1
|
Ku CJ, Yu X, Zhao QY, Grzegorski SJ, Daniel JG, Ferguson AC, Shavit JA. Loss of protein C vs protein S results in discrepant thrombotic phenotypes. Blood Adv 2025; 9:545-557. [PMID: 39657127 PMCID: PMC11821410 DOI: 10.1182/bloodadvances.2024013237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/25/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT Venous thrombosis is a leading cause of morbidity/mortality and associated with deficiencies of the anticoagulant protein C (PC; PROC) and its cofactor, protein S (PS; PROS1). Heterozygous mutations increase the risk of adult-onset thrombosis, whereas homozygous mutations result in pre/neonatal lethal thrombosis. Phenotypes of patients with PC and PS deficiency are generally considered clinically indistinguishable. Here, we generate proc (zebrafish PROC ortholog) and pros1 knockouts through genome editing in zebrafish and uncover partially discordant phenotypes. proc-/- mutants exhibited ∼70% lethality at 1 year of age, whereas pros1-/- survival was unaffected. Induced venous endothelial injury in both mutants revealed reduced occlusive thrombus formation. This is consistent with the consumptive coagulopathy of zebrafish antithrombin 3 knockouts, which also results in spontaneous venous thrombosis. However, proc and pros1 mutants revealed a discrepancy. Although both mutants demonstrated spontaneous thrombosis, proc-/- was localized to the cardiac and venous systems, whereas pros1-/- was intracardiac. Aside from coagulation, PC has been shown to have PS-independent roles in inflammation. proc mutants displayed altered inflammatory markers and defects in neutrophil migration independent of pros1. Transcriptomic analysis and gene knockdown identified novel proc genetic interactions with adgrf7, a G protein-coupled receptor (GPCR) not previously known to be involved in coagulation. In summary, our data reveal differences between PC- and PS-deficient thrombosis, with cardiovascular tissue-specific phenotypes and survival differences, suggesting the possibility of underlying clinical differences in affected patients. This model of complete proc-/- deficiency in an accessible organism will facilitate further in vivo study of these distinctions, as well as PS-dependent and -independent functions of PC.
Collapse
Affiliation(s)
- Chia-Jui Ku
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Xinge Yu
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Queena Y. Zhao
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | | | | | | | - Jordan A. Shavit
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| |
Collapse
|
2
|
Wang Y, Liu L, Li J, You Y, Xiao S, Feng J, Yin X, Liao F, You Y. Involvement of Piezo 1 in inhibition of shear-induced platelet activation and arterial thrombosis by ginsenoside Rb1. Br J Pharmacol 2025. [PMID: 39894463 DOI: 10.1111/bph.17434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND AND PURPOSE Shear-induced platelet activation and aggregation (SIPA) play crucial roles in arterial thrombosis. Piezo1 is a mechanosensitive calcium channel that promotes platelet hyperactivation under pathological high-shear conditions. This study explores the function of platelet Piezo1 in SIPA and arterial thrombosis, and the inhibitory effects and mechanisms of ginsenoside Rb1 on these processes. EXPERIMENTAL APPROACH Transgenic mice with platelet-specific Piezo1 deficiency (Piezo1ΔPlt) were used to elucidate the role of platelet Piezo1 in SIPA and arterial thrombosis. A microfluidic channel system was employed to assess platelet aggregation, calcium influx, calpain activity, talin cleavage, integrin αIIbβ3 activation and P-selectin expression under shear flow. Cellular thermal shift assay was used to determine binding between Rb1 and Piezo1. Folts-like model in mice was used to evaluate antithrombotic effects of Rb1. KEY RESULTS Piezo1 deficiency in platelets reduced platelet activation and aggregation induced by a high shear rate of 4000 s-1 and attenuated arterial thrombosis induced by Folts-like mouse model. Rb1 inhibited SIPA with an IC50 of 10.8 μM. Rb1 inhibited shear-induced Ca2+-dependent platelet activation and aggregation, as well as thrombus formation in Folts-like model in Piezo1fl/fl mice. Rb1 significantly improved thermal stability of Piezo1 in platelets by binding to Piezo1. Treatment of Piezo1ΔPlt mice with Rb1 did not exhibit further inhibitory effects on SIPA and thrombosis. CONCLUSION AND IMPLICATIONS Platelet Piezo1 is essential for SIPA and arterial thrombosis induced by high shear. Rb1 exerted anti-platelet and anti-thrombotic effects at high shear rates via Piezo1 channels, providing a potential candidate as antiplatelet therapeutic agent.
Collapse
Affiliation(s)
- Yilin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Henan, China
| | - Jia Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue You
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shunli Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiantao Feng
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojie Yin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fulong Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yun You
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Lekkala VKR, Shrestha S, Al Qaryoute A, Dhinoja S, Acharya P, Raheem A, Jagadeeswaran P, Lee MY. Enhanced Maturity and Functionality of Vascular Human Liver Organoids through 3D Bioprinting and Pillar Plate Culture. ACS Biomater Sci Eng 2025; 11:506-517. [PMID: 39726370 DOI: 10.1021/acsbiomaterials.4c01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Liver tissues, composed of hepatocytes, cholangiocytes, stellate cells, Kupffer cells, and sinusoidal endothelial cells, are differentiated from endodermal and mesodermal germ layers. By mimicking the developmental process of the liver, various differentiation protocols have been published to generate human liver organoids (HLOs) in vitro using induced pluripotent stem cells (iPSCs). However, HLOs derived solely from the endodermal germ layer often encounter technical hurdles such as insufficient maturity and functionality, limiting their utility for disease modeling and hepatotoxicity assays. To overcome this, we separately differentiated EpCAM+ endodermal progenitor cells (EPCs) and mesoderm-derived vascular progenitor cells (VPCs) from the same human iPSC line. These cells were then mixed in a BME-2 matrix and concurrently differentiated into vascular human liver organoids (vHLOs). Remarkably, vHLOs exhibited a significantly higher maturity than vasculature-free HLOs, as demonstrated by increased coagulation factor secretion, albumin secretion, drug-metabolizing enzyme expression, and bile acid transportation. To enhance assay throughput and miniaturize vHLO culture, we 3D bioprinted expandable HLOs (eHLOs) in a BME-2 matrix on a pillar plate platform derived from EPCs and VPCs and compared them with HLOs derived from endoderm alone. Compared to HLOs cultured in a 50 μL BME-2 matrix dome in a 24-well plate, vHLOs cultured on the pillar plate exhibited superior maturity, likely due to enhanced nutrient and signaling molecule diffusion. The integration of physiologically relevant patterned liver organoids with the unique pillar plate platform enhanced the capabilities for high-throughput screening and disease modeling.
Collapse
Affiliation(s)
- Vinod Kumar Reddy Lekkala
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207-7102, United States
| | - Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207-7102, United States
| | - Ayah Al Qaryoute
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5017, United States
| | - Sanchi Dhinoja
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5017, United States
| | - Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207-7102, United States
| | - Abida Raheem
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207-7102, United States
| | - Pudur Jagadeeswaran
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5017, United States
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207-7102, United States
- Bioprinting Laboratories Inc., Dallas, Texas 75234-7244, United States
| |
Collapse
|
4
|
Liu Y, Huang T, Yap NA, Lim K, Ju LA. Harnessing the power of bioprinting for the development of next-generation models of thrombosis. Bioact Mater 2024; 42:328-344. [PMID: 39295733 PMCID: PMC11408160 DOI: 10.1016/j.bioactmat.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
Thrombosis, a leading cause of cardiovascular morbidity and mortality, involves the formation of blood clots within blood vessels. Current animal models and in vitro systems have limitations in recapitulating the complex human vasculature and hemodynamic conditions, limiting the research in understanding the mechanisms of thrombosis. Bioprinting has emerged as a promising approach to construct biomimetic vascular models that closely mimic the structural and mechanical properties of native blood vessels. This review discusses the key considerations for designing bioprinted vascular conduits for thrombosis studies, including the incorporation of key structural, biochemical and mechanical features, the selection of appropriate biomaterials and cell sources, and the challenges and future directions in the field. The advancements in bioprinting techniques, such as multi-material bioprinting and microfluidic integration, have enabled the development of physiologically relevant models of thrombosis. The future of bioprinted models of thrombosis lies in the integration of patient-specific data, real-time monitoring technologies, and advanced microfluidic platforms, paving the way for personalized medicine and targeted interventions. As the field of bioprinting continues to evolve, these advanced vascular models are expected to play an increasingly important role in unraveling the complexities of thrombosis and improving patient outcomes. The continued advancements in bioprinting technologies and the collaboration between researchers from various disciplines hold great promise for revolutionizing the field of thrombosis research.
Collapse
Affiliation(s)
- Yanyan Liu
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Tao Huang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Nicole Alexis Yap
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Khoon Lim
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Medical Sciences, The University of Sydney, Darlington, NSW 2008, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Camperdown, Newtown, NSW 2042, Australia
| |
Collapse
|
5
|
Yu X, Zhao QY, Yaman M, Emly SM, Lee JK, Su H, Ferguson AC, Nagaswami C, Chaturantabut S, Goessling W, Weisel JW, Auchus RJ, Shavit JA. Hormone-induced thrombosis is mediated through non-canonical fibrin(ogen) aggregation and a novel estrogen target in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623199. [PMID: 39605542 PMCID: PMC11601434 DOI: 10.1101/2024.11.13.623199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Venous thrombosis is a well-known complication of sex hormone therapy, with onset typically within weeks to months after initiation. Worldwide, more than 100 million pre-menopausal women use combined oral contraceptives, with tens to hundreds of thousands developing thrombosis annually, resulting in significant morbidity and mortality. Although it is known that estrogens can alter expression of coagulation factors, the pathways and mechanisms that connect the two systems, as well as the proteins involved in progression to thrombosis, are poorly understood. Identification of these mediators are central to any comprehensive understanding of hormone-induced pathophysiology, could help ascertain patients at higher risk for thrombosis, and may also pinpoint future therapeutic targets. The zebrafish is a powerful genetic model in which the hemostatic system is almost entirely conserved with humans. Its external development, ability to generate thousands of offspring at low cost, and optical transparency all make it a powerful tool to study the genetics of coagulation disorders. We previously produced a transgenic line (fgb-egfp) that generates GFP-tagged fibrinogen that labels induced and spontaneous fibrin-rich thrombi. Here we show rapid onset of thrombosis after exposure to various estrogens, but not progestins or testosterone. Thrombi are localized to the venous system, develop broadly along the posterior cardinal vein, and show evidence for clot contraction. Thrombosis is only partially impeded by anticoagulants, occurs in the absence of factor X and prothrombin, but is completely blocked in the absence of fibrinogen. Furthermore, although an estrogen receptor antagonist is partially inhibitory, targeted knockout of all known estrogen receptors does not eliminate thrombosis. These data suggest that zebrafish can be used to model human estrogen-induced thrombosis, although the lack of dependence on the canonical coagulation cascade is surprising. The inability to completely inhibit thrombosis through genetic/pharmacologic anticoagulation or estrogen receptor disruption suggests that the mechanisms may be multifactorial. We hypothesize that thrombi are composed of fibrin(ogen) aggregates rather than purely fibrin. Results of further studies could lead to novel therapeutic targets and ascertain patients at higher risk for thrombosis.
Collapse
Affiliation(s)
- Xinge Yu
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Queena Y. Zhao
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Murat Yaman
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Sylvia M. Emly
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | | | - Hongyu Su
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | | | - Chandrasekaran Nagaswami
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | | | - Wolfram Goessling
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Division of Health Sciences and Technology, Harvard-MIT, Cambridge, MA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA
| | - John W. Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Richard J. Auchus
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Jordan A. Shavit
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| |
Collapse
|
6
|
Liu X, Fan W, Lin S, Chen J, Zhang S, Li X, Jin M, He Q. Anti-Thrombotic Effect of Protoparaxotriol Saponins From Panax notoginseng Using Zebrafish Model. J Cardiovasc Pharmacol 2024; 84:528-538. [PMID: 39027983 DOI: 10.1097/fjc.0000000000001604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/01/2024] [Indexed: 07/20/2024]
Abstract
ABSTRACT Panax notoginseng has the effect of stimulating circulation to end stasis. Our study was designed to evaluate the anti-thrombotic effect of protoparaxotriol saponins (PTS) from P. notoginseng and the involved mechanisms. A thrombosis model was constructed, and the anti-thrombotic activity of PTS was determined by erythrocyte staining, heart rate, and blood flow velocity. In addition, quantitative real-time polymerase chain reaction was used to identify changes in the expression of genes related to coagulation, inflammation, and apoptosis. PTS alleviated arachidonic acid-induced caudal vein thrombosis, restored blood flow, and increased the area of cardiac erythrocyte staining, heart rate, and blood flow velocity. It reduced the ponatinib-induced cerebral thrombus area and decreased the intensity of erythrocyte staining. The quantitative polymerase chain reaction data showed that the anti-thrombotic effect of PTS was mediated by suppression of genes related to coagulation, inflammation, and apoptosis and also involved inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathways.
Collapse
Affiliation(s)
- Xin Liu
- Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Caturano A, Russo V, Monda M, Sardu C, Marfella R, Sasso FC. Commentary on Antithrombotic Effect of Protopanaxatriol Saponins from Panax notoginseng Using Zebrafish Model. J Cardiovasc Pharmacol 2024; 84:493-495. [PMID: 39115821 DOI: 10.1097/fjc.0000000000001621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Affiliation(s)
- Alfredo Caturano
- Departments of Advanced Medical and Surgical Sciences, and
- Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, IT
| | - Vincenzo Russo
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA; and
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Marcellino Monda
- Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, IT
| | | | | | | |
Collapse
|
8
|
Burggren W, Abramova R, Bautista NM, Fritsche Danielson R, Dubansky B, Gupta A, Hansson K, Iyer N, Jagadeeswaran P, Jennbacken K, Rydén-Markinhutha K, Patel V, Raman R, Trivedi H, Vazquez Roman K, Williams S, Wang QD. A larval zebrafish model of cardiac physiological recovery following cardiac arrest and myocardial hypoxic damage. Biol Open 2024; 13:bio060230. [PMID: 39263862 DOI: 10.1242/bio.060230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/22/2024] [Indexed: 09/13/2024] Open
Abstract
Contemporary cardiac injury models in zebrafish larvae include cryoinjury, laser ablation, pharmacological treatment and cardiac dysfunction mutations. Although effective in damaging cardiomyocytes, these models lack the important element of myocardial hypoxia, which induces critical molecular cascades within cardiac muscle. We have developed a novel, tractable, high throughput in vivo model of hypoxia-induced cardiac damage that can subsequently be used in screening cardioactive drugs and testing recovery therapies. Our potentially more realistic model for studying cardiac arrest and recovery involves larval zebrafish (Danio rerio) acutely exposed to severe hypoxia (PO2=5-7 mmHg). Such exposure induces loss of mobility quickly followed by cardiac arrest occurring within 120 min in 5 days post fertilization (dpf) and within 40 min at 10 dpf. Approximately 90% of 5 dpf larvae survive acute hypoxic exposure, but survival fell to 30% by 10 dpf. Upon return to air-saturated water, only a subset of larvae resumed heartbeat, occurring within 4 min (5 dpf) and 6-8 min (8-10 dpf). Heart rate, stroke volume and cardiac output in control larvae before hypoxic exposure were 188±5 bpm, 0.20±0.001 nL and 35.5±2.2 nL/min (n=35), respectively. After briefly falling to zero upon severe hypoxic exposure, heart rate returned to control values by 24 h of recovery. However, reflecting the severe cardiac damage induced by the hypoxic episode, stroke volume and cardiac output remained depressed by ∼50% from control values at 24 h of recovery, and full restoration of cardiac function ultimately required 72 h post-cardiac arrest. Immunohistological staining showed co-localization of Troponin C (identifying cardiomyocytes) and Capase-3 (identifying cellular apoptosis). As an alternative to models employing mechanical or pharmacological damage to the developing myocardium, the highly reproducible cardiac effects of acute hypoxia-induced cardiac arrest in the larval zebrafish represent an alternative, potentially more realistic model that mimics the cellular and molecular consequences of an infarction for studying cardiac tissue hypoxia injury and recovery of function.
Collapse
Affiliation(s)
- Warren Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Regina Abramova
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Naim M Bautista
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Regina Fritsche Danielson
- SVP and head of Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| | - Ben Dubansky
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Avi Gupta
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Kenny Hansson
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| | - Neha Iyer
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Pudur Jagadeeswaran
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Karin Jennbacken
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| | - Katarina Rydén-Markinhutha
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| | - Vishal Patel
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Revathi Raman
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Hersh Trivedi
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Karem Vazquez Roman
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Steven Williams
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Qing-Dong Wang
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| |
Collapse
|
9
|
Lekkala VKR, Shrestha S, Qaryoute AA, Dhinoja S, Acharya P, Raheem A, Jagadeeswaran P, Lee MY. Enhanced Maturity and Functionality of Vascularized Human Liver Organoids through 3D Bioprinting and Pillar Plate Culture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608997. [PMID: 39229042 PMCID: PMC11370572 DOI: 10.1101/2024.08.21.608997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Liver tissues, composed of hepatocytes, cholangiocytes, stellate cells, Kupffer cells, and sinusoidal endothelial cells, are differentiated from endodermal and mesodermal germ layers. By mimicking the developmental process of the liver, various differentiation protocols have been published to generate human liver organoids (HLOs) in vitro using induced pluripotent stem cells (iPSCs). However, HLOs derived solely from the endodermal germ layer often encounter technical hurdles, such as insufficient maturity and functionality, limiting their utility for disease modeling and hepatotoxicity assays. To overcome this, we separately differentiated EpCAM+ endodermal progenitor cells (EPCs) and mesoderm-derived vascular progenitor cells (VPCs) from the same human iPSC line. These cells were then mixed in BME-2 matrix and concurrently differentiated into vascular human liver organoids (vHLOs). Remarkably, vHLOs exhibited significantly higher maturity than vasculature-free HLOs, as demonstrated by increased coagulation factor secretion, albumin secretion, drug-metabolizing enzyme (DME) expression, and bile acid transportation. To enhance assay throughput and miniaturize vHLO culture, we 3D bioprinted expandable HLOs (eHLOs) in BME-2 matrix on a pillar plate platform derived from EPCs and VPCs and compared with HLOs derived from endoderm alone. Compared to HLOs cultured in a 50 μL BME-2 matrix dome in a 24-well plate, vHLOs cultured on the pillar plate exhibited superior maturity, likely due to enhanced nutrient and signaling molecule diffusion. The integration of physiologically relevant patterned liver organoids with the unique pillar plate platform enhanced the capabilities for high-throughput screening and disease modeling.
Collapse
Affiliation(s)
| | - Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Ayah Al Qaryoute
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Sanchi Dhinoja
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Abida Raheem
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Pudur Jagadeeswaran
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
- Bioprinting Laboratories Inc., Dallas, Texas, USA
| |
Collapse
|
10
|
Huang S, He X, Huang C, He W, Zhao H, Dai J, Xu G. Thrombin-targeted screening of anticoagulant active components from Polygonum amplexicaule D. Don var. sinense Forb by affinity ultrafiltration coupled with UPLC-Q-TOF-MS. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1112-1122. [PMID: 38500381 DOI: 10.1002/pca.3346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Polygonum amplexicaule D. Don var. sinense Forb (PAF), a medicinal plant, has the effect of promoting blood circulation and removing blood stasis. However, the active compounds and targets of its anticoagulant effect are still unclear. OBJECTIVES This study aims to establish an effective reversely thrombin-targeted screening method for anticoagulant active components in PAF by affinity ultrafiltration (AUF) coupled with ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectroscopy (UPLC-Q-TOF-MS). METHODS Different polar parts of PAF were screened for potential thrombin ligands by AUF-HPLC and identified by UPLC-Q-TOF-MS. After studying the affinity between ligands and thrombin by molecular docking, the antithrombotic activity of ligands was detected in vivo by zebrafish thrombus model, and in vitro by chromogenic substrate method. The mechanism of such ligands on thrombin was further studied by coagulation factor assay. RESULTS Eleven potential thrombin ligands from PAF were screened by the AUF-UPLC-Q-TOF-MS method, and two compounds (butyl gallate and β-sitosterol) with significant anticoagulant activity were discovered via in vitro and in vivo activity testing. CONCLUSION A method system based on AUF-UPLC-Q-TOF-MS, molecular docking and in vivo and in vitro experiments also provided a powerful tool for further exploration of anticoagulant active components in PAF.
Collapse
Affiliation(s)
- Shiyi Huang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Xiangchang He
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Chencun Huang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Weihe He
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Hongqing Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Jie Dai
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Guangming Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
11
|
Wu Y, Ma Y, Zhong W, Shen H, Ye J, Du S, Li P. Alleviation of endothelial dysfunction of Pheretima guillemi (Michaelsen)-derived protein DPf3 in ponatinib-induced thrombotic zebrafish and mechanisms explored through ox-LDL-induced HUVECs and TMT-based proteomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117669. [PMID: 38159828 DOI: 10.1016/j.jep.2023.117669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thrombus generation is one of the leading causes of death in human, and vascular endothelial dysfunction is a major contributor to thrombosis. Pheretima guillemi (Michaelsen), a traditional medicinal animal known as "Dilong", has been utilized to cure thrombotic disorders for many years. DPf3, a group of functional proteins extracted from P. guillemi, has been characterized and identified to possess antithrombotic bioactivity via in vitro and ex vivo experiments. AIM OF THE STUDY This study is aimed to investigate the vascular-protection activity and related mechanism of antithrombotic protein DPf3 purified from Pheretima guillelmi systematically. MATERIALS AND METHODS The antithrombotic activity and vascular endothelium protection effect of DPf3 was explored in vivo using ponatinib-induced vascular endothelial injury zebrafish thrombus model. Then, (hi) ox-LDL-induced HUVECs was applied to investigate the protection mechanism of DPf3 against the injury of vascular endothelium. In addition, TMT-based proteomics analysis was used to study the biomarkers, biological processes and signal pathways involved in the antithrombotic and vascular protective effects of DPf3 holistically. RESULTS DPf3 exerted robust in vivo antithrombosis and vascular endothelial protection ability. DPf3 was identified to prevent HUVECs from damage by reducing ROS production, and to reduce monocyte adhesion by decreasing the protein content of adhesion factor VCAM 1. DPf3 was also observed to weaken the migration ability of injured cells and inhibit abnormal angiogenesis. The mechanism of DPf3's antithrombotic and vascular protective activity was mainly related to the regulation of lipid metabolism, energy metabolism, complement and coagulation system, ECM receptor interaction, MAPK signal pathway, etc. CONCLUSIONS: This study demonstrates that DPf3 has strong antithrombotic and endothelial protective effects. The endothelial protective ability and related mechanisms of DPf3 provide a scientific reference for the traditional use of earthworms in the treatment of thrombosis.
Collapse
Affiliation(s)
- Yali Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China; Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China.
| | - Yunnan Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Wanling Zhong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Huijuan Shen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jinhong Ye
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Pengyue Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
12
|
Kostromina MA, Tukhovskaya EA, Shaykhutdinova ER, Palikova YA, Palikov VA, Slashcheva GA, Ismailova AM, Kravchenko IN, Dyachenko IA, Zayats EA, Abramchik YA, Murashev AN, Esipov RS. Unified Methodology for the Primary Preclinical In Vivo Screening of New Anticoagulant Pharmaceutical Agents from Hematophagous Organisms. Int J Mol Sci 2024; 25:3986. [PMID: 38612796 PMCID: PMC11011928 DOI: 10.3390/ijms25073986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
The development of novel anticoagulants requires a comprehensive investigational approach that is capable of characterizing different aspects of antithrombotic activity. The necessary experiments include both in vitro assays and studies on animal models. The required in vivo approaches include the assessment of pharmacokinetic and pharmacodynamic profiles and studies of hemorrhagic and antithrombotic effects. Comparison of anticoagulants with different mechanisms of action and administration types requires unification of the experiment scheme and its adaptation to existing laboratory conditions. The rodent thrombosis models in combination with the assessment of hemostasis parameters and hematological analysis are the classic methods for conducting preclinical studies. We report an approach for the comparative study of the activity of different anticoagulants in vivo, including the investigation of pharmacodynamics and the assessment of hemorrhagic effects (tail-cut bleeding model) and pathological thrombus formation (inferior vena cava stenosis model of venous thrombosis). The reproducibility and uniformity of our set of experiments were illustrated on unfractionated heparin and dabigatran etexilate (the most common pharmaceuticals in antithrombic therapy) as comparator drugs and an experimental drug variegin from the tick Amblyomma variegatum. Variegin is notorious since it is a potential analogue of bivalirudin (Angiomax, Novartis AG, Basel, Switzerland), which is now being actively introduced into antithrombotic therapy.
Collapse
Affiliation(s)
- Maria A. Kostromina
- Laboratory of Biopharmaceutical Technologies, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia
| | - Elena A. Tukhovskaya
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, ProspektNauki, 6, 142290 Moscow, Russia
| | - Elvira R. Shaykhutdinova
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, ProspektNauki, 6, 142290 Moscow, Russia
| | - Yuliya A. Palikova
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, ProspektNauki, 6, 142290 Moscow, Russia
| | - Viktor A. Palikov
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, ProspektNauki, 6, 142290 Moscow, Russia
| | - Gulsara A. Slashcheva
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, ProspektNauki, 6, 142290 Moscow, Russia
| | - Alina M. Ismailova
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, ProspektNauki, 6, 142290 Moscow, Russia
| | - Irina N. Kravchenko
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, ProspektNauki, 6, 142290 Moscow, Russia
| | - Igor A. Dyachenko
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, ProspektNauki, 6, 142290 Moscow, Russia
| | - Evgeniy A. Zayats
- Laboratory of Biopharmaceutical Technologies, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia
| | - Yuliya A. Abramchik
- Laboratory of Biopharmaceutical Technologies, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia
| | - Arkady N. Murashev
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, ProspektNauki, 6, 142290 Moscow, Russia
| | - Roman S. Esipov
- Laboratory of Biopharmaceutical Technologies, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia
| |
Collapse
|
13
|
Griffin MS, Dahlgren AR, Nagaswami C, Litvinov RI, Keeler K, Madenjian C, Fuentes R, Fish RJ, Neerman-Arbez M, Holinstat M, Adili R, Weisel JW, Shavit JA. Composition of thrombi in zebrafish: similarities and distinctions with mammals. J Thromb Haemost 2024; 22:1056-1068. [PMID: 38160724 PMCID: PMC11293624 DOI: 10.1016/j.jtha.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Blood clots are primarily composed of red blood cells (RBCs), platelets/thrombocytes, and fibrin. Despite the similarities observed between mammals and zebrafish, the composition of fish thrombi is not as well known. OBJECTIVES To analyze the formation of zebrafish blood clots ex vivo and arterial and venous thrombi in vivo. METHODS Transgenic zebrafish lines and laser-mediated endothelial injury were used to determine the relative ratio of RBCs and thrombocytes in clots. Scanning electron and confocal microscopy provided high-resolution images of the structure of adult and larval clots. Adult and larval thrombocyte spreading on fibrinogen was evaluated ex vivo. RESULTS RBCs were present in arterial and venous thrombi, making up the majority of cells in both circulations. However, bloodless mutant fish demonstrated that fibrin clots can form in vivo in the absence of blood cells. Scanning electron and confocal microscopy showed that larval and adult zebrafish thrombi and mammalian thrombi look surprisingly similar externally and internally, even though the former have nucleated RBCs and thrombocytes. Although adult thrombocytes spread on fibrinogen, we found that larval cells do not fully activate without the addition of plasma from adult fish, suggesting a developmental deficiency of a plasma activating factor. Finally, mutants lacking αIIbβ3 demonstrated that this integrin mediates thrombocyte spreading on fibrinogen. CONCLUSION Our data showed strong conservation of arterial and venous and clot/thrombus formation across species, including developmental regulation of thrombocyte function. This correlation supports the possibility that mammals also do not absolutely require circulating cells to form fibrin clots in vivo.
Collapse
Affiliation(s)
- Megan S Griffin
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Anna R Dahlgren
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Chandrasekaran Nagaswami
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kevin Keeler
- US Geological Survey Great Lakes Science Center, Ann Arbor, Michigan, USA
| | - Charles Madenjian
- US Geological Survey Great Lakes Science Center, Ann Arbor, Michigan, USA
| | - Ricardo Fuentes
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Richard J Fish
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marguerite Neerman-Arbez
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Reheman Adili
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jordan A Shavit
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA; Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
14
|
Pontius MHH, Ku CJ, Osmond MJ, Disharoon D, Liu Y, Warnock M, Lawrence DA, Marr DWM, Neeves KB, Shavit JA. Magnetically powered microwheel thrombolysis of occlusive thrombi in zebrafish. Proc Natl Acad Sci U S A 2024; 121:e2315083121. [PMID: 38408253 PMCID: PMC10927521 DOI: 10.1073/pnas.2315083121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024] Open
Abstract
Tissue plasminogen activator (tPA) is the only FDA-approved treatment for ischemic stroke but carries significant risks, including major hemorrhage. Additional options are needed, especially in small vessel thrombi which account for ~25% of ischemic strokes. We have previously shown that tPA-functionalized colloidal microparticles can be assembled into microwheels (µwheels) and manipulated under the control of applied magnetic fields to enable rapid thrombolysis of fibrin gels in microfluidic models of thrombosis. Transparent zebrafish larvae have a highly conserved coagulation cascade that enables studies of hemostasis and thrombosis in the context of intact vasculature, clotting factors, and blood cells. Here, we show that tPA-functionalized µwheels can perform rapid and targeted recanalization in vivo. This effect requires both tPA and µwheels, as minimal to no recanalization is achieved with tPA alone, µwheels alone, or tPA-functionalized microparticles in the absence of a magnetic field. We evaluated tPA-functionalized µwheels in CRISPR-generated plasminogen (plg) heterozygous and homozygous mutants and confirmed that tPA-functionalized µwheels are dose-dependent on plasminogen for lysis. We have found that magnetically powered µwheels as a targeted tPA delivery system are dramatically more efficient at plasmin-mediated thrombolysis than systemic delivery in vivo. Further development of this system in fish and mammalian models could enable a less invasive strategy for alleviating ischemia that is safer than directed thrombectomy or systemic infusion of tPA.
Collapse
Affiliation(s)
| | - Chia-Jui Ku
- Department of Pediatrics, University of Michigan, Ann Arbor, MI48109
| | - Matthew J. Osmond
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO80401
| | - Dante Disharoon
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO80401
| | - Yang Liu
- Department of Pediatrics, University of Michigan, Ann Arbor, MI48109
| | - Mark Warnock
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI48109
| | - Daniel A. Lawrence
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI48109
| | - David W. M. Marr
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO80401
| | - Keith B. Neeves
- Department of Bioengineering, University of Colorado, Denver, Aurora, CO80045
- Department of Pediatrics, University of Colorado, Denver, Aurora, CO80045
| | - Jordan A. Shavit
- Department of Pediatrics, University of Michigan, Ann Arbor, MI48109
- Department of Human Genetics, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
15
|
Lin S, Ma H, Zhang S, Fan W, Shen C, Chen J, Jin M, Li K, He Q. The combination of paeonol, diosmetin-7- O- β- D-glucopyranoside, and 5-hydroxymethylfurfural from Trichosanthis pericarpium alleviates arachidonic acid-induced thrombosis in a zebrafish model. Front Pharmacol 2024; 15:1332468. [PMID: 38487165 PMCID: PMC10937350 DOI: 10.3389/fphar.2024.1332468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/17/2024] [Indexed: 03/17/2024] Open
Abstract
Trichosanthis fruit (TF) is a classic medicinal material obtained from Shandong, China. The peel of this fruit (Trichosanthis pericarpium, TP) is known to exert anti-thrombotic effects. However, the anti-thrombotic active components and mechanisms of TP have yet to be fully elucidated. Combined with zebrafish models and high-performance liquid chromatography (HPLC), this study evaluated the endogenous anti-thrombotic effects with the combination of three compounds from TP. First, we used HPLC to investigate the components in the water extract of TP. Next, we used the zebrafish model to investigate the anti-thrombotic activity of the three compound combinations by evaluating a range of indicators. Finally, the expression of related genes was detected by real-time quantitative polymerase chain reaction (qPCR). HPLC detected a total of eight components in TP water extract, with high levels of paeonol (Pae), diosmetin-7-O-β-D-glucopyranoside (diosmetin-7-O-glucoside), and 5-hydroxymethylfurfural (5-HMF). The most significant anti-thrombotic activity was detected when the Pae: diosmetin-7-O-glucoside:5-HMF ratio was 4:3:3. qPCR analysis revealed that the abnormal expression levels of f2, fga, fgb, vwf, ptgs1, and tbxas1 induced by arachidonic acid (AA) were improved. The combination of Pae, diosmetin-7-O-glucoside, and 5-HMF may alleviate AA-induced thrombosis by inhibiting the inflammatory reaction, coagulation cascade reaction, and arachidonic acid metabolism pathways.
Collapse
Affiliation(s)
- Shenghua Lin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Honglin Ma
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wei Fan
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chuanlin Shen
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jiayu Chen
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kun Li
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Qiuxia He
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Science and Technology Service Platform, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
16
|
Pontius MHH, Ku CJ, Osmond M, Disharoon D, Liu Y, Marr DW, Neeves KB, Shavit JA. Magnetically Powered Microwheel Thrombolysis of Occlusive Thrombi in Zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557256. [PMID: 37745422 PMCID: PMC10515822 DOI: 10.1101/2023.09.11.557256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Tissue plasminogen activator (tPA) is the only FDA approved treatment for ischemic stroke but carries significant risks, including major hemorrhage. Additional options are needed, especially in small vessel thrombi which account for ~25% of ischemic strokes. We have previously shown that tPA-functionalized colloidal microparticles can be assembled into microwheels (µwheels) and manipulated under the control of applied magnetic fields to enable rapid thrombolysis of fibrin gels in microfluidic models of thrombosis. Providing a living microfluidic analog, transparent zebrafish larvae have a highly conserved coagulation cascade that enables studies of hemostasis and thrombosis in the context of intact vasculature, clotting factors, and blood cells. Here we show that tPA-functionalized µwheels can perform rapid and targeted recanalization in vivo. This effect requires both tPA and µwheels, as minimal to no recanalization is achieved with tPA alone, µwheels alone, or tPA-functionalized microparticles in the absence of a magnetic field. We evaluated tPA-µwheels in CRISPR-generated plasminogen (plg) heterozygous and homozygous mutants and confirmed that tPA-µwheels are dose-dependent on plasminogen for lysis. We have found that magnetically powered µwheels as a targeted tPA delivery system are dramatically more efficient at plasmin-mediated thrombolysis than systemic delivery in vivo. Further development of this system in fish and mammalian models could enable a less invasive strategy for alleviating ischemia that is safer than directed thrombectomy or systemic infusion of tPA.
Collapse
Affiliation(s)
| | - Chia-Jui Ku
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Matthew Osmond
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO
| | - Dante Disharoon
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO
| | - Yang Liu
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - David W.M. Marr
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO
| | - Keith B. Neeves
- Departments of Bioengineering and Pediatrics, University of Colorado, Denver | Anschutz Medical Campus, Aurora, CO
| | - Jordan A. Shavit
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| |
Collapse
|
17
|
Satta S, Rockwood SJ, Wang K, Wang S, Mozneb M, Arzt M, Hsiai TK, Sharma A. Microfluidic Organ-Chips and Stem Cell Models in the Fight Against COVID-19. Circ Res 2023; 132:1405-1424. [PMID: 37167356 PMCID: PMC10171291 DOI: 10.1161/circresaha.122.321877] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
SARS-CoV-2, the virus underlying COVID-19, has now been recognized to cause multiorgan disease with a systemic effect on the host. To effectively combat SARS-CoV-2 and the subsequent development of COVID-19, it is critical to detect, monitor, and model viral pathogenesis. In this review, we discuss recent advancements in microfluidics, organ-on-a-chip, and human stem cell-derived models to study SARS-CoV-2 infection in the physiological organ microenvironment, together with their limitations. Microfluidic-based detection methods have greatly enhanced the rapidity, accessibility, and sensitivity of viral detection from patient samples. Engineered organ-on-a-chip models that recapitulate in vivo physiology have been developed for many organ systems to study viral pathology. Human stem cell-derived models have been utilized not only to model viral tropism and pathogenesis in a physiologically relevant context but also to screen for effective therapeutic compounds. The combination of all these platforms, along with future advancements, may aid to identify potential targets and develop novel strategies to counteract COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Sandro Satta
- Division of Cardiology and Department of Bioengineering, School of Engineering (S.S., K.W., S.W., T.K.H.), University of California, Los Angeles
- Division of Cardiology, Department of Medicine, School of Medicine (S.S., K.W., S.W., T.K.H.), University of California, Los Angeles
- Department of Medicine, Greater Los Angeles VA Healthcare System, California (S.S., K.W., S.W., T.K.H.)
| | - Sarah J. Rockwood
- Stanford University Medical Scientist Training Program, Palo Alto, CA (S.J.R.)
| | - Kaidong Wang
- Division of Cardiology and Department of Bioengineering, School of Engineering (S.S., K.W., S.W., T.K.H.), University of California, Los Angeles
- Division of Cardiology, Department of Medicine, School of Medicine (S.S., K.W., S.W., T.K.H.), University of California, Los Angeles
- Department of Medicine, Greater Los Angeles VA Healthcare System, California (S.S., K.W., S.W., T.K.H.)
| | - Shaolei Wang
- Division of Cardiology and Department of Bioengineering, School of Engineering (S.S., K.W., S.W., T.K.H.), University of California, Los Angeles
- Division of Cardiology, Department of Medicine, School of Medicine (S.S., K.W., S.W., T.K.H.), University of California, Los Angeles
- Department of Medicine, Greater Los Angeles VA Healthcare System, California (S.S., K.W., S.W., T.K.H.)
| | - Maedeh Mozneb
- Board of Governors Regenerative Medicine Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Smidt Heart Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Cancer Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Madelyn Arzt
- Board of Governors Regenerative Medicine Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Smidt Heart Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Cancer Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Tzung K. Hsiai
- Division of Cardiology and Department of Bioengineering, School of Engineering (S.S., K.W., S.W., T.K.H.), University of California, Los Angeles
- Division of Cardiology, Department of Medicine, School of Medicine (S.S., K.W., S.W., T.K.H.), University of California, Los Angeles
- Department of Medicine, Greater Los Angeles VA Healthcare System, California (S.S., K.W., S.W., T.K.H.)
| | - Arun Sharma
- Board of Governors Regenerative Medicine Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Smidt Heart Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Cancer Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
18
|
Quintal Martínez JP, Segura Campos MR. Flavonoids as a therapeutical option for the treatment of thrombotic complications associated with COVID-19. Phytother Res 2023; 37:1092-1114. [PMID: 36480428 PMCID: PMC9878134 DOI: 10.1002/ptr.7700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/18/2022] [Accepted: 11/19/2022] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 outbreak has been one of the largest public health crises globally, while thrombotic complications have emerged as an important factor contributing to mortality. Therefore, compounds that regulate the processes involved in thrombosis could represent a dietary strategy to prevent thrombotic complications involved in COVID-19. In August 2022, various databases were consulted using the keywords "flavonoids", "antiplatelet", "anticoagulant", "fibrinolytic", and "nitric oxide". Studies conducted between 2019 and 2022 were chosen. Flavonoids, at concentrations mainly between 2 and 300 μM, are capable of regulating platelet aggregation, blood coagulation, fibrinolysis, and nitric oxide production due to their action on multiple receptors and enzymes. Most of the studies have been carried out through in vitro and in silico models, and limited studies have reported the in vivo and clinical effect of flavonoids. Currently, quercetin has been the only flavonoid evaluated clinically in patients with COVID-19 for its effect on D-dimer levels. Therefore, clinical studies in COVID-19 patients analyzing the effect on platelet, coagulant, fibrinolytic, and nitric oxide parameters are required. In addition, further high-quality studies that consider cytotoxic safety and bioavailability are required to firmly propose flavonoids as a treatment for the thrombotic complications implicated in COVID-19.
Collapse
|
19
|
Narwal A, Whyte CS, Mutch NJ. Location, location, location: Fibrin, cells, and fibrinolytic factors in thrombi. Front Cardiovasc Med 2023; 9:1070502. [PMID: 36741833 PMCID: PMC9889369 DOI: 10.3389/fcvm.2022.1070502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/16/2022] [Indexed: 01/20/2023] Open
Abstract
Thrombi are heterogenous in nature with composition and structure being dictated by the site of formation, initiating stimuli, shear stress, and cellular influences. Arterial thrombi are historically associated with high platelet content and more tightly packed fibrin, reflecting the shear stress in these vessels. In contrast, venous thrombi are generally erythrocyte and fibrin-rich with reduced platelet contribution. However, these conventional views on the composition of thrombi in divergent vascular beds have shifted in recent years, largely due to recent advances in thromboectomy and high-resolution imaging. Interestingly, the distribution of fibrinolytic proteins within thrombi is directly influenced by the cellular composition and vascular bed. This in turn influences the susceptibility of thrombi to proteolytic degradation. Our current knowledge of thrombus composition and its impact on resistance to thrombolytic therapy and success of thrombectomy is advancing, but nonetheless in its infancy. We require a deeper understanding of thrombus architecture and the downstream influence on fibrinolytic susceptibility. Ultimately, this will aid in a stratified and targeted approach to tailored antithrombotic strategies in patients with various thromboembolic diseases.
Collapse
|
20
|
Wang N, Lan C, Lu H, Li L, Liao D, Xu K, Sun H, Tang Y, Wang Y, Mei J, Wei M, Wu T, Zhu H. Preventive effect and mechanism of Tibetan tea extract on thrombosis in arachidonic acid-induced zebrafish determined via RNA-seq transcriptome profiles. PLoS One 2023; 18:e0285216. [PMID: 37205684 DOI: 10.1371/journal.pone.0285216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Thrombosis is a key pathological event in cardiovascular diseases and is also the most important targeting process for their clinical management. In this study, arachidonic acid (AA) was used to induce thrombus formation in zebrafish larvae. Blood flow, red blood cell (RBCs) aggregation and cellular oxidative stress were measured to evaluate the antithrombotic effect of Tibetan tea (TT). Meanwhile, the potential molecular mechanism was further explored by transcriptome sequencing (RNA-seq). The results indicated that TT could significantly restore heart RBCs intensity of thrombotic zebrafish, whilst decreasing RBCs accumulation in the caudal vein. The transcriptome analysis revealed that the preventive effect of TT on thrombosis could be mostly attributed to changes in lipid metabolism related signaling pathways, such as fatty acid metabolism, glycerollipid metabolism, ECM-receptor interaction and steroid biosynthesis signaling pathway. This study demonstrated that Tibetan tea could alleviate thrombosis by reducing oxidative stress levels and regulating lipid metabolism.
Collapse
Affiliation(s)
- Ning Wang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
- Luzhou Laojiao Co. Ltd, Luzhou, PR China
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Chengdu Chongqing Shuangcheng Economic Circle (Luzhou) Advanced Technology Research Institute, Luzhou, China
| | - Chaohua Lan
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Huiqiang Lu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Linman Li
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Dalong Liao
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Kewei Xu
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Haiyan Sun
- Chengdu Chongqing Shuangcheng Economic Circle (Luzhou) Advanced Technology Research Institute, Luzhou, China
| | - Yongqing Tang
- Chengdu Chongqing Shuangcheng Economic Circle (Luzhou) Advanced Technology Research Institute, Luzhou, China
| | - Yumeng Wang
- Bristol Myers Squibb, Princeton, NJ, United States of America
| | - Jie Mei
- Sichuan Jixiang Tea Co., Ltd., Ya'an, China
| | - Mengting Wei
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Tao Wu
- School of Food and Biological Engineering, Xihua University, Chengdu, China
| | - Hui Zhu
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| |
Collapse
|
21
|
Direct delivery of plasmin using clot-anchoring thrombin-responsive nanoparticles for targeted fibrinolytic therapy. J Thromb Haemost 2022; 21:983-994. [PMID: 36696210 PMCID: PMC10148984 DOI: 10.1016/j.jtha.2022.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Fibrin-rich clot formation in thrombo-occlusive pathologies is currently treated by systemic administration of plasminogen activators (e.g. tPA), to convert fibrin-associated plasminogen to plasmin for fibrinolytic action. However, this conversion is not restricted to clot site only but also occurs on circulating plasminogen, causing systemic fibrinogenolysis and bleeding risks. To address this, past research has explored tPA delivery using clot-targeted nanoparticles. OBJECTIVES We designed a nanomedicine system that can (1) target clots via binding to activated platelets and fibrin, (2) package plasmin instead of tPA as a direct fibrinolytic agent, and (3) release this plasmin triggered by thrombin for clot-localized action. METHODS Clot-targeted thrombin-cleavable nanoparticles (CTNPs) were manufactured using self-assembly of peptide-lipid conjugates. Plasmin loading and its thrombin-triggered release from CTNPs were characterized by UV-visible spectroscopy. CTNP-targeting to clots under flow was studied using microfluidics. Fibrinolytic effect of CTNP-delivered plasmin was studied in vitro using BioFlux imaging and D-dimer analysis and in vivo in a zebrafish thrombosis model. RESULTS Plasmin-loaded CTNPs significantly bound to clots under shear flow and showed thrombin-triggered enhanced release of plasmin. BioFlux studies confirmed that thrombin-triggered plasmin released from CTNPs rendered fibrinolysis similar to free plasmin, further corroborated by D-dimer analysis. In the zebrafish model, CTNP-delivered plasmin accelerated time-to-recanalization, or completely prevented occlusion when infused before thrombus formation. CONCLUSION Considering that the very short circulation half-life (<1 second) of plasmin prevents its systemic use but also makes it safer without off-target drug effects, clot-targeted delivery of plasmin using CTNPs can enable safer and more efficacious fibrinolytic therapy.
Collapse
|
22
|
Wuliangye Baijiu but not ethanol reduces cardiovascular disease risks in a zebrafish thrombosis model. NPJ Sci Food 2022; 6:55. [PMID: 36470888 PMCID: PMC9723178 DOI: 10.1038/s41538-022-00170-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Understanding how Baijiu facilitates blood circulation and prevents blood stasis is crucial for revealing the mechanism of Baijiu for cardiovascular disease (CVD) risk reduction. Here we established a zebrafish thrombosis model induced using arachidonic acid (AA) to quantitatively evaluate the antithrombotic effect of Wuliangye Baijiu. The prevention and reduction effects of aspirin, Wuliangye, and ethanol on thrombosis were compared using imaging and molecular characterization. Wuliangye Baijiu reduces thrombotic risks and oxidative stress in the AA-treated zebrafish, while ethanol with the same concentration has no similar effect. The prevention and reduction effects of Wuliangye on thrombosis are attributed to the change in the metabolic and signaling pathways related to platelet aggregation and adhesion, oxidative stress and inflammatory response.
Collapse
|
23
|
Genetic duplication of tissue factor reveals subfunctionalization in venous and arterial hemostasis. PLoS Genet 2022; 18:e1010534. [PMID: 36449521 PMCID: PMC9744294 DOI: 10.1371/journal.pgen.1010534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/12/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Tissue factor (TF) is an evolutionarily conserved protein necessary for initiation of hemostasis. Zebrafish have two copies of the tissue factor gene (f3a and f3b) as the result of an ancestral teleost fish duplication event (so called ohnologs). In vivo physiologic studies of TF function have been difficult given early lethality of TF knockout in the mouse. We used genome editing to produce knockouts of both f3a and f3b in zebrafish. Since ohnologs arose through sub- or neofunctionalization, they can unmask unknown functions of non-teleost genes and could reveal whether mammalian TF has developmental functions distinct from coagulation. Here we show that a single copy of either f3a or f3b is necessary and sufficient for normal lifespan. Complete loss of TF results in lethal hemorrhage by 2-4 months despite normal embryonic and vascular development. Larval vascular endothelial injury reveals predominant roles for TFa in venous circulation and TFb in arterial circulation. Finally, we demonstrate that loss of TF predisposes to a stress-induced cardiac tamponade independent of its role in fibrin formation. Overall, our data suggest partial subfunctionalization of TFa and TFb. This multigenic zebrafish model has the potential to facilitate study of the role of TF in different vascular beds.
Collapse
|
24
|
Zhang T, Wu S, Qin H, Wu H, Liu X, Li B, Zheng X. An Optically Controlled Virtual Microsensor for Biomarker Detection In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205760. [PMID: 36074977 DOI: 10.1002/adma.202205760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Current technologies for the real-time analysis of biomarkers in vivo, such as needle-type microelectrodes and molecular imaging methods based on exogenous contrast agents, are still facing great challenges in either invasive detection or lack of active control of the imaging probes. In this study, by combining the design concepts of needle-type microelectrodes and the fluorescence imaging method, a new technique is developed for detecting biomarkers in vivo, named as "optically controlled virtual microsensor" (OCViM). OCViM is established by the organic integration of a specially shaped laser beam and fluorescent nanoprobe, which serve as the virtual handle and sensor tip, respectively. The laser beam can trap and manipulate the nanoprobe in a programmable manner, and meanwhile excite it to generate fluorescence emission for biosensing. On this basis, fully active control of the nanoprobe is achieved noninvasively in vivo, and multipoint detection can be realized at sub-micrometer resolution by shifting a nanoprobe among multiple positions. By using OCViM, the overexpression and heterogenous distribution of biomarkers in the thrombus is studied in living zebrafish, which is further utilized for the evaluation of antithrombotic drugs. OCViM may provide a powerful tool for the mechanism study of thrombus progression and the evaluation of antithrombotic drugs.
Collapse
Affiliation(s)
- Tiange Zhang
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Shuai Wu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Haifeng Qin
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Huaying Wu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Xiaoshuai Liu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Xianchuang Zheng
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
25
|
Liu B, Zhang T, Xie ZT, Hong ZC, Lu Y, Long YM, Ji CZ, Liu YT, Yang YF, Wu HZ. Effective components and mechanism analysis of anti-platelet aggregation effect of Justicia procumbens L. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115392. [PMID: 35589019 DOI: 10.1016/j.jep.2022.115392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/30/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Justicia procumbens L. is a traditional Chinese medicine, first recorded in "Shen Nong's Herbal Classic", for the treatment of lumbar pain and fever. As a widely distributed herb, it has also been documented in India, Nepal, and Malaysia. In "Tang Materia Medica", a famous medicinal book of Tang Dynasty in ancient China, it was first used to treat diseases associated with blood stasis. Blood stasis syndrome is closely related to thrombus formation and platelet aggregation. Although some compounds isolated from this plant have anti-platelet aggregation effects, the main chemical components and mechanism of J. procumbens in terms of these effects are little known. AIMS OF THE STUDY Through in vivo and in vitro experiments, this studsy revealed the characteristic components and action mechanism of anti-platelet aggregation by J. procumbens from an overall perspective. MATERIALS AND METHODS The effective crude extracts of the whole plant were screened via an in vitro anti-platelet aggregation test. After incubating these extracts with apheresis platelets, high affinity compounds were detected by HPLC-MS and regulatory genes were detected using gene chips. The effective components and potential target proteins were analyzed using computational docking technology. Furthermore, the compound with the strongest predicted activity was evaluated in vivo via an anti-thrombotic test. RESULTS Integrin aⅡbβ3, PKCα, PI3Kγ, and mitogen-activated protein kinase 14 were found to be potential targets. Justicidin B, tuberculatin, chinensinaphthol methyl ether, and neojusticin B were effective compounds that inhibited human platelet aggregation by suppressing Gq-PLC-PKC and Gi-PI3K-MAPK signaling pathways. Among the compounds that bind to platelets, justicidin B showed the strongest virtual binding force. The test of carotid artery thrombosis induced by ferric chloride in SD rats confirmed that justicidin B inhibited thrombus formation. CONCLUSION Experimental investigation showed that arylnaphthalene lignan aglycones with one methylenedioxy group and two methoxy groups are effective components for anti-platelet aggregation by J. procumbens. These compounds inhibit Gq-PLC-PKC and Gi-PI3K-MAPK signaling pathways by suppressing the expression of genes such as ITGB3, PRKCA, PIK3CG, and MAPK14. These results reflected the characteristics of multi-component and multi-target synergistic treatment of Chinese medicine.
Collapse
Affiliation(s)
- Bo Liu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, 430065, China.
| | - Ting Zhang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Zhou-Tao Xie
- Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, 430015, China.
| | - Zong-Chao Hong
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Yi Lu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Yu-Meng Long
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Chen-Zi Ji
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Ya-Ting Liu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Yan-Fang Yang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, 430065, China; Collaborative Innovation Center of Traditional Chinese Medicine of New Products for Geriatrics Hubei Province, Wuhan, 430065, China.
| | - He-Zhen Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, 430065, China; Collaborative Innovation Center of Traditional Chinese Medicine of New Products for Geriatrics Hubei Province, Wuhan, 430065, China.
| |
Collapse
|
26
|
Raghunath A, Ferguson AC, Shavit JA. Fishing for answers to hemostatic and thrombotic disease: Genome editing in zebrafish. Res Pract Thromb Haemost 2022; 6:e12759. [PMID: 35949884 PMCID: PMC9354590 DOI: 10.1002/rth2.12759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 01/22/2023] Open
Abstract
Over the past two decades, the teleost vertebrate Danio rerio (zebrafish) has emerged as a model for hemostasis and thrombosis. At genomic and functional levels, there is a high degree of conservation of the hemostatic system with that of mammals. Numerous features of the fish model offer unique advantages for investigating hemostasis and thrombosis. These include high fecundity, rapid and external development, optical transparency, and extensive functional homology with mammalian hemostasis and thrombosis. Zebrafish are particularly suited to genome-wide mutagenesis experiments for the study of modifier genes. They are also amenable to whole-organism small-molecule screens, a feature that is exceptionally relevant to hemostasis and thrombosis. Zebrafish coagulation factor knockouts that are in utero or neonatal lethal in mammals survive into adulthood before succumbing to hemorrhage or thrombosis, enabling studies not possible in mammals. In this illustrated review, we outline how zebrafish have been employed for the study of hemostasis and thrombosis using modern genome editing techniques, coagulation assays in larvae, and in vivo evaluation of patient-specific variants to infer causality and demonstrate pathogenicity. Zebrafish hemostasis and thrombosis models will continue to serve as a clinically directed basic research tool and powerful alternative to mammals for the development of new diagnostic markers and novel therapeutics for coagulation disorders through high-throughput genetic and small-molecule studies.
Collapse
Affiliation(s)
- Azhwar Raghunath
- Department of PediatricsUniversity of Michigan School of MedicineAnn ArborMichiganUSA
| | - Allison C. Ferguson
- Department of PediatricsUniversity of Michigan School of MedicineAnn ArborMichiganUSA
| | - Jordan A. Shavit
- Department of PediatricsUniversity of Michigan School of MedicineAnn ArborMichiganUSA
- Department of Human GeneticsUniversity of Michigan School of MedicineAnn ArborMichiganUSA
| |
Collapse
|
27
|
Bekdemir A, Tanner EEL, Kirkpatrick J, Soleimany AP, Mitragotri S, Bhatia SN. Ionic Liquid-Mediated Transdermal Delivery of Thrombosis-Detecting Nanosensors. Adv Healthc Mater 2022; 11:e2102685. [PMID: 35182107 PMCID: PMC11468213 DOI: 10.1002/adhm.202102685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/23/2022] [Indexed: 01/14/2023]
Abstract
Blood clotting disorders such as pulmonary embolism are associated with high morbidity and mortality. A large portion of thrombotic events occur postoperative and after hospital discharge. Therefore, easily applicable, noninvasive, and long-term monitoring of thrombosis occurrence is critical for urgent clinical intervention. Here, the use is proposed of ionic liquids as a skin transport facilitator to deliver thrombin-sensitive nanosensors that enable prolonged monitoring of pulmonary embolism. Co-formulation of nanosensors with choline and geranic acid (CAGE) ionic liquids demonstrates significant transdermal diffusion into the dermis of the skin and provides sustained release into the blood throughout 72 h. Upon reaching the systemic circulation, the nanosensors release reporter molecules into the urine by responding to activation of the clotting cascade and retain a diagnostic power for 24 h in an acute pulmonary embolism mouse model. These results demonstrate a proof-of-concept disease monitoring system that can be topically applied by patients and potentially reduce mortality and high cost of hospitalization.
Collapse
Affiliation(s)
- Ahmet Bekdemir
- Harvard–MIT Division of Health Sciences and TechnologyInstitute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Eden E. L. Tanner
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Now at Department of Chemistry and BiochemistryUniversity of MississippiOxfordMS38677USA
| | - Jesse Kirkpatrick
- Harvard–MIT Division of Health Sciences and TechnologyInstitute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA02139USA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ava P. Soleimany
- Harvard–MIT Division of Health Sciences and TechnologyInstitute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA02139USA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Harvard Graduate Program in BiophysicsHarvard UniversityCambridgeMA02138USA
| | - Samir Mitragotri
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute of Biologically Inspired EngineeringHarvard UniversityCambridgeMA02138USA
| | - Sangeeta N. Bhatia
- Harvard–MIT Division of Health Sciences and TechnologyInstitute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA02139USA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeMA02139USA
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMA02139USA
- Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
- Wyss InstituteHarvard UniversityBostonMA02115USA
- Howard Hughes Medical InstituteCambridgeMA02138USA
| |
Collapse
|
28
|
Mutch NJ, Walters S, Gardiner EE, McCarty OJT, De Meyer SF, Schroeder V, Meijers JCM. Basic science research opportunities in thrombosis and hemostasis: Communication from the SSC of the ISTH. J Thromb Haemost 2022; 20:1496-1506. [PMID: 35352482 PMCID: PMC9325489 DOI: 10.1111/jth.15718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
Abstract
Bleeding and thrombosis are major clinical problems with high morbidity and mortality. Treatment modalities for these diseases have improved in recent years, but there are many clinical questions remaining and a need to advance diagnosis, management, and therapeutic options. Basic research plays a fundamental role in understanding normal and disease processes, yet this sector has observed a steady decline in funding prospects thereby hindering support for studies of mechanisms of disease and therapeutic development opportunities. With the financial constraints faced by basic scientists, the ISTH organized a basic science task force (BSTF), comprising Scientific and Standardization Committee subcommittee chairs and co-chairs, to identify research opportunities for basic science in hemostasis and thrombosis. The goal of the BSTF was to develop a set of recommended priorities to build support in the thrombosis and hemostasis community and to inform ISTH basic science programs and policy making. The BSTF identified three principal opportunity areas that were of significant overarching relevance: mechanisms causing bleeding, innate immunity and thrombosis, and venous thrombosis. Within these, five fundamental research areas were highlighted: blood rheology, platelet biogenesis, cellular contributions to thrombosis and hemostasis, structure-function protein analyses, and visualization of hemostasis. This position paper discusses the importance and relevance of these opportunities and research areas, and the rationale for their inclusion. These findings have implications for the future of fundamental research in thrombosis and hemostasis to make transformative scientific discoveries and tackle key clinical questions. This will permit better understanding, prevention, diagnosis, and treatment of hemostatic and thrombotic conditions.
Collapse
Affiliation(s)
- Nicola J. Mutch
- Aberdeen Cardiovascular & Diabetes CentreInstitute of Medical SciencesSchool of MedicineMedical Sciences and NutritionUniversity of AberdeenAberdeenUK
| | | | - Elizabeth E. Gardiner
- John Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Owen J. T. McCarty
- Departments of Biomedical Engineering and MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Simon F. De Meyer
- Laboratory for Thrombosis ResearchKU Leuven Campus Kulak KortrijkKortrijkBelgium
| | - Verena Schroeder
- Department for BioMedical Research (DBMR)University of BernBernSwitzerland
| | - Joost C. M. Meijers
- Department of Molecular HematologySanquin ResearchAmsterdamthe Netherlands
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular SciencesAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
29
|
Heitmeier S, Visser M, Tersteegen A, Dietze‐Torres J, Glunz J, Gerdes C, Laux V, Stampfuss J, Roehrig S. Pharmacological profile of asundexian, a novel, orally bioavailable inhibitor of factor XIa. J Thromb Haemost 2022; 20:1400-1411. [PMID: 35289054 PMCID: PMC9313898 DOI: 10.1111/jth.15700] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Activated coagulation factor XI (FXIa) contributes to the development and propagation of thrombosis but plays only a minor role in hemostasis; therefore, it is an attractive antithrombotic target. OBJECTIVES To evaluate the pharmacology of asundexian (BAY 2433334), a small molecule inhibitor targeting FXIa, in vitro and in various rabbit models. METHODS The effects of asundexian on FXIa activity, selectivity versus other proteases, plasma thrombin generation, and clotting assays were evaluated. Antithrombotic effects were determined in FeCl2 - and arterio-venous (AV) shunt models. Asundexian was administered intravenously or orally, before or during thrombus formation, and with or without antiplatelet drugs (aspirin and ticagrelor). Potential effects of asundexian on bleeding were evaluated in ear-, gum-, and liver injury models. RESULTS Asundexian inhibited human FXIa with high potency and selectivity. It reduced FXIa activity, thrombin generation triggered by contact activation or low concentrations of tissue factor, and prolonged activated partial thromboplastin time in human, rabbit, and various other species, but not in rodents. In the FeCl2 -injury models, asundexian reduced thrombus weight versus control, and in the arterial model when added to aspirin and ticagrelor. In the AV shunt model, asundexian reduced thrombus weight when administered before or during thrombus formation. Asundexian alone or in combination with antiplatelet drugs did not increase bleeding times or blood loss in any of the models studied. CONCLUSIONS Asundexian is a potent oral FXIa inhibitor with antithrombotic efficacy in arterial and venous thrombosis models in prevention and intervention settings, without increasing bleeding.
Collapse
Affiliation(s)
- Stefan Heitmeier
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Mayken Visser
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | | | | | - Julia Glunz
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Christoph Gerdes
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Volker Laux
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Jan Stampfuss
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Susanne Roehrig
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| |
Collapse
|
30
|
Fallatah W, De R, Burks D, Azad RK, Jagadeeswaran P. Analysis of transcribed sequences from young and mature zebrafish thrombocytes. PLoS One 2022; 17:e0264776. [PMID: 35320267 PMCID: PMC8942222 DOI: 10.1371/journal.pone.0264776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/17/2022] [Indexed: 01/14/2023] Open
Abstract
The zebrafish is an excellent model system to study thrombocyte function and development. Due to the difficulties in separating young and mature thrombocytes, comparative transcriptomics between these two cell types has not been performed. It is important to study these differences in order to understand the mechanism of thrombocyte maturation. Here, we performed single-cell RNA sequencing of the young and mature zebrafish thrombocytes and compared the two datasets for young and mature thrombocyte transcripts. We found a total of 9143 genes expressed cumulatively in both young and mature thrombocytes, and among these, 72% of zebrafish thrombocyte-expressed genes have human orthologs according to the Ensembl human genome annotation. We also found 397 uniquely expressed genes in young and 2153 uniquely expressed genes in mature thrombocytes. Of these 397 and 2153 genes, 272 and 1620 corresponded to human orthologous genes, respectively. Of all genes expressed in both young and mature thrombocytes, 4224 have been reported to be expressed in human megakaryocytes, and 1603 were found in platelets. Among these orthologs, 156 transcription factor transcripts in thrombocytes were found in megakaryocytes and 60 transcription factor transcripts were found in platelets including a few already known factors such as Nfe2 and Nfe212a (related to Nfe2) that are present in both megakaryocytes, and platelets. These results indicate that thrombocytes have more megakaryocyte features and since platelets are megakaryocyte fragments, platelets also appear to be thrombocyte equivalents. In conclusion, our study delineates the differential gene expression patterns of young and mature thrombocytes, highlighting the processes regulating thrombocyte maturation. Future knockdown studies of these young and mature thrombocyte-specific genes are feasible and will provide the basis for understanding megakaryocyte maturation.
Collapse
Affiliation(s)
- Weam Fallatah
- Department of Biological Sciences, University of North Texas, Denton, TX, United States of America
| | - Ronika De
- Department of Biological Sciences, University of North Texas, Denton, TX, United States of America
- BioDiscovery Institute, University of North Texas, Denton, TX, United States of America
| | - David Burks
- Department of Biological Sciences, University of North Texas, Denton, TX, United States of America
- BioDiscovery Institute, University of North Texas, Denton, TX, United States of America
| | - Rajeev K. Azad
- Department of Biological Sciences, University of North Texas, Denton, TX, United States of America
- BioDiscovery Institute, University of North Texas, Denton, TX, United States of America
- Department of Mathematics, University of North Texas, Denton, TX, United States of America
| | - Pudur Jagadeeswaran
- Department of Biological Sciences, University of North Texas, Denton, TX, United States of America
- * E-mail:
| |
Collapse
|
31
|
Carminita E, Crescence L, Panicot-Dubois L, Dubois C. Role of Neutrophils and NETs in Animal Models of Thrombosis. Int J Mol Sci 2022; 23:ijms23031411. [PMID: 35163333 PMCID: PMC8836215 DOI: 10.3390/ijms23031411] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Thrombosis is one of the major causes of mortality worldwide. Notably, it is not only implicated in cardiovascular diseases, such as myocardial infarction (MI), stroke, and pulmonary embolism (PE), but also in cancers. Understanding the cellular and molecular mechanisms involved in platelet thrombus formation is a major challenge for scientists today. For this purpose, new imaging technologies (such as confocal intravital microscopy, electron microscopy, holotomography, etc.) coupled with animal models of thrombosis (mouse, rat, rabbit, etc.) allow a better overview of this complex physiopathological process. Each of the cellular components is known to participate, including the subendothelial matrix, the endothelium, platelets, circulating cells, and, notably, neutrophils. Initially known as immune cells, neutrophils have been considered to be part of the landscape of thrombosis for more than a decade. They participate in this biological process through their expression of tissue factor (TF) and protein disulfide isomerase (PDI). Moreover, highly activated neutrophils are described as being able to release their DNA and thus form chromatin networks known as “neutrophil extracellular traps” (NETs). Initially, described as “dead sacrifices for a good cause” that prevent the dissemination of bacteria in the body, NETs have also been studied in several human pathologies, such as cardiovascular and respiratory diseases. Many articles suggest that they are involved in platelet thrombus formation and the activation of the coagulation cascade. This review presents the models of thrombosis in which neutrophils and NETs are involved and describes their mechanisms of action. We have even highlighted the medical diagnostic advances related to this research.
Collapse
Affiliation(s)
- Estelle Carminita
- Aix Marseille Univ, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (E.C.); (L.C.); (C.D.)
- Aix Marseille University, PIVMI (Plateforme d’Imagerie Vasculaire et de Microscopie Intravitale), C2VN (Center for CardioVascular and Nutrition Research), 13385 Marseille, France
| | - Lydie Crescence
- Aix Marseille Univ, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (E.C.); (L.C.); (C.D.)
- Aix Marseille University, PIVMI (Plateforme d’Imagerie Vasculaire et de Microscopie Intravitale), C2VN (Center for CardioVascular and Nutrition Research), 13385 Marseille, France
| | - Laurence Panicot-Dubois
- Aix Marseille Univ, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (E.C.); (L.C.); (C.D.)
- Aix Marseille University, PIVMI (Plateforme d’Imagerie Vasculaire et de Microscopie Intravitale), C2VN (Center for CardioVascular and Nutrition Research), 13385 Marseille, France
- Correspondence:
| | - Christophe Dubois
- Aix Marseille Univ, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (E.C.); (L.C.); (C.D.)
- Aix Marseille University, PIVMI (Plateforme d’Imagerie Vasculaire et de Microscopie Intravitale), C2VN (Center for CardioVascular and Nutrition Research), 13385 Marseille, France
| |
Collapse
|
32
|
Manz XD, Szulcek R, Pan X, Symersky P, Dickhoff C, Majolée J, Kremer V, Michielon E, Jordanova ES, Radonic T, Bijnsdorp IV, Piersma SR, Pham TV, Jimenez CR, Vonk Noordegraaf A, de Man FS, Boon RA, Voorberg J, Hordijk PL, Aman J, Bogaard HJ. Epigenetic Modification of the VWF Promotor Drives Platelet Aggregation on the Pulmonary Endothelium in Chronic Thromboembolic Pulmonary Hypertension. Am J Respir Crit Care Med 2022; 205:806-818. [PMID: 35081007 DOI: 10.1164/rccm.202109-2075oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Von Willebrand Factor (VWF) mediates platelet adhesion during thrombosis. While chronic thromboembolic pulmonary hypertension (CTEPH) is associated with increased plasma levels of VWF, the role of this protein in CTEPH has remained enigmatic. OBJECTIVE To identify the role of VWF in CTEPH. METHODS CTEPH-specific patient plasma and pulmonary endarterectomy material from CTEPH patients were used to study the relationship between inflammation, VWF expression and pulmonary thrombosis. Cell culture findings were validated in human tissue and proteomics and chromatin immunoprecipitation were used to investigate the underlying mechanism of CTEPH. MEASUREMENTS AND MAIN RESULTS VWF is increased in plasma and in the pulmonary endothelium of CTEPH patients. In vitro, the increase in VWF gene expression and the higher release of VWF protein upon endothelial activation resulted in elevated platelet adhesion to CTEPH endothelium. Proteomic analysis revealed that Nuclear Factor κB 2 (NFκB2) was significantly increased in CTEPH. We demonstrate reduced histone tri-methylation and increased histone acetylation of the VWF promotor in CTEPH endothelium, facilitating binding of NFκB2 to the VWF promotor and driving VWF transcription. Genetic interference of NFκB2 normalized the high VWF RNA expression levels and reversed the pro-thrombotic phenotype observed in CTEPH-PAEC. CONCLUSION Epigenetic regulation of the VWF promotor contributes to the creation of a local environment that favors in situ thrombosis in the pulmonary arteries. It reveals a direct molecular link between inflammatory pathways and platelet adhesion in the pulmonary vascular wall, emphasizing a possible role of in situ thrombosis in the development or progression of CTEPH.
Collapse
Affiliation(s)
- Xue D Manz
- Amsterdam UMC Locatie VUmc, 1209, Pulmonary Medicine, Amsterdam, Netherlands
| | - Robert Szulcek
- Charite Universitatsmedizin Berlin, 14903, Physiology, Berlin, Germany
| | - Xiaoke Pan
- Amsterdam UMC Locatie VUmc, 1209, Pulmonary Medicine, Amsterdam, Netherlands
| | - Petr Symersky
- Amsterdam UMC Locatie VUmc, 1209, Cardio-thoracic Surgery, Amsterdam, Netherlands
| | - Chris Dickhoff
- Amsterdam UMC Locatie VUmc, 1209, Cardio-thoracic Surgery, Amsterdam, Netherlands
| | - Jisca Majolée
- Amsterdam UMC Locatie VUmc, 1209, Physiology, Amsterdam, Netherlands
| | - Veerle Kremer
- Amsterdam UMC Locatie VUmc, 1209, Physiology, Amsterdam, Netherlands
| | - Elisabetta Michielon
- Amsterdam UMC Locatie VUmc, 1209, Molecular Cell Biology and Immunology, Amsterdam, Netherlands
| | - Ekaterina S Jordanova
- Amsterdam UMC Locatie VUmc, 1209, Center for Gynecologic Oncology Amsterdam, Amsterdam, Netherlands
| | - Teodora Radonic
- Amsterdam UMC Locatie VUmc, 1209, Pathology, Amsterdam, Netherlands
| | - Irene V Bijnsdorp
- Amsterdam UMC Locatie VUmc, 1209, Medical Oncology, Amsterdam, Netherlands
| | - Sander R Piersma
- Amsterdam UMC Locatie VUmc, 1209, Medical Oncology, Amsterdam, Netherlands
| | - Thang V Pham
- Amsterdam UMC Locatie VUmc, 1209, Medical Oncology, Amsterdam, Netherlands
| | - Connie R Jimenez
- Amsterdam UMC Locatie VUmc, 1209, Medical Oncology, Amsterdam, Netherlands
| | - Anton Vonk Noordegraaf
- Amsterdam UMC Locatie VUmc, 1209, Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Frances S de Man
- Amsterdam UMC Locatie VUmc, 1209, Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Reinier A Boon
- Amsterdam UMC Locatie VUmc, 1209, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Jan Voorberg
- Sanquin Research, 159217, Molecular Hematology, Amsterdam, Netherlands
| | | | - Jurjan Aman
- Amsterdam UMC - Locatie VUMC, 1209, Pulmonary Diseases, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Harm Jan Bogaard
- Vrije Universiteit Amsterdam, 1190, Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands;
| |
Collapse
|
33
|
An Overview of Zebrafish Modeling Methods in Drug Discovery and Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1387:145-169. [PMID: 34961915 DOI: 10.1007/5584_2021_684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Animal studies are recognized as a significant step forward in the bridging between drug discovery and clinical applications. Animal models, due to their relative genetic, molecular, physiological, and even anatomical similarities to humans, can provide a suitable platform for unraveling the mechanisms underlying human diseases and discovering new therapeutic approaches as well. Recently, zebrafish has attracted attention as a valuable experimental and pharmacological model in drug discovery and development studies due to its prominent characteristics such as the high degree of genetic similarity with humans, genetic manipulability, and prominent clinical features. Since advancing a theory to a valid and reliable observation requires the manipulation of animals, it is, therefore, essential to use efficient modeling methods appropriate to the different aspects of experimental conditions. In this context, applying several various approaches such as using chemicals, pathogens, and genetic manipulation approaches allows zebrafish development into a preferable model that mimics some human disease pathophysiology. Thus, such modeling approaches not only can provide a framework for a comprehensive understanding of the human disease mechanisms that have a counterpart in zebrafish but also can pave the way for discovering new drugs that are accompanied by higher amelioration effects on different human diseases.
Collapse
|
34
|
Lan Z, Zhang Y, Sun Y, Wang L, Huang Y, Cao H, Wang S, Meng J. Identifying of Anti-Thrombin Active Components From Curcumae Rhizoma by Affinity-Ultrafiltration Coupled With UPLC-Q-Exactive Orbitrap/MS. Front Pharmacol 2021; 12:769021. [PMID: 34955839 PMCID: PMC8703108 DOI: 10.3389/fphar.2021.769021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/11/2021] [Indexed: 01/14/2023] Open
Abstract
Recent studies concerning products that originate from natural plants have sought to clarify active ingredients, which both explains the mechanisms of the function and aids in quality control during production. As a traditional functional plant, Curcumae Rhizoma (CR) has been proven to be effective in promoting blood circulation and removing blood stasis. However, the components that play a role in its huge compound library are still unclear. The present study aimed to develop a high-throughput screening method to identify thrombin inhibitors in CR and validate them by in vitro and in vivo experiments. The effect of CR on thrombin in HUVECs cells was determined by ELISA, then an affinity-ultrafiltration-UPLC-Q-Exactive Orbitrap/MS approach was applied. Agatroban and adenosine were used as positive and negative drugs respectively to verify the reliability of the established method. The in vitro activity of the compounds was determined by specific substrate S-2238. The in vivo effect of the active ingredients was determined using zebrafish. Molecular docking was used to understand the internal interactions between compounds and enzymes. ELISA results showed that CR had an inhibitory effect on thrombin. The screening method established in this paper is reliable, by which a total of 15 active compounds were successfully identified. This study is the first to report that C7, 8, and 11 have in vitro thrombin-inhibitory activity and significantly inhibit thrombosis in zebrafish models at a safe dose. Molecular docking studies were employed to analyze the possible active binding sites, with the results suggesting that compound 16 is likely a better thrombin inhibitor compared with the other compounds. Based on the affinity-ultrafiltration-UPLC-Q-Exactive Orbitrap/MS approach, a precisely targeted therapy method using bio-active compounds from CR might be successfully established, which also provides a valuable reference for targeted therapy, mechanism exploration, and the quality control of traditional herbal medicine.
Collapse
Affiliation(s)
- Zhenwei Lan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Ying Zhang
- College of Pharmacy, Jinan University, Research Center for Traditional Chinese Medicine of Lingnan, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| | - Yue Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Lvhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Yuting Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Hui Cao
- College of Pharmacy, Jinan University, Research Center for Traditional Chinese Medicine of Lingnan, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| | - Shumei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Jiang Meng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| |
Collapse
|
35
|
Liao L, Zhou M, Wang J, Xue X, Deng Y, Zhao X, Peng C, Li Y. Identification of the Antithrombotic Mechanism of Leonurine in Adrenalin Hydrochloride-Induced Thrombosis in Zebrafish via Regulating Oxidative Stress and Coagulation Cascade. Front Pharmacol 2021; 12:742954. [PMID: 34803688 PMCID: PMC8600049 DOI: 10.3389/fphar.2021.742954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/20/2021] [Indexed: 01/11/2023] Open
Abstract
Thrombosis is a general pathological phenomenon during severe disturbances to homeostasis, which plays an essential role in cardiovascular and cerebrovascular diseases. Leonurine (LEO), isolated from Leonurus japonicus Houtt, showes a crucial role in anticoagulation and vasodilatation. However, the properties and therapeutic mechanisms of this effect have not yet been systematically elucidated. Therefore, the antithrombotic effect of LEO was investigated in this study. Hematoxylin-Eosin staining was used to detect the thrombosis of zebrafish tail. Fluorescence probe was used to detect the reactive oxygen species. The biochemical indexes related to oxidative stress (lactate dehydrogenase, malondialdehyde, superoxide dismutase and glutathione) and vasodilator factor (endothelin-1 and nitric oxide) were analyzed by specific commercial assay kits. Besides, we detected the expression of related genes (fga, fgb, fgg, pkcα, pkcβ, vwf, f2) and proteins (PI3K, phospho-PI3K, Akt, phospho-Akt, ERK, phospho-ERK FIB) related to the anticoagulation and fibrinolytic system by quantitative reverse transcription and western blot. Beyond that, metabolomic analyses were carried out to identify the expressions of metabolites associated with the anti-thrombosis mechanism of LEO. Our in vivo experimental results showed that LEO could improve the oxidative stress injury, abnormal platelet aggregation and coagulation dysfunction induced by adrenalin hydrochloride. Moreover, LEO restored the modulation of amino acids and inositol metabolites which are reported to alleviate the thrombus formation. Collectively, LEO attenuates adrenalin hydrochloride-induced thrombosis partly via modulating oxidative stress, coagulation cascade and platelet activation and amino acid and inositol metabolites.
Collapse
Affiliation(s)
- Li Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Mengting Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Ying Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| |
Collapse
|
36
|
Balkrishna A, Tomer M, Manik M, Srivastava J, Dev R, Haldar S, Varshney A. Chyawanprash, An Ancient Indian Ayurvedic Medicinal Food, Regulates Immune Response in Zebrafish Model of Inflammation by Moderating Inflammatory Biomarkers. Front Pharmacol 2021; 12:751576. [PMID: 34867361 PMCID: PMC8633414 DOI: 10.3389/fphar.2021.751576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023] Open
Abstract
The time-tested Ayurvedic medicinal food, Chyawanprash, has been a part of the Indian diet since ancient times. It is an extremely concentrated mixture of extracts from medicinal herbs and processed minerals, known for its immunity boosting, rejuvenating, and anti-oxidative effects. In this study, we have evaluated the anti-inflammatory potential of Patanjali Special Chyawanprash (PSCP) using the zebrafish model of inflammation. Zebrafish were fed on PSCP-infused pellets at stipulated doses for 13 days before inducing inflammation through lipopolysaccharide (LPS) injection. The test subjects were monitored for inflammatory pathologies like behavioral fever, hyperventilation, skin hemorrhage, locomotory agility, and morphological anomaly. PSCP exerted a strong prophylactic effect on the zebrafish that efficiently protected them from inflammatory manifestations at a human equivalent dose. Expression levels of pro-inflammatory cytokines, like interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and interleukin-1 beta (IL-1β), were also reduced in the LPS-stimulated zebrafish fed on PSCP-infused pellets. Skin hemorrhage, hyperventilation, and loss of caudal fins are characteristics of LPS-induced inflammation in zebrafish. PSCP prophylactically ameliorated skin hemorrhage, restored normal respiration, and prevented loss of caudal fin in inflamed zebrafish. Under in vitro conditions, PSCP reduced IL-6 and TNF-α secretion by THP-1 macrophages in a dose-dependent manner by targeting NF-κB signaling, as evident from the secreted embryonic alkaline phosphatase (SEAP) reporter assay. These medicinal benefits of PSCP can be attributed to its constitutional bioactive components. Taken together, these observations provide in vivo validation of the anti-inflammatory property and in vitro insight into the mode-of-action of Chyawanprash, a traditionally described medicinal food.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Governed By Patanjali Research Foundation Trust, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
| | - Meenu Tomer
- Drug Discovery and Development Division, Patanjali Research Institute, Governed By Patanjali Research Foundation Trust, Haridwar, India
| | - Moumita Manik
- Drug Discovery and Development Division, Patanjali Research Institute, Governed By Patanjali Research Foundation Trust, Haridwar, India
| | - Jyotish Srivastava
- Drug Discovery and Development Division, Patanjali Research Institute, Governed By Patanjali Research Foundation Trust, Haridwar, India
| | - Rishabh Dev
- Drug Discovery and Development Division, Patanjali Research Institute, Governed By Patanjali Research Foundation Trust, Haridwar, India
| | - Swati Haldar
- Drug Discovery and Development Division, Patanjali Research Institute, Governed By Patanjali Research Foundation Trust, Haridwar, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Governed By Patanjali Research Foundation Trust, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
37
|
Zheng Y, Zhao J, Li J, Guo Z, Sheng J, Ye X, Jin G, Wang C, Chai W, Yan J, Liu D, Liang X. SARS-CoV-2 spike protein causes blood coagulation and thrombosis by competitive binding to heparan sulfate. Int J Biol Macromol 2021; 193:1124-1129. [PMID: 34743814 PMCID: PMC8553634 DOI: 10.1016/j.ijbiomac.2021.10.112] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/24/2022]
Abstract
Thrombotic complication has been an important symptom in critically ill patients with COVID-19. It has not been clear whether the virus spike (S) protein can directly induce blood coagulation in addition to inflammation. Heparan sulfate (HS)/heparin, a key factor in coagulation process, was found to bind SARS-CoV-2 S protein with high affinity. Herein, we found that the S protein can competitively inhibit the bindings of antithrombin and heparin cofactor II to heparin/HS, causing abnormal increase in thrombin activity. SARS-CoV-2 S protein at a similar concentration (~10 μg/mL) as the viral load in critically ill patients can cause directly blood coagulation and thrombosis in zebrafish model. Furthermore, exogenous heparin/HS can significantly reduce coagulation caused by S protein, pointing to a potential new direction to elucidate the etiology of the virus and provide fundamental support for anticoagulant therapy especially for the COVID-19 critically ill patients.
Collapse
Affiliation(s)
- Yi Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jinxiang Zhao
- Nantong Laboratory of Development and Diseases, School of Life Science, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Nantong University, Nantong 226019, China
| | - Jiaqi Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhimou Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiajing Sheng
- Nantong Laboratory of Development and Diseases, School of Life Science, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Nantong University, Nantong 226019, China
| | - Xianlong Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gaowa Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chaoran Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wengang Chai
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| | - Jingyu Yan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Dong Liu
- Nantong Laboratory of Development and Diseases, School of Life Science, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Nantong University, Nantong 226019, China.
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
38
|
Marín-Quílez A, García-Tuñón I, Fernández-Infante C, Hernández-Cano L, Palma-Barqueros V, Vuelta E, Sánchez-Martín M, González-Porras JR, Guerrero C, Benito R, Rivera J, Hernández-Rivas JM, Bastida JM. Characterization of the Platelet Phenotype Caused by a Germline RUNX1 Variant in a CRISPR/Cas9-Generated Murine Model. Thromb Haemost 2021; 121:1193-1205. [PMID: 33626581 DOI: 10.1055/s-0041-1723987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
RUNX1-related disorder (RUNX1-RD) is caused by germline variants affecting the RUNX1 gene. This rare, heterogeneous disorder has no specific clinical or laboratory phenotype, making genetic diagnosis necessary. Although international recommendations have been established to classify the pathogenicity of variants, identifying the causative alteration remains a challenge in RUNX1-RD. Murine models may be useful not only for definitively settling the controversy about the pathogenicity of certain RUNX1 variants, but also for elucidating the mechanisms of molecular pathogenesis. Therefore, we developed a knock-in murine model, using the CRISPR/Cas9 system, carrying the RUNX1 p.Leu43Ser variant (mimicking human p.Leu56Ser) to study its pathogenic potential and mechanisms of platelet dysfunction. A total number of 75 mice were generated; 25 per genotype (RUNX1WT/WT, RUNX1WT/L43S, and RUNX1L43S/L43S). Platelet phenotype was assessed by flow cytometry and confocal microscopy. On average, RUNX1L43S/L43S and RUNX1WT/L43S mice had a significantly longer tail-bleeding time than RUNX1WT/WT mice, indicating the variant's involvement in hemostasis. However, only homozygous mice displayed mild thrombocytopenia. RUNX1L43S/L43S and RUNX1WT/L43S displayed impaired agonist-induced spreading and α-granule release, with no differences in δ-granule secretion. Levels of integrin αIIbβ3 activation, fibrinogen binding, and aggregation were significantly lower in platelets from RUNX1L43S/L43S and RUNX1WT/L43S using phorbol 12-myristate 13-acetate (PMA), adenosine diphosphate (ADP), and high thrombin doses. Lower levels of PKC phosphorylation in RUNX1L43S/L43S and RUNX1WT/L43S suggested that the PKC-signaling pathway was impaired. Overall, we demonstrated the deleterious effect of the RUNX1 p.Leu56Ser variant in mice via the impairment of integrin αIIbβ3 activation, aggregation, α-granule secretion, and platelet spreading, mimicking the phenotype associated with RUNX1 variants in the clinical setting.
Collapse
Affiliation(s)
- Ana Marín-Quílez
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - Ignacio García-Tuñón
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - Cristina Fernández-Infante
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - Luis Hernández-Cano
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - Verónica Palma-Barqueros
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Murcia, Spain
| | - Elena Vuelta
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
- Transgenic Facility, Nucleus, University of Salamanca, Salamanca, Spain
| | - Manuel Sánchez-Martín
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
- Transgenic Facility, Nucleus, University of Salamanca, Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
| | - José Ramón González-Porras
- Department of Medicine, University of Salamanca, Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca - IBSAL, Salamanca, Spain
| | - Carmen Guerrero
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Rocío Benito
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - José Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Murcia, Spain
- On behalf of the "Grupo Español de Alteraciones Plaquetarias Congénitas (GEAPC)", Hemorrhagic Diathesis Working Group, SETH
| | - Jesús María Hernández-Rivas
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca - IBSAL, Salamanca, Spain
| | - José María Bastida
- Department of Medicine, University of Salamanca, Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca - IBSAL, Salamanca, Spain
- On behalf of the "Grupo Español de Alteraciones Plaquetarias Congénitas (GEAPC)", Hemorrhagic Diathesis Working Group, SETH
| |
Collapse
|
39
|
Wong PC, Quan ML. Improved efficacy/safety profile of factor XIa inhibitor BMS-724296 versus factor Xa inhibitor apixaban and thrombin inhibitor dabigatran in cynomolgus monkeys. Res Pract Thromb Haemost 2021; 5:e12524. [PMID: 34095733 PMCID: PMC8162232 DOI: 10.1002/rth2.12524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/31/2022] Open
Abstract
Background Inhibition of activated factor XI (FXIa) is a promising antithrombotic drug target. BMS-724296 is a selective, reversible, small-molecule inhibitor of human FXIa (Ki 0.3 nM). Objectives This study assessed effects of BMS-724296 versus standard-of-care oral anticoagulants apixaban (activated factor X inhibitor) and dabigatran (thrombin inhibitor) on arterial thrombosis, kidney bleeding time (KBT), and clotting time (CT) in nonhuman primate (NHP) cynomolgus monkey models. Methods Carotid artery thrombosis was produced by electrical stimulation in anesthetized NHPs. Hemostasis was assessed with a provoked KBT model. Thrombosis, KBT, and CT were monitored. Vehicle and various doses of BMS-724296, apixaban, and dabigatran were administered as bolus (intravenous [i.v.]) followed by infusion starting 30 minutes before initiation of thrombosis and continued until the experiment's end (n = 3-8/group). Primary end points included thrombus weight reduction (TWR), KBT, and CT (activated partial thromboplastin time [aPTT], prothrombin time [PT], and thrombin time [TT]). Results BMS-724296 at 0.025 + 0.05, 0.05 + 0.1, 0.102 + 0.2, and 0.4 + 0.8 mg/kg+mg/kg/h i.v. (bolus + infusion) reduced thrombus weight by 0 ± 0, 35 ± 7*, 72 ± 4*, and 86 ± 4%*, respectively (*P < .05 vs vehicle; n = 5-6/group). BMS-724296 at the highest dose (0.4 + 0.8 mg/kg+mg/kg/h) did not increase KBT compared to vehicle (109 ± 6 vs 113 ± 20 seconds, respectively) and increased ex vivo aPTT by 2.9 ± 0.1-fold without changing PT and TT. In companion NHP studies, high doses of apixaban and dabigatran produced similar TWR as BMS-724296, but increased KBT 4.3 ± 0.5-fold and 5.8 ± 0.5-fold, respectively (n = 3-4/group). Conclusions BMS-724296 produced similar antithrombotic efficacy as apixaban and dabigatran but with no increase in KBT in NHPs. These findings suggest that FXIa inhibitors may provide safe and effective antithrombotic therapy.
Collapse
Affiliation(s)
- Pancras C Wong
- Cardiovascular & Fibrosis Drug Discovery Biology Bristol Myers Squibb Princeton NJ USA
| | - Mimi L Quan
- Cardiovascular & Fibrosis Drug Discovery Biology Bristol Myers Squibb Princeton NJ USA
| |
Collapse
|
40
|
Significant differences in single-platelet biophysics exist across species but attenuate during clot formation. Blood Adv 2021; 5:432-437. [PMID: 33496738 DOI: 10.1182/bloodadvances.2020003755] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022] Open
Abstract
Key Points
Human, canine, ovine, and porcine platelets exhibit disparate biophysical signatures, whereas human and murine platelets are similar. Multiple biophysical parameters integrate during clot formation, measured by bulk clot contraction, and attenuate biophysical differences.
Collapse
|
41
|
The pathobiology of thrombosis, microvascular disease, and hemorrhage in the myeloproliferative neoplasms. Blood 2021; 137:2152-2160. [PMID: 33649757 DOI: 10.1182/blood.2020008109] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Thrombotic, vascular, and bleeding complications are the most common causes of morbidity and mortality in the Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs). In these disorders, circulating red cells, leukocytes, and platelets, as well as some vascular endothelial cells, each have abnormalities that are cell-intrinsic to the MPN driver mutations they harbor (eg, JAK2 V617F). When these cells are activated in the MPNs, their interactions with each other create a highly proadhesive and prothrombotic milieu in the circulation that predisposes patients with MPN to venous, arterial, and microvascular thrombosis and occlusive disease. Bleeding problems in the MPNs are caused by the MPN blood cell-initiated development of acquired von Willebrand disease. The inflammatory state created by MPN stem cells in their microenvironment extends systemically to amplify the clinical thrombotic tendency and, at the same time, preferentially promote further MPN stem cell clonal expansion, thereby generating a vicious cycle that favors a prothrombotic state in these diseases.
Collapse
|
42
|
Krüger I, Reusswig F, Krott KJ, Lersch CF, Spelleken M, Elvers M. Genetic Labeling of Cells Allows Identification and Tracking of Transgenic Platelets in Mice. Int J Mol Sci 2021; 22:ijms22073710. [PMID: 33918229 PMCID: PMC8037568 DOI: 10.3390/ijms22073710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 01/05/2023] Open
Abstract
Background: The use of knock-out mouse models is crucial to understand platelet activation and aggregation. Methods: Analysis of the global double fluorescent Cre reporter mouse mT/mG that has been crossbred with the megakaryocyte/platelet specific PF4-Cre mouse. Results: Platelets show bright mT (PF4-Cre negative) and mG (PF4-Cre positive) fluorescence. However, a small proportion of leukocytes was positive for mG fluorescence in PF4-Cre positive mice. In mT/mG;PF4-Cre mice, platelets, and megakaryocytes can be tracked by their specific fluorescence in blood smear, hematopoietic organs and upon thrombus formation. No differences in platelet activation and thrombus formation was observed between mT/mG;PF4-Cre positive and negative mice. Furthermore, hemostasis and in vivo thrombus formation was comparable between genotypes as analyzed by intravital microscopy. Transplantation studies revealed that bone marrow of mT/mG;PF4-Cre mice can be transferred to C57BL/6 mice. Conclusions: The mT/mG Cre reporter mouse is an appropriate model for real-time visualization of platelets, the analysis of cell morphology and the identification of non-recombined platelets. Thus, mT/mG;PF4-Cre mice are important for the analysis of platelet-specific knockout mice. However, a small proportion of leukocytes exhibit mG fluorescence. Therefore, the analysis of platelets beyond hemostasis and thrombosis should be critically evaluated when recombination of immune cells is increased.
Collapse
|
43
|
Poventud-Fuentes I, Kwon KW, Seo J, Tomaiuolo M, Stalker TJ, Brass LF, Huh D. A Human Vascular Injury-on-a-Chip Model of Hemostasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004889. [PMID: 33150735 PMCID: PMC8049960 DOI: 10.1002/smll.202004889] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/28/2020] [Indexed: 05/02/2023]
Abstract
Hemostasis is an innate protective mechanism that plays a central role in maintaining the homeostasis of the vascular system during vascular injury. Studying this essential physiological process is often challenged by the difficulty of modeling and probing the complex dynamics of hemostatic responses in the native context of human blood vessels. To address this major challenge, this paper describes a microengineering approach for in vitro modeling of hemostasis. This microphysiological model replicates the living endothelium, multilayered microarchitecture, and procoagulant activity of human blood vessels, and is also equipped with a microneedle that is actuated with spatial precision to simulate penetrating vascular injuries. The system recapitulates key features of the hemostatic response to acute vascular injury as observed in vivo, including i) thrombin-driven accumulation of platelets and fibrin, ii) formation of a platelet- and fibrin-rich hemostatic plug that halts blood loss, and iii) matrix deformation driven by platelet contraction for wound closure. Moreover, the potential use of this model for drug testing applications is demonstrated by evaluating the effects of anticoagulants and antiplatelet agents that are in current clinical use. The vascular injury-on-a-chip may serve as an enabling platform for preclinical investigation of hematological disorders and emerging therapeutic approaches against them.
Collapse
Affiliation(s)
| | - Keon Woo Kwon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jeongyun Seo
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maurizio Tomaiuolo
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Timothy J Stalker
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lawrence F Brass
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute of Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
44
|
Watanabe Y, Oguri R, Suzuki R, Meng Q, Ishikawa Y, Tatsukawa H, Hashimoto H, Hitomi K. Thrombin-deficient mutant of medaka, a model fish, displays serious retardation in blood coagulation. Biosci Biotechnol Biochem 2021; 85:824-833. [PMID: 33589932 DOI: 10.1093/bbb/zbaa098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022]
Abstract
At the last stage of the blood coagulation cascade, thrombin plays a central role in the processing of fibrinogen for the polymerization and in the additional activation of Factor XIII for the stable cross-linking of fibrin. In addition, thrombin carries out possible multiple roles via processing or interaction with various functional proteins. Several studies conducted in order to elucidate additional physiological significance are ongoing. To clarify further significance of thrombin and to establish an associated disease model, we characterized the orthologue gene for medaka (Oryzias latipes), a research model fish. Tissue distribution of medaka prothrombin has been immunotechnically analyzed. Furthermore, thrombin-deficient medaka mutants were viably established by utilizing a genome-editing method. The established gene-deficient mutants exhibited retarded blood coagulation even in the heterozygous fish. Taking advantage of their ease of handling, this specific model is useful for further investigation in medical research areas on human coagulation diseases.
Collapse
Affiliation(s)
- Yuko Watanabe
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Rina Oguri
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Risa Suzuki
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Qi Meng
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yuta Ishikawa
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hideki Tatsukawa
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | | | - Kiyotaka Hitomi
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
45
|
Fu R, Wang W, Tao H, Wang M, Chen Y, Gao H, Yue S, Tang Y. Quantitative evaluation of Danqi tablet by ultra‐performance liquid chromatography coupled with triple quadrupole mass spectrometry integrated with bioassay. J Sep Sci 2021; 44:1552-1563. [DOI: 10.1002/jssc.202000932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/11/2020] [Accepted: 01/17/2021] [Indexed: 01/01/2023]
Affiliation(s)
- Rui‐Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation) and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Shaanxi University of Chinese Medicine Xi′an P. R. China
| | - Wen‐Xiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation) and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Shaanxi University of Chinese Medicine Xi′an P. R. China
| | - Hui‐Juan Tao
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation) and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Shaanxi University of Chinese Medicine Xi′an P. R. China
| | - Mei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation) and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Shaanxi University of Chinese Medicine Xi′an P. R. China
| | - Yan‐Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation) and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Shaanxi University of Chinese Medicine Xi′an P. R. China
| | - Huan Gao
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation) and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Shaanxi University of Chinese Medicine Xi′an P. R. China
| | - Shi‐Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation) and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Shaanxi University of Chinese Medicine Xi′an P. R. China
| | - Yu‐Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation) and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Shaanxi University of Chinese Medicine Xi′an P. R. China
| |
Collapse
|
46
|
Fish RJ, Freire C, Di Sanza C, Neerman-Arbez M. Venous Thrombosis and Thrombocyte Activity in Zebrafish Models of Quantitative and Qualitative Fibrinogen Disorders. Int J Mol Sci 2021; 22:E655. [PMID: 33440782 PMCID: PMC7826895 DOI: 10.3390/ijms22020655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Venous thrombosis occurs in patients with quantitative and qualitative fibrinogen disorders. Injury-induced thrombosis in zebrafish larvae has been used to model human coagulopathies. We aimed to determine whether zebrafish models of afibrinogenemia and dysfibrinogenemia have different thrombotic phenotypes. Laser injuries were used to induce venous thrombosis and the time-to-occlusion (TTO) and the binding and aggregation of fluorescent Tg(itga2b:EGFP) thrombocytes measured. The fga-/- larvae failed to support occlusive venous thrombosis and showed reduced thrombocyte binding and aggregation at injury sites. The fga+/- larvae were largely unaffected. When genome editing zebrafish to produce fibrinogen Aα R28C, equivalent to the human Aα R35C dysfibrinogenemia mutation, we detected in-frame skipping of exon 2 in the fga mRNA, thereby encoding AαΔ19-56. This mutation is similar to Fibrinogen Montpellier II which causes hypodysfibrinogenemia. Aα+/Δ19-56 fish had prolonged TTO and reduced thrombocyte activity, a dominant effect of the mutation. Finally, we used transgenic expression of fga R28C cDNA in fga knock-down or fga-/- mutants to model thrombosis in dysfibrinogenemia. Aα R28C expression had similar effects on TTO and thrombocyte activity as Aα+/Δ19-56. We conclude that thrombosis assays in larval zebrafish can distinguish between quantitative and qualitative fibrinogen disorder models and may assist in anticipating a thrombotic phenotype of novel fibrinogen mutations.
Collapse
Affiliation(s)
| | | | | | - Marguerite Neerman-Arbez
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (R.J.F.); (C.F.); (C.D.S.)
| |
Collapse
|
47
|
Vilar R, Lukowski SW, Garieri M, Di Sanza C, Neerman-Arbez M, Fish RJ. Chemical Modulators of Fibrinogen Production and Their Impact on Venous Thrombosis. Thromb Haemost 2020; 121:433-448. [PMID: 33302304 DOI: 10.1055/s-0040-1718414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Thrombosis is a leading cause of morbidity and mortality. Fibrinogen, the soluble substrate for fibrin-based clotting, has a central role in haemostasis and thrombosis and its plasma concentration correlates with cardiovascular disease event risk and a prothrombotic state in experimental models. We aimed to identify chemical entities capable of changing fibrinogen production and test their impact on experimental thrombosis. A total of 1,280 bioactive compounds were screened for their ability to alter fibrinogen production by hepatocyte-derived cancer cells and a selected panel was tested in zebrafish larvae. Anthralin and all-trans retinoic acid (RA) were identified as fibrinogen-lowering and fibrinogen-increasing moieties, respectively. In zebrafish larvae, anthralin prolonged laser-induced venous- occlusion times and reduced thrombocyte accumulation at injury sites. RA had opposite effects. Treatment with RA, a nuclear receptor ligand, increased fibrinogen mRNA levels. Using an antisense morpholino oligonucleotide to deplete zebrafish fibrinogen, we correlated a shortening of laser-induced venous thrombosis times with RA treatment and fibrinogen protein levels. Anthralin had little effect on fibrinogen mRNA in zebrafish larvae, despite leading to lower detectable fibrinogen. Therefore, we made a proteomic scan of anthralin-treated cells and larvae. A reduced representation of proteins linked to the canonical secretory pathway was detected, suggesting that anthralin affects protein secretion. In summary, we found that chemical modulation of fibrinogen levels correlates with measured effects on experimental venous thrombosis and could be investigated as a therapeutic avenue for thrombosis prevention.
Collapse
Affiliation(s)
- Rui Vilar
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Samuel W Lukowski
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine, Geneva, Switzerland.,Institute for Molecular Bioscience, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Marco Garieri
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Corinne Di Sanza
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Marguerite Neerman-Arbez
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine, Geneva, Switzerland.,iGE3, Institute of Genetics and Genomics in Geneva, Geneva, Switzerland
| | - Richard J Fish
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
48
|
Intravital Assessment of Blood Platelet Function. A Review of the Methodological Approaches with Examples of Studies of Selected Aspects of Blood Platelet Function. Int J Mol Sci 2020; 21:ijms21218334. [PMID: 33172065 PMCID: PMC7664321 DOI: 10.3390/ijms21218334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 01/14/2023] Open
Abstract
Platelet biology owes to intravital studies not only a better understanding of platelets’ role in primary hemostasis but also findings that platelets are important factors in inflammation and atherosclerosis. Researchers who enter the field of intravital platelet studies may be confused by the heterogeneity of experimental protocols utilized. On the one hand, there are a variety of stimuli used to activate platelet response, and on the other hand there are several approaches to measure the outcome of the activation. A number of possible combinations of activation factors with measurement approaches result in the aforementioned heterogeneity. The aim of this review is to present the most often used protocols in a systematic way depending on the stimulus used to activate platelets. By providing examples of studies performed with each of the protocols, we attempt to explain why a particular combination of stimuli and measurement method was applied to study a given aspect of platelet biology.
Collapse
|
49
|
Wang AK, Geng T, Jiang W, Zhang Q, Zhang Y, Chen PD, Shan MQ, Zhang M, Tang YP, Ding AW, Zhang L. Simultaneous determination of twelve quinones from Rubiae radix et Rhizoma before and after carbonization processing by UPLC-MS/MS and their antithrombotic effect on zebrafish. J Pharm Biomed Anal 2020; 191:113638. [DOI: 10.1016/j.jpba.2020.113638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/27/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
|
50
|
Grover SP, Bendapudi PK, Yang M, Merrill-Skoloff G, Govindarajan V, Mitrophanov AY, Flaumenhaft R. Injury measurements improve interpretation of thrombus formation data in the cremaster arteriole laser-induced injury model of thrombosis. J Thromb Haemost 2020; 18:3078-3085. [PMID: 33456401 PMCID: PMC7805486 DOI: 10.1111/jth.15059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background The cremaster arteriole laser-induced injury model is a powerful technique with which to investigate the molecular mechanisms that drive thrombus formation. This model is capable of direct visualization and quantification of accumulation of thrombus constituents, including both platelets and fibrin. However, a large degree of variability in platelet accumulation and fibrin formation is observed between thrombi. Strategies to understand this variability will enhance performance and standardization of the model. We determined whether ablation injury size contributes to variation in platelet accumulation and fibrin formation and, if so, whether incorporating ablation injury size into measurements reduces variation. Methods Thrombus formation was initiated by laser-induced injury of cremaster arterioles of mice (n=59 injuries). Ablation injuries within the vessel wall were consistently identified and quantified by measuring the length of vessel wall injury observed immediately following laser-induced disruption. Platelet accumulation and fibrin formation as detected by fluorescently-labeled antibodies were captured by digital intra-vital microscopy. Results Laser-induced disruption of the vessel wall resulted in ablation injuries of variable length (18-95 μm) enabling interrogation of the relationship between injury severity and thrombus dynamics. Strong positive correlations were observed between vessel injury length and both platelet and fibrin when the data are transformed as area under the curve (Spearman r = 0.80 and 0.76 respectively). Normalization of area under the curve measurements by injury length reduced intraclass coefficients of variation among thrombi and improved hypothesis testing when comparing different data sets. Conclusions Measurement of vessel wall injury length provides a reliable and robust marker of injury severity. Injury length can effectively normalize measurements of platelet accumulation and fibrin formation improving data interpretation and standardization.
Collapse
Affiliation(s)
- Steven P Grover
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Division of Oncology and Hematology and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Pavan K Bendapudi
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Moua Yang
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Glenn Merrill-Skoloff
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Vijay Govindarajan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute (BHSAI), Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Alexander Y Mitrophanov
- Department of Defense Biotechnology High Performance Computing Software Applications Institute (BHSAI), Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|