1
|
Nagaoka M, Sakai Y, Nakajima M, Fukami T. Role of carboxylesterase and arylacetamide deacetylase in drug metabolism, physiology, and pathology. Biochem Pharmacol 2024; 223:116128. [PMID: 38492781 DOI: 10.1016/j.bcp.2024.116128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/20/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Carboxylesterases (CES1 and CES2) and arylacetamide deacetylase (AADAC), which are expressed primarily in the liver and/or gastrointestinal tract, hydrolyze drugs containing ester and amide bonds in their chemical structure. These enzymes often catalyze the conversion of prodrugs, including the COVID-19 drugs remdesivir and molnupiravir, to their pharmacologically active forms. Information on the substrate specificity and inhibitory properties of these enzymes, which would be useful for drug development and toxicity avoidance, has accumulated. Recently,in vitroandin vivostudies have shown that these enzymes are involved not only in drug hydrolysis but also in lipid metabolism. CES1 and CES2 are capable of hydrolyzing triacylglycerol, and the deletion of their orthologous genes in mice has been associated with impaired lipid metabolism and hepatic steatosis. Adeno-associated virus-mediated human CES overexpression decreases hepatic triacylglycerol levels and increases fatty acid oxidation in mice. It has also been shown that overexpression of CES enzymes or AADAC in cultured cells suppresses the intracellular accumulation of triacylglycerol. Recent reports indicate that AADAC can be up- or downregulated in tumors of various organs, and its varied expression is associated with poor prognosis in patients with cancer. Thus, CES and AADAC not only determine drug efficacy and toxicity but are also involved in pathophysiology. This review summarizes recent findings on the roles of CES and AADAC in drug metabolism, physiology, and pathology.
Collapse
Affiliation(s)
- Mai Nagaoka
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshiyuki Sakai
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
2
|
Tammineni ER, Figueroa L, Manno C, Varma D, Kraeva N, Ibarra CA, Klip A, Riazi S, Rios E. Muscle calcium stress cleaves junctophilin1, unleashing a gene regulatory program predicted to correct glucose dysregulation. eLife 2023; 12:e78874. [PMID: 36724092 PMCID: PMC9891728 DOI: 10.7554/elife.78874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/11/2023] [Indexed: 02/02/2023] Open
Abstract
Calcium ion movements between cellular stores and the cytosol govern muscle contraction, the most energy-consuming function in mammals, which confers skeletal myofibers a pivotal role in glycemia regulation. Chronic myoplasmic calcium elevation ("calcium stress"), found in malignant hyperthermia-susceptible (MHS) patients and multiple myopathies, has been suggested to underlie the progression from hyperglycemia to insulin resistance. What drives such progression remains elusive. We find that muscle cells derived from MHS patients have increased content of an activated fragment of GSK3β - a specialized kinase that inhibits glycogen synthase, impairing glucose utilization and delineating a path to hyperglycemia. We also find decreased content of junctophilin1, an essential structural protein that colocalizes in the couplon with the voltage-sensing CaV1.1, the calcium channel RyR1 and calpain1, accompanied by an increase in a 44 kDa junctophilin1 fragment (JPh44) that moves into nuclei. We trace these changes to activated proteolysis by calpain1, secondary to increased myoplasmic calcium. We demonstrate that a JPh44-like construct induces transcriptional changes predictive of increased glucose utilization in myoblasts, including less transcription and translation of GSK3β and decreased transcription of proteins that reduce utilization of glucose. These effects reveal a stress-adaptive response, mediated by the novel regulator of transcription JPh44.
Collapse
Affiliation(s)
- Eshwar R Tammineni
- Department of Physiology and Biophysics, Rush UniversityChicagoUnited States
| | - Lourdes Figueroa
- Department of Physiology and Biophysics, Rush UniversityChicagoUnited States
| | - Carlo Manno
- Department of Physiology and Biophysics, Rush UniversityChicagoUnited States
| | - Disha Varma
- Department of Internal Medicine, Division of Nephrology, Rush UniversityChicagoUnited States
| | - Natalia Kraeva
- Department of Anesthesia & Pain Management, University of TorontoTorontoCanada
| | - Carlos A Ibarra
- Department of Anesthesia & Pain Management, University of TorontoTorontoCanada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick ChildrenTorontoCanada
| | - Sheila Riazi
- Department of Anesthesia & Pain Management, University of TorontoTorontoCanada
| | - Eduardo Rios
- Department of Physiology and Biophysics, Rush UniversityChicagoUnited States
| |
Collapse
|
3
|
Li G, Li X, Yang L, Wang S, Dai Y, Fekry B, Veillon L, Tan L, Berdeaux R, Eckel-Mahan K, Lorenzi PL, Zhao Z, Lehner R, Sun K. Adipose tissue-specific ablation of Ces1d causes metabolic dysregulation in mice. Life Sci Alliance 2022; 5:e202101209. [PMID: 35459739 PMCID: PMC9034061 DOI: 10.26508/lsa.202101209] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/25/2023] Open
Abstract
Carboxylesterase 1d (Ces1d) is a crucial enzyme with a wide range of activities in multiple tissues. It has been reported to localize predominantly in ER. Here, we found that Ces1d levels are significantly increased in obese patients with type 2 diabetes. Intriguingly, a high level of Ces1d translocates onto lipid droplets where it digests the lipids to produce a unique set of fatty acids. We further revealed that adipose tissue-specific Ces1d knock-out (FKO) mice gained more body weight with increased fat mass during a high fat-diet challenge. The FKO mice exhibited impaired glucose and lipid metabolism and developed exacerbated liver steatosis. Mechanistically, deficiency of Ces1d induced abnormally large lipid droplet deposition in the adipocytes, causing ectopic accumulation of triglycerides in other peripheral tissues. Furthermore, loss of Ces1d diminished the circulating free fatty acids serving as signaling molecules to trigger the epigenetic regulations of energy metabolism via lipid-sensing transcriptional factors, such as HNF4α. The metabolic disorders induced an unhealthy microenvironment in the metabolically active tissues, ultimately leading to systemic insulin resistance.
Collapse
Affiliation(s)
- Gang Li
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xin Li
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Li Yang
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shuyue Wang
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Baharan Fekry
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lucas Veillon
- Metabolomic Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lin Tan
- Metabolomic Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rebecca Berdeaux
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Program in Biochemistry and Cell Biology, MD Anderson Cancer Center-UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Kristin Eckel-Mahan
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Program in Biochemistry and Cell Biology, MD Anderson Cancer Center-UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Philip L Lorenzi
- Metabolomic Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Program in Biochemistry and Cell Biology, MD Anderson Cancer Center-UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
4
|
Shen Y, Gu HM, Zhai L, Wang B, Qin S, Zhang DW. The role of hepatic Surf4 in lipoprotein metabolism and the development of atherosclerosis in apoE -/- mice. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159196. [PMID: 35803528 DOI: 10.1016/j.bbalip.2022.159196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
Abstract
Elevated plasma levels of low-density lipoprotein-C (LDL-C) increase the risk of atherosclerotic cardiovascular disease. Circulating LDL is derived from very low-density lipoprotein (VLDL) metabolism and cleared by LDL receptor (LDLR). We have previously demonstrated that cargo receptor Surfeit 4 (Surf4) mediates VLDL secretion. Inhibition of hepatic Surf4 impairs VLDL secretion, significantly reduces plasma LDL-C levels, and markedly mitigates the development of atherosclerosis in LDLR knockout (Ldlr-/-) mice. Here, we investigated the role of Surf4 in lipoprotein metabolism and the development of atherosclerosis in another commonly used mouse model of atherosclerosis, apolipoprotein E knockout (apoE-/-) mice. Adeno-associated viral shRNA was used to silence Surf4 expression mainly in the liver of apoE-/- mice. In apoE-/- mice fed a regular chow diet, knockdown of Surf4 expression significantly reduced triglyceride secretion and plasma levels of non-HDL cholesterol and triglycerides without causing hepatic lipid accumulation or liver damage. When Surf4 was knocked down in apoE-/- mice fed the Western-type diet, we observed a significant reduction in plasma levels of non-HDL cholesterol, but not triglycerides. Knockdown of Surf4 did not increase hepatic cholesterol and triglyceride levels or cause liver damage, but significantly diminished atherosclerosis lesions. Therefore, our findings indicate the potential of hepatic Surf4 inhibition as a novel therapeutic strategy to reduce the risk of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Yishi Shen
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Hong-Mei Gu
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lei Zhai
- Institute of Atherosclerosis in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Binxiang Wang
- Institute of Atherosclerosis in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Shucun Qin
- Institute of Atherosclerosis in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China.
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
Chen BB, Yan JH, Zheng J, Peng HW, Cai XL, Pan XT, Li HQ, Hong QZ, Peng XE. Copy number variation in the CES1 gene and the risk of non-alcoholic fatty liver in a Chinese Han population. Sci Rep 2021; 11:13984. [PMID: 34234263 PMCID: PMC8263572 DOI: 10.1038/s41598-021-93549-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
A recent genome-wide copy number variations (CNVs) scan identified a 16q12.2 deletion that included the carboxylesterase 1 (CES1) gene, which is important in the metabolism of fatty acids and cholesterol. We aimed to investigate whether CES1 CNVs was associated with susceptibility to non-alcoholic fatty liver disease (NAFLD) in a Chinese Han population. A case-control study was conducted among 303 patients diagnosed with NAFLD and 303 age (± 5) and sex-matched controls from the Affiliated Nanping First Hospital of Fujian Medical University in China. The copy numbers of CES1 were measured using TaqMan quantitative real-time polymerase chain reaction (qPCR) and serum CES1 was measured using enzyme-linked immunosorbent assays. The Chi-squared test and a logistic regression model were used to evaluate the association between CES1 CNVs and NAFLD susceptibility. The distribution of CES1 CNVs showed a higher frequency of CNVs loss (< 2) among patients; however, the difference was not significant (P = 0.05). After controlling for other known or suspected risk factors for NAFLD, CES1 CNVs loss was significantly associated with greater risk of NAFLD (adjusted OR = 2.75, 95% CI 1.30-5.85, P = 0.01); while CES1 CNVs gain (> 2) was not. There was a suggestion of an association between increased CES1 serum protein levels and CNVs losses among cases, although this was not statistically significant (P = 0.07). Copy number losses (< 2) of CES1 contribute to susceptibility to NAFLD in the Chinese Han population.
Collapse
Affiliation(s)
- Bing Bing Chen
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fujian, 350122, China.,Department of Hospital Infection Control, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Jian Hui Yan
- Department of Infectious Disease, The Second Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Jing Zheng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fujian, 350122, China
| | - He Wei Peng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fujian, 350122, China
| | - Xiao Ling Cai
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fujian, 350122, China
| | - Xin Ting Pan
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fujian, 350122, China
| | - Hui Quan Li
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fujian, 350122, China
| | - Qi Zhu Hong
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fujian, 350122, China
| | - Xian-E Peng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fujian, 350122, China. .,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fujian, China.
| |
Collapse
|
6
|
Lian J, van der Veen JN, Watts R, Jacobs RL, Lehner R. Carboxylesterase 1d (Ces1d) does not contribute to cholesteryl ester hydrolysis in the liver. J Lipid Res 2021; 62:100093. [PMID: 34153284 PMCID: PMC8287225 DOI: 10.1016/j.jlr.2021.100093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/09/2021] [Indexed: 01/19/2023] Open
Abstract
The liver is the central organ regulating cholesterol synthesis, storage, transport, and elimination. Mouse carboxylesterase 1d (Ces1d) and its human ortholog CES1 have been described to possess lipase activity and play roles in hepatic triacylglycerol metabolism and VLDL assembly. It has been proposed that Ces1d/CES1 might also catalyze cholesteryl ester (CE) hydrolysis in the liver and thus be responsible for the hydrolysis of HDL-derived CE; this could contribute to the final step in the reverse cholesterol transport (RCT) pathway, wherein cholesterol is secreted from the liver into bile and feces, either directly or after conversion to water-soluble bile salts. However, the proposed function of Ces1d/CES1 as a CE hydrolase is controversial. In this study, we interrogated the role hepatic Ces1d plays in cholesterol homeostasis using liver-specific Ces1d-deficient mice. We rationalized that if Ces1d is a major hepatic CE hydrolase, its absence would (1) reduce in vivo RCT flux and (2) provoke liver CE accumulation after a high-cholesterol diet challenge. We found that liver-specific Ces1d-deficient mice did not show any difference in the flux of in vivo HDL-to-feces RCT nor did it cause additional liver CE accumulation after high-fat, high-cholesterol Western-type diet feeding. These findings challenge the importance of Ces1d as a major hepatic CE hydrolase.
Collapse
Affiliation(s)
- Jihong Lian
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| | - Jelske N van der Veen
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Russell Watts
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - René L Jacobs
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
7
|
Wang B, Shen Y, Zhai L, Xia X, Gu HM, Wang M, Zhao Y, Chang X, Alabi A, Xing S, Deng S, Liu B, Wang G, Qin S, Zhang DW. Atherosclerosis-associated hepatic secretion of VLDL but not PCSK9 is dependent on cargo receptor protein Surf4. J Lipid Res 2021; 62:100091. [PMID: 34118252 PMCID: PMC8261665 DOI: 10.1016/j.jlr.2021.100091] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/11/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
Plasma LDL is produced from catabolism of VLDL and cleared from circulation mainly via the hepatic LDL receptor (LDLR). Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes LDLR degradation, increasing plasma LDL-C levels. Circulating PCSK9 is mainly secreted by the liver, whereas VLDL is exclusively secreted by hepatocytes. However, the mechanism regulating their secretion is not completely understood. Surfeit 4 (Surf4) is a cargo receptor localized in the ER membrane. It recruits cargos into coat protein complex II vesicles to facilitate their secretion. Here, we investigated the role of Surf4 in VLDL and PCSK9 secretion. We generated Surf4 liver-specific knockout mice and found that knockout of Surf4 did not affect PCSK9 secretion, whereas it significantly reduced plasma levels of cholesterol, triglyceride, and lipid-binding protein apolipoprotein B (apoB). In cultured human hepatocytes, Surf4 coimmunoprecipitated and colocalized with apolipoprotein B100, and Surf4 silencing reduced secretion of apolipoprotein B100. Furthermore, knockdown of Surf4 in LDLR knockout (Ldlr−/−) mice significantly reduced triglyceride secretion, plasma levels of apoB and non-HDL-C, and the development of atherosclerosis. However, Surf4 liver-specific knockout mice and Surf4 knockdown in Ldlr−/− mice displayed similar levels of liver lipids and plasma alanine aminotransferase activity as control mice, indicating that inhibition of Surf4 does not cause notable liver damage. Expression of stearoyl-CoA desaturase-1 was also reduced in the liver of these mice, suggesting a reduction in de novo lipogenesis. In summary, hepatic deficiency of Surf4 reduced VLDL secretion and the development of atherosclerosis but did not cause significant hepatic lipid accumulation or liver damage.
Collapse
Affiliation(s)
- Bingxiang Wang
- Institute of Atherosclerosis and College of Basic Medical Sciences in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Yishi Shen
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lei Zhai
- Institute of Atherosclerosis and College of Basic Medical Sciences in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Xiaodan Xia
- Department of Orthopedics, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Hong-Mei Gu
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Maggie Wang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Yongfang Zhao
- Institute of Atherosclerosis and College of Basic Medical Sciences in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Xiaole Chang
- Institute of Atherosclerosis and College of Basic Medical Sciences in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Adekunle Alabi
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Sijie Xing
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shijun Deng
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Boyan Liu
- Institute of Atherosclerosis and College of Basic Medical Sciences in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Guiqing Wang
- Department of Orthopedics, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Shucun Qin
- Institute of Atherosclerosis and College of Basic Medical Sciences in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China.
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
8
|
Schittmayer M, Vujic N, Darnhofer B, Korbelius M, Honeder S, Kratky D, Birner-Gruenberger R. Spatially Resolved Activity-based Proteomic Profiles of the Murine Small Intestinal Lipases. Mol Cell Proteomics 2020; 19:2104-2115. [PMID: 33023980 PMCID: PMC7710144 DOI: 10.1074/mcp.ra120.002171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/28/2020] [Indexed: 01/05/2023] Open
Abstract
Despite the crucial function of the small intestine in nutrient uptake our understanding of the molecular events underlying the digestive function is still rudimentary. Recent studies demonstrated that enterocytes do not direct the entire dietary triacylglycerol toward immediate chylomicron synthesis. Especially after high-fat challenges, parts of the resynthesized triacylglycerol are packaged into cytosolic lipid droplets for transient storage in the endothelial layer of the small intestine. The reason for this temporary storage of triacylglycerol is not completely understood. To utilize lipids from cytosolic lipid droplets for chylomicron synthesis in the endoplasmic reticulum, stored triacylglycerol has to be hydrolyzed either by cytosolic lipolysis or lipophagy. Interestingly, triacylglycerol storage and chylomicron secretion rates are unevenly distributed along the small intestine, with the proximal jejunum exhibiting the highest intermittent storage capacity. We hypothesize that correlating hydrolytic enzyme activities with the reported distribution of triacylglycerol storage and chylomicron secretion in different sections of the small intestine is a promising strategy to determine key enzymes in triacylglycerol remobilization. We employed a serine hydrolase specific activity-based labeling approach in combination with quantitative proteomics to identify and rank hydrolases based on their relative activity in 11 sections of the small intestine. Moreover, we identified several clusters of enzymes showing similar activity distribution along the small intestine. Merging our activity-based results with substrate specificity and subcellular localization known from previous studies, carboxylesterase 2e and arylacetamide deacetylase emerge as promising candidates for triacylglycerol mobilization from cytosolic lipid droplets in enterocytes.
Collapse
Affiliation(s)
- Matthias Schittmayer
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria; Diagnostic and Research Institute of Pathology, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - Nemanja Vujic
- Gottfried Schatz Research Center, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Barbara Darnhofer
- Diagnostic and Research Institute of Pathology, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Melanie Korbelius
- Gottfried Schatz Research Center, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Sophie Honeder
- Diagnostic and Research Institute of Pathology, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - Ruth Birner-Gruenberger
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria; Diagnostic and Research Institute of Pathology, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
9
|
Xu Y, Zhu Y, Bawa FC, Hu S, Pan X, Yin L, Zhang Y. Hepatocyte-Specific Expression of Human Carboxylesterase 1 Attenuates Diet-Induced Steatohepatitis and Hyperlipidemia in Mice. Hepatol Commun 2020; 4:527-539. [PMID: 32258948 PMCID: PMC7109343 DOI: 10.1002/hep4.1487] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Rodents have at least five carboxylesterase 1 (Ces1) genes, whereas there is only one CES1 gene in humans, raising the question as to whether human CES1 and mouse Ces1 genes share the same functions. In this study, we investigate the role of human CES1 in the development of steatohepatitis or dyslipidemia in C57BL/6 mice. Hepatocyte-specific expression of human CES1 prevented Western diet or alcohol-induced steatohepatitis and hyperlipidemia. Mechanistically, human CES1 induced lipolysis and fatty acid oxidation, leading to a reduction in hepatic triglyceride and free fatty acid levels. Human CES1 also reduced hepatic-free cholesterol levels and induced low-density lipoprotein receptor. In addition, human CES1 induced hepatic lipoprotein lipase and apolipoprotein C-II expression. Conclusion: Hepatocyte-specific overexpression of human CES1 attenuates diet-induced steatohepatitis and hyperlipidemia.
Collapse
Affiliation(s)
- Yanyong Xu
- Department of Integrative Medical Sciences Northeast Ohio Medical University Rootstown OH
| | - Yingdong Zhu
- Department of Integrative Medical Sciences Northeast Ohio Medical University Rootstown OH
| | - Fathima Cassim Bawa
- Department of Integrative Medical Sciences Northeast Ohio Medical University Rootstown OH
| | - Shuwei Hu
- Department of Integrative Medical Sciences Northeast Ohio Medical University Rootstown OH
| | - Xiaoli Pan
- Department of Integrative Medical Sciences Northeast Ohio Medical University Rootstown OH
| | - Liya Yin
- Department of Integrative Medical Sciences Northeast Ohio Medical University Rootstown OH
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences Northeast Ohio Medical University Rootstown OH
| |
Collapse
|
10
|
Metabolic Nano-Machines: Extracellular Vesicles Containing Active Enzymes and Their Contribution to Liver Diseases. CURRENT PATHOBIOLOGY REPORTS 2019. [DOI: 10.1007/s40139-019-00197-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Yang L, Li X, Tang H, Gao Z, Zhang K, Sun K. A Unique Role of Carboxylesterase 3 (Ces3) in β-Adrenergic Signaling-Stimulated Thermogenesis. Diabetes 2019; 68:1178-1196. [PMID: 30862682 PMCID: PMC6610024 DOI: 10.2337/db18-1210] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/01/2019] [Indexed: 12/18/2022]
Abstract
Carboxylesterase 3 (Ces3) is a hydrolase with a wide range of activities in liver and adipose tissue. In this study, we identified Ces3 as a major lipid droplet surface-targeting protein in adipose tissue upon cold exposure by liquid chromatography-tandem mass spectrometry. To investigate the function of Ces3 in the β-adrenergic signaling-activated adipocytes, we applied WWL229, a specific Ces3 inhibitor, or genetic inhibition by siRNA to Ces3 on isoproterenol (ISO)-treated 3T3-L1 and brown adipocyte cells. We found that blockage of Ces3 by WWL229 or siRNA dramatically attenuated the ISO-induced lipolytic effect in the cells. Furthermore, Ces3 inhibition led to impaired mitochondrial function measured by Seahorse. Interestingly, Ces3 inhibition attenuated an ISO-induced thermogenic program in adipocytes by downregulating Ucp1 and Pgc1α genes via peroxisome proliferator-activated receptor γ. We further confirmed the effects of Ces3 inhibition in vivo by showing that the thermogenesis in adipose tissues was significantly attenuated in WWL229-treated or adipose tissue-specific Ces3 heterozygous knockout (Adn-Cre-Ces3flx/wt) mice. As a result, the mice exhibited dramatically impaired ability to defend their body temperature in coldness. In conclusion, our study highlights a lipolytic signaling induced by Ces3 as a unique process to regulate thermogenesis in adipose tissue.
Collapse
Affiliation(s)
- Li Yang
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX
| | - Xin Li
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX
| | - Hui Tang
- Pharmacology and Toxicology Department, University of Texas Medical Branch at Galveston, Galveston, TX
| | - Zhanguo Gao
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX
| | - Kangling Zhang
- Pharmacology and Toxicology Department, University of Texas Medical Branch at Galveston, Galveston, TX
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX
- Department of Integrative Biology and Pharmacology, Graduate Program in Cell and Regulatory Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
12
|
Maresch LK, Benedikt P, Feiler U, Eder S, Zierler KA, Taschler U, Kolleritsch S, Eichmann TO, Schoiswohl G, Leopold C, Wieser BI, Lackner C, Rülicke T, van Klinken J, Kratky D, Moustafa T, Hoefler G, Haemmerle G. Intestine-Specific Overexpression of Carboxylesterase 2c Protects Mice From Diet-Induced Liver Steatosis and Obesity. Hepatol Commun 2018; 3:227-245. [PMID: 30766961 PMCID: PMC6357831 DOI: 10.1002/hep4.1292] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/29/2018] [Indexed: 12/27/2022] Open
Abstract
Murine hepatic carboxylesterase 2c (Ces2c) and the presumed human ortholog carboxylesterase 2 (CES2) have been implicated in the development of nonalcoholic fatty liver disease (NAFLD) in mice and obese humans. These studies demonstrated that Ces2c hydrolyzes triglycerides (TGs) in hepatocytes. Interestingly, Ces2c/CES2 is most abundantly expressed in the intestine, indicating a role of Ces2c/CES2 in intestinal TG metabolism. Here we show that Ces2c is an important enzyme in intestinal lipid metabolism in mice. Intestine-specific Ces2c overexpression (Ces2cint) provoked increased fatty acid oxidation (FAO) in the small intestine accompanied by enhanced chylomicron clearance from the circulation. As a consequence, high-fat diet-fed Ces2cint mice were resistant to excessive diet-induced weight gain and adipose tissue expansion. Notably, intestinal Ces2c overexpression increased hepatic insulin sensitivity and protected mice from NAFLD development. Although lipid absorption was not affected in Ces2cint mice, fecal energy content was significantly increased. Mechanistically, we demonstrate that Ces2c is a potent neutral lipase, which efficiently hydrolyzes TGs and diglycerides (DGs) in the small intestine, thereby generating fatty acids (FAs) for FAO and monoglycerides (MGs) and DGs for potential re-esterification. Consequently, the increased availability of MGs and DGs for re-esterification and primordial apolipoprotein B48 particle lipidation may increase chylomicron size, ultimately mediating more efficient chylomicron clearance from the circulation. Conclusion: This study suggests a critical role for Ces2c in intestinal lipid metabolism and highlights the importance of intestinal lipolysis to protect mice from the development of hepatic insulin resistance, NAFLD, and excessive diet-induced weight gain during metabolic stress.
Collapse
Affiliation(s)
| | - Pia Benedikt
- Institute of Molecular Biosciences University of Graz Graz Austria
| | - Ursula Feiler
- Institute of Molecular Biosciences University of Graz Graz Austria
| | - Sandra Eder
- Institute of Molecular Biosciences University of Graz Graz Austria
| | | | - Ulrike Taschler
- Institute of Molecular Biosciences University of Graz Graz Austria
| | | | | | | | - Christina Leopold
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry Medical University of Graz Graz Austria
| | - Beatrix I Wieser
- Diagnostic & Research Center for Molecular BioMedicine Institute of Pathology Medical University of Graz Graz Austria
| | - Caroline Lackner
- Diagnostic & Research Center for Molecular BioMedicine Institute of Pathology Medical University of Graz Graz Austria
| | - Thomas Rülicke
- Institute of Laboratory Animal Science University of Veterinary Medicine Wien Austria
| | - Jan van Klinken
- Department of Human Genetics Leiden University Medical Centre Leiden the Netherlands
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry Medical University of Graz Graz Austria
| | - Tarek Moustafa
- Division of Gastroenterology and Hepatology Medical University Graz Graz Austria
| | - Gerald Hoefler
- Diagnostic & Research Center for Molecular BioMedicine Institute of Pathology Medical University of Graz Graz Austria
| | | |
Collapse
|
13
|
Lian J, Bahitham W, Panigrahi R, Nelson R, Li L, Watts R, Thiesen A, Lemieux MJ, Lehner R. Genetic variation in human carboxylesterase CES1 confers resistance to hepatic steatosis. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:688-699. [DOI: 10.1016/j.bbalip.2018.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 02/21/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022]
|
14
|
Inhibition of cholinergic and non-cholinergic targets following subacute exposure to chlorpyrifos in normal and high fat fed male C57BL/6J mice. Food Chem Toxicol 2018; 118:821-829. [PMID: 29935250 DOI: 10.1016/j.fct.2018.06.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/01/2018] [Accepted: 06/20/2018] [Indexed: 12/22/2022]
Abstract
The effects of obesity on organophosphate pesticide-mediated toxicities, including both cholinergic and non-cholinergic targets, have not been fully elucidated. Therefore, the present study was designed to determine if high fat diet intake alters the effects of repeated exposure to chlorpyrifos (CPS) on the activities of both cholinergic and noncholinergic serine hydrolase targets. Male C57BL/6J mice were placed on either standard rodent chow or high fat diet for four weeks with CPS exposure (2.0 mg/kg) for the last 10 days of diet intake. Exposure to CPS did not alter acetylcholinesterase in the central nervous system, but it did significantly inhibit circulating cholinesterase activities in both diet groups. CPS significantly inhibited hepatic carboxylesterase and fatty acid amide hydrolase and this inhibition was significantly greater in high fat fed animals. Additionally, CPS exposure and high fat diet intake downregulated genes involved in hepatic de novo lipogenesis as well as cytochrome P450 enzymes involved in hepatic xenobiotic metabolism. In summary, the present study demonstrates that high fat diet intake potentiates CPS mediated inhibition of both carboxylesterase and fatty acid amide hydrolase in the liver of obese animals following subacute exposure and suggests obesity may be a risk factor for increased non-cholinergic hepatic CPS toxicity.
Collapse
|
15
|
Wang Y, Tang W, Yang P, Shin H, Li Q. Hepatic NPC1L1 promotes hyperlipidemia in LDL receptor deficient mice. Biochem Biophys Res Commun 2018; 499:626-633. [DOI: 10.1016/j.bbrc.2018.03.200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
|
16
|
Xu J, Xu Y, Xu Y, Yin L, Zhang Y. Global inactivation of carboxylesterase 1 (Ces1/Ces1g) protects against atherosclerosis in Ldlr -/- mice. Sci Rep 2017; 7:17845. [PMID: 29259301 PMCID: PMC5736751 DOI: 10.1038/s41598-017-18232-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022] Open
Abstract
Atherosclerotic cardiovascular disease is a leading cause of death in the western world. Increased plasma triglyceride and cholesterol levels are major risk factors for this disease. Carboxylesterase 1 (Ces1/Ces1g) has been shown to play a role in metabolic control. So far, the role of mouse Ces1/Ces1g deficiency in atherosclerosis is not elucidated. We generated Ces1/Ces1g−/− mice. Compared to wild-type mice, Ces1/Ces1g−/− mice had reduced plasma cholesterol levels. We then generated Ces1g−/−Ldlr−/− double knockout (DKO) mice, which were fed a Western diet for 16 weeks. Compared to Ldlr−/− mice, DKO mice displayed decreased plasma cholesterol and TG levels and reduced atherosclerotic lesions. Interestingly, knockdown of hepatic Ces1/Ces1g in Apoe−/− mice resulted in hyperlipidemia and exacerbated Western diet-induced atherogenesis. Mechanistically, global inactivation of Ces1/Ces1g inhibited intestinal cholesterol and fat absorption and Niemann-Pick C1 like 1 expression, and increased macrophage cholesterol efflux by inducing ATP-binding cassette subfamily A member 1 (ABCA1) and ABCG1. Ces1/Ces1g ablation also promoted M2 macrophage polarization and induced hepatic cholesterol 7α-hydroxylase and sterol 12α-hydroxylase expression. In conclusion, global loss of Ces1/Ces1g protects against the development of atherosclerosis by inhibiting intestinal cholesterol and triglyceride absorption and promoting macrophage cholesterol efflux.
Collapse
Affiliation(s)
- Jiesi Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Yanyong Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
| |
Collapse
|
17
|
Kondakala S, Lee JH, Ross MK, Howell GE. Effects of acute exposure to chlorpyrifos on cholinergic and non-cholinergic targets in normal and high-fat fed male C57BL/6J mice. Toxicol Appl Pharmacol 2017; 337:67-75. [DOI: 10.1016/j.taap.2017.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
|
18
|
Lian J, Nelson R, Lehner R. Carboxylesterases in lipid metabolism: from mouse to human. Protein Cell 2017; 9:178-195. [PMID: 28677105 PMCID: PMC5818367 DOI: 10.1007/s13238-017-0437-z] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/31/2017] [Indexed: 12/12/2022] Open
Abstract
Mammalian carboxylesterases hydrolyze a wide range of xenobiotic and endogenous compounds, including lipid esters. Physiological functions of carboxylesterases in lipid metabolism and energy homeostasis in vivo have been demonstrated by genetic manipulations and chemical inhibition in mice, and in vitro through (over)expression, knockdown of expression, and chemical inhibition in a variety of cells. Recent research advances have revealed the relevance of carboxylesterases to metabolic diseases such as obesity and fatty liver disease, suggesting these enzymes might be potential targets for treatment of metabolic disorders. In order to translate pre-clinical studies in cellular and mouse models to humans, differences and similarities of carboxylesterases between mice and human need to be elucidated. This review presents and discusses the research progress in structure and function of mouse and human carboxylesterases, and the role of these enzymes in lipid metabolism and metabolic disorders.
Collapse
Affiliation(s)
- Jihong Lian
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada. .,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| | - Randal Nelson
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
19
|
Quiroga AD, Ceballos MP, Parody JP, Comanzo CG, Lorenzetti F, Pisani GB, Ronco MT, Alvarez MDL, Carrillo MC. Hepatic carboxylesterase 3 (Ces3/Tgh) is downregulated in the early stages of liver cancer development in the rat. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2043-2053. [PMID: 27523631 DOI: 10.1016/j.bbadis.2016.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/21/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
Abstract
It is accepted that cancer development is associated with metabolic changes. Previously, we established a model of hepatic preneoplasia in which adult rats were subjected to a 2-phase model of hepatocarcinogenesis (initiated-promoted, IP) for 6weeks until they develop altered hepatic foci (AHF). Here, we found that a whole metabolic shift occurs in order to favor cancer development. IP animals presented with increased plasma lipids due to increased VLDL secretion as well as increased liver lipid accretion due to stimulated transacetylase activity rather than lipogenesis, compared to control rats. We found that carboxylesterase 3/triacylglycerol hydrolase (Ces3/Tgh) presented with a perilobular distribution surrounding lipid droplets in normal livers. However, it is downregulated both at the protein and mRNA level in liver homogenates and is almost undetectable inside the AHF with no changes in the surrounding tissue. Ces3/Tgh expression is regulated by ω-3 fatty acids, thus, supplementation of diet with fish oil, allowed the restoration of Ces3/Tgh expression inside the foci and, more interestingly, led to the decrease in number and volume of the AHF. These studies show a preventive role of Ces3/Tgh in liver cancer development.
Collapse
Affiliation(s)
- Ariel D Quiroga
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina.
| | - María P Ceballos
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Rosario, Argentina.
| | - Juan P Parody
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Rosario, Argentina.
| | - Carla G Comanzo
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Rosario, Argentina.
| | - Florencia Lorenzetti
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Rosario, Argentina.
| | - Gerardo B Pisani
- Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina.
| | - María T Ronco
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Rosario, Argentina.
| | - María de L Alvarez
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina.
| | - María C Carrillo
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina.
| |
Collapse
|
20
|
Lian J, Wei E, Groenendyk J, Das SK, Hermansson M, Li L, Watts R, Thiesen A, Oudit GY, Michalak M, Lehner R. Ces3/TGH Deficiency Attenuates Steatohepatitis. Sci Rep 2016; 6:25747. [PMID: 27181051 PMCID: PMC4867576 DOI: 10.1038/srep25747] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/22/2016] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease in developed countries. NAFLD describes a wide range of liver pathologies from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. NASH is distinguished from simple steatosis by inflammation, cell death and fibrosis. In this study we found that mice lacking triacylglycerol hydrolase (TGH, also known as carboxylesterase 3 or carboxylesterase 1d) are protected from high-fat diet (HFD) - induced hepatic steatosis via decreased lipogenesis, increased fatty acid oxidation and improved hepatic insulin sensitivity. To examine the effect of the loss of TGH function on the more severe NAFLD form NASH, we ablated Tgh expression in two independent NASH mouse models, Pemt(-/-) mice fed HFD and Ldlr(-/-) mice fed high-fat, high-cholesterol Western-type diet (WTD). TGH deficiency reduced liver inflammation, oxidative stress and fibrosis in Pemt(-/-) mice. TGH deficiency also decreased NASH in Ldlr(-/-) mice. Collectively, these findings indicate that TGH deficiency attenuated both simple hepatic steatosis and irreversible NASH.
Collapse
Affiliation(s)
- Jihong Lian
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Enhui Wei
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jody Groenendyk
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Subhash K. Das
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Hermansson
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lena Li
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Russell Watts
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Aducio Thiesen
- Department of Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y. Oudit
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Marek Michalak
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
21
|
Huang J, Li L, Lian J, Schauer S, Vesely PW, Kratky D, Hoefler G, Lehner R. Tumor-Induced Hyperlipidemia Contributes to Tumor Growth. Cell Rep 2016; 15:336-48. [PMID: 27050512 PMCID: PMC4984953 DOI: 10.1016/j.celrep.2016.03.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/04/2015] [Accepted: 02/26/2016] [Indexed: 12/11/2022] Open
Abstract
The known link between obesity and cancer suggests an important interaction between the host lipid metabolism and tumorigenesis. Here, we used a syngeneic tumor graft model to demonstrate that tumor development influences the host lipid metabolism. BCR-Abl-transformed precursor B cell tumors induced hyperlipidemia by stimulating very low-density lipoprotein (VLDL) production and blunting VLDL and low-density lipoprotein (LDL) turnover. To assess whether tumor progression was dependent on tumor-induced hyperlipidemia, we utilized the VLDL production-deficient mouse model, carboxylesterase3/triacylglycerol hydrolase (Ces3/TGH) knockout mice. In Ces3/Tgh–/– tumor-bearing mice, plasma triglyceride and cholesterol levels were attenuated. Importantly tumor weight was reduced in Ces3/Tgh–/– mice. Mechanistically, reduced tumor growth in Ces3/Tgh–/– mice was attributed to reversal of tumor-induced PCSK9-mediated degradation of hepatic LDLR and decrease of LDL turnover. Our data demonstrate that tumor-induced hyperlipidemia encompasses a feed-forward loop that reprograms hepatic lipoprotein homeostasis in part by providing LDL cholesterol to support tumor growth.
Collapse
Affiliation(s)
- Jianfeng Huang
- Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Lena Li
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jihong Lian
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Silvia Schauer
- Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Paul W Vesely
- Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; Institute of Molecular Biosciences, Karl Franzens University of Graz, 8010 Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz, 8010 Graz, Austria.
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
22
|
Doler C, Schweiger M, Zimmermann R, Breinbauer R. Chemical Genetic Approaches for the Investigation of Neutral Lipid Metabolism. Chembiochem 2016; 17:358-77. [DOI: 10.1002/cbic.201500501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Carina Doler
- Institute of Organic Chemistry; Graz University of Technology; Stremayrgasse 9 8010 Graz Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences; University of Graz; Heinrichstrasse 31/II 8010 Graz Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences; University of Graz; Heinrichstrasse 31/II 8010 Graz Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry; Graz University of Technology; Stremayrgasse 9 8010 Graz Austria
| |
Collapse
|
23
|
Ross MK, Borazjani A, Mangum LC, Wang R, Crow JA. Effects of toxicologically relevant xenobiotics and the lipid-derived electrophile 4-hydroxynonenal on macrophage cholesterol efflux: silencing carboxylesterase 1 has paradoxical effects on cholesterol uptake and efflux. Chem Res Toxicol 2014; 27:1743-56. [PMID: 25250848 PMCID: PMC4203386 DOI: 10.1021/tx500221a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
![]()
Cholesterol
cycles between free cholesterol (unesterified) found
predominantly in membranes and cholesteryl esters (CEs) stored in
cytoplasmic lipid droplets. Only free cholesterol is effluxed from
macrophages via ATP-binding cassette (ABC) transporters to extracellular
acceptors. Carboxylesterase 1 (CES1), proposed to hydrolyze CEs, is
inactivated by oxon metabolites of organophosphorus pesticides and
by the lipid electrophile 4-hydroxynonenal (HNE). We assessed the
ability of these compounds to reduce cholesterol efflux from foam
cells. Human THP-1 macrophages were loaded with [3H]-cholesterol/acetylated
LDL and then allowed to equilibrate to enable [3H]-cholesterol
to distribute into its various cellular pools. The cholesterol-engorged
cells were then treated with toxicants in the absence of cholesterol
acceptors for 24 h, followed by a 24 h efflux period in the presence
of toxicant. A concentration-dependent reduction in [3H]-cholesterol
efflux via ABCA1 (up to 50%) was found for paraoxon (0.1–10
μM), whereas treatment with HNE had no effect. A modest reduction
in [3H]-cholesterol efflux via ABCG1 (25%) was found after
treatment with either paraoxon or chlorpyrifos oxon (10 μM each)
but not HNE. No difference in efflux rates was found after treatments
with either paraoxon or HNE when the universal cholesterol acceptor
10% (v/v) fetal bovine serum was used. When the re-esterification
arm of the CE cycle was disabled in foam cells, paraoxon treatment
increased CE levels, suggesting the neutral CE hydrolysis arm of the
cycle had been inhibited by the toxicant. However, paraoxon also partially
inhibited lysosomal acid lipase, which generates cholesterol for efflux,
and reduced the expression of ABCA1 protein. Paradoxically, silencing CES1 expression in macrophages did not affect the percent
of [3H]-cholesterol efflux. However, CES1 mRNA knockdown markedly reduced cholesterol uptake by macrophages,
with SR-A and CD36 mRNA reduced
3- and 4-fold, respectively. Immunoblots confirmed SR-A and CD36 protein
downregulation. Together, these results suggest that toxicants, e.g.,
oxons, may interfere with macrophage cholesterol homeostasis/metabolism.
Collapse
Affiliation(s)
- Matthew K Ross
- Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University , P.O. Box 6100, Mississippi State, Mississippi 39762, United States
| | | | | | | | | |
Collapse
|
24
|
Janero DR. The future of drug discovery: enabling technologies for enhancing lead characterization and profiling therapeutic potential. Expert Opin Drug Discov 2014; 9:847-58. [PMID: 24965547 DOI: 10.1517/17460441.2014.925876] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Technology often serves as a handmaiden and catalyst of invention. The discovery of safe, effective medications depends critically upon experimental approaches capable of providing high-impact information on the biological effects of drug candidates early in the discovery pipeline. This information can enable reliable lead identification, pharmacological compound differentiation and successful translation of research output into clinically useful therapeutics. The shallow preclinical profiling of candidate compounds promulgates a minimalistic understanding of their biological effects and undermines the level of value creation necessary for finding quality leads worth moving forward within the development pipeline with efficiency and prognostic reliability sufficient to help remediate the current pharma-industry productivity drought. Three specific technologies discussed herein, in addition to experimental areas intimately associated with contemporary drug discovery, appear to hold particular promise for strengthening the preclinical valuation of drug candidates by deepening lead characterization. These are: i) hydrogen-deuterium exchange mass spectrometry for characterizing structural and ligand-interaction dynamics of disease-relevant proteins; ii) activity-based chemoproteomics for profiling the functional diversity of mammalian proteomes; and iii) nuclease-mediated precision gene editing for developing more translatable cellular and in vivo models of human diseases. When applied in an informed manner congruent with the clinical understanding of disease processes, technologies such as these that span levels of biological organization can serve as valuable enablers of drug discovery and potentially contribute to reducing the current, unacceptably high rates of compound clinical failure.
Collapse
Affiliation(s)
- David R Janero
- Northeastern University, Bouvé College of Health Sciences, Center for Drug Discovery, Department of Pharmaceutical Sciences, Health Sciences Entrepreneurs , 360 Huntington Avenue, 116 Mugar Life Sciences Hall, Boston, MA 02115-5000 , USA +1 617 373 2208 ; +1 617 373 7493 ;
| |
Collapse
|
25
|
Morris PJ, Medina-Cleghorn D, Heslin A, King SM, Orr J, Mulvihill MM, Krauss RM, Nomura DK. Organophosphorus flame retardants inhibit specific liver carboxylesterases and cause serum hypertriglyceridemia. ACS Chem Biol 2014; 9:1097-103. [PMID: 24597639 PMCID: PMC4027947 DOI: 10.1021/cb500014r] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Humans are prevalently exposed to organophosphorus flame retardants (OPFRs) contained in consumer products and electronics, though their toxicological effects and mechanisms remain poorly understood. We show here that OPFRs inhibit specific liver carboxylesterases (Ces) and cause altered hepatic lipid metabolism. Ablation of the OPFR target Ces1g has been previously linked to dyslipidemia in mice. Consistent with OPFR inhibition of Ces1g, we also observe OPFR-induced serum hypertriglyceridemia in mice. Our findings suggest novel toxicities that may arise from OPFR exposure and highlight the utility of chemoproteomic and metabolomic platforms in the toxicological characterization of environmental chemicals.
Collapse
Affiliation(s)
- Patrick J. Morris
- Department
of Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, California 94720, United States
| | - Daniel Medina-Cleghorn
- Department
of Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, California 94720, United States
| | - Ann Heslin
- Department
of Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, California 94720, United States
| | - Sarah M. King
- Children’s Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, California 94609, United States
| | - Joseph Orr
- Children’s Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, California 94609, United States
| | - Melinda M. Mulvihill
- Department
of Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, California 94720, United States
| | - Ronald M. Krauss
- Children’s Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, California 94609, United States
| | - Daniel K. Nomura
- Department
of Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, California 94720, United States
| |
Collapse
|
26
|
Bie J, Wang J, Marqueen KE, Osborne R, Kakiyama G, Korzun W, Ghosh SS, Ghosh S. Liver-specific cholesteryl ester hydrolase deficiency attenuates sterol elimination in the feces and increases atherosclerosis in ldlr-/- mice. Arterioscler Thromb Vasc Biol 2013; 33:1795-802. [PMID: 23744992 DOI: 10.1161/atvbaha.113.301634] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Liver is the major organ responsible for the final elimination of cholesterol from the body either as biliary cholesterol or as bile acids. Intracellular hydrolysis of lipoprotein-derived cholesteryl esters (CEs) is essential to generate the free cholesterol required for this process. Earlier, we demonstrated that overexpression of human CE hydrolase (Gene symbol CES1) increased bile acid synthesis in human hepatocytes and enhanced reverse cholesterol transport in mice. The objective of the present study was to demonstrate that liver-specific deletion of its murine ortholog, Ces3, would decrease cholesterol elimination from the body and increase atherosclerosis. APPROACH AND RESULTS Liver-specific Ces3 knockout mice (Ces3-LKO) were generated, and Ces3 deficiency did not affect the expression of genes involved in cholesterol homeostasis and free cholesterol or bile acid transport. The effects of Ces3 deficiency on the development of Western diet-induced atherosclerosis were examined in low density lipoprotein receptor knock out(-/-) mice. Despite similar plasma lipoprotein profiles, there was increased lesion development in low density lipoprotein receptor knock out(-/-)Ces3-LKO mice along with a significant decrease in the bile acid content of bile. Ces3 deficiency significantly reduced the flux of cholesterol from [(3)H]-CE-labeled high-density lipoproteins to feces (as free cholesterol and bile acids) and decreased total fecal sterol elimination. CONCLUSIONS Our results demonstrate that hepatic Ces3 modulates the hydrolysis of lipoprotein-delivered CEs and thereby regulates free cholesterol and bile acid secretion into the feces. Therefore, its deficiency results in reduced cholesterol elimination from the body, leading to significant increase in atherosclerosis. Collectively, these data establish the antiatherogenic role of hepatic CE hydrolysis.
Collapse
Affiliation(s)
- Jinghua Bie
- Department of Internal Medicine, VCU Medical Center, Richmond, VA 23298-0050, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Circulation Research
Thematic Synopsis. Circ Res 2013. [DOI: 10.1161/circresaha.113.301487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|