1
|
Aguilar D, Zhu F, Millet A, Millet N, Germano P, Pisegna J, Akbari O, Doherty TA, Swidergall M, Jendzjowsky N. Sensory neurons regulate stimulus-dependent humoral immunity in mouse models of bacterial infection and asthma. Nat Commun 2024; 15:8914. [PMID: 39414787 PMCID: PMC11484968 DOI: 10.1038/s41467-024-53269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Sensory neurons sense pathogenic infiltration to drive innate immune responses, but their role in humoral immunity is unclear. Here, using mouse models of Streptococcus pneumoniae infection and Alternaria alternata asthma, we show that sensory neurons are required for B cell recruitment and antibody production. In response to S. pneumoniae, sensory neuron depletion increases bacterial burden and reduces B cell numbers, IgG release, and neutrophil stimulation. Meanwhile, during A. alternata-induced airway inflammation, sensory neuron depletion decreases B cell population sizes, IgE levels, and asthmatic characteristics. Mechanistically, during bacterial infection, sensory neurons preferentially release vasoactive intestinal polypeptide (VIP). In response to asthma, sensory neurons release substance P. Administration of VIP into sensory neuron-depleted mice suppresses bacterial burden, while VIPR1 deficiency increases infection. Similarly, exogenous substance P delivery aggravates asthma in sensory neuron-depleted mice, while substance P deficiency ameliorates asthma. Our data, thus demonstrate that sensory neurons release select neuropeptides which target B cells dependent on the immunogen.
Collapse
Affiliation(s)
- Diane Aguilar
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Fengli Zhu
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Antoine Millet
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Nicolas Millet
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Infectious Disease, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Patrizia Germano
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA, USA
- Division of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Joseph Pisegna
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System and Department of Medicine, Los Angeles, CA, USA
- Division of Pulmonary and Critical Care, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Taylor A Doherty
- Division of Allergy and Immunology, Department of Medicine, University of California San Diego, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Marc Swidergall
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Infectious Disease, Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine, Los Angeles, CA, USA
| | - Nicholas Jendzjowsky
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA.
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
- David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Aguilar D, Zhu F, Millet A, Millet N, Germano P, Pisegna J, Akbari O, Doherty TA, Swidergall M, Jendzjowsky N. Sensory neurons regulate stimulus-dependent humoral immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574231. [PMID: 38260709 PMCID: PMC10802321 DOI: 10.1101/2024.01.04.574231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Sensory neurons sense pathogenic infiltration, serving to inform immune coordination of host defense. However, sensory neuron-immune interactions have been predominantly shown to drive innate immune responses. Humoral memory, whether protective or destructive, is acquired early in life - as demonstrated by both early exposure to streptococci and allergic disease onset. Our study further defines the role of sensory neuron influence on humoral immunity in the lung. Using a murine model of Streptococcus pneumonia pre-exposure and infection and a model of allergic asthma, we show that sensory neurons are required for B-cell and plasma cell recruitment and antibody production. In response to S. pneumoniae, sensory neuron depletion resulted in a larger bacterial burden, reduced B-cell populations, IgG release and neutrophil stimulation. Conversely, sensory neuron depletion reduced B-cell populations, IgE and asthmatic characteristics during allergen-induced airway inflammation. The sensory neuron neuropeptide released within each model differed. With bacterial infection, vasoactive intestinal polypeptide (VIP) was preferentially released, whereas substance P was released in response to asthma. Administration of VIP into sensory neuron-depleted mice suppressed bacterial burden and increased IgG levels, while VIP1R deficiency increased susceptibility to bacterial infection. Sensory neuron-depleted mice treated with substance P increased IgE and asthma, while substance P genetic ablation resulted in blunted IgE, similar to sensory neuron-depleted asthmatic mice. These data demonstrate that the immunogen differentially stimulates sensory neurons to release specific neuropeptides which specifically target B-cells. Targeting sensory neurons may provide an alternate treatment pathway for diseases involved with insufficient and/or aggravated humoral immunity.
Collapse
|
3
|
Shane DX, Konovalova DM, Rajendran H, Yuan SY, Ma Y. Glucocorticoids impair T lymphopoiesis after myocardial infarction. Am J Physiol Heart Circ Physiol 2024; 327:H533-H544. [PMID: 38995212 PMCID: PMC11442026 DOI: 10.1152/ajpheart.00195.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
The thymus, where T lymphocytes develop and mature, is sensitive to insults such as tissue ischemia or injury. The insults can cause thymic atrophy and compromise T-cell development, potentially impairing adaptive immunity. The objective of this study was to investigate whether myocardial infarction (MI) induces thymic injury to impair T lymphopoiesis and to uncover the underlying mechanisms. When compared with sham controls, MI mice at day 7 post-MI exhibited smaller thymus, lower cellularity, as well as less thymocytes at different developmental stages, indicative of T-lymphopoiesis impairment following MI. Accordingly, the spleen of MI mice has less T cells and recent thymic emigrants (RTEs), implying that the thymus of MI mice releases fewer mature thymocytes than sham controls. Interestingly, the secretory function of splenic T cells was not affected by MI. Further experiments showed that the reduction of thymocytes in MI mice was due to increased thymocyte apoptosis. Removal of adrenal glands by adrenalectomy (ADX) prevented MI-induced thymic injury and dysfunction, whereas corticosterone supplementation in ADX + MI mice reinduced thymic injury and dysfunction, indicating that glucocorticoids mediate thymic damage triggered by MI. Eosinophils play essential roles in thymic regeneration postirradiation, and eosinophil-deficient mice exhibit impaired thymic recovery after sublethal irradiation. Interestingly, the thymus was fully regenerated in both wild-type and eosinophil-deficient mice at day 14 post-MI, suggesting that eosinophils are not critical for thymus regeneration post-MI. In conclusion, our study demonstrates that MI-induced glucocorticoids trigger thymocyte apoptosis and impair T lymphopoiesis, resulting in less mature thymocyte release to the spleen.NEW & NOTEWORTHY The thymus is essential for maintaining whole body T-cell output. Thymic injury can adversely affect T lymphopoiesis and T-cell immune response. This study demonstrates that MI induces thymocyte apoptosis and compromises T lymphopoiesis, resulting in fewer releases of mature thymocytes to the spleen. This process is mediated by glucocorticoids secreted by adrenal glands. Therefore, targeting glucocorticoids represents a novel approach to attenuate post-MI thymic injury.
Collapse
Affiliation(s)
- Danielle X Shane
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, United States
| | - Daria M Konovalova
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, United States
| | - Harishkumar Rajendran
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, United States
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, United States
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida, United States
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, United States
| |
Collapse
|
4
|
Huang X, Qiu J, Kuang M, Wang C, He S, Yu C, Xie G, Sheng G, Zou Y. Assessing the predictive value of the controlling nutritional status score on all-cause mortality during hospitalization in patients with acute decompensated heart failure: a retrospective cohort study from Jiangxi, China. Front Nutr 2024; 11:1392268. [PMID: 39036498 PMCID: PMC11258027 DOI: 10.3389/fnut.2024.1392268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Objective Nutritional status is closely associated with the prognosis of heart failure. This study aims to assess the relationship between the Controlling Nutritional Status (CONUT) score and in-hospital mortality among patients with acute decompensated heart failure (ADHF) in Jiangxi, China. Methods A retrospective cohort study was conducted. Multivariable Cox regression models and restricted cubic spline regression were employed to evaluate the relationship between the CONUT score and in-hospital mortality in ADHF patients from Jiangxi, China. The predictive value of the CONUT score for in-hospital mortality in ADHF patients was analyzed using receiver operating characteristic curves. Subgroup analyses were performed to identify risk dependencies of the CONUT score in specific populations. Results The study included 1,230 ADHF patients, among whom 44 (3.58%) mortality events were recorded. After adjusting for confounding factors, a positive correlation was found between the CONUT score and the risk of in-hospital mortality in ADHF patients. Restricted cubic spline regression analysis indicated a non-linear relationship between the CONUT score and the risk of in-hospital mortality in ADHF patients, estimating a rapid increase in mortality risk when the CONUT score exceeded 5. Receiver operating characteristic analysis demonstrated a good predictive value of the CONUT score for all-cause mortality events in ADHF patients [area under the curve = 0.7625, optimal threshold = 5.5]. Additionally, a relatively higher risk associated with the CONUT score was observed in male patients and those with concomitant cerebral infarction. Conclusion This study reveals a positive correlation between the CONUT score and the risk of in-hospital mortality in ADHF patients. Based on the findings of this study, we recommend maintaining a CONUT score below 5 for patients with ADHF in Jiangxi, China, as it may significantly contribute to reducing the risk of in-hospital all-cause mortality.
Collapse
Affiliation(s)
- Xin Huang
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Jiajun Qiu
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Maobin Kuang
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Chao Wang
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Shiming He
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Changhui Yu
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Guobo Xie
- Jiangxi Provincial Geriatric Hospital, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Guotai Sheng
- Jiangxi Provincial Geriatric Hospital, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Yang Zou
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Yao Y, Ni W, Feng L, Meng J, Tan X, Chen H, Shen J, Zhao H. Comprehensive immune modulation mechanisms of Angong Niuhuang Wan in ischemic stroke: Insights from mass cytometry analysis. CNS Neurosci Ther 2024; 30:e14849. [PMID: 39075660 PMCID: PMC11286541 DOI: 10.1111/cns.14849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Angong Niuhuang Wan (AGNHW, ), is a classical medicinal formula in Traditional Chinese Medicine (TCM) that has been appreciated for its neuroprotective properties in ischemic cerebral injuries, yet its intricate mechanisms remain only partially elucidated. AIMS This study leverages advanced Mass cytometry (CyTOF) to analyze AGNHW's multifaceted immunomodulation effects in-depth, emphasizing previously underexplored areas. RESULTS AGNHW mitigated monocyte-derived macrophages (MoDM) infiltration in the brain, distinguishing its effects on those from microglia. While the vehicle group exhibited elevated inflammatory markers like CD4, CD8a, and CD44 in ischemic brains, the AGNHW-treated group attenuated their expressions, indicating AGNHW's potential to temper the post-ischemic inflammatory response. Systemically, AGNHW modulated fundamental immune cell dynamics, notably augmenting CD8+ T cells, B cells, monocytes, and neutrophil counts in the peripheral blood under post-stroke conditions. Intracellularly, AGNHW exhibited its targeted modulation of the signaling pathways, revealing a remarked inhibition of key markers like IκBα, indicating potential suppression of inflammatory responses in ischemic brain injuries. CONCLUSION This study offers a comprehensive portrait of AGNHW's immunomodulation effects on ischemic stroke, illuminating its dual sites of action-both cerebral and systemic-and its nuanced modulation of cellular and molecular dynamics.
Collapse
Affiliation(s)
- Yang Yao
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
- Department of NeurologyTianjin Medical University General HospitalTianjinChina
| | - Weihua Ni
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Liangshu Feng
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Jihong Meng
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Xiaomu Tan
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Hansen Chen
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
- School of Chinese Medicine, State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
| | - Jiangang Shen
- School of Chinese Medicine, State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
| | - Heng Zhao
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
6
|
Carpenter RS, Maryanovich M. Systemic and local regulation of hematopoietic homeostasis in health and disease. NATURE CARDIOVASCULAR RESEARCH 2024; 3:651-665. [PMID: 39196230 DOI: 10.1038/s44161-024-00482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/24/2024] [Indexed: 08/29/2024]
Abstract
Hematopoietic stem cells (HSCs) generate all blood cell lineages responsible for tissue oxygenation, life-long hematopoietic homeostasis and immune protection. In adulthood, HSCs primarily reside in the bone marrow (BM) microenvironment, consisting of diverse cell types that constitute the stem cell 'niche'. The adaptability of the hematopoietic system is required to respond to the needs of the host, whether to maintain normal physiology or during periods of physical, psychosocial or environmental stress. Hematopoietic homeostasis is achieved by intricate coordination of systemic and local factors that orchestrate the function of HSCs throughout life. However, homeostasis is not a static process; it modulates HSC and progenitor activity in response to circadian rhythms coordinated by the central and peripheral nervous systems, inflammatory cues, metabolites and pathologic conditions. Here, we review local and systemic factors that impact hematopoiesis, focusing on the implications of aging, stress and cardiovascular disease.
Collapse
Affiliation(s)
- Randall S Carpenter
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maria Maryanovich
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Ruth L. and David S. Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
7
|
Janssen H, Koekkoek LL, Swirski FK. Effects of lifestyle factors on leukocytes in cardiovascular health and disease. Nat Rev Cardiol 2024; 21:157-169. [PMID: 37752350 DOI: 10.1038/s41569-023-00931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 09/28/2023]
Abstract
Exercise, stress, sleep and diet are four distinct but intertwined lifestyle factors that influence the cardiovascular system. Abundant epidemiological, clinical and preclinical studies have underscored the importance of managing stress, having good sleep hygiene and responsible eating habits and exercising regularly. We are born with a genetic blueprint that can protect us against or predispose us to a particular disease. However, lifestyle factors build upon and profoundly influence those predispositions. Studies in the past 10 years have shown that the immune system in general and leukocytes in particular are particularly susceptible to environmental perturbations. Lifestyle factors such as stress, sleep, diet and exercise affect leukocyte behaviour and function and thus the immune system at large. In this Review, we explore the various mechanisms by which lifestyle factors modulate haematopoiesis and leukocyte migration and function in the context of cardiovascular health. We pay particular attention to the role of the nervous system as the key executor that connects environmental influences to leukocyte behaviour.
Collapse
Affiliation(s)
- Henrike Janssen
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura L Koekkoek
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Filip K Swirski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Nyanyo DD, Mikamoto M, Galbiati F, Remba-Shapiro I, Bode K, Schoenfeld S, Jones PS, Swearingen B, Nachtigall LB. Autoimmune Disorders Associated With Surgical Remission of Cushing's Disease : A Cohort Study. Ann Intern Med 2024; 177:315-323. [PMID: 38373302 DOI: 10.7326/m23-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Glucocorticoids suppress inflammation. Autoimmune disease may occur after remission of Cushing's disease (CD). However, the development of autoimmune disease in this context is not well described. OBJECTIVE To determine 1) the incidence of autoimmune disease in patients with CD after surgical remission compared with patients with nonfunctioning pituitary adenomas (NFPAs) and 2) the clinical presentation of and risk factors for development of autoimmune disease in CD after remission. DESIGN Retrospective matched cohort analysis. SETTING Academic medical center/pituitary center. PATIENTS Patients with CD with surgical remission and surgically treated NFPA. MEASUREMENTS Cumulative incidence of new-onset autoimmune disease at 3 years after surgery. Assessment for hypercortisolemia included late-night salivary cortisol levels, 24-hour urine free cortisol (UFC) ratio (UFC value divided by the upper limit of the normal range for the assay), and dexamethasone suppression tests. RESULTS Cumulative incidence of new-onset autoimmune disease at 3 years after surgery was higher in patients with CD (10.4% [95% CI, 5.7% to 15.1%]) than in those with NFPAs (1.6% [CI, 0% to 4.6%]) (hazard ratio, 7.80 [CI, 2.88 to 21.10]). Patients with CD showed higher prevalence of postoperative adrenal insufficiency (93.8% vs. 16.5%) and lower postoperative nadir serum cortisol levels (63.8 vs. 282.3 nmol/L) than patients with NFPAs. Compared with patients with CD without autoimmune disease, those who developed autoimmune disease had a lower preoperative 24-hour UFC ratio (2.7 vs. 6.3) and a higher prevalence of family history of autoimmune disease (41.2% vs. 20.9%). LIMITATION The small sample of patients with autoimmune disease limited identification of independent risk factors. CONCLUSION Patients achieving surgical remission of CD have higher incidence of autoimmune disease than age- and sex-matched patients with NFPAs. Family history of autoimmune disease is a potential risk factor. Adrenal insufficiency may be a trigger. PRIMARY FUNDING SOURCE Recordati Rare Diseases Inc.
Collapse
Affiliation(s)
- Dennis Delasi Nyanyo
- The Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (D.D.N., F.G., I.R., K.B., L.B.N.)
| | - Masaaki Mikamoto
- The Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (M.M., P.S.J., B.S.)
| | - Francesca Galbiati
- The Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (D.D.N., F.G., I.R., K.B., L.B.N.)
| | - Ilan Remba-Shapiro
- The Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (D.D.N., F.G., I.R., K.B., L.B.N.)
| | - Kevin Bode
- The Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (D.D.N., F.G., I.R., K.B., L.B.N.)
| | - Sara Schoenfeld
- The Division of Rheumatology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (S.S.)
| | - Pamela S Jones
- The Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (M.M., P.S.J., B.S.)
| | - Brooke Swearingen
- The Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (M.M., P.S.J., B.S.)
| | - Lisa B Nachtigall
- The Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (D.D.N., F.G., I.R., K.B., L.B.N.)
| |
Collapse
|
9
|
Lv W, Zhang Q, Li Y, Liu D, Wu X, He X, Han Y, Fei X, Zhang L, Fei Z. Homer1 ameliorates ischemic stroke by inhibiting necroptosis-induced neuronal damage and neuroinflammation. Inflamm Res 2024; 73:131-144. [PMID: 38091015 PMCID: PMC10776472 DOI: 10.1007/s00011-023-01824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 01/10/2024] Open
Abstract
OBJECTIVE Proinflammatory necroptosis is the main pathological mechanism of ischemic stroke. Homer scaffolding protein 1 (Homer1) is a postsynaptic scaffolding protein that exerts anti-inflammatory effects in most central nervous system diseases. However, the relationship between Homer1 and proinflammatory necroptosis in ischemic stroke remains unclear. AIM This study aimed to investigate the role of Homer1 in ischemia-induced necroptosis. METHODS C57BL/6 mice were used to establish a model of permanent middle cerebral artery occlusion model (pMCAO). Homer1 knockdown mice were generated using adeno-associated virus (AAV) infection to explore the role of Homer1 and its impact on necroptosis in pMCAO. Finally, Homer1 protein was stereotaxically injected into the ischemic cortex of Homer1flox/flox/Nestin-Cre +/- mice, and the efficacy of Homer1 was investigated using behavioral assays and molecular biological assays to explore potential mechanisms. RESULTS Homer1 expression peaked at 8 h in the ischemic penumbral cortex after pMCAO and colocalized with neurons. Homer1 knockdown promoted neuronal death by enhancing necroptotic signaling pathways and aggravating ischemic brain damage in mice. Furthermore, the knockdown of Homer1 enhanced the expression of proinflammatory cytokines. Moreover, injection of Homer1 protein reduced necroptosis-induced brain injury inhibited the expression of proinflammatory factors, and ameliorated the outcomes in the Homer1flox/flox/Nestin-Cre+/- mice after pMCAO. CONCLUSIONS Homer1 ameliorates ischemic stroke by inhibiting necroptosis-induced neuronal damage and neuroinflammation. These data suggested that Homer1 is a novel regulator of neuronal death and neuroinflammation.
Collapse
Affiliation(s)
- Weihao Lv
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi, 710032, China
| | - Qianqian Zhang
- Department of Respiratory Medicine, Lanzhou University Second Hospital, Lanzhou, 730070, China
| | - Yuanming Li
- Department of Neurology, Gansu Province Central Hospital, Lanzhou, 730070, China
| | - Dan Liu
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi, 710032, China
| | - Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi, 710032, China
| | - Xin He
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi, 710032, China
| | - Yuanyuan Han
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi, 710032, China
| | - Xiaowei Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi, 710032, China.
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi, 710032, China.
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
10
|
Lu D, Cai H, Li Y, Chang W, Liu X, Dai Q, Yu W, Chen W, Qiao G, Xie H, Xiao X, Li Z. Investigating the ID3/SLC22A4 as immune-related signatures in ischemic stroke. Aging (Albany NY) 2023; 15:14803-14829. [PMID: 38112574 PMCID: PMC10781493 DOI: 10.18632/aging.205308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/03/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Ischemic stroke (IS) is a fearful disease that can cause a variety of immune events. Nevertheless, precise immune-related mechanisms have yet to be systematically elucidated. This study aimed to identify immune-related signatures using machine learning and to validate them with animal experiments and single cell analysis. METHODS In this study, we screened 24 differentially expressed genes (DEGs) while identifying immune-related signatures that may play a key role in IS development through a comprehensive strategy between least absolute shrinkage and selection operation (LASSO) regression, support vector machine (SVM) and immune-related genes. In addition, we explored immune infiltration using the CIBERSORT algorithm. Finally, we performed validation in mouse brain tissue and single cell analysis. RESULTS We identified 24 DEGs for follow-up analysis. ID3 and SLC22A4 were finally identified as the better immune-related signatures through a comprehensive strategy among DEGs, LASSO, SVM and immune-related genes. RT-qPCR, western blot, and immunofluorescence revealed a significant decrease in ID3 and a significant increase in SLC22A4 in the middle cerebral artery occlusion group. Single cell analysis revealed that ID3 was mainly concentrated in endothelial_2 cells and SLC22A4 in astrocytes in the MCAO group. A CIBERSORT finds significantly altered levels of immune infiltration in IS patients. CONCLUSIONS This study focused on immune-related signatures after stroke and ID3 and SLC22A4 may be new therapeutic targets to promote functional recovery after stroke. Furthermore, the association of ID3 and SLC22A4 with immune cells may be a new direction for post-stroke immunotherapy.
Collapse
Affiliation(s)
- Dading Lu
- Department of Stroke Center, The First Hospital of China Medical University, Heping, Shenyang, Liaoning, China
- Department of Neurology, The First Hospital of China Medical University, Heping, Shenyang, Liaoning, China
- Department of Neurosurgery, The First Hospital of China Medical University, Heping, Shenyang, Liaoning, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital, Shenyang, China medical University, Heping, Shenyang, China
| | - Yugang Li
- Department of Stroke Center, The First Hospital of China Medical University, Heping, Shenyang, Liaoning, China
| | - Wenyuan Chang
- Department of Neurology, The First Hospital of China Medical University, Heping, Shenyang, Liaoning, China
| | - Xiu Liu
- The First Clinical College, China Medical University, Shenbei, Shenyang, China
| | - Qiwei Dai
- Department of Neurosurgery, Shengjing Hospital, Shenyang, China medical University, Heping, Shenyang, China
| | - Wanning Yu
- Department of Neurosurgery, Shengjing Hospital, Shenyang, China medical University, Heping, Shenyang, China
| | - Wangli Chen
- Department of Neurosurgery, Shengjing Hospital, Shenyang, China medical University, Heping, Shenyang, China
| | - Guomin Qiao
- Department of Neurosurgery, Shengjing Hospital, Shenyang, China medical University, Heping, Shenyang, China
| | - Haojie Xie
- Department of Neurosurgery, Shengjing Hospital, Shenyang, China medical University, Heping, Shenyang, China
| | - Xiong Xiao
- Department of Neurosurgery, Shengjing Hospital, Shenyang, China medical University, Heping, Shenyang, China
| | - Zhiqing Li
- Department of Stroke Center, The First Hospital of China Medical University, Heping, Shenyang, Liaoning, China
- Department of Neurology, The First Hospital of China Medical University, Heping, Shenyang, Liaoning, China
- Department of Neurosurgery, The First Hospital of China Medical University, Heping, Shenyang, Liaoning, China
| |
Collapse
|
11
|
Brea D. Post-stroke immunosuppression: Exploring potential implications beyond infections. Eur J Neurosci 2023; 58:4269-4281. [PMID: 37857561 DOI: 10.1111/ejn.16174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
Stroke is a leading cause of mortality and disability. It occurs when cerebral blood flow is disrupted via vascular occlusion or rupture, causing tissue damage. Research has extensively examined the role of the immune response in stroke pathophysiology, focusing on infiltrated immune cells and inflammatory molecules. However, the stroke's impact on immune physiology remains underexplored. While initially stroke triggers the activation of peripheral inflammation, a subsequent profound immunosuppression occurs in a matter of hours/days. This response, potentially shielding the brain from excessive inflammation, significantly affects stroke patients. Beyond rendering patients more susceptible to infections, immunosuppression generates diverse consequences by disrupting immune system functions that are crucial for organ homeostasis. This review explores the effects of immunosuppression on stroke patients, shedding light on potential issues in immune organs such as the spleen and bone marrow, as well as non-immune organs like the small intestine, liver and heart. By synthesizing existing literature and offering additional insights, this manuscript highlights the multifaceted impact of post-stroke immunosuppression.
Collapse
Affiliation(s)
- David Brea
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científcas (CSIC), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
12
|
Zhang Y, Lu W, Li X, Wang Y, Li L, Dai Y, Yang H, Wang Y. Mfat-1 ameliorates cachexia after hypoxic-ischemic brain damage in mice by protecting the hypothalamus-pituitary-adrenal axis. Life Sci 2023; 333:122172. [PMID: 37832632 DOI: 10.1016/j.lfs.2023.122172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
AIMS Cachexia, a metabolic syndrome, affects 21 % of patients suffering from ischemic encephalopathy. However, the specific mechanism and prevention measures are still unclear. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been proven to reduce inflammatory cytokine levels during ischemic events, but whether they have a protective effect against cachexia after hypoxic-ischemic brain damage (HIBD) remains unclear. MAIN METHODS C57BL/6J wild-type and mfat-1 transgenic male mice were treated with and without HIBD. One day after HIBD, the epididymal white fat, gastrocnemius muscle and hypothalamus were weighed and analyzed the phenotypic changes. RNA sequencing was applied to gastrocnemius muscle to identify differential genes and pathways in HIBD groups. The effect of HPA axis on cachexia post-HIBD was examined via adrenalectomy, dexamethasone (0.1 mg/kg), and corticosterone injection (100 mg/kg). KEY FINDINGS The results showed that the incidence of cachexia in mfat-1 mice, which produce high proportion of n-3 PUFAs, was significantly lower than that in wild-type mice post-HIBD. Cachexia-related factors, such as inflammation, muscle atrophy and lipid metabolism were significantly improved in mfat-1 HIBD. RNA sequencing revealed that catabolic and proteasome pathways were significantly downregulated. In hypothalamus, inflammatory cytokines, lipid peroxidation levels were reduced. Corticosterone, glucocorticoid receptor, and dexamethasone suppression test all showed that mfat-1 improved the dysfunction of the HPA axis post-HIBD. The present study elucidated for the first time that mfat-1 reduced HIBD-induced hyperactivation of the HPA axis in mice by reducing inflammation and oxidative stress and contributed to the reduction of metabolic imbalance in peripheral tissues. SIGNIFICANCE Our study provides mechanistic information for the development of intervention strategies to prevent cachexia.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Wenhan Lu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoxue Li
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Li
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Yifan Dai
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Haiyuan Yang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China.
| | - Ying Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
13
|
Sarno J, Domizi P, Liu Y, Merchant M, Pedersen CB, Jedoui D, Jager A, Nolan GP, Gaipa G, Bendall SC, Bava FA, Davis KL. Dasatinib overcomes glucocorticoid resistance in B-cell acute lymphoblastic leukemia. Nat Commun 2023; 14:2935. [PMID: 37217509 DOI: 10.1038/s41467-023-38456-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Resistance to glucocorticoids (GC) is associated with an increased risk of relapse in B-cell progenitor acute lymphoblastic leukemia (BCP-ALL). Performing transcriptomic and single-cell proteomic studies in healthy B-cell progenitors, we herein identify coordination between the glucocorticoid receptor pathway with B-cell developmental pathways. Healthy pro-B cells most highly express the glucocorticoid receptor, and this developmental expression is conserved in primary BCP-ALL cells from patients at diagnosis and relapse. In-vitro and in vivo glucocorticoid treatment of primary BCP-ALL cells demonstrate that the interplay between B-cell development and the glucocorticoid pathways is crucial for GC resistance in leukemic cells. Gene set enrichment analysis in BCP-ALL cell lines surviving GC treatment show enrichment of B cell receptor signaling pathways. In addition, primary BCP-ALL cells surviving GC treatment in vitro and in vivo demonstrate a late pre-B cell phenotype with activation of PI3K/mTOR and CREB signaling. Dasatinib, a multi-kinase inhibitor, most effectively targets this active signaling in GC-resistant cells, and when combined with glucocorticoids, results in increased cell death in vitro and decreased leukemic burden and prolonged survival in an in vivo xenograft model. Targeting the active signaling through the addition of dasatinib may represent a therapeutic approach to overcome GC resistance in BCP-ALL.
Collapse
Affiliation(s)
- Jolanda Sarno
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA.
| | - Pablo Domizi
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Yuxuan Liu
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Milton Merchant
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Christina Bligaard Pedersen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Dorra Jedoui
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Astraea Jager
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Giuseppe Gaipa
- M. Tettamanti Research Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, (MB), Italy
| | - Sean C Bendall
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Felice-Alessio Bava
- Baxter Laboratory, Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Institut national de la santé et de la recherche médicale (INSERM), Paris, France
| | - Kara L Davis
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
14
|
Stephens R, Grainger JR, Smith CJ, Allan SM. Systemic innate myeloid responses to acute ischaemic and haemorrhagic stroke. Semin Immunopathol 2023; 45:281-294. [PMID: 36346451 PMCID: PMC9641697 DOI: 10.1007/s00281-022-00968-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022]
Abstract
Acute ischaemic and haemorrhagic stroke account for significant disability and morbidity burdens worldwide. The myeloid arm of the peripheral innate immune system is critical in the immunological response to acute ischaemic and haemorrhagic stroke. Neutrophils, monocytes, and dendritic cells (DC) contribute to the evolution of pathogenic local and systemic inflammation, whilst maintaining a critical role in ongoing immunity protecting against secondary infections. This review aims to summarise the key alterations to myeloid immunity in acute ischaemic stroke, intracerebral haemorrhage (ICH), and subarachnoid haemorrhage (SAH). By integrating clinical and preclinical research, we discover how myeloid immunity is affected across multiple organ systems including the brain, blood, bone marrow, spleen, and lung, and evaluate how these perturbations associate with real-world outcomes including infection. These findings are placed in the context of the rapidly developing field of human immunology, which offers a wealth of opportunity for further research.
Collapse
Affiliation(s)
- Ruth Stephens
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - John R Grainger
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Craig J Smith
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | - Stuart M Allan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
15
|
Monsour M, Borlongan CV. The central role of peripheral inflammation in ischemic stroke. J Cereb Blood Flow Metab 2023; 43:622-641. [PMID: 36601776 PMCID: PMC10108194 DOI: 10.1177/0271678x221149509] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/23/2022] [Accepted: 12/11/2022] [Indexed: 01/06/2023]
Abstract
Stroke pathology and its treatments conventionally focus on the brain. Probing inflammation, a critical secondary cell death mechanism in stroke, has been largely relegated to the brain. To this end, peripheral inflammation has emerged as an equally potent contributor to the onset and progression of stroke secondary cell death. Here, we review novel concepts on peripheral organs displaying robust inflammatory response to stroke. These inflammation-plagued organs include the spleen, cervical lymph nodes, thymus, bone marrow, gastrointestinal system, and adrenal glands, likely converging their inflammatory effects through B and T-cells. Recognizing the significant impact of this systemic inflammation, we also discuss innovative stroke therapeutics directed at sequestration of peripheral inflammation. This review paper challenges the paradigm of a brain-centered disease pathology and treatment and offers a peripheral approach to our stroke understanding.
Collapse
Affiliation(s)
- Molly Monsour
- Center of Excellence for Aging and Brain Repair,
Department of Neurosurgery and Brain Repair, University of South Florida Morsani
College of Medicine, Tampa, FL 33612, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair,
Department of Neurosurgery and Brain Repair, University of South Florida Morsani
College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
16
|
Janssen H, Kahles F, Liu D, Downey J, Koekkoek LL, Roudko V, D'Souza D, McAlpine CS, Halle L, Poller WC, Chan CT, He S, Mindur JE, Kiss MG, Singh S, Anzai A, Iwamoto Y, Kohler RH, Chetal K, Sadreyev RI, Weissleder R, Kim-Schulze S, Merad M, Nahrendorf M, Swirski FK. Monocytes re-enter the bone marrow during fasting and alter the host response to infection. Immunity 2023; 56:783-796.e7. [PMID: 36827982 PMCID: PMC10101885 DOI: 10.1016/j.immuni.2023.01.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/11/2022] [Accepted: 01/19/2023] [Indexed: 02/25/2023]
Abstract
Diet profoundly influences physiology. Whereas over-nutrition elevates risk for disease via its influence on immunity and metabolism, caloric restriction and fasting appear to be salutogenic. Despite multiple correlations observed between diet and health, the underlying biology remains unclear. Here, we identified a fasting-induced switch in leukocyte migration that prolongs monocyte lifespan and alters susceptibility to disease in mice. We show that fasting during the active phase induced the rapid return of monocytes from the blood to the bone marrow. Monocyte re-entry was orchestrated by hypothalamic-pituitary-adrenal (HPA) axis-dependent release of corticosterone, which augmented the CXCR4 chemokine receptor. Although the marrow is a safe haven for monocytes during nutrient scarcity, re-feeding prompted mobilization culminating in monocytosis of chronologically older and transcriptionally distinct monocytes. These shifts altered response to infection. Our study shows that diet-in particular, a diet's temporal dynamic balance-modulates monocyte lifespan with consequences for adaptation to external stressors.
Collapse
Affiliation(s)
- Henrike Janssen
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Florian Kahles
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dan Liu
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey Downey
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura L Koekkoek
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vladimir Roudko
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Darwin D'Souza
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cameron S McAlpine
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lennard Halle
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wolfram C Poller
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christopher T Chan
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shun He
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - John E Mindur
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Máté G Kiss
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sumnima Singh
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Atsushi Anzai
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yoshiko Iwamoto
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rainer H Kohler
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kashish Chetal
- Department of Molecular Biology and Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology and Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Filip K Swirski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Towards a biomarker for acute arterial thrombosis using complete blood count and white blood cell differential parameters in mice. Sci Rep 2023; 13:4043. [PMID: 36899036 PMCID: PMC10006076 DOI: 10.1038/s41598-023-31122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
There is no blood biomarker diagnostic of arterial thrombosis. We investigated if arterial thrombosis per se was associated with alterations in complete blood count (CBC) and white blood cell (WBC) differential count in mice. Twelve-week-old C57Bl/6 mice were used for FeCl3-mediated carotid thrombosis (n = 72), sham-operation (n = 79), or non-operation (n = 26). Monocyte count (/µL) at 30-min after thrombosis (median 160 [interquartile range 140-280]) was ~ 1.3-fold higher than at 30-min after sham-operation (120 [77.5-170]), and twofold higher than in non-operated mice (80 [47.5-92.5]). At day-1 and -4 post-thrombosis, compared with 30-min, monocyte count decreased by about 6% and 28% to 150 [100-200] and 115 [100-127.5], which however were about 2.1-fold and 1.9-fold higher than in sham-operated mice (70 [50-100] and 60 [30-75], respectively). Lymphocyte counts (/µL) at 1- and 4-days after thrombosis (mean ± SD; 3513 ± 912 and 2590 ± 860) were ~ 38% and ~ 54% lower than those in the sham-operated mice (5630 ± 1602 and 5596 ± 1437, respectively), and ~ 39% and ~ 55% lower than those in non-operated mice (5791 ± 1344). Post-thrombosis monocyte-lymphocyte-ratio (MLR) was substantially higher at all three time-points (0.050 ± 0.02, 0.046 ± 0.025, and 0.050 ± 0.02) vs. sham (0.003 ± 0.021, 0.013 ± 0.004, and 0.010 ± 0.004). MLR was 0.013 ± 0.005 in non-operated mice. This is the first report on acute arterial thrombosis-related alterations in CBC and WBC differential parameters.
Collapse
|
18
|
Premorbid Use of Beta-Blockers or Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers in Patients with Acute Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7733857. [PMID: 36778208 PMCID: PMC9908343 DOI: 10.1155/2023/7733857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/07/2022] [Accepted: 10/14/2022] [Indexed: 02/05/2023]
Abstract
This study was designed to investigate the impact of the preexisting use of beta-blockers, angiotensin-converting enzyme inhibitors (ACEIs), or angiotensin receptor blockers (ARBs) on the cellular immune response in peripheral blood and the clinical outcomes of patients with acute ischemic stroke. We retrospectively collected clinical data from a cohort of 69 patients with premorbid beta-blockers and 56 patients with premorbid ACEIs/ARBs. Additionally, we selected a cohort of 107 patients with acute ischemic stroke to be the control of the same age and sex. We analyzed cellular immune parameters in peripheral blood 1 day after the appearance of symptoms, including the frequencies of circulating white blood cell subpopulations, the neutrophil-to-lymphocyte ratio (NLR), and the lymphocyte-to-monocyte ratio (LMR). We found that the count of lymphocytes and the lymphocyte-to-monocyte ratio were significantly higher in the peripheral blood of patients treated with beta-blockers before stroke than in matched controls. However, the premorbid use of ACEIs/ARBs did not considerably impact the circulating immune parameters listed above in patients with acute ischemic stroke. Furthermore, we found that premorbid use of beta-blockers or ACEIs/ARBs did not significantly change functional outcomes in patients 3 months after the onset of stroke. These results suggest that premorbid use of beta-blockers, but not ACEIs/ARBs, reversed lymphopenia associated with acute ischemic stroke. As cellular immune changes in peripheral blood could be an independent predictor of stroke prognosis, more large-scale studies are warranted to further verify the impact of premorbid use of beta-blockers or ACEIs/ARBs on the prognosis of patients with ischemic stroke. Our research is beneficial to understanding the mechanism of the systemic immune response induced by stroke and has the potential for a therapeutic strategy in stroke interventions and treatment.
Collapse
|
19
|
Influence of sex, age and diabetes on brain transcriptome and proteome modifications following cerebral ischemia. BMC Neurosci 2023; 24:7. [PMID: 36707762 PMCID: PMC9881265 DOI: 10.1186/s12868-023-00775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Ischemic stroke is a major cause of death and disability worldwide. Translation into the clinical setting of neuroprotective agents showing promising results in pre-clinical studies has systematically failed. One possible explanation is that the animal models used to test neuroprotectants do not properly represent the population affected by stroke, as most of the pre-clinical studies are performed in healthy young male mice. Therefore, we aimed to determine if the response to cerebral ischemia differed depending on age, sex and the presence of comorbidities. Thus, we explored proteomic and transcriptomic changes triggered during the hyperacute phase of cerebral ischemia (by transient intraluminal middle cerebral artery occlusion) in the brain of: (1) young male mice, (2) young female mice, (3) aged male mice and (4) diabetic young male mice. Moreover, we compared each group's proteomic and transcriptomic changes using an integrative enrichment pathways analysis to disclose key common and exclusive altered proteins, genes and pathways in the first stages of the disease. We found 61 differentially expressed genes (DEG) in male mice, 77 in females, 699 in diabetics and 24 in aged mice. Of these, only 14 were commonly dysregulated in all groups. The enrichment pathways analysis revealed that the inflammatory response was the biological process with more DEG in all groups, followed by hemopoiesis. Our findings indicate that the response to cerebral ischemia regarding proteomic and transcriptomic changes differs depending on sex, age and comorbidities, highlighting the importance of incorporating animals with different phenotypes in future stroke research studies.
Collapse
|
20
|
Huang S, Liu L, Tang X, Xie S, Li X, Kang X, Zhu S. Research progress on the role of hormones in ischemic stroke. Front Immunol 2022; 13:1062977. [PMID: 36569944 PMCID: PMC9769407 DOI: 10.3389/fimmu.2022.1062977] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is a major cause of death and disability around the world. However, ischemic stroke treatment is currently limited, with a narrow therapeutic window and unsatisfactory post-treatment outcomes. Therefore, it is critical to investigate the pathophysiological mechanisms following ischemic stroke brain injury. Changes in the immunometabolism and endocrine system after ischemic stroke are important in understanding the pathophysiological mechanisms of cerebral ischemic injury. Hormones are biologically active substances produced by endocrine glands or endocrine cells that play an important role in the organism's growth, development, metabolism, reproduction, and aging. Hormone research in ischemic stroke has made very promising progress. Hormone levels fluctuate during an ischemic stroke. Hormones regulate neuronal plasticity, promote neurotrophic factor formation, reduce cell death, apoptosis, inflammation, excitotoxicity, oxidative and nitrative stress, and brain edema in ischemic stroke. In recent years, many studies have been done on the role of thyroid hormone, growth hormone, testosterone, prolactin, oxytocin, glucocorticoid, parathyroid hormone, and dopamine in ischemic stroke, but comprehensive reviews are scarce. This review focuses on the role of hormones in the pathophysiology of ischemic stroke and discusses the mechanisms involved, intending to provide a reference value for ischemic stroke treatment and prevention.
Collapse
Affiliation(s)
- Shuyuan Huang
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lu Liu
- Department of Anesthesiology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaodong Tang
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shulan Xie
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinrui Li
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xianhui Kang
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Xianhui Kang, ; Shengmei Zhu,
| | - Shengmei Zhu
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Xianhui Kang, ; Shengmei Zhu,
| |
Collapse
|
21
|
Al Rimon R, Nelson VL, Brunt KR, Kassiri Z. High-impact opportunities to address ischemia: a focus on heart and circulatory research. Am J Physiol Heart Circ Physiol 2022; 323:H1221-H1230. [PMID: 36331554 DOI: 10.1152/ajpheart.00402.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Myocardial ischemic injury and its resolution are the key determinants of morbidity or mortality in heart failure. The cause and duration of ischemia in patients vary. Numerous experimental models and methods have been developed to define genetic, metabolic, molecular, cellular, and pathophysiological mechanisms, in addition to defining structural and functional deterioration of cardiovascular performance. The rapid rise of big data, such as single-cell analysis techniques with bioinformatics, machine learning, and neural networking, brings a new level of sophistication to our understanding of myocardial ischemia. This mini-review explores the multifaceted nature of ischemic injury in the myocardium. We highlight recent state-of-the-art findings and strategies to show new directions of high-impact approach to understanding myocardial tissue remodeling. This next age of heart and circulatory physiology research will be more comprehensive and collaborative to uncover the origin, progression, and manifestation of heart failure while strengthening novel treatment strategies.
Collapse
Affiliation(s)
- Razoan Al Rimon
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Victoria L Nelson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| | - Keith R Brunt
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Bone marrow-derived naïve B lymphocytes improve heart function after myocardial infarction: a novel cardioprotective mechanism for empagliflozin. Basic Res Cardiol 2022; 117:47. [PMID: 36171393 DOI: 10.1007/s00395-022-00956-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 01/31/2023]
Abstract
The role of adaptive immunity in myocardial recovery post myocardial infarction (MI), particularly the immune response by B lymphocytes, remains elusive. Bone marrow immune microenvironment in response to MI is remotely regulated by the hypothalamic pituitary adrenal (HPA) axis. We utilized the cardioprotective actions of SGLT2 inhibitor to identify and characterize bone marrow B cell subsets that respond to myocardial injury. Initially, we preformed ligation of left anterior descendant (LAD) coronary artery in male C57BL/6J mice to monitor the dynamic changes of immune cells across tissues. Mechanistic insights from mouse models demonstrated arrest of bone marrow B cell maturation and function 24 h post MI. A secondary MI model (twice MIs) in mice was established for the first time to evaluate the dosage-dependent cardioprotection of empagliflozin (EMPA). Single-cell RNA-Seq further demonstrated that EMPA restored bone marrow naïve B cell (B220+CD19+CD43-IgM+IgD+) counts and function. Additionally, we recruited 14 acute MI patients with single LAD disease, and profiled B cells post percutaneous coronary intervention (PCI) (compared to 18 matched no-MI controls). We revealed a positive correlation of increased B cell counts with enhanced ejection fraction in MI patients with PCI while lymphopenia was associated with patients with heart failure. Mechanistically, MI triggers the release of glucocorticoids from neuroendocrine system, inducing NHE1-mediated autophagic death of bone marrow B cells while repressing B cell progenitor proliferation and differentiation. Infusion of B cells derived from bone marrow significantly improved cardiac function and diminished infarct size post MI. These findings provide new mechanistic insights into regulation of adaptive immune response post MI, and support targeting bone marrow B cell development for improved ventricular remodeling and reduced heart failure after MI.
Collapse
|
23
|
Simats A, Liesz A. Systemic inflammation after stroke: implications for post-stroke comorbidities. EMBO Mol Med 2022; 14:e16269. [PMID: 35971650 PMCID: PMC9449596 DOI: 10.15252/emmm.202216269] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 12/21/2022] Open
Abstract
Immunological mechanisms have come into the focus of current translational stroke research, and the modulation of neuroinflammatory pathways has been identified as a promising therapeutic approach to protect the ischemic brain. However, stroke not only induces a local neuroinflammatory response but also has a profound impact on systemic immunity. In this review, we will summarize the consequences of ischemic stroke on systemic immunity at all stages of the disease, from onset to long‐term outcome, and discuss underlying mechanisms of systemic brain‐immune communication. Furthermore, since stroke commonly occurs in patients with multiple comorbidities, we will also overview the current understanding of the potential role of systemic immunity in common stroke‐related comorbidities, such as cardiac dysfunction, atherosclerosis, diabetes, and infections. Finally, we will highlight how targeting systemic immunity after stroke could improve long‐term outcomes and alleviate comorbidities of stroke patients.
Collapse
Affiliation(s)
- Alba Simats
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
24
|
Zhu L, Huang L, Le A, Wang TJ, Zhang J, Chen X, Wang J, Wang J, Jiang C. Interactions between the Autonomic Nervous System and the Immune System after Stroke. Compr Physiol 2022; 12:3665-3704. [PMID: 35766834 DOI: 10.1002/cphy.c210047] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acute stroke is one of the leading causes of morbidity and mortality worldwide. Stroke-induced immune-inflammatory response occurs in the perilesion areas and the periphery. Although stroke-induced immunosuppression may alleviate brain injury, it hinders brain repair as the immune-inflammatory response plays a bidirectional role after acute stroke. Furthermore, suppression of the systemic immune-inflammatory response increases the risk of life-threatening systemic bacterial infections after acute stroke. Therefore, it is essential to explore the mechanisms that underlie the stroke-induced immune-inflammatory response. Autonomic nervous system (ANS) activation is critical for regulating the local and systemic immune-inflammatory responses and may influence the prognosis of acute stroke. We review the changes in the sympathetic and parasympathetic nervous systems and their influence on the immune-inflammatory response after stroke. Importantly, this article summarizes the mechanisms on how ANS regulates the immune-inflammatory response through neurotransmitters and their receptors in immunocytes and immune organs after stroke. To facilitate translational research, we also discuss the promising therapeutic approaches modulating the activation of the ANS or the immune-inflammatory response to promote neurologic recovery after stroke. © 2022 American Physiological Society. Compr Physiol 12:3665-3704, 2022.
Collapse
Affiliation(s)
- Li Zhu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Anh Le
- Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Tom J Wang
- Winston Churchill High School, Potomac, Maryland, USA
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Xuemei Chen
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Junmin Wang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Jian Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.,Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
25
|
Differential Regulation of the Immune System in Peripheral Blood Following Ischemic Stroke. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2747043. [PMID: 35722467 PMCID: PMC9200570 DOI: 10.1155/2022/2747043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
Abstract
Method 108 IS samples and 47 matched controls were obtained from the GEO database. Immune-related genes (IRGs) and their associated drugs were collected from the ImmPort and PharmGBK databases, respectively. Random forest (RF) regression and least absolute shrinkage and selection operator (LASSO) logistic regression were applied to identify immune-related genetic biomarkers (IRGBs) of IS, and accuracy was verified using neural network models. Finally, proportion changes of various immune cells in peripheral blood of IS patients were evaluated using CIBERSORT and xCell and correlation analyses were performed between IRGBs and differentially distributed immune cells. Results A total of 537 genes were differentially expressed between IS and control samples. Four immune-related differential expressed genes identified by regression analysis presented strong predictive power (AUC = 0.909) which we suggeseted them as immune-related genetic biomarkers (IRGBs). We also demonstrated six immune-related genes targeted by known drugs. In addition, post-IS immune system presented an increase in the proportion of innate immune cells and a decrease in adaptive immune cells in the peripheral circulation, and IRGBs showing significance were associated with this process. Conclusion The study identified CARD11, ICAM2, VIM, and CD19 as immune-related genetic biomarkers of IS. Six immune-related DEGs targeted by known drugs were found and provide new candidate drug targets for modulating the post-IS immune system. The innate immune cells and adaptive immune cells are diversified in the post-IS immune system, and IRGBs might play important role during this process.
Collapse
|
26
|
Cullell N, Soriano-Tárraga C, Gallego-Fábrega C, Cárcel-Márquez J, Torres-Águila NP, Muiño E, Lledós M, Llucià-Carol L, Esteller M, Castro de Moura M, Montaner J, Fernández-Sanlés A, Elosua R, Delgado P, Martí-Fábregas J, Krupinski J, Roquer J, Jiménez-Conde J, Fernández-Cadenas I. DNA Methylation and Ischemic Stroke Risk: An Epigenome-Wide Association Study. Thromb Haemost 2022; 122:1767-1778. [PMID: 35717949 DOI: 10.1055/s-0042-1749328] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Ischemic stroke (IS) risk heritability is partly explained by genetics. Other heritable factors, such as epigenetics, could explain an unknown proportion of the IS risk. The objective of this study is to evaluate DNA methylation association with IS using epigenome-wide association studies (EWAS). METHODS We performed a two-stage EWAS comprising 1,156 subjects. Differentially methylated positions (DMPs) and differentially methylated regions (DMRs) were assessed using the Infinium 450K and EPIC BeadChip in the discovery cohort (252 IS and 43 controls). Significant DMPs were replicated in an independent cohort (618 IS and 243 controls). Stroke subtype associations were also evaluated. Differentially methylated cell-type (DMCT) was analyzed in the replicated CpG sites using EpiDISH. We additionally performed pathway enrichment analysis and causality analysis with Mendelian randomization for the replicated CpG sites. RESULTS A total of 957 CpG sites were epigenome-wide-significant (p ≤ 10-7) in the discovery cohort, being CpG sites in the top signals (logFC = 0.058, p = 2.35 × 10-22; logFC = 0.035, p = 3.22 × 10-22, respectively). ZFHX3 and MAP3K1 were among the most significant DMRs. In addition, 697 CpG sites were replicated considering Bonferroni-corrected p-values (p < 5.22 × 10-5). All the replicated DMPs were associated with risk of cardioembolic, atherothrombotic, and undetermined stroke. The DMCT analysis demonstrated that the significant associations were driven by natural killer cells. The pathway enrichment analysis showed overrepresentation of genes belonging to certain pathways including oxidative stress. ZFHX3 and MAP3K1 methylation was causally associated with specific stroke-subtype risk. CONCLUSION Specific DNA methylation pattern is causally associated with IS risk. These results could be useful for specifically predicting stroke occurrence and could potentially be evaluated as therapeutic targets.
Collapse
Affiliation(s)
- Natalia Cullell
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí, Barcelona, Spain.,Department of Neurology, Hospital Universitari MútuaTerrassa/Fundacio Docència i Recerca MútuaTerrassa, Barcelona, Spain.,Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Carolina Soriano-Tárraga
- Neurovascular Research Group, Department of Neurology, Hospital del Mar, IMIM, Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona, Spain.,Department of Psychiatry, NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, Missouri, United States
| | | | - Jara Cárcel-Márquez
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí, Barcelona, Spain
| | - Nuria P Torres-Águila
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí, Barcelona, Spain.,Evolutionary Developmental Genomics Research Group, The Scottish Oceans Institute, University of St Andrews, St Andrews, United Kingdom
| | - Elena Muiño
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí, Barcelona, Spain
| | - Miquel Lledós
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí, Barcelona, Spain
| | - Laia Llucià-Carol
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí, Barcelona, Spain.,Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.,Centro de Investigación Biomédica en Red Cancer, Barcelona, Spain
| | | | - Joan Montaner
- Department of Neurology, Hospital Universitario Virgen Macarena, Institute of Biomedicine of Seville/Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Alba Fernández-Sanlés
- Cardiovascular Epidemiology and Genetics Research Group, IMIM, Barcelona, Spain.,Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Roberto Elosua
- Cardiovascular Epidemiology and Genetics Research Group, IMIM, Barcelona, Spain.,CIBER Cardiovascular Diseases, Instituto Carlos III, Barcelona, Spain.,School of Medicine, University of Vic-Central University of Catalonia, Barcelona, Spain
| | - Pilar Delgado
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Barcelona, Spain
| | - Joan Martí-Fábregas
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jerzy Krupinski
- Department of Neurology, Hospital Universitari MútuaTerrassa/Fundacio Docència i Recerca MútuaTerrassa, Barcelona, Spain.,Centre for Bioscience, School of HealthCare Science, Manchester Metropolitan University, Manchester, England
| | - Jaume Roquer
- Neurovascular Research Group, Department of Neurology, Hospital del Mar, IMIM, Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona, Spain
| | - Jordi Jiménez-Conde
- Neurovascular Research Group, Department of Neurology, Hospital del Mar, IMIM, Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona, Spain
| | - Israel Fernández-Cadenas
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí, Barcelona, Spain.,Department of Neurology, Hospital Universitari MútuaTerrassa/Fundacio Docència i Recerca MútuaTerrassa, Barcelona, Spain
| |
Collapse
|
27
|
Kim S, Park ES, Chen PR, Kim E. Dysregulated Hypothalamic–Pituitary–Adrenal Axis Is Associated With Increased Inflammation and Worse Outcomes After Ischemic Stroke in Diabetic Mice. Front Immunol 2022; 13:864858. [PMID: 35784349 PMCID: PMC9243263 DOI: 10.3389/fimmu.2022.864858] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/09/2022] [Indexed: 01/08/2023] Open
Abstract
Diabetic patients have larger infarcts, worse neurological deficits, and higher mortality rate after an ischemic stroke. Evidence shows that in diabetes, the hypothalamic–pituitary–adrenal (HPA) axis was dysregulated and levels of cortisol increased. Based on the role of the HPA axis in immunity, we hypothesized that diabetes-dysregulated stress response exacerbates stroke outcomes via regulation of inflammation. To test this hypothesis, we assessed the regulation of the HPA axis in diabetic mice before and after stroke and determined its relevance in the regulation of post-stroke injury and inflammation. Diabetes was induced in C57BL/6 mice by feeding a high-fat diet and intraperitoneal injection of streptozotocin (STZ), and then the mice were subjected to 30 min of middle cerebral artery occlusion (MCAO). Infarct volume and neurological scores were measured in the ischemic mice. The inflammatory cytokine and chemokine levels were also determined in the ischemic brain. To assess the effect of diabetes on the stroke-modulated HPA axis, we measured the expression of components in the HPA axis including corticotropin-releasing hormone (CRH) in the hypothalamus, proopiomelanocortin (POMC) in the pituitary, and plasma adrenocorticotropic hormone (ACTH) and corticosterone. Diabetic mice had larger infarcts and worse neurological scores after stroke. The exacerbated stroke outcomes in diabetic mice were accompanied by the upregulated expression of inflammatory factors (including IL-1β, TNF-α, IL-6, CCR2, and MCP-1) in the ischemic brain. We also confirmed increased levels of hypothalamic CRH, pituitary POMC, and plasma corticosterone in diabetic mice before and after stroke, suggesting the hyper-activated HPA axis in diabetic conditions. Finally, we confirmed that post-stroke treatment of metyrapone (an inhibitor of glucocorticoid synthesis) reduced IL-6 expression and the infarct size in the ischemic brain of diabetic mice. These results elucidate the mechanisms in which the HPA axis in diabetes exacerbates ischemic stroke. Maintaining an optimal level of the stress response by regulating the HPA axis may be an effective approach to improving stroke outcomes in patients with diabetes.
Collapse
|
28
|
Miao Y, Wang B, Hu J, Zhang H, Li X, Huang Y, Zhuang P, Zhang Y. Herb Formula (GCis) Prevents Pulmonary Infection Secondary to Intracerebral Hemorrhage by Enhancing Peripheral Immunity and Intestinal Mucosal Immune Barrier. Front Pharmacol 2022; 13:888684. [PMID: 35677425 PMCID: PMC9168277 DOI: 10.3389/fphar.2022.888684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Lung infection is a common complication induced by stroke and seriously affects the prognosis and life quality of patients. However, effective therapeutic strategies are still lacking. In the present study, the herb formula GCis was confirmed to prevent pulmonary infection induced by intracerebral hemorrhage (ICH). The animal model of lung infection induced by ICH, GCis (Ginseng Radix et Rhizoma, Aconiti Lateralis Radix Praeparata, and Cistanches Herba) was orally administrated every day for 7 days. Lung microbial biomass and pathological results showed that the GCis formula pretreatment significantly reduced lung bacterial biomass and alleviated pathological abnormalities. These results indicated that the GCis formula has a clear pharmacological effect on preventing lung infection induced by ICH. Immunosuppression induced by ICH seemed to be the main mechanism of lung infection. Our results showed that the spleen and thymus indexes, WBC, and LY% contents were significantly increased in the GCis formula group. Moreover, bone marrow cells were further analyzed by transcriptome sequencing, and GO and KEGG enrichment analysis results showed that immune function was the main pathway enriched by differential genes after GCis formula intervention. More importantly, our results showed that GCis pretreatment had no significant effect on the mRNA expression of IL-1β, IL-6, and TNF-α in the brain. These results indicated that the GCis formula could enhance immunity after ICH. The intestinal barrier function was further investigated in the present study, considering the origin of the source of infection. Our results showed that the mRNA expressions of intestinal ZO-1, SIgA, and MUC2 were significantly increased, villi structure was intact, inflammatory cell infiltration was reduced, and goblet cell number was increased after GCis formula treatment. These results suggest that the GCis formula can enhance the intestinal mucosal immune barrier. This study provides a herb formula (GCis) that could enhance peripheral immunity and intestinal mucosal immune barrier to prevent pulmonary infection induced by ICH. It would be beneficial in the prevention of severe clinical infections.
Collapse
Affiliation(s)
- Yulu Miao
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Wang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Hu
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hanyu Zhang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaojin Li
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingying Huang
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
| | - Pengwei Zhuang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanjun Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
29
|
Devesa A, Lobo-González M, Martínez-Milla J, Oliva B, García-Lunar I, Mastrangelo A, España S, Sanz J, Mendiguren JM, Bueno H, Fuster JJ, Andrés V, Fernández-Ortiz A, Sancho D, Fernández-Friera L, Sanchez-Gonzalez J, Rossello X, Ibanez B, Fuster V. Bone marrow activation in response to metabolic syndrome and early atherosclerosis. Eur Heart J 2022; 43:1809-1828. [PMID: 35567559 PMCID: PMC9113301 DOI: 10.1093/eurheartj/ehac102] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/06/2022] [Accepted: 02/18/2022] [Indexed: 11/14/2022] Open
Abstract
AIMS Experimental studies suggest that increased bone marrow (BM) activity is involved in the association between cardiovascular risk factors and inflammation in atherosclerosis. However, human data to support this association are sparse. The purpose was to study the association between cardiovascular risk factors, BM activation, and subclinical atherosclerosis. METHODS AND RESULTS Whole body vascular 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI) was performed in 745 apparently healthy individuals [median age 50.5 (46.8-53.6) years, 83.8% men] from the Progression of Early Subclinical Atherosclerosis (PESA) study. Bone marrow activation (defined as BM 18F-FDG uptake above the median maximal standardized uptake value) was assessed in the lumbar vertebrae (L3-L4). Systemic inflammation was indexed from circulating biomarkers. Early atherosclerosis was evaluated by arterial metabolic activity by 18F-FDG uptake in five vascular territories. Late atherosclerosis was evaluated by fully formed plaques on MRI. Subjects with BM activation were more frequently men (87.6 vs. 80.0%, P = 0.005) and more frequently had metabolic syndrome (MetS) (22.2 vs. 6.7%, P < 0.001). Bone marrow activation was significantly associated with all MetS components. Bone marrow activation was also associated with increased haematopoiesis-characterized by significantly elevated leucocyte (mainly neutrophil and monocytes) and erythrocyte counts-and with markers of systemic inflammation including high-sensitivity C-reactive protein, ferritin, fibrinogen, P-selectin, and vascular cell adhesion molecule-1. The associations between BM activation and MetS (and its components) and increased erythropoiesis were maintained in the subgroup of participants with no systemic inflammation. Bone marrow activation was significantly associated with high arterial metabolic activity (18F-FDG uptake). The co-occurrence of BM activation and arterial 18F-FDG uptake was associated with more advanced atherosclerosis (i.e. plaque presence and burden). CONCLUSION In apparently healthy individuals, BM 18F-FDG uptake is associated with MetS and its components, even in the absence of systemic inflammation, and with elevated counts of circulating leucocytes. Bone marrow activation is associated with early atherosclerosis, characterized by high arterial metabolic activity. Bone marrow activation appears to be an early phenomenon in atherosclerosis development.[Progression of Early Subclinical Atherosclerosis (PESA); NCT01410318].
Collapse
Affiliation(s)
- Ana Devesa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manuel Lobo-González
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Juan Martínez-Milla
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Belén Oliva
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Inés García-Lunar
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Cardiology Department, Hospital Ramón y Cajal, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Annalaura Mastrangelo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Samuel España
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, IdISSC, Madrid, Spain
| | - Javier Sanz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Hector Bueno
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiology Department, Hospital Universitario 12 de Octubre, and i+12 Research Institute, Madrid, Spain
| | - Jose J Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Antonio Fernández-Ortiz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Hospital Clínico San Carlos, Universidad Complutense, IdISSC, Madrid, Spain
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Leticia Fernández-Friera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Hospital Universitario HM Montepríncipe-CIEC, Madrid, Spain
| | | | - Xavier Rossello
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiology Department, Hospital Universitari Son Espases-IDISBA, Palma de Mallorca, Spain
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Valentin Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
30
|
Endres M, Moro MA, Nolte CH, Dames C, Buckwalter MS, Meisel A. Immune Pathways in Etiology, Acute Phase, and Chronic Sequelae of Ischemic Stroke. Circ Res 2022; 130:1167-1186. [PMID: 35420915 DOI: 10.1161/circresaha.121.319994] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammation and immune mechanisms are crucially involved in the pathophysiology of the development, acute damage cascades, and chronic course after ischemic stroke. Atherosclerosis is an inflammatory disease, and, in addition to classical risk factors, maladaptive immune mechanisms lead to an increased risk of stroke. Accordingly, individuals with signs of inflammation or corresponding biomarkers have an increased risk of stroke. Anti-inflammatory drugs, such as IL (interleukin)-1β blockers, methotrexate, or colchicine, represent attractive treatment strategies to prevent vascular events and stroke. Lately, the COVID-19 pandemic shows a clear association between SARS-CoV2 infections and increased risk of cerebrovascular events. Furthermore, mechanisms of both innate and adaptive immune systems influence cerebral damage cascades after ischemic stroke. Neutrophils, monocytes, and microglia, as well as T and B lymphocytes each play complex interdependent roles that synergize to remove dead tissue but also can cause bystander injury to intact brain cells and generate maladaptive chronic inflammation. Chronic systemic inflammation and comorbid infections may unfavorably influence both outcome after stroke and recurrence risk for further stroke. In addition, stroke triggers specific immune depression, which in turn can promote infections. Recent research is now increasingly addressing the question of the extent to which immune mechanisms may influence long-term outcome after stroke and, in particular, cause specific complications such as poststroke dementia or even poststroke depression.
Collapse
Affiliation(s)
- Matthias Endres
- Klinik für Neurologie mit Experimenteller Neurologie (M.E., C.H.N., A.M.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.,Center for Stroke Research Berlin (M.E., C.H.N., C.D., A.M.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.,Excellence Cluster NeuroCure (M.E.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.,German Center for Neurodegenerative Diseases, Partner Site Berlin, Germany (M.E.).,German Centre for Cardiovascular Research, Partner Site Berlin, Germany (M.E., C.H.N.)
| | - Maria A Moro
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (M.A.M.).,Departamento de Farmacología yToxicología, Unidad de Investigación Neurovascular, Universidad Complutense de Madrid, Madrid, Spain (M.A.M.).,Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain (M.A.M.).,Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (M.A.M.)
| | - Christian H Nolte
- Klinik für Neurologie mit Experimenteller Neurologie (M.E., C.H.N., A.M.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.,Center for Stroke Research Berlin (M.E., C.H.N., C.D., A.M.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, Germany (M.E., C.H.N.)
| | - Claudia Dames
- Center for Stroke Research Berlin (M.E., C.H.N., C.D., A.M.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.,Institute for Medical Immunology (C.D.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, CA (M.S.B.).,Wu Tsai Neurosciences Institute, Stanford University, CA (M.S.B.)
| | - Andreas Meisel
- Klinik für Neurologie mit Experimenteller Neurologie (M.E., C.H.N., A.M.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.,Center for Stroke Research Berlin (M.E., C.H.N., C.D., A.M.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.,NeuroCure Clinical Research Center (A.M.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| |
Collapse
|
31
|
Ma Y, Yang X, Villalba N, Chatterjee V, Reynolds A, Spence S, Wu MH, Yuan SY. Circulating lymphocyte trafficking to the bone marrow contributes to lymphopenia in myocardial infarction. Am J Physiol Heart Circ Physiol 2022; 322:H622-H635. [PMID: 35179978 PMCID: PMC8934671 DOI: 10.1152/ajpheart.00003.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/22/2022]
Abstract
Some patients with myocardial infarction (MI) exhibit lymphopenia, a reduction in blood lymphocyte count. Moreover, lymphopenia inversely correlates with patient prognosis. The objective of this study was to elucidate the underlying mechanisms that cause lymphopenia after MI. Multiparameter flow cytometric analysis demonstrated that MI induced profound B and T lymphopenia in a mouse model, peaking at day 1 post-MI. The finding that non-MI control and MI mice exhibited similar apoptotic rate for blood B and T lymphocytes argues against apoptosis being essential for MI-induced lymphopenia. Interestingly, the bone marrow in day 1 post-MI mice contained more B and T cells but showed less B- and T-cell proliferation compared with day 0 controls. This suggests that blood lymphocytes may travel to the bone marrow after MI. This was confirmed by adoptive transfer experiments demonstrating that MI caused the loss of transferred lymphocytes in the blood, but the accumulation of transferred lymphocytes in the bone marrow. To elucidate the underlying signaling pathways, β2-adrenergic receptor or sphingosine-1-phosphate receptor type 1 (S1PR1) was pharmacologically blocked, respectively. β2-receptor inhibition had no significant effect on blood lymphocyte count, whereas S1PR1 blockade aggravated lymphopenia in MI mice. Furthermore, we discovered that MI-induced glucocorticoid release triggered lymphopenia. This was supported by the findings that adrenalectomy (ADX) completely prevented mice from MI-induced lymphopenia, and supplementation with corticosterone in adrenalectomized MI mice reinduced lymphopenia. In conclusion, our study demonstrates that MI-associated lymphopenia involves lymphocyte redistribution from peripheral blood to the bone marrow, which is mediated by glucocorticoids.NEW & NOTEWORTHY Lymphopenia, a reduction in blood lymphocyte count, is known to inversely correlate with the prognosis for patients with myocardial infarction (MI). However, the underlying mechanisms by which cardiac ischemia induces lymphopenia remain elusive. This study provides the first evidence that MI activates the hypothalamic-pituitary-adrenal (HPA) axis to increase glucocorticoid secretion, and elevated circulating glucocorticoids induce blood lymphocytes trafficking to the bone marrow, leading to lymphopenia.
Collapse
Affiliation(s)
- Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Nuria Villalba
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Amanda Reynolds
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Sam Spence
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Mack H Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| |
Collapse
|
32
|
Astragaloside IV ameliorates peripheral immunosuppression induced by cerebral ischemia through inhibiting HPA axis. Int Immunopharmacol 2022; 105:108569. [DOI: 10.1016/j.intimp.2022.108569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 11/23/2022]
|
33
|
Zhang Q, Yang J, Yang C, Yang X, Chen Y. Eucommia ulmoides Oliver- Tribulus terrestris L. Drug Pair Regulates Ferroptosis by Mediating the Neurovascular-Related Ligand-Receptor Interaction Pathway- A Potential Drug Pair for Treatment Hypertension and Prevention Ischemic Stroke. Front Neurol 2022; 13:833922. [PMID: 35345408 PMCID: PMC8957098 DOI: 10.3389/fneur.2022.833922] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/08/2022] [Indexed: 01/04/2023] Open
Abstract
Background In this study, we used the network pharmacology approach to explore the potential disease targets of the Eucommia ulmoides Oliver (EUO)-Tribulus terrestris L. (TT) drug pair in the treatment of hypertension-associated neurovascular lesions and IS via the ferroptosis pathway. Methods We used the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform to search for the key active compounds and targets of the drug pair. Based on the GeneCards database, the relevant targets for the drug pair were obtained. Then, we performed the molecular docking of the screened core active ingredients and proteins using the DAVID database and the R AutoDock Vina software. Based on the GSE22255 dataset, these screened target proteins were used to build random forest (RF) and support vector machine (SVM) models. Finally, a new IS nomogram prediction model was constructed and evaluated. Results There were 36 active compounds in the EUO-TT drug pair. CHRM1, NR3C1, ADRB2, and OPRD1 proteins of the neuroactive ligand-receptor interaction pathway interacted with the proteins related to the ferroptosis pathway. Molecular docking experiments identified 12 active ingredients of the drug pair that may tightly bind to those target proteins. We constructed a visual IS nomogram prediction model using four genes (CHRM1, NR3C1, ADRB2, and OPRD1). The calibration curve, DCA, and clinical impact curves all indicated that the nomogram model is clinically applicable and diagnostically capable. CHRM1, NR3C1, ADRB2, and OPRD1, the target genes of the four effective components of the EUO-TT drug pair, were considered as risk markers for IS. Conclusions The active ingredients of EUO-TT drug pair may act on proteins associated with the neuroactive ligand-receptor interaction pathway to regulate ferroptosis in vascular neurons cells, ultimately affecting the onset and progression of hypertension.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Science and Technology Office, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Yang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanhua Yang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuesong Yang
- Department of Vascular Surgery, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongzhi Chen
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
34
|
Westendorp WF, Dames C, Nederkoorn PJ, Meisel A. Immunodepression, Infections, and Functional Outcome in Ischemic Stroke. Stroke 2022; 53:1438-1448. [PMID: 35341322 DOI: 10.1161/strokeaha.122.038867] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stroke remains one of the main causes of mortality and morbidity worldwide. Immediately after stroke, a neuroinflammatory process starts in the brain, triggering a systemic immunodepression mainly through excessive activation of the autonomous nervous system. Manifestations of immunodepression include lymphopenia but also dysfunctional innate and adaptive immune cells. The resulting impaired antibacterial defenses render patients with stroke susceptible to infections. In addition, other risk factors like stroke severity, dysphagia, impaired consciousness, mechanical ventilation, catheterization, and older age predispose stroke patients for infections. Most common infections are pneumonia and urinary tract infection, both occur in ≈10% of the patients. Especially pneumonia increases unfavorable outcome and mortality in patients with stroke; systemic effects like hypotension, fever, delay in rehabilitation are thought to play a crucial role. Experimental and clinical data suggest that systemic infections enhance autoreactive immune responses against brain antigens and thus negatively affect outcome but convincing evidence is lacking. Prevention of poststroke infections by preventive antibiotic therapy did not improve functional outcome after stroke. Immunomodulatory approaches counteracting immunodepression to prevent stroke-associated pneumonia need to account for neuroinflammation in the ischemic brain and avoid further tissue damage. Experimental studies discovered interesting targets, but these have not yet been investigated in patients with stroke. A better understanding of the pathobiology may help to develop optimized approaches of preventive antibiotic therapy or immunomodulation to effectively prevent stroke-associated pneumonia while improving long-term outcome after stroke. In this review, we aim to characterize epidemiology, risk factors, cause, diagnosis, clinical presentation, and potential treatment of poststroke immunosuppression and associated infections.
Collapse
Affiliation(s)
- Willeke F Westendorp
- Department of Neurology, Amsterdam Neuroscience, University of Amsterdam, the Netherlands (W.F.W., P.J.N.)
| | - Claudia Dames
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Center for Stroke Research Berlin, NeuroCure Clinical Research Center, Germany (C.D., A.M.)
| | - Paul J Nederkoorn
- Department of Neurology, Amsterdam Neuroscience, University of Amsterdam, the Netherlands (W.F.W., P.J.N.)
| | - Andreas Meisel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Center for Stroke Research Berlin, NeuroCure Clinical Research Center, Germany (C.D., A.M.)
| |
Collapse
|
35
|
Lichlyter DA, Krumm ZA, Golde TA, Doré S. Role of CRF and the hypothalamic-pituitary-adrenal axis in stroke: revisiting temporal considerations and targeting a new generation of therapeutics. FEBS J 2022; 290:1986-2010. [PMID: 35108458 DOI: 10.1111/febs.16380] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
Ischaemic neurovascular stroke represents a leading cause of death in the developed world. Preclinical and human epidemiological evidence implicates the corticotropin-releasing factor (CRF) family of neuropeptides as mediators of acute neurovascular injury pathology. Preclinical investigations of the role of CRF, CRF receptors and CRF-dependent activation of the hypothalamic-pituitary-adrenal (HPA) axis have pointed toward a tissue-specific and temporal relationship between activation of these pathways and physiological outcomes. Based on the literature, the major phases of ischaemic stroke aetiology may be separated into an acute phase in which CRF and anti-inflammatory stress signalling are beneficial and a chronic phase in which these contribute to neural degeneration, toxicity and apoptotic signalling. Significant gaps in knowledge remain regarding the pathway, temporality and systemic impact of CRF signalling and stress biology in neurovascular injury progression. Heterogeneity among experimental designs poses a challenge to defining the apparent reciprocal relationship between neurological injury and stress metabolism. Despite these challenges, it is our opinion that the elucidated temporality may be best matched with an antibody against CRF with a half-life of days to weeks as opposed to minutes to hours as with small-molecule CRF receptor antagonists. This state-of-the-art review will take a multipronged approach to explore the expected potential benefit of a CRF antibody by modulating CRF and corticotropin-releasing factor receptor 1 signalling, glucocorticoids and autonomic nervous system activity. Additionally, this review compares the modulation of CRF and HPA axis activity in neuropsychiatric diseases and their counterpart outcomes post-stroke and assess lessons learned from antibody therapies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel A Lichlyter
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Zachary A Krumm
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Todd A Golde
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Departments of Neurology, Psychiatry, Pharmaceutics, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
36
|
Liu R, Song P, Gu X, Liang W, Sun W, Hua Q, Zhang Y, Qiu Z. Comprehensive Landscape of Immune Infiltration and Aberrant Pathway Activation in Ischemic Stroke. Front Immunol 2022; 12:766724. [PMID: 35140708 PMCID: PMC8818702 DOI: 10.3389/fimmu.2021.766724] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Ischemic stroke (IS) is a multifactorial disease caused by the interaction of multiple environmental and genetic risk factors, and it is the most common cause of disability. The immune microenvironment and inflammatory response participate in the whole process of IS occurrence and development. Therefore, the rational use of relevant markers or characteristic pathways in the immune microenvironment will become one of the important therapeutic strategies for the treatment of IS. We collected peripheral blood samples from 10 patients diagnosed with IS at the First Affiliated Hospital of Gannan Medical University and First Affiliated Hospital, Jinan" University, and from 10 normal people. The GSE16561 dataset was downloaded from the Gene Expression Omnibus (GEO) database. xCell, gene set enrichment analysis (GSEA), single-sample GSEA (ssGSEA) and immune-related gene analysis were used to evaluate the differences in the immune microenvironment and characteristic pathways between the IS and control groups of the two datasets. xCell analysis showed that the IS-24h group had significantly reduced central memory CD8+ T cell, effector memory CD8+ T cell, B cell and Th1 cell scores and significantly increased M1 macrophage and macrophage scores. GSEA showed that the IS-24h group had significantly increased inflammation-related pathway activity(myeloid leukocyte activation, positive regulation of tumor necrosis factor biosynthetic process, myeloid leukocyte migration and leukocyte chemotaxis), platelet-related pathway activity(platelet activation, signaling and aggregation; protein polymerization; platelet degranulation; cell-cell contact zone) and pathology-related pathway activity (ERBB signaling pathway, positive regulation of ERK1 and ERK2 cascade, vascular endothelial growth factor receptor signaling pathway, and regulation of MAP kinase activity). Immune-related signature analysis showed that the macrophage signature, antigen presentation-related signature, cytotoxicity-related signature, B cell-related signature and inflammation-related signature were significantly lower in the IS-24h group than in the control group. In this study, we found that there were significant differences in the immune microenvironment between the peripheral blood of IS patients and control patients, as shown by the IS group having significantly reduced CD8+ Tcm, CD8+ Tem, B cell and Th1 cell scores and significantly increased macrophage and M1 macrophage scores. Additionally, inflammation-related, pathological, and platelet-related pathway activities were significantly higher in the IS group than in the control group.
Collapse
Affiliation(s)
- Rongrong Liu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Neurology, Ganzhou People’s Hospital, Ganzhou, China
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Pingping Song
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Xunhu Gu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weidong Liang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Wei Sun
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Qian Hua
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yusheng Zhang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, Jinan University, Guangzhou, China
- *Correspondence: Yusheng Zhang, ; Zhengang Qiu,
| | - Zhengang Qiu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Yusheng Zhang, ; Zhengang Qiu,
| |
Collapse
|
37
|
Gulyaeva NV, Onufriev MV, Moiseeva YV. Ischemic Stroke, Glucocorticoids, and Remote Hippocampal Damage: A Translational Outlook and Implications for Modeling. Front Neurosci 2021; 15:781964. [PMID: 34955730 PMCID: PMC8695719 DOI: 10.3389/fnins.2021.781964] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/22/2021] [Indexed: 01/16/2023] Open
Abstract
Progress in treating ischemic stroke (IS) and its delayed consequences has been frustratingly slow due to the insufficient knowledge on the mechanism. One important factor, the hypothalamic-pituitary-adrenocortical (HPA) axis is mostly neglected despite the fact that both clinical data and the results from rodent models of IS show that glucocorticoids, the hormones of this stress axis, are involved in IS-induced brain dysfunction. Though increased cortisol in IS is regarded as a biomarker of higher mortality and worse recovery prognosis, the detailed mechanisms of HPA axis dysfunction involvement in delayed post-stroke cognitive and emotional disorders remain obscure. In this review, we analyze IS-induced HPA axis alterations and supposed association of corticoid-dependent distant hippocampal damage to post-stroke brain disorders. A translationally important growing point in bridging the gap between IS pathogenesis and clinic is to investigate the involvement of the HPA axis disturbances and related hippocampal dysfunction at different stages of SI. Valid models that reproduce the state of the HPA axis in clinical cases of IS are needed, and this should be considered when planning pre-clinical research. In clinical studies of IS, it is useful to reinforce diagnostic and prognostic potential of cortisol and other HPA axis hormones. Finally, it is important to reveal IS patients with permanently disturbed HPA axis. Patients-at-risk with high cortisol prone to delayed remote hippocampal damage should be monitored since hippocampal dysfunction may be the basis for development of post-stroke cognitive and emotional disturbances, as well as epilepsy.
Collapse
Affiliation(s)
- Natalia V Gulyaeva
- Laboratory of Functional Biochemistry of Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.,Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, Russia
| | - Mikhail V Onufriev
- Laboratory of Functional Biochemistry of Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.,Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, Russia
| | - Yulia V Moiseeva
- Laboratory of Functional Biochemistry of Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
38
|
La Rose AM, Bazioti V, Hoogerland JA, Svendsen AF, Groenen AG, van Faassen M, Rutten MGS, Kloosterhuis NJ, Dethmers-Ausema B, Nijland JH, Mithieux G, Rajas F, Kuipers F, Lukens MV, Soehnlein O, Oosterveer MH, Westerterp M. Hepatocyte-specific glucose-6-phosphatase deficiency disturbs platelet aggregation and decreases blood monocytes upon fasting-induced hypoglycemia. Mol Metab 2021; 53:101265. [PMID: 34091064 PMCID: PMC8243524 DOI: 10.1016/j.molmet.2021.101265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Glycogen storage disease type 1a (GSD Ia) is a rare inherited metabolic disorder caused by mutations in the glucose-6-phosphatase (G6PC1) gene. When untreated, GSD Ia leads to severe fasting-induced hypoglycemia. Although current intensive dietary management aims to prevent hypoglycemia, patients still experience hypoglycemic events. Poor glycemic control in GSD Ia is associated with hypertriglyceridemia, hepatocellular adenoma and carcinoma, and also with an increased bleeding tendency of unknown origin. METHODS To evaluate the effect of glycemic control on leukocyte levels and coagulation in GSD Ia, we employed hepatocyte-specific G6pc1 deficient (L-G6pc-/-) mice under fed or fasted conditions, to match good or poor glycemic control in GSD Ia, respectively. RESULTS We found that fasting-induced hypoglycemia in L-G6pc-/- mice decreased blood leukocytes, specifically proinflammatory Ly6Chi monocytes, compared to controls. Refeeding reversed this decrease. The decrease in Ly6Chi monocytes was accompanied by an increase in plasma corticosterone levels and was prevented by the glucocorticoid receptor antagonist mifepristone. Further, fasting-induced hypoglycemia in L-G6pc-/- mice prolonged bleeding time in the tail vein bleeding assay, with reversal by refeeding. This could not be explained by changes in coagulation factors V, VII, or VIII, or von Willebrand factor. While the prothrombin and activated partial thromboplastin time as well as total platelet counts were not affected by fasting-induced hypoglycemia in L-G6pc-/- mice, ADP-induced platelet aggregation was disturbed. CONCLUSIONS These studies reveal a relationship between fasting-induced hypoglycemia, decreased blood monocytes, and disturbed platelet aggregation in L-G6pc-/- mice. While disturbed platelet aggregation likely accounts for the bleeding phenotype in GSD Ia, elevated plasma corticosterone decreases the levels of proinflammatory monocytes. These studies highlight the necessity of maintaining good glycemic control in GSD Ia.
Collapse
Affiliation(s)
- Anouk M La Rose
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Venetia Bazioti
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Joanne A Hoogerland
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Arthur F Svendsen
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anouk G Groenen
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martijn G S Rutten
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Niels J Kloosterhuis
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bertien Dethmers-Ausema
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - J Hendrik Nijland
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Gilles Mithieux
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, Lyon, France
| | - Fabienne Rajas
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, Lyon, France
| | - Folkert Kuipers
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Michaël V Lukens
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Oliver Soehnlein
- Institute for Experimental Pathology (ExPat), Center for Molecular Biology of Inflammation (ZBME), University of Münster, Münster, Germany; Department of Physiology and Pharmacology (FyFa), Karolinska Institutet, Stockholm, Sweden
| | - Maaike H Oosterveer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marit Westerterp
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
39
|
Cui P, McCullough LD, Hao J. Brain to periphery in acute ischemic stroke: Mechanisms and clinical significance. Front Neuroendocrinol 2021; 63:100932. [PMID: 34273406 PMCID: PMC9850260 DOI: 10.1016/j.yfrne.2021.100932] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/27/2021] [Accepted: 07/12/2021] [Indexed: 01/21/2023]
Abstract
The social and public health burdens of ischemic stroke have been increasing worldwide. In addition to focal brain damage, acute ischemic stroke (AIS) provokes systemic abnormalities across peripheral organs. AIS profoundly alters the autonomic nervous system, hypothalamic-pituitary-adrenal axis, and immune system, which further yield deleterious organ-specific consequences. Poststroke systemic pathological alterations in turn considerably contribute to the progression of ischemic brain injury, which accounts for the substantial impact of systemic complications on stroke outcomes. This review provides a comprehensive and updated pathophysiological model elucidating the systemic effects of AIS. To address their clinical significance and inform stroke management, we also outline the resulting systemic complications at particular stages of AIS and highlight the mechanisms. Future therapeutic strategies should attempt to integrate the treatment of primary brain lesions with interventions for secondary systemic complications, and should be tailored to patient individualized characteristics to optimize stroke outcomes.
Collapse
Affiliation(s)
- Pan Cui
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Louise D McCullough
- Department of Neurology, University of Texas Health Science Centre, Houston, TX 77030, USA
| | - Junwei Hao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
40
|
Ischemic stroke and infection: A brief update on mechanisms and potential therapies. Biochem Pharmacol 2021; 193:114768. [PMID: 34543657 DOI: 10.1016/j.bcp.2021.114768] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 01/01/2023]
Abstract
Ischemic stroke triggers a multifaceted inflammatory response in the brain that contributes to secondary brain injury and infarct expansion. In parallel with brain inflammation, ischemic stroke also leads to post-stroke immunosuppression. Stroke-induced leukopenia then predisposes patients to opportunistic infections potentially leading to pneumonia or unrinary tract infections and a worsened stroke outcome. There is evidence that the hypothalamic-pituitaryadrenal axis plays an important role in the etiology of post-stroke immunosuppression, by which prolonged glucocorticoid signalling leads to changes in immune responses. While opportunistic microbes in hospitals have been thought to be the source of infection, recent studies have reported that gut flora may also be a cause of post-stroke infection as a consequence of compromised integrity of the gut barrier after stroke. While antimicrobial drugs would appear to be a rational form of treatment for bacterial infections in stroke patients, the rise in drug-resistant bacteria and possible adverse effects of disrupting beneficial gut flora represent major challenges with these drugs. Considering the prominent role of gut microbiota in modulating immune responses, protecting and restoring the post-stroke gut bacteriome may provide significant benefit in the context of post-stroke infection. With such broad aspects of post-stroke infection occurring together with an extensive inflammatory response in the brain, a carefully considered administration of therapies for ischemic stroke is warranted.
Collapse
|
41
|
Wang HL, Li YL, Li XF, Wang ZZ. The value of serum procalcitonin in the anti-infection therapy of acute stroke patients. Pak J Med Sci 2021; 37:1155-1160. [PMID: 34290800 PMCID: PMC8281182 DOI: 10.12669/pjms.37.4.3932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/05/2021] [Accepted: 04/12/2021] [Indexed: 12/02/2022] Open
Abstract
Objectives: To investigate the value of dynamic monitoring of serum procalcitonin (PCT) in anti-infective therapy of patients with acute stroke. Methods: This is a case control retrospective study of acute stroke patients conducted from July 2016 to October 2018, in the Department of Neurology, Affiliated Hospital of Hebei University, who who reached within twenty four hours. They, were selected as the study subjects who were divided into infection group and non-infection group according to the inclusion and exclusion criteria. The serum PCT and CRP levels were compared between the two groups at 24 hours, 48 hours and 72 hours. In order to judge the changes of PCT level and the infection of stroke patients, different kinds of antibiotics were used for corresponding treatment. Retrospective analysis of the cases that did not monitor PCT anti infective treatment before July 2016 were compared with the cases that monitored PCT to guide anti infective treatment after July 2016, and compared the efficacy of antibiotics. Results: The serum PCT level of patients in the infection group was significantly higher than that of patients in the noninfection group (P<0.001). For the patients whose PCT<0.5 ng/ml within 72 hour, anti-infective therapy was not administered. However, for those patients whose PCT<0.5 ng/ml and CRP rose significantly, WBC, body temperature and chest CT were closely monitored. For the patients whose PCT increased slightly (0.5 ng/ml<PCT<2.0 ng/ml), first-generation and second-generation cephalosporin or semisynthetic penicillin, such as mezlocillin, were administered. For the patients whose PCT increased moderately (5 ng/ml>PCT>2 ng/ml), mezlocillin/ sulbactam or ceftriaxone/ tazobactam was administered. For patients whose PCT increased significantly (PCT>5 ng/ml), carbapenem antibiotic or a combination of two antibiotics was administered. Conclusion: Dynamic detection of serum PCT concentration can make accurate judgment on the severity of bacterial infection in patients with acute stroke and guide the rational application of antibiotics.
Collapse
Affiliation(s)
- Hui-Ling Wang
- Hui-ling Wang, Department of Neurology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, P. R. China
| | - Ying-Lei Li
- Ying-lei Li, Department of Emergency, Baoding First Central Hospital, Baoding, Hebei, 071000, P. R. China
| | - Xiao-Fang Li
- Xiao-fang Li, Department of Neurology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, P. R. China
| | - Zhi-Zun Wang
- Zhi-zun Wang, Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, P. R. China
| |
Collapse
|
42
|
Ueno M. Restoring neuro-immune circuitry after brain and spinal cord injuries. Int Immunol 2021; 33:311-325. [PMID: 33851981 DOI: 10.1093/intimm/dxab017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Neuro-immune interactions are essential for our body's defense and homeostasis. Anatomical and physiological analyses have shown that the nervous system comprises multiple pathways that regulate the dynamics and functions of immune cells, which are mainly mediated by the autonomic nervous system and adrenal signals. These are disturbed when the neurons and circuits are damaged by diseases of the central nervous system (CNS). Injuries caused by stroke or trauma often cause immune dysfunction by abrogation of the immune-regulating neural pathways, which leads to an increased risk of infections. Here, I review the structures and functions of the neural pathways connecting the brain and the immune system, and the neurogenic mechanisms of immune dysfunction that emerge after CNS injuries. Recent technological advances in manipulating specific neural circuits have added mechanistic aspects of neuro-immune interactions and their dysfunctions. Understanding the neural bases of immune control and their pathological processes will deepen our knowledge of homeostasis and lead to the development of strategies to cure immune deficiencies observed in various CNS disorders.
Collapse
Affiliation(s)
- Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Niigata 951-8585, Japan
| |
Collapse
|
43
|
Sposato LA, Hilz MJ, Aspberg S, Murthy SB, Bahit MC, Hsieh CY, Sheppard MN, Scheitz JF. Post-Stroke Cardiovascular Complications and Neurogenic Cardiac Injury: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 76:2768-2785. [PMID: 33272372 DOI: 10.1016/j.jacc.2020.10.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/25/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Over 1.5 million deaths worldwide are caused by neurocardiogenic syndromes. Furthermore, the consequences of deleterious brain-heart interactions are not limited to fatal complications. Cardiac arrhythmias, heart failure, and nonfatal coronary syndromes are also common. The brain-heart axis is implicated in post-stroke cardiovascular complications known as the stroke-heart syndrome, sudden cardiac death, and Takotsubo syndrome, among other neurocardiogenic syndromes. Multiple pathophysiological mechanisms with the potential to be targeted with novel therapies have been identified in the last decade. In the present state-of-the-art review, we describe recent advances in the understanding of anatomical and functional aspects of the brain-heart axis, cardiovascular complications after stroke, and a comprehensive pathophysiological model of stroke-induced cardiac injury.
Collapse
Affiliation(s)
- Luciano A Sposato
- Heart & Brain Laboratory, Western University, London, Ontario, Canada; Departments of Clinical Neurological Sciences, Epidemiology and Biostatistics, and Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Robarts Research Institute, London, Ontario, Canada.
| | - Max J Hilz
- University of Erlangen-Nuremberg, Erlangen, Germany; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sara Aspberg
- Department of Clinical Sciences, Division of Cardiovascular Medicine, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Santosh B Murthy
- Clinical and Translational Neuroscience Unit, Department of Neurology, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York. https://twitter.com/san_murthy
| | - M Cecilia Bahit
- INECO Neurociencias Oroño, Rosario, Santa Fe, Argentina. https://twitter.com/ceciliabahit
| | - Cheng-Yang Hsieh
- Department of Neurology, Tainan Sin Lau Hospital, Tainan, Taiwan; School of Pharmacy, Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. https://twitter.com/chengyanghsieh
| | - Mary N Sheppard
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom
| | - Jan F Scheitz
- Klinik für Neurologie mit Experimenteller Neurologie and Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Germany; German Center for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung), partner site Berlin, Charité-Universitätsmedizin Berlin, Germany; Berlin Institute of Health, Berlin, Germany. https://twitter.com/Jan_FriSch
| | | |
Collapse
|
44
|
Krishnan S, O’Boyle C, Smith CJ, Hulme S, Allan SM, Grainger JR, Lawrence CB. A hyperacute immune map of ischaemic stroke patients reveals alterations to circulating innate and adaptive cells. Clin Exp Immunol 2021; 203:458-471. [PMID: 33205448 PMCID: PMC7874838 DOI: 10.1111/cei.13551] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Systemic immune changes following ischaemic stroke are associated with increased susceptibility to infection and poor patient outcome due to their role in exacerbating the ischaemic injury and long-term disability. Alterations to the abundance or function of almost all components of the immune system post-stroke have been identified, including lymphocytes, monocytes and granulocytes. However, subsequent infections have often confounded the identification of stroke-specific effects. Global understanding of very early changes to systemic immunity is critical to identify immune targets to improve clinical outcome. To this end, we performed a small, prospective, observational study in stroke patients with immunophenotyping at a hyperacute time point (< 3 h) to explore early changes to circulating immune cells. We report, for the first time, decreased frequencies of type 1 conventional dendritic cells (cDC1), haematopoietic stem and progenitor cells (HSPCs), unswitched memory B cells and terminally differentiated effector memory T cells re-expressing CD45RA (TEMRA). We also observed concomitant alterations to human leucocyte antigen D-related (HLA-DR), CD64 and CD14 expression in distinct myeloid subsets and a rapid activation of CD4+ T cells based on CD69 expression. The CD69+ CD4+ T cell phenotype inversely correlated with stroke severity and was associated with naive and central memory T (TCM) cells. Our findings highlight early changes in both the innate and adaptive immune compartments for further investigation as they could have implications the development of post-stroke infection and poorer patient outcomes.
Collapse
Affiliation(s)
- S. Krishnan
- Geoffrey Jefferson Brain Research CentreFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Infection, Immunity and Respiratory MedicineSchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - C. O’Boyle
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - C. J. Smith
- Geoffrey Jefferson Brain Research CentreFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Cardiovascular SciencesUniversity of ManchesterManchester Academic Health Science CentreSalford Royal NHS Foundation TrustSalfordUK
- Manchester Centre for Clinical NeurosciencesSalford Royal NHS Foundation TrustSalfordUK
| | - S. Hulme
- Division of Cardiovascular SciencesUniversity of ManchesterManchester Academic Health Science CentreSalford Royal NHS Foundation TrustSalfordUK
- Manchester Centre for Clinical NeurosciencesSalford Royal NHS Foundation TrustSalfordUK
| | - S. M. Allan
- Geoffrey Jefferson Brain Research CentreFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - J. R. Grainger
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Infection, Immunity and Respiratory MedicineSchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - C. B. Lawrence
- Geoffrey Jefferson Brain Research CentreFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
45
|
Corlateanu A, Stratan I, Covantev S, Botnaru V, Corlateanu O, Siafakas N. Asthma and stroke: a narrative review. Asthma Res Pract 2021; 7:3. [PMID: 33608061 PMCID: PMC7896413 DOI: 10.1186/s40733-021-00069-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/04/2021] [Indexed: 02/08/2023] Open
Abstract
Asthma is a heterogeneous disease, usually characterized by chronic airway inflammation, bronchial reversible obstruction and hyperresponsiveness to direct or indirect stimuli. It is a severe disease causing approximately half a million deaths every year and thus possessing a significant public health burden. Stroke is the second leading cause of death and a major cause of disability worldwide. Asthma and asthma medications may be a risk factors for developing stroke. Nevertheless, since asthma is associated with a variety of comorbidities, such as cardiovascular, metabolic and respiratory, the increased incidence of stroke in asthma patients may be due to a confounding effect. The purpose of this review is to analyze the complex relationship between asthma and stroke.
Collapse
Affiliation(s)
- A. Corlateanu
- Department of Internal Medicine, Division of Pneumology and Allergology, Nicolae Testemitanu State University of Medicine and Pharmacy, Stefan cel Mare street 165, 2004 Chisinau, Republic of Moldova
| | - Iu Stratan
- Department of Internal Medicine, Division of Pneumology and Allergology, Nicolae Testemitanu State University of Medicine and Pharmacy, Stefan cel Mare street 165, 2004 Chisinau, Republic of Moldova
| | - S. Covantev
- Department of Internal Medicine, Division of Pneumology and Allergology, Nicolae Testemitanu State University of Medicine and Pharmacy, Stefan cel Mare street 165, 2004 Chisinau, Republic of Moldova
| | - V. Botnaru
- Department of Internal Medicine, Division of Pneumology and Allergology, Nicolae Testemitanu State University of Medicine and Pharmacy, Stefan cel Mare street 165, 2004 Chisinau, Republic of Moldova
| | - O. Corlateanu
- Department of Internal Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, Stefan cel Mare street 165, 2004 Chisinau, Republic of Moldova
| | - N. Siafakas
- Department of Thoracic Medicine, University General Hospital, Stavrakia, 71110 Heraklion, Crete, Greece
| |
Collapse
|
46
|
Carpenter RS, Marbourg JM, Brennan FH, Mifflin KA, Hall JCE, Jiang RR, Mo XM, Karunasiri M, Burke MH, Dorrance AM, Popovich PG. Spinal cord injury causes chronic bone marrow failure. Nat Commun 2020; 11:3702. [PMID: 32710081 PMCID: PMC7382469 DOI: 10.1038/s41467-020-17564-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) causes immune dysfunction, increasing the risk of infectious morbidity and mortality. Since bone marrow hematopoiesis is essential for proper immune function, we hypothesize that SCI disrupts bone marrow hematopoiesis. Indeed, SCI causes excessive proliferation of bone marrow hematopoietic stem and progenitor cells (HSPC), but these cells cannot leave the bone marrow, even after challenging the host with a potent inflammatory stimulus. Sequestration of HSPCs in bone marrow after SCI is linked to aberrant chemotactic signaling that can be reversed by post-injury injections of Plerixafor (AMD3100), a small molecule inhibitor of CXCR4. Even though Plerixafor liberates HSPCs and mature immune cells from bone marrow, competitive repopulation assays show that the intrinsic long-term functional capacity of HSPCs is still impaired in SCI mice. Together, our data suggest that SCI causes an acquired bone marrow failure syndrome that may contribute to chronic immune dysfunction.
Collapse
Affiliation(s)
- Randall S Carpenter
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Jessica M Marbourg
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Faith H Brennan
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Katherine A Mifflin
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Jodie C E Hall
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Roselyn R Jiang
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Xiaokui M Mo
- Center for Biostatistics and Bioinformatics, The Ohio State University, Columbus, OH, USA
| | - Malith Karunasiri
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Matthew H Burke
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Adrienne M Dorrance
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA.
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
47
|
Cain DW, Bortner CD, Diaz-Jimenez D, Petrillo MG, Gruver-Yates A, Cidlowski JA. Murine Glucocorticoid Receptors Orchestrate B Cell Migration Selectively between Bone Marrow and Blood. THE JOURNAL OF IMMUNOLOGY 2020; 205:619-629. [PMID: 32571841 DOI: 10.4049/jimmunol.1901135] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 06/03/2020] [Indexed: 12/14/2022]
Abstract
Glucocorticoids promote CXCR4 expression by T cells, monocytes, macrophages, and eosinophils, but it is not known if glucocorticoids regulate CXCR4 in B cells. Considering the important contributions of CXCR4 to B cell development and function, we investigated the glucocorticoid/CXCR4 axis in mice. We demonstrate that glucocorticoids upregulate CXCR4 mRNA and protein in mouse B cells. Using a novel strain of mice lacking glucocorticoid receptors (GRs) specifically in B cells, we show that reduced CXCR4 expression associated with GR deficiency results in impaired homing of mature B cells to bone marrow, whereas migration to other lymphoid tissues is independent of B cell GRs. The exchange of mature B cells between blood and bone marrow is sensitive to small, physiologic changes in glucocorticoid activity, as evidenced by the lack of circadian rhythmicity in GR-deficient B cell counts normally associated with diurnal patterns of glucocorticoid secretion. B cellGRKO mice mounted normal humoral responses to immunizations with T-dependent and T-independent (Type 1) Ags, but Ab responses to a multivalent T-independent (Type 2) Ag were impaired, a surprise finding considering the immunosuppressive properties commonly attributed to glucocorticoids. We propose that endogenous glucocorticoids regulate a dynamic mode of B cell migration specialized for rapid exchange between bone marrow and blood, perhaps as a means to optimize humoral immunity during diurnal periods of activity.
Collapse
Affiliation(s)
- Derek W Cain
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Carl D Bortner
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Research Triangle Park, NC 27709
| | - David Diaz-Jimenez
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Maria G Petrillo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Amanda Gruver-Yates
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Research Triangle Park, NC 27709
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Research Triangle Park, NC 27709
| |
Collapse
|
48
|
Opposite regulation of piRNAs, rRNAs and miRNAs in the blood after subarachnoid hemorrhage. J Mol Med (Berl) 2020; 98:887-896. [PMID: 32424559 PMCID: PMC7297814 DOI: 10.1007/s00109-020-01922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 10/28/2022]
Abstract
Multiple classes of small RNAs (sRNAs) are expressed in the blood and are involved in the regulation of pivotal cellular processes. We aimed to elucidate the expression patterns and functional roles of sRNAs in the systemic response to intracranial aneurysm (IA) rupture. We used next-generation sequencing to analyze the expression of sRNAs in patients in the acute phase of IA rupture (first 72 h), in the chronic phase (3-15 months), and controls. The patterns of alterations in sRNA expression were analyzed in the context of clinically relevant information regarding the biological consequences of IA rupture. We identified 542 differentially expressed sRNAs (108 piRNAs, 99 rRNAs, 90 miRNAs, 43 scRNAs, 36 tRNAs, and 32 snoRNAs) among the studied groups with notable differences in upregulated and downregulated sRNAs between the groups and sRNAs categories. piRNAs and rRNAs showed a substantial decrease in RNA abundance that was sustained after IA rupture, whereas miRNAs were largely upregulated. Downregulated sRNA genes included piR-31080, piR-57947, 5S rRNA, LSU-rRNA, and SSU-rRNA s. Remarkable enrichment in the representation of transcription factor binding sites was revealed in genomic locations of the regulated sRNA. We found strong overrepresentation of glucocorticoid receptor, retinoid x receptor alpha, and estrogen receptor alpha binding sites at the locations of downregulated piRNAs, tRNAs, and rRNAs. This report, although preliminary and largely proof-of-concept, is the first to describe alterations in sRNAs abundance levels in response to IA rupture in humans. The obtained results indicate novel mechanisms that may constitute another level of control of the inflammatory response. KEY MESSAGES: A total of 542 sRNAs were differentially expressed after aneurysmal SAH comparing with controls piRNAs and rRNAs were upregulated and miRNAs were downregulated after IA rupture The regulated sRNA showed an enrichment in the representation of some transcription factor binding sites piRNAs, tRNAs, and rRNAs showed an overrepresentation for GR, RXRA, and ERALPHA binding sites.
Collapse
|
49
|
Abstract
Unhealthy diet, lack of exercise, psychosocial stress, and insufficient sleep are increasingly prevalent modifiable risk factors for cardiovascular disease. Accumulating evidence indicates that these risk factors may fuel chronic inflammatory processes that are active in atherosclerosis and lead to myocardial infarction and stroke. In concert with hyperlipidemia, maladaptive immune system activities can contribute to disease progression and increase the probability of adverse events. In this review, we discuss recent insight into how the above modifiable risk factors influence innate immunity. Specifically, we focus on pathways that raise systemic myeloid cell numbers and modulate immune cell phenotypes, reviewing hematopoiesis, leukocyte trafficking, and innate immune cell accumulation in cardiovascular organs. Often, relevant mechanisms that begin with lifestyle choices and lead to cardiovascular events span multiple organ systems, including the central nervous, endocrine, metabolic, hematopoietic, immune and, finally, the cardiovascular system. We argue that deciphering such pathways provides not only support for preventive interventions but also opportunities to develop biomimetic immunomodulatory therapeutics that mitigate cardiovascular inflammation.
Collapse
Affiliation(s)
- Maximilian J Schloss
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.)
| | - Filip K Swirski
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.)
| | - Matthias Nahrendorf
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.).,Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.N.).,Department of Internal Medicine I, University Hospital Wuerzburg, Germany (M.N.)
| |
Collapse
|
50
|
Abstract
A central feature of atherosclerosis, the most prevalent chronic vascular disease and root cause of myocardial infarction and stroke, is leukocyte accumulation in the arterial wall. These crucial immune cells are produced in specialized niches in the bone marrow, where a complex cell network orchestrates their production and release. A growing body of clinical studies has documented a correlation between leukocyte numbers and cardiovascular disease risk. Understanding how leukocytes are produced and how they contribute to atherosclerosis and its complications is, therefore, critical to understanding and treating the disease. In this review, we focus on the key cells and products that regulate hematopoiesis under homeostatic conditions, during atherosclerosis and after myocardial infarction.
Collapse
Affiliation(s)
- Wolfram C Poller
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Matthias Nahrendorf
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,Department of Radiology (M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Filip K Swirski
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,Department of Radiology (M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|