1
|
Dong Q, Liu F, Zhu J, Li M, Chen A, Feng L, Lan Z, Ye Y, Lu L, Liang Q, Yan J. 4-Octyl itaconate inhibits vascular calcification partially via modulation of HMOX-1 signaling. Eur J Pharmacol 2024; 985:177122. [PMID: 39532225 DOI: 10.1016/j.ejphar.2024.177122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Vascular calcification frequently occurs in patients with chronic conditions such as chronic kidney disease (CKD), diabetes, and hypertension and represents a significant cause of cardiovascular events. Thus, identifying effective therapeutic targets to inhibit the progression of vascular calcification is essential. 4-Octyl itaconate (4-OI), a derivative of itaconate, exhibits anti-inflammatory and antioxidant activity, both of which play an essential role in the progression of vascular calcification. However, the role and molecular mechanisms of 4-OI in vascular calcification have not yet been elucidated. In this study, we investigated the effects of exogenous 4-OI on vascular calcification using vascular smooth muscle cells (VSMCs), arterial rings, and mice. Alizarin red staining and western blot revealed that 4-OI inhibited calcification and osteogenic differentiation of human VSMCs. Similarly, 4-OI inhibited calcification of rat and human arterial rings and VitD3-overloaded mouse aortas. Mechanistically, RNA sequencing analysis revealed that 4-OI treatment is most likely to affect heme oxygenase 1 (HMOX-1) mRNA expression. The study demonstrated that 4-OI treatment increased HMOX-1 mRNA and protein levels, but suppressed inflammation and oxidative stress in VSMCs under osteogenic conditions. Moreover, HMOX-1 knockdown by siRNA or treatment with the HMOX-1 inhibitor ZnPP9 significantly reversed the suppression effect on calcification of VSMCs and aortas of VitD3-overloaded mice by 4-OI. Furthermore, HMOX-1 knockdown by siRNA markedly abrogated the inhibitory effect of 4-OI on inflammation in VSMCs. These findings suggest that 4-OI alleviates vascular calcification and inhibits oxidative stress and inflammation through modulation of HMOX-1, indicating its potential as a therapeutic target for vascular calcification.
Collapse
MESH Headings
- Vascular Calcification/drug therapy
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Animals
- Humans
- Heme Oxygenase-1/metabolism
- Succinates/pharmacology
- Signal Transduction/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mice
- Male
- Rats
- Osteogenesis/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Mice, Inbred C57BL
- Rats, Sprague-Dawley
- Cells, Cultured
Collapse
Affiliation(s)
- Qianqian Dong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Fang Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Jiahui Zhu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Mingxi Li
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, China
| | - An Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Liyun Feng
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Zirong Lan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Yuanzhi Ye
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Lihe Lu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, China
| | - Qingchun Liang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, China.
| | - Jianyun Yan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China.
| |
Collapse
|
2
|
Marreiros C, Viegas C, Guedes AM, Silva AP, Águas AC, Faísca M, Schurgers L, Simes DC. Gla-Rich Protein Is Associated with Vascular Calcification, Inflammation, and Mineral Markers in Peritoneal Dialysis Patients. J Clin Med 2024; 13:7429. [PMID: 39685887 DOI: 10.3390/jcm13237429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Vascular calcification (VC) is a crucial risk factor for cardiovascular diseases (CVD), particularly in chronic kidney disease (CKD) populations. However, the specific relationship between VC and end-stage renal disease (ESRD) patients undergoing peritoneal dialysis (PD) remains to be fully understood. The identification of new biomarkers to improve VC diagnosis and monitoring would significantly impact cardiovascular risk management in these high-risk patients. Gla-rich protein (GRP) is a VC inhibitor and an anti-inflammatory agent and thus is a potential VC marker in CKD. Here we explored the potential role of GRP as a marker for CVD and investigated the impact of VC in 101 PD patients. Methods: Circulating total Gla-rich protein (tGRP) was quantified in serum and in 24 h dialysate samples. VC score (VCS) was determined using the Adragão method. Results: Serum tGRP was negatively associated with VCS, serum calcium (Ca), phosphate (P), and high-sensitivity C-reactive protein (hsCRP), while it was positively associated with magnesium (Mg). A total of 35.6% of PD patients presented with extensive calcifications (VCS ≥ 3), and the lowest tGRP serum levels were present in this group (419.4 ± 198.5 pg/mL). tGRP in the 24 h dialysate was also negatively associated with VCS and with serum Ca and P. Moreover, serum Ca, P, and VCS were identified as independent determinants of serum tGRP levels. Conclusions: The association of serum tGRP with VC, mineral, and inflammation markers reinforces its potential use as a novel VC biomarker in CKD patients undergoing PD.
Collapse
Affiliation(s)
- Catarina Marreiros
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Carla Viegas
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
- GenoGla Diagnostics, CCMAR, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Anabela Malho Guedes
- Unidade local de Saúde do Algarve, Centro Hospitalar Universitário do Algarve (CHUA), 8000-386 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ana Paula Silva
- Unidade local de Saúde do Algarve, Centro Hospitalar Universitário do Algarve (CHUA), 8000-386 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ana Catarina Águas
- Serviço Radiologia, Centro Hospitalar Universitário do Algarve (CHUA), 8000-386 Faro, Portugal
| | | | - Leon Schurgers
- Department of Biochemistry and Cardiovascular, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Dina Costa Simes
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
- GenoGla Diagnostics, CCMAR, Universidade do Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
3
|
Siracusa C, Carabetta N, Morano MB, Manica M, Strangio A, Sabatino J, Leo I, Castagna A, Cianflone E, Torella D, Andreucci M, Zicarelli MT, Musolino M, Bolignano D, Coppolino G, De Rosa S. Understanding Vascular Calcification in Chronic Kidney Disease: Pathogenesis and Therapeutic Implications. Int J Mol Sci 2024; 25:13096. [PMID: 39684805 DOI: 10.3390/ijms252313096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Vascular calcification (VC) is a biological phenomenon characterized by an accumulation of calcium and phosphate deposits within the walls of blood vessels causing the loss of elasticity of the arterial walls. VC plays a crucial role in the incidence and progression of chronic kidney disease (CKD), leading to a significant increase in cardiovascular mortality in these patients. Different conditions such as age, sex, dyslipidemia, diabetes, and hypertension are the main risk factors in patients affected by chronic kidney disease. However, VC may occur earlier and faster in these patients if it is associated with new or non-traditional risk factors such as oxidative stress, anemia, and inflammation. In chronic kidney disease, several pathophysiological processes contribute to vascular calcifications, including osteochondrogenic differentiation of vascular cells, hyperphosphatemia and hypercalcemia, and the loss of specific vascular calcification inhibitors including pyrophosphate, fetuin-A, osteoprotegerin, and matrix GLA protein. In this review we discuss the main traditional and non-traditional risk factors that can promote VC in patients with kidney disease. In addition, we provide an overview of the main pathogenetic mechanisms responsible for VC that may be crucial to identify new prevention strategies and possible new therapeutic approaches to reduce cardiovascular risk in patients with kidney disease.
Collapse
Affiliation(s)
- Chiara Siracusa
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Nicole Carabetta
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Maria Benedetta Morano
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Marzia Manica
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Antonio Strangio
- Department of Experimental and Clinical Medicine, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Alberto Castagna
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Michele Andreucci
- Department of Health Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Maria Teresa Zicarelli
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Michela Musolino
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Davide Bolignano
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Giuseppe Coppolino
- Department of Health Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Pan W, Zhou L, Han R, Du X, Chen W, Jiang T. Causal associations between kidney function and aortic valve stenosis: a bidirectional Mendelian randomization analysis. Ren Fail 2024; 46:2417742. [PMID: 39440431 PMCID: PMC11500509 DOI: 10.1080/0886022x.2024.2417742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/17/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Aortic valve stenosis (AVS) is currently the most common heart valve disease. The results of observational studies on the incidence of AVS in the renal dysfunction population are contradictory due to the short follow-up period and different diagnostic criteria, etc. This study aimed to explore the causal relationship between kidney function and AVS using Mendelian randomization (MR) analysis. METHODS We acquired summary statistics of estimated glomerular filtration rate (eGFR) and chronic kidney disease (CKD) from the CKDGen Consortium and a study on AVS from the FinnGen biobank. Univariate and multivariable MR analyses were conducted to evaluate the causal associations. The MR-Egger intercept and MR-PRESSO Global test were applied to assess the pleiotropic effects. The heterogeneity of MR results was tested by Cochran's Q statistic. Moreover, the Bonferroni and FDR corrections were performed for multiple tests. RESULTS Genetically predicted decreased eGFR may be associated with a raised risk of AVS (OR = 0.045, p = 1.317e-04 by IVW; OR = 0.002, p = 0.004 by MR-Egger, OR = 0.091, p = 0.057 by WM). The causal association still established after multiple comparisons. Quality control analyses indicated the absence of heterogeneity and pleiotropy in our MR research. In addition, the causality of eGFR and AVS remained significant in multivariable MR analysis after adjusting BMI, hypertension, T2DM, LDL-C, and smoking. CONCLUSION Our MR study discovered that reduced eGFR may be a causative risk factor for AVS. In addition, the evidence did not support a significant causal association of AVS on kidney function.
Collapse
Affiliation(s)
- Wanqian Pan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Le Zhou
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | - Rui Han
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaojiao Du
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Weixiang Chen
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Yang Q, Su S, Luo N, Cao G. Adenine-induced animal model of chronic kidney disease: current applications and future perspectives. Ren Fail 2024; 46:2336128. [PMID: 38575340 PMCID: PMC10997364 DOI: 10.1080/0886022x.2024.2336128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Chronic kidney disease (CKD) with high morbidity and mortality all over the world is characterized by decreased kidney function, a condition which can result from numerous risk factors, including diabetes, hypertension and obesity. Despite significant advances in our understanding of the pathogenesis of CKD, there are still no treatments that can effectively combat CKD, which underscores the urgent need for further study into the pathological mechanisms underlying this condition. In this regard, animal models of CKD are indispensable. This article reviews a widely used animal model of CKD, which is induced by adenine. While a physiologic dose of adenine is beneficial in terms of biological activity, a high dose of adenine is known to induce renal disease in the organism. Following a brief description of the procedure for disease induction by adenine, major mechanisms of adenine-induced CKD are then reviewed, including inflammation, oxidative stress, programmed cell death, metabolic disorders, and fibrillation. Finally, the application and future perspective of this adenine-induced CKD model as a platform for testing the efficacy of a variety of therapeutic approaches is also discussed. Given the simplicity and reproducibility of this animal model, it remains a valuable tool for studying the pathological mechanisms of CKD and identifying therapeutic targets to fight CKD.
Collapse
Affiliation(s)
- Qiao Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songya Su
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Nan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Côté N, Fortier C, Jafari K, Paré M, Addour S, Goupil R, Agharazii M. Estimated versus measured aortic stiffness: implications of diabetes, chronic kidney disease, sex and height. J Hypertens 2024; 42:2115-2121. [PMID: 39248133 DOI: 10.1097/hjh.0000000000003845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/04/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Aortic stiffness is measured by carotid-femoral pulse wave velocity (PWV), but it can also be estimated (ePWV) based on age and brachial mean arterial pressure (MAP). However, diabetes mellitus and/or chronic kidney disease (DM/CKD) may cause more pronounced damage to the arterial wall, changing the pressure and PWV relationship. Furthermore, sex and height could affect PWV through their relationship to the arterial diameter and path length. The aim of the present study was to quantify the extent to which DM/CKD, sex and height affect the validity of ePWV in predicting PWV. METHODS This cross-sectional study evaluated PWV in adult participants at high risk of aortic stiffness, using Complior and the second derivative transit time algorithm (PWV 2nd ). PWV 2nd was converted into intersecting tangent PWV (PWV ITc ), and ePWV was calculated using the Reference Values for Arterial Stiffness Collaboration formulas. RESULTS Among 825 patients (62% males), the mean age was 60 ± 17 years, 34% had diabetes mellitus, 69% had CKD, and 24% did not have DM/CKD. MAP, ePWV, PWV 2nd , and PWV ITc were, respectively, 96 ± 14 mmHg, 9.8 (8.1-11.8) m/s, 9.5 (7.8-11.9) m/s and 11.3 (8.8-15.9) m/s. There was a significant interaction between DM/CKD, sex, and the predictive value of ePWV. Increasing height lowered the intercept but did not affect the slope of the relationship between estimated and measured PWVs. CONCLUSION These findings suggest that the current ePWV equations do not accurately predict PWV in patients with DM/CKD, and that sex and height should also be considered in the future ePWV equations.
Collapse
Affiliation(s)
- Nadège Côté
- CHU de Québec, Université Laval Research Center
- Division of Nephrology, Faculty of Medicine, Université Laval, Québec
| | - Catherine Fortier
- CHU de Québec, Université Laval Research Center
- Division of Nephrology, Faculty of Medicine, Université Laval, Québec
| | - Kaveh Jafari
- CHU de Québec, Université Laval Research Center
- Division of Nephrology, Faculty of Medicine, Université Laval, Québec
| | - Mathilde Paré
- CHU de Québec, Université Laval Research Center
- Division of Nephrology, Faculty of Medicine, Université Laval, Québec
| | | | - Rémi Goupil
- Hôpital du Sacré-Coeur de Montréal, CIUSSS-du-Nord-de-l'Île-de-Montréal, Université de Montréal, Montreal, Canada
| | - Mohsen Agharazii
- CHU de Québec, Université Laval Research Center
- Division of Nephrology, Faculty of Medicine, Université Laval, Québec
| |
Collapse
|
7
|
Yu H, Xie Y, Lan L, Ma S, Mok SWF, Wong IN, Wang Y, Zhong G, Yuan L, Zhao H, Hu X, Macrae VE, He S, Chen G, Zhu D. Sirt7 protects against vascular calcification via modulation of reactive oxygen species and senescence of vascular smooth muscle cells. Free Radic Biol Med 2024; 223:30-41. [PMID: 39053861 DOI: 10.1016/j.freeradbiomed.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/28/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Vascular calcification is frequently seen in patients with chronic kidney disease (CKD), and significantly increases cardiovascular mortality and morbidity. Sirt7, a NAD+-dependent histone deacetylases, plays a crucial role in cardiovascular disease. However, the role of Sirt7 in vascular calcification remains largely unknown. Using in vitro and in vivo models of vascular calcification, this study showed that Sirt7 expression was significantly reduced in calcified arteries from mice administered with high dose of vitamin D3 (vD3). We found that knockdown or inhibition of Sirt7 promoted vascular smooth muscle cell (VSMC), aortic ring and vascular calcification in mice, whereas overexpression of Sirt7 had opposite effects. Intriguingly, this protective effect of Sirt7 on vascular calcification is dependent on its deacetylase activity. Unexpectedly, Sirt7 did not alter the osteogenic transition of VSMCs. However, our RNA-seq and subsequent studies demonstrated that knockdown of Sirt7 in VSMCs resulted in increased intracellular reactive oxygen species (ROS) accumulation, and induced an Nrf-2 mediated oxidative stress response. Treatment with the ROS inhibitor N-acetylcysteine (NAC) significantly attenuated the inhibitory effect of Sirt7 on VSMC calcification. Furthermore, we found that knockdown of Sirt7 delayed cell cycle progression and accelerated cellular senescence of VSMCs. Taken together, our results indicate that Sirt7 regulates vascular calcification at least in part through modulation of ROS and cellular senescence of VSMCs. Sirt7 may be a potential therapeutic target for vascular calcification.
Collapse
MESH Headings
- Animals
- Vascular Calcification/pathology
- Vascular Calcification/metabolism
- Vascular Calcification/genetics
- Reactive Oxygen Species/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mice
- Cellular Senescence
- Sirtuins/metabolism
- Sirtuins/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Oxidative Stress
- Humans
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/genetics
- Male
- Cholecalciferol/pharmacology
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/genetics
- Mice, Inbred C57BL
- Cells, Cultured
Collapse
Affiliation(s)
- Hongjiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China; GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, China
| | - Yuchen Xie
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Lan Lan
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Siyu Ma
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, China
| | - Simon Wing Fai Mok
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Yueheng Wang
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Guoli Zhong
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Liang Yuan
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Huan Zhao
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Xiao Hu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Vicky E Macrae
- Functional Genetics and Development, The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Shengping He
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong, 510515, China.
| | - Guojun Chen
- Department of Cardiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Dongxing Zhu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
| |
Collapse
|
8
|
Tóth A, Balogh E, Jeney V. In Vitro Models of Cardiovascular Calcification. Biomedicines 2024; 12:2155. [PMID: 39335668 PMCID: PMC11429067 DOI: 10.3390/biomedicines12092155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/15/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiovascular calcification, characterized by hydroxyapatite deposition in the arterial wall and heart valves, is associated with high cardiovascular morbidity and mortality. Cardiovascular calcification is a hallmark of aging but is frequently seen in association with chronic diseases, such as chronic kidney disease (CKD), diabetes, dyslipidemia, and hypertension in the younger population as well. Currently, there is no therapeutic approach to prevent or cure cardiovascular calcification. The pathophysiology of cardiovascular calcification is highly complex and involves osteogenic differentiation of various cell types of the cardiovascular system, such as vascular smooth muscle cells and valve interstitial cells. In vitro cellular and ex vivo tissue culture models are simple and useful tools in cardiovascular calcification research. These models contributed largely to the discoveries of the numerous calcification inducers, inhibitors, and molecular mechanisms. In this review, we provide an overview of the in vitro cell culture and the ex vivo tissue culture models applied in the research of cardiovascular calcification.
Collapse
Affiliation(s)
- Andrea Tóth
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Enikő Balogh
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Viktória Jeney
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
9
|
Zheng H, Bian M, Zhou Z, Shi Y, Shen M, Wang M, Jiang W, Shao C, Tang R, Pan H, He J, Fu B, Wu Z. Small Charged Molecule-Mediated Fibrillar Mineralization: Implications for Ectopic Calcification. ACS NANO 2024; 18:23537-23552. [PMID: 39133543 DOI: 10.1021/acsnano.4c07378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Numerous small biomolecules exist in the human body and play roles in various biological and pathological processes. Small molecules are believed not to induce intrafibrillar mineralization alone. They are required to work in synergy with noncollagenous proteins (NCPs) and their analogs, e.g. polyelectrolytes, for inducing intrafibrillar mineralization, as the polymer-induced liquid-like precursor (PILP) process has been well-documented. In this study, we demonstrate that small charged molecules alone, such as sodium tripolyphosphate, sodium citrate, and (3-aminopropyl) triethoxysilane, could directly mediate fibrillar mineralization. We propose that small charged molecules might be immobilized in collagen fibrils to form the polyelectrolyte-like collagen complex (PLCC) via hydrogen bonds. The PLCC could attract CaP precursors along with calcium and phosphate ions for inducing mineralization without any polyelectrolyte additives. The small charged molecule-mediated mineralization process was evidenced by Cryo-TEM, AFM, SEM, FTIR, ICP-OES, etc., as the PLCC exhibited both characteristic features of collagen fibrils and polyelectrolyte with increased charges, hydrophilicity, and density. This might hint at one mechanism of pathological biomineralization, especially for understanding the ectopic calcification process.
Collapse
Affiliation(s)
- Haiyan Zheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Mengyao Bian
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Zihuai Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Ying Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Minjian Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Manting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Wenxiang Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Changyu Shao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Haihua Pan
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jianxiang He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Zhifang Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
10
|
Noels H, Jankowski V, Schunk SJ, Vanholder R, Kalim S, Jankowski J. Post-translational modifications in kidney diseases and associated cardiovascular risk. Nat Rev Nephrol 2024; 20:495-512. [PMID: 38664592 DOI: 10.1038/s41581-024-00837-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 07/21/2024]
Abstract
Patients with chronic kidney disease (CKD) are at an increased cardiovascular risk compared with the general population, which is driven, at least in part, by mechanisms that are uniquely associated with kidney disease. In CKD, increased levels of oxidative stress and uraemic retention solutes, including urea and advanced glycation end products, enhance non-enzymatic post-translational modification events, such as protein oxidation, glycation, carbamylation and guanidinylation. Alterations in enzymatic post-translational modifications such as glycosylation, ubiquitination, acetylation and methylation are also detected in CKD. Post-translational modifications can alter the structure and function of proteins and lipoprotein particles, thereby affecting cellular processes. In CKD, evidence suggests that post-translationally modified proteins can contribute to inflammation, oxidative stress and fibrosis, and induce vascular damage or prothrombotic effects, which might contribute to CKD progression and/or increase cardiovascular risk in patients with CKD. Consequently, post-translational protein modifications prevalent in CKD might be useful as diagnostic biomarkers and indicators of disease activity that could be used to guide and evaluate therapeutic interventions, in addition to providing potential novel therapeutic targets.
Collapse
Affiliation(s)
- Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany.
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany
| | - Stefan J Schunk
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University, Homburg/Saar, Germany
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine and Paediatrics, University Hospital, Ghent, Belgium
- European Kidney Health Alliance (EKHA), Brussels, Belgium
| | - Sahir Kalim
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany.
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
11
|
Kurniawan RB, Saputra PBT, Haq AUDU, Purwati DD, Wungu CDK, Susilo H, Alsagaff MY, Amin IM, Oktaviono YH. Characteristics of calcified nodule attributable to culprit lesion in acute coronary syndrome: A systematic review and meta-analysis. iScience 2024; 27:110351. [PMID: 39092174 PMCID: PMC11292520 DOI: 10.1016/j.isci.2024.110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/01/2024] [Accepted: 06/20/2024] [Indexed: 08/04/2024] Open
Abstract
The presence of calcified nodule (CN) is a significant characteristic of atherothrombosis in acute coronary syndrome (ACS). However, its characteristics continue to be understudied. This review aimed to further investigate these characteristics. This study found that CN was a distinctive feature of an atheromatous plaque, representing 6.3% of ACS. CN was more common in NSTE-ACS than in STEMI patients (9.4% vs. 6.6%). CN was also chiefly observed in the left anterior descendant artery (48%), followed by the right coronary (40.4%) and left circumflex (14.5%) arteries. Higher prevalence of hypertension (78.8%), diabetes mellitus (50.8%), multivessel disease (71.7%), and kidney disease (26.43%) were noted in CN compared to non-CN patients. CN-associated ACS also 6-fold increased the risk of target lesion revascularization compared to those without CN.
Collapse
Affiliation(s)
| | - Pandit Bagus Tri Saputra
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia – Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | | | | | - Citrawati Dyah Kencono Wungu
- Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Hendri Susilo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia – Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Mochamad Yusuf Alsagaff
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia – Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Indah Mohd Amin
- Center of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Selangor Darul Ehsan, Malaysia
| | - Yudi Her Oktaviono
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia – Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| |
Collapse
|
12
|
Jiang C, Yao D, Liu Z, Zheng Y, Chen M, Yim WY, Zheng Q, Zhang T, Fan L, Fan Z, Geng B, Tian R, Zhou T, Qiao W, Shi J, Li F, Xu L, Huang Y, Dong N. FOXO1 regulates RUNX2 ubiquitination through SMURF2 in calcific aortic valve disease. Redox Biol 2024; 73:103215. [PMID: 38810422 PMCID: PMC11167395 DOI: 10.1016/j.redox.2024.103215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
The prevalence of calcific aortic valve disease (CAVD) remains substantial while there is currently no medical therapy available. Forkhead box O1 (FOXO1) is known to be involved in the pathogenesis of cardiovascular diseases, including vascular calcification and atherosclerosis; however, its specific role in calcific aortic valve disease remains to be elucidated. In this study, we identified FOXO1 significantly down-regulated in the aortic valve interstitial cells (VICs) of calcified aortic valves by investigating clinical specimens and GEO database analysis. FOXO1 silencing or inhibition promoted VICs osteogenic differentiation in vitro and aortic valve calcification in Apoe-/- mice, respectively. We identified that FOXO1 facilitated the ubiquitination and degradation of RUNX2, which process was mainly mediated by SMAD-specific E3 ubiquitin ligase 2 (SMURF2). Our discoveries unveil a heretofore unacknowledged mechanism involving the FOXO1/SMURF2/RUNX2 axis in CAVD, thereby proposing the potential therapeutic utility of FOXO1 or SMURF2 as viable strategies to impede the progression of CAVD.
Collapse
Affiliation(s)
- Chen Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Dingyi Yao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yidan Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Ming Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Wai Yen Yim
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Qiang Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Tailong Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Lin Fan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhengfeng Fan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Bingchuan Geng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Rui Tian
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Tingwen Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Yuming Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
13
|
Mendapara K. Development and evaluation of a chronic kidney disease risk prediction model using random forest. Front Genet 2024; 15:1409755. [PMID: 38993480 PMCID: PMC11236722 DOI: 10.3389/fgene.2024.1409755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
This research aims to advance the detection of Chronic Kidney Disease (CKD) through a novel gene-based predictive model, leveraging recent breakthroughs in gene sequencing. We sourced and merged gene expression profiles of CKD-affected renal tissues from the Gene Expression Omnibus (GEO) database, classifying them into two sets for training and validation in a 7:3 ratio. The training set included 141 CKD and 33 non-CKD specimens, while the validation set had 60 and 14, respectively. The disease risk prediction model was constructed using the training dataset, while the validation dataset confirmed the model's identification capabilities. The development of our predictive model began with evaluating differentially expressed genes (DEGs) between the two groups. We isolated six genes using Lasso and random forest (RF) methods-DUSP1, GADD45B, IFI44L, IFI30, ATF3, and LYZ-which are critical in differentiating CKD from non-CKD tissues. We refined our random forest (RF) model through 10-fold cross-validation, repeated five times, to optimize the mtry parameter. The performance of our model was robust, with an average AUC of 0.979 across the folds, translating to a 91.18% accuracy. Validation tests further confirmed its efficacy, with a 94.59% accuracy and an AUC of 0.990. External validation using dataset GSE180394 yielded an AUC of 0.913, 89.83% accuracy, and a sensitivity rate of 0.889, underscoring the model's reliability. In summary, the study identified critical genetic biomarkers and successfully developed a novel disease risk prediction model for CKD. This model can serve as a valuable tool for CKD disease risk assessment and contribute significantly to CKD identification.
Collapse
Affiliation(s)
- Krish Mendapara
- Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
14
|
Barbuto S, Hu L, Abenavoli C, Picotti M, Manna GL, Nicola LD, Genovesi S, Provenzano M. Coronary Artery Disease in Patients Undergoing Hemodialysis: A Problem that Sounds the Alarm. Rev Cardiovasc Med 2024; 25:200. [PMID: 39076335 PMCID: PMC11270123 DOI: 10.31083/j.rcm2506200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/25/2023] [Accepted: 12/08/2023] [Indexed: 07/31/2024] Open
Abstract
Chronic kidney disease (CKD) is affecting more and more individuals over time. The importance of the increased prevalence is enhanced by the close association with the increased risk of poor individual outcomes such as death, fatal and non-fatal cardiovascular (CV) events and progression to end stage kidney disease (ESKD). ESKD requires replacement treatment such as hemodialysis (HD), a particular and complex context that unfortunately has been rarely considered in observational studies in the last few decades. The current perspective of HD as a bridge to kidney transplant requires greater attention from observational and experimental research both in the prevention and treatment of CV events in ESKD patients. We present a narrative review by performing a literature review to extrapolate the most significant articles exploring the CV risk, in particular coronary artery disease (CAD), in ESKD and evaluating possible innovative diagnostic and therapeutic tools in these patients. The risk of CAD increases linearly when the estimated glomerular filtration rate (eGFR) declines and reached the most significant level in ESKD patients. Several diagnostic techniques have been evaluated to predict CAD in ESKD such as laboratory tests (Troponin-T, N-terminal pro b-type natriuretic peptide, alkaline phosphatase), echocardiography and imaging techniques for vascular calcifications evaluation. Similarly, treatment is based on lifestyle changes, medical therapy and invasive techniques such as coronary artery bypass grafting (CABG) and percutaneous coronary intervention (PCI). Unfortunately in the literature there are no clear indications of the usefulness and validity of biomarkers and possible treatments in ESKD patients. Considering the ESKD weight in terms of prevalence and costs it is necessary to implement clinical research in order to develop prognostic reliable biomarkers for CV and CAD risk prediction, in patients with ESKD. It should be highlighted that HD is a peculiar setting that offers the opportunity to implement research and facilitates patient monitoring by favoring the design of clinical trials.
Collapse
Affiliation(s)
- Simona Barbuto
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
- Nephrology Unit, Department of Medical and Surgical Science (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Lilio Hu
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
- Nephrology Unit, Department of Medical and Surgical Science (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Chiara Abenavoli
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
- Nephrology Unit, Department of Medical and Surgical Science (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Matilde Picotti
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
- Nephrology Unit, Department of Medical and Surgical Science (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
- Nephrology Unit, Department of Medical and Surgical Science (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Luca De Nicola
- Division of Nephrology, University of Campania “Luigi Vanvitelli”, 80137 Naples, Italy
| | - Simonetta Genovesi
- School of Medicine and Surgery, Nephrology Clinic, University of Milano Bicocca, 20900 Monza, Italy
- Istituto Auxologico Italiano, IRCCS, 20095 Milan, Italy
| | - Michele Provenzano
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
- Nephrology Unit, Department of Medical and Surgical Science (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
15
|
Lu YQ, Wang Y. Multi-Omic Analysis Reveals Genetic Determinants and Therapeutic Targets of Chronic Kidney Disease and Kidney Function. Int J Mol Sci 2024; 25:6033. [PMID: 38892221 PMCID: PMC11172763 DOI: 10.3390/ijms25116033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic kidney disease (CKD) presents a significant global health challenge, characterized by complex pathophysiology. This study utilized a multi-omic approach, integrating genomic data from the CKDGen consortium alongside transcriptomic, metabolomic, and proteomic data to elucidate the genetic underpinnings and identify therapeutic targets for CKD and kidney function. We employed a range of analytical methods including cross-tissue transcriptome-wide association studies (TWASs), Mendelian randomization (MR), summary-based MR (SMR), and molecular docking. These analyses collectively identified 146 cross-tissue genetic associations with CKD and kidney function. Key Golgi apparatus-related genes (GARGs) and 41 potential drug targets were highlighted, with MAP3K11 emerging as a significant gene from the TWAS and MR data, underscoring its potential as a therapeutic target. Capsaicin displayed promising drug-target interactions in molecular docking analyses. Additionally, metabolome- and proteome-wide MR (PWMR) analyses revealed 33 unique metabolites and critical inflammatory proteins such as FGF5 that are significantly linked to and colocalized with CKD and kidney function. These insights deepen our understanding of CKD pathogenesis and highlight novel targets for treatment and prevention.
Collapse
Affiliation(s)
| | - Yirong Wang
- School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China;
| |
Collapse
|
16
|
Tomey MI, Chyou JY. Management Considerations for Acute Coronary Syndromes in Chronic Kidney Disease. Curr Cardiol Rep 2024; 26:303-312. [PMID: 38451453 DOI: 10.1007/s11886-024-02039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE OF REVIEW Propensity of patients with chronic kidney disease (CKD) to adverse outcomes of acute coronary syndromes (ACS) derives, in part, from imperfection in management. Dearth of data resulting from underrepresentation of patients with CKD in ACS trials and underuse of evidence-based testing and therapy compound biological risks inherent to CKD. We sought in this narrative review to critically appraise contemporary evidence and offer suggested approaches to practicing clinicians for the optimization of ACS management in patients with CKD. RECENT FINDINGS Updated multisociety chest pain guidelines emphasize the diversity of clinical presentations of ACS, pertinent to recognition of ACS in patients with CKD. Evolving tools to predict and prevent acute kidney injury complicating invasive management of ACS serve to support improved access to and safety of percutaneous coronary intervention (PCI) in CKD patients, who remain at elevated risk. Growth in use of radial access, advances in PCI quality, incorporation of intravascular imaging, and new options and insights in pharmacotherapy contribute to an evolving calculus of ischemic and bleeding risk in ACS with bearing on management in CKD patients. Key opportunities to improve outcomes of ACS for patients with CKD center on avoiding underuse of beneficial medical and invasive therapies; enhancing safety of therapies by leveraging evidence-based strategies to prevent acute kidney injury; and devoting specific effort to investigation of ACS management in the context of CKD.
Collapse
Affiliation(s)
- Matthew I Tomey
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, 1190 Fifth Avenue, Box 1030, New York, NY, 10029, USA.
| | - Janice Y Chyou
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, 1190 Fifth Avenue, Box 1030, New York, NY, 10029, USA
| |
Collapse
|
17
|
Lu KC, Hung KC, Liao MT, Shih LJ, Chao CT. Vascular Calcification Heterogeneity from Bench to Bedside: Implications for Manifestations, Pathogenesis, and Treatment Considerations. Aging Dis 2024:AD.2024.0289. [PMID: 38739930 DOI: 10.14336/ad.2024.0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/20/2024] [Indexed: 05/16/2024] Open
Abstract
Vascular calcification (VC) is the ectopic deposition of calcium-containing apatite within vascular walls, exhibiting a high prevalence in older adults, and those with diabetes or chronic kidney disease. VC is a subclinical cardiovascular risk trait that increases mortality and functional deterioration. However, effective treatments for VC remain largely unavailable despite multiple attempts. Part of this therapeutic nihilism results from the failure to appreciate the diversity of VC as a pathological complex, with unforeseeable variations in morphology, risk associates, and anatomical and molecular pathogenesis, affecting clinical management strategies. VC should not be considered a homogeneous pathology because accumulating evidence refutes its conceptual and content uniformity. Here, we summarize the pathophysiological sources of VC heterogeneity from the intersecting pathways and networks of cellular, subcellular, and molecular crosstalk. Part of these pathological connections are synergistic or mutually antagonistic. We then introduce clinical implications related to the VC heterogeneity concept. Even within the same individual, a specific artery may exhibit the strongest tendency for calcification compared with other arteries. The prognostic value of VC may only be detectable with a detailed characterization of calcification morphology and features. VC heterogeneity is also evident, as VC risk factors vary between different arterial segments and layers. Therefore, diagnostic and screening strategies for VC may be improved based on VC heterogeneity, including the use of radiomics. Finally, pursuing a homogeneous treatment strategy is discouraged and we suggest a more rational approach by diversifying the treatment spectrum. This may greatly benefit subsequent efforts to identify effective VC therapeutics.
Collapse
Affiliation(s)
- Kuo-Cheng Lu
- Division of Nephrology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Kuo-Chin Hung
- Division of Nephrology, Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Hsinchu Branch, Hsinchu, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Li-Jane Shih
- Department of Medical Laboratory, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Ter Chao
- Division of Nephrology, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
- Center of Faculty Development, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
18
|
Vondenhoff S, Schunk SJ, Noels H. Increased cardiovascular risk in patients with chronic kidney disease. Herz 2024; 49:95-104. [PMID: 38416185 PMCID: PMC10917854 DOI: 10.1007/s00059-024-05235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/29/2024]
Abstract
Cardiovascular disease (CVD) is highly prevalent in patients suffering from chronic kidney disease (CKD). The risk of patients with CKD developing CVD is manifested already in the early stages of CKD development. The impact of declined kidney function on increased cardiovascular risk and the underlying mechanisms are complex and multifactorial. This review discusses the impact of (a) traditional cardiovascular risk factors such as smoking, dyslipidemia, diabetes, and hypertension as well as (b) CKD-specific pathophysiological and molecular mechanisms associated with an increased cardiovascular risk. The latter include uremic toxins, post-translational modifications and uremic lipids, innate immune cell activation and inflammation, oxidative stress, endothelial cell dysfunction, increased coagulation and altered platelet responses, vascular calcification, renin-angiotensin-aldosterone-system (RAAS) and sympathetic activation, as well as anemia. Unraveling the complex interplay of different risk factors, especially in the context of patient subcohorts, will help to find new therapeutic approaches in order to reduce the increased cardiovascular risk in this vulnerable patient cohort.
Collapse
Affiliation(s)
- Sonja Vondenhoff
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074, Aachen, Germany
- Biochemistry Department, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen University, 52074, Aachen, Germany
| | - Stefan J Schunk
- Klinik für Innere Medizin IV, Nieren- und Hochdruckkrankheiten, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074, Aachen, Germany.
- Biochemistry Department, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
- Aachen-Maastricht Institute for Cardiorenal Research (AMICARE), University Hospital Aachen, Aachen, Germany.
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
19
|
Turner ME, Beck L, Hill Gallant KM, Chen Y, Moe OW, Kuro-o M, Moe S, Aikawa E. Phosphate in Cardiovascular Disease: From New Insights Into Molecular Mechanisms to Clinical Implications. Arterioscler Thromb Vasc Biol 2024; 44:584-602. [PMID: 38205639 PMCID: PMC10922848 DOI: 10.1161/atvbaha.123.319198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Hyperphosphatemia is a common feature in patients with impaired kidney function and is associated with increased risk of cardiovascular disease. This phenomenon extends to the general population, whereby elevations of serum phosphate within the normal range increase risk; however, the mechanism by which this occurs is multifaceted, and many aspects are poorly understood. Less than 1% of total body phosphate is found in the circulation and extracellular space, and its regulation involves multiple organ cross talk and hormones to coordinate absorption from the small intestine and excretion by the kidneys. For phosphate to be regulated, it must be sensed. While mostly enigmatic, various phosphate sensors have been elucidated in recent years. Phosphate in the circulation can be buffered, either through regulated exchange between extracellular and cellular spaces or through chelation by circulating proteins (ie, fetuin-A) to form calciprotein particles, which in themselves serve a function for bulk mineral transport and signaling. Either through direct signaling or through mediators like hormones, calciprotein particles, or calcifying extracellular vesicles, phosphate can induce various cardiovascular disease pathologies: most notably, ectopic cardiovascular calcification but also left ventricular hypertrophy, as well as bone and kidney diseases, which then propagate phosphate dysregulation further. Therapies targeting phosphate have mostly focused on intestinal binding, of which appreciation and understanding of paracellular transport has greatly advanced the field. However, pharmacotherapies that target cardiovascular consequences of phosphate directly, such as vascular calcification, are still an area of great unmet medical need.
Collapse
Affiliation(s)
- Mandy E. Turner
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Laurent Beck
- Nantes Université, CNRS, Inserm, l’institut du thorax, F-44000 Nantes, France
| | - Kathleen M Hill Gallant
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham
- Research Department, Veterans Affairs Birmingham Medical Center, Birmingham, AL, USA
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Makoto Kuro-o
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Sharon Moe
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Clift CL, Blaser MC, Gerrits W, Turner ME, Sonawane A, Pham T, Andresen JL, Fenton OS, Grolman JM, Campedelli A, Buffolo F, Schoen FJ, Hjortnaes J, Muehlschlegel JD, Mooney DJ, Aikawa M, Singh SA, Langer R, Aikawa E. Intracellular proteomics and extracellular vesiculomics as a metric of disease recapitulation in 3D-bioprinted aortic valve arrays. SCIENCE ADVANCES 2024; 10:eadj9793. [PMID: 38416823 PMCID: PMC10901368 DOI: 10.1126/sciadv.adj9793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/25/2024] [Indexed: 03/01/2024]
Abstract
In calcific aortic valve disease (CAVD), mechanosensitive valvular cells respond to fibrosis- and calcification-induced tissue stiffening, further driving pathophysiology. No pharmacotherapeutics are available to treat CAVD because of the paucity of (i) appropriate experimental models that recapitulate this complex environment and (ii) benchmarking novel engineered aortic valve (AV)-model performance. We established a biomaterial-based CAVD model mimicking the biomechanics of the human AV disease-prone fibrosa layer, three-dimensional (3D)-bioprinted into 96-well arrays. Liquid chromatography-tandem mass spectrometry analyses probed the cellular proteome and vesiculome to compare the 3D-bioprinted model versus traditional 2D monoculture, against human CAVD tissue. The 3D-bioprinted model highly recapitulated the CAVD cellular proteome (94% versus 70% of 2D proteins). Integration of cellular and vesicular datasets identified known and unknown proteins ubiquitous to AV calcification. This study explores how 2D versus 3D-bioengineered systems recapitulate unique aspects of human disease, positions multiomics as a technique for the evaluation of high throughput-based bioengineered model systems, and potentiates future drug discovery.
Collapse
Affiliation(s)
- Cassandra L Clift
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mark C Blaser
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Willem Gerrits
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mandy E Turner
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Abhijeet Sonawane
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tan Pham
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jason L Andresen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Owen S Fenton
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua M Grolman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
- Materials Science and Engineering, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Alesandra Campedelli
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Fabrizio Buffolo
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Internal Medicine and Hypertension Unite, Department of Medical Sciences, University of Torin, Turin, Italy
| | - Frederick J Schoen
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jesper Hjortnaes
- Department of Cardiothoracic Surgery, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Jochen D Muehlschlegel
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Masanori Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sasha A Singh
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Curaj A, Vanholder R, Loscalzo J, Quach K, Wu Z, Jankowski V, Jankowski J. Cardiovascular Consequences of Uremic Metabolites: an Overview of the Involved Signaling Pathways. Circ Res 2024; 134:592-613. [PMID: 38422175 DOI: 10.1161/circresaha.123.324001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The crosstalk of the heart with distant organs such as the lung, liver, gut, and kidney has been intensively approached lately. The kidney is involved in (1) the production of systemic relevant products, such as renin, as part of the most essential vasoregulatory system of the human body, and (2) in the clearance of metabolites with systemic and organ effects. Metabolic residue accumulation during kidney dysfunction is known to determine cardiovascular pathologies such as endothelial activation/dysfunction, atherosclerosis, cardiomyocyte apoptosis, cardiac fibrosis, and vascular and valvular calcification, leading to hypertension, arrhythmias, myocardial infarction, and cardiomyopathies. However, this review offers an overview of the uremic metabolites and details their signaling pathways involved in cardiorenal syndrome and the development of heart failure. A holistic view of the metabolites, but more importantly, an exhaustive crosstalk of their known signaling pathways, is important for depicting new therapeutic strategies in the cardiovascular field.
Collapse
Affiliation(s)
- Adelina Curaj
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Raymond Vanholder
- Department of Internal Medicine and Pediatrics, Nephrology Section, University Hospital, Ghent, Belgium (R.V.)
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.L.)
| | - Kaiseng Quach
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Zhuojun Wu
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Vera Jankowski
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Joachim Jankowski
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
- Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, the Netherlands (J.J.)
- Aachen-Maastricht Institute for Cardiorenal Disease, RWTH Aachen University, Aachen, Germany (J.J.)
| |
Collapse
|
22
|
Moldovan D, Rusu C, Potra A, Tirinescu D, Ticala M, Kacso I. Food to Prevent Vascular Calcification in Chronic Kidney Disease. Nutrients 2024; 16:617. [PMID: 38474744 DOI: 10.3390/nu16050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Vascular calcification (VC) is a consequence of chronic kidney disease (CKD) which is of paramount importance regarding the survival of CKD patients. VC is far from being controlled with actual medication; as a result, in recent years, diet modulation has become more compelling. The concept of medical nutritional therapy points out the idea that food may prevent or treat diseases. The aim of this review was to evaluate the influence of food habits and nutritional intervention in the occurrence and progression of VC in CKD. Evidence reports the harmfulness of ultra-processed food, food additives, and animal-based proteins due to the increased intake of high absorbable phosphorus, the scarcity of fibers, and the increased production of uremic toxins. Available data are more supportive of a plant-dominant diet, especially for the impact on gut microbiota composition, which varies significantly depending on VC presence. Magnesium has been shown to prevent VC but only in experimental and small clinical studies. Vitamin K has drawn considerable attention due to its activation of VC inhibitors. There are positive studies; unfortunately, recent trials failed to prove its efficacy in preventing VC. Future research is needed and should aim to transform food into a medical intervention to eliminate VC danger in CKD.
Collapse
Affiliation(s)
- Diana Moldovan
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Crina Rusu
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Alina Potra
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Dacian Tirinescu
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Maria Ticala
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Ina Kacso
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| |
Collapse
|
23
|
Kazim M, Razian SA, Zamani E, Varandani D, Shahbad R, Desyatova A, Jadidi M. Variability in structure, morphology, and mechanical properties of the descending thoracic and infrarenal aorta around their circumference. J Mech Behav Biomed Mater 2024; 150:106332. [PMID: 38160644 DOI: 10.1016/j.jmbbm.2023.106332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Aortic diseases, such as aneurysms, atherosclerosis, and dissections, demonstrate a preferential development and progression around the aortic circumference, resulting in a highly heterogeneous disease state around the circumference. Differences in the aorta's structural composition and mechanical properties may be partly responsible for this phenomenon. Our goal in this study was to analyze the mechanical and structural properties of the human aorta at its lateral, anterior, posterior, and medial quadrants in two regions prone to circumferentially inhomogeneous diseases, descending Thoracic Aorta (TA) and Infrarenal Aorta (IFR). Human aortas were obtained from 10 donors (64 ± 11 years) and dissected from their loose surrounding tissue. Mechanical properties were determined in all four quadrants of TA and IFR using planar biaxial testing and fitted to three common constitutive models. The structure of tissues was assessed using Movat Pentachrome stained histology slides. We observed that the anterior quadrant exhibited the greatest thickness, followed by the lateral region, in both the TA and IFR. In TA, the posterior wall appeared as the stiffest location in most samples, while in IFR, the anterior wall was the stiffest. We observed a higher glycosaminoglycans content in the lateral and posterior regions of the IFR. We found elastin density to be similar in TA lateral, anterior, and posterior quadrants, while in IFR, the anterior region demonstrated the highest elastin density. Despite significant variations between subjects, this study highlights the distinct morphometrical, mechanical, and structural properties between the quadrants of both TA and IFR.
Collapse
Affiliation(s)
- Madihah Kazim
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | | | - Elham Zamani
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | - Dheeraj Varandani
- Department of Computer Science, University of Nebraska Omaha, Omaha, NE, USA
| | - Ramin Shahbad
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | | | - Majid Jadidi
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA.
| |
Collapse
|
24
|
Stack BC. Secondary Hyperparathyroidism. Otolaryngol Clin North Am 2024; 57:99-110. [PMID: 37634982 DOI: 10.1016/j.otc.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Secondary hyperparathyroidism (SHPT) does not initiate as a primary dysfunction of parathyroid glands resulting from an intrinsic defect or disease but is the physiologic response of parathyroids to metabolic changes elsewhere in the body occurring over time. SHPT is a manifestation of a chronic condition that classically occurs from chronic kidney disease. In fact, given the relatively recent transition of populations from outside (agrarian) to indoor (industrial, information technology, and so forth) employment and a consequent reduction in sun exposure, combined with diets of highly processed food, vitamin D and calcium deficiencies are now the leading causes of SHPT.
Collapse
Affiliation(s)
- Brendan C Stack
- Department of Otolaryngology-HNS Southern Illinois University/SIU Medicine, 720 North Bond Street, PO Box 19662, Springfield, IL 62794-9662, USA.
| |
Collapse
|
25
|
Musolino M, D’Agostino M, Zicarelli M, Andreucci M, Coppolino G, Bolignano D. Spice Up Your Kidney: A Review on the Effects of Capsaicin in Renal Physiology and Disease. Int J Mol Sci 2024; 25:791. [PMID: 38255865 PMCID: PMC10815060 DOI: 10.3390/ijms25020791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/31/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Capsaicin, the organic compound which attributes the spicy flavor and taste of red peppers and chili peppers, has been extensively studied for centuries as a potential natural remedy for the treatment of several illnesses. Indeed, this compound exerts well-known systemic pleiotropic effects and may thus bring important benefits against various pathological conditions like neuropathic pain, rhinitis, itching, or chronic inflammation. Yet, little is known about the possible biological activity of capsaicin at the kidney level, as this aspect has only been addressed by sparse experimental investigations. In this paper, we aimed to review the available evidence focusing specifically on the effects of capsaicin on renal physiology, as well as its potential benefits for the treatment of various kidney disorders. Capsaicin may indeed modulate various aspects of renal function and renal nervous activity. On the other hand, the observed experimental benefits in preventing acute kidney injury, slowing down the progression of diabetic and chronic kidney disease, ameliorating hypertension, and even delaying renal cancer growth may set the stage for future human trials of capsaicin administration as an adjuvant or preventive therapy for different, difficult-to-treat renal diseases.
Collapse
Affiliation(s)
- Michela Musolino
- Nephrology and Dialysis Unit, Magna Graecia University Hospital, 88100 Catanzaro, Italy; (M.M.); (M.D.); (M.A.); (G.C.)
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Mario D’Agostino
- Nephrology and Dialysis Unit, Magna Graecia University Hospital, 88100 Catanzaro, Italy; (M.M.); (M.D.); (M.A.); (G.C.)
| | | | - Michele Andreucci
- Nephrology and Dialysis Unit, Magna Graecia University Hospital, 88100 Catanzaro, Italy; (M.M.); (M.D.); (M.A.); (G.C.)
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Giuseppe Coppolino
- Nephrology and Dialysis Unit, Magna Graecia University Hospital, 88100 Catanzaro, Italy; (M.M.); (M.D.); (M.A.); (G.C.)
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Davide Bolignano
- Nephrology and Dialysis Unit, Magna Graecia University Hospital, 88100 Catanzaro, Italy; (M.M.); (M.D.); (M.A.); (G.C.)
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| |
Collapse
|
26
|
Kim JA, Kim SE, El Hachem K, Virk HUH, Alam M, Virani SS, Sharma S, House A, Krittanawong C. Medical Management of Coronary Artery Disease in Patients with Chronic Kidney Disease. Am J Med 2023; 136:1147-1159. [PMID: 37380060 DOI: 10.1016/j.amjmed.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
Chronic kidney disease patients are at increased risk of cardiovascular disease, which is the leading cause of mortality among this population. In addition, chronic kidney disease is a major risk factor for the development of coronary artery disease and is widely regarded as a coronary artery disease risk equivalent. Medical therapy is the cornerstone of coronary artery disease management in the general population. However, there are few trials to guide medical therapy of coronary artery disease in chronic kidney disease, with most data extrapolated from clinical trials of mainly non-chronic kidney disease patients, which were not adequately powered to evaluate this subgroup. There is some evidence to suggest that the efficacy of certain therapies such as aspirin and statins is attenuated with declining estimated glomerular filtration rate, with questionable benefit among end-stage renal disease (ESRD) patients. Furthermore, chronic kidney disease and ESRD patients are at higher risk of potential side effects with therapy, which may limit their use. In this review, we summarize the available evidence supporting the safety and efficacy of medical therapy of coronary artery disease in chronic kidney disease and ESRD patients. We also discuss the data on new emerging therapies, including PCSK9i, SGLT2i, GLP1 receptor agonists, and nonsteroidal mineralocorticoid receptor antagonists, which show promise at reducing risk of cardiovascular events in the chronic kidney disease population and may offer additional treatment options. Overall, dedicated studies directly evaluating chronic kidney disease patients, particularly those with advanced chronic kidney disease and ESRD, are greatly needed to establish the optimal medical therapy for coronary artery disease and improve outcomes in this vulnerable population.
Collapse
Affiliation(s)
- Jitae A Kim
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Seulgi E Kim
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Karim El Hachem
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY
| | - Hafeez Ul Hassan Virk
- Harrington Heart & Vascular Institute, Case Western Reserve University, University Hospitals Cleveland Medical Center, Ohio
| | - Mahboob Alam
- Texas Heart Institute and Baylor College of Medicine, Houston
| | - Salim S Virani
- Section of Cardiology, Baylor College of Medicine, Houston, Texas; Office of the Vice Provost (Research), The Aga Khan University, Karachi, Pakistan
| | - Samin Sharma
- Cardiac Catheterization Laboratory of the Cardiovascular Institute, Mount Sinai Hospital, New York, NY
| | - Andrew House
- Division of Nephrology, Department of Medicine, Western University and London Health Sciences Centre, Ont, Canada
| | | |
Collapse
|
27
|
Goettsch C. Unveiling novel genetic insights into arterial calcification. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1102-1103. [PMID: 39196144 DOI: 10.1038/s44161-023-00379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Claudia Goettsch
- Department of Internal Medicine I, Cardiology, University Hospital, Medical Faculty, RWTH Aachen, Aachen, Germany.
| |
Collapse
|
28
|
Huo X, Jia S, Zhang X, Sun L, Liu X, Liu L, Zuo X, Chen X. Association of dietary live microbe intake with abdominal aortic calcification in US adults: a cross-sectional study of NHANES 2013-2014. Front Nutr 2023; 10:1267607. [PMID: 38075227 PMCID: PMC10704926 DOI: 10.3389/fnut.2023.1267607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/10/2023] [Indexed: 07/02/2024] Open
Abstract
OBJECT To explore the potential association between dietary live microbe intake and abdominal aortic calcification (AAC). METHODS We conducted a cross-section study based on the National Health and Nutrition Examination Survey (NHANES). We categorized the participants into three groups (low, medium, and high dietary intake of live microbes) according to Sanders's dietary live microbe classification system and participants' 24-h dietary recall data. AAC was quantified by using dual-energy X-ray absorptiometry (DXA) and diagnosed by using the Kauppila AAC-24 score system. The analyses utilized weighted logistic regression and weighted linear regression. RESULTS A total of 2,586 participants were included. After the full adjustment for covariates, compared to participants with a low dietary live microbe intake, participants with a high dietary live microbe intake had a significantly lower risk of severe AAC (OR: 0.39, 95% CI: 0.22, 0.68, p = 0.003), and the AAC score was also significantly decreased (β:-0.53, 95% CI: -0.83, -0.23, p = 0.002). CONCLUSION In this study, more dietary live microbial intake was associated with lower AAC scores and a lower risk of severe AAC. However, more research is needed to verify this.
Collapse
Affiliation(s)
- Xingwei Huo
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shanshan Jia
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lirong Sun
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Second Department of Internal Medicine, Affiliated Hospital of Tibet University for Nationalities, Xianyang, Shaanxi, China
| | - Xueting Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianghao Zuo
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Turner ME, Aikawa E. Updating the paradigm: inflammation as a targetable modulator of medial vascular calcification. Cardiovasc Res 2023; 119:2259-2261. [PMID: 37875065 PMCID: PMC10597605 DOI: 10.1093/cvr/cvad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Affiliation(s)
- Mandy E Turner
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, 3 Blackfan St, Boston, MA 02115, USA
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, 3 Blackfan St, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, 77 Louis Pasteur Ave, Boston, MA 02115, USA
| |
Collapse
|
30
|
Huang C, Duan Z, Xu C, Chen Y. Influence of sodium thiosulfate on coronary artery calcification of patients on dialysis: a meta-analysis. Ren Fail 2023; 45:2254569. [PMID: 37755153 PMCID: PMC10538455 DOI: 10.1080/0886022x.2023.2254569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Coronary artery calcification (CAC) is common in dialysis patients and is associated with a higher risk of future cardiovascular events. Sodium thiosulfate (STS) is effective for calciphylaxis in dialysis patients; however, the influence of STS on CAC in dialysis patients remains unclear. This systematic review and meta-analysis were conducted to evaluate the effects of STS on CAC in patients undergoing dialysis. PubMed, Embase, Cochrane Library, CNKI, and Wanfang databases were searched from inception to 22 March 2023 for controlled studies comparing the influence of STS versus usual care without STS on CAC scores in dialysis patients. A random effects model incorporating the potential influence of heterogeneity was used to pool the results. Nine studies, including two non-randomized studies and seven randomized controlled trials, were included in the meta-analysis. Among these, 365 patients on dialysis were included in the study. Compared with usual care without STS, intravenous STS for 3-6 months was associated with significantly reduced CAC scores (mean difference [MD] = -180.17, 95% confidence interval [CI]: -276.64 to -83.70, p < 0.001, I2 = 0%). Sensitivity analysis limited to studies of patients on hemodialysis showed similar results (MD: -167.33, 95% CI: -266.57 to -68.09, p = 0.001; I2 = 0%). Subgroup analyses according to study design, sample size, mean age, sex, dialysis vintage of the patients, and treatment duration of STS also showed consistent results (p for subgroup differences all > 0.05). In conclusion, intravenous STS may be effective in attenuating CAC in dialysis patients.
Collapse
Affiliation(s)
- Chong Huang
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhibing Duan
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chengyun Xu
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Chen
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
31
|
Cozzolino M, Maffei Faccioli F, Cara A, Boni Brivio G, Rivela F, Ciceri P, Magagnoli L, Galassi A, Barbuto S, Speciale S, Minicucci C, Cianciolo G. Future treatment of vascular calcification in chronic kidney disease. Expert Opin Pharmacother 2023; 24:2041-2057. [PMID: 37776230 DOI: 10.1080/14656566.2023.2266381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023]
Abstract
INTRODUCTION Cardiovascular disease (CVD) is one of the global leading causes of morbidity and mortality in chronic kidney disease (CKD) patients. Vascular calcification (VC) is a major cause of CVD in this population and is the consequence of complex interactions between inhibitor and promoter factors leading to pathological deposition of calcium and phosphate in soft tissues. Different pathological landscapes are associated with the development of VC, such as endothelial dysfunction, oxidative stress, chronic inflammation, loss of mineralization inhibitors, release of calcifying extracellular vesicles (cEVs) and circulating calcifying cells. AREAS COVERED In this review, we examined the literature and summarized the pathophysiology, biomarkers and focused on the treatments of VC. EXPERT OPINION Even though there is no consensus regarding specific treatment options, we provide the currently available treatment strategies that focus on phosphate balance, correction of vitamin D and vitamin K deficiencies, avoidance of both extremes of bone turnover, normalizing calcium levels and reduction of inflammatory response and the potential and promising therapeutic approaches liketargeting cellular mechanisms of calcification (e.g. SNF472, TNAP inhibitors).Creating novel scores to detect in advance VC and implementing targeted therapies is crucial to treat them and improve the future management of these patients.
Collapse
Affiliation(s)
- Mario Cozzolino
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Federico Maffei Faccioli
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Anila Cara
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Giulia Boni Brivio
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Francesca Rivela
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Paola Ciceri
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Lorenza Magagnoli
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Andrea Galassi
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Simona Barbuto
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Serena Speciale
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Carlo Minicucci
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Giuseppe Cianciolo
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
32
|
Noels H, Jankowski J. Increased Risk of Cardiovascular Complications in Chronic Kidney Disease: Introduction to a Compendium. Circ Res 2023; 132:899-901. [PMID: 37053281 DOI: 10.1161/circresaha.123.322806] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Affiliation(s)
- Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR) (H.N., J.J.), University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE) (H.N., J.J.), University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Germany
- Department of Biochemistry (H.N.), Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR) (H.N., J.J.), University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE) (H.N., J.J.), University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Germany
- Department of Pathology (J.J.), Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| |
Collapse
|