration. Finally, the novel role of nanotechnology in cardiac regeneration will be explored.
Collapse
Affiliation(s)
- Radwa A Mehanna
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa M Essawy
- Oral Pathology Department, Faculty of Dentistry/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Mona A Barkat
- Human Anatomy and Embryology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ashraf K Awaad
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Eman H Thabet
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Heba A Hamed
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Hagar Elkafrawy
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Nehal A Khalil
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Abeer Sallam
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa A Kholief
- Forensic Medicine and Clinical toxicology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Samar S Ibrahim
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ghada M Mourad
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| |
Collapse
|
33
|
Mehanna RA, Essawy MM, Barkat MA, Awaad AK, Thabet EH, Hamed HA, Elkafrawy H, Khalil NA, Sallam A, Kholief MA, Ibrahim SS, Mourad GM. Cardiac stem cells: Current knowledge and future prospects. World J Stem Cells 2022. [PMID: 35126826 DOI: 10.4252/wjsc.v14.i1.1]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Regenerative medicine is the field concerned with the repair and restoration of the integrity of damaged human tissues as well as whole organs. Since the inception of the field several decades ago, regenerative medicine therapies, namely stem cells, have received significant attention in preclinical studies and clinical trials. Apart from their known potential for differentiation into the various body cells, stem cells enhance the organ's intrinsic regenerative capacity by altering its environment, whether by exogenous injection or introducing their products that modulate endogenous stem cell function and fate for the sake of regeneration. Recently, research in cardiology has highlighted the evidence for the existence of cardiac stem and progenitor cells (CSCs/CPCs). The global burden of cardiovascular diseases' morbidity and mortality has demanded an in-depth understanding of the biology of CSCs/CPCs aiming at improving the outcome for an innovative therapeutic strategy. This review will discuss the nature of each of the CSCs/CPCs, their environment, their interplay with other cells, and their metabolism. In addition, important issues are tackled concerning the potency of CSCs/CPCs in relation to their secretome for mediating the ability to influence other cells. Moreover, the review will throw the light on the clinical trials and the preclinical studies using CSCs/CPCs and combined therapy for cardiac regeneration. Finally, the novel role of nanotechnology in cardiac regeneration will be explored.
Collapse
Affiliation(s)
- Radwa A Mehanna
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa M Essawy
- Oral Pathology Department, Faculty of Dentistry/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Mona A Barkat
- Human Anatomy and Embryology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ashraf K Awaad
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Eman H Thabet
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Heba A Hamed
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Hagar Elkafrawy
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Nehal A Khalil
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Abeer Sallam
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa A Kholief
- Forensic Medicine and Clinical toxicology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Samar S Ibrahim
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ghada M Mourad
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt.
| |
Collapse
|
34
|
Garcia JP, Avila FR, Torres RA, Maita KC, Eldaly AS, Rinker BD, Zubair AC, Forte AJ, Sarabia-Estrada R. Hypoxia-preconditioning of human adipose-derived stem cells enhances cellular proliferation and angiogenesis: A systematic review. J Clin Transl Res 2022; 8:61-70. [PMID: 35187291 PMCID: PMC8848748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Human adipose-derived stem cells (hADSCs) have gained attention lately because of their ease of harvesting and ability to be substantially multiplied in laboratory cultures. Stem cells are usually cultured under atmospheric conditions; however, preconditioning stem cells under hypoxic conditions seems beneficial. AIM This systematic review aims to investigate the effect of hypoxia preconditioning and its impact on the proliferation and angiogenic capacity of the hADSCs. METHODS We performed a systematic review by searching PubMed, Scopus, Embase, and Google Scholar databases from all years through March 22, 2021, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Medical Subject Headings terms "adipose-derived stem cell," "Hypoxia," "cell proliferation," and "angiogenesis" guided our search. Only articles written in English using experimental models comparing a preconditioned group against a control group of hADSCs with data on proliferation and angiogenic capacity were included. RESULTS Our search yielded a total of 321 articles. 11 articles met our inclusion criteria and were ultimately included in this review. Two studies induced hypoxia using hypoxia-inducible factor-1 alpha stabilizing agents, while nine reached hypoxia by changing oxygen tension conditions around the cells. Four articles conducted in-vivo studies to correlate their in-vitro findings, which proved to be consistent. Although 1 article indicated cell proliferation inhibition with hypoxia preconditioning, the remaining 10 found enhanced proliferation in preconditioned groups compared to controls. All articles showed an enhanced angiogenic capacity of hADSCs after hypoxia preconditioning. CONCLUSION In this review, we found evidence to support hypoxia preconditioning of hADSCs before implantation. Benefits include enhanced cell proliferation with a faster population doubling rate and increased secretion of multiple angiogenic growth factors, enhancing angiogenesis capacity. RELEVANCE FOR PATIENTS Although regenerative therapy is a promising field of study and treatment in medicine, much is still unknown. The potential for angiogenic therapeutics with stem cells is high, but more so, if we discover ways to enhance their natural angiogenic properties. Procedures and pathologies alike require the assistance of angiogenic treatments to improve outcome, such is the case with skin grafts, muscle flaps, skin flaps, or myocardial infarction to mention a few. Enhanced angiogenic properties of stem cells may pave the way for better outcomes and results for patients.
Collapse
Affiliation(s)
- John P. Garcia
- 1Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida
| | | | | | - Karla C. Maita
- 1Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida
| | | | - Brian D. Rinker
- 1Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida
| | - Abba C. Zubair
- 2Transfusion Medicines and Stem Cell Therapy, Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Antonio J. Forte
- 1Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida,Corresponding author: Antonio J. Forte Division of Plastic Surgery, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224. Phone: 904-953-2073 Fax: 904-953-7368
| | - Rachel Sarabia-Estrada
- 3Departments of Neurosurgery; Neuroscience; and, Cancer Biology, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
35
|
Pittenger MF, Eghtesad S, Sanchez PG, Liu X, Wu Z, Chen L, Griffith BP. MSC Pretreatment for Improved Transplantation Viability Results in Improved Ventricular Function in Infarcted Hearts. Int J Mol Sci 2022; 23:694. [PMID: 35054878 PMCID: PMC8775864 DOI: 10.3390/ijms23020694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/22/2022] Open
Abstract
Many clinical studies utilizing MSCs (mesenchymal stem cells, mesenchymal stromal cells, or multipotential stromal cells) are underway in multiple clinical settings; however, the ideal approach to prepare these cells in vitro and to deliver them to injury sites in vivo with maximal effectiveness remains a challenge. Here, pretreating MSCs with agents that block the apoptotic pathways were compared with untreated MSCs. The treatment effects were evaluated in the myocardial infarct setting following direct injection, and physiological parameters were examined at 4 weeks post-infarct in a rat permanent ligation model. The prosurvival treated MSCs were detected in the hearts in greater abundance at 1 week and 4 weeks than the untreated MSCs. The untreated MSCs improved ejection fraction in infarcted hearts from 61% to 77% and the prosurvival treated MSCs further improved ejection fraction to 83% of normal. The untreated MSCs improved fractional shortening in the infarcted heart from 52% to 68%, and the prosurvival treated MSCs further improved fractional shortening to 77% of normal. Further improvements in survival of the MSC dose seems possible. Thus, pretreating MSCs for improved in vivo survival has implications for MSC-based cardiac therapies and in other indications where improved cell survival may improve effectiveness.
Collapse
Affiliation(s)
- Mark F. Pittenger
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (S.E.); (P.G.S.); (X.L.); (Z.W.)
| | - Saman Eghtesad
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (S.E.); (P.G.S.); (X.L.); (Z.W.)
- Department of Biochemistry, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Pablo G. Sanchez
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (S.E.); (P.G.S.); (X.L.); (Z.W.)
- Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
| | - Xiaoyan Liu
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (S.E.); (P.G.S.); (X.L.); (Z.W.)
| | - Zhongjun Wu
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (S.E.); (P.G.S.); (X.L.); (Z.W.)
| | - Ling Chen
- Departments of Physiology and Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Bartley P. Griffith
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (S.E.); (P.G.S.); (X.L.); (Z.W.)
| |
Collapse
|
36
|
Phillips KG, Turnbull IC, Hajjar RJ, Costa KD, Mayourian J. In silico Cell Therapy Model Restores Failing Human Myocyte Electrophysiology and Calcium Cycling in Fibrotic Myocardium. Front Physiol 2022; 12:755881. [PMID: 35046835 PMCID: PMC8762340 DOI: 10.3389/fphys.2021.755881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/22/2021] [Indexed: 11/28/2022] Open
Abstract
Myocardial delivery of human c-kit+ cardiac interstitial cells (hCICs) and human mesenchymal stem cells (hMSCs), an emerging approach for treating the failing heart, has been limited by an incomplete understanding of the effects on host myocardium. This computational study aims to model hCIC and hMSC effects on electrophysiology and calcium cycling of healthy and diseased human cardiomyocytes (hCM), and reveals a possible cardiotherapeutic benefit independent of putative regeneration processes. First, we developed an original hCIC mathematical model with an electrical profile comprised of distinct experimentally identified ion currents. Next, we verified the model by confirming it is representative of published experiments on hCIC whole-cell electrophysiology and on hCIC co-cultures with rodent cardiomyocytes. We then used our model to compare electrophysiological effects of hCICs to other non-excitable cells, as well as clinically relevant hCIC-hMSC combination therapies and fused hCIC-hMSC CardioChimeras. Simulation of direct coupling of hCICs to healthy or failing hCMs through gap junctions led to greater increases in calcium cycling with lesser reductions in action potential duration (APD) compared with hMSCs. Combined coupling of hCICs and hMSCs to healthy or diseased hCMs led to intermediate effects on electrophysiology and calcium cycling compared to individually coupled hCICs or hMSCs. Fused hCIC-hMSC CardioChimeras decreased healthy and diseased hCM APD and calcium transient amplitude compared to individual or combined cell treatments. Finally, to provide a theoretical basis for optimizing cell-based therapies, we randomized populations of 2,500 models incorporating variable hMSC and hCIC interventions and simulated their effects on restoring diseased cardiomyocyte electrophysiology and calcium handling. The permutation simulation predicted the ability to correct abnormal properties of heart failure hCMs in fibrotic, but not non-fibrotic, myocardium. This permutation experiment also predicted paracrine signaling to be a necessary and sufficient mechanism for this correction, counteracting the fibrotic effects while also restoring arrhythmia-related metrics such as upstroke velocity and resting membrane potential. Altogether, our in silico findings suggest anti-fibrotic effects of paracrine signaling are critical to abrogating pathological cardiomyocyte electrophysiology and calcium cycling in fibrotic heart failure, and support further investigation of delivering an optimized cellular secretome as a potential strategy for improving heart failure therapy.
Collapse
Affiliation(s)
- Katherine G. Phillips
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Irene C. Turnbull
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Kevin D. Costa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joshua Mayourian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Department of Pediatrics, Boston University, Boston, MA, United States
- Department of Pediatrics, Boston Medical Center, Boston, MA, United States
| |
Collapse
|
37
|
ZENG L, DING T, CHEN X, XIA Y, YANG N, XIAN W. Therapeutic value of bone marrow mesenchymal stem cell transplantation incorporated with milrinone on restoring cardiac function. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.15322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Xi CHEN
- Qiqihar Medical College, China
| | | | - Na YANG
- Qiqihar Medical College, China
| | | |
Collapse
|
38
|
Rieger AC, Tompkins BA, Natsumeda M, Florea V, Banerjee MN, Rodriguez J, Rosado M, Porras V, Valasaki K, Takeuchi LM, Collon K, Desai S, Bellio MA, Khan A, Kashikar ND, Landin AM, Hardin DV, Rodriguez DA, Balkan W, Hare JM, Schulman IH. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:59-72. [PMID: 35641169 PMCID: PMC8895493 DOI: 10.1093/stcltm/szab004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/29/2021] [Indexed: 11/28/2022] Open
Abstract
Background Left ventricular hypertrophy and heart failure with preserved ejection fraction (HFpEF) are primary manifestations of the cardiorenal syndrome in patients with chronic kidney disease (CKD). Therapies that improve morbidity and mortality in HFpEF are lacking. Cell-based therapies promote cardiac repair in ischemic and non-ischemic cardiomyopathies. We hypothesized that cell-based therapy ameliorates CKD-induced HFpEF. Methods and Results Yorkshire pigs (n = 26) underwent 5/6 embolization-mediated nephrectomy. CKD was confirmed by increased creatinine and decreased glomerular filtration rate (GFR). Mean arterial pressure (MAP) was not different between groups from baseline to 4 weeks. HFpEF was evident at 4 weeks by increased LV mass, relative wall thickening, end-diastolic pressure, and end-diastolic pressure-volume relationship, with no change in ejection fraction (EF). Four weeks post-embolization, allogeneic (allo) bone marrow-derived mesenchymal stem cells (MSC; 1 × 107 cells), allo-kidney-derived stem cells (KSC; 1 × 107 cells), allo-cell combination therapy (ACCT; MSC + KSC; 1:1 ratio; total = 1 × 107 cells), or placebo (Plasma-Lyte) was delivered via intra-renal artery. Eight weeks post-treatment, there was a significant increase in MAP in the placebo group (21.89 ± 6.05 mmHg) compared to the ACCT group. GFR significantly improved in the ACCT group. EF, relative wall thickness, and LV mass did not differ between groups at 12 weeks. EDPVR improved in the ACCT group, indicating decreased ventricular stiffness. Conclusions Intra-renal artery allogeneic cell therapy was safe in a CKD swine model manifesting the characteristics of HFpEF. The beneficial effect on renal function and ventricular compliance in the ACCT group supports further research of cell therapy for cardiorenal syndrome.
Collapse
Affiliation(s)
- Angela C Rieger
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bryon A Tompkins
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Makoto Natsumeda
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Victoria Florea
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Monisha N Banerjee
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jose Rodriguez
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marcos Rosado
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Valeria Porras
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Krystalenia Valasaki
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lauro M Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kevin Collon
- Department of Orthopedic Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Sohil Desai
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael A Bellio
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Ana Marie Landin
- Cell Therapy and Vaccine Lab, Moffitt Cancer Center, Tampa, FL, USA
| | - Darrell V Hardin
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel A Rodriguez
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Cardiovascular Division, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Cardiovascular Division, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ivonne Hernandez Schulman
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Corresponding author: Ivonne H. Schulman, MD, Program Director, Translational and Clinical Studies of Acute Kidney Injury, Division of Kidney, Urologic and Hematologic Diseases (KUH), National Institutes of Health (NIH), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Two Democracy Plaza, Room #6077, 6707 Democracy Blvd, Bethesda, MD 20892-5458, USA. Tel: 301-435-3350; Mobile: 301-385-5744; Fax: 301-480-3510, ,
| |
Collapse
|
39
|
Bagno LL, Salerno AG, Balkan W, Hare JM. Mechanism of Action of Mesenchymal Stem Cells (MSCs): impact of delivery method. Expert Opin Biol Ther 2021; 22:449-463. [PMID: 34882517 DOI: 10.1080/14712598.2022.2016695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Mesenchymal stromal cells (MSCs; AKA mesenchymal stem cells) stimulate healing and reduce inflammation. Promising therapeutic responses are seen in many late-phase clinical trials, but others have not satisfied their primary endpoints, making translation of MSCs into clinical practice difficult. These inconsistencies may be related to the route of MSC delivery, lack of product optimization, or varying background therapies received in clinical trials over time. AREAS COVERED Here we discuss the different routes of MSC delivery, highlighting the proposed mechanism(s) of therapeutic action as well as potential safety concerns. PubMed search criteria used: MSC plus: local administration; routes of administration; delivery methods; mechanism of action; therapy in different diseases. EXPERT OPINION Direct injection of MSCs using a controlled local delivery approach appears to have benefits in certain disease states, but further studies are required to make definitive conclusions regarding the superiority of one delivery method over another.
Collapse
Affiliation(s)
- Luiza L Bagno
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alessandro G Salerno
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami
| |
Collapse
|
40
|
Meucci MC, Reinders MEJ, Groeneweg KE, Bezstarosti S, Ajmone Marsan N, Bax JJ, De Fijter JW, Delgado V. Cardiovascular Effects of Autologous Bone Marrow-Derived Mesenchymal Stromal Cell Therapy With Early Tacrolimus Withdrawal in Renal Transplant Recipients: An Analysis of the Randomized TRITON Study. J Am Heart Assoc 2021; 10:e023300. [PMID: 34913362 PMCID: PMC9075245 DOI: 10.1161/jaha.121.023300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background After renal transplantation, there is a need of immunosuppressive regimens that effectively prevent allograft rejection while minimizing cardiovascular complications. This substudy of the TRITON trial evaluated the cardiovascular effects of autologous bone marrow-derived mesenchymal stromal cells (MSCs) in renal transplant recipients. Methods and Results Renal transplant recipients were randomized to MSC therapy, infused at weeks 6 and 7 after transplantation, with withdrawal at week 8 of tacrolimus or standard tacrolimus dose. Fifty-four patients (MSC group=27; control group=27) underwent transthoracic echocardiography at weeks 4 and 24 after transplantation and were included in this substudy. Changes in clinical and echocardiographic variables were compared. The MSC group showed a benefit in blood pressure control, assessed by a significant interaction between changes in diastolic blood pressure and the treatment group (P=0.005), and a higher proportion of patients achieving the predefined blood pressure target of <140/90 mm Hg compared with the control group (59.3% versus 29.6%, P=0.03). A significant reduction in left ventricular mass index was observed in the MSC group, whereas there were no changes in the control group (P=0.002). The proportion of patients with left ventricular hypertrophy decreased at 24 weeks in the MSC group (33.3% versus 70.4%, P=0.006), whereas no changes were noted in the control group (63.0% versus 48.1%, P=0.29). Additionally, MSC therapy prevented progressive left ventricular diastolic dysfunction, as demonstrated by changes in mitral deceleration time and tricuspid regurgitant jet velocity. Conclusions MSC strategy is associated with improved blood pressure control, regression of left ventricular hypertrophy, and prevention of progressive diastolic dysfunction at 24 weeks after transplantation. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03398681.
Collapse
Affiliation(s)
- Maria Chiara Meucci
- Department of Cardiology Leiden University Medical Center Leiden the Netherlands.,Department of Cardiovascular and Thoracic Sciences Fondazione Policlinico Universitario A. Gemelli IRCCSCatholic University of the Sacred Heart Rome Italy
| | - Marlies E J Reinders
- Department of Internal Medicine (Nephrology) Leiden University Medical Center Leiden the Netherlands
| | - Koen E Groeneweg
- Department of Internal Medicine (Nephrology) Leiden University Medical Center Leiden the Netherlands
| | - Suzanne Bezstarosti
- Department of Internal Medicine (Nephrology) Leiden University Medical Center Leiden the Netherlands.,Department of Immunology Leiden University Medical Center Leiden the Netherlands
| | - Nina Ajmone Marsan
- Department of Cardiology Leiden University Medical Center Leiden the Netherlands
| | - Jeroen J Bax
- Department of Cardiology Leiden University Medical Center Leiden the Netherlands.,Heart Center University of Turku and Turku University Hospital Turku Finland
| | - Johan W De Fijter
- Department of Internal Medicine (Nephrology) Leiden University Medical Center Leiden the Netherlands
| | - Victoria Delgado
- Department of Cardiology Leiden University Medical Center Leiden the Netherlands
| |
Collapse
|
41
|
Soltani L, Mahdavi AH. Role of Signaling Pathways during Cardiomyocyte Differentiation of Mesenchymal Stem Cells. Cardiology 2021; 147:216-224. [PMID: 34864735 DOI: 10.1159/000521313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 11/25/2021] [Indexed: 11/19/2022]
Abstract
Multipotent stem cells, including mesenchymal stem cells (MSCs), represent a promising source to be used by regenerative medicine. They are capable of performing myogenic, chondrogenic, osteogenic and adipogenic differentiation. Also, MSCs are characterized by the expression of multiple surface antigens, but none of them appears to be particularly expressed on MSCs. Moreover, the prospect of monitoring and controlling MSC differentiation is a scientifically crucial regulatory and clinical requirement. Different transcription factors and signaling pathways are involved in cardiomyocyte differentiation. Due to the paucity of studies exclusively focused on cardiomyocyte differentiation of MSCs, present study aims at describing the roles of various signaling pathways (FGF, TGF, Wnt, Notch, etc.) in cardiomyocytes differentiation of MSCs. Understanding the signaling pathways that control the commitment and differentiation of cardiomyocyte cells not only will expand our basic understanding of molecular mechanisms of heart development, but also will enable us to develop therapeutic means of intervention in cardiovascular diseases.
Collapse
Affiliation(s)
- Leila Soltani
- Department of Animal Sciences, Faculty of Agriculture and Engineering, Razi University, Kermanshah, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
42
|
MicroRNAs and exosomes: Cardiac stem cells in heart diseases. Pathol Res Pract 2021; 229:153701. [PMID: 34872024 DOI: 10.1016/j.prp.2021.153701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022]
Abstract
Treating cardiovascular diseases with cardiac stem cells (CSCs) is a valid treatment among various stem cell-based therapies. With supplying the physiological need for cardiovascular cells as their main function, under pathological circumstances, CSCs can also reproduce the myocardial cells. Although studies have identified many of CSCs' functions, our knowledge of molecular pathways that regulate these functions is not complete enough. Either physiological or pathological studies have shown, stem cells proliferation and differentiation could be regulated by microRNAs (miRNAs). How miRNAs regulate CSC behavior is an interesting area of research that can help us study and control the function of these cells in vitro; an achievement that may be beneficial for patients with cardiovascular diseases. The secretome of stem and progenitor cells has been studied and it has been determined that exosomes are the main source of their secretion which are very small vesicles at the nanoscale and originate from endosomes, which are secreted into the extracellular space and act as key signaling organelles in intercellular communication. Mesenchymal stem cells, cardiac-derived progenitor cells, embryonic stem cells, induced pluripotent stem cells (iPSCs), and iPSC-derived cardiomyocytes release exosomes that have been shown to have cardioprotective, immunomodulatory, and reparative effects. Herein, we summarize the regulation roles of miRNAs and exosomes in cardiac stem cells.
Collapse
|
43
|
Nath AV, Ajit S, Sekar AJ, P R AK, Muthusamy S. MicroRNA-200c/429 mediated regulation of Zeb1 augments N-Cadherin in mouse cardiac mesenchymal cells. Cell Biol Int 2021; 46:222-233. [PMID: 34747544 DOI: 10.1002/cbin.11724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 11/10/2022]
Abstract
Cardiac mesenchymal cells (CMCs) are a promising cell type that showed therapeutic potential in heart failure models. The analysis of the underlying mechanisms by which the CMCs improve cardiac function is on track. This study aimed to investigate the expression of N-Cadherin, a transmembrane protein that enhances cell adhesion, and recently gained attention for differentiation and augmentation of stem cell function. The mouse CMCs were isolated and analyzed for the mesenchymal markers using flow cytometry. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis were used to assess the expression of N-Cadherin along with its counteracting molecule E-Cadherin and their regulator Zeb1 in CMCs and dermal fibroblast. The expression level of miR-200c and miR-429 was analyzed using miRNA assays. Transient transfection of miR-200c followed by qRT-PCR, western blot analysis, and immunostaining was done in CMCs to analyze the expression of Zeb1, N-Cadherin, and E-Cadherin. Flow cytometry analysis showed that CMCs possess mesenchymal markers and absence for hematopoietic and immune cell markers. Increased expression of N-Cadherin and Zeb1 in CMCs was observed in CMCs at both RNA and protein levels compared to fibroblast. We found significant downregulation of miR-200c and miR-429 in CMCs. The ectopic expression of miR-200c in CMCs significantly downregulated Zeb1 and N-Cadherin expression. Our findings suggest that the significant downregulation of miR-200c/429 in CMCs maintains the expression of N-Cadherin, which may be important for its functional integrity.
Collapse
Affiliation(s)
- Asha V Nath
- TIMED, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Shilpa Ajit
- Department of Applied Biology, Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Anupama J Sekar
- Department of Applied Biology, Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Anil Kumar P R
- Department of Applied Biology, Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Senthilkumar Muthusamy
- Department of Applied Biology, Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
44
|
Kouchakian MR, Baghban N, Moniri SF, Baghban M, Bakhshalizadeh S, Najafzadeh V, Safaei Z, Izanlou S, Khoradmehr A, Nabipour I, Shirazi R, Tamadon A. The Clinical Trials of Mesenchymal Stromal Cells Therapy. Stem Cells Int 2021; 2021:1634782. [PMID: 34745268 PMCID: PMC8566082 DOI: 10.1155/2021/1634782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/22/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are a heterogeneous population of adult stem cells, which are multipotent and possess the ability to differentiate/transdifferentiate into mesodermal and nonmesodermal cell lineages. MSCs display broad immunomodulatory properties since they are capable of secreting growth factors and chemotactic cytokines. Safety, accessibility, and isolation from patients without ethical concern make MSCs valuable sources for cell therapy approaches in autoimmune, inflammatory, and degenerative diseases. Many studies have been conducted on the application of MSCs as a new therapy, but it seems that a low percentage of them is related to clinical trials, especially completed clinical trials. Considering the importance of clinical trials to develop this type of therapy as a new treatment, the current paper is aimed at describing characteristics of MSCs and reviewing relevant clinical studies registered on the NIH database during 2016-2020 to discuss recent advances on MSC-based therapeutic approaches being used in different diseases.
Collapse
Affiliation(s)
- Mohammad Reza Kouchakian
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Baghban
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyedeh Farzaneh Moniri
- Department of Anatomical Sciences, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mandana Baghban
- Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shabnam Bakhshalizadeh
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Vahid Najafzadeh
- Department of Veterinary and Animal Sciences, Anatomy & Biochemistry Section, University of Copenhagen, Copenhagen, Denmark
| | - Zahra Safaei
- Department of Obstetrics and Gynecology, School of Medicine, Amir Al Mo'menin Hospital, Amir Al Mo'menin IVF Center, Arak University of Medical Sciences, Arak, Iran
| | - Safoura Izanlou
- Department of Nursing, School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
45
|
Human cardiac stem cells rejuvenated by modulating autophagy with MHY-1685 enhance the therapeutic potential for cardiac repair. Exp Mol Med 2021; 53:1423-1436. [PMID: 34584195 PMCID: PMC8492872 DOI: 10.1038/s12276-021-00676-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/27/2021] [Accepted: 07/06/2021] [Indexed: 02/08/2023] Open
Abstract
Stem cell-based therapies with clinical applications require millions of cells. Therefore, repeated subculture is essential for cellular expansion, which is often complicated by replicative senescence. Cellular senescence contributes to reduced stem cell regenerative potential as it inhibits stem cell proliferation and differentiation as well as the activation of the senescence-associated secretory phenotype (SASP). In this study, we employed MHY-1685, a novel mammalian target of rapamycin (mTOR) inhibitor, and examined its long-term priming effect on the activities of senile human cardiac stem cells (hCSCs) and the functional benefits of primed hCSCs after transplantation. In vitro experiments showed that the MHY-1685‒primed hCSCs exhibited higher viability in response to oxidative stress and an enhanced proliferation potential compared to that of the unprimed senile hCSCs. Interestingly, priming MHY-1685 enhanced the expression of stemness-related markers in senile hCSCs and provided the differentiation potential of hCSCs into vascular lineages. In vivo experiment with echocardiography showed that transplantation of MHY-1685‒primed hCSCs improved cardiac function than that of the unprimed senile hCSCs at 4 weeks post-MI. In addition, hearts transplanted with MHY-1685-primed hCSCs exhibited significantly lower cardiac fibrosis and higher capillary density than that of the unprimed senile hCSCs. In confocal fluorescence imaging, MHY-1685‒primed hCSCs survived for longer durations than that of the unprimed senile hCSCs and had a higher potential to differentiate into endothelial cells (ECs) within the infarcted hearts. These findings suggest that MHY-1685 can rejuvenate senile hCSCs by modulating autophagy and that as a senescence inhibitor, MHY-1685 can provide opportunities to improve hCSC-based myocardial regeneration.
Collapse
|
46
|
Kasai-Brunswick TH, Carvalho AB, Campos de Carvalho AC. Stem cell therapies in cardiac diseases: Current status and future possibilities. World J Stem Cells 2021; 13:1231-1247. [PMID: 34630860 PMCID: PMC8474720 DOI: 10.4252/wjsc.v13.i9.1231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases represent the world’s leading cause of death. In this heterogeneous group of diseases, ischemic cardiomyopathies are the most devastating and prevalent, estimated to cause 17.9 million deaths per year. Despite all biomedical efforts, there are no effective treatments that can replace the myocytes lost during an ischemic event or progression of the disease to heart failure. In this context, cell therapy is an emerging therapeutic alternative to treat cardiovascular diseases by cell administration, aimed at cardiac regeneration and repair. In this review, we will cover more than 30 years of cell therapy in cardiology, presenting the main milestones and drawbacks in the field and signaling future challenges and perspectives. The outcomes of cardiac cell therapies are discussed in three distinct aspects: The search for remuscularization by replacement of lost cells by exogenous adult cells, the endogenous stem cell era, which pursued the isolation of a progenitor with the ability to induce heart repair, and the utilization of pluripotent stem cells as a rich and reliable source of cardiomyocytes. Acellular therapies using cell derivatives, such as microvesicles and exosomes, are presented as a promising cell-free therapeutic alternative.
Collapse
Affiliation(s)
- Tais Hanae Kasai-Brunswick
- National Center of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- National Institute of Science and Technology in Regenerative Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Adriana Bastos Carvalho
- National Institute of Science and Technology in Regenerative Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Antonio Carlos Campos de Carvalho
- National Center of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- National Institute of Science and Technology in Regenerative Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
47
|
Park HJ, De Jesus Morales KJ, Bheri S, Kassouf BP, Davis ME. Bidirectional relationship between cardiac extracellular matrix and cardiac cells in ischemic heart disease. Stem Cells 2021; 39:1650-1659. [PMID: 34480804 DOI: 10.1002/stem.3445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/10/2021] [Indexed: 11/07/2022]
Abstract
Ischemic heart diseases (IHDs), including myocardial infarction and cardiomyopathies, are a leading cause of mortality and morbidity worldwide. Cardiac-derived stem and progenitor cells have shown promise as a therapeutic for IHD but are limited by poor cell survival, limited retention, and rapid washout. One mechanism to address this is to encapsulate the cells in a matrix or three-dimensional construct, so as to provide structural support and better mimic the cells' physiological microenvironment during administration. More specifically, the extracellular matrix (ECM), the native cellular support network, has been a strong candidate for this purpose. Moreover, there is a strong consensus that the ECM and its residing cells, including cardiac stem cells, have a constant interplay in response to tissue development, aging, disease progression, and repair. When externally stimulated, the cells and ECM work together to mutually maintain the local homeostasis by initially altering the ECM composition and stiffness, which in turn alters the cellular response and behavior. Given this constant interplay, understanding the mechanism of bidirectional cell-ECM interaction is essential to develop better cell implantation matrices to enhance cell engraftment and cardiac tissue repair. This review summarizes current understanding in the field, elucidating the signaling mechanisms between cardiac ECM and residing cells in response to IHD onset. Furthermore, this review highlights recent advances in native ECM-mimicking cardiac matrices as a platform for modulating cardiac cell behavior and inducing cardiac repair.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kenneth J De Jesus Morales
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sruti Bheri
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Brandon P Kassouf
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, Georgia, USA.,Children's Heart Research and Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, Georgia, USA
| |
Collapse
|
48
|
Chen G, Wang M, Ruan Z, Zhu L, Tang C. Mesenchymal stem cell-derived exosomal miR-143-3p suppresses myocardial ischemia-reperfusion injury by regulating autophagy. Life Sci 2021; 280:119742. [PMID: 34166712 DOI: 10.1016/j.lfs.2021.119742] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
AIMS Myocardial ischemia-reperfusion (I/R) injury is considered as a major obstacle of myocardial perfusion to save acute myocardial infarction, and causes a serious threat to human health. An extensive body of evidence has unveiled that mesenchymal stem cells (MSCs) as adult stem cells play a vital role in the field of damaged myocardial regeneration and repair. However, the biological role of MSCs derived-exosomes in the protection of myocardial I/R injury has not been elucidated. MAIN METHODS In this study, we isolated and characterized MSCs from the bone marrow of rats femur and tibia. H9c2 cells were administrated to established the cellular hypoxia-reoxygenation (H/R) model, and co-cultured with MSCs and MSCs-derived exosomes. KEY FINDINGS Functional experiments revealed that MSCs and MSCs-derived exosomes inhibited H/R-induced cell apoptosis and cell autophagy. Interestingly, rapamycin as an activator of autophagy reversed the positive effects of MSCs-derived exosomes, while 3-methyladenine (3-MA) as autophagy inhibitor further promoted the effects of MSCs-derived exosomes, indicating MSCs exerted its function on H/R injury by mediating autophagy. Subsequently, we found that CHK2-Beclin2 pathway participated in H/R-induced autophagy. Mechanistically, miR-143-3p directly targeted CHK2 and negatively regulated CHK2 expression. Moreover, repression of exosomal miR-143-3p promoted H/R-induced autophagy via CHK2-Beclin2 pathway. Consistent with the results of in vitro experiments, in vivo experiments confirmed that exosomal miR-143-3p effectively reduced cell apoptosis by regulating autophagy via CHK2-Beclin2 pathway. SIGNIFICANCE Collectively, our results indicated that MSCs-derived exosomal miR-143-3p might represent a promising option for the treatment of I/R injury.
Collapse
Affiliation(s)
- Gecai Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing Jiangsu Province 210009, China; Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu Province 225300, China.
| | - Meixiang Wang
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu Province 225300, China
| | - Zhongbao Ruan
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu Province 225300, China
| | - Li Zhu
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu Province 225300, China
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing Jiangsu Province 210009, China.
| |
Collapse
|
49
|
Yu J, Zhang RF, Mao YL, Zhang H. Efficacy and Safety of mesenchymal stem cell therapy in patients with acute myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. Curr Stem Cell Res Ther 2021; 17:793-807. [PMID: 34397334 DOI: 10.2174/1574888x16666210816111031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVES The adjuvant treatment of stem cell therapy for acute myocardial infarction (AMI) has been studied in multiple clinical trials, but many questions remain to be addressed, such as efficacy, safety, identification of the optimal cell type, tractable route of delivery, transplant dosage, and transplant timing. The current meta-analysis aimed to explore the issues of mesenchymal stem cells (MSCs) transplantation in patients with AMI based on published randomized controlled trials (RCTs) and guide the design of subsequent clinical trials of MSCs therapy for AMI. METHODS The Cochrane Library, PubMed, EMBASE databases were searched for relevant clinical trials from January 1, 2000, to January 23, 2021. Results from RCTs involving MSCs transplantation for the treatment of AMI were identified. According to the Cochrane systematic review method, the literature quality, including studies, was evaluated and valid data was extracted. RevMan 5.3 and Stata 15.1 software were used for Meta-analysis. RESULTS After a literature search and detailed evaluation, 9 randomized controlled trials enrolling 460 patients were included in the quantitative analysis. Pooled analyses indicated that MSCs therapy was associated with a significantly greater improvement in overall left ventricular ejection fraction (LVEF), and the effect was maintained for up to 24 months. No significant difference in favor of MSCs treatment in left ventricular (LV) volume and in the risk of rehospitalization as a result of heart failure (HF) was noted, compared with the controls. For transplantation dose, the LVEF of patients accepting a MSCs dose of 107-108 cells was significantly increased by 2.62% (95% CI 1.54 to 3.70; P < 0.00001; I2 =0%), but this increase was insignificant in the subgroup that accepted an MSCs dose of < 107 cells (1.65% in LVEF, 95% CI, 0.03 to 3.27; P =0.05; I2 =75%) or >108 cells (4.65% in LVEF, 95% CI, -4.55 to 13.48; P =0.32; I2 =95%), compared with the controls. For transplantation timing, a significant improvement of LVEF of 3.18% was achieved in the group of patients accepting a MSCs infusion within 2 to 14 days Percutaneous coronary intervention (PCI) (95% CI, 2.89 to 3.47; P <0.00001; I2 = 0). There was no association between MSCs therapy and major adverse events. CONCLUSION Results from our systematic review suggest that MSCs therapy for patients with AMI appears to be safe and might induce a significant increase in LVEF with a limited impact on LV volume and rehospitalization caused by HF. The effect was maintained for up to 24 months. MSCs dose of 107-108 cells was more likely to achieve better clinical endpoints than <107 or >108 cells. The optimal time window for cell transplantation might be within 2-14 days after PCI. This meta-analysis was registered with PROSPERO, number CRD 42021241104.
Collapse
Affiliation(s)
- Jiang Yu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Run-Feng Zhang
- Department of Cardiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang 621000, Sichuan, China
| | - Yi-Li Mao
- Department of Cardiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang 621000, Sichuan, China
| | - Heng Zhang
- Department of Cardiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang 621000, Sichuan, China
| |
Collapse
|
50
|
Rangasamy T, Ghimire L, Jin L, Le J, Periasamy S, Paudel S, Cai S, Jeyaseelan S. Host Defense against Klebsiella pneumoniae Pneumonia Is Augmented by Lung-Derived Mesenchymal Stem Cells. THE JOURNAL OF IMMUNOLOGY 2021; 207:1112-1127. [PMID: 34341173 DOI: 10.4049/jimmunol.2000688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/16/2021] [Indexed: 11/19/2022]
Abstract
Klebsiella pneumoniae is a common cause of Gram-negative pneumonia. The spread of antibiotic-resistant and hypervirulent strains has made treatment more challenging. This study sought to determine the immunomodulatory, antibacterial, and therapeutic potential of purified murine stem cell Ag-1+ (Sca-1+) lung mesenchymal stem cells (LMSCs) using in vitro cell culture and an in vivo mouse model of pneumonia caused by K pneumoniae. Sca-1+ LMSCs are plastic adherent, possess colony-forming capacity, express mesenchymal stem cell markers, differentiate into osteogenic and adipogenic lineages in vitro, and exhibit a high proliferative capacity. Further, these Sca-1+ LMSCs are morphologically similar to fibroblasts but differ ultrastructurally. Moreover, Sca-1+ LMSCs have the capacity to inhibit LPS-induced secretion of inflammatory cytokines by bone marrow-derived macrophages and neutrophils in vitro. Sca-1+ LMSCs inhibit the growth of K pneumoniae more potently than do neutrophils. Sca-1+ LMSCs also possess the intrinsic ability to phagocytize and kill K. pneumoniae intracellularly. Whereas the induction of autophagy promotes bacterial replication, inhibition of autophagy enhances the intracellular clearance of K. pneumoniae in Sca-1+ LMSCs during the early time of infection. Adoptive transfer of Sca-1+ LMSCs in K. pneumoniae-infected mice improved survival, reduced inflammatory cells in bronchoalveolar lavage fluid, reduced inflammatory cytokine levels and pathological lesions in the lung, and enhanced bacterial clearance in the lung and in extrapulmonary organs. To our knowledge, these results together illustrate for the first time the protective role of LMSCs in bacterial pneumonia.
Collapse
Affiliation(s)
- Tirumalai Rangasamy
- Center for Lung Biology and Disease, Louisiana State University, Baton Rouge, LA; .,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Laxman Ghimire
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Liliang Jin
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - John Le
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Sivakumar Periasamy
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Sagar Paudel
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Shanshan Cai
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Samithamby Jeyaseelan
- Center for Lung Biology and Disease, Louisiana State University, Baton Rouge, LA; .,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and.,Division of Pulmonary and Critical Care, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA
| |
Collapse
|