1
|
Huang S, Li J, Li Q, Wang Q, Zhou X, Chen J, Chen X, Bellou A, Zhuang J, Lei L. Cardiomyopathy: pathogenesis and therapeutic interventions. MedComm (Beijing) 2024; 5:e772. [PMID: 39465141 PMCID: PMC11502724 DOI: 10.1002/mco2.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiomyopathy is a group of disease characterized by structural and functional damage to the myocardium. The etiologies of cardiomyopathies are diverse, spanning from genetic mutations impacting fundamental myocardial functions to systemic disorders that result in widespread cardiac damage. Many specific gene mutations cause primary cardiomyopathy. Environmental factors and metabolic disorders may also lead to the occurrence of cardiomyopathy. This review provides an in-depth analysis of the current understanding of the pathogenesis of various cardiomyopathies, highlighting the molecular and cellular mechanisms that contribute to their development and progression. The current therapeutic interventions for cardiomyopathies range from pharmacological interventions to mechanical support and heart transplantation. Gene therapy and cell therapy, propelled by ongoing advancements in overarching strategies and methodologies, has also emerged as a pivotal clinical intervention for a variety of diseases. The increasing number of causal gene of cardiomyopathies have been identified in recent studies. Therefore, gene therapy targeting causal genes holds promise in offering therapeutic advantages to individuals diagnosed with cardiomyopathies. Acting as a more precise approach to gene therapy, they are gradually emerging as a substitute for traditional gene therapy. This article reviews pathogenesis and therapeutic interventions for different cardiomyopathies.
Collapse
Affiliation(s)
- Shitong Huang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Jiaxin Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuying Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuyu Wang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Xianwu Zhou
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jimei Chen
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Xuanhui Chen
- Department of Medical Big Data CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Abdelouahab Bellou
- Department of Emergency Medicine, Institute of Sciences in Emergency MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Emergency MedicineWayne State University School of MedicineDetroitMichiganUSA
| | - Jian Zhuang
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Liming Lei
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| |
Collapse
|
2
|
Wang L, Yu M, Yang Y, Lv Y, Xie H, Chen J, Peng X, Peng Z, Zhou L, Wang Y, Huang Y, Chen F. Porous Photocrosslinkable Hydrogel Functionalized with USC Derived Small Extracellular Vesicles for Corpus Spongiosum Repair. Adv Healthc Mater 2024; 13:e2304387. [PMID: 39036844 DOI: 10.1002/adhm.202304387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Reconstruction of a full-thickness spongy urethra is difficult because a corpus spongiosum (CS) defect cannot be repaired using self-healing or substitution urethroplasty. Small extracellular vesicles (sEVs) secreted by urine-derived stem cells (USC-sEVs) strongly promote vascular regeneration. In this study, it is aimed to explore whether USC-sEVs promote the repair of CS defects. To prolong the in vivo effects of USC-sEVs, a void-forming photoinduced imine crosslinking hydrogel (vHG) is prepared and mixed with the USC-sEV suspension. vHG encapsulated with USC-sEVs (vHG-sEVs) is used to repair a CS defect with length of 1.5 cm and width of 0.8 cm. The results show that vHG-sEVs promote the regeneration and repair of CS defects. Histological analysis reveals abundant sinusoid-like vascular structures in the vHG-sEV group. Photoacoustic microscopy indicates that blood flow and microvascular structure of the defect area in the vHG-sEV group are similar to those in the normal CS group. This study confirms that the in situ-formed vHG-sEV patch appears to be a valid and promising strategy for repairing CS defects.
Collapse
Affiliation(s)
- Lin Wang
- Department of Urology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, 200233, China
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingming Yu
- Department of Urology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yunlong Yang
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yiqing Lv
- Department of Urology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hua Xie
- Department of Urology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiasheng Chen
- Department of Urology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xufeng Peng
- Department of Urology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiwei Peng
- Department of Urology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lijun Zhou
- Department of Urology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yichen Huang
- Department of Urology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fang Chen
- Department of Urology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, 200233, China
| |
Collapse
|
3
|
Sojoudi K, Azizi H, Skutella T. A review of the potential of induced pluripotent stem cell-derived exosome as a novel treatment for male infertility. Biotechnol Genet Eng Rev 2024; 40:1353-1378. [PMID: 36951621 DOI: 10.1080/02648725.2023.2193772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
Exosomes are a subset of Extracellular vesicles (EVs) released by most cells in the body and can play a significant role in the intercellular connection. Researchers today claim that exosomes secreted by induced pluripotent stem cells (iPSCs) alone can play the same role as direct cell transplantation and, unlike iPSCs, do not lead to tumorigenesis. As a result, iPSC-derived exosomes (iPSC-Exos) have many applications in cell-free treatments and therapeutic effects on various diseases. Male infertility due to a defect or deficiency of spermatogonia to maintain spermatogenesis is one of the diseases that iPSC-Exos seems to be a new way to cure. However, the studies on the effect of iPSC-Exos on male infertility are very limited. In this review, we intend to provide a broader perspective on understanding the mechanisms of iPSC-Exos on spermatogenesis by collecting and reviewing some of the research conducted in this field.
Collapse
Affiliation(s)
- Kiana Sojoudi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Mohite P, Puri A, Dave R, Budar A, Munde S, Ghosh SB, Alqahtani T, Shmrany HA, Kumer A, Dhara B. Unlocking the therapeutic potential: odyssey of induced pluripotent stem cells in precision cell therapies. Int J Surg 2024; 110:6432-6455. [PMID: 38963728 PMCID: PMC11487032 DOI: 10.1097/js9.0000000000001892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
This review explores the application of induced pluripotent stem cells (iPSCs) in regenerative medicine. The therapeutic significance of iPSC-derived cell therapy within regenerative medicine, emphasizes their reprogramming process and crucial role in cellular differentiation while setting the purpose and scope for the comprehensive exploration of iPSC-derived cell therapy. The subsequent sections intricately examine iPSC-derived cell therapy, unraveling the diverse derivatives of iPSCs and striking a delicate balance between advantages and limitations in therapeutic applications. Mechanisms of action, revealing how iPSC-derived cells seamlessly integrate into tissues, induce regeneration, and contribute to disease modeling and drug screening advancements is discussed. The analysis extends to clinical trials, shedding light on outcomes, safety considerations, and ethical dimensions. Challenges and concerns, including the risk of tumorigenesis and scalability issues, are explored. The focus extends to disease-specific applications, showcasing iPSC-derived cell therapy as a promising avenue for various medical conditions, supported by illustrative case studies. Future directions and research needs are outlined, identifying areas for further exploration, safety considerations and potential enhancements that will shape the future landscape of iPSC-derived therapies. In conclusion, this review provides a significant understanding of iPSC-derived cell therapy's status that contemplates the implications for regenerative medicine and personalized treatment using iPSCs, offering a comprehensive perspective on the evolving field within the confines of a dynamic and promising scientific frontier.
Collapse
Affiliation(s)
- Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Abhijeet Puri
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Roshan Dave
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Aarati Budar
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Shubham Munde
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Shruti Bagchi Ghosh
- Department of Pharmaceutical Chemistry, Calcutta Institute of Pharmaceutical Technology and Allied Health Science, Uluberia, Howrah
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha
| | - Humood Al Shmrany
- Department of Medical Laboratory Sciences, College of Applied medical sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ajoy Kumer
- Department of Chemistry, IUBAT-International University of Business Agriculture & Technology, Dhaka, Bangladesh
| | - Bikram Dhara
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- Department of Health Sciences, Novel Global Community and Educational Foundation. Hebersham, NSW, Australia
| |
Collapse
|
5
|
Mirgh D, Sonar S, Ghosh S, Adhikari MD, Subramaniyan V, Gorai S, Anand K. Landscape of exosomes to modified exosomes: a state of the art in cancer therapy. RSC Adv 2024; 14:30807-30829. [PMID: 39328877 PMCID: PMC11426072 DOI: 10.1039/d4ra04512b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Exosomes are a subpopulation of extracellular vesicles (EVs) that naturally originate from endosomes. They play a significant role in cellular communication. Tumor-secreted exosomes play a crucial role in cancer development and significantly contribute to tumorigenesis, angiogenesis, and metastasis by intracellular communication. Tumor-derived exosomes (TEXs) are a promising biomarker source of cancer detection in the early stages. On the other hand, they offer revolutionary cutting-edge approaches to cancer therapeutics. Exosomes offer a cell-free approach to cancer therapeutics, which overcomes immune cell and stem cell therapeutics-based limitations (complication, toxicity, and cost of treatment). There are multiple sources of therapeutic exosomes present (stem cells, immune cells, plant cells, and synthetic and modified exosomes). This article explores the dynamic source of exosomes (plants, mesenchymal stem cells, and immune cells) and their modification (chimeric, hybrid exosomes, exosome-based CRISPR, and drug delivery) based on cancer therapeutic development. This review also highlights exosomes based clinical trials and the challenges and future orientation of exosome research. We hope that this article will inspire researchers to further explore exosome-based cancer therapeutic platforms for precision oncology.
Collapse
Affiliation(s)
- Divya Mirgh
- Vaccine and Immunotherapy Centre, Massachusetts General Hospital Boston USA
| | - Swarup Sonar
- Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu 602105 India
| | - Srestha Ghosh
- Department of Microbiology, Lady Brabourne College Kolkata West Bengal 700017 India
| | - Manab Deb Adhikari
- Department of Biotechnology, University of North Bengal Darjeeling West Bengal India
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University Bandar Sunway Subang Jaya Selangor 47500 Malaysia
| | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center Chicago IL USA
| | - Krishnan Anand
- Precision Medicine and Integrated Nano-Diagnostics (P-MIND) Research Group, Faculty of Health Sciences, University of the Free State Bloemfontein 9300 South Africa
| |
Collapse
|
6
|
Cui X, Guo J, Yuan P, Dai Y, Du P, Yu F, Sun Z, Zhang J, Cheng K, Tang J. Bioderived Nanoparticles for Cardiac Repair. ACS NANO 2024; 18:24622-24649. [PMID: 39185722 DOI: 10.1021/acsnano.3c07878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Biobased therapy represents a promising strategy for myocardial repair. However, the limitations of using live cells, including the risk of immunogenicity of allogeneic cells and inconsistent therapeutic efficacy of autologous cells together with low stability, result in an unsatisfactory clinical outcomes. Therefore, cell-free strategies for cardiac tissue repair have been proposed as alternative strategies. Cell-free strategies, primarily based on the paracrine effects of cellular therapy, have demonstrated their potential to inhibit apoptosis, reduce inflammation, and promote on-site cell migration and proliferation, as well as angiogenesis, after an infarction and have been explored preclinically and clinically. Among various cell-free modalities, bioderived nanoparticles, including adeno-associated virus (AAV), extracellular vesicles, cell membrane-coated nanoparticles, and exosome-mimetic nanovesicles, have emerged as promising strategies due to their improved biological function and therapeutic effect. The main focus of this review is the development of existing cellular nanoparticles and their fundamental working mechanisms, as well as the challenges and opportunities. The key processes and requirements for cardiac tissue repair are summarized first. Various cellular nanoparticle modalities are further highlighted, together with their advantages and limitations. Finally, we discuss various delivery approaches that offer potential pathways for researchers and clinicians to translate cell-free strategies for cardiac tissue repair into clinical practice.
Collapse
Affiliation(s)
- Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiacheng Guo
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Peiyu Yuan
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Yichen Dai
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Pengchong Du
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Fengyi Yu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Zhaowei Sun
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Jinying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| |
Collapse
|
7
|
Kim J, Ro J, Cho YK. Vascularized platforms for investigating cell communication via extracellular vesicles. BIOMICROFLUIDICS 2024; 18:051504. [PMID: 39323481 PMCID: PMC11421861 DOI: 10.1063/5.0220840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
The vascular network plays an essential role in the maintenance of all organs in the body via the regulated delivery of oxygen and nutrients, as well as tissue communication via the transfer of various biological signaling molecules. It also serves as a route for drug administration and affects pharmacokinetics. Due to this importance, engineers have sought to create physiologically relevant and reproducible vascular systems in tissue, considering cell-cell and extracellular matrix interaction with structural and physical conditions in the microenvironment. Extracellular vesicles (EVs) have recently emerged as important carriers for transferring proteins and genetic material between cells and organs, as well as for drug delivery. Vascularized platforms can be an ideal system for studying interactions between blood vessels and EVs, which are crucial for understanding EV-mediated substance transfer in various biological situations. This review summarizes recent advances in vascularized platforms, standard and microfluidic-based techniques for EV isolation and characterization, and studies of EVs in vascularized platforms. It provides insights into EV-related (patho)physiological regulations and facilitates the development of EV-based therapeutics.
Collapse
|
8
|
Xia LX, Xiao YY, Jiang WJ, Yang XY, Tao H, Mandukhail SR, Qin JF, Pan QR, Zhu YG, Zhao LX, Huang LJ, Li Z, Yu XY. Exosomes derived from induced cardiopulmonary progenitor cells alleviate acute lung injury in mice. Acta Pharmacol Sin 2024; 45:1644-1659. [PMID: 38589686 PMCID: PMC11272782 DOI: 10.1038/s41401-024-01253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/26/2024] [Indexed: 04/10/2024] Open
Abstract
Cardiopulmonary progenitor cells (CPPs) constitute a minor subpopulation of cells that are commonly associated with heart and lung morphogenesis during embryonic development but completely subside after birth. This fact offers the possibility for the treatment of pulmonary heart disease (PHD), in which the lung and heart are both damaged. A reliable source of CPPs is urgently needed. In this study, we reprogrammed human cardiac fibroblasts (HCFs) into CPP-like cells (or induced CPPs, iCPPs) and evaluated the therapeutic potential of iCPP-derived exosomes for acute lung injury (ALI). iCPPs were created in passage 3 primary HCFs by overexpressing GLI1, WNT2, ISL1 and TBX5 (GWIT). Exosomes were isolated from the culture medium of passage 6-8 GWIT-iCPPs. A mouse ALI model was established by intratracheal instillation of LPS. Four hours after LPS instillation, ALI mice were treated with GWIT-iCPP-derived exosomes (5 × 109, 5 × 1010 particles/mL) via intratracheal instillation. We showed that GWIT-iCPPs could differentiate into cell lineages, such as cardiomyocyte-like cells, endothelial cells, smooth muscle cells and alveolar epithelial cells, in vitro. Transcription analysis revealed that GWIT-iCPPs have potential for heart and lung development. Intratracheal instillation of iCPP-derived exosomes dose-dependently alleviated LPS-induced ALI in mice by attenuating lung inflammation, promoting endothelial function and restoring capillary endothelial cells and the epithelial cells barrier. This study provides a potential new method for the prevention and treatment of cardiopulmonary injury, especially lung injury, and provides a new cell model for drug screening.
Collapse
Affiliation(s)
- Luo-Xing Xia
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying-Ying Xiao
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wen-Jing Jiang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiang-Yu Yang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hua Tao
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Safur Rehman Mandukhail
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jian-Feng Qin
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qian-Rong Pan
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu-Guang Zhu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Li-Xin Zhao
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Li-Juan Huang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhan Li
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xi-Yong Yu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
9
|
Li H, Zhang J, Tan M, Yin Y, Song Y, Zhao Y, Yan L, Li N, Zhang X, Bai J, Jiang T, Li H. Exosomes based strategies for cardiovascular diseases: Opportunities and challenges. Biomaterials 2024; 308:122544. [PMID: 38579591 DOI: 10.1016/j.biomaterials.2024.122544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
Exosomes, as nanoscale extracellular vesicles (EVs), are secreted by all types of cells to facilitate intercellular communication in living organisms. After being taken up by neighboring or distant cells, exosomes can alter the expression levels of target genes in recipient cells and thereby affect their pathophysiological outcomes depending on payloads encapsulated therein. The functions and mechanisms of exosomes in cardiovascular diseases have attracted much attention in recent years and are thought to have cardioprotective and regenerative potential. This review summarizes the biogenesis and molecular contents of exosomes and details the roles played by exosomes released from various cells in the progression and recovery of cardiovascular disease. The review also discusses the current status of traditional exosomes in cardiovascular tissue engineering and regenerative medicine, pointing out several limitations in their application. It emphasizes that some of the existing emerging industrial or bioengineering technologies are promising to compensate for these shortcomings, and the combined application of exosomes and biomaterials provides an opportunity for mutual enhancement of their performance. The integration of exosome-based cell-free diagnostic and therapeutic options will contribute to the further development of cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Hang Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Mingyue Tan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China; Department of Geriatrics, Cardiovascular Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Yiyi Song
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, PR China
| | - Yongjian Zhao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Lin Yan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Ning Li
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China
| | - Xianzuo Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China
| | - Jiaxiang Bai
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, PR China.
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China.
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China.
| |
Collapse
|
10
|
Ru Q, Chen L, Xu G, Wu Y. Exosomes in the pathogenesis and treatment of cancer-related cachexia. J Transl Med 2024; 22:408. [PMID: 38689293 PMCID: PMC11062016 DOI: 10.1186/s12967-024-05201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/14/2024] [Indexed: 05/02/2024] Open
Abstract
Cancer-related cachexia is a metabolic syndrome characterized by weight loss, adipose tissue decomposition, and progressive skeletal muscle atrophy. It is a major complication of many advanced cancers and seriously affects the quality of life and survival of cancer patients. However, the specific molecules that mediate cancer-related cachexia remain elusive, and the fundamental cellular and molecular mechanisms associated with muscle atrophy and lipidolysis in cancer patients still need to be investigated. Exosomes, a newly discovered class of small extracellular vesicles that facilitate intercellular communication, have a significant role in the onset and development of various cancers. Studies have shown that exosomes play a role in the onset and progression of cancer-related cachexia by transporting active molecules such as nucleic acids and proteins. This review aimed to provide an overview of exosome developments in cancer-induced skeletal muscle atrophy and adipose tissue degradation. More importantly, exosomes were shown to have potential as diagnostic markers or therapeutic strategies for cachexia and were prospected, providing novel strategies for the diagnosis and treatment of cancer-related cachexia.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health,Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health,Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| | - Guodong Xu
- Institute of Intelligent Sport and Proactive Health,Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health,Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
11
|
Ren R, Jiang J, Li X, Zhang G. Research progress of autoimmune diseases based on induced pluripotent stem cells. Front Immunol 2024; 15:1349138. [PMID: 38720903 PMCID: PMC11076788 DOI: 10.3389/fimmu.2024.1349138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Autoimmune diseases can damage specific or multiple organs and tissues, influence the quality of life, and even cause disability and death. A 'disease in a dish' can be developed based on patients-derived induced pluripotent stem cells (iPSCs) and iPSCs-derived disease-relevant cell types to provide a platform for pathogenesis research, phenotypical assays, cell therapy, and drug discovery. With rapid progress in molecular biology research methods including genome-sequencing technology, epigenetic analysis, '-omics' analysis and organoid technology, large amount of data represents an opportunity to help in gaining an in-depth understanding of pathological mechanisms and developing novel therapeutic strategies for these diseases. This paper aimed to review the iPSCs-based research on phenotype confirmation, mechanism exploration, drug discovery, and cell therapy for autoimmune diseases, especially multiple sclerosis, inflammatory bowel disease, and type 1 diabetes using iPSCs and iPSCs-derived cells.
Collapse
Affiliation(s)
| | | | | | - Guirong Zhang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| |
Collapse
|
12
|
Tan X, Zhang J, Heng Y, Chen L, Wang Y, Wu S, Liu X, Xu B, Yu Z, Gu R. Locally delivered hydrogels with controlled release of nanoscale exosomes promote cardiac repair after myocardial infarction. J Control Release 2024; 368:303-317. [PMID: 38417558 DOI: 10.1016/j.jconrel.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Compared with stem cells, exosomes as a kind of nanoscale carriers intrinsically loaded with diverse bioactive molecules, which had the advantages of high safety, small size, and ethical considerations in the treatment of myocardial infarction, but there are still problems such as impaired stability and rapid dissipation. Here, we introduce a bioengineered injectable hyaluronic acid hydrogel designed to optimize local delivery efficiency of trophoblast stem cells derived-exosomes. Its hyaluronan components adeptly emulates the composition and modulus of pericardial fluid, meanwhile preserving the bioactivity of nanoscale exosomes. Additionally, a meticulously designed hyperbranched polymeric cross-linker facilitates a gentle cross-linking process among hyaluronic acid molecules, with disulfide bonds in its molecular framework enhancing biodegradability and conferring a unique controlled release capability. This innovative hydrogel offers the added advantage of minimal invasiveness during administration into the pericardial space, greatly extending the retention of exosomes within the myocardial region. In vivo, this hydrogel has consistently demonstrated its efficacy in promoting cardiac recovery, inducing anti-fibrotic, anti-inflammatory, angiogenic, and anti-remodeling effects, ultimately leading to a substantial improvement in cardiac function. Furthermore, the implementation of single-cell RNA sequencing has elucidated that the pivotal mechanism underlying enhanced cardiac function primarily results from the promoted clearance of apoptotic cells by myocardial fibroblasts.
Collapse
Affiliation(s)
- Xi Tan
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China
| | - Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, 211816 Nanjing, China
| | - Yongyuan Heng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, 211816 Nanjing, China
| | - Lin Chen
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China
| | - Yi Wang
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China
| | - Shaojun Wu
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 358 Zhongshan Road, 210008 Nanjing, China
| | - Xiaoli Liu
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 358 Zhongshan Road, 210008 Nanjing, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China.
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, 211816 Nanjing, China.
| | - Rong Gu
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 358 Zhongshan Road, 210008 Nanjing, China.
| |
Collapse
|
13
|
Chi PL, Cheng CC, Wang MT, Liao JB, Kuo SH, Lin KC, Shen MC, Huang WC. Induced pluripotent stem cell-derived exosomes attenuate vascular remodelling in pulmonary arterial hypertension by targeting HIF-1α and Runx2. Cardiovasc Res 2024; 120:203-214. [PMID: 38252891 DOI: 10.1093/cvr/cvad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/19/2023] [Accepted: 08/11/2023] [Indexed: 01/24/2024] Open
Abstract
AIMS Pulmonary arterial hypertension (PAH) is characterized by extensive pulmonary arterial remodelling. Although mesenchymal stem cell (MSC)-derived exosomes provide protective effects in PAH, MSCs exhibit limited senescence during in vitro expansion compared with the induced pluripotent stem cells (iPSCs). Moreover, the exact mechanism is not known. METHODS AND RESULTS In this study, we used murine iPSCs generated from mouse embryonic fibroblasts with triple factor (Oct4, Klf4, and Sox2) transduction to determine the efficacy and action mechanism of iPSC-derived exosomes (iPSC-Exo) in attenuating PAH in rats with monocrotaline (MCT)-induced pulmonary hypertension. Both early and late iPSC-Exo treatment effectively prevented the wall thickening and muscularization of pulmonary arterioles, improved the right ventricular systolic pressure, and alleviated the right ventricular hypertrophy in MCT-induced PAH rats. Pulmonary artery smooth muscle cells (PASMC) derived from MCT-treated rats (MCT-PASMC) developed more proliferative and pro-migratory phenotypes, which were attenuated by the iPSC-Exo treatment. Moreover, the proliferation and migration of MCT-PASMC were reduced by iPSC-Exo with suppression of PCNA, cyclin D1, MMP-1, and MMP-10, which are mediated via the HIF-1α and P21-activated kinase 1/AKT/Runx2 pathways. CONCLUSION IPSC-Exo are effective at reversing pulmonary hypertension by reducing pulmonary vascular remodelling and may provide an iPSC-free therapy for the treatment of PAH.
Collapse
Affiliation(s)
- Pei-Ling Chi
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chin-Chang Cheng
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Mei-Tzu Wang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jia-Bin Liao
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Shu-Hung Kuo
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kun-Chang Lin
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Min-Ci Shen
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Physical Therapy, Fooyin University, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Yin X, Lin L, Fang F, Zhang B, Shen C. Mechanisms and Optimization Strategies of Paracrine Exosomes from Mesenchymal Stem Cells in Ischemic Heart Disease. Stem Cells Int 2023; 2023:6500831. [PMID: 38034060 PMCID: PMC10686715 DOI: 10.1155/2023/6500831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
The morbidity and mortality of myocardial infarction (MI) are increasing worldwide. Mesenchymal stem cells (MSCs) are multipotent stem cells with self-renewal and differentiation capabilities that are essential in tissue healing and regenerative medicine. However, the low implantation and survival rates of transplanted cells hinder the widespread clinical use of stem cells. Exosomes are naturally occurring nanovesicles that are secreted by cells and promote the repair of cardiac function by transporting noncoding RNA and protein. In recent years, MSC-derived exosomes have been promising cell-free treatment tools for improving cardiac function and reversing cardiac remodeling. This review describes the biological properties and therapeutic potential of exosomes and summarizes some engineering approaches for exosomes optimization to enhance the targeting and therapeutic efficacy of exosomes in MI.
Collapse
Affiliation(s)
- Xiaorong Yin
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Lizhi Lin
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Fang Fang
- Department of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Cheng Shen
- Department of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
15
|
Lee CS, Lee M, Na K, Hwang HS. Stem Cell-Derived Extracellular Vesicles for Cancer Therapy and Tissue Engineering Applications. Mol Pharm 2023; 20:5278-5311. [PMID: 37867343 DOI: 10.1021/acs.molpharmaceut.3c00376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Recently, stem cells and their secretomes have attracted great attention in biomedical applications, particularly extracellular vesicles (EVs). EVs are secretomes of cells for cell-to-cell communication. They play a role as intercellular messengers as they carry proteins, nucleic acids, lipids, and therapeutic agents. They have also been utilized as drug-delivery vehicles due to their biocompatibility, low immunogenicity, stability, targetability, and engineerable properties. The therapeutic potential of EVs can be further enhanced by surface engineering and modification using functional molecules such as aptamers, peptides, and antibodies. As a consequence, EVs hold great promise as effective delivery vehicles for enhancing treatment efficacy while avoiding side effects. Among various cell types that secrete EVs, stem cells are ideal sources of EVs because stem cells have unique properties such as self-renewal and regenerative potential for transplantation into damaged tissues that can facilitate their regeneration. However, challenges such as immune rejection and ethical considerations remain significant hurdles. Stem cell-derived EVs have been extensively explored as a cell-free approach that bypasses many challenges associated with cell-based therapy in cancer therapy and tissue regeneration. In this review, we summarize and discuss the current knowledge of various types of stem cells as a source of EVs, their engineering, and applications of EVs, focusing on cancer therapy and tissue engineering.
Collapse
Affiliation(s)
- Chung-Sung Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Min Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Kun Na
- Department of BioMedical-Chemical Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
16
|
Ranjan P, Colin K, Dutta RK, Verma SK. Challenges and future scope of exosomes in the treatment of cardiovascular diseases. J Physiol 2023; 601:4873-4893. [PMID: 36398654 PMCID: PMC10192497 DOI: 10.1113/jp282053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/21/2022] [Indexed: 07/28/2023] Open
Abstract
Exosomes are nanosized vesicles that carry biologically diverse molecules for intercellular communication. Researchers have been trying to engineer exosomes for therapeutic purposes by using different approaches to deliver biologically active molecules to the various target cells efficiently. Recent technological advances may allow the biodistribution and pharmacokinetics of exosomes to be modified to meet scientific needs with respect to specific diseases. However, it is essential to determine an exosome's optimal dosage and potential side effects before its clinical use. Significant breakthroughs have been made in recent decades concerning exosome labelling and imaging techniques. These tools provide in situ monitoring of exosome biodistribution and pharmacokinetics and pinpoint targetability. However, because exosomes are nanometres in size and vary significantly in contents, a deeper understanding is required to ensure accurate monitoring before they can be applied in clinical settings. Different research groups have established different approaches to elucidate the roles of exosomes and visualize their spatial properties. This review covers current and emerging strategies for in vivo and in vitro exosome imaging and tracking for potential studies.
Collapse
Affiliation(s)
- Prabhat Ranjan
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
| | - Karen Colin
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
- UAB School of Health Professions, The University of Alabama at Birmingham, Birmingham, AL
| | - Roshan Kumar Dutta
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
| | - Suresh Kumar Verma
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
17
|
Kim J, Lee SK, Jeong SY, You H, Han SD, Park S, Kim S, Kim TM. Multifaceted action of stem cell-derived extracellular vesicles for nonalcoholic steatohepatitis. J Control Release 2023; 364:S0168-3659(23)00706-X. [PMID: 39491172 DOI: 10.1016/j.jconrel.2023.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) is a chronic liver disease associated with metabolic syndrome. Extracellular vesicles (EVs) are essential signaling mediators containing functional biomolecules. EVs are secreted from various cell types, and recent studies have shown that mesenchymal stem cell-derived EVs have therapeutic potential against immune and metabolic diseases. In this study, we investigated whether EVs from induced mesenchymal stem cells (iMSC-EVs) regulate AMPK signaling and lipid metabolism using cell-based studies and two different mouse models of NASH (methionine/choline-deficient diet-induced and ob/ob mice). Protein analysis revealed that iMSC-EVs carry cargo proteins with the potential to regulate lipid metabolism. iMSC-EVs inhibited free fatty acid release from adipose tissues by downregulating the activity of lipolytic genes in NASH. In addition, iMSC-EVs improved hepatic steatosis by modulating AMPK signaling, which plays essential role in metabolic homeostasis in the liver. Moreover, iMSC-EVs reduced CD36 expression, contributing to the blockade of free fatty acid transport to the liver of NASH mice. Finally, iMSC-EVs reduced inflammation, endoplasmic reticulum stress, and apoptosis while promoting hepatic regeneration of the NASH liver. In conclusion, iMSC-EVs can potentially serve as cell-free therapeutics for NASH owing to their multifaceted modality.
Collapse
Affiliation(s)
- Jimin Kim
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul 05855, South Korea
| | - Seul Ki Lee
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul 05855, South Korea
| | - Seon-Yeong Jeong
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul 05855, South Korea
| | - Haedeun You
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul 05855, South Korea
| | - Sang-Deok Han
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul 05855, South Korea
| | - Somi Park
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul 05855, South Korea
| | - Soo Kim
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul 05855, South Korea
| | - Tae Min Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Gangwon-do 25354, South Korea; Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do 25354, South Korea.
| |
Collapse
|
18
|
Sekine O, Kanaami S, Masumoto K, Aihara Y, Morita-Umei Y, Tani H, Soma Y, Umei TC, Haga K, Moriwaki T, Kawai Y, Ohno M, Kishino Y, Kanazawa H, Fukuda K, Ieda M, Tohyama S. Seamless and non-destructive monitoring of extracellular microRNAs during cardiac differentiation from human pluripotent stem cells. Stem Cell Reports 2023; 18:1925-1939. [PMID: 37738969 PMCID: PMC10656301 DOI: 10.1016/j.stemcr.2023.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/24/2023] Open
Abstract
Monitoring cardiac differentiation and maturation from human pluripotent stem cells (hPSCs) and detecting residual undifferentiated hPSCs are indispensable for the development of cardiac regenerative therapy. MicroRNA (miRNA) is secreted from cells into the extracellular space, and its role as a biomarker is attracting attention. Here, we performed an miRNA array analysis of supernatants during the process of cardiac differentiation and maturation from hPSCs. We demonstrated that the quantification of extracellular miR-489-3p and miR-1/133a-3p levels enabled the monitoring of mesoderm and cardiac differentiation, respectively, even in clinical-grade mass culture systems. Moreover, extracellular let-7c-5p levels showed the greatest increase with cardiac maturation during long-term culture. We also verified that residual undifferentiated hPSCs in hPSC-derived cardiomyocytes (hPSC-CMs) were detectable by measuring miR-302b-3p expression, with a detection sensitivity of 0.01%. Collectively, we demonstrate that our method of seamlessly monitoring specific miRNAs secreted into the supernatant is non-destructive and effective for the quality evaluation of hPSC-CMs.
Collapse
Affiliation(s)
- Otoya Sekine
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Sayaka Kanaami
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Heartseed Inc, The Artcomplex Center of Tokyo, #302, 12-9, Daikyo-cho, Shinjuku-ku, Tokyo 160-0015, Japan
| | - Kanako Masumoto
- Sysmex Corporation, Central Research Laboratories, 4-4-4 Takatsukadai, Nishi-ku, Kobe 651-2271, Japan
| | - Yuki Aihara
- Sysmex Corporation, Central Research Laboratories, 4-4-4 Takatsukadai, Nishi-ku, Kobe 651-2271, Japan
| | - Yuika Morita-Umei
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), Kawasaki, Kanagawa, Japan
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Joint Research Laboratory for Medical Innovation in Heart Disease, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tomohiko C Umei
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kotaro Haga
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Taijun Moriwaki
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yujiro Kawai
- Department of Cardiovascular Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masatoshi Ohno
- Department of Cardiovascular Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Heartseed Inc, The Artcomplex Center of Tokyo, #302, 12-9, Daikyo-cho, Shinjuku-ku, Tokyo 160-0015, Japan
| | - Masaki Ieda
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
19
|
Yu C, Zhang M, Xiong Y, Wang Q, Wang Y, Wu S, Hussain S, Wang Y, Zhang Z, Rao N, Zhang S, Zhang X. Comparison of miRNA transcriptome of exosomes in three categories of somatic cells with derived iPSCs. Sci Data 2023; 10:616. [PMID: 37696871 PMCID: PMC10495316 DOI: 10.1038/s41597-023-02493-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023] Open
Abstract
Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) through epigenetic manipulation. While the essential role of miRNA in reprogramming and maintaining pluripotency is well studied, little is known about the functions of miRNA from exosomes in this context. To fill this research gap,we comprehensively obtained the 17 sets of cellular mRNA transcriptomic data with 3.93 × 1010 bp raw reads and 18 sets of exosomal miRNA transcriptomic data with 2.83 × 107 bp raw reads from three categories of human somatic cells: peripheral blood mononuclear cells (PBMCs), skin fibroblasts(SFs) and urine cells (UCs), along with their derived iPSCs. Additionally, differentially expressed molecules of each category were identified and used to perform gene set enrichment analysis. Our study provides sets of comparative transcriptomic data of cellular mRNA and exosomal miRNA from three categories of human tissue with three individual biological controls in studies of iPSCs generation, which will contribute to a better understanding of donor cell variation in functional epigenetic regulation and differentiation bias in iPSCs.
Collapse
Affiliation(s)
- Chunlai Yu
- University of Electronic Science and Technology of China, Chengdu, Sichuang, China
| | - Mei Zhang
- Binzhou Medical University, Yantai, Shandong, China
| | - Yucui Xiong
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qizheng Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yuanhua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Shaoling Wu
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sajjad Hussain
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Zhizhong Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Nini Rao
- University of Electronic Science and Technology of China, Chengdu, Sichuang, China.
| | - Sheng Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
| | - Xiao Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
20
|
Ma Y, Brocchini S, Williams GR. Extracellular vesicle-embedded materials. J Control Release 2023; 361:280-296. [PMID: 37536545 DOI: 10.1016/j.jconrel.2023.07.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Extracellular vesicles (EVs) are small membrane-bound vesicles released by cells. EVs are emerging as a promising class of therapeutic entity that could be adapted in formulation due to their lack of immunogenicity and targeting capabilities. EVs have been shown to have similar regenerative and therapeutic effects to their parental cells and also have potential in disease diagnosis. To improve the therapeutic potential of EVs, researchers have developed various strategies for modifying them, including genetic engineering and chemical modifications which have been examined to confer target specificity and prevent rapid clearance after systematic injection. Formulation efforts have focused on utilising hydrogel and nano-formulation strategies to increase the persistence of EV localisation in a specific tissue or organ. Researchers have also used biomaterials or bioscaffolds to deliver EVs directly to disease sites and prolong EV release and exposure. This review provides an in-depth examination of the material design of EV delivery systems, highlighting the impact of the material properties on the molecular interactions and the maintenance of EV stability and function. The various characteristics of materials designed to regulate the stability, release rate and biodistribution of EVs are described. Other aspects of material design, including modification methods to improve the targeting of EVs, are also discussed. This review aims to offer an understanding of the strategies for designing EV delivery systems, and how they can be formulated to make the transition from laboratory research to clinical use.
Collapse
Affiliation(s)
- Yingchang Ma
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, UK
| | - Steve Brocchini
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, UK
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
21
|
Lee JH, Won YJ, Kim H, Choi M, Lee E, Ryoou B, Lee SG, Cho BS. Adipose Tissue-Derived Mesenchymal Stem Cell-Derived Exosomes Promote Wound Healing and Tissue Regeneration. Int J Mol Sci 2023; 24:10434. [PMID: 37445612 DOI: 10.3390/ijms241310434] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Wound healing is a complex process involving cell proliferation, migration, and extracellular matrix (ECM) remodeling. Extracellular vesicles (EVs) or exosomes derived from adipose tissue-derived stem cells (ASCs) are emerging as promising alternatives to cell therapy for advanced wound healing. Hyaluronic acid (HA), a major component of the skin ECM, is widely utilized in wound dressings and dermal fillers. This study aimed to investigate the effects of ASC-derived exosomes (ASC-EXOs) on human dermal fibroblasts (HDFs) and their potential combination with HA in in vivo wound healing and dermal filler models. In HDFs, ASC-EXOs increased cell proliferation and migration. ASC-EXOs also upregulated the expression of genes involved in cell proliferation and wound healing while stimulating collagen production in HDFs. In a porcine wound healing model, topical treatment with a combination of HA and ASC-EXOs led to higher wound closure rates compared to HA alone. Histological examination showed increased re-epithelialization and collagen type III deposition in wounds treated with the combination of HA and ASC-EXOs. In a mouse dermal filler model, tissues injected with the combination of HA and ASC-EXOs exhibited thicker tissue layers, increased vascularization, enhanced infiltration of myofibroblasts, and higher levels of collagen III and collagen fiber content compared to HA alone. These findings suggest that ASC-EXOs have beneficial effects on cell proliferation, migration, and gene expression related to wound healing, and they may accelerate wound closure and promote tissue regeneration. Furthermore, the combination of HA and ASC-EXOs may enhance wound healing and tissue remodeling, indicating its potential for both clinical and regenerative aesthetic applications in skin repair and regeneration.
Collapse
Affiliation(s)
- Jun Ho Lee
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., STE 306, 19 Gasan digital 1-ro, Geumcheon-gu, Seoul 08594, Republic of Korea
| | - Yu Jin Won
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., STE 306, 19 Gasan digital 1-ro, Geumcheon-gu, Seoul 08594, Republic of Korea
| | - Hail Kim
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Minji Choi
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Clinical Research Institute, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Esther Lee
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., STE 306, 19 Gasan digital 1-ro, Geumcheon-gu, Seoul 08594, Republic of Korea
| | - Bumsik Ryoou
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., STE 306, 19 Gasan digital 1-ro, Geumcheon-gu, Seoul 08594, Republic of Korea
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Byong Seung Cho
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., STE 306, 19 Gasan digital 1-ro, Geumcheon-gu, Seoul 08594, Republic of Korea
| |
Collapse
|
22
|
Yuan YG, Wang JL, Zhang YX, Li L, Reza AMMT, Gurunathan S. Biogenesis, Composition and Potential Therapeutic Applications of Mesenchymal Stem Cells Derived Exosomes in Various Diseases. Int J Nanomedicine 2023; 18:3177-3210. [PMID: 37337578 PMCID: PMC10276992 DOI: 10.2147/ijn.s407029] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023] Open
Abstract
Exosomes are nanovesicles with a wide range of chemical compositions used in many different applications. Mesenchymal stem cell-derived exosomes (MSCs-EXOs) are spherical vesicles that have been shown to mediate tissue regeneration in a variety of diseases, including neurological, autoimmune and inflammatory, cancer, ischemic heart disease, lung injury, and liver fibrosis. They can modulate the immune response by interacting with immune effector cells due to the presence of anti-inflammatory compounds and are involved in intercellular communication through various types of cargo. MSCs-EXOs exhibit cytokine storm-mitigating properties in response to COVID-19. This review discussed the potential function of MSCs-EXOs in a variety of diseases including neurological, notably epileptic encephalopathy and Parkinson's disease, cancer, angiogenesis, autoimmune and inflammatory diseases. We provided an overview of exosome biogenesis and factors that regulate exosome biogenesis. Additionally, we highlight the functions and potential use of MSCs-EXOs in the treatment of the inflammatory disease COVID-19. Finally, we covered a strategies and challenges of MSCs-EXOs. Finally, we discuss conclusion and future perspectives of MSCs-EXOs.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Jia-Lin Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Ya-Xin Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Ling Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Abu Musa Md Talimur Reza
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Türkiye
| | | |
Collapse
|
23
|
Cheng W, Fan C, Song Q, Chen P, Peng H, Lin L, Liu C, Wang B, Zhou Z. Induced pluripotent stem cell-based therapies for organ fibrosis. Front Bioeng Biotechnol 2023; 11:1119606. [PMID: 37274156 PMCID: PMC10232908 DOI: 10.3389/fbioe.2023.1119606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Fibrotic diseases result in organ remodelling and dysfunctional failure and account for one-third of all deaths worldwide. There are no ideal treatments that can halt or reverse progressive organ fibrosis, moreover, organ transplantation is complicated by problems with a limited supply of donor organs and graft rejection. The development of new approaches, especially induced pluripotent stem cell (iPSC)-based therapy, is becoming a hot topic due to their ability to self-renew and differentiate into different cell types that may replace the fibrotic organs. In the past decade, studies have differentiated iPSCs into fibrosis-relevant cell types which were demonstrated to have anti-fibrotic effects that may have the potential to inform new effective precision treatments for organ-specific fibrosis. In this review, we summarize the potential of iPSC-based cellular approaches as therapeutic avenues for treating organ fibrosis, the advantages and disadvantages of iPSCs compared with other types of stem cell-based therapies, as well as the challenges and future outlook in this field.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qing Song
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Ping Chen
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Hong Peng
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Ling Lin
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Cong Liu
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Bin Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zijing Zhou
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
24
|
Li Q, Bu Y, Shao H, Li W, Zhao D, Wang J. Protective effect of bone marrow mesenchymal stem cell-derived exosomes on cardiomyoblast hypoxia-reperfusion injury through the HAND2-AS1/miR-17-5p/Mfn2 axis. BMC Cardiovasc Disord 2023; 23:114. [PMID: 36882677 PMCID: PMC9993697 DOI: 10.1186/s12872-023-03148-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND The exosomes (exos) of bone marrow mesenchymal stem cells (BMSCs) play an important therapeutic role in repairing myocardial injury. The purpose of this study was to explore how the exos of BMSCs can alleviate the myocardial cell injury caused by hypoxia/reoxygenation (H/R) through HAND2-AS1/miR-17-5p/Mfn 2 pathway. METHODS Cardiomyocytes H9c2 were damaged by H/R to mimic myocardial damage. Exos were gained from BMSC. The content of HAND2-AS1 and miR-17-5p was assessed by RT-qPCR. Cell survival rate and apoptosis were estimated by MTT assay and flow cytometry. Western blotting was used to detect the expression of protein. The contents of LDH, SOD, and MDA in the cell culture were detected by commercial kits. The luciferase reporter gene method confirmed the targeted relationships. RESULTS In H9c2 cells induced by H/R, the level of HAND2-AS1 declined and the expression of miR-17-5p was elevated, but their expression was reversed after exo treatment. Exos improved the cell viability, declined cell apoptosis, controlled the oxidative stress, and repressed inflammation, thus attenuating the damage of H9c2 induced by H/R, whereas, the knockdown of HAND2-AS1 partly alleviated the impacts of exos. MiR-17-5p played the opposite role to HAND2-AS1 on H/R-injured myocardial cells. CONCLUSION Exos derived from BMSC could alleviate H/R-induced myocardial injury by activating HAND2-AS1/miR-17-5p/Mfn2 pathway.
Collapse
Affiliation(s)
- Qiang Li
- Department of Cardiology, The Third Affiliated Hospital of Qiqihar Medical University, 27 Taishun street, Tiefeng District, Qiqihar, 161099, China.
| | - Yanling Bu
- Department of Ultrasonography, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161099, China
| | - Haifeng Shao
- Department of Cardiology, The Third Affiliated Hospital of Qiqihar Medical University, 27 Taishun street, Tiefeng District, Qiqihar, 161099, China
| | - Wenhua Li
- Department of Cardiology, The Third Affiliated Hospital of Qiqihar Medical University, 27 Taishun street, Tiefeng District, Qiqihar, 161099, China
| | - Di Zhao
- Department of Cardiology, The Third Affiliated Hospital of Qiqihar Medical University, 27 Taishun street, Tiefeng District, Qiqihar, 161099, China
| | - Jian Wang
- Department of Cardiology, The Third Affiliated Hospital of Qiqihar Medical University, 27 Taishun street, Tiefeng District, Qiqihar, 161099, China
| |
Collapse
|
25
|
Fighting age-related orthopedic diseases: focusing on ferroptosis. Bone Res 2023; 11:12. [PMID: 36854703 PMCID: PMC9975200 DOI: 10.1038/s41413-023-00247-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 03/02/2023] Open
Abstract
Ferroptosis, a unique type of cell death, is characterized by iron-dependent accumulation and lipid peroxidation. It is closely related to multiple biological processes, including iron metabolism, polyunsaturated fatty acid metabolism, and the biosynthesis of compounds with antioxidant activities, including glutathione. In the past 10 years, increasing evidence has indicated a potentially strong relationship between ferroptosis and the onset and progression of age-related orthopedic diseases, such as osteoporosis and osteoarthritis. Therefore, in-depth knowledge of the regulatory mechanisms of ferroptosis in age-related orthopedic diseases may help improve disease treatment and prevention. This review provides an overview of recent research on ferroptosis and its influences on bone and cartilage homeostasis. It begins with a brief overview of systemic iron metabolism and ferroptosis, particularly the potential mechanisms of ferroptosis. It presents a discussion on the role of ferroptosis in age-related orthopedic diseases, including promotion of bone loss and cartilage degradation and the inhibition of osteogenesis. Finally, it focuses on the future of targeting ferroptosis to treat age-related orthopedic diseases with the intention of inspiring further clinical research and the development of therapeutic strategies.
Collapse
|
26
|
Small Extracellular Vesicles Derived from Induced Pluripotent Stem Cells in the Treatment of Myocardial Injury. Int J Mol Sci 2023; 24:ijms24054577. [PMID: 36902008 PMCID: PMC10003569 DOI: 10.3390/ijms24054577] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Induced pluripotent stem cell (iPSC) therapy brings great hope to the treatment of myocardial injuries, while extracellular vesicles may be one of the main mechanisms of its action. iPSC-derived small extracellular vesicles (iPSCs-sEVs) can carry genetic and proteinaceous substances and mediate the interaction between iPSCs and target cells. In recent years, more and more studies have focused on the therapeutic effect of iPSCs-sEVs in myocardial injury. IPSCs-sEVs may be a new cell-free-based treatment for myocardial injury, including myocardial infarction, myocardial ischemia-reperfusion injury, coronary heart disease, and heart failure. In the current research on myocardial injury, the extraction of sEVs from mesenchymal stem cells induced by iPSCs was widely used. Isolation methods of iPSCs-sEVs for the treatment of myocardial injury include ultracentrifugation, isodensity gradient centrifugation, and size exclusion chromatography. Tail vein injection and intraductal administration are the most widely used routes of iPSCs-sEV administration. The characteristics of sEVs derived from iPSCs which were induced from different species and organs, including fibroblasts and bone marrow, were further compared. In addition, the beneficial genes of iPSC can be regulated through CRISPR/Cas9 to change the composition of sEVs and improve the abundance and expression diversity of them. This review focused on the strategies and mechanisms of iPSCs-sEVs in the treatment of myocardial injury, which provides a reference for future research and the application of iPSCs-sEVs.
Collapse
|
27
|
Fu X, Mishra R, Chen L, Arfat MY, Sharma S, Kingsbury T, Gunasekaran M, Saha P, Hong C, Yang P, Li D, Kaushal S. Exosomes mediated fibrogenesis in dilated cardiomyopathy through a MicroRNA pathway. iScience 2023; 26:105963. [PMID: 36818289 PMCID: PMC9932122 DOI: 10.1016/j.isci.2023.105963] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/02/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Cardiac fibrosis is a hallmark in late-stage familial dilated cardiomyopathy (DCM) patients, although the underlying mechanism remains elusive. Cardiac exosomes (Exos) have been reported relating to fibrosis in ischemic cardiomyopathy. Thus, we investigated whether Exos secreted from the familial DCM cardiomyocytes could promote fibrogenesis. Using human iPSCs differentiated cardiomyocytes we isolated Exos of angiotensin II stimulation conditioned media from either DCM or control (CTL) cardiomyocytes. Of interest, cultured cardiac fibroblasts had increased fibrogenesis following exposure to DCM-Exos rather than CTL-Exos. Meanwhile, injecting DCM-Exos into mouse hearts enhanced cardiac fibrosis and impaired cardiac function. Mechanistically, we identified the upregulation of miRNA-218-5p in the DCM-Exos as a critical contributor to fibrogenesis. MiRNA-218-5p activated TGF-β signaling via suppression of TNFAIP3, a master inflammation inhibitor. In conclusion, our results illustrate a profibrotic effect of cardiomyocytes-derived Exos that highlights an additional pathogenesis pathway for cardiac fibrosis in DCM.
Collapse
Affiliation(s)
- Xuebin Fu
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Rachana Mishra
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Ling Chen
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Mir Yasir Arfat
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Sudhish Sharma
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Tami Kingsbury
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Muthukumar Gunasekaran
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Progyaparamita Saha
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Charles Hong
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Deqiang Li
- Department of Surgery, Center for Vascular & Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA,Corresponding author
| | - Sunjay Kaushal
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA,Corresponding author
| |
Collapse
|
28
|
Whole-Heart Tissue Engineering and Cardiac Patches: Challenges and Promises. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010106. [PMID: 36671678 PMCID: PMC9855348 DOI: 10.3390/bioengineering10010106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Despite all the advances in preventing, diagnosing, and treating cardiovascular disorders, they still account for a significant part of mortality and morbidity worldwide. The advent of tissue engineering and regenerative medicine has provided novel therapeutic approaches for the treatment of various diseases. Tissue engineering relies on three pillars: scaffolds, stem cells, and growth factors. Gene and cell therapy methods have been introduced as primary approaches to cardiac tissue engineering. Although the application of gene and cell therapy has resulted in improved regeneration of damaged cardiac tissue, further studies are needed to resolve their limitations, enhance their effectiveness, and translate them into the clinical setting. Scaffolds from synthetic, natural, or decellularized sources have provided desirable characteristics for the repair of cardiac tissue. Decellularized scaffolds are widely studied in heart regeneration, either as cell-free constructs or cell-seeded platforms. The application of human- or animal-derived decellularized heart patches has promoted the regeneration of heart tissue through in vivo and in vitro studies. Due to the complexity of cardiac tissue engineering, there is still a long way to go before cardiac patches or decellularized whole-heart scaffolds can be routinely used in clinical practice. This paper aims to review the decellularized whole-heart scaffolds and cardiac patches utilized in the regeneration of damaged cardiac tissue. Moreover, various decellularization methods related to these scaffolds will be discussed.
Collapse
|
29
|
Li J, Jing Y, Bai F, Wu Y, Wang L, Yan Y, Jia Y, Yu Y, Jia B, Ali F. Induced pluripotent stem cells as natural biofactories for exosomes carrying miR-199b-5p in the treatment of spinal cord injury. Front Pharmacol 2023; 13:1078761. [PMID: 36703756 PMCID: PMC9871459 DOI: 10.3389/fphar.2022.1078761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Induced pluripotent stem cells-derived exosomes (iPSCs-Exo) can effectively treat spinal cord injury (SCI) in mice. But the role of iPSCs-Exo in SCI mice and its molecular mechanisms remain unclear. This research intended to study the effects and molecular mechanism of iPSCs-Exo in SCI mice models. Methods: The feature of iPSCs-Exo was determined by transmission electron microscope (TEM), nanoparticle tracking analysis (NTA), and western blot. The effects of iPSCs-Exo in the SCI mice model were evaluated by Basso Mouse Scale (BMS) scores and H&E staining. The roles of iPSCs-Exo and miR-199b-5p in LPS-treated BMDM were verified by immunofluorescence, RT-qPCR, and Cytokine assays. The target genes of miR-199b-5p were identified, and the function of miR-199b-5p and its target genes on LPS-treated BMDM was explored by recuse experiment. Results: iPSCs-Exo improved motor function in SCI mice model in vivo, shifted the polarization from M1 macrophage to M2 phenotype, and regulated related inflammatory factors expression to accelerate the SCI recovery in LPS-treated BMDM in vitro. Meanwhile, miR-199b-5p was a functional player of iPSCs-Exo, which could target hepatocyte growth factor (Hgf). Moreover, miR-199b-5p overexpression polarized M1 macrophage into M2 phenotype and promoted neural regeneration in SCI. The rescue experiments confirmed that miR-199b-5p induced macrophage polarization and SCI recovery by regulating Hgf and Phosphoinositide 3-kinase (PI3K) signaling pathways. Conclusion: The miR-199b-5p-bearing iPSCs-Exo might become an effective method to treat SCI.
Collapse
Affiliation(s)
- Jun Li
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Yingli Jing
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China,China Rehabilitation Science Institute, Beijing, China
| | - Fan Bai
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China,China Rehabilitation Science Institute, Beijing, China
| | - Ying Wu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Limiao Wang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China,China Rehabilitation Science Institute, Beijing, China
| | - Yitong Yan
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China,China Rehabilitation Science Institute, Beijing, China
| | - Yunxiao Jia
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yan Yu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China,China Rehabilitation Science Institute, Beijing, China,*Correspondence: Yan Yu, ; Benzhi Jia,
| | - Benzhi Jia
- Department of Spinal cord injury rehabilitation, Shanxi Kangfu Hospital, Xi’an, Shanxi, China,*Correspondence: Yan Yu, ; Benzhi Jia,
| | - Fawad Ali
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| |
Collapse
|
30
|
Delbaere Q, Chapet N, Huet F, Delmas C, Mewton N, Prunier F, Angoulvant D, Roubille F. Anti-Inflammatory Drug Candidates for Prevention and Treatment of Cardiovascular Diseases. Pharmaceuticals (Basel) 2023; 16:78. [PMID: 36678575 PMCID: PMC9865197 DOI: 10.3390/ph16010078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
Incidence and mortality rates for cardiovascular disease are declining, but it still remains a major cause of morbidity and mortality. Drug treatments to slow the progression of atherosclerosis focus on reducing cholesterol levels. The paradigm shift to consider atherosclerosis an inflammatory disease by itself has led to the development of new treatments. In this article, we discuss the pathophysiology of inflammation and focus attention on therapeutics targeting different inflammatory pathways of atherosclerosis and myocardial infarction. In atherosclerosis, colchicine is included in new recommendations, and eight randomized clinical trials are testing new drugs in different inflammatory pathways. After a myocardial infarction, no drug has shown a significant benefit, but we present four randomized clinical trials with new treatments targeting inflammation.
Collapse
Affiliation(s)
- Quentin Delbaere
- Department of Cardiology, Arnaud de Villeneuve University Hospital, 34295 Montpellier, France
| | - Nicolas Chapet
- Department of Cardiology, Arnaud de Villeneuve University Hospital, 34295 Montpellier, France
| | - Fabien Huet
- Department of Cardiology, Arnaud de Villeneuve University Hospital, 34295 Montpellier, France
- Department of Cardiology, Bretagne Atlantique General Hospital, 56000 Vannes, France
| | - Clément Delmas
- Department of Cardiology, Arnaud de Villeneuve University Hospital, 34295 Montpellier, France
| | - Nathan Mewton
- Hôpital Cardiovasculaire Louis Pradel, 69002 Lyon, France
| | - Fabrice Prunier
- Department of Cardiology, CHU Angers, Université d’Angers, 49100 Angers, France
| | - Denis Angoulvant
- Cardiology Department, CHRU de Tours, 37044 Tours, France
- EA 4245 T2I, Université de Tours, 37044 Tours, France
| | - François Roubille
- Department of Cardiology, Arnaud de Villeneuve University Hospital, 34295 Montpellier, France
| |
Collapse
|
31
|
Gong Y, Liu H, Ke S, Zhuo L, Wang H. Latest advances in biomimetic nanomaterials for diagnosis and treatment of cardiovascular disease. Front Cardiovasc Med 2023; 9:1037741. [PMID: 36684578 PMCID: PMC9846151 DOI: 10.3389/fcvm.2022.1037741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular disease remains one of the leading causes of death in China, with increasingly serious negative effects on people and society. Despite significant advances in preventing and treating cardiovascular diseases, such as atrial fibrillation/flutter and heart failure over the last few years, much more remains to be done. Therefore, developing innovative methods for identifying and managing cardiovascular disorders is critical. Nanomaterials provide multiple benefits in biomedicine, primarily better catalytic activity, drug loading, targeting, and imaging. Biomimetic materials and nanoparticles are specially combined to synthesize biomimetic nanoparticles that successfully reduce the nanoparticles' toxicity and immunogenicity while enhancing histocompatibility. Additionally, the biological targeting capability of nanoparticles facilitates the diagnosis and therapy of cardiovascular disease. Nowadays, nanomedicine still faces numerous challenges, which necessitates creating nanoparticles that are highly selective, toxic-free, and better clinically applicable. This study reviews the scientific accomplishments in this field over the past few years covering the classification, applications, and prospects of noble metal biomimetic nanozymes and biomimetic nanocarriers.
Collapse
Affiliation(s)
- Yuxuan Gong
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Huaying Liu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Shen Ke
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Li Zhuo
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China,Li Zhuo,
| | - Haibin Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China,*Correspondence: Haibin Wang,
| |
Collapse
|
32
|
Segovia F, Garcia H, Alkhateeb H, Mukherjee D, Nickel N. Updates in the Pharmacotherapy of Pulmonary Hypertension in Patients with Heart Failure with Preserved Ejection Fraction. Cardiovasc Hematol Disord Drug Targets 2023; 23:215-225. [PMID: 37921162 DOI: 10.2174/011871529x258234230921112507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 08/24/2023] [Indexed: 11/04/2023]
Abstract
Pulmonary hypertension (PH) associated with left heart disease (LHD) is a complex cardiopulmonary condition where a variable degree of pulmonary congestion, arterial vasoconstriction and vascular remodeling can lead to PH and right heart strain. Right heart dysfunction has a significant prognostic impact on these patients. Therefore, preserving right ventricular (RV) function is an important treatment goal. However, the treatment of PH in patients with left heart disease has produced conflicting evidence. The transition from pure LHD to LHD with PH is a continuum and clinically challenging. The heart failure with preserved ejection fraction (HFpEF) patient population is heterogeneous when it comes to PH and RV function. Appropriate clinical and hemodynamic phenotyping of patients with HFpEF and concomitant PH is paramount to making the appropriate treatment decision. This manuscript will summarize the current evidence for the use of pulmonary arterial vasodilators in patients with HFpEF.
Collapse
Affiliation(s)
- Fernando Segovia
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Hernando Garcia
- Pulmonary and Critical Care, Mount Sinai Medical Center, Miami, Florida, USA
| | - Haider Alkhateeb
- Division of Cardiovascular Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Debabrata Mukherjee
- Division of Cardiovascular Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Nils Nickel
- Division of Pulmonary and Critical Care Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| |
Collapse
|
33
|
Kim J, Lee SK, Jung M, Jeong SY, You H, Won JY, Han SD, Cho HJ, Park S, Park J, Kim TM, Kim S. Extracellular vesicles from IFN-γ-primed mesenchymal stem cells repress atopic dermatitis in mice. J Nanobiotechnology 2022; 20:526. [PMID: 36496385 PMCID: PMC9741801 DOI: 10.1186/s12951-022-01728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by immune dysregulation, pruritus, and abnormal epidermal barrier function. Compared with conventional mesenchymal stem cell (MSC), induced pluripotent stem cell (iPSC)-derived mesenchymal stem cell (iMSC) is recognized as a unique source for producing extracellular vesicles (EVs) because it can be obtained in a scalable manner with an enhanced homogeneity. Stimulation of iMSCs with inflammatory cytokines can improve the immune-regulatory, anti-inflammatory, and tissue-repairing potential of iMSC-derived EVs. RESULTS Proteome analysis showed that IFN-γ-iMSC-EVs are enriched with protein sets that are involved in regulating interferon responses and inflammatory pathways. In AD mice, expression of interleukin receptors for Th2 cytokines (IL-4Rα/13Rα1/31Rα) and activation of their corresponding intracellular signaling molecules was reduced. IFN-γ-iMSC-EVs decreased itching, which was supported by reduced inflammatory cell infiltration and mast cells in AD mouse skin; reduced IgE receptor expression and thymic stromal lymphopoietin and NF-kB activation; and recovered impaired skin barrier, as evidenced by upregulation of key genes of epidermal differentiation and lipid synthesis. CONCLUSIONS IFN-γ-iMSC-EVs inhibit Th2-induced immune responses, suppress inflammation, and facilitate skin barrier restoration, contributing to AD improvement.
Collapse
Affiliation(s)
- Jimin Kim
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Seul Ki Lee
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Minyoung Jung
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Seon-Yeong Jeong
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Haedeun You
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Ji-Yeon Won
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Sang-Deok Han
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Hye Jin Cho
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Somi Park
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Joonghoon Park
- grid.31501.360000 0004 0470 5905Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Gangwon-do 25354 South Korea ,grid.31501.360000 0004 0470 5905Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do 25354 South Korea
| | - Tae Min Kim
- grid.31501.360000 0004 0470 5905Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Gangwon-do 25354 South Korea ,grid.31501.360000 0004 0470 5905Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do 25354 South Korea
| | - Soo Kim
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| |
Collapse
|
34
|
Extracellular Vesicles in Chronic Demyelinating Diseases: Prospects in Treatment and Diagnosis of Autoimmune Neurological Disorders. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111943. [PMID: 36431078 PMCID: PMC9693249 DOI: 10.3390/life12111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Extracellular vesicles (EVs) represent membrane-enclosed structures that are likely to be secreted by all living cell types in the animal organism, including cells of peripheral (PNS) and central nervous systems (CNS). The ability to cross the blood-brain barrier (BBB) provides the possibility not only for various EV-loaded molecules to be delivered to the brain tissues but also for the CNS-to-periphery transmission of these molecules. Since neural EVs transfer proteins and RNAs are both responsible for functional intercellular communication and involved in the pathogenesis of neurodegenerative diseases, they represent attractive diagnostic and therapeutic targets. Here, we discuss EVs' role in maintaining the living organisms' function and describe deviations in EVs' structure and malfunctioning during various neurodegenerative diseases.
Collapse
|
35
|
Dash BC, Korutla L, Vallabhajosyula P, Hsia HC. Unlocking the Potential of Induced Pluripotent Stem Cells for Wound Healing: The Next Frontier of Regenerative Medicine. Adv Wound Care (New Rochelle) 2022; 11:622-638. [PMID: 34155919 DOI: 10.1089/wound.2021.0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Significance: Nonhealing wounds are a significant burden for the health care system all over the world. Existing treatment options are not enough to promote healing, highlighting the urgent need for improved therapies. In addition, the current advancements in tissue-engineered skin constructs and stem cell-based therapies are facing significant hurdles due to the absence of a renewable source of functional cells. Recent Advances: Induced pluripotent stem cell technology (iPSC) is emerging as a novel tool to develop the next generation of personalized medicine for the treatment of chronic wounds. The iPSC provides unlimited access to various skin cells to generate complex personalized three-dimensional skin constructs for disease modeling and autologous grafts. Furthermore, the iPSC-based therapies can target distinct wound healing phases and have shown accelerating wound closure by enhancing angiogenesis, cell migration, tissue regeneration, and modulating inflammation. Critical Issues: Since the last decade, iPSC has been revolutionizing the field of wound healing and skin tissue engineering. Despite the current progress, safety and heterogeneity among iPSC lines are still major hurdles in addition to the lack of large animal studies. These challenges need to be addressed before translating an iPSC-based therapy to the clinic. Future Directions: Future considerations should be given to performing large animal studies to check the safety and efficiency of iPSC-based therapy in a wound healing setup. Furthermore, strategies should be developed to overcome variation between hiPSC lines, develop an efficient manufacturing process for iPSC-derived products, and generate complex skin constructs with vasculature and skin appendages.
Collapse
Affiliation(s)
- Biraja C Dash
- Department of Surgery (Plastic), Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Laxminarayana Korutla
- Department of Surgery (Cardiac), Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Prashanth Vallabhajosyula
- Department of Surgery (Cardiac), Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Henry C Hsia
- Department of Surgery (Plastic), Yale School of Medicine, Yale University, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
36
|
Lv K, Wang Y, Lou P, Liu S, Zhou P, Yang L, Lu Y, Cheng J, Liu J. Extracellular vesicles as advanced therapeutics for the resolution of organ fibrosis: Current progress and future perspectives. Front Immunol 2022; 13:1042983. [PMCID: PMC9630482 DOI: 10.3389/fimmu.2022.1042983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Organ fibrosis is a serious health challenge worldwide, and its global incidence and medical burden are increasing dramatically each year. Fibrosis can occur in nearly all major organs and ultimately lead to organ dysfunction. However, current clinical treatments cannot slow or reverse the progression of fibrosis to end-stage organ failure, and thus advanced anti-fibrotic therapeutics are urgently needed. As a type of naturally derived nanovesicle, native extracellular vesicles (EVs) from multiple cell types (e.g., stem cells, immune cells, and tissue cells) have been shown to alleviate organ fibrosis in many preclinical models through multiple effective mechanisms, such as anti-inflammation, pro-angiogenesis, inactivation of myofibroblasts, and fibrinolysis of ECM components. Moreover, the therapeutic potency of native EVs can be further enhanced by multiple engineering strategies, such as genetic modifications, preconditionings, therapeutic reagent-loadings, and combination with functional biomaterials. In this review, we briefly introduce the pathology and current clinical treatments of organ fibrosis, discuss EV biology and production strategies, and particularly focus on important studies using native or engineered EVs as interventions to attenuate tissue fibrosis. This review provides insights into the development and translation of EV-based nanotherapies into clinical applications in the future.
Collapse
Affiliation(s)
- Ke Lv
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yizhuo Wang
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Lou
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyun Liu
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Pingya Zhou
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Lu
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Jingping Liu,
| |
Collapse
|
37
|
He Y, Li Q, Feng F, Gao R, Li H, Chu Y, Li S, Wang Y, Mao R, Ji Z, Hua Y, Shen J, Wang Z, Zhao M, Yao Q. Extracellular vesicles produced by human-induced pluripotent stem cell-derived endothelial cells can prevent arterial stenosis in mice via autophagy regulation. Front Cardiovasc Med 2022; 9:922790. [PMID: 36324745 PMCID: PMC9618599 DOI: 10.3389/fcvm.2022.922790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/15/2022] [Indexed: 12/05/2022] Open
Abstract
Intravascular transplantation of human-induced pluripotent stem cells (hiPSCs) demonstrated a significant therapeutic effect in the treatment of restenosis by the paracrine function of extracellular vesicles (EVs). However, the risk of tumorigenicity and poor cell survival limits its clinical applications. In this study, we for the first time applied a highly efficient and robust three-dimensional (3D) protocol for hiPSC differentiation into endothelial cells (ECs) with subsequent isolation of EVs from the derived hiPSC-EC (ECs differentiated from hiPSCs), and validated their therapeutic effect in intimal hyperplasia (IH) models. We found that intravenously (iv) injected EVs could accumulate on the carotid artery endothelium and significantly alleviate the intimal thickening induced by the carotid artery ligation. To elucidate the mechanism of this endothelial protection, we performed miRNA expression profiling and found out that among the most conserved endothelial miRNAs, miR-126 was the most abundant in hiPSC-EC-produced EVs (hiPSC-EC-EV). MiR-126 depletion from hiPSC-EC-EV can hinder its protective effect on human umbilical vein endothelial cells (HUVECs) in an inflammatory process. A variety of functional in vitro studies revealed that miR-126 was able to prevent endothelial apoptosis after inflammatory stimulation, as well as promote EC migration and tube formation through autophagy upregulation. The latter was supported by in vivo studies demonstrating that treatment with hiPSC-EC-EV can upregulate autophagy in mouse carotid artery ECs, thereby preventing IH and modulating vascular homeostasis via remodeling of the vascular intima. Our findings suggest a regulatory mechanism for the therapeutic effect on arterial restenosis by autophagy regulation, and provide a potential strategy for clinical treatment of the disease.
Collapse
Affiliation(s)
- Yecheng He
- Department of Clinical Medicine, Suzhou Vocational Health College, Suzhou, Jiangsu, China
| | - Quanfu Li
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Feng
- Institute of Physical Education, Inner Mongolia Normal University, Hohhot, Inner Mongolia, China
| | - Rupan Gao
- Department of Hematology, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Huadong Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuxin Chu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shaobo Li
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yin Wang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Ruoying Mao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Zhongzhong Ji
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yutao Hua
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jun Shen
- Department of Pharmacy, Suzhou Vocational Health College, Suzhou, Jiangsu, China
| | - Ziao Wang
- School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Meng Zhao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Meng Zhao,
| | - Qing Yao
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
- *Correspondence: Qing Yao,
| |
Collapse
|
38
|
Gu Z, Yin Z, Song P, Wu Y, He Y, Zhu M, Wu Z, Zhao S, Huang H, Wang H, Tong C, Qi Z. Safety and biodistribution of exosomes derived from human induced pluripotent stem cells. Front Bioeng Biotechnol 2022; 10:949724. [PMID: 36091443 PMCID: PMC9461140 DOI: 10.3389/fbioe.2022.949724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/27/2022] [Indexed: 12/03/2022] Open
Abstract
As a new cell-free therapy, exosomes have provided new ideas for the treatment of various diseases. Human induced pluripotent stem cells (hiPSCs) cannot be used in clinical trials because of tumorigenicity, but the exosomes derived from hiPSCs may combine the advantages of iPSC pluripotency and the nanoscale size of exosomes while avoiding tumorigenicity. Currently, the safety and biodistribution of hiPSC-exosomes in vivo are unclear. Here, we investigated the effects of hiPSC-exosomes on hemolysis, DNA damage, and cytotoxicity through cell experiments. We also explored the safety of vein injection of hiPSC-exosomes in rabbits and rats. Differences in organ distribution after nasal administration were compared in normal and Parkinson’s disease model mice. This study may provide support for clinical therapy and research of intravenous and nasal administration of hiPSC-exosomes.
Collapse
Affiliation(s)
- Zhewei Gu
- Medical College, Guangxi University, Nanning, China
| | - Zhiyu Yin
- Medical College, Guangxi University, Nanning, China
| | - Pengbo Song
- Medical College, Guangxi University, Nanning, China
| | - Ying Wu
- Medical College, Guangxi University, Nanning, China
| | - Ying He
- Medical College, Guangxi University, Nanning, China
| | - Maoshu Zhu
- Medical College, Guangxi University, Nanning, China
| | - Zhengxin Wu
- Medical College, Guangxi University, Nanning, China
| | - Sicheng Zhao
- Medical College, Guangxi University, Nanning, China
| | - Hongri Huang
- GuangXi TaiMeiRenSheng Biotechnology Co., LTD., Nanning, China
| | - Huihuang Wang
- GuangXi TaiMeiRenSheng Biotechnology Co., LTD., Nanning, China
| | - Cailing Tong
- Biotechcomer Co., Ltd., Xiamen, China
- *Correspondence: Cailing Tong, ; Zhongquan Qi,
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, China
- *Correspondence: Cailing Tong, ; Zhongquan Qi,
| |
Collapse
|
39
|
Repeated intravenous administration of hiPSC-MSCs enhance the efficacy of cell-based therapy in tissue regeneration. Commun Biol 2022; 5:867. [PMID: 36008710 PMCID: PMC9411616 DOI: 10.1038/s42003-022-03833-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/11/2022] [Indexed: 01/02/2023] Open
Abstract
We seek to demonstrate whether therapeutic efficacy can be improved by combination of repeated intravenous administration and local transplantation of human induced pluripotential stem cell derived MSCs (hiPSC-MSCs). In this study, mice model of hind-limb ischemia is established by ligation of left femoral artery. hiPSC-MSCs (5 × 105) is intravenously administrated immediately after induction of hind limb ischemia with or without following intravenous administration of hiPSC-MSCs every week or every 3 days. Intramuscular transplantation of hiPSC-MSCs (3 × 106) is performed one week after induction of hind-limb ischemia. We compare the therapeutic efficacy and cell survival of intramuscular transplantation of hiPSC-MSCs with or without a single or repeated intravenous administration of hiPSC-MSCs. Repeated intravenous administration of hiPSC-MSCs can increase splenic regulatory T cells (Tregs) activation, decrease splenic natural killer (NK) cells expression, promote the polarization of M2 macrophages in the ischemic area and improved blood perfusion in the ischemic limbs. The improved therapeutic efficacy of MSC-based therapy is due to both increased engraftment of intramuscular transplanted hiPSC-MSCs and intravenous infused hiPSC-MSCs. In conclusion, our study support a combination of repeated systemic infusion and local transplantation of hiPSC-MSCs for cardiovascular disease. A combination of repeated systemic infusion and local transplantation of hiPSC-MSCs could enhance regenerative therapies for cardiovascular disease.
Collapse
|
40
|
Oxidative stress-induced endothelial cells-derived exosomes accelerate skin flap survival through Lnc NEAT1-mediated promotion of endothelial progenitor cell function. Stem Cell Res Ther 2022; 13:325. [PMID: 35850692 PMCID: PMC9290268 DOI: 10.1186/s13287-022-03013-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022] Open
Abstract
Background Flap transplantation is commonly used in reconstructive surgery. A prerequisite for skin flap survival is sufficient blood supply. However, such approaches remain unclear. This study aimed to explore the underlying mechanisms of exosomes derived from human umbilical vascular endothelial cells (HUVECs) exposed to oxidative stress on endothelial progenitor cells (EPCs) and their subsequent influence on the survival of skin flaps. Methods HUVECs were treated with various concentrations of H2O2 to establish an oxidative stress model. To investigate the effects of H2O2-HUVEC-Exos and HUVEC-Exos, Cell Counting Kit-8, tube formation, invasion assays, and quantitative real-time polymerase chain reaction (qRT-PCR) were performed in EPCs. Microarray analysis was used to reveal the differentially expressed long non-coding RNAs (lncRNAs) in the H2O2-HUVEC-Exos and HUVEC-Exos. In addition, gene silencing and western blotting were employed to determine the mechanism behind lncRNA nuclear enrichment enriched transcript 1 (Lnc NEAT1) in EPCs. Further, a rat skin flap model was used to determine the role of the exosomes in skin flap survival in vivo. Results HUVECs were stimulated with 100 μmol/L H2O2 for 12 h to establish an oxidative stress model. H2O2-HUVEC-Exos promoted the proliferation, tube formation, and invasion of EPCs and remarkably increased skin flap survival compared to the HUVEC-Exos and control groups. Sequencing of exosome RNAs revealed that the Lnc NEAT1 level was dramatically increased in the H2O2-HUVEC-Exos, leading to activation of the Wnt/β-catenin signaling pathway. Comparatively, knockdown of Lnc NEAT1 in HUVEC-Exos and H2O2-HUVEC-Exos significantly inhibits the angiogenic capacity of EPCs, reduced the survival area of skin flap and downregulated the expression levels of Wnt/β-catenin signaling pathway proteins, whereas Wnt agonist partly reversed the negative effect of NEAT1 downregulation on EPCs through the Wnt/β-catenin signaling pathway. Conclusions Exosomes derived from HUVECs stimulated by oxidative stress significantly promoted the pro-angiogenic ability of EPCs through the Wnt/β-catenin signaling pathway mediated by Lnc NEAT1 and hence enhanced random flap survival in vivo. Therefore, the application of H2O2-HUVEC-Exos may serve as an alternative therapy for improving random skin flap survival. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03013-9.
Collapse
|
41
|
Yedavilli S, Singh AD, Singh D, Samal R. Nano-Messengers of the Heart: Promising Theranostic Candidates for Cardiovascular Maladies. Front Physiol 2022; 13:895322. [PMID: 35899033 PMCID: PMC9313536 DOI: 10.3389/fphys.2022.895322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Till date, cardiovascular diseases remain a leading cause of morbidity and mortality across the globe. Several commonly used treatment methods are unable to offer safety from future complications and longevity to the patients. Therefore, better and more effective treatment measures are needed. A potential cutting-edge technology comprises stem cell-derived exosomes. These nanobodies secreted by cells are intended to transfer molecular cargo to other cells for the establishment of intercellular communication and homeostasis. They carry DNA, RNA, lipids, and proteins; many of these molecules are of diagnostic and therapeutic potential. Several stem cell exosomal derivatives have been found to mimic the cardioprotective attributes of their parent stem cells, thus holding the potential to act analogous to stem cell therapies. Their translational value remains high as they have minimal immunogenicity, toxicity, and teratogenicity. The current review highlights the potential of various stem cell exosomes in cardiac repair, emphasizing the recent advancements made in the development of cell-free therapeutics, particularly as biomarkers and as carriers of therapeutic molecules. With the use of genetic engineering and biomimetics, the field of exosome research for heart treatment is expected to solve various theranostic requirements in the field paving its way to the clinics.
Collapse
Affiliation(s)
- Sneha Yedavilli
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Damini Singh
- Environmental Pollution Analysis Lab, Bhiwadi, India
| | - Rasmita Samal
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
- *Correspondence: Rasmita Samal,
| |
Collapse
|
42
|
Bahmani L, Ullah M. Different Sourced Extracellular Vesicles and Their Potential Applications in Clinical Treatments. Cells 2022; 11:cells11131989. [PMID: 35805074 PMCID: PMC9265969 DOI: 10.3390/cells11131989] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) include a heterogeneous group of natural cell-derived nanostructures that are increasingly regarded as promising biotherapeutic agents and drug delivery vehicles in human medicine. Desirable intrinsic properties of EVs including the ability to bypass natural membranous barriers and to deliver their unique biomolecular cargo to specific cell populations position them as fiercely competitive alternatives for currently available cell therapies and artificial drug delivery platforms. EVs with distinct characteristics can be released from various cell types into the extracellular environment as a means of transmitting bioactive components and altering the status of the target cell. Despite the existence of a large number of preclinical studies confirming the therapeutic efficacy of different originated EVs for treating several pathological conditions, in this review, we first provide a brief overview of EV biophysical properties with an emphasis on their intrinsic therapeutic benefits over cell-based therapies and synthetic delivery systems. Next, we describe in detail different EVs derived from distinct cell sources, compare their advantages and disadvantages, and recapitulate their therapeutic effects on various human disorders to highlight the progress made in harnessing EVs for clinical applications. Finally, knowledge gaps and concrete hurdles that currently hinder the clinical translation of EV therapies are debated with a futuristic perspective.
Collapse
Affiliation(s)
- Leila Bahmani
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Correspondence:
| |
Collapse
|
43
|
Wang X, Wu C. Tanshinone IIA improves cardiac function via regulating miR-499-5p dependent angiogenesis in myocardial ischemic mice. Microvasc Res 2022; 143:104399. [PMID: 35697130 DOI: 10.1016/j.mvr.2022.104399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 05/22/2022] [Accepted: 06/06/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND/AIMS Myocardial ischemia-reperfusion injury leads to aggravated cardiac remodeling and heart failure. After myocardial infarction (MI), angiogenesis plays a vital role in the repair and regeneration of tissue. The purpose of the current study was to determine the effect of Tanshinone IIA (Tan IIA) on angiogenesis and elucidate its related mechanism. METHODS The C57BL/6 mice MI model was established to evaluate the therapeutic effect of Tan IIA in vivo. MicroRNA (miRNA) microarray and bioinformatics analysis were performed to determine the differential expressions of miRNAs after Tan IIA administration. Cell proliferation, migration, and angiogenesis capacity were detected by EdU, Transwell, and Tube formation assay in vitro, respectively. The relationship between miR-499-5p (miR-499) and paired phosphate and tension homolog deleted on chromosome ten (PTEN) was confirmed by using a Dual-luciferase reporter assay. RESULTS Our results showed that Tan IIA administration improved cardiac function after MI by activating angiogenesis. Further miRNA microarray and bioinformatics analysis revealed that miR-499 was significantly down-regulated, while PTEN was remarkably upregulated after Tan IIA administration post-MI. In addition, we found that miR-499 knock-down effectively promotes cell proliferation, migration, and tube formation ability of HUVECs. Dual-luciferase reporter assay demonstrated that PTEN contains a direct binding site for miR-499-5p. CONCLUSION Tan IIA improves cardiac function post-MI by inducing angiogenesis. In terms of the mechanism, Tan IIA promotes therapeutic angiogenesis by regulating miR-499-5p/PTEN signaling pathway.
Collapse
Affiliation(s)
- Xian Wang
- Department of Cardiology, Huaian Medical District, General Hospital of Eastern Theater Command, No. 100 Jiankang East Road, Qingjiangpu District, Huaian City, Jiangsu Province, China
| | - Changwei Wu
- Department of Cardiology, Huaian Medical District, General Hospital of Eastern Theater Command, No. 100 Jiankang East Road, Qingjiangpu District, Huaian City, Jiangsu Province, China.
| |
Collapse
|
44
|
Hsu HH, Wang AYL, Loh CYY, Pai AA, Kao HK. Therapeutic Potential of Exosomes Derived from Diabetic Adipose Stem Cells in Cutaneous Wound Healing of db/db Mice. Pharmaceutics 2022; 14:pharmaceutics14061206. [PMID: 35745779 PMCID: PMC9227821 DOI: 10.3390/pharmaceutics14061206] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 01/27/2023] Open
Abstract
(1) Background: Diabetes impairs angiogenesis and wound healing. Paracrine secretion from adipose stem cells (ASCs) contains membrane-bound nano-vesicles called exosomes (ASC-Exo) but the functional role and therapeutic potential of diabetic ASC-Exo in wound healing are unknown. This study aims to investigate the in vivo mechanistic basis by which diabetic ASC-Exo enhance cutaneous wound healing in a diabetic mouse model. (2) Methods: Topically applied exosomes could efficiently target and preferentially accumulate in wound tissue, and the cellular origin, ASC or dermal fibroblast (DFb), has no influence on the biodistribution pattern of exosomes. In vivo, full-thickness wounds in diabetic mice were treated either with ASC-Exo, DFb-Exo, or phosphate-buffered saline (PBS) topically. ASC-Exo stimulated wound healing by dermal cell proliferation, keratinocyte proliferation, and angiogenesis compared with DFb-Exo and PBS-treated wounds. (3) Results: Diabetic ASC-Exo stimulated resident monocytes/macrophages to secrete more TGF-β1 and activate the TGF-β/Smad3 signaling pathway. Fibroblasts activated by TGF-β1containing exosomes from ASCs initiate the production of TGF-β1 protein in an autocrine fashion, which leads to more proliferation and activation of fibroblasts. TGF-β1 is centrally involved in diabetic ASC-Exo mediated cellular crosstalk as an important early response to initiating wound regeneration. (4) Conclusions: The application of diabetic ASC-Exo informs the potential utility of a cell-free therapy in diabetic wound healing.
Collapse
Affiliation(s)
- Hsiang-Hao Hsu
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital & Chang Gung University College of Medicine, Taoyuan 333, Taiwan;
| | - Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Charles Yuen Yung Loh
- Department of Plastic Surgery, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK;
| | - Ashwin Alke Pai
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital & Chang Gung University College of Medicine, Taoyuan 333, Taiwan;
| | - Huang-Kai Kao
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital & Chang Gung University College of Medicine, Taoyuan 333, Taiwan;
- Correspondence: ; Tel.: +886-3281-200 (ext. 3355)
| |
Collapse
|
45
|
Abstract
Purpose of Review The advent of induced pluripotent stem cells (iPSC) has paved the way for new in vitro models of human cardiomyopathy. Herein, we will review existing models of disease as well as strengths and limitations of the system. Recent Findings Preclinical studies have now demonstrated that iPSCs generated from patients with both acquired or heritable genetic diseases retain properties of the disease in vitro and can be used as a model to study novel therapeutics. iPSCs can be differentiated in vitro into the cardiomyocyte lineage into cells resembling adult ventricular myocytes that retain properties of cardiovascular disease from their respective donor. iPSC pluripotency allows for them to be frozen, stored, and continually used to generate iPSC-derived myocytes for future experiments without need for invasive procedures or repeat myocyte isolations to obtain animal or human cardiac tissues. Summary While not without their limitations, iPSC models offer new ways for studying patient-specific cardiomyopathies. iPSCs offer a high-throughput avenue for drug development, modeling of disease pathophysiology in vitro, and enabling experimental repair strategies without need for invasive procedures to obtain cardiac tissues.
Collapse
|
46
|
Mesenchymal Stem Cell-Derived Extracellular Vesicles and Their Therapeutic Use in Central Nervous System Demyelinating Disorders. Int J Mol Sci 2022; 23:ijms23073829. [PMID: 35409188 PMCID: PMC8998258 DOI: 10.3390/ijms23073829] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Autoimmune demyelinating diseases-including multiple sclerosis, neuromyelitis optica spectrum disorder, anti-myelin oligodendrocyte glycoprotein-associated disease, acute disseminated encephalomyelitis, and glial fibrillary acidic protein (GFAP)-associated meningoencephalomyelitis-are a heterogeneous group of diseases even though their common pathology is characterized by neuroinflammation, loss of myelin, and reactive astrogliosis. The lack of safe pharmacological therapies has purported the notion that cell-based treatments could be introduced to cure these patients. Among stem cells, mesenchymal stem cells (MSCs), obtained from various sources, are considered to be the ones with more interesting features in the context of demyelinating disorders, given that their secretome is fully equipped with an array of anti-inflammatory and neuroprotective molecules, such as mRNAs, miRNAs, lipids, and proteins with multiple functions. In this review, we discuss the potential of cell-free therapeutics utilizing MSC secretome-derived extracellular vesicles-and in particular exosomes-in the treatment of autoimmune demyelinating diseases, and provide an outlook for studies of their future applications.
Collapse
|
47
|
Gonciar D, Mocan T, Agoston-Coldea L. Nanoparticles Targeting the Molecular Pathways of Heart Remodeling and Regeneration. Pharmaceutics 2022; 14:pharmaceutics14040711. [PMID: 35456545 PMCID: PMC9028351 DOI: 10.3390/pharmaceutics14040711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 12/10/2022] Open
Abstract
Cardiovascular diseases are the main cause of death worldwide, a trend that will continue to grow over the next decade. The heart consists of a complex cellular network based mainly on cardiomyocytes, but also on endothelial cells, smooth muscle cells, fibroblasts, and pericytes, which closely communicate through paracrine factors and direct contact. These interactions serve as valuable targets in understanding the phenomenon of heart remodeling and regeneration. The advances in nanomedicine in the controlled delivery of active pharmacological agents are remarkable and may provide substantial contribution to the treatment of heart diseases. This review aims to summarize the main mechanisms involved in cardiac remodeling and regeneration and how they have been applied in nanomedicine.
Collapse
Affiliation(s)
- Diana Gonciar
- 2nd Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca 400000, Romania; (D.G.); (L.A.-C.)
| | - Teodora Mocan
- Physiology Department, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca 400000, Romania
- Department of Nanomedicine, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
- Correspondence:
| | - Lucia Agoston-Coldea
- 2nd Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca 400000, Romania; (D.G.); (L.A.-C.)
| |
Collapse
|
48
|
Yarmohammadi R, Ghollasi M, Kheirollahzadeh F, Soltanyzadeh M, Heshmati M, Amirkhani MA. Osteogenic differentiation of human induced pluripotent stem cell in the presence of testosterone and 17 β-estradiol in vitro. In Vitro Cell Dev Biol Anim 2022; 58:179-188. [PMID: 35175493 DOI: 10.1007/s11626-022-00652-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/23/2022] [Indexed: 11/30/2022]
Abstract
Recently, numerous scientific approaches have been explored to treat various diseases using stem cells. In 2006, induced pluripotent stem cell (iPSC) were introduced by Takahashi and Yamanaka and showed the potential of self-renewing and differentiation into all types of targeted cells in vitro. In this investigation, we studied the effect of testosterone (T) individually or in the presence of 17 β-estradiol (E2) on osteogenic differentiation of human iPSC (hiPSC) during 2 wk. The optimal concentrations of sex steroid hormones were examined by MTT assay and acridine orange (AO) staining. The impact of E2 and T either individually or together as a combination was examined by ALP activity; the content of total mineral calcium, by von Kossa and alizarin red staining. Additionally, the expression rate of osteogenic specific markers was studied via real-time RT-PCR and immunocytochemistry analyses at day 14 of differentiation. The obtained results illustrated that the differentiation medium supplemented with T-E2 increased not only the ALP enzyme activity and the content of calcium but also the osteogenic-related gene and protein expressions on the 14th day. Furthermore, the results were confirmed by mineralized matrix staining. In conclusion, these data suggest that T could be used as an effective factor for osteogenic induction of hiPSCs combined with the E2 in bone regeneration.
Collapse
Affiliation(s)
- Reyhaneh Yarmohammadi
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, P. O. Box, 15719-14911, Tehran, Iran.
| | | | - Maryam Soltanyzadeh
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, P. O. Box, 15719-14911, Tehran, Iran
| | - Masoumeh Heshmati
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Amir Amirkhani
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Generation and functional characterization of CAR exosomes. Methods Cell Biol 2022; 167:123-131. [DOI: 10.1016/bs.mcb.2021.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Quadri Z, Elsherbini A, Bieberich E. Extracellular vesicles in pharmacology: Novel approaches in diagnostics and therapy. Pharmacol Res 2022; 175:105980. [PMID: 34863822 PMCID: PMC8760625 DOI: 10.1016/j.phrs.2021.105980] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 01/03/2023]
Abstract
Exosomes are nano-sized lipid vesicles that are produced by all eukaryotic cells, and they typically range in size from 30 to 150 nm. Exosomes were discovered almost 40 years ago; however, the last two decades have attracted considerable attention due to exosomes' inherent abilities to shuttle nucleic acids, lipids and proteins between cells, along with their natural affinity to exosome target cells. From a pharmaceutical perspective, exosomes are regarded as naturally produced nanoparticle drug delivery vehicles. The application of exosomes as a means of drug delivery offers critical advantages compared to other nanoparticulate drug delivery systems, such as liposomes and polymeric nanoparticles. These advantages are due to the exosomes' intrinsic features, such as low immunogenicity, biocompatibility, stability, and their ability to overcome biological barriers. Herein, we outline the structure and origin of exosomes, as well as their biological functions. We also touch upon recent advances in exosome labeling, imaging and drug loading. Finally, we discuss exosomes in targeted drug delivery and clinical trial development.
Collapse
Affiliation(s)
- Zainuddin Quadri
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, United States; Veterans Affairs Medical Center, Lexington, KY 40502, United States
| | - Ahmed Elsherbini
- Veterans Affairs Medical Center, Lexington, KY 40502, United States
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, United States; Veterans Affairs Medical Center, Lexington, KY 40502, United States.
| |
Collapse
|