1
|
Marjollet J, Buscato M, Davezac M, Vessieres E, Gosset A, Adlanmerini M, Henrion D, Lenfant F, Arnal JF, Fontaine C. [Estrogen receptors and vascular aging]. Med Sci (Paris) 2024; 40:729-736. [PMID: 39450958 DOI: 10.1051/medsci/2024115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
After years of studying cardiovascular diseases (CVD) in men due to their higher incidence compared to women, attention is now being paid to female CVD and their pathophysiology. Even though premenopausal women have a lower incidence of CVD, this disparity progressively diminishes after menopause, highlighting the key role of sex hormones. Many preclinical and fundamental studies have demonstrated protective effects of estrogens on arterial endothelium, suggesting that hormone therapy could improve cardiovascular health in menopausal women. However, disappointing outcomes from a major clinical trial two decades ago questioned the cardiovascular protection by estrogens with age. In this review, we will summarize the main clinical and experimental studies reporting the effects of estrogens on CVD, with a focus on their impact on endothelial function. Then, we will present abnormalities in the expression and signaling of estrogen receptors (ERs) in the arteries, and the contribution of conventional estrogens to arterial protection during aging. Finally, we will examine how recent advances in the mechanisms of action of ERa could help to optimize hormone therapy for menopause.
Collapse
Affiliation(s)
- Juline Marjollet
- Inserm U1297, Institut des maladies métaboliques et cardiovasculaires (I2MC), Université de Toulouse 3 Toulouse France
| | - Mélissa Buscato
- Inserm U1297, Institut des maladies métaboliques et cardiovasculaires (I2MC), Université de Toulouse 3 Toulouse France
| | - Morgane Davezac
- Inserm U1297, Institut des maladies métaboliques et cardiovasculaires (I2MC), Université de Toulouse 3 Toulouse France
| | - Emilie Vessieres
- Université d'Angers, département MITOVASC, équipe CarMe, Inserm U1083, CNRS UMR 6015 Angers France
| | - Anna Gosset
- Inserm U1297, Institut des maladies métaboliques et cardiovasculaires (I2MC), Université de Toulouse 3 Toulouse France
| | - Marine Adlanmerini
- Inserm U1297, Institut des maladies métaboliques et cardiovasculaires (I2MC), Université de Toulouse 3 Toulouse France
| | - Daniel Henrion
- Inserm U1297, Institut des maladies métaboliques et cardiovasculaires (I2MC), Université de Toulouse 3 Toulouse France
| | - Francoise Lenfant
- Inserm U1297, Institut des maladies métaboliques et cardiovasculaires (I2MC), Université de Toulouse 3 Toulouse France
| | - Jean-François Arnal
- Inserm U1297, Institut des maladies métaboliques et cardiovasculaires (I2MC), Université de Toulouse 3 Toulouse France
| | - Coralie Fontaine
- Inserm U1297, Institut des maladies métaboliques et cardiovasculaires (I2MC), Université de Toulouse 3 Toulouse France
| |
Collapse
|
2
|
Jia K, Luo X, Yi J, Zhang C. Hormonal influence: unraveling the impact of sex hormones on vascular smooth muscle cells. Biol Res 2024; 57:61. [PMID: 39227995 PMCID: PMC11373308 DOI: 10.1186/s40659-024-00542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Sex hormones play a pivotal role as endocrine hormones that exert profound effects on the biological characteristics and vascular function of vascular smooth muscle cells (VSMCs). By modulating intracellular signaling pathways, activating nuclear receptors, and regulating gene expression, sex hormones intricately influence the morphology, function, and physiological state of VSMCs, thereby impacting the biological properties of vascular contraction, relaxation, and growth. Increasing evidence suggests that abnormal phenotypic changes in VSMCs contribute to the initiation of vascular diseases, including atherosclerosis. Therefore, understanding the factors governing phenotypic alterations in VSMCs and elucidating the underlying mechanisms can provide crucial insights for refining interventions targeted at vascular diseases. Additionally, the varying levels of different types of sex hormones in the human body, influenced by sex and age, may also affect the phenotypic conversion of VSMCs. This review aims to explore the influence of sex hormones on the phenotypic switching of VSMCs and the development of associated vascular diseases in the human body.
Collapse
Affiliation(s)
- Keran Jia
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xin Luo
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Chunxiang Zhang
- Department of Cardiology, The Affiliated Hospital, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
3
|
Fruzzetti F, Fidecicchi T, Gambacciani M. Oestrogens in oral contraception: considerations for tailoring prescription to women's needs. EUR J CONTRACEP REPR 2024; 29:93-102. [PMID: 38683756 DOI: 10.1080/13625187.2024.2334350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/19/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND The oestrogenic component of combined oral contraceptives (COCs) has changed over years with the aim of reducing oestrogen-related side effects and risks, whilst maintaining oestrogen beneficial effects, particularly on cycle control. PURPOSE To describe the pharmacological profiles of different oestrogens commonly used in COCs to provide insights on contraceptive prescription tailored to women's needs. RESULTS All COCs ensure a high contraceptive efficacy. COCs containing the natural oestrogens oestradiol (E2), oestradiol valerate (E2V) and estetrol (E4) have limited impact on liver metabolism, lipid and carbohydrate metabolism, haemostasis and sex hormone binding globulin levels, compared with ethinylestradiol (EE). COCs with E2 and E2V appear also to entail a lower elevation of the risk of venous thromboembolism vs. EE-containing pills. No epidemiological data are available for E4-COC. E2- and E2V-containing COCs seem to exert a less stabilising oestrogenic effect on the endometrium compared with EE-COCs. The E4-COC results in a predictable bleeding pattern with a high rate of scheduled bleeding and minimal unscheduled bleeding per cycle. Based on in vitro and in vivo animal data, E4 seems to be associated with a lower effect on cell breast proliferation. CONCLUSION Today various COCs contain different oestrogens. Prescribers must be familiar with the different properties of each oestrogen for a tailored contraceptive recommendation, considering their safety and contraceptive efficacy, as well as women's needs and preferences.
Collapse
Affiliation(s)
- Franca Fruzzetti
- Gynecological Endocrinology Unit, San Rossore Clinical Center, Pisa, Italy
| | - Tiziana Fidecicchi
- Department of Obstetrics and Gynecology, Ospedale Santa Chiara, University of Pisa, Pisa, Italy
| | - Marco Gambacciani
- Gynecological Endocrinology Unit, San Rossore Clinical Center, Pisa, Italy
| |
Collapse
|
4
|
Su C, Liu M, Yao X, Hao W, Ma J, Ren Y, Gao X, Xin L, Ge L, Yu Y, Wei M, Yang J. Vascular injury activates the ELK1/SND1/SRF pathway to promote vascular smooth muscle cell proliferative phenotype and neointimal hyperplasia. Cell Mol Life Sci 2024; 81:59. [PMID: 38279051 PMCID: PMC10817852 DOI: 10.1007/s00018-023-05095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Vascular smooth muscle cell (VSMC) proliferation is the leading cause of vascular stenosis or restenosis. Therefore, investigating the molecular mechanisms and pivotal regulators of the proliferative VSMC phenotype is imperative for precisely preventing neointimal hyperplasia in vascular disease. METHODS Wire-induced vascular injury and aortic culture models were used to detect the expression of staphylococcal nuclease domain-containing protein 1 (SND1). SMC-specific Snd1 knockout mice were used to assess the potential roles of SND1 after vascular injury. Primary VSMCs were cultured to evaluate SND1 function on VSMC phenotype switching, as well as to investigate the mechanism by which SND1 regulates the VSMC proliferative phenotype. RESULTS Phenotype-switched proliferative VSMCs exhibited higher SND1 protein expression compared to the differentiated VSMCs. This result was replicated in primary VSMCs treated with platelet-derived growth factor (PDGF). In the injury model, specific knockout of Snd1 in mouse VSMCs reduced neointimal hyperplasia. We then revealed that ETS transcription factor ELK1 (ELK1) exhibited upregulation and activation in proliferative VSMCs, and acted as a novel transcription factor to induce the gene transcriptional activation of Snd1. Subsequently, the upregulated SND1 is associated with serum response factor (SRF) by competing with myocardin (MYOCD). As a co-activator of SRF, SND1 recruited the lysine acetyltransferase 2B (KAT2B) to the promoter regions leading to the histone acetylation, consequently promoted SRF to recognize the specific CArG motif, and enhanced the proliferation- and migration-related gene transcriptional activation. CONCLUSIONS The present study identifies ELK1/SND1/SRF as a novel pathway in promoting the proliferative VSMC phenotype and neointimal hyperplasia in vascular injury, predisposing the vessels to pathological remodeling. This provides a potential therapeutic target for vascular stenosis.
Collapse
Affiliation(s)
- Chao Su
- Division of Cardiovascular Surgery, Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Mingxia Liu
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xuyang Yao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
- Eye Institute & School of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Wei Hao
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Jinzheng Ma
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Ren
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xingjie Gao
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Lingbiao Xin
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Lin Ge
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Ying Yu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Minxin Wei
- Division of Cardiovascular Surgery, Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China.
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China.
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.
- State Key Laboratory of Experimental Hematology, Tianjin, China.
| |
Collapse
|
5
|
Fébrissy C, Adlanmerini M, Péqueux C, Boudou F, Buscato M, Gargaros A, Gilardi-Bresson S, Boriak K, Laurell H, Fontaine C, Katzenellenbogen BS, Katzenellenbogen JA, Guillermet-Guibert J, Arnal JF, Metivier R, Lenfant F. Reprogramming of endothelial gene expression by tamoxifen inhibits angiogenesis and ERα-negative tumor growth. Theranostics 2024; 14:249-264. [PMID: 38164151 PMCID: PMC10750193 DOI: 10.7150/thno.87306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/26/2023] [Indexed: 01/03/2024] Open
Abstract
Rationale: 17β-estradiol (E2) can directly promote the growth of ERα-negative cancer cells through activation of endothelial ERα in the tumor microenvironment, thereby increasing a normalized tumor angiogenesis. ERα acts as a transcription factor through its nuclear transcriptional AF-1 and AF-2 transactivation functions, but membrane ERα plays also an important role in endothelium. The present study aims to decipher the respective roles of these two pathways in ERα-negative tumor growth. Moreover, we delineate the actions of tamoxifen, a Selective Estrogen Receptor Modulator (SERM) in ERα-negative tumors growth and angiogenesis, since we recently demonstrated that tamoxifen impacts vasculature functions through complex modulation of ERα activity. Methods: ERα-negative B16K1 cancer cells were grafted into immunocompetent mice mutated for ERα-subfunctions and tumor growths were analyzed in these different models in response to E2 and/or tamoxifen treatment. Furthermore, RNA sequencings were analyzed in endothelial cells in response to these different treatments and validated by RT-qPCR and western blot. Results: We demonstrate that both nuclear and membrane ERα actions are required for the pro-tumoral effects of E2, while tamoxifen totally abrogates the E2-induced in vivo tumor growth, through inhibition of angiogenesis but promotion of vessel normalization. RNA sequencing indicates that tamoxifen inhibits the E2-induced genes, but also initiates a specific transcriptional program that especially regulates angiogenic genes and differentially regulates glycolysis, oxidative phosphorylation and inflammatory responses in endothelial cells. Conclusion: These findings provide evidence that tamoxifen specifically inhibits angiogenesis through a reprogramming of endothelial gene expression via regulation of some transcription factors, that could open new promising strategies to manage cancer therapies affecting the tumor microenvironment of ERα-negative tumors.
Collapse
Affiliation(s)
- Chanaëlle Fébrissy
- INSERM U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432 Toulouse cedex 04, France
| | - Marine Adlanmerini
- INSERM U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432 Toulouse cedex 04, France
| | - Christel Péqueux
- Laboratoire de Biologie des Tumeurs et du Développement, GIGA-Cancer, Université de Liège, B23, Liège, Belgium
| | - Frédéric Boudou
- INSERM U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432 Toulouse cedex 04, France
| | - Mélissa Buscato
- INSERM U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432 Toulouse cedex 04, France
| | - Adrien Gargaros
- INSERM U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432 Toulouse cedex 04, France
| | - Silveric Gilardi-Bresson
- INSERM U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432 Toulouse cedex 04, France
| | - Khrystyna Boriak
- INSERM U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432 Toulouse cedex 04, France
| | - Henrik Laurell
- INSERM U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432 Toulouse cedex 04, France
| | - Coralie Fontaine
- INSERM U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432 Toulouse cedex 04, France
| | - Benita S. Katzenellenbogen
- Departments of Molecular and Integrative Physiology and Chemistry, University of Illinois, Urbana, Illinois, USA
| | - John A. Katzenellenbogen
- Departments of Molecular and Integrative Physiology and Chemistry, University of Illinois, Urbana, Illinois, USA
| | | | - Jean-François Arnal
- INSERM U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432 Toulouse cedex 04, France
| | - Raphaël Metivier
- Institut de Génétique De Rennes (IGDR). UMR 6290 CNRS-Université de Rennes, ERL INSERM U1305. CS 74205- 35042 Rennes Cedex, France
| | - Françoise Lenfant
- INSERM U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432 Toulouse cedex 04, France
| |
Collapse
|
6
|
Davezac M, Meneur C, Buscato M, Zahreddine R, Arnal JF, Dalenc F, Lenfant F, Fontaine C. The beneficial effects of tamoxifen on arteries: a key player for cardiovascular health of breast cancer patient. Biochem Pharmacol 2023:115677. [PMID: 37419371 DOI: 10.1016/j.bcp.2023.115677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Breast cancer is the most common cancer in women. Over the past few decades, advances in cancer detection and treatment have significantly improved survival rate of breast cancer patients. However, due to the cardiovascular toxicity of cancer treatments (chemotherapy, anti-HER2 antibodies and radiotherapy), cardiovascular diseases (CVD) have become an increasingly important cause of long-term morbidity and mortality in breast cancer survivors. Endocrine therapies are prescribed to reduce the risk of recurrence and specific death in estrogen receptor-positive (ER+) early breast cancer patients, but their impact on CVD is a matter of debate. Whereas aromatase inhibitors and luteinizing hormone-releasing hormone (LHRH) analogs inhibit estrogen synthesis, tamoxifen acts as a selective estrogen receptor modulator (SERM), opposing estrogen action in the breast but mimicking their actions in other tissues, including arteries. This review aims to summarize the main clinical and experimental studies reporting the effects of tamoxifen on CVD. In addition, we will discuss how recent findings on the mechanisms of action of these therapies may contribute to a better understanding and anticipation of CVD risk in breast cancer patients.
Collapse
Affiliation(s)
- Morgane Davezac
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Cecile Meneur
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France; PhysioStim, 10 rue Henri Regnault, 81100, Castres, France
| | - Melissa Buscato
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Rana Zahreddine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France; CREFRE-Anexplo, Service de Microchirurgie Experimentale, UMS006, INSERM, Université de Toulouse, UT3, ENVT, 31062 Toulouse, France
| | - Jean-François Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Florence Dalenc
- Department of Medical Oncology, Claudius Regaud Institute, IUCT-Oncopole, Toulouse, France
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France.
| |
Collapse
|
7
|
Gérard C, Foidart JM. Estetrol: From Preclinical to Clinical Pharmacology and Advances in the Understanding of the Molecular Mechanism of Action. Drugs R D 2023:10.1007/s40268-023-00419-5. [PMID: 37133685 DOI: 10.1007/s40268-023-00419-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2023] [Indexed: 05/04/2023] Open
Abstract
Estetrol (E4) is the most recently described natural estrogen. It is produced by the human fetal liver during pregnancy and its physiological function remains unclear. E4 is the estrogenic component of a recently approved combined oral contraceptive. It is also in development for use as menopausal hormone therapy. In the context of these developments, the pharmacological activity of E4, alone or in combination with a progestin, has been extensively characterized in preclinical models as well as in clinical studies in women of reproductive age and postmenopausal women. Despite the clinical benefits, the use of oral estrogens for contraception or menopause is also associated with unwanted effects, such as an increased risk of breast cancer and thromboembolic events, due to their impact on non-target tissues. Preclinical and clinical data for E4 point to a tissue-specific activity and a more selective pharmacological profile compared with other estrogens, including a low impact on the liver and hemostasis balance. This review summarizes the characterization of the pharmacological properties of E4 as well as recent advances made in the understanding of the molecular mechanisms of action driving its activity. How the unique mode of action and the different metabolism of E4 might support its favorable benefit-risk ratio is also discussed.
Collapse
Affiliation(s)
- Céline Gérard
- Estetra SRL (an affiliate company of Mithra Pharmaceuticals), Rue Saint Georges 5, 4000, Liège, Belgium.
| | - Jean-Michel Foidart
- Estetra SRL (an affiliate company of Mithra Pharmaceuticals), Rue Saint Georges 5, 4000, Liège, Belgium
- Department of Obstetrics and Gynecology, University of Liège, 4000, Liège, Belgium
| |
Collapse
|
8
|
Tokiwa H, Ueda K, Takimoto E. The emerging role of estrogen's non-nuclear signaling in the cardiovascular disease. Front Cardiovasc Med 2023; 10:1127340. [PMID: 37123472 PMCID: PMC10130590 DOI: 10.3389/fcvm.2023.1127340] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Sexual dimorphism exists in the epidemiology of cardiovascular disease (CVD), which indicates the involvement of sexual hormones in the pathophysiology of CVD. In particular, ample evidence has demonstrated estrogen's protective effect on the cardiovascular system. While estrogen receptors, bound to estrogen, act as a transcription factor which regulates gene expressions by binding to the specific DNA sequence, a subpopulation of estrogen receptors localized at the plasma membrane induces activation of intracellular signaling, called "non-nuclear signaling" or "membrane-initiated steroid signaling of estrogen". Although the precise molecular mechanism of non-nuclear signaling as well as its physiological impact was unclear for a long time, recent development of genetically modified animal models and pathway-selective estrogen receptor stimulant bring new insights into this pathway. We review the published experimental studies on non-nuclear signaling of estrogen, and summarize its role in cardiovascular system, especially focusing on: (1) the molecular mechanism of non-nuclear signaling; (2) the design of genetically modified animals and pathway-selective stimulant of estrogen receptor.
Collapse
Affiliation(s)
- Hiroyuki Tokiwa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ueda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Davezac M, Zahreddine R, Buscato M, Smirnova NF, Febrissy C, Laurell H, Gilardi-Bresson S, Adlanmerini M, Liere P, Flouriot G, Guennoun R, Laffargue M, Foidart JM, Lenfant F, Arnal JF, Métivier R, Fontaine C. The different natural estrogens promote endothelial healing through distinct cell targets. JCI Insight 2023; 8:161284. [PMID: 36729672 PMCID: PMC10070101 DOI: 10.1172/jci.insight.161284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
The main estrogen, 17β-estradiol (E2), exerts several beneficial vascular actions through estrogen receptor α (ERα) in endothelial cells. However, the impact of other natural estrogens such as estriol (E3) and estetrol (E4) on arteries remains poorly described. In the present study, we report the effects of E3 and E4 on endothelial healing after carotid artery injuries in vivo. After endovascular injury, which preserves smooth muscle cells (SMCs), E2, E3, and E4 equally stimulated reendothelialization. By contrast, only E2 and E3 accelerated endothelial healing after perivascular injury that destroys both endothelial cells and SMCs, suggesting an important role of this latter cell type in E4's action, which was confirmed using Cre/lox mice inactivating ERα in SMCs. In addition, E4 mediated its effects independently of ERα membrane-initiated signaling, in contrast with E2. Consistently, RNA sequencing analysis revealed that transcriptomic and cellular signatures in response to E4 profoundly differed from those of E2. Thus, whereas acceleration of endothelial healing by estrogens had been viewed as entirely dependent on endothelial ERα, these results highlight the very specific pharmacological profile of the natural estrogen E4, revealing the importance of dialogue between SMCs and endothelial cells in its arterial protection.
Collapse
Affiliation(s)
- Morgane Davezac
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Rana Zahreddine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Melissa Buscato
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Natalia F Smirnova
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Chanaelle Febrissy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Henrik Laurell
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Silveric Gilardi-Bresson
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Philippe Liere
- INSERM U1195, University Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Gilles Flouriot
- Institut de Recherche en Santé, Environnement et Travail (Irset), INSERM UMR_S 1085, EHESP, University of Rennes, Rennes, France
| | - Rachida Guennoun
- INSERM U1195, University Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Muriel Laffargue
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Jean-Michel Foidart
- Department of Obstetrics and Gynecology, University of Liège, Liège, Belgium
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Jean-François Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Raphaël Métivier
- Institut de Génétique de Rennes (IGDR), UMR 6290, CNRS, University of Rennes, Rennes, France
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| |
Collapse
|
10
|
Liu PY, Fukuma N, Hiroi Y, Kunita A, Tokiwa H, Ueda K, Kariya T, Numata G, Adachi Y, Tajima M, Toyoda M, Li Y, Noma K, Harada M, Toko H, Ushiku T, Kanai Y, Takimoto E, Liao JK, Komuro I. Tie2-Cre-Induced Inactivation of Non-Nuclear Estrogen Receptor-α Signaling Abrogates Estrogen Protection Against Vascular Injury. JACC. BASIC TO TRANSLATIONAL SCIENCE 2022; 8:55-67. [PMID: 36777173 PMCID: PMC9911321 DOI: 10.1016/j.jacbts.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022]
Abstract
Using the Cre-loxP system, we generated the first mouse model in which estrogen receptor-α non-nuclear signaling was inactivated in endothelial cells. Estrogen protection against mechanical vascular injury was impaired in this model. This result indicates the pivotal role of endothelial estrogen receptor-α non-nuclear signaling in the vasculoprotective effects of estrogen.
Collapse
Key Words
- E2, 17β-estradiol
- ECGM, endothelial cell growth medium
- ER, estrogen receptor
- ERαKI/KI, estrogen receptor-αknock-in/knock-in
- LVEDD, left ventricular end-diastolic diameter
- NOS, nitric oxide synthase
- PI3K, phosphatidylinositol 3-kinase
- PLA, proximity ligation assay
- Vo2, oxygen consumption
- cDNA, complementary deoxyribonucleic acid
- eNOS, endothelial nitric oxide synthase
- endothelial cells
- estrogen receptor-α
- non-nuclear signaling
- tissue-specific regulation
Collapse
Affiliation(s)
- Pang-Yen Liu
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital Penghu Branch, National Defense Medical Center, Taipei, Taiwan,Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuaki Fukuma
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukio Hiroi
- National Center for Global Health and Medicine, Tokyo, Japan,Vascular Medicine Research, Brigham and Women’s Hospital and Harvard Medical School, Cambridge, Massachusetts, USA
| | - Akiko Kunita
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Tokiwa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ueda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taro Kariya
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Department of Anesthesiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Genri Numata
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Adachi
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miyu Tajima
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masayuki Toyoda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuxin Li
- Vascular Medicine Research, Brigham and Women’s Hospital and Harvard Medical School, Cambridge, Massachusetts, USA,Nihon University School of Medicine, Tokyo, Japan
| | - Kensuke Noma
- Vascular Medicine Research, Brigham and Women’s Hospital and Harvard Medical School, Cambridge, Massachusetts, USA,Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
| | - Mutsuo Harada
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruhiro Toko
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yoshimitsu Kanai
- Department of Anatomy and Cell Biology, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA,Address for correspondence: Dr Eiki Takimoto, Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8655, Japan.
| | - James K. Liao
- Vascular Medicine Research, Brigham and Women’s Hospital and Harvard Medical School, Cambridge, Massachusetts, USA,Section of Cardiology, Department of Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Shuaishuai D, Jingyi L, Zhiqiang Z, Guanwei F. Sex differences and related estrogenic effects in heart failure with preserved ejection fraction. Heart Fail Rev 2022:10.1007/s10741-022-10274-2. [PMID: 36190606 DOI: 10.1007/s10741-022-10274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 11/04/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is an essential subtype of heart failure accounting for 40% of the total. However, the related pathological mechanism and drug therapy research have been stagnant for a long time. The direct cause of this dilemma is the heterogeneity of HFpEF. And some researchers believe that there is no common pathway to reach the origin of HFpEF; others argue that there is an unidentified unified pathophysiological process hidden beneath the ice surface. Aside from the debate, a series of clinical studies have shown that hypertension and obesity play a fundamental role in the pathogenesis of HFpEF. These results imply that there may be two parallel pathological processes interweaved in one disease, manifested as multiple coexistent pathological phenomena, like a shadow. Meanwhile, the prevalence of HFpEF in women is higher than in men in any given age group, especially prominent in elderly patients. These pathological processes and epidemiological data reflect gender differences, reminding us to shift our attention to estrogen. This article will review the parallel pathogenesis of HFpEF, and also introduce sex differences and the potential effect of estrogen in this condition below.
Collapse
Affiliation(s)
- Deng Shuaishuai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Acupuncture and Moxibustion, Tianjin, China
| | - Lin Jingyi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Acupuncture and Moxibustion, Tianjin, China
| | - Zhao Zhiqiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Acupuncture and Moxibustion, Tianjin, China
| | - Fan Guanwei
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China. .,National Clinical Research Center for Chinese Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
12
|
Tecalco-Cruz AC, Ramírez-Jarquín JO, Macías-Silva M, Sosa-Garrocho M, López-Camarillo C. Novel Breast Cancer Treatment by Targeting Estrogen Receptor-Alpha Stability Using Proteolysis-Targeting Chimeras (PROTACs) Technology. Breast Cancer 2022. [DOI: 10.36255/exon-publications-breast-cancer-protacs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Davezac M, Buscato M, Zahreddine R, Lacolley P, Henrion D, Lenfant F, Arnal JF, Fontaine C. Estrogen Receptor and Vascular Aging. FRONTIERS IN AGING 2022; 2:727380. [PMID: 35821994 PMCID: PMC9261451 DOI: 10.3389/fragi.2021.727380] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases remain an age-related pathology in both men and women. These pathologies are 3-fold more frequent in men than in women before menopause, although this difference progressively decreases after menopause. The vasculoprotective role of estrogens are well established before menopause, but the consequences of their abrupt decline on the cardiovascular risk at menopause remain debated. In this review, we will attempt to summarize the main clinical and experimental studies reporting the protective effects of estrogens against cardiovascular diseases, with a particular focus on atherosclerosis, and the impact of aging and estrogen deprivation on their endothelial actions. The arterial actions of estrogens, but also part of that of androgens through their aromatization into estrogens, are mediated by the estrogen receptor (ER)α and ERβ. ERs belong to the nuclear receptor family and act by transcriptional regulation in the nucleus, but also exert non-genomic/extranuclear actions. Beside the decline of estrogens at menopause, abnormalities in the expression and/or function of ERs in the tissues, and particularly in arteries, could contribute to the failure of classic estrogens to protect arteries during aging. Finally, we will discuss how recent insights in the mechanisms of action of ERα could contribute to optimize the hormonal treatment of the menopause.
Collapse
Affiliation(s)
- Morgane Davezac
- INSERM-UPS UMR U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Toulouse, France
| | - Melissa Buscato
- INSERM-UPS UMR U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Toulouse, France
| | - Rana Zahreddine
- INSERM-UPS UMR U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Toulouse, France
| | - Patrick Lacolley
- INSERM, UMR_S 1116, DCAC Institute, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Daniel Henrion
- INSERM U1083 CNRS UMR 6015, CHU, MITOVASC Institute and CARFI Facility, Université d'Angers, Angers, France
| | - Francoise Lenfant
- INSERM-UPS UMR U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Toulouse, France
| | - Jean-Francois Arnal
- INSERM-UPS UMR U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Toulouse, France
| | - Coralie Fontaine
- INSERM-UPS UMR U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Toulouse, France
| |
Collapse
|
14
|
Mauvais-Jarvis F, Lange CA, Levin ER. Membrane-Initiated Estrogen, Androgen, and Progesterone Receptor Signaling in Health and Disease. Endocr Rev 2022; 43:720-742. [PMID: 34791092 PMCID: PMC9277649 DOI: 10.1210/endrev/bnab041] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Rapid effects of steroid hormones were discovered in the early 1950s, but the subject was dominated in the 1970s by discoveries of estradiol and progesterone stimulating protein synthesis. This led to the paradigm that steroid hormones regulate growth, differentiation, and metabolism via binding a receptor in the nucleus. It took 30 years to appreciate not only that some cellular functions arise solely from membrane-localized steroid receptor (SR) actions, but that rapid sex steroid signaling from membrane-localized SRs is a prerequisite for the phosphorylation, nuclear import, and potentiation of the transcriptional activity of nuclear SR counterparts. Here, we provide a review and update on the current state of knowledge of membrane-initiated estrogen (ER), androgen (AR) and progesterone (PR) receptor signaling, the mechanisms of membrane-associated SR potentiation of their nuclear SR homologues, and the importance of this membrane-nuclear SR collaboration in physiology and disease. We also highlight potential clinical implications of pathway-selective modulation of membrane-associated SR.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University School of Medicine, New Orleans, LA, 70112, USA.,Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, 70112, USA.,Southeast Louisiana Veterans Affairs Medical Center, New Orleans, LA, 70119, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN 55455, USA.,Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ellis R Levin
- Division of Endocrinology, Department of Medicine, University of California, Irvine, Irvine, CA, 92697, USA.,Department of Veterans Affairs Medical Center, Long Beach, Long Beach, CA, 90822, USA
| |
Collapse
|
15
|
Zhang ML, Zhang MN, Wang WL, Chen H, Wang X, Li X, Li L, Tong F. 17β-estradiol inhibits vascular proliferation and inflammation by reducing NF-κB expression induced by increased crosstalk between KLF5 and ERα. Biochem Biophys Res Commun 2022; 625:181-187. [DOI: 10.1016/j.bbrc.2022.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022]
|
16
|
Gérard C, Arnal JF, Jost M, Douxfils J, Lenfant F, Fontaine C, Houtman R, Archer DF, Reid RL, Lobo RA, Gaspard U, Coelingh Bennink HJT, Creinin MD, Foidart JM. Profile of estetrol, a promising native estrogen for oral contraception and the relief of climacteric symptoms of menopause. Expert Rev Clin Pharmacol 2022; 15:121-137. [PMID: 35306927 DOI: 10.1080/17512433.2022.2054413] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Estrogens used in women's healthcare have been associated with increased risks of venous thromboembolism (VTE) and breast cancer. Estetrol (E4), an estrogen produced by the human fetal liver, has recently been approved for the first time as a new estrogenic component of a novel combined oral contraceptive (E4/drospirenone [DRSP]) for over a decade. In phase 3 studies, E4/DRSP showed good contraceptive efficacy, a predictable bleeding pattern, and a favorable safety and tolerability profile. AREAS COVERED This narrative review discusses E4's pharmacological characteristics, mode of action, and the results of preclinical and clinical studies for contraception, as well as for menopause and oncology. EXPERT OPINION Extensive studies have elucidated the properties of E4 that underlie its favorable safety profile. While classical estrogens (such as estradiol) exert their actions via both activation of nuclear and membrane estrogen receptor α (ERα), E4 presents a specific profile of ERα activation: E4 binds and activates nuclear ERα but does not induce the activation of membrane ERα signaling pathways in specific tissues. E4 has a small effect on normal breast tissue proliferation and minimally affects hepatic parameters. This distinct profile of ERα activation, uncoupling nuclear and membrane activation, is unique.
Collapse
Affiliation(s)
- Céline Gérard
- Department Research and Development, Estetra Srl, an Affiliate Company of Mithra Pharmaceuticals, Liège, Belgium
| | - Jean-François Arnal
- CHU de Toulouse, Université Toulouse III, Toulouse, France.,INSERM-UPS UMR U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Toulouse, France
| | - Maud Jost
- Department Research and Development, Estetra Srl, an Affiliate Company of Mithra Pharmaceuticals, Liège, Belgium
| | - Jonathan Douxfils
- Qualiblood S.a, Namur, Belgium.,Department of Pharmacy, Namur Thrombosis and Hemostasis Center, NAmur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| | - Françoise Lenfant
- CHU de Toulouse, Université Toulouse III, Toulouse, France.,INSERM-UPS UMR U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Toulouse, France
| | - Coralie Fontaine
- CHU de Toulouse, Université Toulouse III, Toulouse, France.,INSERM-UPS UMR U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Toulouse, France
| | | | | | - Robert L Reid
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Queen's University, Kingston, Canada
| | - Rogerio A Lobo
- Department of Obstetrics and Gynecology, Columbia University College of Physicians and Surgeons, New York, USA
| | - Ulysse Gaspard
- Department of Obstetrics and Gynecology, University of Liège, Liège, Belgium
| | | | - Mitchell D Creinin
- Department of Obstetrics and Gynecology, University of California, Sacramento, USA
| | - Jean-Michel Foidart
- Department Research and Development, Estetra Srl, an Affiliate Company of Mithra Pharmaceuticals, Liège, Belgium.,Department of Obstetrics and Gynecology, University of Liège, Liège, Belgium
| |
Collapse
|
17
|
Adlanmerini M, Fontaine C, Gourdy P, Arnal JF, Lenfant F. Segregation of nuclear and membrane-initiated actions of estrogen receptor using genetically modified animals and pharmacological tools. Mol Cell Endocrinol 2022; 539:111467. [PMID: 34626731 DOI: 10.1016/j.mce.2021.111467] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022]
Abstract
Estrogen receptor alpha (ERα) and beta (ERβ) are members of the nuclear receptor superfamily, playing widespread functions in reproductive and non-reproductive tissues. Beside the canonical function of ERs as nuclear receptors, in this review, we summarize our current understanding of extra-nuclear, membrane-initiated functions of ERs with a specific focus on ERα. Over the last decade, in vivo evidence has accumulated to demonstrate the physiological relevance of this ERα membrane-initiated-signaling from mouse models to selective pharmacological tools. Finally, we discuss the perspectives and future challenges opened by the integration of extra-nuclear ERα signaling in physiology and pathology of estrogens.
Collapse
Affiliation(s)
- Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Jean-François Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France.
| |
Collapse
|
18
|
Chen P, Li B, Ou-Yang L. Role of estrogen receptors in health and disease. Front Endocrinol (Lausanne) 2022; 13:839005. [PMID: 36060947 PMCID: PMC9433670 DOI: 10.3389/fendo.2022.839005] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/26/2022] [Indexed: 12/14/2022] Open
Abstract
Estrogen receptors (ERs) regulate multiple complex physiological processes in humans. Abnormal ER signaling may result in various disorders, including reproductive system-related disorders (endometriosis, and breast, ovarian, and prostate cancer), bone-related abnormalities, lung cancer, cardiovascular disease, gastrointestinal disease, urogenital tract disease, neurodegenerative disorders, and cutaneous melanoma. ER alpha (ERα), ER beta (ERβ), and novel G-protein-coupled estrogen receptor 1 (GPER1) have been identified as the most prominent ERs. This review provides an overview of ERα, ERβ, and GPER1, as well as their functions in health and disease. Furthermore, the potential clinical applications and challenges are discussed.
Collapse
Affiliation(s)
| | - Bo Li
- *Correspondence: Bo Li, libo‐‐
| | | |
Collapse
|
19
|
Favre J, Vessieres E, Guihot AL, Proux C, Grimaud L, Rivron J, Garcia MC, Réthoré L, Zahreddine R, Davezac M, Fébrissy C, Adlanmerini M, Loufrani L, Procaccio V, Foidart JM, Flouriot G, Lenfant F, Fontaine C, Arnal JF, Henrion D. Membrane estrogen receptor alpha (ERα) participates in flow-mediated dilation in a ligand-independent manner. eLife 2021; 10:68695. [PMID: 34842136 PMCID: PMC8676342 DOI: 10.7554/elife.68695] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Estrogen receptor alpha (ERα) activation by estrogens prevents atheroma through its nuclear action, whereas plasma membrane-located ERα accelerates endothelial healing. The genetic deficiency of ERα was associated with a reduction in flow-mediated dilation (FMD) in one man. Here, we evaluated ex vivo the role of ERα on FMD of resistance arteries. FMD, but not agonist (acetylcholine, insulin)-mediated dilation, was reduced in male and female mice lacking ERα (Esr1-/- mice) compared to wild-type mice and was not dependent on the presence of estrogens. In C451A-ERα mice lacking membrane ERα, not in mice lacking AF2-dependent nuclear ERα actions, FMD was reduced, and restored by antioxidant treatments. Compared to wild-type mice, isolated perfused kidneys of C451A-ERα mice revealed a decreased flow-mediated nitrate production and an increased H2O2 production. Thus, endothelial membrane ERα promotes NO bioavailability through inhibition of oxidative stress and thereby participates in FMD in a ligand-independent manner.
Collapse
Affiliation(s)
- Julie Favre
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France
| | - Emilie Vessieres
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Anne-Laure Guihot
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Coralyne Proux
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Linda Grimaud
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France
| | - Jordan Rivron
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Manuela Cl Garcia
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Léa Réthoré
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France
| | - Rana Zahreddine
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Morgane Davezac
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Chanaelle Fébrissy
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Marine Adlanmerini
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Laurent Loufrani
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,University Hospital (CHU) of Angers, Angers, France
| | - Vincent Procaccio
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,University Hospital (CHU) of Angers, Angers, France
| | - Jean-Michel Foidart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée, Université de Liège, Liège, Belgium
| | - Gilles Flouriot
- INSERM U1085, IRSET (Institut de Recherche en Santé, Environnement et Travail), University of Rennes, Rennes, France
| | - Françoise Lenfant
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Coralie Fontaine
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Jean-François Arnal
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Daniel Henrion
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France.,University Hospital (CHU) of Angers, Angers, France
| |
Collapse
|
20
|
Fruzzetti F, Fidecicchi T, Montt Guevara MM, Simoncini T. Estetrol: A New Choice for Contraception. J Clin Med 2021; 10:5625. [PMID: 34884326 PMCID: PMC8658652 DOI: 10.3390/jcm10235625] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/11/2021] [Accepted: 11/27/2021] [Indexed: 11/28/2022] Open
Abstract
Estetrol (E4) is a natural estrogenic steroid that is normally produced by human fetal liver. Recent research has demonstrated that it is a potent, orally bioavailable, natural selective estrogen receptor modulator; it has a moderate affinity for both human estrogen receptor alpha (ERα) and ERβ, with a preference for ERα. Clinical studies have demonstrated possible use as an estrogen in combined oral contraceptives (COC). COCs containing E4 and drospirenone (DRSP) showed a high acceptability, tolerability, and user satisfaction also when compared to COCs containing ethinylestradiol (EE). E4/DRSP effectively inhibits ovulation, with a similar effect on endometrium thickness than that of EE-containing COCs. Low doses (15 mg) of E4 with DRSP (3 mg) showed promising results in term of bleeding pattern and cycle control, also when compared to other COCs containing synthetic estrogens. Moreover, the association has limited effects on serum lipids, liver, SHBG levels, and carbohydrate metabolism. This combination also could drive a lower risk of venous thromboembolism than EE-containing COCs. In this review, we will summarize the actual knowledge about the new E4-containing contraceptive. Further large-scale studies in the full target population are needed to provide more insights into the cardiovascular safety profile and user satisfaction of E4/DRSP.
Collapse
|
21
|
Zahreddine R, Davezac M, Buscato M, Smirnova N, Laffargue M, Henrion D, Adlanmerini M, Lenfant F, Arnal JF, Fontaine C. A historical view of estrogen effect on arterial endothelial healing: From animal models to medical implication. Atherosclerosis 2021; 338:30-38. [PMID: 34785429 DOI: 10.1016/j.atherosclerosis.2021.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/18/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022]
Abstract
Endothelial barrier integrity is required for maintaining vascular homeostasis and fluid balance between the circulation and surrounding tissues. In contrast, abnormalities of endothelial cell function and loss of the integrity of the endothelial monolayer constitute a key step in the onset of atherosclerosis. Endothelial erosion is directly responsible for thrombus formation and cardiovascular events in about one-third of the cases of acute coronary syndromes. Thus, after endothelial injury, the vascular repair process is crucial to restore endothelial junctions and rehabilitate a semipermeable barrier, preventing the development of vascular diseases. Endothelial healing can be modulated by several factors. In particular, 17β-estradiol (E2), the main estrogen, improves endothelial healing, reduces neointimal accumulation of smooth muscle cells and atherosclerosis in several animal models. The aim of this review is to highlight how various experimental models enabled the progress in the cellular and molecular mechanisms underlying the accelerative E2 effect on arterial endothelial healing through the estrogen receptor (ER) α, the main receptor mediating the physiological effects of estrogens. We first summarize the different experimental procedures used to reproduce vascular injury. We then provide an overview of how the combination of transgenic mouse models impacting ERα signalling with pharmacological tools demonstrated the pivotal role of non-genomic actions of ERα in E2-induced endothelial repair. Finally, we describe recent advances in the action of selective estrogen receptor modulators (SERMs) on this beneficial vascular effect, which surprisingly involves different cell types and activates different ERα subfunctions compared to E2.
Collapse
Affiliation(s)
- Rana Zahreddine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1297, University of Toulouse3, Toulouse, France
| | - Morgane Davezac
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1297, University of Toulouse3, Toulouse, France
| | - Melissa Buscato
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1297, University of Toulouse3, Toulouse, France
| | - Natalia Smirnova
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1297, University of Toulouse3, Toulouse, France
| | - Muriel Laffargue
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1297, University of Toulouse3, Toulouse, France
| | - Daniel Henrion
- MITOVASC Institute, CARFI Facility, INSERM U1083, UMR CNRS 6015, University of Angers, France
| | - Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1297, University of Toulouse3, Toulouse, France
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1297, University of Toulouse3, Toulouse, France
| | - Jean-François Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1297, University of Toulouse3, Toulouse, France
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1297, University of Toulouse3, Toulouse, France.
| |
Collapse
|
22
|
Tecalco-Cruz AC, Zepeda-Cervantes J, Ramírez-Jarquín JO, Rojas-Ochoa A. Proteolysis-targeting chimeras and their implications in breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:496-510. [PMID: 36046115 PMCID: PMC9400758 DOI: 10.37349/etat.2021.00060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is a highly heterogeneous neoplasm of the mammary tissue, causing the deaths of a large number of women worldwide. Nearly 70% and 20% of BC cases are estrogen receptor alpha positive (ERα+) and human epidermal growth factor receptor 2-positive (HER2+), respectively; therefore, ER and HER2 targeted therapies have been employed in BC treatment. However, resistance to these therapies has been reported, indicating a need for developing novel therapeutic strategies. Proteolysis-targeting chimeras (PROTACs) are new, promising therapeutic tools designed with a bimodular structure: one module allows specific binding to target proteins, and the other module allows efficient degradation of these target proteins. In this paper, PROTACs and their potential in controlling the progression of ERα and HER2+ BC are discussed.
Collapse
Affiliation(s)
- Angeles C. Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), CDMX, Mexico City 03100, Mexico
| | - Jesús Zepeda-Cervantes
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), CDMX, Mexico City 04510, Mexico
| | - Josué O. Ramírez-Jarquín
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), CDMX, Mexico City 04500, Mexico
| | | |
Collapse
|
23
|
17 β-Estradiol Attenuates LPS-Induced Macrophage Inflammation In Vitro and Sepsis-Induced Vascular Inflammation In Vivo by Upregulating miR-29a-5p Expression. Mediators Inflamm 2021; 2021:9921897. [PMID: 34220338 PMCID: PMC8211527 DOI: 10.1155/2021/9921897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Excessive release of cytokines such as IL-1β and other inflammatory mediators synthesized and secreted by macrophages is the fundamental link of uncontrolled inflammatory response in sepsis. 17β-Estradiol (E2) plays anti-inflammatory and vascular protective effects by regulating leukocyte infiltration and the expression of chemokines or cytokines induced by injury. However, the role of E2 in the inflammatory response of macrophages in sepsis and its mechanism are still not fully understood. In the present study, we show that E2 alleviates vascular inflammation in sepsis mice induced by cecal ligation puncture (CLP). E2 significantly decreases RAW 264.7 cell inflammation response by downregulating the expression of NLRP3. Furthermore, we found that miR-29a-5p was significantly downregulated in LPS-treated macrophages. Treating RAW 264.7 cells with E2 markedly upregulated the miR-29a-5p expression level. More importantly, we demonstrated that miR-29a-5p repressed NLRP3 expression by directly targeting its 3′-UTR. Loss- and gain-of-function experiments revealed that transfection of the miR-29a-5p mimic abrogates LPS-induced macrophage inflammation. Moreover, depletion of miR-29a-5p by its inhibitor largely promotes LPS-induced macrophage inflammation. In summary, miR-29a-5p upregulation induced by E2 alleviated RAW 264.7 cell inflammation response by aggravating miR-29a-5p repression of NLRP3 expression. E2 exerts significant anti-inflammatory efficacy in macrophages by regulating the miR-29a-5p/NLRP3 axis. Targeting miR-29a-5p may be a novel therapeutic strategy to suppress sepsis-induced vascular inflammation.
Collapse
|
24
|
Zahreddine R, Davezac M, Smirnova N, Buscato M, Lhuillier E, Lupieri A, Solinhac R, Vinel A, Vessieres E, Henrion D, Renault MA, Gadeau AP, Flouriot G, Lenfant F, Laffargue M, Métivier R, Arnal JF, Fontaine C. Tamoxifen Accelerates Endothelial Healing by Targeting ERα in Smooth Muscle Cells. Circ Res 2020; 127:1473-1487. [PMID: 33012251 DOI: 10.1161/circresaha.120.317062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Tamoxifen prevents the recurrence of breast cancer and is also beneficial against bone demineralization and arterial diseases. It acts as an ER (estrogen receptor) α antagonist in ER-positive breast cancers, whereas it mimics the protective action of 17β-estradiol in other tissues such as arteries. However, the mechanisms of these tissue-specific actions remain unclear. OBJECTIVE Here, we tested whether tamoxifen is able to accelerate endothelial healing and analyzed the underlying mechanisms. METHODS AND RESULTS Using 3 complementary mouse models of carotid artery injury, we demonstrated that both tamoxifen and estradiol accelerated endothelial healing, but only tamoxifen required the presence of the underlying medial smooth muscle cells. Chronic treatment with 17β-estradiol and tamoxifen elicited differential gene expression profiles in the carotid artery. The use of transgenic mouse models targeting either whole ERα in a cell-specific manner or ERα subfunctions (membrane/extranuclear versus genomic/transcriptional) demonstrated that 17β-estradiol-induced acceleration of endothelial healing is mediated by membrane ERα in endothelial cells, while the effect of tamoxifen is mediated by the nuclear actions of ERα in smooth muscle cells. CONCLUSIONS Whereas tamoxifen acts as an antiestrogen and ERα antagonist in breast cancer but also on the membrane ERα of endothelial cells, it accelerates endothelial healing through activation of nuclear ERα in smooth muscle cells, inviting to revisit the mechanisms of action of selective modulation of ERα.
Collapse
Affiliation(s)
- Rana Zahreddine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France (R.Z., M.D., N.S., M.B., E.L., A.L., R.S., A.V., F.L., M.L., J.-F.A., C.F.)
| | - Morgane Davezac
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France (R.Z., M.D., N.S., M.B., E.L., A.L., R.S., A.V., F.L., M.L., J.-F.A., C.F.)
| | - Natalia Smirnova
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France (R.Z., M.D., N.S., M.B., E.L., A.L., R.S., A.V., F.L., M.L., J.-F.A., C.F.)
| | - Melissa Buscato
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France (R.Z., M.D., N.S., M.B., E.L., A.L., R.S., A.V., F.L., M.L., J.-F.A., C.F.)
| | - Emeline Lhuillier
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France (R.Z., M.D., N.S., M.B., E.L., A.L., R.S., A.V., F.L., M.L., J.-F.A., C.F.)
| | - Adrien Lupieri
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France (R.Z., M.D., N.S., M.B., E.L., A.L., R.S., A.V., F.L., M.L., J.-F.A., C.F.)
| | - Romain Solinhac
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France (R.Z., M.D., N.S., M.B., E.L., A.L., R.S., A.V., F.L., M.L., J.-F.A., C.F.)
| | - Alexia Vinel
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France (R.Z., M.D., N.S., M.B., E.L., A.L., R.S., A.V., F.L., M.L., J.-F.A., C.F.)
| | - Emilie Vessieres
- MITOVASC Institute, CARFI facility, INSERM U1083, UMR CNRS 6015, University of Angers, France (E.V., D.H.)
| | - Daniel Henrion
- MITOVASC Institute, CARFI facility, INSERM U1083, UMR CNRS 6015, University of Angers, France (E.V., D.H.)
| | - Marie-Ange Renault
- University of Bordeaux, INSERM, Biology of Cardiovascular Diseases, UMR 1034, Pessac, France (M.-A.R., A.-P.G.)
| | - Alain-Pierre Gadeau
- University of Bordeaux, INSERM, Biology of Cardiovascular Diseases, UMR 1034, Pessac, France (M.-A.R., A.-P.G.)
| | - Gilles Flouriot
- University of Rennes, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - INSERM, UMR_S 1085, France (G.F.)
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France (R.Z., M.D., N.S., M.B., E.L., A.L., R.S., A.V., F.L., M.L., J.-F.A., C.F.)
| | - Muriel Laffargue
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France (R.Z., M.D., N.S., M.B., E.L., A.L., R.S., A.V., F.L., M.L., J.-F.A., C.F.)
| | - Raphaël Métivier
- CNRS, Univeristy of Rennes, IGDR (Institut de Génétique De Rennes) - UMR 6290, France (R.M.)
| | - Jean-François Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France (R.Z., M.D., N.S., M.B., E.L., A.L., R.S., A.V., F.L., M.L., J.-F.A., C.F.)
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France (R.Z., M.D., N.S., M.B., E.L., A.L., R.S., A.V., F.L., M.L., J.-F.A., C.F.)
| |
Collapse
|
25
|
Teoh JP, Li X, Simoncini T, Zhu D, Fu X. Estrogen-Mediated Gaseous Signaling Molecules in Cardiovascular Disease. Trends Endocrinol Metab 2020; 31:773-784. [PMID: 32682630 DOI: 10.1016/j.tem.2020.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/07/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Gender difference is well recognized as a key risk factor for cardiovascular disease (CVD). Estrogen, the primary female sex hormone, improves cardiovascular functions through receptor (ERα, ERβ, or G protein-coupled estrogen receptor)-initiated genomic or non-genomic mechanisms. Gaseous signaling molecules, including nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO), are important regulators of cardiovascular function. Recent studies have demonstrated that estrogen regulates the production of these signaling molecules in cardiovascular cells to exert its cardiovascular protective effects. We discuss current understanding of gaseous signaling molecules in cardiovascular disease (CVD), the underlying mechanisms through which estrogen exerts cardiovascular protective effects by regulating these molecules, and how these findings can be translated to improve the health of postmenopausal women.
Collapse
Affiliation(s)
- Jian-Peng Teoh
- Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, P.R. China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China
| | - Xiaosa Li
- Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, P.R. China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China
| | - Tommaso Simoncini
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa 56100, Italy
| | - Dongxing Zhu
- Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, P.R. China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China.
| | - Xiaodong Fu
- Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, P.R. China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China.
| |
Collapse
|
26
|
Lupieri A, Smirnova NF, Solinhac R, Malet N, Benamar M, Saoudi A, Santos-Zas I, Zeboudj L, Ait-Oufella H, Hirsch E, Ohayon P, Lhermusier T, Carrié D, Arnal JF, Ramel D, Gayral S, Laffargue M. Smooth muscle cells-derived CXCL10 prevents endothelial healing through PI3Kγ-dependent T cells response. Cardiovasc Res 2020; 116:438-449. [PMID: 31106375 DOI: 10.1093/cvr/cvz122] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/25/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022] Open
Abstract
AIMS Defects in efficient endothelial healing have been associated with complication of atherosclerosis such as post-angioplasty neoatherosclerosis and plaque erosion leading to thrombus formation. However, current preventive strategies do not consider re-endothelialization in their design. Here, we investigate mechanisms linking immune processes and defect in re-endothelialization. We especially evaluate if targeting phosphoinositide 3-kinase γ immune processes could restore endothelial healing and identify immune mediators responsible for these defects. METHODS AND RESULTS Using in vivo model of endovascular injury, we showed that both ubiquitous genetic inactivation of PI3Kγ and hematopoietic cell-specific PI3Kγ deletion improved re-endothelialization and that CD4+ T-cell population drives this effect. Accordingly, absence of PI3Kγ activity correlates with a decrease in local IFNγ secretion and its downstream interferon-inducible chemokine CXCL10. CXCL10 neutralization promoted re-endothelialization in vivo as the same level than those observed in absence of PI3Kγ suggesting a role of CXCL10 in re-endothelialization defect. Using a new established ex vivo model of carotid re-endothelialization, we showed that blocking CXCL10 restore the IFNγ-induced inhibition of endothelial healing and identify smooth muscle cells as the source of CXCL10 secretion in response to Th1 cytokine. CONCLUSION Altogether, these findings expose an unforeseen cellular cross-talk within the arterial wall whereby a PI3Kγ-dependent T-cell response leads to CXCL10 production by smooth muscle cells which in turn inhibits endothelial healing. Therefore, both PI3Kγ and the IFNγ/CXCL10 axis provide novel strategies to promote endothelial healing.
Collapse
Affiliation(s)
- Adrien Lupieri
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1048, Toulouse F-31432, France
| | - Natalia F Smirnova
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1048, Toulouse F-31432, France
| | - Romain Solinhac
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1048, Toulouse F-31432, France
| | - Nicole Malet
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1048, Toulouse F-31432, France
| | - Mehdi Benamar
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, INSERM, Centre National de la Recherche Scientifique (CNRS), Toulouse, F 31300, France
| | - Abdel Saoudi
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, INSERM, Centre National de la Recherche Scientifique (CNRS), Toulouse, F 31300, France
| | - Icia Santos-Zas
- Paris-Cardiovascular Research Center (PARCC), Université Paris Descartes, Sorbonne Paris Cité, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR970, Paris, France
| | - Lynda Zeboudj
- Paris-Cardiovascular Research Center (PARCC), Université Paris Descartes, Sorbonne Paris Cité, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR970, Paris, France
| | - Hafid Ait-Oufella
- Paris-Cardiovascular Research Center (PARCC), Université Paris Descartes, Sorbonne Paris Cité, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR970, Paris, France
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Paul Ohayon
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1048, Toulouse F-31432, France.,Department of Cardiology, University Hospital Rangueil, Toulouse, France
| | - Thibault Lhermusier
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1048, Toulouse F-31432, France.,Department of Cardiology, University Hospital Rangueil, Toulouse, France
| | - Didier Carrié
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1048, Toulouse F-31432, France.,Department of Cardiology, University Hospital Rangueil, Toulouse, France
| | - Jean-François Arnal
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1048, Toulouse F-31432, France
| | - Damien Ramel
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1048, Toulouse F-31432, France
| | - Stephanie Gayral
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1048, Toulouse F-31432, France
| | - Muriel Laffargue
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1048, Toulouse F-31432, France
| |
Collapse
|
27
|
Yu K, He Y, Hyseni I, Pei Z, Yang Y, Xu P, Cai X, Liu H, Qu N, Liu H, He Y, Yu M, Liang C, Yang T, Wang J, Gourdy P, Arnal JF, Lenfant F, Xu Y, Wang C. 17β-estradiol promotes acute refeeding in hungry mice via membrane-initiated ERα signaling. Mol Metab 2020; 42:101053. [PMID: 32712433 PMCID: PMC7484552 DOI: 10.1016/j.molmet.2020.101053] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/20/2022] Open
Abstract
Objective Estrogen protects animals from obesity through estrogen receptor α (ERα), partially by inhibiting overeating in animals fed ad libitum. However, the effects of estrogen on feeding behavior in hungry animals remain unclear. In this study, we examined the roles of 17β-estradiol (E2) and ERα in the regulation of feeding in hungry female animals and explored the underlying mechanisms. Methods Wild-type female mice with surgical depletion of endogenous estrogens were used to examine the effects of E2 supplementation on acute refeeding behavior after starvation. ERα-C451A mutant mice deficient in membrane-bound ERα activity and ERα-AF20 mutant mice lacking ERα transcriptional activity were used to further examine mechanisms underlying acute feeding triggered by either fasting or central glucopenia (induced by intracerebroventricular injections of 2-deoxy-D-glucose). We also used electrophysiology to explore the impact of these ERα mutations on the neural activities of ERα neurons in the hypothalamus. Results In the wild-type female mice, ovariectomy reduced fasting-induced refeeding, which was restored by E2 supplementation. The ERα-C451A mutation, but not the ERα-AF20 mutation, attenuated acute feeding induced by either fasting or central glucopenia. The ERα-C451A mutation consistently impaired the neural responses of hypothalamic ERα neurons to hypoglycemia. Conclusion In addition to previous evidence that estrogen reduces deviations in energy balance by inhibiting eating at a satiated state, our findings demonstrate the unexpected role of E2 that promotes eating in hungry mice, also contributing to the stability of energy homeostasis. This latter effect specifically requires membrane-bound ERα activity. Endogenous E2 is required to maintain acute refeeding in hungry female mice after starvation. Membrane-bound ERα activity in female mice is required for efficient refeeding after starvation. Membrane-bound ERα activity is required for hypothalamic ERα neurons to respond to hypoglycemia.
Collapse
Affiliation(s)
- Kaifan Yu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yanlin He
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA; Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, 70808, USA
| | - Ilirjana Hyseni
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Zhou Pei
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yongjie Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Pingwen Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Xing Cai
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Hesong Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Na Qu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Hailan Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yang He
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Meng Yu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Chen Liang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Tingting Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Julia Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Pierre Gourdy
- I2MC, Inserm U1048, CHU de Toulouse and Université de Toulouse III, Toulouse, France
| | - Jean-Francois Arnal
- I2MC, Inserm U1048, CHU de Toulouse and Université de Toulouse III, Toulouse, France
| | - Francoise Lenfant
- I2MC, Inserm U1048, CHU de Toulouse and Université de Toulouse III, Toulouse, France
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Chunmei Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
28
|
Aryan L, Younessi D, Zargari M, Banerjee S, Agopian J, Rahman S, Borna R, Ruffenach G, Umar S, Eghbali M. The Role of Estrogen Receptors in Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21124314. [PMID: 32560398 PMCID: PMC7352426 DOI: 10.3390/ijms21124314] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular Diseases (CVDs) are the leading cause of death globally. More than 17 million people die worldwide from CVD per year. There is considerable evidence suggesting that estrogen modulates cardiovascular physiology and function in both health and disease, and that it could potentially serve as a cardioprotective agent. The effects of estrogen on cardiovascular function are mediated by nuclear and membrane estrogen receptors (ERs), including estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), and G-protein-coupled ER (GPR30 or GPER). Receptor binding in turn confers pleiotropic effects through both genomic and non-genomic signaling to maintain cardiovascular homeostasis. Each ER has been implicated in multiple pre-clinical cardiovascular disease models. This review will discuss current reports on the underlying molecular mechanisms of the ERs in regulating vascular pathology, with a special emphasis on hypertension, pulmonary hypertension, and atherosclerosis, as well as in regulating cardiac pathology, with a particular emphasis on ischemia/reperfusion injury, heart failure with reduced ejection fraction, and heart failure with preserved ejection fraction.
Collapse
|
29
|
Umezu R, Koga JI, Matoba T, Katsuki S, Wang L, Hasuzawa N, Nomura M, Tsutsui H, Egashira K. Macrophage (Drp1) Dynamin-Related Protein 1 Accelerates Intimal Thickening After Vascular Injury. Arterioscler Thromb Vasc Biol 2020; 40:e214-e226. [PMID: 32493171 DOI: 10.1161/atvbaha.120.314383] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Mitochondria consistently change their morphology in a process regulated by proteins, including Drp1 (dynamin-related protein 1), a protein promoting mitochondrial fission. Drp1 is involved in the mechanisms underlying various cardiovascular diseases, such as myocardial ischemia/reperfusion injury, heart failure, and pulmonary arterial hypertension. However, its role in macrophages, which promote various vascular diseases, is poorly understood. We therefore tested our hypothesis that macrophage Drp1 promotes vascular remodeling after injury. METHOD AND RESULTS To explore the selective role of macrophage Drp1, we created macrophage-selective Drp1-deficient mice and performed femoral arterial wire injury. In these mice, intimal thickening and negative remodeling were attenuated at 4 weeks after injury when compared with control mice. Deletion of macrophage Drp1 also attenuated the macrophage accumulation and cell proliferation in the injured arteries. Gain- and loss-of-function experiments using cultured macrophages indicated that Drp1 induces the expression of molecules associated with inflammatory macrophages. Morphologically, mitochondrial fission was induced in inflammatory macrophages, whereas mitochondrial fusion was induced in less inflammatory/reparative macrophages. Pharmacological inhibition or knockdown of Drp1 decreased the mitochondrial reactive oxygen species and chemotactic activity in cultured macrophages. Co-culture experiments of macrophages with vascular smooth muscle cells indicated that deletion of macrophage Drp1 suppresses growth and migration of vascular smooth muscle cells induced by macrophage-derived soluble factors. CONCLUSIONS Macrophage Drp1 accelerates intimal thickening after vascular injury by promoting macrophage-mediated inflammation. Macrophage Drp1 may be a potential therapeutic target of vascular diseases.
Collapse
Affiliation(s)
- Ryuta Umezu
- From the Department of Cardiovascular Medicine, Graduate School of Medical Sciences (R.U., J.K., T.M., S.K., H.T.), Kyushu University, Fukuoka, Japan
| | - Jun-Ichiro Koga
- From the Department of Cardiovascular Medicine, Graduate School of Medical Sciences (R.U., J.K., T.M., S.K., H.T.), Kyushu University, Fukuoka, Japan.,the Department of Cardiovascular Research, Development, and Translational Medicine, Center for Cardiovascular Disruptive Innovation (J.K., K.E.), Kyushu University, Fukuoka, Japan
| | - Tetsuya Matoba
- From the Department of Cardiovascular Medicine, Graduate School of Medical Sciences (R.U., J.K., T.M., S.K., H.T.), Kyushu University, Fukuoka, Japan
| | - Shunsuke Katsuki
- From the Department of Cardiovascular Medicine, Graduate School of Medical Sciences (R.U., J.K., T.M., S.K., H.T.), Kyushu University, Fukuoka, Japan
| | - Lixiang Wang
- The Department of Medicine and Bioregulatory Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (L.W., N.H., M.N.).,Department of Medical Biochemistry (L.W.), Kurume University School of Medicine, Japan
| | - Nao Hasuzawa
- The Department of Medicine and Bioregulatory Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (L.W., N.H., M.N.).,Division of Endocrinology and Metabolism, Department of Internal Medicine (N.H., M.N.), Kurume University School of Medicine, Japan
| | - Masatoshi Nomura
- The Department of Medicine and Bioregulatory Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (L.W., N.H., M.N.).,Division of Endocrinology and Metabolism, Department of Internal Medicine (N.H., M.N.), Kurume University School of Medicine, Japan
| | - Hiroyuki Tsutsui
- From the Department of Cardiovascular Medicine, Graduate School of Medical Sciences (R.U., J.K., T.M., S.K., H.T.), Kyushu University, Fukuoka, Japan
| | - Kensuke Egashira
- the Department of Cardiovascular Research, Development, and Translational Medicine, Center for Cardiovascular Disruptive Innovation (J.K., K.E.), Kyushu University, Fukuoka, Japan.,Department of Translational Medicine, Kyushu University Graduate School of Pharmaceutical Sciences, Fukuoka, Japan (K.E.)
| |
Collapse
|
30
|
The Impact of Estrogen Receptor in Arterial and Lymphatic Vascular Diseases. Int J Mol Sci 2020; 21:ijms21093244. [PMID: 32375307 PMCID: PMC7247322 DOI: 10.3390/ijms21093244] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
The lower incidence of cardiovascular diseases in pre-menopausal women compared to men is well-known documented. This protection has been largely attributed to the protective effect of estrogens, which exert many beneficial effects against arterial diseases, including vasodilatation, acceleration of healing in response to arterial injury, arterial collateral growth and atheroprotection. More recently, with the visualization of the lymphatic vessels, the impact of estrogens on lymphedema and lymphatic diseases started to be elucidated. These estrogenic effects are mediated not only by the classic nuclear/genomic actions via the specific estrogen receptor (ER) α and β, but also by rapid extra-nuclear membrane-initiated steroid signaling (MISS). The ERs are expressed by endothelial, lymphatic and smooth muscle cells in the different vessels. In this review, we will summarize the complex vascular effects of estrogens and selective estrogen receptor modulators (SERMs) that have been described using different transgenic mouse models with selective loss of ERα function and numerous animal models of vascular and lymphatic diseases.
Collapse
|
31
|
Hester J, Ventetuolo C, Lahm T. Sex, Gender, and Sex Hormones in Pulmonary Hypertension and Right Ventricular Failure. Compr Physiol 2019; 10:125-170. [PMID: 31853950 DOI: 10.1002/cphy.c190011] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pulmonary hypertension (PH) encompasses a syndrome of diseases that are characterized by elevated pulmonary artery pressure and pulmonary vascular remodeling and that frequently lead to right ventricular (RV) failure and death. Several types of PH exhibit sexually dimorphic features in disease penetrance, presentation, and progression. Most sexually dimorphic features in PH have been described in pulmonary arterial hypertension (PAH), a devastating and progressive pulmonary vasculopathy with a 3-year survival rate <60%. While patient registries show that women are more susceptible to development of PAH, female PAH patients display better RV function and increased survival compared to their male counterparts, a phenomenon referred to as the "estrogen paradox" or "estrogen puzzle" of PAH. Recent advances in the field have demonstrated that multiple sex hormones, receptors, and metabolites play a role in the estrogen puzzle and that the effects of hormone signaling may be time and compartment specific. While the underlying physiological mechanisms are complex, unraveling the estrogen puzzle may reveal novel therapeutic strategies to treat and reverse the effects of PAH/PH. In this article, we (i) review PH classification and pathophysiology; (ii) discuss sex/gender differences observed in patients and animal models; (iii) review sex hormone synthesis and metabolism; (iv) review in detail the scientific literature of sex hormone signaling in PAH/PH, particularly estrogen-, testosterone-, progesterone-, and dehydroepiandrosterone (DHEA)-mediated effects in the pulmonary vasculature and RV; (v) discuss hormone-independent variables contributing to sexually dimorphic disease presentation; and (vi) identify knowledge gaps and pathways forward. © 2020 American Physiological Society. Compr Physiol 10:125-170, 2020.
Collapse
Affiliation(s)
- James Hester
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Corey Ventetuolo
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Department of Health Services, Policy and Practice, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Tim Lahm
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
32
|
Fortini F, Vieceli Dalla Sega F, Caliceti C, Lambertini E, Pannuti A, Peiffer DS, Balla C, Rizzo P. Estrogen-mediated protection against coronary heart disease: The role of the Notch pathway. J Steroid Biochem Mol Biol 2019; 189:87-100. [PMID: 30817989 DOI: 10.1016/j.jsbmb.2019.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/05/2019] [Accepted: 02/20/2019] [Indexed: 12/28/2022]
Abstract
Estrogen regulates a plethora of biological processes, under physiological and pathological conditions, by affecting key pathways involved in the regulation of cell proliferation, fate, survival and metabolism. The Notch receptors are mediators of communication between adjacent cells and are key determinants of cell fate during development and in postnatal life. Crosstalk between estrogen and the Notch pathway intervenes in many processes underlying the development and maintenance of the cardiovascular system. The identification of molecular mechanisms underlying the interaction between these types of endocrine and juxtacrine signaling are leading to a deeper understanding of physiological conditions regulated by these steroid hormones and, potentially, to novel therapeutic approaches to prevent pathologies linked to reduced levels of estrogen, such as coronary heart disease, and cardiotoxicity caused by hormone therapy for estrogen-receptor-positive breast cancer.
Collapse
Affiliation(s)
| | | | - Cristiana Caliceti
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Elisabetta Lambertini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Antonio Pannuti
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Daniel S Peiffer
- Oncology Research Institute, Loyola University Chicago: Health Sciences Division, Maywood, Illinois, USA; Department of Microbiology and Immunology, Loyola University Chicago: Health Sciences Division, Maywood, Illinois, USA
| | - Cristina Balla
- Cardiovascular Center, University of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, RA, Italy; Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy; Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
33
|
Tecalco-Cruz AC, Ramírez-Jarquín JO, Cruz-Ramos E. Estrogen Receptor Alpha and its Ubiquitination in Breast Cancer Cells. Curr Drug Targets 2019; 20:690-704. [DOI: 10.2174/1389450119666181015114041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 12/23/2022]
Abstract
More than 70% of all breast cancer cases are estrogen receptor alpha-positive (ERα). ERα is a member of the nuclear receptor family, and its activity is implicated in the gene transcription linked to the proliferation of breast cancer cells, as well as in extranuclear signaling pathways related to the development of resistance to endocrine therapy. Protein-protein interactions and posttranslational modifications of ERα underlie critical mechanisms that modulate its activity. In this review, the relationship between ERα and ubiquitin protein (Ub), was investigated in the context of breast cancer cells. Interestingly, Ub can bind covalently or non-covalently to ERα resulting in either a proteolytic or non-proteolytic fate for this receptor. Thereby, Ub-dependent molecular pathways that modulate ERα signaling may play a central role in breast cancer progression, and consequently, present critical targets for treatment of this disease.
Collapse
Affiliation(s)
- Angeles C. Tecalco-Cruz
- Instituto de Investigaciones Biomedicas. Universidad Nacional Autonoma de Mexico. Mexico City, 04510, Mexico
| | - Josué O. Ramírez-Jarquín
- Instituto de Fisiologia Celular. Universidad Nacional Autonoma de Mexico. Mexico City, 04510, Mexico
| | - Eduardo Cruz-Ramos
- Instituto de Investigaciones Biomedicas. Universidad Nacional Autonoma de Mexico. Mexico City, 04510, Mexico
| |
Collapse
|
34
|
Puglisi R, Mattia G, Carè A, Marano G, Malorni W, Matarrese P. Non-genomic Effects of Estrogen on Cell Homeostasis and Remodeling With Special Focus on Cardiac Ischemia/Reperfusion Injury. Front Endocrinol (Lausanne) 2019; 10:733. [PMID: 31708877 PMCID: PMC6823206 DOI: 10.3389/fendo.2019.00733] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
This review takes into consideration the main mechanisms involved in cellular remodeling following an ischemic injury, with special focus on the possible role played by non-genomic estrogen effects. Sex differences have also been considered. In fact, cardiac ischemic events induce damage to different cellular components of the heart, such as cardiomyocytes, vascular cells, endothelial cells, and cardiac fibroblasts. The ability of the cardiovascular system to counteract an ischemic insult is orchestrated by these cell types and is carried out thanks to a number of complex molecular pathways, including genomic (slow) or non-genomic (fast) effects of estrogen. These pathways are probably responsible for differences observed between the two sexes. Literature suggests that male and female hearts, and, more in general, cardiovascular system cells, show significant differences in many parameters under both physiological and pathological conditions. In particular, many experimental studies dealing with sex differences in the cardiovascular system suggest a higher ability of females to respond to environmental insults in comparison with males. For instance, as cells from females are more effective in counteracting the ischemia/reperfusion injury if compared with males, a role for estrogen in this sex disparity has been hypothesized. However, the possible involvement of estrogen-dependent non-genomic effects on the cardiovascular system is still under debate. Further experimental studies, including sex-specific studies, are needed in order to shed further light on this matter.
Collapse
Affiliation(s)
- Rossella Puglisi
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianfranco Mattia
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Carè
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Marano
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Walter Malorni
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
- School of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Matarrese
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Paola Matarrese
| |
Collapse
|
35
|
Estrogen in vascular smooth muscle cells: A friend or a foe? Vascul Pharmacol 2018; 111:15-21. [PMID: 30227233 DOI: 10.1016/j.vph.2018.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 01/10/2023]
Abstract
Cardiovascular disease (CVD) continues to be the leading cause of death worldwide. The effect of estrogen on these diseases has been assessed in in vitro and in vivo models, as well as in observational studies. Collectively, these studies alluded to a cardiovasculo-protective effect of estrogen. However, comprehensive clinical investigation failed to produce concrete proof of a cardiovascular protective effect for hormone replacement therapy (HRT), let alone rule out potential harm. These seemingly paradoxical effects of estrogen were explained by the 'theory of timing and opportunity'. This theory states that the effect of estrogen, whether cardiovasculo-protective or pathological, significantly depends on the age of the individual when estrogen administration takes place. Here, we review the conflicting effects of estrogen on vascular smooth muscle cells, mainly proliferation and migration as two cellular capacities intimately related to physiology and pathophysiology of the cardiovascular system. Furthermore, we critically discuss the major parameters and signaling pathways that may account for the aforementioned paradoxical observations, as well as the key molecular players involved.
Collapse
|
36
|
Guivarc'h E, Buscato M, Guihot AL, Favre J, Vessières E, Grimaud L, Wakim J, Melhem NJ, Zahreddine R, Adlanmerini M, Loufrani L, Knauf C, Katzenellenbogen JA, Katzenellenbogen BS, Foidart JM, Gourdy P, Lenfant F, Arnal JF, Henrion D, Fontaine C. Predominant Role of Nuclear Versus Membrane Estrogen Receptor α in Arterial Protection: Implications for Estrogen Receptor α Modulation in Cardiovascular Prevention/Safety. J Am Heart Assoc 2018; 7:e008950. [PMID: 29959137 PMCID: PMC6064913 DOI: 10.1161/jaha.118.008950] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/20/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Although estrogen receptor α (ERα) acts primarily as a transcription factor, it can also elicit membrane-initiated steroid signaling. Pharmacological tools and transgenic mouse models previously highlighted the key role of ERα membrane-initiated steroid signaling in 2 actions of estrogens in the endothelium: increase in NO production and acceleration of reendothelialization. METHODS AND RESULTS Using mice with ERα mutated at cysteine 451 (ERaC451A), recognized as the key palmitoylation site required for ERα plasma membrane location, and mice with disruption of nuclear actions because of inactivation of activation function 2 (ERaAF20 = ERaAF2°), we sought to fully characterize the respective roles of nuclear versus membrane-initiated steroid signaling in the arterial protection conferred by ERα. ERaC451A mice were fully responsive to estrogens to prevent atheroma and angiotensin II-induced hypertension as well as to allow flow-mediated arteriolar remodeling. By contrast, ERαAF20 mice were unresponsive to estrogens for these beneficial vascular effects. Accordingly, selective activation of nuclear ERα with estetrol was able to prevent hypertension and to restore flow-mediated arteriolar remodeling. CONCLUSIONS Altogether, these results reveal an unexpected prominent role of nuclear ERα in the vasculoprotective action of estrogens with major implications in medicine, particularly for selective nuclear ERα agonist, such as estetrol, which is currently under development as a new oral contraceptive and for hormone replacement therapy in menopausal women.
Collapse
Affiliation(s)
- Emmanuel Guivarc'h
- From the institut des maladies des mitochondries, du coeur et des vaisseaux (MITOVASC) Institute, Cardiovascular Functions investigation (CARFI) Facility, Institut National de la Sante et de la Recherche Medicale (INSERM) U1083, Unité mixte de Recherche du Centre national de la recherche scientifique (UMR CNRS) 6015, University of Angers, France
| | - Mélissa Buscato
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France
| | - Anne-Laure Guihot
- From the institut des maladies des mitochondries, du coeur et des vaisseaux (MITOVASC) Institute, Cardiovascular Functions investigation (CARFI) Facility, Institut National de la Sante et de la Recherche Medicale (INSERM) U1083, Unité mixte de Recherche du Centre national de la recherche scientifique (UMR CNRS) 6015, University of Angers, France
| | - Julie Favre
- From the institut des maladies des mitochondries, du coeur et des vaisseaux (MITOVASC) Institute, Cardiovascular Functions investigation (CARFI) Facility, Institut National de la Sante et de la Recherche Medicale (INSERM) U1083, Unité mixte de Recherche du Centre national de la recherche scientifique (UMR CNRS) 6015, University of Angers, France
| | - Emilie Vessières
- From the institut des maladies des mitochondries, du coeur et des vaisseaux (MITOVASC) Institute, Cardiovascular Functions investigation (CARFI) Facility, Institut National de la Sante et de la Recherche Medicale (INSERM) U1083, Unité mixte de Recherche du Centre national de la recherche scientifique (UMR CNRS) 6015, University of Angers, France
| | - Linda Grimaud
- From the institut des maladies des mitochondries, du coeur et des vaisseaux (MITOVASC) Institute, Cardiovascular Functions investigation (CARFI) Facility, Institut National de la Sante et de la Recherche Medicale (INSERM) U1083, Unité mixte de Recherche du Centre national de la recherche scientifique (UMR CNRS) 6015, University of Angers, France
| | - Jamal Wakim
- From the institut des maladies des mitochondries, du coeur et des vaisseaux (MITOVASC) Institute, Cardiovascular Functions investigation (CARFI) Facility, Institut National de la Sante et de la Recherche Medicale (INSERM) U1083, Unité mixte de Recherche du Centre national de la recherche scientifique (UMR CNRS) 6015, University of Angers, France
| | - Nada-Joe Melhem
- From the institut des maladies des mitochondries, du coeur et des vaisseaux (MITOVASC) Institute, Cardiovascular Functions investigation (CARFI) Facility, Institut National de la Sante et de la Recherche Medicale (INSERM) U1083, Unité mixte de Recherche du Centre national de la recherche scientifique (UMR CNRS) 6015, University of Angers, France
| | - Rana Zahreddine
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France
| | - Marine Adlanmerini
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France
| | - Laurent Loufrani
- From the institut des maladies des mitochondries, du coeur et des vaisseaux (MITOVASC) Institute, Cardiovascular Functions investigation (CARFI) Facility, Institut National de la Sante et de la Recherche Medicale (INSERM) U1083, Unité mixte de Recherche du Centre national de la recherche scientifique (UMR CNRS) 6015, University of Angers, France
| | - Claude Knauf
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France
| | - John A Katzenellenbogen
- Department of Chemistry and Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Benita S Katzenellenbogen
- Department of Chemistry and Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Jean-Michel Foidart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée, Université de Liège, Belgium
| | - Pierre Gourdy
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France
| | - Françoise Lenfant
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France
| | - Jean-François Arnal
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France
| | - Daniel Henrion
- From the institut des maladies des mitochondries, du coeur et des vaisseaux (MITOVASC) Institute, Cardiovascular Functions investigation (CARFI) Facility, Institut National de la Sante et de la Recherche Medicale (INSERM) U1083, Unité mixte de Recherche du Centre national de la recherche scientifique (UMR CNRS) 6015, University of Angers, France
| | - Coralie Fontaine
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France
| |
Collapse
|
37
|
Gourdy P, Guillaume M, Fontaine C, Adlanmerini M, Montagner A, Laurell H, Lenfant F, Arnal JF. Estrogen receptor subcellular localization and cardiometabolism. Mol Metab 2018; 15:56-69. [PMID: 29807870 PMCID: PMC6066739 DOI: 10.1016/j.molmet.2018.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In addition to their crucial role in reproduction, estrogens are key regulators of energy and glucose homeostasis and they also exert several cardiovascular protective effects. These beneficial actions are mainly mediated by estrogen receptor alpha (ERα), which is widely expressed in metabolic and vascular tissues. As a member of the nuclear receptor superfamily, ERα was primarily considered as a transcription factor that controls gene expression through the activation of its two activation functions (ERαAF-1 and ERαAF-2). However, besides these nuclear actions, a pool of ERα is localized in the vicinity of the plasma membrane, where it mediates rapid signaling effects called membrane-initiated steroid signals (MISS) that have been well described in vitro, especially in endothelial cells. SCOPE OF THE REVIEW This review aims to summarize our current knowledge of the mechanisms of nuclear vs membrane ERα activation that contribute to the cardiometabolic protection conferred by estrogens. Indeed, new transgenic mouse models (affecting either DNA binding, activation functions or membrane localization), together with the use of novel pharmacological tools that electively activate membrane ERα effects recently allowed to begin to unravel the different modes of ERα signaling in vivo. CONCLUSION Altogether, available data demonstrate the prominent role of ERα nuclear effects, and, more specifically, of ERαAF-2, in the preventive effects of estrogens against obesity, diabetes, and atheroma. However, membrane ERα signaling selectively mediates some of the estrogen endothelial/vascular effects (NO release, reendothelialization) and could also contribute to the regulation of energy balance, insulin sensitivity, and glucose metabolism. Such a dissection of ERα biological functions related to its subcellular localization will help to understand the mechanism of action of "old" ER modulators and to design new ones with an optimized benefit/risk profile.
Collapse
Affiliation(s)
- Pierre Gourdy
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France; Service de Diabétologie, Maladies Métaboliques et Nutrition, CHU de Toulouse, Toulouse, France.
| | - Maeva Guillaume
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France; Service d'Hépatologie et Gastro-Entérologie, CHU de Toulouse, Toulouse, France
| | - Coralie Fontaine
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Marine Adlanmerini
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Alexandra Montagner
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Henrik Laurell
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Françoise Lenfant
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Jean-François Arnal
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| |
Collapse
|
38
|
Exploring the Pharmacological Mechanism of Danzhi Xiaoyao Powder on ER-Positive Breast Cancer by a Network Pharmacology Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5059743. [PMID: 29692855 PMCID: PMC5859839 DOI: 10.1155/2018/5059743] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/16/2018] [Indexed: 12/14/2022]
Abstract
Background Breast cancer is the most common malignancy among women worldwide, but the long-term endocrine therapy is frequently associated with adverse side effects. Danzhi Xiaoyao powder (DXP) is a herbal formula that has an effect on breast cancer, especially ER-positive breast cancer. However, the active compounds, potential targets, and pharmacological and molecular mechanism of its action against cancer remain unclear. Methods A network pharmacology approach comprising drug-likeness evaluation, oral bioavailability prediction, Caco-2 permeability prediction, multiple compound target prediction, multiple known target collection, breast cancer genes collection, and network analysis has been used in this study. Results Four networks are set up—namely, ER-positive breast cancer network, compound-compound target network of DXP, DXP-ER-positive breast cancer network, and compound-known target-ER-positive breast cancer network. Some ER-positive breast cancer and DXP related targets, clusters, biological processes, and pathways, and several potential anticancer compounds are found. Conclusion This network analysis successfully predicted, illuminated, and confirmed the molecular synergy of DXP for ER-positive breast cancer, got potential anticancer active compounds, and found the potential ER-positive breast cancer associated targets, cluster, biological processes, and pathways. This work also provides clues to the researcher who explores ethnopharmacological or/and herbal medicine's or even multidrugs' various synergies.
Collapse
|
39
|
Fortini F, Vieceli Dalla Sega F, Caliceti C, Aquila G, Pannella M, Pannuti A, Miele L, Ferrari R, Rizzo P. Estrogen receptor β-dependent Notch1 activation protects vascular endothelium against tumor necrosis factor α (TNFα)-induced apoptosis. J Biol Chem 2017; 292:18178-18191. [PMID: 28893903 DOI: 10.1074/jbc.m117.790121] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 09/05/2017] [Indexed: 12/17/2022] Open
Abstract
Unlike age-matched men, premenopausal women benefit from cardiovascular protection. Estrogens protect against apoptosis of endothelial cells (ECs), one of the hallmarks of endothelial dysfunction leading to cardiovascular disorders, but the underlying molecular mechanisms remain poorly understood. The inflammatory cytokine TNFα causes EC apoptosis while dysregulating the Notch pathway, a major contributor to EC survival. We have previously reported that 17β-estradiol (E2) treatment activates Notch signaling in ECs. Here, we sought to assess whether in TNFα-induced inflammation Notch is involved in E2-mediated protection of the endothelium. We treated human umbilical vein endothelial cells (HUVECs) with E2, TNFα, or both and found that E2 counteracts TNFα-induced apoptosis. When Notch1 was inhibited, this E2-mediated protection was not observed, whereas ectopic overexpression of Notch1 diminished TNFα-induced apoptosis. Moreover, TNFα reduced the levels of active Notch1 protein, which were partially restored by E2 treatment. Moreover, siRNA-mediated knockdown of estrogen receptor β (ERβ), but not ERα, abolished the effect of E2 on apoptosis. Additionally, the E2-mediated regulation of the levels of active Notch1 was abrogated after silencing ERβ. In summary, our results indicate that E2 requires active Notch1 through a mechanism involving ERβ to protect the endothelium in TNFα-induced inflammation. These findings could be relevant for assessing the efficacy and applicability of menopausal hormone treatment, because they may indicate that in women with impaired Notch signaling, hormone therapy might not effectively protect the endothelium.
Collapse
Affiliation(s)
| | | | - Cristiana Caliceti
- the Department of Chemistry "G. Ciamician" and Interdepartmental Centre for Industrial Research in Energy and Environment (CIRI EA), University of Bologna, 40126 Bologna, Italy.,the National Institute of Biostructures and Biosystems (INBB), 00136 Rome, Italy
| | | | - Micaela Pannella
- the Interdepartmental Center for Industrial Research and Life Sciences (CIRI-SDV), Foundation IRET, University of Bologna, 40064 Ozzano Emilia (BO), Italy
| | - Antonio Pannuti
- the Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, New Orleans, Louisiana 70112
| | - Lucio Miele
- the Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, New Orleans, Louisiana 70112
| | - Roberto Ferrari
- From the Departments of Medical Sciences and.,the Maria Cecilia Hospital, GVM Care and Research, E.S. Health Science Foundation, 48033 Cotignola, Italy, and.,the Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paola Rizzo
- the Maria Cecilia Hospital, GVM Care and Research, E.S. Health Science Foundation, 48033 Cotignola, Italy, and .,the Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.,Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
40
|
Benoit T, Valera MC, Fontaine C, Buscato M, Lenfant F, Raymond-Letron I, Tremollieres F, Soulie M, Foidart JM, Game X, Arnal JF. Estetrol, a Fetal Selective Estrogen Receptor Modulator, Acts on the Vagina of Mice through Nuclear Estrogen Receptor α Activation. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2499-2507. [PMID: 28827141 DOI: 10.1016/j.ajpath.2017.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/11/2017] [Accepted: 07/13/2017] [Indexed: 02/04/2023]
Abstract
The genitourinary syndrome of menopause has a negative impact on quality of life of postmenopausal women. The treatment of vulvovaginal atrophy includes administration of estrogens. However, oral estrogen treatment is controversial because of its potential risks on venous thrombosis and breast cancer. Estetrol (E4) is a natural estrogen synthesized exclusively during pregnancy by the human fetal liver and initially considered as a weak estrogen. However, E4 was recently evaluated in phase 1 to 2 clinical studies and found to act as an oral contraceptive in combination with a progestin, without increasing the level of coagulation factors. We recently showed that E4 stimulates uterine epithelial proliferation through nuclear estrogen receptor (ER) α, but failed to elicit endothelial responses. Herein, we first evaluated the morphological and functional impacts of E4 on the vagina of ovariectomized mice, and we determined the molecular mechanism mediating these effects. Vaginal epithelial proliferation and lubrication after stimulation were found to increase after E4 chronic treatment. Using a combination of pharmacological and genetic approaches, we demonstrated that these E4 effects on the vagina are mediated by nuclear ERα activation. Altogether, we demonstrate that the selective activation of nuclear ERα is both necessary and sufficient to elicit functional and structural effects on the vagina, and therefore E4 appears promising as a therapeutic option to improve vulvovaginal atrophy.
Collapse
Affiliation(s)
- Thibaut Benoit
- INSERM, U1048 and Universite Toulouse III, Metabolic and Cardiovascular Disease Institute, Toulouse, France; Department of Urology, Andrology, and Transplantion, Centre Hospitalier Universitaire Toulouse-Rangueil, Toulouse, France.
| | - Marie-Cecile Valera
- INSERM, U1048 and Universite Toulouse III, Metabolic and Cardiovascular Disease Institute, Toulouse, France
| | - Coralie Fontaine
- INSERM, U1048 and Universite Toulouse III, Metabolic and Cardiovascular Disease Institute, Toulouse, France
| | - Melissa Buscato
- INSERM, U1048 and Universite Toulouse III, Metabolic and Cardiovascular Disease Institute, Toulouse, France
| | - Francoise Lenfant
- INSERM, U1048 and Universite Toulouse III, Metabolic and Cardiovascular Disease Institute, Toulouse, France
| | - Isabelle Raymond-Letron
- STROMALab, Universite de Toulouse, Centre National de la Recherche Scientifique, Ecole Nationale Veterinaire de Toulouse, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | | | - Michel Soulie
- Department of Urology, Andrology, and Transplantion, Centre Hospitalier Universitaire Toulouse-Rangueil, Toulouse, France
| | - Jean-Michel Foidart
- Laboratory of Tumor and Development Biology Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer, University of Liege, Liege, Belgium
| | - Xavier Game
- INSERM, U1048 and Universite Toulouse III, Metabolic and Cardiovascular Disease Institute, Toulouse, France; Department of Urology, Andrology, and Transplantion, Centre Hospitalier Universitaire Toulouse-Rangueil, Toulouse, France
| | - Jean-Francois Arnal
- INSERM, U1048 and Universite Toulouse III, Metabolic and Cardiovascular Disease Institute, Toulouse, France
| |
Collapse
|
41
|
The inhibitory effect of Isoliquiritigenin on the proliferation of human arterial smooth muscle cell. BMC Pharmacol Toxicol 2017; 18:57. [PMID: 28716056 PMCID: PMC5512881 DOI: 10.1186/s40360-017-0165-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/09/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Isoliquiritigenin (ISL) has various biological activities including as antioxidant and an inhibitor of PI3K/AKT signaling pathway. However, both oxidative stress and activated PI3K/AKT signaling contribute to the aberrant proliferation of vascular smooth muscle cells (VSMCs). This study is aimed to explore the effect of ISL on the proliferation of human arterial smooth muscle cells (HASMCs) and to investigate the underlying mechanisms. METHODS BrdU incorporation, cell cycle and reactive oxygen species (ROS) in normal or ISL treated HASMCs were analyzed by flow cytometry. Cell viablity was measured by CCK-8. Protein expression levels were examined by Western blot, and superoxide dismutase (SOD) activity was detected by using commercial kit. RESULTS We observed that ISL could inhibit the proliferation of HASMCs in a dose and time dependent manner. Cell cycle of ISL treated HASMCs arrested mainly in G1/S phase and accompanied with elevated expression of p27 and decreased expression of CyclinD1 and CyclinE. In addition, ISL could down-regulated the expression of p-PI3K and p-AKT, alleviated oxidative stress and enhanced the SOD activity in HASMCs. Furthermore, H2O2 treatment partly improved cell viability and up regulated p-PI3K and p-AKT in HASMCs. CONCLUSIONS Therefore, we concluded that ISL inhibited the proliferation of HASMCs via attenuating oxidative stress and suppressing PI3K/AKT signaling pathway. The inhibitory effect of ISL on PI3K/AKT signaling pathway, at least partly, was mediated by ROS.
Collapse
|
42
|
Zhang ML, Zheng B, Tong F, Yang Z, Wang ZB, Yang BM, Sun Y, Zhang XH, Zhao YL, Wen JK. iNOS-derived peroxynitrite mediates high glucose-induced inflammatory gene expression in vascular smooth muscle cells through promoting KLF5 expression and nitration. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2821-2834. [PMID: 28711598 DOI: 10.1016/j.bbadis.2017.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/19/2017] [Accepted: 07/11/2017] [Indexed: 12/24/2022]
Abstract
Inducible NO synthase (iNOS) expression and peroxynitrite formation are significantly increased in diabetic vascular tissues. Transcription factor KLF5 activates iNOS gene transcription and is involved in vascular inflammatory injury and remodeling. However, mutual regulation between KLF5, iNOS and peroxynitrite in diabetic vascular inflammation, as well as the underlying mechanisms, remain largely unknown. In this study, we found a marked increase in KLF5 and iNOS expression in vascular smooth muscle cells (VSMC) of diabetic patients. High glucose-induced expression of KLF5 and iNOS was also observed in cultured mouse VSMCs. Further investigation showed that high glucose induced KLF5 nitration by iNOS-mediated peroxynitrite generation, and nitrated KLF5 increased its interaction with NF-κB p50 and thus cooperatively activated the expression of inflammatory cytokines TNF-α and IL-1β. Furthermore, we showed that the VSMC-specific knockout of KLF5 dramatically reduced inflammatory cytokine expression in the vascular tissues of diabetic mice. Moreover, 17β-estradiol (E2) inhibited high glucose-mediated effects in VSMCs, and in the response to E2, estrogen receptor (ER) α competed with KLF5 for binding to NF-κB p50, which in turn leads to the suppression of inflammatory gene expression in VSMCs. Together, the present findings were the first to show that KLF5 expression and nitration by iNOS-mediated peroxynitrite are necessary for the induction of TNF-α and IL-1β expression in VSMCs of diabetic vascular tissues.
Collapse
Affiliation(s)
- Man-Li Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Department of Emergency Medicine, The second hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Fei Tong
- Department of Emergency Medicine, The second hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Zhan Yang
- Department of Science and Technology, The second hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Zhi-Bo Wang
- Department of Vascular Surgery, The second hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Bao-Ming Yang
- Department of Hepatobiliary Surgery, The fourth hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Yan Sun
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xin-Hua Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Yi-Lin Zhao
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, China.
| |
Collapse
|
43
|
Guillaume M, Handgraaf S, Fabre A, Raymond-Letron I, Riant E, Montagner A, Vinel A, Buscato M, Smirnova N, Fontaine C, Guillou H, Arnal JF, Gourdy P. Selective Activation of Estrogen Receptor α Activation Function-1 Is Sufficient to Prevent Obesity, Steatosis, and Insulin Resistance in Mouse. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1273-1287. [DOI: 10.1016/j.ajpath.2017.02.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 02/23/2017] [Indexed: 12/17/2022]
|
44
|
Lu Q, Schnitzler GR, Vallaster CS, Ueda K, Erdkamp S, Briggs CE, Iyer LK, Jaffe IZ, Karas RH. Unliganded estrogen receptor alpha regulates vascular cell function and gene expression. Mol Cell Endocrinol 2017; 442:12-23. [PMID: 27888004 DOI: 10.1016/j.mce.2016.11.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/03/2016] [Accepted: 11/21/2016] [Indexed: 01/15/2023]
Abstract
The unliganded form of the estrogen receptor is generally thought to be inactive. Our prior studies, however, suggested that unliganded estrogen receptor alpha (ERα) exacerbates adverse vascular injury responses in mice. Here, we show that the presence of unliganded ERα decreases vascular endothelial cell (EC) migration and proliferation, increases smooth muscle cell (SMC) proliferation, and increases inflammatory responses in cultured ECs and SMCs. Unliganded ERα also regulates many genes in vascular ECs and mouse aorta. Activation of ERα by E2 reverses the cell physiological effects of unliganded ERα, and promotes gene regulatory effects that are predicted to counter the effects of unliganded ERα. These results reveal that the unliganded form of ERα is not inert, but significantly impacts gene expression and physiology of vascular cells. Furthermore, they indicate that the cardiovascular protective effects of estrogen may be connected to its ability to counteract these effects of unliganded ERα.
Collapse
Affiliation(s)
- Qing Lu
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Gavin R Schnitzler
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA.
| | - Caroline S Vallaster
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Kazutaka Ueda
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Stephanie Erdkamp
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Christine E Briggs
- Tufts Center for Neuroscience Research, Neuroscience Department, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Lakshmanan K Iyer
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Richard H Karas
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA.
| |
Collapse
|
45
|
Nanao-Hamai M, Son BK, Hashizume T, Ogawa S, Akishita M. Protective effects of estrogen against vascular calcification via estrogen receptor α-dependent growth arrest-specific gene 6 transactivation. Biochem Biophys Res Commun 2016; 480:429-435. [DOI: 10.1016/j.bbrc.2016.10.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 11/24/2022]
|
46
|
Gros R, Hussain Y, Chorazyczewski J, Pickering JG, Ding Q, Feldman RD. Extent of Vascular Remodeling Is Dependent on the Balance Between Estrogen Receptor α and G-Protein–Coupled Estrogen Receptor. Hypertension 2016; 68:1225-1235. [DOI: 10.1161/hypertensionaha.116.07859] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/11/2016] [Indexed: 12/24/2022]
Abstract
Estrogens are important regulators of cardiovascular function. Some of estrogen’s cardiovascular effects are mediated by a G-protein–coupled receptor mechanism, namely, G-protein–coupled estrogen receptor (GPER). Estradiol-mediated regulation of vascular cell programmed cell death reflects the balance of the opposing actions of GPER versus estrogen receptor α (ERα). However, the significance of these opposing actions on the regulation of vascular smooth muscle cell proliferation or migration in vitro is unclear, and the significance in vivo is unknown. To determine the effects of GPER activation in vitro, we studied rat aortic vascular smooth muscle cells maintained in primary culture. GPER was reintroduced using adenoviral gene transfer. Both estradiol and G1, a GPER agonist, inhibited both proliferation and cell migration effects that were blocked by the GPER antagonist, G15. To determine the importance of the GPER-ERα balance in regulating vascular remodeling in a rat model of carotid ligation, we studied the effects of upregulation of GPER expression versus downregulation of ERα. Reintroduction of GPER significantly attenuated the extent of medial hypertrophy and attenuated the extent of CD45 labeling. Downregulation of ERα expression comparably attenuated the extent of medial hypertrophy and inflammation after carotid ligation. These studies demonstrate that the balance between GPER and ERα regulates vascular remodeling. Receptor-specific modulation of estrogen’s effects may be an important new approach in modifying vascular remodeling in both acute settings like vascular injury and perhaps in longer term regulation like in hypertension.
Collapse
Affiliation(s)
- Robert Gros
- From the Department of Medicine (R.G., J.C., J.G.P., R.D.F.) and Department of Physiology and Pharmacology (R.G., J.G.P.), Robarts Research Institute, Western University, London, Ontario, Canada; Weill-Cornell School of Medicine, New York, New York (Y.H.); and Discipline of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada (Q.D., R.D.F.)
| | - Yasin Hussain
- From the Department of Medicine (R.G., J.C., J.G.P., R.D.F.) and Department of Physiology and Pharmacology (R.G., J.G.P.), Robarts Research Institute, Western University, London, Ontario, Canada; Weill-Cornell School of Medicine, New York, New York (Y.H.); and Discipline of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada (Q.D., R.D.F.)
| | - Jozef Chorazyczewski
- From the Department of Medicine (R.G., J.C., J.G.P., R.D.F.) and Department of Physiology and Pharmacology (R.G., J.G.P.), Robarts Research Institute, Western University, London, Ontario, Canada; Weill-Cornell School of Medicine, New York, New York (Y.H.); and Discipline of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada (Q.D., R.D.F.)
| | - J. Geoffrey Pickering
- From the Department of Medicine (R.G., J.C., J.G.P., R.D.F.) and Department of Physiology and Pharmacology (R.G., J.G.P.), Robarts Research Institute, Western University, London, Ontario, Canada; Weill-Cornell School of Medicine, New York, New York (Y.H.); and Discipline of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada (Q.D., R.D.F.)
| | - Qingming Ding
- From the Department of Medicine (R.G., J.C., J.G.P., R.D.F.) and Department of Physiology and Pharmacology (R.G., J.G.P.), Robarts Research Institute, Western University, London, Ontario, Canada; Weill-Cornell School of Medicine, New York, New York (Y.H.); and Discipline of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada (Q.D., R.D.F.)
| | - Ross D. Feldman
- From the Department of Medicine (R.G., J.C., J.G.P., R.D.F.) and Department of Physiology and Pharmacology (R.G., J.G.P.), Robarts Research Institute, Western University, London, Ontario, Canada; Weill-Cornell School of Medicine, New York, New York (Y.H.); and Discipline of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada (Q.D., R.D.F.)
| |
Collapse
|
47
|
Manrique C, Lastra G, Ramirez-Perez FI, Haertling D, DeMarco VG, Aroor AR, Jia G, Chen D, Barron BJ, Garro M, Padilla J, Martinez-Lemus LA, Sowers JR. Endothelial Estrogen Receptor-α Does Not Protect Against Vascular Stiffness Induced by Western Diet in Female Mice. Endocrinology 2016; 157:1590-600. [PMID: 26872089 PMCID: PMC4816732 DOI: 10.1210/en.2015-1681] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Consumption of a diet high in fat and refined carbohydrates (Western diet [WD]) is associated with obesity and insulin resistance, both major risk factors for cardiovascular disease (CVD). In women, obesity and insulin resistance abrogate the protection against CVD likely afforded by estrogen signaling through estrogen receptor (ER)α. Indeed, WD in females results in increased vascular stiffness, which is independently associated with CVD. We tested the hypothesis that loss of ERα signaling in the endothelium exacerbates WD-induced vascular stiffening in female mice. We used a novel model of endothelial cell (EC)-specific ERα knockout (EC-ERαKO), obtained after sequential crossing of the ERα double floxed mice and VE-Cadherin Cre-recombinase mice. Ten-week-old females, EC-ERαKO and aged-matched genopairs were fed either a regular chow diet (control diet) or WD for 8 weeks. Vascular stiffness was measured in vivo by pulse wave velocity and ex vivo in aortic explants by atomic force microscopy. In addition, vascular reactivity was assessed in isolated aortic rings. Initial characterization of the model fed a control diet did not reveal changes in whole-body insulin sensitivity, aortic vasoreactivity, or vascular stiffness in the EC-ERαKO mice. Interestingly, ablation of ERα in ECs reduced WD-induced vascular stiffness and improved endothelial-dependent dilation. In the setting of a WD, endothelial ERα signaling contributes to vascular stiffening in females. The precise mechanisms underlying the detrimental effects of endothelial ERα in the setting of a WD remain to be elucidated.
Collapse
Affiliation(s)
- Camila Manrique
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Guido Lastra
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Francisco I Ramirez-Perez
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Dominic Haertling
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Vincent G DeMarco
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Annayya R Aroor
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Guanghong Jia
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Dongqing Chen
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Brady J Barron
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Mona Garro
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Jaume Padilla
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Luis A Martinez-Lemus
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - James R Sowers
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
48
|
Menazza S, Murphy E. The Expanding Complexity of Estrogen Receptor Signaling in the Cardiovascular System. Circ Res 2016; 118:994-1007. [PMID: 26838792 DOI: 10.1161/circresaha.115.305376] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/28/2015] [Indexed: 12/21/2022]
Abstract
Estrogen has important effects on cardiovascular function including regulation of vascular function, blood pressure, endothelial relaxation, and the development of hypertrophy and cardioprotection. However, the mechanisms by which estrogen mediates these effects are still poorly understood. As detailed in this review, estrogen can regulate transcription by binding to 2 nuclear receptors, ERα and ERβ, which differentially regulate gene transcription. ERα and ERβ regulation of gene transcription is further modulated by tissue-specific coactivators and corepressors. Estrogen can bind to ERα and ERβ localized at the plasma membrane as well as G-protein-coupled estrogen receptor to initiate membrane delimited signaling, which enhances kinase signaling pathways that can have acute and long-term effects. The kinase signaling pathways can also mediate transcriptional changes and can synergize with the ER to regulate cell function. This review will summarize the beneficial effects of estrogen in protecting the cardiovascular system through ER-dependent mechanisms with an emphasis on the role of the recently described ER membrane signaling mechanisms.
Collapse
Affiliation(s)
- Sara Menazza
- From the Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD.
| | - Elizabeth Murphy
- From the Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|