1
|
Li S, He P, Liu J, Zang S, Luo J, Luo Y, Zhu S, Zang L. Ferulic acid protects against stress-induced myocardial injury in mice. Toxicol Appl Pharmacol 2025; 498:117309. [PMID: 40120650 DOI: 10.1016/j.taap.2025.117309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Excessive stress is a known contributor to cardiovascular diseases (CVD), and ferulic acid (FA), a natural phenolic compound, has demonstrated significant antioxidant and anti-inflammatory properties. This study investigates the protective effects of FA against stress-induced myocardial injury (SIMI) and elucidates the underlying mechanisms. An acute SIMI model was established in mice using low-temperature water immersion restraint. Cardiac function was assessed via cardiac index and histopathological analysis. Serum levels of corticosterone (CORT), lactate dehydrogenase (LDH), and brain natriuretic peptide (BNP) were quantified using enzyme-linked immunosorbent assay (ELISA), along with inflammatory markers TNF-α and IL-1β. The oxidative stress parameters, including malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), and reactive oxygen species (ROS), were analyzed using colorimetric methods and fluorescent probes. Immunohistochemistry (IHC) and Western Blot were used to analyze the expression of proteins related to TNF, MAPK, PPAR-α/PGC-1α, and Nrf2 signaling pathways. Results indicated that FA pretreatment improved cardiac index, myocardial structural integrity, and reduced inflammatory cell infiltration. Serum levels of LDH, BNP, CORT, TNF-α, and IL-1β were significantly decreased in FA-treated SIMI mice. Elevated MDA and ROS levels, along with decreased GSH and SOD levels in the SIMI group, were reversed by FA pretreatment, likely through activation of the PPARα/PGC-1α and Nrf2 signaling pathways. Additionally, FA inhibited the TNF-α/TNFR1 and ERK/JNK MAPK pathways, contributing to its protective effects. In conclusion, FA mitigates SIMI by alleviating oxidative stress and inflammatory responses.
Collapse
Affiliation(s)
- Siyong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Peiyi He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiahe Liu
- The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | | | - Jiahao Luo
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Luo
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shuguang Zhu
- The First Affiliated Hospital cardiothoracic surgery department, Guangdong Pharmaceutical University, Guangzhou 510080, China.
| | - Linquan Zang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Tang Q, Ji Y, Xia Z, Zhang Y, Dong C, Sun Q, Lei S. Identification and validation of endoplasmic reticulum stress-related diagnostic biomarkers for type 1 diabetic cardiomyopathy based on bioinformatics and machine learning. Front Endocrinol (Lausanne) 2025; 16:1478139. [PMID: 40171194 PMCID: PMC11959167 DOI: 10.3389/fendo.2025.1478139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Background Diabetic cardiomyopathy (DC) is a serious complication in patients with type 1 diabetes mellitus and has become a growing public health problem worldwide. There is evidence that endoplasmic reticulum stress (ERS) is involved in the pathogenesis of DC, and related diagnostic markers have not been well-studied. Therefore, this study aimed to screen ERS-related genes (ERGs) with potential diagnostic value in DC. Methods Gene expression data on DC were downloaded from the GEO database, and ERGs were obtained from The Gene Ontology knowledgebase. Limma package analyzed differentially expressed genes (DEGs) in the DC and control groups, and then integrated with ERGs to identify ERS-related DEGs (ERDEGs). The ERDEGs diagnostic model was developed based on a combination of LASSO and Random Forest approaches, and the diagnostic performance was evaluated by the area under the receiver operating characteristic curve (ROC-AUC) and validated against external datasets. In addition, the association of the signature genes with immune infiltration was analyzed using the CIBERSORT algorithm and the Spearman correlation test. Results Gene expression data on DC were downloaded from the GEO database and ERGs were obtained from the Gene Ontology Knowledgebase. Limma package analysis identified 3100 DEGs between DC and control groups and then integrated with ERGs to identify 65 ERDEGs. Four diagnostic markers, Npm1, Jkamp, Get4, and Lpcat3, were obtained based on the combination of LASSO and random forest approach, and their ROC-AUCs were 0.9112, 0.9349, 0.8994, and 0.8639, respectively, which proved their diagnostic potential in DC. Meanwhile, Npm1, Jkamp, Get4, and Lpcat3 were validated by external datasets and a mouse model of type 1 DC. In addition, Npm1 was significantly negatively correlated with plasma cells, activated natural killer cells, or quiescent mast cells, whereas Get4 was significantly positively correlated with quiescent natural killer cells and significantly negatively correlated with activated natural killer cells (P < 0.05). Conclusions This study provides novel diagnostic biomarkers (Npm1, Jkamp, Get4, and Lpcat3) for DC from the perspective of ERS, which provides new insights into the development of new targets for individualized treatment of type 1 diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Qiao Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanwei Ji
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuxi Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chong Dong
- Organ Transplantation Center, Tianjin First Central Hospital, Tianjin, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin, China
| | - Qian Sun
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shaoqing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Kim M, Zheng Z. Walking the VLDL tightrope in cardiometabolic diseases. Trends Endocrinol Metab 2025; 36:278-291. [PMID: 39191606 PMCID: PMC11861388 DOI: 10.1016/j.tem.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Very-low-density lipoprotein (VLDL), a triglyceride-rich lipoprotein secreted by hepatocytes, is pivotal for supplying peripheral tissues with fatty acids for energy production. As if walking on a tightrope, perturbations in the balance of VLDL metabolism contribute to cardiometabolic dysfunction, promoting pathologies such as cardiovascular disease (CVD) or metabolic dysfunction-associated steatotic liver disease (MASLD). Despite the advent of lipid-lowering therapies, including statins and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, risks for cardiovascular events persist. With limitations to currently available CVD therapeutics and no US Food and Drug Administration (FDA)-approved treatment for MASLD, this review summarizes the current understanding of VLDL metabolism that sheds light on novel therapeutic avenues to pursue for cardiometabolic disorders.
Collapse
Affiliation(s)
- Mindy Kim
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, USA.
| | - Ze Zheng
- Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226, USA; Thrombosis & Hemostasis Program, Versiti Blood Research Institute, Milwaukee, 53226, USA.
| |
Collapse
|
4
|
Shahid A, Zahra A, Aslam S, Shamim A, Ali WR, Aslam B, Khan SH, Arshad MI. Appraisal of CRISPR Technology as an Innovative Screening to Therapeutic Toolkit for Genetic Disorders. Mol Biotechnol 2025:10.1007/s12033-025-01374-z. [PMID: 39894889 DOI: 10.1007/s12033-025-01374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025]
Abstract
The high frequency of genetic diseases compels the development of refined diagnostic and therapeutic systems. CRISPR is a precise genome editing tool that offers detection of genetic mutation with high sensitivity, specificity and flexibility for point-of-care testing in low resource environment. Advancements in CRISPR ushered new hope for the detection of genetic diseases. This review aims to explore the recent advances in CRISPR for the detection and treatment of genetic disorders. It delves into the advances like next-generation CRISPR diagnostics like nano-biosensors, digitalized CRISPR, and omics-integrated CRISPR technologies to enhance the detection limits and to facilitate the "lab-on-chip" technologies. Additionally, therapeutic potential of CRISPR technologies is reviewed to evaluate the implementation potential of CRISPR technologies for the treatment of hematological diseases, (sickle cell anemia and β-thalassemia), HIV, cancer, cardiovascular diseases, and neurological disorders, etc. Emerging CRISPR therapeutic approaches such as base/epigenetic editing and stem cells for the development of foreseen CRIPSR drugs are explored for the development of point-of-care testing. A combination of predictive models of artificial intelligence and machine learning with growing knowledge of genetic disorders has also been discussed to understand their role in acceleration of genetic detection. Ethical consideration are briefly discussed towards to end of review. This review provides the comprehensive insights into advances in the CRISPR diagnostics/therapeutics which are believed to pave the way for reliable, effective, and low-cost genetic testing.
Collapse
Affiliation(s)
- Ayesha Shahid
- National Center for Genome Editing, Center for Advanced Studies/D-8 Research Center, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ambreen Zahra
- National Center for Genome Editing, Center for Advanced Studies/D-8 Research Center, University of Agriculture, Faisalabad, 38000, Pakistan
- Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sabin Aslam
- National Center for Genome Editing, Center for Advanced Studies/D-8 Research Center, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Amen Shamim
- National Center for Genome Editing, Center for Advanced Studies/D-8 Research Center, University of Agriculture, Faisalabad, 38000, Pakistan
- Department of Computer Science, University of Agriculture, Faisalabad, 38000, Pakistan
| | | | - Bilal Aslam
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Sultan Habibullah Khan
- National Center for Genome Editing, Center for Advanced Studies/D-8 Research Center, University of Agriculture, Faisalabad, 38000, Pakistan
- Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Imran Arshad
- National Center for Genome Editing, Center for Advanced Studies/D-8 Research Center, University of Agriculture, Faisalabad, 38000, Pakistan.
- Institute of Microbiology, University of Agriculture Faisalabad, Pakistan Academy of Sciences (PAS), Faisalabad, 38000, Pakistan.
- Jiangsu University, Jiangsu, 212013, People's Republic of China.
| |
Collapse
|
5
|
Bonowicz K, Jerka D, Piekarska K, Olagbaju J, Stapleton L, Shobowale M, Bartosiński A, Łapot M, Bai Y, Gagat M. CRISPR-Cas9 in Cardiovascular Medicine: Unlocking New Potential for Treatment. Cells 2025; 14:131. [PMID: 39851560 PMCID: PMC11763404 DOI: 10.3390/cells14020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Cardiovascular diseases (CVDs) remain a significant global health challenge, with many current treatments addressing symptoms rather than the genetic roots of these conditions. The advent of CRISPR-Cas9 technology has revolutionized genome editing, offering a transformative approach to targeting disease-causing mutations directly. This article examines the potential of CRISPR-Cas9 in the treatment of various CVDs, including atherosclerosis, arrhythmias, cardiomyopathies, hypertension, and Duchenne muscular dystrophy (DMD). The technology's ability to correct single-gene mutations with high precision and efficiency positions it as a groundbreaking tool in cardiovascular therapy. Recent developments have extended the capabilities of CRISPR-Cas9 to include mitochondrial genome editing, a critical advancement for addressing mitochondrial dysfunctions often linked to cardiovascular disorders. Despite its promise, significant challenges remain, including off-target effects, ethical concerns, and limitations in delivery methods, which hinder its translation into clinical practice. This article also explores the ethical and regulatory considerations surrounding gene editing technologies, emphasizing the implications of somatic versus germline modifications. Future research efforts should aim to enhance the accuracy of CRISPR-Cas9, improve delivery systems for targeted tissues, and ensure the safety and efficacy of treatments in the long term. Overcoming these obstacles could enable CRISPR-Cas9 to not only treat but also potentially cure genetically driven cardiovascular diseases, heralding a new era in precision medicine for cardiovascular health.
Collapse
Affiliation(s)
- Klaudia Bonowicz
- Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (D.J.); (K.P.); (J.O.); (L.S.); (M.S.)
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland; (A.B.); (M.Ł.)
| | - Dominika Jerka
- Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (D.J.); (K.P.); (J.O.); (L.S.); (M.S.)
| | - Klaudia Piekarska
- Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (D.J.); (K.P.); (J.O.); (L.S.); (M.S.)
| | - Janet Olagbaju
- Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (D.J.); (K.P.); (J.O.); (L.S.); (M.S.)
| | - Laura Stapleton
- Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (D.J.); (K.P.); (J.O.); (L.S.); (M.S.)
| | - Munirat Shobowale
- Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (D.J.); (K.P.); (J.O.); (L.S.); (M.S.)
| | - Andrzej Bartosiński
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland; (A.B.); (M.Ł.)
| | - Magdalena Łapot
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland; (A.B.); (M.Ł.)
| | - Yidong Bai
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA;
| | - Maciej Gagat
- Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (D.J.); (K.P.); (J.O.); (L.S.); (M.S.)
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland; (A.B.); (M.Ł.)
| |
Collapse
|
6
|
Van Linthout S, Stellos K, Giacca M, Bertero E, Cannata A, Carrier L, Garcia‐Pavia P, Ghigo A, González A, Haugaa KH, Imazio M, Lopes LR, Most P, Pollesello P, Schunkert H, Streckfuss‐Bömeke K, Thum T, Tocchetti CG, Tschöpe C, van der Meer P, van Rooij E, Metra M, Rosano GM, Heymans S. State of the art and perspectives of gene therapy in heart failure. A scientific statement of the Heart Failure Association of the ESC, the ESC Council on Cardiovascular Genomics and the ESC Working Group on Myocardial & Pericardial Diseases. Eur J Heart Fail 2025; 27:5-25. [PMID: 39576264 PMCID: PMC11798634 DOI: 10.1002/ejhf.3516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/06/2024] [Accepted: 10/23/2024] [Indexed: 02/07/2025] Open
Abstract
Gene therapy has recently become a reality in the treatment of cardiovascular diseases. Strategies to modulate gene expression using antisense oligonucleotides or small interfering RNA are proving to be safe and effective in the clinic. Adeno-associated viral vector-based gene delivery and CRISPR-Cas9-based genome editing have emerged as efficient strategies for gene delivery and repair in humans. Overall, gene therapy holds the promise not only of expanding current treatment options, but also of intervening in previously untackled causal disease mechanisms with little side effects. This scientific statement provides a comprehensive overview of the various modalities of gene therapy used to treat heart failure and some of its risk factors, and their application in the clinical setting. It discusses specifically the possibilities of gene therapy for hereditary heart diseases and (non)-genetic heart failure. Furthermore, it addresses safety and clinical trial design issues and challenges for future regulatory strategies.
Collapse
Affiliation(s)
- Sophie Van Linthout
- Berlin Institute of Health (BIH) at Charité – Universitätmedizin BerlinBIH Center for Regenerative Therapies (BCRT)BerlinGermany
- German Center for Cardiovascular Research (DZHK)partner site BerlinBerlinGermany
| | - Konstantinos Stellos
- Department of Cardiovascular Research, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive CareUniversity Medical Centre Mannheim, Heidelberg UniversityMannheimGermany
- German Centre for Cardiovascular Research (DZHK)partner site Heidelberg/MannheimMannheimGermany
- Helmholtz Institute for Translational AngioCardioScience (HI‐TAC)MannheimGermany
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical SciencesNewcastle UniversityNewcastleUK
| | - Mauro Giacca
- School of Cardiovascular and Metabolic Medicine & Sciences and British Heart Foundation Centre of Research Excellence, King's College London, London, UK; Department of Medical SciencesUniversity of TriesteTriesteItaly
| | - Edoardo Bertero
- Cardiovascular Unit, Department of Internal MedicineUniversity of GenovaGenovaItaly
| | - Antonio Cannata
- School of Cardiovascular and Metabolic Medicine & Sciences and British Heart Foundation Centre of Research ExcellenceKing's College LondonLondonUK
| | - Lucie Carrier
- Department of Experimental Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Centre for Cardiovascular Research (DZHK)partner site Hamburg/Kiel/LübeckHamburgGermany
| | - Pablo Garcia‐Pavia
- Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, CIBERCVMadridSpain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- Universidad Francisco de Vitoria (UFV)MadridSpain
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health SciencesMolecular Biotechnology Center "Guido Tarone," University of TorinoTorinoItaly
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA and Department of Pathology, Anatomy and PhysiologyUniversidad de NavarraPamplonaSpain
- IdiSNANavarra Institute for Health ResearchPamplonaSpain
- CIBERCV (Network for Biomedical Research in Cardiovascular Disease)Instituto de Salud Carlos IIMadridSpain
| | - Kristina H. Haugaa
- ProCardio Center for Innovation, Department of CardiologyOslo University Hospital, RikshospitaletOsloNorway
- Faculty of Medicine, Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Massimo Imazio
- Department of Medicine (DMED), University of Udine, and Cardiothoracic Department ASUFCUniversity Hospital Santa Maria della MisericordiaUdineItaly
| | - Luis R. Lopes
- Institute of Cardiovascular ScienceUniversity College LondonLondonUK
- Barts Heart Centre, St Bartholomew's HospitalLondonUK
| | - Patrick Most
- Department of Cardiology, Angiology, PulmonologyUniversity Hospital HeidelbergHeidelbergGermany
| | | | - Heribert Schunkert
- Department of Cardiology, Deutsches Herzzentrum MünchenTechnische Universität MünchenMunichGermany
- German Center for Cardiovascular Research (DZHK)Partner Site Munich Heart AllianceMunichGermany
| | - Katrin Streckfuss‐Bömeke
- Clinic for Cardiology and PneumologyUniversity Medical CenterGöttingenGermany
- German Center for Cardiovascular Research (DZHK), Partner site GöttingenGöttingenGermany
- Institute of Pharmacology and ToxicologyUniversity of WürzburgWürzburgGermany
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC)University Clinic WürzburgWürzburgGermany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS)Hannover Medical SchoolHannoverGermany
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences; Center for Basic and Clinical Immunology Research (CISI); Interdepartmental Center for Clinical and Translational Research (CIRCET); Interdepartmental Hypertension Research Center (CIRIAPA)Federico II UniversityNaplesItaly
| | - Carsten Tschöpe
- Berlin Institute of Health (BIH) at Charité – Universitätmedizin BerlinBIH Center for Regenerative Therapies (BCRT)BerlinGermany
- German Center for Cardiovascular Research (DZHK)partner site BerlinBerlinGermany
- Deutsches Herzzentrum der Charité (DHZC), Department of Cardiology, Angiology and Intensive MedicineCampus Virchow KlinikumBerlinGermany
| | - Peter van der Meer
- Department of CardiologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Eva van Rooij
- Hubrecht InstituteRoyal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center UtrechtUtrechtThe Netherlands
- Department of CardiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Marco Metra
- Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| | - Giuseppe M.C. Rosano
- Cardiovascular Clinical Academic Group, St. George's University Hospitals, NHS TrustUniversity of LondonLondonUK
- Cardiology, San Raffaele Cassino HospitalCassinoItaly
- Department of Human Sciences and Promotion of Quality of LifeSan Raffaele University of RomeRomeItaly
| | - Stephane Heymans
- Centre for Molecular and Vascular BiologyKU LeuvenLeuvenBelgium
- Department of CardiologyMaastricht University, CARIM School for Cardiovascular DiseasesMaastrichtThe Netherlands
- European Reference Network for Rare Low Prevalence and Complex Diseases of the Heart (ERN GUARD‐Heart)AmsterdamThe Netherlands
| |
Collapse
|
7
|
Li S, Zhang J, Fu W, Cao J, Li Z, Tian X, Yang M, Zhao J, Wang C, Liu Y, Liu M, Zhao X, Li X, Dong J, Qi Y. Mitochondrial transplantation rescues Ca 2+ homeostasis imbalance and myocardial hypertrophy in SLC25A3-related hypertrophic cardiomyopathy. Cell Rep 2024; 43:115065. [PMID: 39671292 DOI: 10.1016/j.celrep.2024.115065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/24/2024] [Accepted: 11/22/2024] [Indexed: 12/15/2024] Open
Abstract
SLC25A3 encodes mitochondrial phosphate carrier (PiC), which is involved in inorganic phosphate transport. Clinical reports have found that most patients with homozygous or complex heterozygous mutations in SLC25A3 exhibit lactic acidosis, cardiac hypertrophy, and premature death. However, the potential molecular mechanisms underlying these associations remain unclear. Using CRISPR-Cas9 technology, we generated human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) carrying SLC25A3-knockout (KO) or missense mutations (c.C544T, c.A547G, c.C349T) to elucidate the pathogenic mechanisms of SLC25A3-related hypertrophic cardiomyopathy (HCM) and evaluate potential therapeutic interventions. These SLC25A3-KO or missense mutation hiPSC-CMs recapitulated the disease phenotype associated with myocardial hypertrophy, including diastolic dysfunction, Ca2+ homeostasis imbalance, and mitochondrial energy metabolism dysfunction. Further studies suggested the potential link between the accumulation of glycolytic byproducts and Ca2+ homeostasis imbalance in SLC25A3-KO hiPSC-CMs. Finally, we explored the prospective therapeutic implications of mitochondrial transplantation in rescuing SLC25A3-related HCM.
Collapse
Affiliation(s)
- Shuang Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China
| | - Jianchao Zhang
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wanrong Fu
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jinhua Cao
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhonggen Li
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoxu Tian
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Meng Yang
- Department of Cardiology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Jing Zhao
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chuchu Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yangyang Liu
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mengduan Liu
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoyan Zhao
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaowei Li
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Jianzeng Dong
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Centre for Cardiovascular Diseases, No. 2 Beijing Anzhen Road, Chaoyang District, Beijing 100029, China.
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
8
|
Razavi Z, Soltani M, Souri M, van Wijnen AJ. CRISPR innovations in tissue engineering and gene editing. Life Sci 2024; 358:123120. [PMID: 39426588 DOI: 10.1016/j.lfs.2024.123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
The CRISPR/Cas9 system is a powerful tool for genome editing, utilizing the Cas9 nuclease and programmable single guide RNA (sgRNA). However, the Cas9 nuclease activity can be disabled by mutation, resulting in catalytically deactivated Cas9 (dCas9). By combining the customizable sgRNA with dCas9, researchers can inhibit specific gene expression (CRISPR interference, CRISPRi) or activate the expression of a target gene (CRISPR activation, CRISPRa). In this review, we present the principles and recent advancements of these CRISPR technologies, as well as their delivery vectors. We also explore their applications in stem cell engineering and regenerative medicine, with a focus on in vitro stem cell fate manipulation and in vivo treatments. These include the prevention of retinal and muscular degeneration, neural regeneration, bone regeneration, cartilage tissue engineering, and the treatment of blood, skin, and liver diseases. Furthermore, we discuss the challenges of translating CRISPR technologies into regenerative medicine and provide future perspectives. Overall, this review highlights the potential of CRISPR in advancing regenerative medicine and offers insights into its application in various areas of research and therapy.
Collapse
Affiliation(s)
- ZahraSadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran; Biochemistry Research Center, Iran University Medical Sciences, Tehran, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada; Centre for Sustainable Business, International Business University, Toronto, Canada.
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT, USA; Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
9
|
Song L, Qiu Q, Ju F, Zheng C. Mechanisms of doxorubicin-induced cardiac inflammation and fibrosis; therapeutic targets and approaches. Arch Biochem Biophys 2024; 761:110140. [PMID: 39243924 DOI: 10.1016/j.abb.2024.110140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Doxorubicin plays a pivotal role in the treatment of various malignancies. Despite its efficacy, the cardiotoxicity associated with doxorubicin limits its clinical utility. The cardiotoxic nature of doxorubicin is attributed to several mechanisms, including its interference with mitochondrial function, the generation of reactive oxygen species (ROS), and the subsequent damage to cardiomyocyte DNA, proteins, and lipids. Furthermore, doxorubicin disrupts the homeostasis of cardiac-specific transcription factors and signaling pathways, exacerbating cardiac dysfunction. Oxidative stress, cell death, and other severe changes, such as mitochondrial dysfunction, activation of pro-oxidant enzymes, the renin-angiotensin system (RAS), endoplasmic reticulum (ER) stress, and infiltration of immune cells in the heart after treatment with doxorubicin, may cause inflammatory and fibrotic responses. Fibrosis and inflammation can lead to a range of disorders in the heart, resulting in potential cardiac dysfunction and disease. Various adjuvants have shown potential in preclinical studies to mitigate these challenges associated with cardiac inflammation and fibrosis. Antioxidants, plant-based products, specific inhibitors, and cardioprotective drugs may be recommended to alleviate cardiotoxicity. This review explores the complex mechanisms of doxorubicin-induced heart inflammation and fibrosis, identifies possible cellular and molecular targets, and investigates potential substances that could help reduce these harmful effects.
Collapse
Affiliation(s)
- Linghua Song
- Department of Pharmacy, Yantai Mountain Hospital, Yantai City, Shandong Province, 264001, China
| | - Qingzhuo Qiu
- Medical Imaging Department of Qingdao Women and Children's Hospital, 266000, China
| | - Fei Ju
- Department of Critical Care, Medicine East Hospital of Qingdao Municipal Hospital, 266000, China
| | - Chunyan Zheng
- Cadre Health Office of Zibo Central Hospital in Shandong Province, 255000, China.
| |
Collapse
|
10
|
Lauerer AM, Caravia XM, Maier LS, Chemello F, Lebek S. Gene editing in common cardiovascular diseases. Pharmacol Ther 2024; 263:108720. [PMID: 39284367 DOI: 10.1016/j.pharmthera.2024.108720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/29/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024]
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality worldwide, highlighting the high socioeconomic impact. Current treatment strategies like compound-based drugs or surgeries are often limited. On the one hand, systemic administration of substances is frequently associated with adverse side effects; on the other hand, they typically provide only short-time effects requiring daily intake. Thus, new therapeutic approaches and concepts are urgently needed. The advent of CRISPR-Cas9 genome editing offers great promise for the correction of disease-causing hereditary mutations. As such mutations are often very rare, gene editing strategies to correct them are not broadly applicable to many patients. Notably, there is recent evidence that gene editing technology can also be deployed to disrupt common pathogenic signaling cascades in a targeted, specific, and efficient manner, which offers a more generalizable approach. However, several challenges remain to be addressed ranging from the optimization of the editing strategy itself to a suitable delivery strategy up to potential immune responses to the editing components. This review article discusses important CRISPR-Cas9-based gene editing approaches with their advantages and drawbacks and outlines opportunities in their application for treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Anna-Maria Lauerer
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Xurde M Caravia
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lars S Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Francesco Chemello
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Simon Lebek
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
11
|
Tan S, Yang J, Hu S, Lei W. Cell-cell interactions in the heart: advanced cardiac models and omics technologies. Stem Cell Res Ther 2024; 15:362. [PMID: 39396018 PMCID: PMC11470663 DOI: 10.1186/s13287-024-03982-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
A healthy heart comprises various cell types, including cardiomyocytes, endothelial cells, fibroblasts, immune cells, and among others, which work together to maintain optimal cardiac function. These cells engage in complex communication networks, known as cell-cell interactions (CCIs), which are essential for homeostasis, cardiac structure, and efficient function. However, in the context of cardiac diseases, the heart undergoes damage, leading to alterations in the cellular composition. Such pathological conditions trigger significant changes in CCIs, causing cell rearrangement and the transition between cell types. Studying these interactions can provide valuable insights into cardiac biology and disease mechanisms, enabling the development of new therapeutic strategies. While the development of cardiac organoids and advanced 3D co-culture technologies has revolutionized in vitro studies of CCIs, recent advancements in single-cell and spatial multi-omics technologies provide researchers with powerful and convenient tools to investigate CCIs at unprecedented resolution. This article provides a concise overview of CCIs observed in both normal and injured heart, with an emphasis on the cutting-edge methods used to study these interactions. It highlights recent advancements such as 3D co-culture systems, single-cell and spatial omics technologies, that have enhanced the understanding of CCIs. Additionally, it summarizes the practical applications of CCI research in advancing cardiovascular therapies, offering potential solutions for treating heart disease by targeting intercellular communication.
Collapse
Affiliation(s)
- Shuai Tan
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Jingsi Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
12
|
Goossens E, Deblock L, Caboor L, Eynden DVD, Josipovic I, Isaacura PR, Maksimova E, Van Impe M, Bonnin A, Segers P, Cornillie P, Boone MN, Van Driessche I, De Spiegelaere W, De Roo J, Sips P, De Buysser K. From Corrosion Casting to Virtual Dissection: Contrast-Enhanced Vascular Imaging using Hafnium Oxide Nanocrystals. SMALL METHODS 2024; 8:e2301499. [PMID: 38200600 DOI: 10.1002/smtd.202301499] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Vascular corrosion casting is a method used to visualize the three dimensional (3D) anatomy and branching pattern of blood vessels. A polymer resin is injected in the vascular system and, after curing, the surrounding tissue is removed. The latter often deforms or even fractures the fragile cast. Here, a method is proposed that does not require corrosion, and is based on in situ micro computed tomography (micro-CT) scans. To overcome the lack of CT contrast between the polymer cast and the animals' surrounding soft tissue, hafnium oxide nanocrystals (HfO2 NCs) are introduced as CT contrast agents into the resin. The NCs dramatically improve the overall CT contrast of the cast and allow for straightforward segmentation in the CT scans. Careful design of the NC surface chemistry ensures the colloidal stability of the NCs in the casting resin. Using only 5 m% of HfO2 NCs, high-quality cardiovascular casts of both zebrafish and mice can be automatically segmented using CT imaging software. This allows to differentiate even μ $\umu$ m-scale details without having to alter the current resin injection methods. This new method of virtual dissection by visualizing casts in situ using contrast-enhanced CT imaging greatly expands the application potential of the technique.
Collapse
Affiliation(s)
- Eline Goossens
- Department of Chemistry, Ghent University, Ghent, 9000, Belgium
- Department of Chemistry, University of Basel, Basel, 4058, Switzerland
| | - Loren Deblock
- Department of Chemistry, Ghent University, Ghent, 9000, Belgium
| | - Lisa Caboor
- Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Dietger Van den Eynden
- Department of Chemistry, Ghent University, Ghent, 9000, Belgium
- Department of Chemistry, University of Basel, Basel, 4058, Switzerland
| | - Iván Josipovic
- Center for X-ray Tomography, Ghent University, Ghent, 9000, Belgium
| | - Pablo Reyes Isaacura
- Laboratory of Veterinary Morphology, Ghent University, Merelbeke, 9820, Belgium
- Centre for Polymer Material Technologies, Ghent University, Ghent, 9052, Belgium
- Laboratory for Chemical Technology, Ghent University, Ghent, 9052, Belgium
| | - Elizaveta Maksimova
- Department of Chemistry, University of Basel, Basel, 4058, Switzerland
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
- Swiss Nanoscience Institute, University of Basel, Basel, 4056, Switzerland
| | - Matthias Van Impe
- Institute of Biomedical Engineering and Technology, Ghent University, Ghent, 9000, Belgium
| | - Anne Bonnin
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Patrick Segers
- Institute of Biomedical Engineering and Technology, Ghent University, Ghent, 9000, Belgium
| | - Pieter Cornillie
- Laboratory of Veterinary Morphology, Ghent University, Merelbeke, 9820, Belgium
| | - Matthieu N Boone
- Center for X-ray Tomography, Ghent University, Ghent, 9000, Belgium
| | | | - Ward De Spiegelaere
- Laboratory of Veterinary Morphology, Ghent University, Merelbeke, 9820, Belgium
| | - Jonathan De Roo
- Department of Chemistry, University of Basel, Basel, 4058, Switzerland
| | - Patrick Sips
- Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | | |
Collapse
|
13
|
Elefteriades JA, Zafar MA, Ziganshin BA. Genetics of aortic aneurysm disease: 10 key points for the practitioner. JTCVS OPEN 2024; 21:58-63. [PMID: 39534337 PMCID: PMC11551243 DOI: 10.1016/j.xjon.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/27/2024] [Accepted: 07/16/2024] [Indexed: 11/16/2024]
Affiliation(s)
- John A. Elefteriades
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Conn
| | - Mohammad A. Zafar
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Conn
| | - Bulat A. Ziganshin
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Conn
| |
Collapse
|
14
|
Liang J, He X, Wang Y. Cardiomyocyte proliferation and regeneration in congenital heart disease. PEDIATRIC DISCOVERY 2024; 2:e2501. [PMID: 39308981 PMCID: PMC11412308 DOI: 10.1002/pdi3.2501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/25/2024] [Indexed: 09/25/2024]
Abstract
Despite advances in prenatal screening and a notable decrease in mortality rates, congenital heart disease (CHD) remains the most prevalent congenital disorder in newborns globally. Current therapeutic surgical approaches face challenges due to the significant rise in complications and disabilities. Emerging cardiac regenerative therapies offer promising adjuncts for CHD treatment. One novel avenue involves investigating methods to stimulate cardiomyocyte proliferation. However, the mechanism of altered cardiomyocyte proliferation in CHD is not fully understood, and there are few feasible approaches to stimulate cardiomyocyte cell cycling for optimal healing in CHD patients. In this review, we explore recent progress in understanding genetic and epigenetic mechanisms underlying defective cardiomyocyte proliferation in CHD from development through birth. Targeting cell cycle pathways shows promise for enhancing cardiomyocyte cytokinesis, division, and regeneration to repair heart defects. Advancements in human disease modeling techniques, CRISPR-based genome and epigenome editing, and next-generation sequencing technologies will expedite the exploration of abnormal machinery governing cardiomyocyte differentiation, proliferation, and maturation across diverse genetic backgrounds of CHD. Ongoing studies on screening drugs that regulate cell cycling are poised to translate this nascent technology of enhancing cardiomyocyte proliferation into a new therapeutic paradigm for CHD surgical interventions.
Collapse
Affiliation(s)
- Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Xingyu He
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
15
|
Hosseini SY, Mallick R, Mäkinen P, Ylä-Herttuala S. Insights into Prime Editing Technology: A Deep Dive into Fundamentals, Potentials, and Challenges. Hum Gene Ther 2024; 35:649-668. [PMID: 38832869 DOI: 10.1089/hum.2024.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
As the most versatile and precise gene editing technology, prime editing (PE) can establish a durable cure for most human genetic disorders. Several generations of PE have been developed based on an editor machine or prime editing guide RNA (pegRNA) to achieve any kind of genetic correction. However, due to the early stage of development, PE complex elements need to be optimized for more efficient editing. Smart optimization of editor proteins as well as pegRNA has been contemplated by many researchers, but the universal PE machine's current shortcomings remain to be solved. The modification of PE elements, fine-tuning of the host genes, manipulation of epigenetics, and blockage of immune responses could be used to reach more efficient PE. Moreover, the host factors involved in the PE process, such as repair and innate immune system genes, have not been determined, and PE cell context dependency is still poorly understood. Regarding the large size of the PE elements, delivery is a significant challenge and the development of a universal viral or nonviral platform is still far from complete. PE versions with shortened variants of reverse transcriptase are still too large to fit in common viral vectors. Overall, PE faces challenges in optimization for efficiency, high context dependency during the cell cycling, and delivery due to the large size of elements. In addition, immune responses, unpredictability of outcomes, and off-target effects further limit its application, making it essential to address these issues for broader use in nonpersonalized gene editing. Besides, due to the limited number of suitable animal models and computational modeling, the prediction of the PE process remains challenging. In this review, the fundamentals of PE, including generations, potential, optimization, delivery, in vivo barriers, and the future landscape of the technology are discussed.
Collapse
Affiliation(s)
- Seyed Younes Hosseini
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Bacteriology and Virology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petri Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
16
|
Munshi ID, Acharya M, Mukherjee S, Mani I. Recent development in CRISPR-Cas systems for cardiac disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 210:47-93. [PMID: 39824585 DOI: 10.1016/bs.pmbts.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
The CRISPR-Cas system has emerged as a revolutionary tool in genetic research, enabling highly precise gene editing and significantly advancing the field of cardiovascular science. This chapter provides a comprehensive overview of the latest developments in utilizing CRISPR-Cas technologies to investigate and treat heart diseases. It delves into the application of CRISPR-Cas9 for creating accurate models of complex cardiac conditions, such as hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and various arrhythmias, which are essential for understanding disease mechanisms and testing potential therapies. The therapeutic potential of gene editing is also explored, with a focus on genes like PCSK9 and ANGPTL3 that play critical roles in lipid metabolism and cardiovascular health, offering promising avenues for new treatments. Furthermore, the expanding applications of CRISPR in heart tissue regeneration are examined, which could revolutionize the repair of damaged heart tissue. Cutting-edge techniques such as base editing and prime editing are discussed, highlighting their potential to further refine genetic interventions. The discussion concludes by addressing the challenges associated with delivering CRISPR components efficiently and safely, while also exploring recent innovations that may overcome these hurdles, providing insights into the future directions of CRISPR technology in cardiovascular medicine.
Collapse
Affiliation(s)
- Ingita Dey Munshi
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mansi Acharya
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sridip Mukherjee
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
17
|
Pavlova SV, Shulgina AE, Zakian SM, Dementyeva EV. Studying Pathogenetic Contribution of a Variant of Unknown Significance, p.M659I (c.1977G > A) in MYH7, to the Development of Hypertrophic Cardiomyopathy Using CRISPR/Cas9-Engineered Isogenic Induced Pluripotent Stem Cells. Int J Mol Sci 2024; 25:8695. [PMID: 39201382 PMCID: PMC11354791 DOI: 10.3390/ijms25168695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a cardiovascular pathology that is caused by variants in genes encoding sarcomere-associated proteins. However, the clinical significance of numerous variants in HCM-associated genes is still unknown. CRISPR/Cas9 is a tool of nucleotide sequence editing that allows for the unraveling of different biological tasks. In this study, introducing a mutation with CRISPR/Cas9 into induced pluripotent stem cells (iPSCs) of a healthy donor and the directed differentiation of the isogenic iPSC lines into cardiomyocytes were used to assess the pathogenicity of a variant of unknown significance, p.M659I (c.1977G > A) in MYH7, which was found previously in an HCM patient. Using two single-stranded donor oligonucleotides with and without the p.M659I (c.1977G > A) mutation, together with CRISPR/Cas9, an iPSC line heterozygous at the p.M659I (c.1977G > A) variant in MYH7 was generated. No CRISPR/Cas9 off-target activity was observed. The iPSC line with the introduced p.M659I (c.1977G > A) mutation in MYH7 retained its pluripotent state and normal karyotype. Compared to the isogenic control, cardiomyocytes derived from the iPSCs with the introduced p.M659I (c.1977G > A) mutation in MYH7 recapitulated known HCM features: enlarged size, elevated diastolic calcium level, changes in the expression of HCM-related genes, and disrupted energy metabolism. These findings indicate the pathogenicity of the variant.
Collapse
Affiliation(s)
- Sophia V. Pavlova
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.E.S.); (S.M.Z.); (E.V.D.)
| | - Angelina E. Shulgina
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.E.S.); (S.M.Z.); (E.V.D.)
| | - Suren M. Zakian
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.E.S.); (S.M.Z.); (E.V.D.)
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena V. Dementyeva
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.E.S.); (S.M.Z.); (E.V.D.)
| |
Collapse
|
18
|
Olson EN. Myocardial Regeneration: Feasible or Fantasy? Circulation 2024; 150:347-349. [PMID: 39074179 PMCID: PMC11335024 DOI: 10.1161/circulationaha.124.070136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Affiliation(s)
- Eric N Olson
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
19
|
Chang Y, Lan F, Zhang Y, Ma S. Crispr-Based Editing of Human Pluripotent Stem Cells for Disease Modeling. Stem Cell Rev Rep 2024; 20:1151-1161. [PMID: 38564139 DOI: 10.1007/s12015-024-10713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
The CRISPR system, as an effective genome editing technology, has been extensively utilized for the construction of disease models in human pluripotent stem cells. Establishment of a gene mutant or knockout stem cell line typically relies on Cas nuclease-generated double-stranded DNA breaks and exogenous templates, which can produce uncontrollable editing byproducts and toxicity. The recently developed adenine base editors (ABE) have greatly facilitated related research by introducing A/T > G/C mutations in the coding regions or splitting sites (AG-GT) of genes, enabling mutant gene knock-in or knock-out without introducing DNA breaks. In this study, we edit the AG bases in exons anterior to achieve gene knockout via the ABE8e-SpRY, which recognizes most expanded protospacer adjacent motif to target the genome. Except for gene-knockout, ABE8e-SpRY can also efficiently establish disease-related A/T-to-G/C variation cell lines by targeting coding sequences. The method we generated is simple and time-saving, and it only takes two weeks to obtain the desired cell line. This protocol provides operating instructions step-by-step for constructing knockout and point mutation cell lines.
Collapse
Affiliation(s)
- Yun Chang
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, China
| | - Feng Lan
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen Key Laboratory of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Yongshuai Zhang
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, China.
| | - Shuhong Ma
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, China
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen Key Laboratory of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
20
|
Deng D, Zhang Y, Tang B, Zhang Z. Sources and applications of endothelial seed cells: a review. Stem Cell Res Ther 2024; 15:175. [PMID: 38886767 PMCID: PMC11184868 DOI: 10.1186/s13287-024-03773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024] Open
Abstract
Endothelial cells (ECs) are widely used as donor cells in tissue engineering, organoid vascularization, and in vitro microvascular model development. ECs are invaluable tools for disease modeling and drug screening in fundamental research. When treating ischemic diseases, EC engraftment facilitates the restoration of damaged blood vessels, enhancing therapeutic outcomes. This article presents a comprehensive overview of the current sources of ECs, which encompass stem/progenitor cells, primary ECs, cell lineage conversion, and ECs derived from other cellular sources, provides insights into their characteristics, potential applications, discusses challenges, and explores strategies to mitigate these issues. The primary aim is to serve as a reference for selecting suitable EC sources for preclinical research and promote the translation of basic research into clinical applications.
Collapse
Affiliation(s)
- Dan Deng
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yu Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Bo Tang
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Zhihui Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
21
|
Gil-Cabrerizo P, Simon-Yarza T, Garbayo E, Blanco-Prieto MJ. Navigating the landscape of RNA delivery systems in cardiovascular disease therapeutics. Adv Drug Deliv Rev 2024; 208:115302. [PMID: 38574952 DOI: 10.1016/j.addr.2024.115302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Cardiovascular diseases (CVDs) stand as the leading cause of death worldwide, posing a significant global health challenge. Consequently, the development of innovative therapeutic strategies to enhance CVDs treatment is imperative. RNA-based therapies, encompassing non-coding RNAs, mRNA, aptamers, and CRISPR/Cas9 technology, have emerged as promising tools for addressing CVDs. However, inherent challenges associated with RNA, such as poor cellular uptake, susceptibility to RNase degradation, and capture by the reticuloendothelial system, underscore the necessity of combining these therapies with effective drug delivery systems. Various non-viral delivery systems, including extracellular vesicles, lipid-based carriers, polymeric and inorganic nanoparticles, as well as hydrogels, have shown promise in enhancing the efficacy of RNA therapeutics. In this review, we offer an overview of the most relevant RNA-based therapeutic strategies explored for addressing CVDs and emphasize the pivotal role of delivery systems in augmenting their effectiveness. Additionally, we discuss the current status of these therapies and the challenges that hinder their clinical translation.
Collapse
Affiliation(s)
- Paula Gil-Cabrerizo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - Elisa Garbayo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain.
| | - María J Blanco-Prieto
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain.
| |
Collapse
|
22
|
McKenna WJ, Crean A, Greenway S, Tadros R, Veselka J, Woo A. Hypertrophic Cardiomyopathy: Evolution to the Present, Ongoing Challenges, and Opportunities. Can J Cardiol 2024; 40:738-741. [PMID: 38492736 DOI: 10.1016/j.cjca.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Affiliation(s)
- William J McKenna
- Instituto de Investigación Biomédica de A Coruña, Universidade da Coruña, A Coruña, Spain; Institute of Cardiovascular Science, University College London, London, United Kingdom; Cardiovascular Disease Unit, Health in Code S.L., A Coruña, Spain.
| | - Andrew Crean
- Division of Cardiology, University of Manchester, Manchester, United Kingdom
| | - Steven Greenway
- Departments of Pediatrics, Cardiac Sciences, Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Rafik Tadros
- Cardiovascular Genetics Centre, Montreal Heart Institute, and Faculty of Medicine, Université de Montreal, Montreal, Quebec, Canada
| | | | - Anna Woo
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Zhang ML, Li HB, Jin Y. Application and perspective of CRISPR/Cas9 genome editing technology in human diseases modeling and gene therapy. Front Genet 2024; 15:1364742. [PMID: 38666293 PMCID: PMC11043577 DOI: 10.3389/fgene.2024.1364742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) mediated Cas9 nuclease system has been extensively used for genome editing and gene modification in eukaryotic cells. CRISPR/Cas9 technology holds great potential for various applications, including the correction of genetic defects or mutations within the human genome. The application of CRISPR/Cas9 genome editing system in human disease research is anticipated to solve a multitude of intricate molecular biology challenges encountered in life science research. Here, we review the fundamental principles underlying CRISPR/Cas9 technology and its recent application in neurodegenerative diseases, cardiovascular diseases, autoimmune related diseases, and cancer, focusing on the disease modeling and gene therapy potential of CRISPR/Cas9 in these diseases. Finally, we provide an overview of the limitations and future prospects associated with employing CRISPR/Cas9 technology for diseases study and treatment.
Collapse
Affiliation(s)
- Man-Ling Zhang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hong-Bin Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yong Jin
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
24
|
Asif M, Khan WJ, Aslam S, Aslam A, Chowdhury MA. The Use of CRISPR-Cas9 Genetic Technology in Cardiovascular Disease: A Comprehensive Review of Current Progress and Future Prospective. Cureus 2024; 16:e57869. [PMID: 38725755 PMCID: PMC11078688 DOI: 10.7759/cureus.57869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Over the last century, there have been major landmark developments in the field of medicine, enabling us to control and cure various diseases on a larger scale. A few of these include the discovery of antibiotics, the development of vaccines, and the origin of organ and tissue transplants. The continued quest for innovation in microbiology and medicine has helped humankind save millions of lives and decrease morbidity at the global level. Genetic medicine has grown significantly in the last two decades and appears to be the next frontier of curative therapies for chronic diseases. One important landmark in genetic medicine is the development of CRISPR (clustered, regularly interspaced short palindromic repeats) technology. In this article, we describe the basic structure and function of the CRISPR-Cas9 system, which, simply put, consists of an RNA part and a protein. It works as a molecular scissor that can perform targeted cuts followed by repairs in and around the genes of interest to attain favorable translational outcomes. We focused on summarizing recent studies using CRISPR-Cas9 technology in diagnosing and treating cardiovascular disease. These studies are primarily experimental and limited to animal models. However, their results are promising enough to anticipate that this technology will undoubtedly be available in clinical medicine in the coming years. CRISPR-Cas9-mediated gene editing has been used to study and potentially treat congenital heart disease, hyperlipidemias, arrhythmogenic cardiomyopathies, and the prevention of ischemia-reperfusion injury. Despite the current progress, we recognize the several challenges this technology faces, including funding for research, improving precision and reproducible results for human subjects, and establishing protocols for ethical compliance so that it is acceptable to the scientific community and the general public.
Collapse
Affiliation(s)
- Muhammad Asif
- Internal Medicine, University of South Dakota, Sioux Falls, USA
| | - Wahab J Khan
- Internal Medicine, University of South Dakota, Sioux Falls, USA
| | - Sadia Aslam
- Internal Medicine, University of South Dakota, Sioux Falls, USA
| | - Awais Aslam
- Internal Medicine, Essentia Health, Fargo, USA
| | | |
Collapse
|
25
|
Triposkiadis F, Xanthopoulos A, Drakos SG, Boudoulas KD, Briasoulis A, Skoularigis J, Tsioufis K, Boudoulas H, Starling RC. Back to the basics: The need for an etiological classification of chronic heart failure. Curr Probl Cardiol 2024; 49:102460. [PMID: 38346611 DOI: 10.1016/j.cpcardiol.2024.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
The left ventricular (LV) ejection fraction (LVEF), despite its severe limitations, has had an epicentral role in heart failure (HF) classification, management, and risk stratification for decades. The major argument favoring the LVEF based HF classification has been that it defines groups of patients in which treatment is effective. However, this reasoning has recently collapsed, since medical treatment with neurohormonal inhibitors, has proved beneficial in most HF patients regardless of the LVEF. In addition, there has been compelling evidence, that the LVEF provides poor guidance for device treatment of chronic HF (implantation of cardioverter defibrillator, cardiac resynchronization therapy) since sudden cardiac death may occur and cardiac dyssynchronization may be disastrous in all HF patients. The same holds true for LV assist device implantation, in which the LVEF has been used as a surrogate for LV size. In this review article we update the evidence questioning the use of LVEF-based HF classification and argue that guidance of chronic HF treatment should transition to more contemporary concepts. Specifically, we propose an etiologic chronic HF classification predominantly based on epidemiological data, which will be foundational for further higher resolution phenotyping in the emerging era of precision medicine.
Collapse
Affiliation(s)
- Filippos Triposkiadis
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; Department of Cardiology, University Hospital of Larissa, Larissa 41110, Greece.
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, Larissa 41110, Greece
| | - Stavros G Drakos
- University of Utah Health and School of Medicine and Salt Lake VA Medical Center, Salt Lake City, UT 84108, USA
| | | | - Alexandros Briasoulis
- Medical School of Athens, National and Kapodistrian University of Athens, Athens 15772, Greece
| | - John Skoularigis
- Department of Cardiology, University Hospital of Larissa, Larissa 41110, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, Medical School, Hippokration Hospital, University of Athens, Athens 115 27, Greece
| | | | - Randall C Starling
- Department of Cardiovascular Medicine, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
26
|
Mesquita T, Miguel-Dos-Santos R, Cingolani E. Biological Pacemakers: Present and Future. Circ Res 2024; 134:837-841. [PMID: 38547251 DOI: 10.1161/circresaha.123.323180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Affiliation(s)
- Thassio Mesquita
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Eugenio Cingolani
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
27
|
Zhang J, Peng Y, Fu W, Wang R, Cao J, Li S, Tian X, Li Z, Hua C, Zhai Y, Liu Y, Liu M, Sun J, Li X, Zhao X, Dong J. PLEKHM2 deficiency induces impaired mitochondrial clearance and elevated ROS levels in human iPSC-derived cardiomyocytes. Cell Death Discov 2024; 10:142. [PMID: 38490981 PMCID: PMC10942999 DOI: 10.1038/s41420-024-01907-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024] Open
Abstract
Pleckstrin homology domain-containing family M member 2 (PLEKHM2) is an essential adaptor for lysosomal trafficking and its homozygous truncation have been reported to cause early onset dilated cardiomyopathy (DCM). However, the molecular mechanism of PLEKHM2 deficiency in DCM pathogenesis and progression is poorly understood. Here, we generated an in vitro model of PLEKHM2 knockout (KO) induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to elucidate the potential pathogenic mechanism of PLEKHM2-deficient cardiomyopathy. PLEKHM2-KO hiPSC-CMs developed disease phenotypes with reduced contractility and impaired calcium handling. Subsequent RNA sequencing (RNA-seq) analysis revealed altered expression of genes involved in mitochondrial function, autophagy and apoptosis in PLEKHM2-KO hiPSC-CMs. Further molecular experiments confirmed PLEKHM2 deficiency impaired autophagy and resulted in accumulation of damaged mitochondria, which triggered increased reactive oxygen species (ROS) levels and decreased mitochondrial membrane potential (Δψm). Importantly, the elevated ROS levels caused oxidative stress-induced damage to nearby healthy mitochondria, resulting in extensive Δψm destabilization, and ultimately leading to impaired mitochondrial function and myocardial contractility. Moreover, ROS inhibition attenuated oxidative stress-induced mitochondrial damage, thereby partially rescued PLEKHM2 deficiency-induced disease phenotypes. Remarkably, PLEKHM2-WT overexpression restored autophagic flux and rescued mitochondrial function and myocardial contractility in PLEKHM2-KO hiPSC-CMs. Taken together, these results suggested that impaired mitochondrial clearance and increased ROS levels play important roles in PLEKHM2-deficient cardiomyopathy, and PLEKHM2-WT overexpression can improve mitochondrial function and rescue PLEKHM2-deficient cardiomyopathy.
Collapse
Affiliation(s)
- Jianchao Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Ying Peng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Wanrong Fu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Ruifei Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinhua Cao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Shuang Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaoxu Tian
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Zhonggen Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Chongpei Hua
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Yafei Zhai
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Yangyang Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Mengduan Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Jihong Sun
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Xiaowei Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China.
| | - Xiaoyan Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China.
| | - Jianzeng Dong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China.
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Centre for Cardiovascular Diseases, No. 2 Beijing Anzhen Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
28
|
Li L, Zhang C, Cao Z, Ma L, Liu C, Lan X, Qu C, Fu P, Luo R, Wang Y. Passivation protein-adhesion platform promoting stent reendothelialization using two-electron-assisted oxidation of polyphenols. Biomaterials 2024; 305:122423. [PMID: 38142470 DOI: 10.1016/j.biomaterials.2023.122423] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023]
Abstract
Superhydrophilic surfaces play an important role in nature. Inspired by this, scientists have designed various superhydrophilic materials that are widely used in the field of biomaterials, such as PEG molecular brushes and zwitterionic materials. However, superhydrophilic coatings with only anti-fouling properties do not satisfy the requirements for rapid reendothelialization of cardiovascular stent surfaces. Herein, a novel polyphenol superhydrophilic surface with passivated protein-adsorption properties was developed using two-electron oxidation of dopamine and polyphenols. This coating has a multiscale effects: 1) macroscopically: anti-fouling properties of superhydrophilic; 2) microscopically: protein adhesion properties of active groups (quinone-, amino-, hydroxyphenyl groups and aromatic ring). Polyphenols not only enhance the ability of coating to passivate protein-adsorption, but also make the coating have polyphenol-related biological functions. Therefore, the polyphenol and passivated protein-adsorption platform together maintain the stability of the scaffold microenvironment. This, in turn, provides favorable conditions for the growth of endothelial cells on the scaffold surface. In vivo implantation of the coated stents into the abdominal aorta resulted in uniform and dense endothelial cells covering the surface of the neointima. Moreover, new endothelial cells secreted large amounts of functional endothelial nitric oxide synthase like healthy endothelial cells. These results indicate that the polyphenol superhydrophilic coating potentially resists intra-stent restenosis and promotes surface reendothelialization. Hence, polyphenol superhydrophilic coatings with passivated protein-adsorption properties constructed by two-electron-assisted oxidation are a highly effective and versatile surface-modification strategy for implantable cardiovascular devices.
Collapse
Affiliation(s)
- Linhua Li
- Kidney Research Laboratory, Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Chunle Zhang
- Kidney Research Laboratory, Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhengjiang Cao
- Kidney Research Laboratory, Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Liang Ma
- Kidney Research Laboratory, Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chang Liu
- Kidney Research Laboratory, Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Chao Qu
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Ping Fu
- Kidney Research Laboratory, Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
29
|
Cao J, Wei Z, Nie Y, Chen HZ. Therapeutic potential of alternative splicing in cardiovascular diseases. EBioMedicine 2024; 101:104995. [PMID: 38350330 PMCID: PMC10874720 DOI: 10.1016/j.ebiom.2024.104995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/15/2024] Open
Abstract
RNA splicing is an important RNA processing step required by multiexon protein-coding mRNAs and some noncoding RNAs. Precise RNA splicing is required for maintaining gene and cell function; however, mis-spliced RNA transcripts can lead to loss- or gain-of-function effects in human diseases. Mis-spliced RNAs induced by gene mutations or the dysregulation of splicing regulators may result in frameshifts, nonsense-mediated decay (NMD), or inclusion/exclusion of exons. Genetic animal models have characterised multiple splicing factors required for cardiac development or function. Moreover, sarcomeric and ion channel genes, which are closely associated with cardiovascular function and disease, are hotspots for AS. Here, we summarise splicing factors and their targets that are associated with cardiovascular diseases, introduce some therapies potentially related to pathological AS targets, and raise outstanding questions and future directions in this field.
Collapse
Affiliation(s)
- Jun Cao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China; University of Texas Medical Branch at Galveston, TX, 77555, USA
| | - Ziyu Wei
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Hou-Zao Chen
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China; Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
30
|
Caudal A, Snyder MP, Wu JC. Harnessing human genetics and stem cells for precision cardiovascular medicine. CELL GENOMICS 2024; 4:100445. [PMID: 38359791 PMCID: PMC10879032 DOI: 10.1016/j.xgen.2023.100445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/22/2023] [Accepted: 10/25/2023] [Indexed: 02/17/2024]
Abstract
Human induced pluripotent stem cell (iPSC) platforms are valuable for biomedical and pharmaceutical research by providing tissue-specific human cells that retain patients' genetic integrity and display disease phenotypes in a dish. Looking forward, combining iPSC phenotyping platforms with genomic and screening technologies will continue to pave new directions for precision medicine, including genetic prediction, visualization, and treatment of heart disease. This review summarizes the recent use of iPSC technology to unpack the influence of genetic variants in cardiovascular pathology. We focus on various state-of-the-art genomic tools for cardiovascular therapies-including the expansion of genetic toolkits for molecular interrogation, in vitro population studies, and function-based drug screening-and their current applications in patient- and genome-edited iPSC platforms that are heralding new avenues for cardiovascular research.
Collapse
Affiliation(s)
- Arianne Caudal
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Greenstone Biosciences, Palo Alto, CA 94304, USA.
| |
Collapse
|
31
|
Liu S, Liu H, Wang X, Shi L. The immune system of prokaryotes: potential applications and implications for gene editing. Biotechnol J 2024; 19:e2300352. [PMID: 38403433 DOI: 10.1002/biot.202300352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/30/2023] [Accepted: 12/28/2023] [Indexed: 02/27/2024]
Abstract
Gene therapy has revolutionized the treatment of genetic diseases. Spearheading this revolution are sophisticated genome editing methods such as TALENs, ZFNs, and CRISPR-Cas, which trace their origins back to prokaryotic immune systems. Prokaryotes have developed various antiviral defense systems to combat viral attacks and the invasion of genetic elements. The comprehension of these defense mechanisms has paved the way for the development of indispensable tools in molecular biology. Among them, restriction endonuclease originates from the innate immune system of bacteria. The CRISPR-Cas system, a widely applied genome editing technology, is derived from the prokaryotic adaptive immune system. Single-base editing is a precise editing tool based on CRISPR-Cas system that involves deamination of target base. It is worth noting that prokaryotes possess deamination enzymes as part of their defense arsenal over foreign genetic material. Furthermore, prokaryotic Argonauts (pAgo) proteins, also function in anti-phage defense, play an important role in complementing the CRISPR-Cas system by addressing certain limitations it may have. Recent studies have also shed light on the significance of Retron, a reverse transcription transposon previously showed potential in genome editing, has also come to light in the realm of prokaryotic immunity. These noteworthy findings highlight the importance of studying prokaryotic immune system for advancing genome editing techniques. Here, both the origin of prokaryotic immunity underlying aforementioned genome editing tools, and potential applications of deaminase, pAgo protein and reverse transcriptase in genome editing among prokaryotes were introduced, thus emphasizing the fundamental mechanism and significance of prokaryotic immunity.
Collapse
Affiliation(s)
- Siyang Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Hongling Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xue Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
32
|
Lebek S, Caravia XM, Straub LG, Alzhanov D, Tan W, Li H, McAnally JR, Chen K, Xu L, Scherer PE, Liu N, Bassel-Duby R, Olson EN. CRISPR-Cas9 base editing of pathogenic CaMKIIδ improves cardiac function in a humanized mouse model. J Clin Invest 2024; 134:e175164. [PMID: 37856214 PMCID: PMC10760954 DOI: 10.1172/jci175164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023] Open
Abstract
Cardiovascular diseases are the most common cause of worldwide morbidity and mortality, highlighting the necessity for advanced therapeutic strategies. Ca2+/calmodulin-dependent protein kinase IIδ (CaMKIIδ) is a prominent inducer of various cardiac disorders, which is mediated by 2 oxidation-sensitive methionine residues within the regulatory domain. We have previously shown that ablation of CaMKIIδ oxidation by CRISPR-Cas9 base editing enables the heart to recover function from otherwise severe damage following ischemia/reperfusion (IR) injury. Here, we extended this therapeutic concept toward potential clinical translation. We generated a humanized CAMK2D knockin mouse model in which the genomic sequence encoding the entire regulatory domain was replaced with the human sequence. This enabled comparison and optimization of two different editing strategies for the human genome in mice. To edit CAMK2D in vivo, we packaged the optimized editing components into an engineered myotropic adeno-associated virus (MyoAAV 2A), which enabled efficient delivery at a very low AAV dose into the humanized mice at the time of IR injury. CAMK2D-edited mice recovered cardiac function, showed improved exercise performance, and were protected from myocardial fibrosis, which was otherwise observed in injured control mice after IR. Our findings identify a potentially effective strategy for cardioprotection in response to oxidative damage.
Collapse
Affiliation(s)
- Simon Lebek
- Department of Molecular Biology and
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Xurde M. Caravia
- Department of Molecular Biology and
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Damir Alzhanov
- Department of Molecular Biology and
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Wei Tan
- Department of Molecular Biology and
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hui Li
- Department of Molecular Biology and
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John R. McAnally
- Department of Molecular Biology and
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Ning Liu
- Department of Molecular Biology and
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology and
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Eric N. Olson
- Department of Molecular Biology and
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
33
|
Hosseini SY, Mallick R, Mäkinen P, Ylä-Herttuala S. Navigating the prime editing strategy to treat cardiovascular genetic disorders in transforming heart health. Expert Rev Cardiovasc Ther 2024; 22:75-89. [PMID: 38494784 DOI: 10.1080/14779072.2024.2328642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION After understanding the genetic basis of cardiovascular disorders, the discovery of prime editing (PE), has opened new horizons for finding their cures. PE strategy is the most versatile editing tool to change cardiac genetic background for therapeutic interventions. The optimization of elements, prediction of efficiency, and discovery of the involved genes regulating the process have not been completed. The large size of the cargo and multi-elementary structure makes the in vivo heart delivery challenging. AREAS COVERED Updated from recent published studies, the fundamentals of the PEs, their application in cardiology, potentials, shortcomings, and the future perspectives for the treatment of cardiac-related genetic disorders will be discussed. EXPERT OPINION The ideal PE for the heart should be tissue-specific, regulatable, less immunogenic, high transducing, and safe. However, low efficiency, sup-optimal PE architecture, the large size of required elements, the unclear role of transcriptomics on the process, unpredictable off-target effects, and its context-dependency are subjects that need to be considered. It is also of great importance to see how beneficial or detrimental cell cycle or epigenomic modifier is to bring changes into cardiac cells. The PE delivery is challenging due to the size, multi-component properties of the editors and liver sink.
Collapse
Affiliation(s)
- Seyed Younes Hosseini
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Bacteriology and Virology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petri Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
34
|
Shafi O, Siddiqui G, Jaffry HA. The benign nature and rare occurrence of cardiac myxoma as a possible consequence of the limited cardiac proliferative/ regenerative potential: a systematic review. BMC Cancer 2023; 23:1245. [PMID: 38110859 PMCID: PMC10726542 DOI: 10.1186/s12885-023-11723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Cardiac Myxoma is a primary tumor of heart. Its origins, rarity of the occurrence of primary cardiac tumors and how it may be related to limited cardiac regenerative potential, are not yet entirely known. This study investigates the key cardiac genes/ transcription factors (TFs) and signaling pathways to understand these important questions. METHODS Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving cardiac myxoma, cardiac genes/TFs/signaling pathways and their roles in cardiogenesis, proliferation, differentiation, key interactions and tumorigenesis, with focus on cardiomyocytes. RESULTS The cardiac genetic landscape is governed by a very tight control between proliferation and differentiation-related genes/TFs/pathways. Cardiac myxoma originates possibly as a consequence of dysregulations in the gene expression of differentiation regulators including Tbx5, GATA4, HAND1/2, MYOCD, HOPX, BMPs. Such dysregulations switch the expression of cardiomyocytes into progenitor-like state in cardiac myxoma development by dysregulating Isl1, Baf60 complex, Wnt, FGF, Notch, Mef2c and others. The Nkx2-5 and MSX2 contribute predominantly to both proliferation and differentiation of Cardiac Progenitor Cells (CPCs), may possibly serve roles based on the microenvironment and the direction of cell circuitry in cardiac tumorigenesis. The Nkx2-5 in cardiac myxoma may serve to limit progression of tumorigenesis as it has massive control over the proliferation of CPCs. The cardiac cell type-specific genetic programming plays governing role in controlling the tumorigenesis and regenerative potential. CONCLUSION The cardiomyocytes have very limited proliferative and regenerative potential. They survive for long periods of time and tightly maintain the gene expression of differentiation genes such as Tbx5, GATA4 that interact with tumor suppressors (TS) and exert TS like effect. The total effect such gene expression exerts is responsible for the rare occurrence and benign nature of primary cardiac tumors. This prevents the progression of tumorigenesis. But this also limits the regenerative and proliferative potential of cardiomyocytes. Cardiac Myxoma develops as a consequence of dysregulations in these key genes which revert the cells towards progenitor-like state, hallmark of CM. The CM development in carney complex also signifies the role of TS in cardiac cells.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan.
| | - Ghazia Siddiqui
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| | - Hassam A Jaffry
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
35
|
Lebek S, Caravia XM, Chemello F, Tan W, McAnally JR, Chen K, Xu L, Liu N, Bassel-Duby R, Olson EN. Elimination of CaMKIIδ Autophosphorylation by CRISPR-Cas9 Base Editing Improves Survival and Cardiac Function in Heart Failure in Mice. Circulation 2023; 148:1490-1504. [PMID: 37712250 PMCID: PMC10842988 DOI: 10.1161/circulationaha.123.065117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Cardiovascular diseases are the main cause of worldwide morbidity and mortality, highlighting the need for new therapeutic strategies. Autophosphorylation and subsequent overactivation of the cardiac stress-responsive enzyme CaMKIIδ (Ca2+/calmodulin-dependent protein kinase IIδ) serves as a central driver of multiple cardiac disorders. METHODS To develop a comprehensive therapy for heart failure, we used CRISPR-Cas9 adenine base editing to ablate the autophosphorylation site of CaMKIIδ. We generated mice harboring a phospho-resistant CaMKIIδ mutation in the germline and subjected these mice to severe transverse aortic constriction, a model for heart failure. Cardiac function, transcriptional changes, apoptosis, and fibrosis were assessed by echocardiography, RNA sequencing, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and standard histology, respectively. Specificity toward CaMKIIδ gene editing was assessed using deep amplicon sequencing. Cellular Ca2+ homeostasis was analyzed using epifluorescence microscopy in Fura-2-loaded cardiomyocytes. RESULTS Within 2 weeks after severe transverse aortic constriction surgery, 65% of all wild-type mice died, and the surviving mice showed dramatically impaired cardiac function. In contrast to wild-type mice, CaMKIIδ phospho-resistant gene-edited mice showed a mortality rate of only 11% and exhibited substantially improved cardiac function after severe transverse aortic constriction. Moreover, CaMKIIδ phospho-resistant mice were protected from heart failure-related aberrant changes in cardiac gene expression, myocardial apoptosis, and subsequent fibrosis, which were observed in wild-type mice after severe transverse aortic constriction. On the basis of identical mouse and human genome sequences encoding the autophosphorylation site of CaMKIIδ, we deployed the same editing strategy to modify this pathogenic site in human induced pluripotent stem cells. It is notable that we detected a >2000-fold increased specificity for editing of CaMKIIδ compared with other CaMKII isoforms, which is an important safety feature. While wild-type cardiomyocytes showed impaired Ca2+ transients and an increased frequency of arrhythmias after chronic β-adrenergic stress, CaMKIIδ-edited cardiomyocytes were protected from these adverse responses. CONCLUSIONS Ablation of CaMKIIδ autophosphorylation by adenine base editing may offer a potential broad-based therapeutic concept for human cardiac disease.
Collapse
Affiliation(s)
- Simon Lebek
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
- Department of Internal Medicine II, University Hospital Regensburg; Regensburg, Germany
| | - Xurde M. Caravia
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Francesco Chemello
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Wei Tan
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - John R. McAnally
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| |
Collapse
|
36
|
Sowbhagya R, Muktha H, Ramakrishnaiah TN, Surendra AS, Tanvi Y, Nivitha K, Rajashekara S. CRISPR/Cas-mediated genome editing in mice for the development of drug delivery mechanism. Mol Biol Rep 2023; 50:7729-7743. [PMID: 37438488 DOI: 10.1007/s11033-023-08659-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/30/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND To manipulate particular locations in the bacterial genome, researchers have recently resorted to a group of unique sequences in bacterial genomes that are responsible for safeguarding bacteria against bacteriophages. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) are two such systems, each of which consists of an RNA component and an enzyme component. METHODS AND RESULTS This review focuses primarily on how CRISPR/Cas9 technology can be used to make models to study human diseases in mice. Creating RNA molecules that direct endonucleases to a specific position in the genome are crucial for achieving a specific genetic modification. CRISPR/Cas9 technology has allowed scientists to edit the genome with greater precision than ever before. Researchers can use knock-in and knock-out methods to model human diseases such as Neurological, cardiovascular disease, and cancer. CONCLUSIONS In terms of developing innovative methods to discover ailments for diseases/disorders, improved CRISPR/Cas9 technology will provide easier access to valuable novel animal models.
Collapse
Affiliation(s)
- Ramachandregowda Sowbhagya
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka, 560 054, India
| | - Harsha Muktha
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka, 560 054, India
| | - Thippenahalli Narasimhaiah Ramakrishnaiah
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka, 560 054, India
| | - Adagur Sudarshan Surendra
- Department of Biochemistry, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka, 560 054, India
| | - Yesudas Tanvi
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka, 560 054, India
| | - Karayi Nivitha
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka, 560 054, India
| | - Somashekara Rajashekara
- Centre for Applied Genetics, Department of Studies in Zoology, Bangalore University, Jnana Bharathi Campus, Off Mysuru Road, Bengaluru, Karnataka, 560 056, India.
| |
Collapse
|
37
|
Gotthardt M, Badillo-Lisakowski V, Parikh VN, Ashley E, Furtado M, Carmo-Fonseca M, Schudy S, Meder B, Grosch M, Steinmetz L, Crocini C, Leinwand L. Cardiac splicing as a diagnostic and therapeutic target. Nat Rev Cardiol 2023; 20:517-530. [PMID: 36653465 DOI: 10.1038/s41569-022-00828-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/19/2023]
Abstract
Despite advances in therapeutics for heart failure and arrhythmias, a substantial proportion of patients with cardiomyopathy do not respond to interventions, indicating a need to identify novel modifiable myocardial pathobiology. Human genetic variation associated with severe forms of cardiomyopathy and arrhythmias has highlighted the crucial role of alternative splicing in myocardial health and disease, given that it determines which mature RNA transcripts drive the mechanical, structural, signalling and metabolic properties of the heart. In this Review, we discuss how the analysis of cardiac isoform expression has been facilitated by technical advances in multiomics and long-read and single-cell sequencing technologies. The resulting insights into the regulation of alternative splicing - including the identification of cardiac splice regulators as therapeutic targets and the development of a translational pipeline to evaluate splice modulators in human engineered heart tissue, animal models and clinical trials - provide a basis for improved diagnosis and therapy. Finally, we consider how the medical and scientific communities can benefit from facilitated acquisition and interpretation of splicing data towards improved clinical decision-making and patient care.
Collapse
Affiliation(s)
- Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research Partner Site Berlin), Berlin, Germany.
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Victor Badillo-Lisakowski
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research Partner Site Berlin), Berlin, Germany
| | - Victoria Nicole Parikh
- Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Euan Ashley
- Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Palo Alto, CA, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Marta Furtado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sarah Schudy
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research Partner Site Heidelberg-Mannheim), Heidelberg, Germany
| | - Markus Grosch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Lars Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Claudia Crocini
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Leslie Leinwand
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| |
Collapse
|
38
|
Lother A, Kohl P. The heterocellular heart: identities, interactions, and implications for cardiology. Basic Res Cardiol 2023; 118:30. [PMID: 37495826 PMCID: PMC10371928 DOI: 10.1007/s00395-023-01000-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
The heterocellular nature of the heart has been receiving increasing attention in recent years. In addition to cardiomyocytes as the prototypical cell type of the heart, non-myocytes such as endothelial cells, fibroblasts, or immune cells are coming more into focus. The rise of single-cell sequencing technologies enables identification of ever more subtle differences and has reignited the question of what defines a cell's identity. Here we provide an overview of the major cardiac cell types, describe their roles in homeostasis, and outline recent findings on non-canonical functions that may be of relevance for cardiology. We highlight modes of biochemical and biophysical interactions between different cardiac cell types and discuss the potential implications of the heterocellular nature of the heart for basic research and therapeutic interventions.
Collapse
Affiliation(s)
- Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
- Interdisciplinary Medical Intensive Care, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany.
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University Heart Center, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
39
|
Pérez PR, Hylind RJ, Roston TM, Bezzerides VJ, Abrams DJ. Gene Therapy for Catecholaminergic Polymorphic Ventricular Tachycardia. Heart Lung Circ 2023; 32:790-797. [PMID: 37032191 DOI: 10.1016/j.hlc.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/13/2022] [Accepted: 01/04/2023] [Indexed: 04/11/2023]
Abstract
Over the last three decades, the genetic basis of various inherited arrhythmia syndromes has been elucidated, providing key insights into cardiomyocyte biology and various regulatory pathways associated with cellular excitation, contraction, and repolarisation. As varying techniques to manipulate genetic sequence, gene expression, and different cellular pathways have become increasingly defined and understood, the potential to apply various gene-based therapies to inherited arrhythmia has been explored. The promise of gene therapy has generated significant interest in the medical and lay press, providing hope for sufferers of seemingly incurable disorders to imagine a future without repeated medical intervention, and, in the case of various cardiac disorders, without the risk of sudden death. In this review, we focus on catecholaminergic polymorphic ventricular tachycardia (CPVT), discussing the clinical manifestations, genetic basis, and molecular biology, together with current avenues of research related to gene therapy.
Collapse
Affiliation(s)
- Paloma Remior Pérez
- Center for Cardiovascular Genetics, Boston Children's Hospital, Harvard Medical School, Boston MA, USA; Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Robyn J Hylind
- Center for Cardiovascular Genetics, Boston Children's Hospital, Harvard Medical School, Boston MA, USA
| | - Thomas M Roston
- Center for Cardiovascular Genetics, Boston Children's Hospital, Harvard Medical School, Boston MA, USA; Clinician Investigator Program, The University of British Columbia, Vancouver, Canada
| | - Vassilios J Bezzerides
- Center for Cardiovascular Genetics, Boston Children's Hospital, Harvard Medical School, Boston MA, USA.
| | - Dominic J Abrams
- Center for Cardiovascular Genetics, Boston Children's Hospital, Harvard Medical School, Boston MA, USA.
| |
Collapse
|
40
|
Moore OM, Ho KS, Copeland JS, Parthasarathy V, Wehrens XHT. Genome Editing and Cardiac Arrhythmias. Cells 2023; 12:1363. [PMID: 37408197 PMCID: PMC10216508 DOI: 10.3390/cells12101363] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
This article reviews progress in the field of cardiac genome editing, in particular, its potential utility in treating cardiac arrhythmias. First, we discuss genome editing methods by which DNA can be disrupted, inserted, deleted, or corrected in cardiomyocytes. Second, we provide an overview of in vivo genome editing in preclinical models of heritable and acquired arrhythmias. Third, we discuss recent advancements in cardiac gene transfer, including delivery methods, gene expression optimization, and potential adverse effects associated with therapeutic somatic genome editing. While genome editing for cardiac arrhythmias is still in its infancy, this approach holds great promise, especially for inherited arrhythmia syndromes with a defined genetic defect.
Collapse
Affiliation(s)
- Oliver M. Moore
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin S. Ho
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Juwan S. Copeland
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vaidya Parthasarathy
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xander H. T. Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
41
|
Kyriakopoulou E, Monnikhof T, van Rooij E. Gene editing innovations and their applications in cardiomyopathy research. Dis Model Mech 2023; 16:dmm050088. [PMID: 37222281 PMCID: PMC10233723 DOI: 10.1242/dmm.050088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Cardiomyopathies are among the major triggers of heart failure, but their clinical and genetic complexity have hampered our understanding of these disorders and delayed the development of effective treatments. Alongside the recent identification of multiple cardiomyopathy-associated genetic variants, advances in genome editing are providing new opportunities for cardiac disease modeling and therapeutic intervention, both in vitro and in vivo. Two recent innovations in this field, prime and base editors, have improved editing precision and efficiency, and are opening up new possibilities for gene editing of postmitotic tissues, such as the heart. Here, we review recent advances in prime and base editors, the methods to optimize their delivery and targeting efficiency, their strengths and limitations, and the challenges that remain to be addressed to improve the application of these tools to the heart and their translation to the clinic.
Collapse
Affiliation(s)
- Eirini Kyriakopoulou
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, 3584CT Utrecht, The Netherlands
| | - Thomas Monnikhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, 3584CT Utrecht, The Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, 3584CT Utrecht, The Netherlands
- Department of Cardiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| |
Collapse
|
42
|
Zheng Y, VanDusen NJ. Massively Parallel Reporter Assays for High-Throughput In Vivo Analysis of Cis-Regulatory Elements. J Cardiovasc Dev Dis 2023; 10:jcdd10040144. [PMID: 37103023 PMCID: PMC10146671 DOI: 10.3390/jcdd10040144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
The rapid improvement of descriptive genomic technologies has fueled a dramatic increase in hypothesized connections between cardiovascular gene expression and phenotypes. However, in vivo testing of these hypotheses has predominantly been relegated to slow, expensive, and linear generation of genetically modified mice. In the study of genomic cis-regulatory elements, generation of mice featuring transgenic reporters or cis-regulatory element knockout remains the standard approach. While the data obtained is of high quality, the approach is insufficient to keep pace with candidate identification and therefore results in biases introduced during the selection of candidates for validation. However, recent advances across a range of disciplines are converging to enable functional genomic assays that can be conducted in a high-throughput manner. Here, we review one such method, massively parallel reporter assays (MPRAs), in which the activities of thousands of candidate genomic regulatory elements are simultaneously assessed via the next-generation sequencing of a barcoded reporter transcript. We discuss best practices for MPRA design and use, with a focus on practical considerations, and review how this emerging technology has been successfully deployed in vivo. Finally, we discuss how MPRAs are likely to evolve and be used in future cardiovascular research.
Collapse
|
43
|
Kawaguchi N, Nakanishi T. Animal Disease Models and Patient-iPS-Cell-Derived In Vitro Disease Models for Cardiovascular Biology-How Close to Disease? BIOLOGY 2023; 12:468. [PMID: 36979160 PMCID: PMC10045735 DOI: 10.3390/biology12030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023]
Abstract
Currently, zebrafish, rodents, canines, and pigs are the primary disease models used in cardiovascular research. In general, larger animals have more physiological similarities to humans, making better disease models. However, they can have restricted or limited use because they are difficult to handle and maintain. Moreover, animal welfare laws regulate the use of experimental animals. Different species have different mechanisms of disease onset. Organs in each animal species have different characteristics depending on their evolutionary history and living environment. For example, mice have higher heart rates than humans. Nonetheless, preclinical studies have used animals to evaluate the safety and efficacy of human drugs because no other complementary method exists. Hence, we need to evaluate the similarities and differences in disease mechanisms between humans and experimental animals. The translation of animal data to humans contributes to eliminating the gap between these two. In vitro disease models have been used as another alternative for human disease models since the discovery of induced pluripotent stem cells (iPSCs). Human cardiomyocytes have been generated from patient-derived iPSCs, which are genetically identical to the derived patients. Researchers have attempted to develop in vivo mimicking 3D culture systems. In this review, we explore the possible uses of animal disease models, iPSC-derived in vitro disease models, humanized animals, and the recent challenges of machine learning. The combination of these methods will make disease models more similar to human disease.
Collapse
Affiliation(s)
- Nanako Kawaguchi
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan;
| | | |
Collapse
|
44
|
Li ZH, Wang J, Xu JP, Wang J, Yang X. Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research. Mil Med Res 2023; 10:12. [PMID: 36895064 PMCID: PMC9999643 DOI: 10.1186/s40779-023-00447-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
The rapid development of genome editing technology has brought major breakthroughs in the fields of life science and medicine. In recent years, the clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing toolbox has been greatly expanded, not only with emerging CRISPR-associated protein (Cas) nucleases, but also novel applications through combination with diverse effectors. Recently, transposon-associated programmable RNA-guided genome editing systems have been uncovered, adding myriads of potential new tools to the genome editing toolbox. CRISPR-based genome editing technology has also revolutionized cardiovascular research. Here we first summarize the advances involving newly identified Cas orthologs, engineered variants and novel genome editing systems, and then discuss the applications of the CRISPR-Cas systems in precise genome editing, such as base editing and prime editing. We also highlight recent progress in cardiovascular research using CRISPR-based genome editing technologies, including the generation of genetically modified in vitro and animal models of cardiovascular diseases (CVD) as well as the applications in treating different types of CVD. Finally, the current limitations and future prospects of genome editing technologies are discussed.
Collapse
Affiliation(s)
- Zhen-Hua Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, 100071, China
| | - Jun Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, 100071, China
| | - Jing-Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, 100071, China.,Yaneng BIOScience (Shenzhen) Co., Ltd., Shenzhen, 518102, Guangdong, China
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, 100071, China.
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, 100071, China.
| |
Collapse
|
45
|
Lebek S, Chemello F, Caravia XM, Tan W, Li H, Chen K, Xu L, Liu N, Bassel-Duby R, Olson EN. Ablation of CaMKIIδ oxidation by CRISPR-Cas9 base editing as a therapy for cardiac disease. Science 2023; 379:179-185. [PMID: 36634166 PMCID: PMC10150399 DOI: 10.1126/science.ade1105] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
CRISPR-Cas9 gene editing is emerging as a prospective therapy for genomic mutations. However, current editing approaches are directed primarily toward relatively small cohorts of patients with specific mutations. Here, we describe a cardioprotective strategy potentially applicable to a broad range of patients with heart disease. We used base editing to ablate the oxidative activation sites of CaMKIIδ, a primary driver of cardiac disease. We show in cardiomyocytes derived from human induced pluripotent stem cells that editing the CaMKIIδ gene to eliminate oxidation-sensitive methionine residues confers protection from ischemia/reperfusion (IR) injury. Moreover, CaMKIIδ editing in mice at the time of IR enables the heart to recover function from otherwise severe damage. CaMKIIδ gene editing may thus represent a permanent and advanced strategy for heart disease therapy.
Collapse
Affiliation(s)
- Simon Lebek
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Francesco Chemello
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xurde M Caravia
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei Tan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hui Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
46
|
Min S, Cho SW. Engineered human cardiac tissues for modeling heart diseases. BMB Rep 2023; 56:32-42. [PMID: 36443005 PMCID: PMC9887099 DOI: 10.5483/bmbrep.2022-0185] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 07/30/2023] Open
Abstract
Heart disease is one of the major life-threatening diseases with high mortality and incidence worldwide. Several model systems, such as primary cells and animals, have been used to understand heart diseases and establish appropriate treatments. However, they have limitations in accuracy and reproducibility in recapitulating disease pathophysiology and evaluating drug responses. In recent years, three-dimensional (3D) cardiac tissue models produced using tissue engineering technology and human cells have outperformed conventional models. In particular, the integration of cell reprogramming techniques with bioengineering platforms (e.g., microfluidics, scaffolds, bioprinting, and biophysical stimuli) has facilitated the development of heart-ona- chip, cardiac spheroid/organoid, and engineered heart tissue (EHT) to recapitulate the structural and functional features of the native human heart. These cardiac models have improved heart disease modeling and toxicological evaluation. In this review, we summarize the cell types for the fabrication of cardiac tissue models, introduce diverse 3D human cardiac tissue models, and discuss the strategies to enhance their complexity and maturity. Finally, recent studies in the modeling of various heart diseases are reviewed. [BMB Reports 2023; 56(1): 32-42].
Collapse
Affiliation(s)
- Sungjin Min
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
| |
Collapse
|
47
|
Min S, Cho SW. Engineered human cardiac tissues for modeling heart diseases. BMB Rep 2023; 56:32-42. [PMID: 36443005 PMCID: PMC9887099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 01/28/2023] Open
Abstract
Heart disease is one of the major life-threatening diseases with high mortality and incidence worldwide. Several model systems, such as primary cells and animals, have been used to understand heart diseases and establish appropriate treatments. However, they have limitations in accuracy and reproducibility in recapitulating disease pathophysiology and evaluating drug responses. In recent years, three-dimensional (3D) cardiac tissue models produced using tissue engineering technology and human cells have outperformed conventional models. In particular, the integration of cell reprogramming techniques with bioengineering platforms (e.g., microfluidics, scaffolds, bioprinting, and biophysical stimuli) has facilitated the development of heart-ona- chip, cardiac spheroid/organoid, and engineered heart tissue (EHT) to recapitulate the structural and functional features of the native human heart. These cardiac models have improved heart disease modeling and toxicological evaluation. In this review, we summarize the cell types for the fabrication of cardiac tissue models, introduce diverse 3D human cardiac tissue models, and discuss the strategies to enhance their complexity and maturity. Finally, recent studies in the modeling of various heart diseases are reviewed. [BMB Reports 2023; 56(1): 32-42].
Collapse
Affiliation(s)
- Sungjin Min
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
| |
Collapse
|
48
|
He X, Liang J, Paul C, Huang W, Dutta S, Wang Y. Advances in Cellular Reprogramming-Based Approaches for Heart Regenerative Repair. Cells 2022; 11:3914. [PMID: 36497171 PMCID: PMC9740402 DOI: 10.3390/cells11233914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Continuous loss of cardiomyocytes (CMs) is one of the fundamental characteristics of many heart diseases, which eventually can lead to heart failure. Due to the limited proliferation ability of human adult CMs, treatment efficacy has been limited in terms of fully repairing damaged hearts. It has been shown that cell lineage conversion can be achieved by using cell reprogramming approaches, including human induced pluripotent stem cells (hiPSCs), providing a promising therapeutic for regenerative heart medicine. Recent studies using advanced cellular reprogramming-based techniques have also contributed some new strategies for regenerative heart repair. In this review, hiPSC-derived cell therapeutic methods are introduced, and the clinical setting challenges (maturation, engraftment, immune response, scalability, and tumorigenicity), with potential solutions, are discussed. Inspired by the iPSC reprogramming, the approaches of direct cell lineage conversion are merging, such as induced cardiomyocyte-like cells (iCMs) and induced cardiac progenitor cells (iCPCs) derived from fibroblasts, without induction of pluripotency. The studies of cellular and molecular pathways also reveal that epigenetic resetting is the essential mechanism of reprogramming and lineage conversion. Therefore, CRISPR techniques that can be repurposed for genomic or epigenetic editing become attractive approaches for cellular reprogramming. In addition, viral and non-viral delivery strategies that are utilized to achieve CM reprogramming will be introduced, and the therapeutic effects of iCMs or iCPCs on myocardial infarction will be compared. After the improvement of reprogramming efficiency by developing new techniques, reprogrammed iCPCs or iCMs will provide an alternative to hiPSC-based approaches for regenerative heart therapies, heart disease modeling, and new drug screening.
Collapse
Affiliation(s)
- Xingyu He
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jialiang Liang
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Christian Paul
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Wei Huang
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Suchandrima Dutta
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yigang Wang
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
49
|
Nishiyama T, Zhang Y, Cui M, Li H, Sanchez-Ortiz E, McAnally JR, Tan W, Kim J, Chen K, Xu L, Bassel-Duby R, Olson EN. Precise genomic editing of pathogenic mutations in RBM20 rescues dilated cardiomyopathy. Sci Transl Med 2022; 14:eade1633. [PMID: 36417486 PMCID: PMC10088465 DOI: 10.1126/scitranslmed.ade1633] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mutations in RNA binding motif protein 20 (RBM20) are a common cause of familial dilated cardiomyopathy (DCM). Many RBM20 mutations cluster within an arginine/serine-rich (RS-rich) domain, which mediates nuclear localization. These mutations induce RBM20 mis-localization to form aberrant ribonucleoprotein (RNP) granules in the cytoplasm of cardiomyocytes and abnormal alternative splicing of cardiac genes, contributing to DCM. We used adenine base editing (ABE) and prime editing (PE) to correct pathogenic p.R634Q and p.R636S mutations in the RS-rich domain in human isogenic induced pluripotent stem cell (iPSC)-derived cardiomyocytes. Using ABE to correct RBM20R634Q human iPSCs, we achieved 92% efficiency of A-to-G editing, which normalized alternative splicing of cardiac genes, restored nuclear localization of RBM20, and eliminated RNP granule formation. In addition, we developed a PE strategy to correct the RBM20R636S mutation in iPSCs and observed A-to-C editing at 40% efficiency. To evaluate the potential of ABE for DCM treatment, we also created Rbm20R636Q mutant mice. Homozygous (R636Q/R636Q) mice developed severe cardiac dysfunction, heart failure, and premature death. Systemic delivery of ABE components containing ABEmax-VRQR-SpCas9 and single-guide RNA by adeno-associated virus serotype 9 in these mice restored cardiac function as assessed by echocardiography and extended life span. As seen by RNA sequencing analysis, ABE correction rescued the cardiac transcriptional profile of treated R636Q/R636Q mice, compared to the abnormal gene expression seen in untreated mice. These findings demonstrate the potential of precise correction of genetic mutations as a promising therapeutic approach for DCM.
Collapse
Affiliation(s)
- Takahiko Nishiyama
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Miao Cui
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hui Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Efrain Sanchez-Ortiz
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John R McAnally
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei Tan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiwoong Kim
- Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenian Chen
- Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
50
|
De Plano LM, Calabrese G, Conoci S, Guglielmino SPP, Oddo S, Caccamo A. Applications of CRISPR-Cas9 in Alzheimer's Disease and Related Disorders. Int J Mol Sci 2022; 23:ijms23158714. [PMID: 35955847 PMCID: PMC9368966 DOI: 10.3390/ijms23158714] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and Huntington’s disease represent some of the most prevalent neurodegenerative disorders afflicting millions of people worldwide. Unfortunately, there is a lack of efficacious treatments to cure or stop the progression of these disorders. While the causes of such a lack of therapies can be attributed to various reasons, the disappointing results of recent clinical trials suggest the need for novel and innovative approaches. Since its discovery, there has been a growing excitement around the potential for CRISPR-Cas9 mediated gene editing to identify novel mechanistic insights into disease pathogenesis and to mediate accurate gene therapy. To this end, the literature is rich with experiments aimed at generating novel models of these disorders and offering proof-of-concept studies in preclinical animal models validating the great potential and versatility of this gene-editing system. In this review, we provide an overview of how the CRISPR-Cas9 systems have been used in these neurodegenerative disorders.
Collapse
Affiliation(s)
- Laura M. De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| | - Salvatore P. P. Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| | - Salvatore Oddo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| | - Antonella Caccamo
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- Correspondence:
| |
Collapse
|