1
|
Lan T, Palm KCA, Hoeben L, Diez Benavente E, Perry RN, Civelek M, de Kleijn DPV, den Ruijter HM, Pasterkamp G, Mokry M. Tobacco smoking is associated with sex- and plaque-type specific upregulation of CRLF1 in atherosclerotic lesions. Atherosclerosis 2024; 397:118554. [PMID: 39137621 DOI: 10.1016/j.atherosclerosis.2024.118554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/18/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND AND AIMS Tobacco smoking is a known risk factor for atherosclerotic disease, with more elevated risks in women compared to men. We hypothesized that atherosclerotic plaques from smokers show different gene expression patterns compared to non-smokers, in a sex-specific manner. METHODS Gene expression data of 625 carotid plaques (151 females and 474 males) were analyzed for differential gene expression between current smokers (n = 226) and non-smokers (n = 399). All analyses were stratified by sex and by molecular plaque characteristics. Finally, we projected the activity of gene regulatory networks and utilized single-cell transcriptomics from 38 plaques (26 males and 12 females) to interpret the sex- and plaque-type specific signals. RESULTS We observed higher expression levels of CRLF1 gene in atherosclerotic plaques from smokers compared to non-smokers (log2FC = 0.48, FDR = 0.012). CRLF1 upregulation was interacting with sex (p = 0.01) and was more pronounced in females (log2FC = 0.93, p = 1.53E-05) compared to males (log2FC = 0.35, p = 0.0018). Through single-cell RNA-seq analysis, we identified the highest CRLF1 expression within the transitioning and synthetic smooth muscle cell populations. CRLF1 expression was increased in fibro-inflammatory and fibro-cellular plaque types. Gene annotations pointed to increased expression of CRLF1 in networks with extracellular matrix related genes. CONCLUSIONS Atherosclerotic plaques from current smokers show sex-dependent upregulation of smooth muscle cell gene CRLF1. This may explain the different contributions of smoking to cardiovascular risk in females.
Collapse
Affiliation(s)
- Tian Lan
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Kaylin C A Palm
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Luka Hoeben
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - R Noah Perry
- Center for Public Health Genomics, University of Virginia, Charlottesville, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, USA
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, Charlottesville, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, USA
| | | | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Ravindran A, Holappa L, Niskanen H, Skovorodkin I, Kaisto S, Beter M, Kiema M, Selvarajan I, Nurminen V, Aavik E, Aherrahrou R, Pasonen-Seppänen S, Fortino V, Laakkonen JP, Ylä-Herttuala S, Vainio S, Örd T, Kaikkonen MU. Translatome profiling reveals Itih4 as a novel smooth muscle cell-specific gene in atherosclerosis. Cardiovasc Res 2024; 120:869-882. [PMID: 38289873 PMCID: PMC11218691 DOI: 10.1093/cvr/cvae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024] Open
Abstract
AIMS Vascular smooth muscle cells (SMCs) and their derivatives are key contributors to the development of atherosclerosis. However, studying changes in SMC gene expression in heterogeneous vascular tissues is challenging due to the technical limitations and high cost associated with current approaches. In this paper, we apply translating ribosome affinity purification sequencing to profile SMC-specific gene expression directly from tissue. METHODS AND RESULTS To facilitate SMC-specific translatome analysis, we generated SMCTRAP mice, a transgenic mouse line expressing enhanced green fluorescent protein (EGFP)-tagged ribosomal protein L10a (EGFP-L10a) under the control of the SMC-specific αSMA promoter. These mice were further crossed with the atherosclerosis model Ldlr-/-, ApoB100/100 to generate SMCTRAP-AS mice and used to profile atherosclerosis-associated SMCs in thoracic aorta samples of 15-month-old SMCTRAP and SMCTRAP-AS mice. Our analysis of SMCTRAP-AS mice showed that EGFP-L10a expression was localized to SMCs in various tissues, including the aortic wall and plaque. The TRAP fraction demonstrated high enrichment of known SMC-specific genes, confirming the specificity of our approach. We identified several genes, including Cemip, Lum, Mfge8, Spp1, and Serpina3, which are known to be involved in atherosclerosis-induced gene expression. Moreover, we identified several novel genes not previously linked to SMCs in atherosclerosis, such as Anxa4, Cd276, inter-alpha-trypsin inhibitor-4 (Itih4), Myof, Pcdh11x, Rab31, Serpinb6b, Slc35e4, Slc8a3, and Spink5. Among them, we confirmed the SMC-specific expression of Itih4 in atherosclerotic lesions using immunofluorescence staining of mouse aortic roots and spatial transcriptomics of human carotid arteries. Furthermore, our more detailed analysis of Itih4 showed its link to coronary artery disease through the colocalization of genome-wide association studies, splice quantitative trait loci (QTL), and protein QTL signals. CONCLUSION We generated a SMC-specific TRAP mouse line to study atherosclerosis and identified Itih4 as a novel SMC-expressed gene in atherosclerotic plaques, warranting further investigation of its putative function in extracellular matrix stability and genetic evidence of causality.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/genetics
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Apolipoprotein B-100/genetics
- Apolipoprotein B-100/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Disease Models, Animal
- Gene Expression Profiling
- Gene Expression Regulation
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Plaque, Atherosclerotic
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Transcriptome
Collapse
Affiliation(s)
- Aarthi Ravindran
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Lari Holappa
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Henri Niskanen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Ilya Skovorodkin
- Disease networks research unit, Faculty of Biochemistry and Molecular Medicine, Kvantum Institute, Infotech Oulu, University of Oulu, Oulu, Finland
| | - Susanna Kaisto
- Disease networks research unit, Faculty of Biochemistry and Molecular Medicine, Kvantum Institute, Infotech Oulu, University of Oulu, Oulu, Finland
| | - Mustafa Beter
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Miika Kiema
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Ilakya Selvarajan
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Valtteri Nurminen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Einari Aavik
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Rédouane Aherrahrou
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
- Institute for Cardiogenetics, Universität zu Lübeck, 23562 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Heart Centre Lübeck, 23562 Lübeck, Germany
| | - Sanna Pasonen-Seppänen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Vittorio Fortino
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Johanna P Laakkonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Seppo Vainio
- Disease networks research unit, Faculty of Biochemistry and Molecular Medicine, Kvantum Institute, Infotech Oulu, University of Oulu, Oulu, Finland
| | - Tiit Örd
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Minna U Kaikkonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| |
Collapse
|
3
|
Pan H, Wu T, Huang K, Guo Z, Liang H, Lyu P, Huang H, Feng X, Wang Q, Hu J, He Y, Guo Z, Yin M, Zhang Y. Reducing SULT2B1 promotes the interaction of LncRNAgga3-204 with SMAD4 to inhibit the macrophage inflammatory response and delay atherosclerosis progression. Transl Res 2024; 268:13-27. [PMID: 38286358 DOI: 10.1016/j.trsl.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/31/2024]
Abstract
Inflammation is a crucial pathophysiological mechanism in atherosclerosis (AS). This study aims to investigate the impact of sulfotransferase family 2b member 1 (SULT2B1) on the inflammatory response of macrophages and the progression of AS. Here, we reported that SULT2B1 expression increased with the progression of AS. In AS model mice, knockdown of Sult2b1 led to remission of AS and reduced inflammation levels. Further exploration of the downstream molecular mechanisms of SULT2B1 revealed that suppressing Sult2b1 in macrophages resulted in decreased levels of 25HC3S in the nucleus, elevated expression of Lxr, and increased the transcription of Lncgga3-204. In vivo, knockdown of Lncgga3-204 aggravated the inflammatory response and AS progression, while the simultaneous knockdown of both Sult2b1 and Lncgga3-204 exacerbated AS and the inflammatory response compared with knockdown of Sult2b1 alone. Increased binding of Lncgga3-204 to SMAD4 in response to oxidized-low density lipoprotein (ox-LDL) stimulation facilitated SMAD4 entry into the nucleus and regulated Smad7 transcription, which elevated SMAD7 expression, suppressed NF-κB entry into the nucleus, and ultimately attenuated the macrophage inflammatory response. Finally, we identified the presence of a single nucleotide polymorphism (SNP), rs2665580, in the SULT2B1 promoter region in monocytes from coronary artery disease (CAD) patients. The predominant GG/AG/AA genotypes were observed in the Asian population. Elevated SULT2B1 expression in monocytes with GG corresponded to elevated inflammatory factor levels and more unstable coronary plaques. To summarize, our study demonstrated that the critical role of SULT2B1/Lncgga3-204/SMAD4/NF-κB in AS progression. SULT2B1 serves as a novel biomarker indicating inflammatory status, thereby offering insights into potential therapeutic strategies for AS.
Collapse
Affiliation(s)
- Hangyu Pan
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Tongwei Wu
- Department of Ultrasound, Nanfang Hospital of Southern Medical University, Guangzhou 510515, PR China
| | - Kang Huang
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou 570100, PR China
| | - Zhongzhou Guo
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Hongbin Liang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Ping Lyu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Hui Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Xinyi Feng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Qianqian Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Jing Hu
- Department of Cardiology, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, PR China
| | - Yihua He
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Zhigang Guo
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China.
| | - Mengzhuo Yin
- Department of Geriatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510515, PR China.
| | - Yanan Zhang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
4
|
Mocci G, Sukhavasi K, Örd T, Bankier S, Singha P, Arasu UT, Agbabiaje OO, Mäkinen P, Ma L, Hodonsky CJ, Aherrahrou R, Muhl L, Liu J, Gustafsson S, Byandelger B, Wang Y, Koplev S, Lendahl U, Owens GK, Leeper NJ, Pasterkamp G, Vanlandewijck M, Michoel T, Ruusalepp A, Hao K, Ylä-Herttuala S, Väli M, Järve H, Mokry M, Civelek M, Miller CJ, Kovacic JC, Kaikkonen MU, Betsholtz C, Björkegren JL. Single-Cell Gene-Regulatory Networks of Advanced Symptomatic Atherosclerosis. Circ Res 2024; 134:1405-1423. [PMID: 38639096 PMCID: PMC11122742 DOI: 10.1161/circresaha.123.323184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND While our understanding of the single-cell gene expression patterns underlying the transformation of vascular cell types during the progression of atherosclerosis is rapidly improving, the clinical and pathophysiological relevance of these changes remains poorly understood. METHODS Single-cell RNA sequencing data generated with SmartSeq2 (≈8000 genes/cell) in 16 588 single cells isolated during atherosclerosis progression in Ldlr-/-Apob100/100 mice with human-like plasma lipoproteins and from humans with asymptomatic and symptomatic carotid plaques was clustered into multiple subtypes. For clinical and pathophysiological context, the advanced-stage and symptomatic subtype clusters were integrated with 135 tissue-specific (atherosclerotic aortic wall, mammary artery, liver, skeletal muscle, and visceral and subcutaneous, fat) gene-regulatory networks (GRNs) inferred from 600 coronary artery disease patients in the STARNET (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task) study. RESULTS Advanced stages of atherosclerosis progression and symptomatic carotid plaques were largely characterized by 3 smooth muscle cells (SMCs), and 3 macrophage subtype clusters with extracellular matrix organization/osteogenic (SMC), and M1-type proinflammatory/Trem2-high lipid-associated (macrophage) phenotypes. Integrative analysis of these 6 clusters with STARNET revealed significant enrichments of 3 arterial wall GRNs: GRN33 (macrophage), GRN39 (SMC), and GRN122 (macrophage) with major contributions to coronary artery disease heritability and strong associations with clinical scores of coronary atherosclerosis severity. The presence and pathophysiological relevance of GRN39 were verified in 5 independent RNAseq data sets obtained from the human coronary and aortic artery, and primary SMCs and by targeting its top-key drivers, FRZB and ALCAM in cultured human coronary artery SMCs. CONCLUSIONS By identifying and integrating the most gene-rich single-cell subclusters of atherosclerosis to date with a coronary artery disease framework of GRNs, GRN39 was identified and independently validated as being critical for the transformation of contractile SMCs into an osteogenic phenotype promoting advanced, symptomatic atherosclerosis.
Collapse
MESH Headings
- Humans
- Single-Cell Analysis
- Animals
- Gene Regulatory Networks
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Mice
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Male
- Plaque, Atherosclerotic
- Disease Progression
- Female
- Macrophages/metabolism
- Macrophages/pathology
- Mice, Knockout
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
Collapse
Affiliation(s)
- Giuseppe Mocci
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
| | - Katyayani Sukhavasi
- Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital and Department of Cardiology, Institute of Clinical Medicine, Tartu University, Estonia (K.S., A.R., H.J.)
| | - Tiit Örd
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.O., P.S., U.T.A., O.O.A., P.M., S.Y.-H., M.U.K.)
| | - Sean Bankier
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway (S.B., T.M.)
| | - Prosanta Singha
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.O., P.S., U.T.A., O.O.A., P.M., S.Y.-H., M.U.K.)
| | - Uma Thanigai Arasu
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.O., P.S., U.T.A., O.O.A., P.M., S.Y.-H., M.U.K.)
| | - Olayinka Oluwasegun Agbabiaje
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.O., P.S., U.T.A., O.O.A., P.M., S.Y.-H., M.U.K.)
| | - Petri Mäkinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.O., P.S., U.T.A., O.O.A., P.M., S.Y.-H., M.U.K.)
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York (L. Ma, S.K., K.H., J.L.M.B.)
| | - Chani J. Hodonsky
- Robert M. Berne Cardiovascular Research Center (C.J.H., G.K.O., C.J.M.), University of Virginia, Charlottesville
- Center for Public Health Genomics (C.J.H., R.A., M.C.), University of Virginia, Charlottesville
| | - Redouane Aherrahrou
- Center for Public Health Genomics (C.J.H., R.A., M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (R.A., M.C.), University of Virginia, Charlottesville
| | - Lars Muhl
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
| | - Jianping Liu
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
| | - Sonja Gustafsson
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
| | - Byambajav Byandelger
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
| | - Ying Wang
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, CA (Y.W., N.J.L.)
- Stanford Cardiovascular Institute, Stanford University, CA (Y.W., N.J.L.)
| | - Simon Koplev
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York (L. Ma, S.K., K.H., J.L.M.B.)
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, United Kingdom (S.K.)
| | - Urban Lendahl
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
| | - Gary K. Owens
- Robert M. Berne Cardiovascular Research Center (C.J.H., G.K.O., C.J.M.), University of Virginia, Charlottesville
| | - Nicholas J. Leeper
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, CA (Y.W., N.J.L.)
- Stanford Cardiovascular Institute, Stanford University, CA (Y.W., N.J.L.)
| | - Gerard Pasterkamp
- Laboratory of Experimental Cardiology (G.P., M.M.), University Medical Center Utrecht, the Netherlands
- Central Diagnostics Laboratory (G.P., M.M.), University Medical Center Utrecht, the Netherlands
| | - Michael Vanlandewijck
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
| | - Tom Michoel
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway (S.B., T.M.)
| | - Arno Ruusalepp
- Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital and Department of Cardiology, Institute of Clinical Medicine, Tartu University, Estonia (K.S., A.R., H.J.)
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York (L. Ma, S.K., K.H., J.L.M.B.)
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.O., P.S., U.T.A., O.O.A., P.M., S.Y.-H., M.U.K.)
| | - Marika Väli
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.V., C.B.)
- Department of Pathological anatomy and Forensic medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia (M.V.)
| | - Heli Järve
- Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital and Department of Cardiology, Institute of Clinical Medicine, Tartu University, Estonia (K.S., A.R., H.J.)
| | - Michal Mokry
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.O., P.S., U.T.A., O.O.A., P.M., S.Y.-H., M.U.K.)
- Laboratory of Experimental Cardiology (G.P., M.M.), University Medical Center Utrecht, the Netherlands
| | - Mete Civelek
- Center for Public Health Genomics (C.J.H., R.A., M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (R.A., M.C.), University of Virginia, Charlottesville
| | - Clint J. Miller
- Robert M. Berne Cardiovascular Research Center (C.J.H., G.K.O., C.J.M.), University of Virginia, Charlottesville
| | - Jason C. Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York (J.C.K.)
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia (J.C.K.)
- St. Vincent’s Clinical School, University of NSW, Sydney, Australia (J.C.K.)
| | - Minna U. Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.O., P.S., U.T.A., O.O.A., P.M., S.Y.-H., M.U.K.)
| | - Christer Betsholtz
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.V., C.B.)
| | - Johan L.M. Björkegren
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York (L. Ma, S.K., K.H., J.L.M.B.)
- Clinical Gene Networks AB, Stockholm, Sweden (J.L.M.B.)
| |
Collapse
|
5
|
Ahmed IA, Liu M, Gomez D. Nuclear Control of Vascular Smooth Muscle Cell Plasticity during Vascular Remodeling. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:525-538. [PMID: 37820925 PMCID: PMC10988766 DOI: 10.1016/j.ajpath.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Control of vascular smooth muscle cell (SMC) gene expression is an essential process for establishing and maintaining lineage identity, contractility, and plasticity. Most mechanisms (epigenetic, transcriptional, and post-transcriptional) implicated in gene regulation occur in the nucleus. Still, intranuclear pathways are directly impacted by modifications in the extracellular environment in conditions of adaptive or maladaptive remodeling. Integration of extracellular, cellular, and genomic information into the nucleus through epigenetic and transcriptional control of genome organization plays a major role in regulating SMC functions and phenotypic transitions during vascular remodeling and diseases. This review aims to provide a comprehensive update on nuclear mechanisms, their interactions, and their integration in controlling SMC homeostasis and dysfunction. It summarizes and discusses the main nuclear mechanisms preponderant in SMCs in the context of vascular disease, such as atherosclerosis, with an emphasis on studies employing in vivo cell-specific loss-of-function and single-cell omics approaches.
Collapse
Affiliation(s)
- Ibrahim A Ahmed
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mingjun Liu
- Department of Pathology, New York University, New York, New York
| | - Delphine Gomez
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
6
|
Aherrahrou R, Baig F, Theofilatos K, Lue D, Beele A, Örd T, Kaikkonen MU, Aherrahrou Z, Cheng Q, Ghosh S, Karnewar S, Karnewar V, Finn A, Owens GK, Joner M, Mayr M, Civelek M. Secreted Protein Profiling of Human Aortic Smooth Muscle Cells Identifies Vascular Disease Associations. Arterioscler Thromb Vasc Biol 2024; 44:898-914. [PMID: 38328934 PMCID: PMC10978267 DOI: 10.1161/atvbaha.123.320274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Smooth muscle cells (SMCs), which make up the medial layer of arteries, are key cell types involved in cardiovascular disease, the leading cause of mortality and morbidity worldwide. In response to microenvironment alterations, SMCs dedifferentiate from a contractile to a synthetic phenotype characterized by an increased proliferation, migration, production of ECM (extracellular matrix) components, and decreased expression of SMC-specific contractile markers. These phenotypic changes result in vascular remodeling and contribute to the pathogenesis of cardiovascular disease, including coronary artery disease, stroke, hypertension, and aortic aneurysms. Here, we aim to identify the genetic variants that regulate ECM secretion in SMCs and predict the causal proteins associated with vascular disease-related loci identified in genome-wide association studies. METHODS Using human aortic SMCs from 123 multiancestry healthy heart transplant donors, we collected the serum-free media in which the cells were cultured for 24 hours and conducted liquid chromatography-tandem mass spectrometry-based proteomic analysis of the conditioned media. RESULTS We measured the abundance of 270 ECM and related proteins. Next, we performed protein quantitative trait locus mapping and identified 20 loci associated with secreted protein abundance in SMCs. We functionally annotated these loci using a colocalization approach. This approach prioritized the genetic variant rs6739323-A at the 2p22.3 locus, which is associated with lower expression of LTBP1 (latent-transforming growth factor beta-binding protein 1) in SMCs and atherosclerosis-prone areas of the aorta, and increased risk for SMC calcification. We found that LTBP1 expression is abundant in SMCs, and its expression at mRNA and protein levels was reduced in unstable and advanced atherosclerotic plaque lesions. CONCLUSIONS Our results unravel the SMC proteome signature associated with vascular disorders, which may help identify potential therapeutic targets to accelerate the pathway to translation.
Collapse
Affiliation(s)
- Rédouane Aherrahrou
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
- Institute for Cardiogenetics, Universität zu Lübeck; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany; University Heart Centre Lübeck, Germany
| | - Ferheen Baig
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
| | | | - Dillon Lue
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alicia Beele
- CVPath Institute, Inc., 19 Firstfield Road, Gaithersburg, MD
| | - Tiit Örd
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Minna U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, Universität zu Lübeck; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany; University Heart Centre Lübeck, Germany
| | - Qi Cheng
- CVPath Institute, Inc., 19 Firstfield Road, Gaithersburg, MD
| | - Saikat Ghosh
- CVPath Institute, Inc., 19 Firstfield Road, Gaithersburg, MD
| | - Santosh Karnewar
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Vaishnavi Karnewar
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Aloke Finn
- CVPath Institute, Inc., 19 Firstfield Road, Gaithersburg, MD
| | - Gary K. Owens
- Department of Molecular Physiology and Biological Physics, Department of Medicine, Division of Cardiology, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States of America
| | - Michael Joner
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Manuel Mayr
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
7
|
Del Brutto OH, Mera RM, Rundek T, Del Brutto VJ, Khasiyev F, Rumbea DA, Elkind MSV, Gutierrez J. Dietary oily fish intake is inversely associated with moderate-to-severe intracranial artery stenosis in older adults of indigenous Ecuadorian ancestry. Atherosclerosis 2024; 390:117456. [PMID: 38262274 DOI: 10.1016/j.atherosclerosis.2024.117456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND AND AIMS Information on the association between dietary oily fish intake and intracranial atherosclerosis is limited and contradictory. Inconsistencies might be in part related to heterogeneous designs and differences in race/ethnicity of study populations. We aim to assess whether oily fish intake is inversely associated with intracranial artery stenosis (ICAS) in frequent fish consumers of indigenous ancestry living in coastal Ecuador. METHODS The study included 384 participants aged ≥60 years enrolled in the Atahualpa Project Cohort. Dietary oily fish intake was quantified systematically via validated surveys and all participants received a time-of-flight MRA of intracranial vessels. Poisson regression models, adjusted for demographics, level of education, traditional risk factors and severe tooth loss, were fitted to assess the association between amounts of oily fish intake and the number of intracranial arteries with moderate-to-severe (≥50 %) stenosis. RESULTS Participants had a mean age of 67.7 ± 7 years, and 56 % were women. The mean oily fish intake was 8.9 ± 5.2 servings/week; 283 (74 %) participants consumed ≥5.2 servings/week (2nd to 4th quartiles of fish intake). Forty-three (11 %) participants had at least one major intracranial artery with moderate-to-severe stenosis. Both univariate and multivariate models showed a significant inverse association between consumption of oily fish in the 2nd to 4th quartiles and ≥50 % stenosis in at least one artery (β: 0.46; 95 % C.I.: 0.27-077, and β: 0.52; 95 % C.I.: 0.30-0.90, respectively). CONCLUSIONS Consumption of more than five oily fish servings/week is associated with lower prevalence of moderate-to-severe ICAS in indigenous Ecuadorians.
Collapse
Affiliation(s)
- Oscar H Del Brutto
- School of Medicine and Research Center, Universidad Espíritu Santo - Ecuador, Samborondón, Ecuador.
| | - Robertino M Mera
- Biostatistics/Epidemiology, Freenome, Inc., South San Francisco, CA, USA
| | - Tatjana Rundek
- Evelyn McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Victor J Del Brutto
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Fl, USA
| | | | - Denisse A Rumbea
- School of Medicine and Research Center, Universidad Espíritu Santo - Ecuador, Samborondón, Ecuador
| | - Mitchell S V Elkind
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - José Gutierrez
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
8
|
Ni D, Lei C, Liu M, Peng J, Yi G, Mo Z. Cell death in atherosclerosis. Cell Cycle 2024; 23:495-518. [PMID: 38678316 PMCID: PMC11135874 DOI: 10.1080/15384101.2024.2344943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/14/2024] [Indexed: 04/29/2024] Open
Abstract
A complex and evolutionary process that involves the buildup of lipids in the arterial wall and the invasion of inflammatory cells results in atherosclerosis. Cell death is a fundamental biological process that is essential to the growth and dynamic equilibrium of all living things. Serious cell damage can cause a number of metabolic processes to stop, cell structure to be destroyed, or other irreversible changes that result in cell death. It is important to note that studies have shown that the two types of programmed cell death, apoptosis and autophagy, influence the onset and progression of atherosclerosis by controlling these cells. This could serve as a foundation for the creation of fresh atherosclerosis prevention and treatment strategies. Therefore, in this review, we summarized the molecular mechanisms of cell death, including apoptosis, pyroptosis, autophagy, necroptosis, ferroptosis and necrosis, and discussed their effects on endothelial cells, vascular smooth muscle cells and macrophages in the process of atherosclerosis, so as to provide reference for the next step to reveal the mechanism of atherosclerosis.
Collapse
Affiliation(s)
- Dan Ni
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China
| | - Cai Lei
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Minqi Liu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Province Postgraduate Co-training Base for Cooperative Innovation in Basic Medicine (Guilin Medical University and Yueyang Women & Children’s Medical Center), Yueyang, China
| | - Jinfu Peng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Guanghui Yi
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Zhongcheng Mo
- Guangxi Key Laboratory of Diabetic Systems Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Province Postgraduate Co-training Base for Cooperative Innovation in Basic Medicine (Guilin Medical University and Yueyang Women & Children’s Medical Center), Yueyang, China
| |
Collapse
|
9
|
Tian Q, Chen JH, Ding Y, Wang XY, Qiu JY, Cao Q, Zhuang LL, Jin R, Zhou GP. EGR1 transcriptionally regulates SVEP1 to promote proliferation and migration in human coronary artery smooth muscle cells. Mol Biol Rep 2024; 51:365. [PMID: 38409611 DOI: 10.1007/s11033-024-09322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024]
Abstract
A low-frequency variant of sushi, von Willebrand factor type A, EGF, and pentraxin domain-containing protein 1 (SVEP1) is associated with the risk of coronary artery disease, as determined by a genome-wide association study. SVEP1 induces vascular smooth muscle cell proliferation and an inflammatory phenotype to promote atherosclerosis. In the present study, qRT‒PCR demonstrated that the mRNA expression of SVEP1 was significantly increased in atherosclerotic plaques compared to normal tissues. Bioinformatics revealed that EGR1 was a transcription factor for SVEP1. The results of the luciferase reporter assay, siRNA interference or overexpression assay, mutational analysis and ChIP confirmed that EGR1 positively regulated the transcriptional activity of SVEP1 by directly binding to its promoter. EGR1 promoted human coronary artery smooth muscle cell (HCASMC) proliferation and migration via SVEP1 in response to oxidized low-density lipoprotein (ox-LDL) treatment. Moreover, the expression level of EGR1 was increased in atherosclerotic plaques and showed a strong linear correlation with the expression of SVEP1. Our findings indicated that EGR1 binding to the promoter region drive SVEP1 transcription to promote HCASMC proliferation and migration.
Collapse
Affiliation(s)
- Qiang Tian
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jia-He Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Ding
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin-Yu Wang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jia-Yun Qiu
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Cao
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li-Li Zhuang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Jin
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Camps-Vilaró A, Pinsach-Abuin ML, Degano IR, Ramos R, Martí-Lluch R, Elosua R, Subirana I, Solà-Richarte C, Puigmulé M, Pérez A, Vilaró I, Cruz R, Diz-de Almeida S, Nogues X, Masclans JR, Güerri-Fernández R, Marin J, Tizon-Marcos H, Vaquerizo B, Brugada R, Marrugat J. Genetic characteristics involved in COVID-19 severity. The CARGENCORS case-control study and meta-analysis. J Med Virol 2024; 96:e29404. [PMID: 38293834 DOI: 10.1002/jmv.29404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/30/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024]
Abstract
Pre-existing coronary artery disease (CAD), and thrombotic, inflammatory, or virus infectivity response phenomena have been associated with COVID-19 disease severity. However, the association of candidate single nucleotide variants (SNVs) related to mechanisms of COVID-19 complications has been seldom analysed. Our aim was to test and validate the effect of candidate SNVs on COVID-19 severity. CARGENCORS (CARdiovascular GENetic risk score for Risk Stratification of patients positive for SARS-CoV-2 [COVID-19] virus) is an age- and sex-matched case-control study with 818 COVID-19 cases hospitalized with hypoxemia, and 1636 controls with COVID-19 treated at home. The association between severity and SNVs related to CAD (n = 32), inflammation (n = 19), thrombosis (n = 14), virus infectivity (n = 11), and two published to be related to COVID-19 severity was tested with adjusted logistic regression models. Two external independent cohorts were used for meta-analysis (SCOURGE and UK Biobank). After adjustment for potential confounders, 14 new SNVs were associated with COVID-19 severity in the CARGENCORS Study. These SNVs were related to CAD (n = 10), thrombosis (n = 2), and inflammation (n = 2). We also confirmed eight SNVs previously related to severe COVID-19 and virus infectivity. The meta-analysis showed five SNVs associated with severe COVID-19 in adjusted analyses (rs11385942, rs1561198, rs6632704, rs6629110, and rs12329760). We identified 14 novel SNVs and confirmed eight previously related to COVID-19 severity in the CARGENCORS data. In the meta-analysis, five SNVs were significantly associated to COVID-19 severity, one of them previously related to CAD.
Collapse
Affiliation(s)
- Anna Camps-Vilaró
- Registre Gironí del Cor (REGICOR) Study Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Doctoral College, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Mel Lina Pinsach-Abuin
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IdIBGi), Salt, Spain
| | - Irene R Degano
- Registre Gironí del Cor (REGICOR) Study Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS-CC), Vic, Spain
| | - Rafel Ramos
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
- Vascular Health Research Group, Institut Universitari per a la Recerca en Atenció Primària Jordi Gol i Gurina, Girona, Spain
- Girona Biomedical Research Institute, Girona, Spain
- Primary Care Services, Catalan Institute of Health, Girona, Spain
| | - Ruth Martí-Lluch
- Vascular Health Research Group, Institut Universitari per a la Recerca en Atenció Primària Jordi Gol i Gurina, Girona, Spain
- Girona Biomedical Research Institute, Girona, Spain
| | - Roberto Elosua
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Cardiovascular Epidemiology and Genetics Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Isaac Subirana
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Cardiovascular Epidemiology and Genetics Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Clàudia Solà-Richarte
- Registre Gironí del Cor (REGICOR) Study Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Marta Puigmulé
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Alexandra Pérez
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IdIBGi), Salt, Spain
| | | | - Raquel Cruz
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Diz-de Almeida
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Xavier Nogues
- Musculoskeletal Research Unit, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Department of Internal Medicine, Hospital del Mar, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Joan R Masclans
- Critical Illness Research Group (GREPAC), Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Department of Critical Care, Hospital del Mar, Barcelona, Spain
- Medicine and Life Sciences department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Roberto Güerri-Fernández
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital del Mar Research Institute, Barcelona, Spain
| | - Judith Marin
- Critical Illness Research Group (GREPAC), Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Department of Critical Care, Hospital del Mar, Barcelona, Spain
| | - Helena Tizon-Marcos
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research in Heart Diseases Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Department of Cardiology, Hospital del Mar, Barcelona, Spain
| | - Beatriz Vaquerizo
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Biomedical Research in Heart Diseases Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Department of Cardiology, Hospital del Mar, Barcelona, Spain
| | - Ramon Brugada
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IdIBGi), Salt, Spain
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
- Department of Cardiology, Hospital Josep Trueta & University of Girona, Girona, Spain
| | - Jaume Marrugat
- Registre Gironí del Cor (REGICOR) Study Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Ping L, Zhi-Ming L, Bi-Shan Z, Lei Z, Bo Y, Yi-Chun Z, Ming-Jie W. S-propargyl-cysteine promotes the stability of atherosclerotic plaque via maintaining vascular muscle contractile phenotype. Front Cell Dev Biol 2024; 11:1291170. [PMID: 38328305 PMCID: PMC10847265 DOI: 10.3389/fcell.2023.1291170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/22/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction: Plaque rupture in atherosclerosis contributes to various acute cardiovascular events. As a new sulfide-containing donor, S-propargyl-cysteine (SPRC) has been reported to play a beneficial role in cardioprotection, potentially through its anti-inflammatory, anti-oxidative and anti-atherogenic activities. Our previous study observed an increase in eNOS phosphorylation in endothelial cells. However, it remains unclear whether SPRC influences vascular smooth muscle cells (VSMCs) within the plaque and if this effect contributes to plaque stabilization. Methods: An atherosclerotic unstable plaque mouse model was established by subjecting ApoE-/- mice to tandem stenosis of the right carotid artery along with a Western diet. Daily SPRC administration was conducted for 13 weeks. Plaque morphology and stability were assessed using MRI scanning and histopathological staining. In our in vitro studies, we stimulated human artery vascular smooth muscle cells (HAVSMCs) with platelet-derived growth factor-BB (PDGF-BB), both with and without 100 μM SPRC treatment. Cell phenotype was assessed using both Western blot and Real-time PCR. Cell proliferation was assessed using the BrdU cell proliferation kit and immunofluorescence of Ki-67, while cell migration was measured using scratch wound healing and transwell assay. MiR-143-3p overexpression and knockdown experiments were used to investigate whether it mediates the effect of SPRC on VSMC phenotype. Results and Discussion: SPRC treatment reduced plasma lipid levels, increased collagen content and decreased cell apoptosis in atherosclerotic plaques, indicating improved plaque stability. Both in vivo and in vitro studies elucidated the role of SPRC in preserving the contractile phenotype of VSMCs through up-regulation of miR-143-3p expression. Furthermore, SPRC suppressed the pro-proliferation and pro-migration effects of PDGF-BB on HAVSMCs. Overall, these findings suggest that the inhibitory effect of SPRC on phenotype switch from contractile to synthetic VSMCs may contribute to its beneficial role in enhancing plaque stability.
Collapse
Affiliation(s)
- Li Ping
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, The Innovative Research Team of High-level Local Universities in Shanghai, Fudan University, Shanghai, China
| | - Li Zhi-Ming
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, The Innovative Research Team of High-level Local Universities in Shanghai, Fudan University, Shanghai, China
| | - Zhang Bi-Shan
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, The Innovative Research Team of High-level Local Universities in Shanghai, Fudan University, Shanghai, China
| | - Zhu Lei
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Bo
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhu Yi-Chun
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, The Innovative Research Team of High-level Local Universities in Shanghai, Fudan University, Shanghai, China
| | - Wang Ming-Jie
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, The Innovative Research Team of High-level Local Universities in Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Forte E. The leading example of the Leducq Foundation. NATURE CARDIOVASCULAR RESEARCH 2024; 3:4-7. [PMID: 39195899 DOI: 10.1038/s44161-023-00406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
|
13
|
Kotlyarov S. Identification of Important Genes Associated with the Development of Atherosclerosis. Curr Gene Ther 2024; 24:29-45. [PMID: 36999180 DOI: 10.2174/1566523223666230330091241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/06/2022] [Accepted: 01/26/2023] [Indexed: 04/01/2023]
Abstract
Atherosclerosis is one of the most important medical problems due to its prevalence and significant contribution to the structure of temporary and permanent disability and mortality. Atherosclerosis is a complex chain of events occurring in the vascular wall over many years. Disorders of lipid metabolism, inflammation, and impaired hemodynamics are important mechanisms of atherogenesis. A growing body of evidence strengthens the understanding of the role of genetic and epigenetic factors in individual predisposition and development of atherosclerosis and its clinical outcomes. In addition, hemodynamic changes, lipid metabolism abnormalities, and inflammation are closely related and have many overlapping links in regulation. A better study of these mechanisms may improve the quality of diagnosis and management of such patients.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University Named After Academician I.P. Pavlov, Russian Federation
| |
Collapse
|
14
|
Mosquera JV, Auguste G, Wong D, Turner AW, Hodonsky CJ, Alvarez-Yela AC, Song Y, Cheng Q, Lino Cardenas CL, Theofilatos K, Bos M, Kavousi M, Peyser PA, Mayr M, Kovacic JC, Björkegren JLM, Malhotra R, Stukenberg PT, Finn AV, van der Laan SW, Zang C, Sheffield NC, Miller CL. Integrative single-cell meta-analysis reveals disease-relevant vascular cell states and markers in human atherosclerosis. Cell Rep 2023; 42:113380. [PMID: 37950869 DOI: 10.1016/j.celrep.2023.113380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 11/13/2023] Open
Abstract
Coronary artery disease (CAD) is characterized by atherosclerotic plaque formation in the arterial wall. CAD progression involves complex interactions and phenotypic plasticity among vascular and immune cell lineages. Single-cell RNA-seq (scRNA-seq) studies have highlighted lineage-specific transcriptomic signatures, but human cell phenotypes remain controversial. Here, we perform an integrated meta-analysis of 22 scRNA-seq libraries to generate a comprehensive map of human atherosclerosis with 118,578 cells. Besides characterizing granular cell-type diversity and communication, we leverage this atlas to provide insights into smooth muscle cell (SMC) modulation. We integrate genome-wide association study data and uncover a critical role for modulated SMC phenotypes in CAD, myocardial infarction, and coronary calcification. Finally, we identify fibromyocyte/fibrochondrogenic SMC markers (LTBP1 and CRTAC1) as proxies of atherosclerosis progression and validate these through omics and spatial imaging analyses. Altogether, we create a unified atlas of human atherosclerosis informing cell state-specific mechanistic and translational studies of cardiovascular diseases.
Collapse
Affiliation(s)
- Jose Verdezoto Mosquera
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Gaëlle Auguste
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Doris Wong
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Adam W Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Chani J Hodonsky
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Yipei Song
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Computer Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Qi Cheng
- CVPath Institute, Gaithersburg, MD 20878, USA
| | - Christian L Lino Cardenas
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | | | - Maxime Bos
- Department of Epidemiology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Patricia A Peyser
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI 48019, USA
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London WC2R 2LS, UK; National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Rajeev Malhotra
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - P Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Chongzhi Zang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA
| | - Nathan C Sheffield
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA
| | - Clint L Miller
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
15
|
Aherrahrou R, Baig F, Theofilatos K, Lue D, Beele A, Örd T, Kaikkonen MU, Aherrahrou Z, Cheng Q, Ghosh S, Karnewar S, Karnewar V, Finn A, Owens GK, Joner M, Mayr M, Civelek M. Secreted protein profiling of human aortic smooth muscle cells identifies vascular disease associations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.10.23298351. [PMID: 37986932 PMCID: PMC10659471 DOI: 10.1101/2023.11.10.23298351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Smooth muscle cells (SMCs), which make up the medial layer of arteries, are key cell types involved in cardiovascular diseases (CVD), the leading cause of mortality and morbidity worldwide. In response to microenvironment alterations, SMCs dedifferentiate from a "contractile" to a "synthetic" phenotype characterized by an increased proliferation, migration, production of extracellular matrix (ECM) components, and decreased expression of SMC-specific contractile markers. These phenotypic changes result in vascular remodeling and contribute to the pathogenesis of CVD, including coronary artery disease (CAD), stroke, hypertension, and aortic aneurysms. Here, we aim to identify the genetic variants that regulate ECM secretion in SMCs and predict the causal proteins associated with vascular disease-related loci identified in genome-wide association studies (GWAS). Methods Using human aortic SMCs from 123 multi-ancestry healthy heart transplant donors, we collected the serum-free media in which the cells were cultured for 24 hours and conducted Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic analysis of the conditioned media. Results We measured the abundance of 270 ECM and related proteins. Next, we performed protein quantitative trait locus mapping (pQTL) and identified 20 loci associated with secreted protein abundance in SMCs. We functionally annotated these loci using a colocalization approach. This approach prioritized the genetic variant rs6739323-A at the 2p22.3 locus, which is associated with lower expression of LTBP1 in SMCs and atherosclerosis-prone areas of the aorta, and increased risk for SMC calcification. We found that LTBP1 expression is abundant in SMCs, and its expression at mRNA and protein levels was reduced in unstable and advanced atherosclerotic plaque lesions. Conclusions Our results unravel the SMC proteome signature associated with vascular disorders, which may help identify potential therapeutic targets to accelerate the pathway to translation.
Collapse
Affiliation(s)
- Rédouane Aherrahrou
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
- Institute for Cardiogenetics, Universität zu Lübeck; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany; University Heart Centre Lübeck, Germany
| | - Ferheen Baig
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
| | | | - Dillon Lue
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alicia Beele
- CVPath Institute, Inc., 19 Firstfield Road, Gaithersburg, MD
| | - Tiit Örd
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Minna U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, Universität zu Lübeck; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany; University Heart Centre Lübeck, Germany
| | - Qi Cheng
- CVPath Institute, Inc., 19 Firstfield Road, Gaithersburg, MD
| | - Saikat Ghosh
- CVPath Institute, Inc., 19 Firstfield Road, Gaithersburg, MD
| | - Santosh Karnewar
- Department of Molecular Physiology and Biological Physics, Department of Medicine, Division of Cardiology, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States of America
| | - Vaishnavi Karnewar
- Department of Molecular Physiology and Biological Physics, Department of Medicine, Division of Cardiology, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States of America
| | - Aloke Finn
- CVPath Institute, Inc., 19 Firstfield Road, Gaithersburg, MD
| | - Gary K. Owens
- Department of Molecular Physiology and Biological Physics, Department of Medicine, Division of Cardiology, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States of America
| | - Michael Joner
- Klinik für Herz-und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Manuel Mayr
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
16
|
Sakai K, Mizukami T, Leipsic J, Belmonte M, Sonck J, Nørgaard BL, Otake H, Ko B, Koo BK, Maeng M, Jensen JM, Buytaert D, Munhoz D, Andreini D, Ohashi H, Shinke T, Taylor CA, Barbato E, Johnson NP, De Bruyne B, Collet C. Coronary Atherosclerosis Phenotypes in Focal and Diffuse Disease. JACC Cardiovasc Imaging 2023; 16:1452-1464. [PMID: 37480908 DOI: 10.1016/j.jcmg.2023.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND The interplay between coronary hemodynamics and plaque characteristics remains poorly understood. OBJECTIVES The aim of this study was to compare atherosclerotic plaque phenotypes between focal and diffuse coronary artery disease (CAD) defined by coronary hemodynamics. METHODS This multicenter, prospective, single-arm study was conducted in 5 countries. Patients with functionally significant lesions based on an invasive fractional flow reserve ≤0.80 were included. Plaque analysis was performed by using coronary computed tomography angiography and optical coherence tomography. CAD patterns were assessed using motorized fractional flow reserve pullbacks and quantified by pullback pressure gradient (PPG). Focal and diffuse CAD was defined according to the median PPG value. RESULTS A total of 117 patients (120 vessels) were included. The median PPG was 0.66 (IQR: 0.54-0.75). According to coronary computed tomography angiography analysis, plaque burden was higher in patients with focal CAD (87% ± 8% focal vs 82% ± 10% diffuse; P = 0.003). Calcifications were significantly more prevalent in patients with diffuse CAD (Agatston score per vessel: 51 [IQR: 11-204] focal vs 158 [IQR: 52-341] diffuse; P = 0.024). According to optical coherence tomography analysis, patients with focal CAD had a significantly higher prevalence of circumferential lipid-rich plaque (37% focal vs 4% diffuse; P = 0.001) and thin-cap fibroatheroma (TCFA) (47% focal vs 10% diffuse; P = 0.002). Focal disease defined by PPG predicted the presence of TCFA with an area under the curve of 0.73 (95% CI: 0.58-0.87). CONCLUSIONS Atherosclerotic plaque phenotypes associate with intracoronary hemodynamics. Focal CAD had a higher plaque burden and was predominantly lipid-rich with a high prevalence of TCFA, whereas calcifications were more prevalent in diffuse CAD. (Precise Percutaneous Coronary Intervention Plan [P3]; NCT03782688).
Collapse
Affiliation(s)
- Koshiro Sakai
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | - Takuya Mizukami
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Division of Clinical Pharmacology, Department of Pharmacology, Showa University, Tokyo, Japan; Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Jonathon Leipsic
- Department of Medicine and Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marta Belmonte
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Department of Cardiology, University of Milan, Milan, Italy; Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Jeroen Sonck
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Bjarne L Nørgaard
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Hiromasa Otake
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Brian Ko
- Monash Cardiovascular Research Centre, Monash University and Monash Heart, Monash Health, Clayton, Victoria, Australia
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, South Korea
| | - Michael Maeng
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Daniel Munhoz
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy; Department of Internal Medicine, Discipline of Cardiology, University of Campinas (Unicamp), Campinas, Brazil
| | - Daniele Andreini
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Hirofumi Ohashi
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Department of Cardiology, Aichi Medical University, Aichi, Japan
| | - Toshiro Shinke
- Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | | | - Emanuele Barbato
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Nils P Johnson
- Division of Cardiology, Department of Medicine, Weatherhead PET Center, McGovern Medical School, UTHealth and Memorial Hermann Hospital, Houston, Texas, USA
| | - Bernard De Bruyne
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Department of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Carlos Collet
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium.
| |
Collapse
|
17
|
Mak MCE, Gurung R, Foo RSY. Applications of Genome Editing Technologies in CAD Research and Therapy with a Focus on Atherosclerosis. Int J Mol Sci 2023; 24:14057. [PMID: 37762360 PMCID: PMC10531628 DOI: 10.3390/ijms241814057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiovascular diseases, particularly coronary artery disease (CAD), remain the leading cause of death worldwide in recent years, with myocardial infarction (MI) being the most common form of CAD. Atherosclerosis has been highlighted as one of the drivers of CAD, and much research has been carried out to understand and treat this disease. However, there remains much to be better understood and developed in treating this disease. Genome editing technologies have been widely used to establish models of disease as well as to treat various genetic disorders at their root. In this review, we aim to highlight the various ways genome editing technologies can be applied to establish models of atherosclerosis, as well as their therapeutic roles in both atherosclerosis and the clinical implications of CAD.
Collapse
Affiliation(s)
| | - Rijan Gurung
- Cardiovascular Research Institute, Cardiovascular and Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, MD6, #08-01, Singapore 117599, Singapore; (M.C.E.M.); (R.S.Y.F.)
| | | |
Collapse
|
18
|
Quaye LNK, Dalzell CE, Deloukas P, Smith AJP. The Genetics of Coronary Artery Disease: A Vascular Perspective. Cells 2023; 12:2232. [PMID: 37759455 PMCID: PMC10527262 DOI: 10.3390/cells12182232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified a large number of genetic loci for coronary artery disease (CAD), with many located close to genes associated with traditional CAD risk pathways, such as lipid metabolism and inflammation. It is becoming evident with recent CAD GWAS meta-analyses that vascular pathways are also highly enriched and present an opportunity for novel therapeutics. This review examines GWAS-enriched vascular gene loci, the pathways involved and their potential role in CAD pathogenesis. The functionality of variants is explored from expression quantitative trait loci, massively parallel reporter assays and CRISPR-based gene-editing tools. We discuss how this research may lead to novel therapeutic tools to treat cardiovascular disorders.
Collapse
Affiliation(s)
| | | | - Panos Deloukas
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (L.N.K.Q.); (C.E.D.); (A.J.P.S.)
| | | |
Collapse
|
19
|
Liu F, Wang Y, Huang X, Liu D, Ding W, Lai H, Wang C, Ji Q. LINC02015 modulates the cell proliferation and apoptosis of aortic vascular smooth muscle cells by transcriptional regulation and protein interaction network. Cell Death Discov 2023; 9:301. [PMID: 37596272 PMCID: PMC10439127 DOI: 10.1038/s41420-023-01601-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
Long intergenic nonprotein coding RNA 2015 (LINC02015) is a long non-coding RNA that has been found elevated in various cell proliferation-related diseases. However, the functions and interactive mechanism of LINC02015 remain unknown. This study aimed to explore the role of LINC02015 in the cell proliferation and apoptosis of vascular smooth muscle cells (VSMCs) to explain the pathogenesis of aortic diseases. Ascending aorta samples and angiotensin-II (AT-II) treated primary human aortic VSMCs (HAVSMCs) were used to evaluate the LINC02015 expression. RNA sequencing, chromatin isolation by RNA purification sequencing, RNA pull-down, and mass spectrometry (MS) were applied to explore the potential interacting mechanisms. LINC02015 expression was found elevated in aortic dissection and AT-II-treated HAVSMCs. Cell proliferation and cell cycle were activated in HAVSMCs with LINC02015 knockdown. The cyclins family and caspase family were found to participate in regulating the cell cycle and apoptosis via the NF-κB signaling pathway. RXRA was discovered as a possible hub gene for LINC02015 transcriptional regulating networks. Besides, the protein interaction network of LINC02015 was revealed with candidate regulating molecules. It was concluded that the knockdown of LINC02015 could promote cell proliferation and inhibit the apoptosis of HAVSMCs through an RXRA-related transcriptional regulation network, which could provide a potential therapeutic target for aortic diseases.
Collapse
Affiliation(s)
- Fangyu Liu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Municipal Institute for Cardiovascular Diseases, Shanghai, 200032, China
| | - Yulin Wang
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xitong Huang
- Department of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Dingqian Liu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenjun Ding
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hao Lai
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chunsheng Wang
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Municipal Institute for Cardiovascular Diseases, Shanghai, 200032, China.
| | - Qiang Ji
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
20
|
You J, Ouyang S, Xie Z, Zhi C, Yu J, Tan X, Li P, Lin X, Ma W, Liu Z, Hou Q, Xie N, Peng T, Chen X, Li L, Xie W. The suppression of hyperlipid diet-induced ferroptosis of vascular smooth muscle cells protests against atherosclerosis independent of p53/SCL7A11/GPX4 axis. J Cell Physiol 2023; 238:1891-1908. [PMID: 37269460 DOI: 10.1002/jcp.31045] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 04/16/2023] [Accepted: 05/11/2023] [Indexed: 06/05/2023]
Abstract
Ferroptosis as a novel programmed cell death that involves metabolic dysfunction due to iron-dependent excessive lipid peroxidation has been implicated in atherosclerosis (AS) development characterized by disrupted lipid metabolism, but the atherogenic role of ferroptosis in vascular smooth muscle cells (VSMCs), which are principal components of atherosclerotic plaque fibrous cap, remains unclear. The aim of this study was to determine the effects of ferroptosis on AS induced by lipid overload, and the effects of that on VSMCs ferroptosis. We found intraperitoneal injection of Fer-1, a ferroptosis inhibitor, ameliorated obviously high-fat diet-induced high plasma levels of triglycerides, total cholesterol, low-density lipoprotein, glucose and atherosclerotic lesions in ApoE-/- mice. Moreover, in vivo and in vitro, Fer-1 reduced the iron accumulation of atherosclerotic lesions through affecting the expression of TFR1, FTH, and FTL in VSMCs. Interestingly, Fer-1 did augment nuclear factor E2-related factor 2/ferroptosis suppressor protein 1 to enhance endogenous resistance to lipid peroxidation, but not classic p53/SCL7A11/GPX4. Those observations indicated inhibition of VSMCs ferroptosis can improve AS lesions independent of p53/SLC7A11/GPX4, which preliminarily revealed the potential mechanism of ferroptosis in aortic VSMCs on AS and provided new therapeutic strategies and targets for AS.
Collapse
Affiliation(s)
- Jia You
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Siyu Ouyang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhongcheng Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chenxi Zhi
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiang Yu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaoqian Tan
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Pin Li
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaoyan Lin
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wentao Ma
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhiyang Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qin Hou
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Nan Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tianhong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liang Li
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
21
|
Perry RN, Albarracin D, Aherrahrou R, Civelek M. Network Preservation Analysis Reveals Dysregulated Metabolic Pathways in Human Vascular Smooth Muscle Cell Phenotypic Switching. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:372-381. [PMID: 37387208 PMCID: PMC10434832 DOI: 10.1161/circgen.122.003781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/06/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Vascular smooth muscle cells are key players involved in atherosclerosis, the underlying cause of coronary artery disease. They can play either beneficial or detrimental roles in lesion pathogenesis, depending on the nature of their phenotypic changes. An in-depth characterization of their gene regulatory networks can help better understand how their dysfunction may impact disease progression. METHODS We conducted a gene expression network preservation analysis in aortic smooth muscle cells isolated from 151 multiethnic heart transplant donors cultured under quiescent or proliferative conditions. RESULTS We identified 86 groups of coexpressed genes (modules) across the 2 conditions and focused on the 18 modules that are least preserved between the phenotypic conditions. Three of these modules were significantly enriched for genes belonging to proliferation, migration, cell adhesion, and cell differentiation pathways, characteristic of phenotypically modulated proliferative vascular smooth muscle cells. The majority of the modules, however, were enriched for metabolic pathways consisting of both nitrogen-related and glycolysis-related processes. Therefore, we explored correlations between nitrogen metabolism-related genes and coronary artery disease-associated genes and found significant correlations, suggesting the involvement of the nitrogen metabolism pathway in coronary artery disease pathogenesis. We also created gene regulatory networks enriched for genes in glycolysis and predicted key regulatory genes driving glycolysis dysregulation. CONCLUSIONS Our work suggests that dysregulation of vascular smooth muscle cell metabolism participates in phenotypic transitioning, which may contribute to disease progression, and suggests that AMT (aminomethyltransferase) and MPI (mannose phosphate isomerase) may play an important role in regulating nitrogen and glycolysis-related metabolism in smooth muscle cells.
Collapse
Affiliation(s)
- R. Noah Perry
- Center for Public Health Genomics (R.N.P., R.A., M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (R.N.P., D.A., M.C.), University of Virginia, Charlottesville
| | - Diana Albarracin
- Department of Biomedical Engineering (R.N.P., D.A., M.C.), University of Virginia, Charlottesville
| | - Redouane Aherrahrou
- Center for Public Health Genomics (R.N.P., R.A., M.C.), University of Virginia, Charlottesville
| | - Mete Civelek
- Center for Public Health Genomics (R.N.P., R.A., M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (R.N.P., D.A., M.C.), University of Virginia, Charlottesville
| |
Collapse
|
22
|
Man J, Zhou W, Zuo S, Zhao X, Wang Q, Ma H, Li HY. TANGO1 interacts with NRTN to promote hepatocellular carcinoma progression by regulating the PI3K/AKT/mTOR signaling pathway. Biochem Pharmacol 2023; 213:115615. [PMID: 37211171 DOI: 10.1016/j.bcp.2023.115615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Transport and Golgi organization 1 (TANGO1) also known as MIA3, belongs to the melanoma inhibitory activity gene (MIA) family together with MIA, MIA2 and OTOR; these members play different roles in different tumors, but the mechanism underlying TANGO1s effect on hepatocellular carcinoma (HCC) is unclear. Our study confirmed that TANGO1 is a promoter of HCC, In HCC cells, TANGO1 can promote proliferation, inhibit apoptosis, promote EMT. These changes were reversed after TANGO1 inhibition. We explored the molecular mechanism of TANGO1 and HCC and found that the promoting effect of TANGO1 on HCC related to neurturin (NRTN) and the PI3K/AKT/mTOR signaling pathway based on RNA-seq results. NRTN is not only related to neuronal growth, differentiation and maintenance but is also involved in a variety of tumorigenic processes, and PI3K/AKT/mTOR signaling pathway has been shown to be involved in HCC progression. We verified that TANGO1 interacts with NRTN in HCC cells using endogenous Co-IP and confocal localization, and both promote HCC progression by activating the PI3K/AKT/mTOR signaling pathway. Our results reveal the mechanism by which TANGO1 promotes HCC progression, suggesting that the TANGO1/NRTN axis may be a potential therapeutic target for HCC worthy of further investigation.
Collapse
Affiliation(s)
- Jing Man
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, Peoples Republic of China; Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, Peoples Republic of China
| | - Wanbiao Zhou
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, Peoples Republic of China; Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, Peoples Republic of China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, Peoples Republic of China; Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, Peoples Republic of China
| | - Xueke Zhao
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, Peoples Republic of China; Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, Peoples Republic of China.
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, Peoples Republic of China; Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, Peoples Republic of China
| | - Huaxing Ma
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, Peoples Republic of China; Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, Peoples Republic of China
| | - Hai-Yang Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, Peoples Republic of China; Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, Peoples Republic of China.
| |
Collapse
|
23
|
Zhang Y, Weng J, Huan L, Sheng S, Xu F. Mitophagy in atherosclerosis: from mechanism to therapy. Front Immunol 2023; 14:1165507. [PMID: 37261351 PMCID: PMC10228545 DOI: 10.3389/fimmu.2023.1165507] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 06/02/2023] Open
Abstract
Mitophagy is a type of autophagy that can selectively eliminate damaged and depolarized mitochondria to maintain mitochondrial activity and cellular homeostasis. Several pathways have been found to participate in different steps of mitophagy. Mitophagy plays a significant role in the homeostasis and physiological function of vascular endothelial cells, vascular smooth muscle cells, and macrophages, and is involved in the development of atherosclerosis (AS). At present, many medications and natural chemicals have been shown to alter mitophagy and slow the progression of AS. This review serves as an introduction to the field of mitophagy for researchers interested in targeting this pathway as part of a potential AS management strategy.
Collapse
Affiliation(s)
- Yanhong Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiajun Weng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University, Beijing, China
- Department of Integrated Traditional and Western Medicine, Peking University Health Science Center, Beijing, China
| | - Luyao Huan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Song Sheng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengqin Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University, Beijing, China
- Department of Integrated Traditional and Western Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
24
|
Severino P, D'Amato A, Mancone M, Palazzuoli A, Mariani MV, Prosperi S, Myftari V, Lavalle C, Forleo GB, Birtolo LI, Caputo V, Miraldi F, Chimenti C, Badagliacca R, Maestrini V, Palmirotta R, Vizza CD, Fedele F. Protection against Ischemic Heart Disease: A Joint Role for eNOS and the K ATP Channel. Int J Mol Sci 2023; 24:ijms24097927. [PMID: 37175633 PMCID: PMC10177922 DOI: 10.3390/ijms24097927] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Genetic susceptibility may influence ischemic heart disease (IHD) predisposition and affect coronary blood flow (CBF) regulation mechanisms. The aim of this study was to investigate the association among single nucleotide polymorphisms (SNPs) of genes encoding for proteins involved in CBF regulation and IHD. A total of 468 consecutive patients were enrolled and divided into three groups according to coronary angiography and intracoronary functional tests results: G1, patients with coronary artery disease (CAD); G2, patients with coronary microvascular dysfunction (CMD); and G3, patients with angiographic and functionally normal coronary arteries. A genetic analysis of the SNPs rs5215 of the potassium inwardly rectifying channel subfamily J member 11 (KCNJ11) gene and rs1799983 of the nitric oxide synthase 3 (NOS3) gene, respectively encoding for the Kir6.2 subunit of ATP sensitive potassium (KATP) channels and nitric oxide synthase (eNOS), was performed on peripheral whole blood samples. A significant association of rs5215_G/G of KCNJ11 and rs1799983_T/T of NOS3 genes was detected in healthy controls compared with CAD and CMD patients. Based on univariable and multivariable analyses, the co-presence of rs5215_G/G of KCNJ11 and rs1799983_T/T of NOS3 may represent an independent protective factor against IHD, regardless of cardiovascular risk factors. This study supports the hypothesis that SNP association may influence the crosstalk between eNOS and the KATP channel that provides a potential protective effect against IHD.
Collapse
Affiliation(s)
- Paolo Severino
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Andrea D'Amato
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Massimo Mancone
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Alberto Palazzuoli
- Cardiovascular Diseases Unit, Cardio Thoracic and Vascular Department, Le Scotte Hospital, University of Siena, 53100 Siena, Italy
| | - Marco Valerio Mariani
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Silvia Prosperi
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Vincenzo Myftari
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Carlo Lavalle
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | | | - Lucia Ilaria Birtolo
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Fabio Miraldi
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Cristina Chimenti
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Roberto Badagliacca
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Viviana Maestrini
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, University of Bari 'Aldo Moro', 70121 Bari, Italy
| | - Carmine Dario Vizza
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Francesco Fedele
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
25
|
Huyan Y, Wang C, Kang H, Chen X, Chang Y, Liu S, Song J. Single-Cell Transcriptome Sequencing Reveals Molecular Mechanisms of Renal Injury in Essential Hypertension. Kidney Blood Press Res 2023; 48:297-313. [PMID: 37062270 PMCID: PMC10308540 DOI: 10.1159/000530624] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
INTRODUCTION Hypertensive nephropathy is characterized by glomerular and tubulointerstitial damage, but we know little about changes in cell-specific gene expression in the early stages of hypertensive kidney injury, which usually has no obvious pathological changes. METHODS We performed unbiased single-cell RNA sequencing of rat kidney samples from hypertensive kidney injury to generate 10,602 single-cell transcriptomes from 2 control and 2 early stage hypertensive kidney injury samples. RESULTS All major cell types of the kidney were represented in the final dataset. Side-by-side comparisons showed that cell type-specific changes in gene expression are critical for functional impairment of glomeruli and tubules and activation of immune cells. In particular, we found a significantly reduced gene expression profile of maintaining vascular integrity in glomerular cells of hypertensive kidney injury. Meanwhile, the expression of genes associated with oxidative stress injury and fibrosis in the renal tubules and collecting ducts was elevated, but the degree of tubular cells response to injury differed between parts. We also found a signature of immune cell infiltration in hypertensive kidney injury. CONCLUSION Exploring the changes of gene expression in hypertension-injured kidneys may be helpful to identify the early biomarkers and signal pathways of this disease. Our data provide rich resources for understanding the pathogenesis of hypertensive renal injury and formulating effective treatment strategies.
Collapse
Affiliation(s)
- Yige Huyan
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunyue Wang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongen Kang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Chang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sheng Liu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
Aherrahrou R, Lue D, Perry RN, Aberra YT, Khan MD, Soh JY, Örd T, Singha P, Yang Q, Gilani H, Benavente ED, Wong D, Hinkle J, Ma L, Sheynkman GM, den Ruijter HM, Miller CL, Björkegren JLM, Kaikkonen MU, Civelek M. Genetic Regulation of SMC Gene Expression and Splicing Predict Causal CAD Genes. Circ Res 2023; 132:323-338. [PMID: 36597873 PMCID: PMC9898186 DOI: 10.1161/circresaha.122.321586] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Coronary artery disease (CAD) is the leading cause of death worldwide. Recent meta-analyses of genome-wide association studies have identified over 175 loci associated with CAD. The majority of these loci are in noncoding regions and are predicted to regulate gene expression. Given that vascular smooth muscle cells (SMCs) play critical roles in the development and progression of CAD, we aimed to identify the subset of the CAD loci associated with the regulation of transcription in distinct SMC phenotypes. METHODS We measured gene expression in SMCs isolated from the ascending aortas of 151 heart transplant donors of various genetic ancestries in quiescent or proliferative conditions and calculated the association of their expression and splicing with ~6.3 million imputed single-nucleotide polymorphism markers across the genome. RESULTS We identified 4910 expression and 4412 splicing quantitative trait loci (sQTLs) representing regions of the genome associated with transcript abundance and splicing. A total of 3660 expression quantitative trait loci (eQTLs) had not been observed in the publicly available Genotype-Tissue Expression dataset. Further, 29 and 880 eQTLs were SMC-specific and sex-biased, respectively. We made these results available for public query on a user-friendly website. To identify the effector transcript(s) regulated by CAD loci, we used 4 distinct colocalization approaches. We identified 84 eQTL and 164 sQTL that colocalized with CAD loci, highlighting the importance of genetic regulation of mRNA splicing as a molecular mechanism for CAD genetic risk. Notably, 20% and 35% of the eQTLs were unique to quiescent or proliferative SMCs, respectively. One CAD locus colocalized with a sex-specific eQTL (TERF2IP), and another locus colocalized with SMC-specific eQTL (ALKBH8). The most significantly associated CAD locus, 9p21, was an sQTL for the long noncoding RNA CDKN2B-AS1, also known as ANRIL, in proliferative SMCs. CONCLUSIONS Collectively, our results provide evidence for the molecular mechanisms of genetic susceptibility to CAD in distinct SMC phenotypes.
Collapse
Affiliation(s)
- Rédouane Aherrahrou
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Dillon Lue
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - R Noah Perry
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Yonathan Tamrat Aberra
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Mohammad Daud Khan
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Joon Yuhl Soh
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Tiit Örd
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Prosanta Singha
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Qianyi Yang
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Huda Gilani
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Doris Wong
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jameson Hinkle
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States of America
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Gloria M Sheynkman
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- Cancer Center, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Clint L Miller
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Johan LM Björkegren
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States of America
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States of America
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Minna U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
27
|
Sheikh Beig Goharrizi MA, Ghodsi S, Memarjafari MR. Implications of CRISPR-Cas9 Genome Editing Methods in Atherosclerotic Cardiovascular Diseases. Curr Probl Cardiol 2023; 48:101603. [PMID: 36682390 DOI: 10.1016/j.cpcardiol.2023.101603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Today, new methods have been developed to treat or modify the natural course of cardiovascular diseases (CVDs), including atherosclerosis, by the clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9) system. Genome-editing tools are CRISPR-related palindromic short iteration systems such as CRISPR-Cas9, a valuable technology for achieving somatic and germinal genomic manipulation in model cells and organisms for various applications, including the creation of deletion alleles. Mutations in genomic deoxyribonucleic acid and new genes' placement have emerged. Based on World Health Organization fact sheets, 17.9 million people die from CVDs each year, an estimated 32% of all deaths worldwide. 85% of all CVD deaths are due to acute coronary events and strokes. This review discusses the applications of CRISPR-Cas9 technology throughout atherosclerotic disease research and the prospects for future in vivo genome editing therapies. We also describe several limitations that must be considered to achieve the full scientific and therapeutic potential of cardiovascular genome editing in the treatment of atherosclerosis.
Collapse
Affiliation(s)
| | - Saeed Ghodsi
- Department of Cardiology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
28
|
Aherrahrou R, Lue D, Civelek M. Genetic regulation of circular RNA expression in human aortic smooth muscle cells and vascular traits. HGG ADVANCES 2023; 4:100164. [PMID: 36578771 PMCID: PMC9791433 DOI: 10.1016/j.xhgg.2022.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs that have cell-type-specific expression and are relevant in cardiovascular disease. Aortic smooth muscle cells (SMCs) play a crucial role in cardiovascular disease. In this study, we employed a systems genetics approach to identify SMC circRNA transcripts and their relevance in cardiovascular traits across the genome. We quantified circRNA expression across 151 quiescent and proliferative human aortic SMCs from donors of various genetic ancestries. We identified 1,589 expressed circRNAs. Between quiescent and proliferative SMCs, we identified 173 differentially expressed circRNAs. To characterize the genetic regulation of circRNA expression, we associated the genotypes of 6.3 million single nucleotide polymorphisms (SNPs) with circRNA abundance and found 96 circRNAs that were associated with genetic loci. Three SNPs were associated with circRNA expression in proliferative SMCs but not quiescent SMCs. We identified six SNPs that had distinct association directions with circRNA isoforms from the same gene. Lastly, to identify the relevance of circRNAs in cardiovascular disease, we overlapped genetic loci associated with circRNA expression with vascular disease-related genome-wide association studies loci. We identified 14 blood pressure, one myocardial infarction, and three coronary artery disease loci, which were associated with a circRNA transcript but not an mRNA transcript. Overall, our results provide insight into the genetic basis of vascular disease traits mediated by circRNA expression.
Collapse
Affiliation(s)
- Redouane Aherrahrou
- Center for Public Health Genomics, University of Virginia, Old Med School 3836, PO Box 800717, Charlottesville, VA 22908-0717, USA
| | - Dillon Lue
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, Old Med School 3836, PO Box 800717, Charlottesville, VA 22908-0717, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
29
|
Jiao L, Liu Y, Yu XY, Pan X, Zhang Y, Tu J, Song YH, Li Y. Ribosome biogenesis in disease: new players and therapeutic targets. Signal Transduct Target Ther 2023; 8:15. [PMID: 36617563 PMCID: PMC9826790 DOI: 10.1038/s41392-022-01285-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 01/10/2023] Open
Abstract
The ribosome is a multi-unit complex that translates mRNA into protein. Ribosome biogenesis is the process that generates ribosomes and plays an essential role in cell proliferation, differentiation, apoptosis, development, and transformation. The mTORC1, Myc, and noncoding RNA signaling pathways are the primary mediators that work jointly with RNA polymerases and ribosome proteins to control ribosome biogenesis and protein synthesis. Activation of mTORC1 is required for normal fetal growth and development and tissue regeneration after birth. Myc is implicated in cancer development by enhancing RNA Pol II activity, leading to uncontrolled cancer cell growth. The deregulation of noncoding RNAs such as microRNAs, long noncoding RNAs, and circular RNAs is involved in developing blood, neurodegenerative diseases, and atherosclerosis. We review the similarities and differences between eukaryotic and bacterial ribosomes and the molecular mechanism of ribosome-targeting antibiotics and bacterial resistance. We also review the most recent findings of ribosome dysfunction in COVID-19 and other conditions and discuss the consequences of ribosome frameshifting, ribosome-stalling, and ribosome-collision. We summarize the role of ribosome biogenesis in the development of various diseases. Furthermore, we review the current clinical trials, prospective vaccines for COVID-19, and therapies targeting ribosome biogenesis in cancer, cardiovascular disease, aging, and neurodegenerative disease.
Collapse
Affiliation(s)
- Lijuan Jiao
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Yuzhe Liu
- grid.452829.00000000417660726Department of Orthopedics, the Second Hospital of Jilin University, Changchun, Jilin 130000 P. R. China
| | - Xi-Yong Yu
- grid.410737.60000 0000 8653 1072Key Laboratory of Molecular Target & Clinical Pharmacology and the NMPA State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 511436 P. R. China
| | - Xiangbin Pan
- grid.506261.60000 0001 0706 7839Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China ,Key Laboratory of Cardiovascular Appratus Innovation, Beijing, 100037 P. R. China
| | - Yu Zhang
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Junchu Tu
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, P. R. China. .,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China.
| | - Yangxin Li
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
30
|
Qin HL, Bao JH, Tang JJ, Xu DY, Shen L. Arterial remodeling: the role of mitochondrial metabolism in vascular smooth muscle cells. Am J Physiol Cell Physiol 2023; 324:C183-C192. [PMID: 36468843 DOI: 10.1152/ajpcell.00074.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arterial remodeling is a common pathological basis of cardiovascular diseases such as atherosclerosis, vascular restenosis, hypertension, pulmonary hypertension, aortic dissection, and aneurysm. Vascular smooth muscle cells (VSMCs) are not only the main cellular components in the middle layer of the arterial wall but also the main cells involved in arterial remodeling. Dedifferentiated VSMCs lose their contractile properties and are converted to a synthetic, secretory, proliferative, and migratory phenotype, playing key roles in the pathogenesis of arterial remodeling. As mitochondria are the main site of biological oxidation and energy transformation in eukaryotic cells, mitochondrial numbers and function are very important in maintaining the metabolic processes in VSMCs. Mitochondrial dysfunction and oxidative stress are novel triggers of the phenotypic transformation of VSMCs, leading to the onset and development of arterial remodeling. Therefore, pharmacological measures that alleviate mitochondrial dysfunction reverse arterial remodeling by ameliorating VSMCs metabolic dysfunction and phenotypic transformation, providing new options for the treatment of cardiovascular diseases related to arterial remodeling. This review summarizes the relationship between mitochondrial dysfunction and cardiovascular diseases associated with arterial remodeling and then discusses the potential mechanism by which mitochondrial dysfunction participates in pathological arterial remodeling. Furthermore, maintaining or improving mitochondrial function may be a new intervention strategy to prevent the progression of arterial remodeling.
Collapse
Affiliation(s)
- Hua-Li Qin
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jing-Hui Bao
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jian-Jun Tang
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Dan-Yan Xu
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Shen
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
31
|
Wang W, Cao C, Zhang B, Wang F, Deng D, Cao J, Li H, Yu M. Integrating Transcriptomic and ChIP-Seq Reveals Important Regulatory Regions Modulating Gene Expression in Myometrium during Implantation in Pigs. Biomolecules 2022; 13:biom13010045. [PMID: 36671430 PMCID: PMC9856092 DOI: 10.3390/biom13010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The myometrium is the outer layer of the uterus. Its contraction and steroidogenic activities are required for embryo implantation. However, the molecular mechanisms underlying its functions remain unknown in pigs. The myometrium includes the inner circular muscle (CM) and the outer longitudinal muscle (LM) layers. In this study, we collected the CM and LM samples from the mesometrial side (named M) of the uterus on days 12 (pre-implantation stage) and 15 (implantation stage) of pregnancy and day 15 of the estrous cycle. The transcriptomic results revealed distinct differences between the uterine CM and LM layers in early pregnancy: the genes expressed in the LM layer were mainly related to contraction pathways, whereas the transcriptional signatures in the CM layer on day 15 of pregnancy were primarily involved in the immune response processes. Subsequent comparisons in the CM layer between pregnant and cyclic gilts show that the transcriptional signatures of the CM layer are implantation-dependent. Next, we investigated the genome-wide profiling of histone H3 lysine 27 acetylation (H3K27ac) and histone H3 lysine 4 trimethylation (H3K4me3) in pig uterine CM and LM layers. The genomic regions that had transcriptional activity and were associated with the expression of genes in the two layers were characterized. Taken together, the regulatory regions identified in the study may contribute to modulating the gene expression in pig uterine CM and LM layers during implantation.
Collapse
Affiliation(s)
- Weiwei Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Caiqin Cao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Botao Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China
| | - Feiyu Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dadong Deng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhua Cao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China
| | - Mei Yu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
32
|
Liu Z, Wang L, Xing Q, Liu X, Hu Y, Li W, Yan Q, Liu R, Huang N. Identification of GLS as a cuproptosis-related diagnosis gene in acute myocardial infarction. Front Cardiovasc Med 2022; 9:1016081. [PMID: 36440046 PMCID: PMC9691691 DOI: 10.3389/fcvm.2022.1016081] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
Acute myocardial infarction (AMI) has the characteristics of sudden onset, rapid progression, poor prognosis, and so on. Therefore, it is urgent to identify diagnostic and prognostic biomarkers for it. Cuproptosis is a new form of mitochondrial respiratory-dependent cell death. However, studies are limited on the clinical significance of cuproptosis-related genes (CRGs) in AMI. In this study, we systematically assessed the genetic alterations of CRGs in AMI by bioinformatics approach. The results showed that six CRGs (LIAS, LIPT1, DLAT, PDHB, MTF1, and GLS) were markedly differentially expressed between stable coronary heart disease (stable_CAD) and AMI. Correlation analysis indicated that CRGs were closely correlated with N6-methyladenosine (m6A)-related genes through R language “corrplot” package, especially GLS was positively correlated with FMR1 and MTF1 was negatively correlated with HNRNPA2B1. Immune landscape analysis results revealed that CRGs were closely related to various immune cells, especially GLS was positively correlated with T cells CD4 memory resting and negatively correlated with monocytes. Kaplan–Meier analysis demonstrated that the group with high DLAT expression had a better prognosis. The area under curve (AUC) certified that GLS had good diagnostic value, in the training set (AUC = 0.87) and verification set (ACU = 0.99). Gene set enrichment analysis (GSEA) suggested that GLS was associated with immune- and hypoxia-related pathways. In addition, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, competing endogenous RNA (ceRNA) analysis, transcription factor (TF), and compound prediction were performed to reveal the regulatory mechanism of CRGs in AMI. Overall, our study can provide additional information for understanding the role of CRGs in AMI, which may provide new insights into the identification of therapeutic targets for AMI.
Collapse
Affiliation(s)
- Zheng Liu
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
- Zhou Honghao Research Institute Xiangtan, Xiangtan, China
| | - Lei Wang
- Department of Cardiovascular Medicine, Xiangtan Center Hospital, Xiangtan, China
| | - Qichang Xing
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
- Zhou Honghao Research Institute Xiangtan, Xiangtan, China
| | - Xiang Liu
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
- Zhou Honghao Research Institute Xiangtan, Xiangtan, China
| | - Yixiang Hu
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
- Zhou Honghao Research Institute Xiangtan, Xiangtan, China
| | - Wencan Li
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
- Zhou Honghao Research Institute Xiangtan, Xiangtan, China
| | - Qingzi Yan
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
- Zhou Honghao Research Institute Xiangtan, Xiangtan, China
| | - Renzhu Liu
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
- Zhou Honghao Research Institute Xiangtan, Xiangtan, China
| | - Nan Huang
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
- *Correspondence: Nan Huang,
| |
Collapse
|
33
|
Zhang J, Zhao WR, Shi WT, Tan JJ, Zhang KY, Tang JY, Chen XL, Zhou ZY. Tribulus terrestris L. extract ameliorates atherosclerosis by inhibition of vascular smooth muscle cell proliferation in ApoE -/- mice and A7r5 cells via suppression of Akt/MEK/ERK signaling. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115547. [PMID: 35870688 DOI: 10.1016/j.jep.2022.115547] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atherosclerosis (AS) is one of major threatens of death worldwide, and vascular smooth muscle cell (VSMC) proliferation is an important characteristic in the progression of AS. Tribulus terrestris L. is a well-known Chinese Materia Medica for treating skin pruritus, vertigo and cardiovascular diseases in traditional Chinese medicine. However, its anti-AS activity and inhibition effect on VSMC proliferation are not fully elucidated. AIMS We hypothesize that the furostanol saponins enriched extract (FSEE) of T. terrestris L. presents anti-AS effect by inhibition of VSMC proliferation. The molecular action mechanism underlying the anti-VSMC proliferation effect of FSEE is also investigated. MATERIALS AND METHODS Apolipoprotein-E deficient (ApoE-/-) mice and rat thoracic smooth muscle cell A7r5 were employed as the in vivo and in vitro models respectively to evaluate the anti- AS and VSMC proliferation effects of FSEE. In ApoE-/- mice, the amounts of total cholesterol, triglyceride, low density lipoprotein and high density lipoprotein in serum were measured by commercially available kits. The size of atherosclerotic plaque was observed by hematoxylin & eosin staining. The protein expressions of α-smooth muscle actin (α-SMA) and osteopontin (OPN) in the plaque were examined by immunohistochemistry. In A7r5 cells, the cell viability and proliferation were tested by MTT and Real Time Cell Analysis assays. The cell migration was evaluated by wound healing assay. Propidium iodide staining followed by flow cytometry was used to analyze the cell cycle progression. The expression of intracellular total and phosphorylated proteins including protein kinase B (Akt) and mitogen-activated protein kinases (MAPKs), such as mitogen-activated extracellular signal-regulated kinase (MEK), extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), were detected by western blotting analysis. RESULTS FSEE significantly reduced the area of atherosclerotic plaque in high-fat diet-fed ApoE-/- mice. And FSEE increased the protein expression level of α-SMA and decreased the level of OPN in atherosclerotic plaque, which revealed the inhibition of VSMC phenotype switching and proliferation. In A7r5 cells, FSEE suppressed fetal bovine serum (FBS) or oxidized low density lipoprotein (oxLDL)-triggered VSMC proliferation and migration in a concentration dependent manner. FSEE protected against the elevation of cell numbers in S phase induced by FBS or oxLDL and the reduction of cell numbers in G0/G1 phase induced by oxLDL. Moreover, the phosphorylation of Akt and MAPKs including MEK, ERK and JNK could be facilitated by FBS or oxLDL, while co-treatment of FSEE attenuated the phosphorylation of Akt induced by oxLDL as well as the phosphorylation of MEK and ERK induced by FBS. In addition, (25R)-terrestrinin B (JL-6), which was the main ingredient of FSEE, and its potential active pharmaceutical ingredients tigogenin (Tigo) and hecogenin (Heco) also significantly attenuated FBS or oxLDL-induced VSMC proliferation in A7r5 cells. CONCLUSION FSEE presents potent anti- AS and VSMC proliferation activities and the underlying mechanism is likely to the suppression of Akt/MEK/ERK signaling. The active components of FSEE are JL-6 and its potential active pharmaceutical ingredients Tigo and Heco. So, FSEE and its active compounds may be potential therapeutic drug candidates for AS.
Collapse
Affiliation(s)
- Jing Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wai-Rong Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wen-Ting Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jun-Jie Tan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Kai-Yu Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jing-Yi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xin-Lin Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhong-Yan Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
34
|
Qiao S, Liu C, Sun L, Wang T, Dai H, Wang K, Bao L, Li H, Wang W, Liu SJ, Liu H. Gut Parabacteroides merdae protects against cardiovascular damage by enhancing branched-chain amino acid catabolism. Nat Metab 2022; 4:1271-1286. [PMID: 36253620 DOI: 10.1038/s42255-022-00649-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 08/30/2022] [Indexed: 01/20/2023]
Abstract
Obesity, dyslipidemia and gut dysbiosis are all linked to cardiovascular diseases. A Ganoderma meroterpene derivative (GMD) has been shown to alleviate obesity and hyperlipidemia through modulating the gut microbiota in obese mice. Here we show that GMD protects against obesity-associated atherosclerosis by increasing the abundance of Parabacteroides merdae in the gut and enhancing branched-chain amino acid (BCAA) catabolism. Administration of live P. merdae to high-fat-diet-fed ApoE-null male mice reduces atherosclerotic lesions and enhances intestinal BCAA degradation. The degradation of BCAAs is mediated by the porA gene expressed in P. merdae. Deletion of porA from P. merdae blunts its capacity to degrade BCAAs and leads to inefficacy in fighting against atherosclerosis. We further show that P. merdae inhibits the mTORC1 pathway in atherosclerotic plaques. In support of our preclinical findings, an in silico analysis of human gut metagenomic studies indicates that P. merdae and porA genes are depleted in the gut microbiomes of individuals with atherosclerosis. Our results provide mechanistic insights into the therapeutic potential of GMD through P. merdae in treating obesity-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Shanshan Qiao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Chang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Li Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Tao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Kai Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Li Bao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Hantian Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Wenzhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Shuang-Jiang Liu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China.
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
35
|
Girard D, Vandiedonck C. How dysregulation of the immune system promotes diabetes mellitus and cardiovascular risk complications. Front Cardiovasc Med 2022; 9:991716. [PMID: 36247456 PMCID: PMC9556991 DOI: 10.3389/fcvm.2022.991716] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by persistent hyperglycemia due to insulin resistance or failure to produce insulin. Patients with DM develop microvascular complications that include chronic kidney disease and retinopathy, and macrovascular complications that mainly consist in an accelerated and more severe atherosclerosis compared to the general population, increasing the risk of cardiovascular (CV) events, such as stroke or myocardial infarction by 2- to 4-fold. DM is commonly associated with a low-grade chronic inflammation that is a known causal factor in its development and its complications. Moreover, it is now well-established that inflammation and immune cells play a major role in both atherosclerosis genesis and progression, as well as in CV event occurrence. In this review, after a brief presentation of DM physiopathology and its macrovascular complications, we will describe the immune system dysregulation present in patients with type 1 or type 2 diabetes and discuss its role in DM cardiovascular complications development. More specifically, we will review the metabolic changes and aberrant activation that occur in the immune cells driving the chronic inflammation through cytokine and chemokine secretion, thus promoting atherosclerosis onset and progression in a DM context. Finally, we will discuss how genetics and recent systemic approaches bring new insights into the mechanisms behind these inflammatory dysregulations and pave the way toward precision medicine.
Collapse
Affiliation(s)
- Diane Girard
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, IMMEDIAB Laboratory, Paris, France
- Université Paris Cité, Institut Hors-Mur du Diabète, Faculté de Santé, Paris, France
| | - Claire Vandiedonck
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, IMMEDIAB Laboratory, Paris, France
- Université Paris Cité, Institut Hors-Mur du Diabète, Faculté de Santé, Paris, France
| |
Collapse
|
36
|
Solomon CU, McVey DG, Andreadi C, Gong P, Turner L, Stanczyk PJ, Khemiri S, Chamberlain JC, Yang W, Webb TR, Nelson CP, Samani NJ, Ye S. Effects of Coronary Artery Disease-Associated Variants on Vascular Smooth Muscle Cells. Circulation 2022; 146:917-929. [PMID: 35735005 PMCID: PMC9484647 DOI: 10.1161/circulationaha.121.058389] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/24/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Genome-wide association studies have identified many genetic loci that are robustly associated with coronary artery disease (CAD). However, the underlying biological mechanisms are still unknown for most of these loci, hindering the progress to medical translation. Evidence suggests that the genetic influence on CAD susceptibility may act partly through vascular smooth muscle cells (VSMCs). METHODS We undertook genotyping, RNA sequencing, and cell behavior assays on a large bank of VSMCs (n>1499). Expression quantitative trait locus and splicing quantitative trait locus analyses were performed to identify genes with an expression that was influenced by CAD-associated variants. To identify candidate causal genes for CAD, we ascertained colocalizations of VSMC expression quantitative trait locus signals with CAD association signals by performing causal variants identification in associated regions analysis and the summary data-based mendelian randomization test. Druggability analysis was then performed on the candidate causal genes. CAD risk variants were tested for associations with VSMC proliferation, migration, and apoptosis. Collective effects of multiple CAD-associated variants on VSMC behavior were estimated by polygenic scores. RESULTS Approximately 60% of the known CAD-associated variants showed statistically significant expression quantitative trait locus or splicing quantitative trait locus effects in VSMCs. Colocalization analyses identified 84 genes with expression quantitative trait locus signals that significantly colocalized with CAD association signals, identifying them as candidate causal genes. Druggability analysis indicated that 38 of the candidate causal genes were druggable, and 13 had evidence of drug-gene interactions. Of the CAD-associated variants tested, 139 showed suggestive associations with VSMC proliferation, migration, or apoptosis. A polygenic score model explained up to 5.94% of variation in several VSMC behavior parameters, consistent with polygenic influences on VSMC behavior. CONCLUSIONS This comprehensive analysis shows that a large percentage of CAD loci can modulate gene expression in VSMCs and influence VSMC behavior. Several candidate causal genes identified are likely to be druggable and thus represent potential therapeutic targets.
Collapse
Affiliation(s)
- Charles U. Solomon
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, UK (C.U.S., D.G.M., C.A., P.G., L.T., P.J.S., S.K., J.C.C., T.R.W., C.P.N., J.N.S., S.Y.)
| | - David G. McVey
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, UK (C.U.S., D.G.M., C.A., P.G., L.T., P.J.S., S.K., J.C.C., T.R.W., C.P.N., J.N.S., S.Y.)
| | - Catherine Andreadi
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, UK (C.U.S., D.G.M., C.A., P.G., L.T., P.J.S., S.K., J.C.C., T.R.W., C.P.N., J.N.S., S.Y.)
| | - Peng Gong
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, UK (C.U.S., D.G.M., C.A., P.G., L.T., P.J.S., S.K., J.C.C., T.R.W., C.P.N., J.N.S., S.Y.)
| | - Lenka Turner
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, UK (C.U.S., D.G.M., C.A., P.G., L.T., P.J.S., S.K., J.C.C., T.R.W., C.P.N., J.N.S., S.Y.)
| | - Paulina J. Stanczyk
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, UK (C.U.S., D.G.M., C.A., P.G., L.T., P.J.S., S.K., J.C.C., T.R.W., C.P.N., J.N.S., S.Y.)
| | - Sonja Khemiri
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, UK (C.U.S., D.G.M., C.A., P.G., L.T., P.J.S., S.K., J.C.C., T.R.W., C.P.N., J.N.S., S.Y.)
| | - Julie C. Chamberlain
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, UK (C.U.S., D.G.M., C.A., P.G., L.T., P.J.S., S.K., J.C.C., T.R.W., C.P.N., J.N.S., S.Y.)
| | - Wei Yang
- Shantou University Medical College, China (W.Y., S.Y.)
| | - Tom R. Webb
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, UK (C.U.S., D.G.M., C.A., P.G., L.T., P.J.S., S.K., J.C.C., T.R.W., C.P.N., J.N.S., S.Y.)
| | - Christopher P. Nelson
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, UK (C.U.S., D.G.M., C.A., P.G., L.T., P.J.S., S.K., J.C.C., T.R.W., C.P.N., J.N.S., S.Y.)
| | - Nilesh J. Samani
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, UK (C.U.S., D.G.M., C.A., P.G., L.T., P.J.S., S.K., J.C.C., T.R.W., C.P.N., J.N.S., S.Y.)
| | - Shu Ye
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, UK (C.U.S., D.G.M., C.A., P.G., L.T., P.J.S., S.K., J.C.C., T.R.W., C.P.N., J.N.S., S.Y.)
- Shantou University Medical College, China (W.Y., S.Y.)
- Cardiovascular Disease Translational Research Programme, Department of Medicine, National University of Singapore (S.Y.)
| |
Collapse
|
37
|
Kotlyarov S. Genetic and Epigenetic Regulation of Lipoxygenase Pathways and Reverse Cholesterol Transport in Atherogenesis. Genes (Basel) 2022; 13:1474. [PMID: 36011386 PMCID: PMC9408222 DOI: 10.3390/genes13081474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is one of the most important medical and social problems of modern society. Atherosclerosis causes a large number of hospitalizations, disability, and mortality. A considerable amount of evidence suggests that inflammation is one of the key links in the pathogenesis of atherosclerosis. Inflammation in the vascular wall has extensive cross-linkages with lipid metabolism, and lipid mediators act as a central link in the regulation of inflammation in the vascular wall. Data on the role of genetics and epigenetic factors in the development of atherosclerosis are of great interest. A growing body of evidence is strengthening the understanding of the significance of gene polymorphism, as well as gene expression dysregulation involved in cross-links between lipid metabolism and the innate immune system. A better understanding of the genetic basis and molecular mechanisms of disease pathogenesis is an important step towards solving the problems of its early diagnosis and treatment.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
38
|
Frąk W, Wojtasińska A, Lisińska W, Młynarska E, Franczyk B, Rysz J. Pathophysiology of Cardiovascular Diseases: New Insights into Molecular Mechanisms of Atherosclerosis, Arterial Hypertension, and Coronary Artery Disease. Biomedicines 2022; 10:biomedicines10081938. [PMID: 36009488 PMCID: PMC9405799 DOI: 10.3390/biomedicines10081938] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are disorders associated with the heart and circulatory system. Atherosclerosis is its major underlying cause. CVDs are chronic and can remain hidden for a long time. Moreover, CVDs are the leading cause of global morbidity and mortality, thus creating a major public health concern. This review summarizes the available information on the pathophysiological implications of CVDs, focusing on coronary artery disease along with atherosclerosis as its major cause and arterial hypertension. We discuss the endothelium dysfunction, inflammatory factors, and oxidation associated with atherosclerosis. Mechanisms such as dysfunction of the endothelium and inflammation, which have been identified as critical pathways for development of coronary artery disease, have become easier to diagnose in recent years. Relatively recently, evidence has been found indicating that interactions of the molecular and cellular elements such as matrix metalloproteinases, elements of the immune system, and oxidative stress are involved in the pathophysiology of arterial hypertension. Many studies have revealed several important inflammatory and genetic risk factors associated with CVDs. However, further investigation is crucial to improve our knowledge of CVDs progression and, more importantly, accelerate basic research to improve our understanding of the mechanism of pathophysiology.
Collapse
|
39
|
Chen Y, Liang L, Wu C, Cao Z, Xia L, Meng J, Wang Z. Epigenetic Control of Vascular Smooth Muscle Cell Function in Atherosclerosis: A Role for DNA Methylation. DNA Cell Biol 2022; 41:824-837. [PMID: 35900288 DOI: 10.1089/dna.2022.0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is a complex vascular inflammatory disease in which multiple cell types are involved, including vascular smooth muscle cells (VSMCs). In response to vascular injury and inflammatory stimuli, VSMCs undergo a "phenotypic switching" characterized by extracellular matrix secretion, loss of contractility, and abnormal proliferation and migration, which play a key role in the progression of atherosclerosis. DNA methylation modification is an important epigenetic mechanism that plays an important role in atherosclerosis. Studies investigating abnormal DNA methylation in patients with atherosclerosis have determined a specific DNA methylation profile, and proposed multiple pathways and genes involved in the etiopathogenesis of atherosclerosis. Recent studies have also revealed that DNA methylation modification controls VSMC function by regulating gene expression involved in atherosclerosis. In this review, we summarize the recent advances regarding the epigenetic control of VSMC function by DNA methylation in atherosclerosis and provide insights into the development of VSMC-centered therapeutic strategies.
Collapse
Affiliation(s)
- Yanjun Chen
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Lingli Liang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Chunyan Wu
- The Third Affiliated Hospital of University of South China, Hengyang, China
| | - Zitong Cao
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Linzhen Xia
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun Meng
- Functional Department, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zuo Wang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
40
|
Semaglutide treatment attenuates vessel remodelling in ApoE-/- mice following vascular injury and blood flow perturbation. ATHEROSCLEROSIS PLUS 2022; 49:32-41. [PMID: 36644202 PMCID: PMC9833261 DOI: 10.1016/j.athplu.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 01/18/2023]
Abstract
Background and aims Randomized clinical studies have shown a reduction in cardiovascular outcomes with glucagon-like peptide 1 receptor agonist (GLP-1RA) treatment with the hypothesized mechanisms being an underlying effect on atherosclerosis. Here, we aimed to assess the pharmacological effects of semaglutide in an atheroprone murine model that recapitulates central mechanisms related to vascular smooth muscle cell (VSMC) phenotypic switching and endothelial dysfunction known to operate within the atherosclerotic plaque. Methods In study A, we employed an electrical current to the carotid artery in ApoE-/- mice to induce severe VSMC injury and death, after which the arteries were allowed to heal for 4 weeks. In study B, a constrictive cuff was added for 6 h at the site of the healed segment to induce a disturbance in blood flow. Results Compared to vehicle, semaglutide treatment reduced the intimal and medial area by ∼66% (p = 0.007) and ∼11% (p = 0.0002), respectively. Following cuff placement, expression of the pro-inflammatory marker osteopontin and macrophage marker Mac-2 was reduced (p < 0.05) in the semaglutide-treated group compared to vehicle. GLP-1R were not expressed in murine carotid artery and human coronary vessels with and without atherosclerotic plaques, and semaglutide treatment did not affect proliferation of cultured primary human VSMCs. Conclusions Semaglutide treatment reduced vessel remodelling following electrical injury and blood flow perturbation in an atheroprone mouse model. This effect appears to be driven by anti-inflammatory and -proliferative mechanisms independent of GLP-1 receptor-mediated signalling in the resident vascular cells. This mechanism of action may be important for cardiovascular protection.
Collapse
|
41
|
Zha Y, Zhuang W, Yang Y, Zhou Y, Li H, Liang J. Senescence in Vascular Smooth Muscle Cells and Atherosclerosis. Front Cardiovasc Med 2022; 9:910580. [PMID: 35722104 PMCID: PMC9198250 DOI: 10.3389/fcvm.2022.910580] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the primary cell type involved in the atherosclerosis process; senescent VSMCs are observed in both aged vessels and atherosclerotic plaques. Factors associated with the atherosclerotic process, including oxidative stress, inflammation, and calcium-regulating factors, are closely linked to senescence in VSMCs. A number of experimental studies using traditional cellular aging markers have suggested that anti-aging biochemical agents could be used to treat atherosclerosis. However, doubt has recently been cast on such potential due to the increasingly apparent complexity of VSMCs status and an incomplete understanding of the role that these cells play in the atherosclerosis process, as well as a lack of specific or spectrum-limited cellular aging markers. The utility of anti-aging drugs in atherosclerosis treatment should be reevaluated. Promotion of a healthy lifestyle, exploring in depth the characteristics of each cell type associated with atherosclerosis, including VSMCs, and development of targeted drug delivery systems will ensure efficacy whilst evaluation of the safety and tolerability of drug use should be key aims of future anti-atherosclerosis research. This review summarizes the characteristics of VSMC senescence during the atherosclerosis process, the factors regulating this process, as well as an overview of progress toward the development and application of anti-aging drugs.
Collapse
Affiliation(s)
- Yiwen Zha
- Medical College, Yangzhou University, Yangzhou, China
| | - Wenwen Zhuang
- Medical College, Yangzhou University, Yangzhou, China
| | - Yongqi Yang
- Medical College, Yangzhou University, Yangzhou, China
| | - Yue Zhou
- Medical College, Yangzhou University, Yangzhou, China
| | - Hongliang Li
- Medical College, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- *Correspondence: Hongliang Li,
| | - Jingyan Liang
- Medical College, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
- Jingyan Liang,
| |
Collapse
|
42
|
Björkegren JLM, Lusis AJ. Atherosclerosis: Recent developments. Cell 2022; 185:1630-1645. [PMID: 35504280 PMCID: PMC9119695 DOI: 10.1016/j.cell.2022.04.004] [Citation(s) in RCA: 385] [Impact Index Per Article: 192.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is an inflammatory disease of the large arteries that is the major cause of cardiovascular disease (CVD) and stroke. Here, we review the current understanding of the molecular, cellular, genetic, and environmental contributions to atherosclerosis, from both individual pathway and systems perspectives. We place an emphasis on recent developments, some of which have yielded unexpected biology, including previously unknown heterogeneity of inflammatory and smooth muscle cells in atherosclerotic lesions, roles for senescence and clonal hematopoiesis, and links to the gut microbiome.
Collapse
Affiliation(s)
- Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Aldons J Lusis
- Department of Medicine/Division of Cardiology, Department of Microbiology, Immunology and Molecular Genetics, Department of Human Genetics, A2-237 Center for the Health Sciences, University of California, Los Angeles, Los Angeles, CA USA.
| |
Collapse
|
43
|
Jiang Z, Cui X, Qu P, Shang C, Xiang M, Wang J. Roles and mechanisms of puerarin on cardiovascular disease:A review. Biomed Pharmacother 2022; 147:112655. [DOI: 10.1016/j.biopha.2022.112655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/13/2022] Open
|
44
|
Slenders L, Landsmeer LPL, Cui K, Depuydt MAC, Verwer M, Mekke J, Timmerman N, van den Dungen NAM, Kuiper J, de Winther MPJ, Prange KHM, Ma WF, Miller CL, Aherrahrou R, Civelek M, de Borst GJ, de Kleijn DPV, Asselbergs FW, den Ruijter HM, Boltjes A, Pasterkamp G, van der Laan SW, Mokry M. Intersecting single-cell transcriptomics and genome-wide association studies identifies crucial cell populations and candidate genes for atherosclerosis. EUROPEAN HEART JOURNAL OPEN 2022; 2:oeab043. [PMID: 35174364 PMCID: PMC8841481 DOI: 10.1093/ehjopen/oeab043] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/15/2021] [Indexed: 12/14/2022]
Abstract
Aims Genome-wide association studies (GWASs) have discovered hundreds of common genetic variants for atherosclerotic disease and cardiovascular risk factors. The translation of susceptibility loci into biological mechanisms and targets for drug discovery remains challenging. Intersecting genetic and gene expression data has led to the identification of candidate genes. However, previously studied tissues are often non-diseased and heterogeneous in cell composition, hindering accurate candidate prioritization. Therefore, we analysed single-cell transcriptomics from atherosclerotic plaques for cell-type-specific expression to identify atherosclerosis-associated candidate gene–cell pairs. Methods and results We applied gene-based analyses using GWAS summary statistics from 46 atherosclerotic and cardiovascular disease, risk factors, and other traits. We then intersected these candidates with single-cell RNA sequencing (scRNA-seq) data to identify genes specific for individual cell (sub)populations in atherosclerotic plaques. The coronary artery disease (CAD) loci demonstrated a prominent signal in plaque smooth muscle cells (SMCs) (SKI, KANK2, and SORT1) P-adj. = 0.0012, and endothelial cells (ECs) (SLC44A1, ATP2B1) P-adj. = 0.0011. Finally, we used liver-derived scRNA-seq data and showed hepatocyte-specific enrichment of genes involved in serum lipid levels. Conclusion We discovered novel and known gene–cell pairs pointing to new biological mechanisms of atherosclerotic disease. We highlight that loci associated with CAD reveal prominent association levels in mainly plaque SMC and EC populations. We present an intuitive single-cell transcriptomics-driven workflow rooted in human large-scale genetic studies to identify putative candidate genes and affected cells associated with cardiovascular traits. Collectively, our workflow allows for the identification of cell-specific targets relevant for atherosclerosis and can be universally applied to other complex genetic diseases and traits.
Collapse
Affiliation(s)
- Lotte Slenders
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
| | - Lennart P L Landsmeer
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
| | - Kai Cui
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
| | - Marie A C Depuydt
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Maarten Verwer
- Department of Vascular Surgery, University Medical Centre Utrecht, University Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
| | - Joost Mekke
- Department of Vascular Surgery, University Medical Centre Utrecht, University Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
| | - Nathalie Timmerman
- Department of Vascular Surgery, University Medical Centre Utrecht, University Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
| | - Noortje A M van den Dungen
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
| | - Johan Kuiper
- Department of Medical Biochemistry, Amsterdam University Medical Centers-Location AMC, University of Amsterdam, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, The Netherlands
| | - Menno P J de Winther
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Koen H M Prange
- Department of Medical Biochemistry, Amsterdam University Medical Centers-Location AMC, University of Amsterdam, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, The Netherlands
| | - Wei Feng Ma
- Medical Scientist Training Program, University of Virginia, 200 Jeanette Lancaster Way, Charlottesville, VA 22908, USA.,Center for Public Health Genomics, University of Virginia, West Complex, 1335 Lee St, Charlottesville, VA 22908, USA
| | - Clint L Miller
- Center for Public Health Genomics, University of Virginia, West Complex, 1335 Lee St, Charlottesville, VA 22908, USA.,Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Rark Avenue, Charlottesville, VA 22908, USA.,Department of Public Health Sciences, University of Virginia, West Complex Rm 3181, Charlottesville, VA 22908, USA
| | - Redouane Aherrahrou
- Center for Public Health Genomics, University of Virginia, West Complex, 1335 Lee St, Charlottesville, VA 22908, USA
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, West Complex, 1335 Lee St, Charlottesville, VA 22908, USA.,Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA 22908, USA
| | - Gert J de Borst
- Department of Vascular Surgery, University Medical Centre Utrecht, University Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
| | - Dominique P V de Kleijn
- Department of Vascular Surgery, University Medical Centre Utrecht, University Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, Utrecht 3508 GA, The Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, Utrecht 3508 GA, The Netherlands
| | - Arjan Boltjes
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
| | - Michal Mokry
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands.,Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, Utrecht 3508 GA, The Netherlands
| |
Collapse
|
45
|
Abstract
During the past decade, genome-wide association studies (GWAS) have transformed our understanding of many heritable traits. Three recent large-scale GWAS meta-analyses now further markedly expand the knowledge on coronary artery disease (CAD) genetics in doubling the number of loci with genome-wide significant signals. Here, we review the unprecedented discoveries of CAD GWAS on low-frequency variants, underrepresented populations, sex differences and integrated polygenic risk. We present the milestones of CAD GWAS and post-GWAS studies from 2007 to 2021, and the trend in identification of variants with smaller odds ratio by year due to the increasing sample size. We compile the 321 CAD loci discovered thus far and classify candidate genes as well as distinct functional pathways on the road to indepth biological investigation and identification of novel treatment targets. We draw attention to systems genetics in integrating these loci into gene regulatory networks within and across tissues. We review the traits, biomarkers and diseases scrutinized by Mendelian randomization studies for CAD. Finally, we discuss the potentials and concerns of polygenic scores in predicting CAD risk in patient care as well as future directions of GWAS and post-GWAS studies in the field of precision medicine.
Collapse
Affiliation(s)
- Zhifen Chen
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany.,Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany.,Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Munich Heart Alliance, Munich, Germany
| |
Collapse
|
46
|
Buono MF, Slenders L, Wesseling M, Hartman RJG, Monaco C, den Ruijter HM, Pasterkamp G, Mokry M. The changing landscape of the vulnerable plaque: a call for fine-tuning of preclinical models. Vascul Pharmacol 2021; 141:106924. [PMID: 34607015 DOI: 10.1016/j.vph.2021.106924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
For decades, the pathological definition of the vulnerable plaque led to invaluable insights into the mechanisms that underlie myocardial infarction and stroke. Beyond plaque rupture, other mechanisms, such as erosion, may elicit thrombotic events underlining the complexity and diversity of the atherosclerotic disease. Novel insights, based on single-cell transcriptomics and other "omics" methods, provide tremendous opportunities in the ongoing search for cell-specific determinants that will fine-tune the description of the thrombosis prone lesion. It coincides with an increasing awareness that knowledge on lesion characteristics, cell plasticity and clinical presentation of ischemic cardiovascular events have shifted over the past decades. This shift correlates with an observed changes of cell composition towards phenotypical stabilizing of human plaques. These stabilization features and mechanisms are directly mediated by the cells present in plaques and can be mimicked in vitro via primary plaque cells derived from human atherosclerotic tissues. In addition, the rapidly evolving of sequencing technologies identify many candidate genes and molecular mechanisms that may influence the risk of developing an atherosclerotic thrombotic event - which bring the next challenge in sharp focus: how to translate these cell-specific insights into tangible functional and translational discoveries?
Collapse
Affiliation(s)
- Michele F Buono
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, the Netherlands
| | - Lotte Slenders
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marian Wesseling
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Robin J G Hartman
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, the Netherlands
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, the Netherlands
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, the Netherlands; Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
47
|
Affiliation(s)
- Matthew J. Feinstein
- Division of Cardiology, Department of Medicine, Northwestern University School of Medicine
- Clinical and Translational Immunocardiology Program (CTIP)
| | - Edward B. Thorp
- Clinical and Translational Immunocardiology Program (CTIP)
- Department of Pathology, Northwestern University School of Medicine
- The Heart Center at Ann & Robert H. Lurie Children’s Hospital of Chicago
| |
Collapse
|
48
|
Affiliation(s)
- Ulf Hedin
- Departments of Vascular Surgery and Molecular Medicine and Surgery, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
49
|
Kessler T, Schunkert H. Coronary Artery Disease Genetics Enlightened by Genome-Wide Association Studies. JACC Basic Transl Sci 2021; 6:610-623. [PMID: 34368511 PMCID: PMC8326228 DOI: 10.1016/j.jacbts.2021.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
Many cardiovascular diseases are facilitated by strong inheritance. For example, large-scale genetic studies identified hundreds of genomic loci that affect the risk of coronary artery disease. At each of these loci, common variants are associated with disease risk with robust statistical evidence but individually small effect sizes. Only a minority of candidate genes found at these loci are involved in the pathophysiology of traditional risk factors, but experimental research is making progress in identifying novel, and, in part, unexpected mechanisms. Targets identified by genome-wide association studies have already led to the development of novel treatments, specifically in lipid metabolism. This review summarizes recent genetic and experimental findings in this field. In addition, the development and possible clinical usefulness of polygenic risk scores in risk prediction and individualization of treatment, particularly in lipid metabolism, are discussed.
Collapse
Affiliation(s)
- Thorsten Kessler
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK e.V.), partner site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK e.V.), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
50
|
Örd T, Õunap K, Stolze LK, Aherrahrou R, Nurminen V, Toropainen A, Selvarajan I, Lönnberg T, Aavik E, Ylä-Herttuala S, Civelek M, Romanoski CE, Kaikkonen MU. Single-Cell Epigenomics and Functional Fine-Mapping of Atherosclerosis GWAS Loci. Circ Res 2021; 129:240-258. [PMID: 34024118 PMCID: PMC8260472 DOI: 10.1161/circresaha.121.318971] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is available in the text. Genome-wide association studies have identified hundreds of loci associated with coronary artery disease (CAD). Many of these loci are enriched in cisregulatory elements but not linked to cardiometabolic risk factors nor to candidate causal genes, complicating their functional interpretation.
Collapse
Affiliation(s)
- Tiit Örd
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Kadri Õunap
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Lindsey K. Stolze
- Department of Cellular and Molecular Medicine, The College of Medicine, The University of Arizona, Tucson, AZ (L.K.S., C.E.R.)
| | - Redouane Aherrahrou
- Center for Public Health Genomics (R.A., M.C.), University of Virginia, Charlottesville
| | - Valtteri Nurminen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Anu Toropainen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Ilakya Selvarajan
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Finland (T.L.)
| | - Einari Aavik
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Mete Civelek
- Center for Public Health Genomics (R.A., M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (M.C.), University of Virginia, Charlottesville
| | - Casey E. Romanoski
- Department of Cellular and Molecular Medicine, The College of Medicine, The University of Arizona, Tucson, AZ (L.K.S., C.E.R.)
| | - Minna U. Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| |
Collapse
|