1
|
Basumatary M, Talukdar A, Sharma M, Dutta A, Mukhopadhyay R, Doley R. Exploring the anticancer potential of Cytotoxin 10 from Naja kaouthia venom: Mechanistic insights from breast and lung cancer cell lines. Chem Biol Interact 2024; 403:111254. [PMID: 39321861 DOI: 10.1016/j.cbi.2024.111254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024]
Abstract
Breast and lung cancers are the leading causes of cancer-related deaths in the world. Although considerable progress has been made in the field of cancer therapy, quest to discover potent, safe and cost-effective alternatives especially from natural sources is being pursued. Snake venom, which is a treasure trove of various peptides and proteins including natural toxins that specifically target tissues and receptors in the envenomated victims. Many such proteins are being explored for their therapeutic potential against various diseases including cancers. Here, we report the mechanism of cytotoxic activity of crude venom and a purified protein, Cytotoxin from the monocled cobra (Naja kaouthia), an elapid snake with neurotoxic venom prominently found in the North-East India. The crude venom showed significant cytotoxicity against breast (MCF-7and MDA-MB-231) and lung (A549, NCI-H522) cancer cell lines. Bioassay-guided fractionation using RP-HPLC showed highest cytotoxic activity in peak P9. Liquid chromatography-tandem mass spectrometry (ESI-LC-MS/MS) analysis was employed and the fraction is identified as Cytotoxin 10 which showed comparable cytotoxicity against the experimental cell lines. Cytotoxin 10 also exhibited apoptosis in MCF-7 and A549 cell lines using AO/EtBr and flow cytometry analysis. Expressions of apoptosis related proteins e.g. Bax, Bcl-2, Caspase-7 and PARP were also studied following Cytotoxin 10 treatment in both cell lines. Molecular docking experiments performed to investigate the interactions between Cytotoxin 10 and the apoptotic proteins revealed favourable binding scores compared to their corresponding inhibitors. Interestingly, Cytotoxin 10 inhibited migration and adhesion in a time and dose-dependent manner in both MCF-7 and A549 cells. This is the first report elucidating the mechanism of cytotoxic activity of Cytotoxin 10 purified from Naja kaouthia venom of North-East India origin and could pave the way for development of potential therapeutic strategies against breast and lung cancer.
Collapse
Affiliation(s)
- Mandira Basumatary
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Assam, 784028, India
| | - Amit Talukdar
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Assam, 784028, India
| | - Manoj Sharma
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Assam, 784028, India
| | - Anupam Dutta
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Assam, 784028, India
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Assam, 784028, India.
| | - Robin Doley
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Assam, 784028, India.
| |
Collapse
|
2
|
Pawlonka J, Buchalska B, Buczma K, Borzuta H, Kamińska K, Cudnoch-Jędrzejewska A. Targeting the Renin-angiotensin-aldosterone System (RAAS) for Cardiovascular Protection and Enhanced Oncological Outcomes: Review. Curr Treat Options Oncol 2024; 25:1406-1427. [PMID: 39422794 DOI: 10.1007/s11864-024-01270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
OPINION STATEMENT The renin-angiotensin-aldosterone system (RAAS) is a crucial regulator of the cardiovascular system and a target for widely used therapeutic drugs. Dysregulation of RAAS, implicated in prevalent diseases like hypertension and heart failure, has recently gained attention in oncological contexts due to its role in tumor biology and cardiovascular toxicities (CVTs). Thus, RAAS inhibitors (RAASi) may be used as potential supplementary therapies in cancer treatment and CVT prevention. Oncological treatments have evolved significantly, impacting patient survival and safety profiles. However, they pose cardiovascular risks, necessitating strategies for mitigating adverse effects. The main drug classes used in oncology include anthracyclines, anti-HER2 therapies, immune checkpoint inhibitors (ICIs), and vascular endothelial growth factor (VEGF) signaling pathway inhibitors (VSPI). While effective against cancer, these drugs induce varying CVTs. RAASi adjunctive therapy shows promise in enhancing clinical outcomes and protecting the cardiovascular system. Understanding RAAS involvement in cancer and CVT can inform personalized treatment approaches and improve patient care.
Collapse
Affiliation(s)
- J Pawlonka
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| | - B Buchalska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - K Buczma
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - H Borzuta
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - K Kamińska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - A Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Zhang J, Feng X, Yang R, Bai J, Gao F, Zhang B. Beclin-1-Derived Peptide MP1 Attenuates Renal Fibrosis by Inhibiting the Wnt/ β-Catenin Pathway. J Pharmacol Exp Ther 2024; 389:208-218. [PMID: 38453525 DOI: 10.1124/jpet.123.001994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Renal fibrosis is distinguished by the abnormal deposition of extracellular matrix and progressive loss of nephron function, with a lack of effective treatment options in clinical practice. In this study, we discovered that the Beclin-1-derived peptide MP1 significantly inhibits the abnormal expression of fibrosis and epithelial-mesenchymal transition-related markers, including α-smooth muscle actin, fibronectin, collagen I, matrix metallopeptidase 2, Snail1, and vimentin both in vitro and in vivo. H&E staining was employed to evaluate renal function, while serum creatinine (Scr) and blood urea nitrogen (BUN) were used as main indices to assess pathologic changes in the obstructed kidney. The results demonstrated that daily treatment with MP1 during the 14-day experiment significantly alleviated renal dysfunction and changes in Scr and BUN in mice with unilateral ureteral obstruction. Mechanistic research revealed that MP1 was found to have a significant inhibitory effect on the expression of crucial components involved in both the Wnt/β-catenin and transforming growth factor (TGF)-β/Smad pathways, including β-catenin, C-Myc, cyclin D1, TGF-β1, and p-Smad/Smad. However, MP1 exhibited no significant impact on either the LC3II/LC3I ratio or P62 levels. These findings indicate that MP1 improves renal physiologic function and mitigates the fibrosis progression by inhibiting the Wnt/β-catenin pathway. Our study suggests that MP1 represents a promising and novel candidate drug precursor for the treatment of renal fibrosis. SIGNIFICANCE STATEMENT: This study indicated that the Beclin-1-derived peptide MP1 effectively mitigated renal fibrosis induced by unilateral ureteral obstruction through inhibiting the Wnt/β-catenin pathway and transforming growth factor-β/Smad pathway, thereby improving renal physiological function. Importantly, unlike other Beclin-1-derived peptides, MP1 exhibited no significant impact on autophagy in normal cells. MP1 represents a promising and novel candidate drug precursor for the treatment of renal fibrosis focusing on Beclin-1 derivatives and Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Science, Lanzhou University, Lanzhou, China
| | - Xiaocui Feng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Science, Lanzhou University, Lanzhou, China
| | - Runling Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Science, Lanzhou University, Lanzhou, China
| | - Jingya Bai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Science, Lanzhou University, Lanzhou, China
| | - Feiyun Gao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Science, Lanzhou University, Lanzhou, China
| | - Bangzhi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Science, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Chalise U, Hale TM. Fibroblasts under pressure: cardiac fibroblast responses to hypertension and antihypertensive therapies. Am J Physiol Heart Circ Physiol 2024; 326:H223-H237. [PMID: 37999643 PMCID: PMC11219059 DOI: 10.1152/ajpheart.00401.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Approximately 50% of Americans have hypertension, which significantly increases the risk of heart failure. In response to increased peripheral resistance in hypertension, intensified mechanical stretch in the myocardium induces cardiomyocyte hypertrophy and fibroblast activation to withstand increased pressure overload. This changes the structure and function of the heart, leading to pathological cardiac remodeling and eventual progression to heart failure. In the presence of hypertensive stimuli, cardiac fibroblasts activate and differentiate to myofibroblast phenotype capable of enhanced extracellular matrix secretion in coordination with other cell types, mainly cardiomyocytes. Both systemic and local renin-angiotensin-aldosterone system activation lead to increased angiotensin II stimulation of fibroblasts. Angiotensin II directly activates fibrotic signaling such as transforming growth factor β/SMAD and mitogen-activated protein kinase (MAPK) signaling to produce extracellular matrix comprised of collagens and matricellular proteins. With the advent of single-cell RNA sequencing techniques, heterogeneity in fibroblast populations has been identified in the left ventricle in models of hypertension and pressure overload. The various clusters of fibroblasts reveal a range of phenotypes and activation states. Select antihypertensive therapies have been shown to be effective in limiting fibrosis, with some having direct actions on cardiac fibroblasts. The present review focuses on the fibroblast-specific changes that occur in response to hypertension and pressure overload, the knowledge gained from single-cell analyses, and the effect of antihypertensive therapies. Understanding the dynamics of hypertensive fibroblast populations and their similarities and differences by sex is crucial for the advent of new targets and personalized medicine.
Collapse
Affiliation(s)
- Upendra Chalise
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota, United States
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona, College of Medicine-Phoenix, Phoenix, Arizona, United States
| |
Collapse
|
5
|
Confalonieri F, Lumi X, Petrovski G. Spontaneous Epiretinal Membrane Resolution and Angiotensin Receptor Blockers: Case Observation, Literature Review and Perspectives. Biomedicines 2023; 11:1976. [PMID: 37509613 PMCID: PMC10377102 DOI: 10.3390/biomedicines11071976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Epiretinal membrane (ERM) is a relatively common condition affecting the macula. When symptoms become apparent and compromise a patient's quality of vision, the only therapeutic approach available today is surgery with a vitrectomy and peeling of the ERM. Angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACE-Is) reduce the effect of angiotensin II, limit the amount of fibrosis, and demonstrate consequences on fibrinogenesis in the human body. Case Description and Materials and Methods: A rare case of spontaneous ERM resolution with concomitant administration of ARB is reported. The patient was set on ARB treatment for migraines and arterial hypertension, and a posterior vitreous detachment was already present at the first diagnosis of ERM. The scientific literature addressing the systemic relationship between ARB, ACE-Is, and fibrosis in the past 25 years was searched in the PubMed, Medline, and EMBASE databases. RESULTS In total, 38 and 16 original articles have been selected for ARBs and ACE-Is, respectively, in regard to fibrosis modulation. CONCLUSION ARBs and ACE-Is might have antifibrotic activity on ERM formation and resolution. Further clinical studies are necessary to explore this phenomenon.
Collapse
Affiliation(s)
- Filippo Confalonieri
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
| | - Xhevat Lumi
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
- Eye Hospital, University Medical Centre Ljubljana, Zaloška Cesta 2, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Goran Petrovski
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, 21000 Split, Croatia
| |
Collapse
|
6
|
Sonkawade SD, Xu S, Kim M, Nepali S, Karambizi VG, Sexton S, Turowski SG, Li K, Spernyak JA, Lovell JF, George A, Suwal S, Sharma UC, Pokharel S. Phospholipid Encapsulation of an Anti-Fibrotic Endopeptide to Enhance Cellular Uptake and Myocardial Retention. Cells 2023; 12:1589. [PMID: 37371059 PMCID: PMC10296995 DOI: 10.3390/cells12121589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Cardioprotective effects of N-acetyl-ser-asp-lys-pro (Ac-SDKP) have been reported in preclinical models of myocardial remodeling. However, the rapid degradation of this endogenous peptide in vivo limits its clinical use. METHOD To prolong its bioavailability, Ac-SDKP was encapsulated by phosphocholine lipid bilayers (liposomes) similar to mammalian cell membranes. The physical properties of the liposome structures were assessed by dynamic light scattering and scanning electron microscopy. The uptake of Ac-SDKP by RAW 264.7 macrophages and human and murine primary cardiac fibroblasts was confirmed by fluorescence microscopy and flow cytometry. Spectrum computerized tomography and competitive enzyme-linked immunoassays were performed to measure the ex vivo cardiac biodistribution of Ac-SDKP. The biological effects of this novel synthetic compound were examined in cultured macrophages and cardiac fibroblasts and in a murine model of acute myocardial infarction induced by permanent coronary artery ligation. RESULTS A liposome formulation resulted in the greater uptake of Ac-SDKP than the naked peptide by cultured RAW 264.7 macrophages and cardiac fibroblasts. Liposome-delivered Ac-SDKP decreased fibroinflammatory genes in cultured cardiac fibroblasts co-treated with TGF-β1 and macrophages stimulated with LPS. Serial tissue and serum immunoassays showed the high bioavailability of Ac-SDKP in mouse myocardium and in circulation. Liposome-delivered Ac-SDKP improved cardiac function and reduced myocardial fibroinflammatory responses in mice with acute myocardial infarction. CONCLUSION Encapsulation of Ac-SDKP in a cell membrane-like phospholipid bilayer enhances its plasma and tissue bioavailability and offers cardioprotection against ischemic myocardial injury. Future clinical trials can use this novel approach to test small protective endogenous peptides in myocardial remodeling.
Collapse
Affiliation(s)
- Swati D. Sonkawade
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.D.S.)
- Laboratory Medicine, Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Shirley Xu
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.D.S.)
- Laboratory Medicine, Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Minhyung Kim
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Sarmila Nepali
- Laboratory Medicine, Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Victoire-Grace Karambizi
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.D.S.)
- Laboratory Medicine, Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Sandra Sexton
- Laboratory Animal Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Steven G. Turowski
- Translational Imaging Shared Resources, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Kunpeng Li
- Department of Physiology and Biophysics, Case Western Reserve School of Medicine, Cleveland, OH 44106, USA
| | - Joseph A. Spernyak
- Translational Imaging Shared Resources, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Anthony George
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Sujit Suwal
- Department of Chemistry, Buffalo State University, Buffalo, NY 14222, USA
| | - Umesh C. Sharma
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.D.S.)
| | - Saraswati Pokharel
- Laboratory Medicine, Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
7
|
Qin X, Cai P, Liu C, Chen K, Jiang X, Chen W, Li J, Jiao X, Guo E, Yu Y, Sun L, Tian H. Cardioprotective effect of ultrasound-targeted destruction of Sirt3-loaded cationic microbubbles in a large animal model of pathological cardiac hypertrophy. Acta Biomater 2023; 164:604-625. [PMID: 37080445 DOI: 10.1016/j.actbio.2023.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Pathological cardiac hypertrophy occurs in response to numerous increased afterload stimuli and precedes irreversible heart failure (HF). Therefore, therapies that ameliorate pathological cardiac hypertrophy are urgently required. Sirtuin 3 (Sirt3) is a main member of histone deacetylase class III and is a crucial anti-oxidative stress agent. Therapeutically enhancing the Sirt3 transfection efficiency in the heart would broaden the potential clinical application of Sirt3. Ultrasound-targeted microbubble destruction (UTMD) is a prospective, noninvasive, repeatable, and targeted gene delivery technique. In the present study, we explored the potential and safety of UTMD as a delivery tool for Sirt3 in hypertrophic heart tissues using adult male Bama miniature pigs. Pigs were subjected to ear vein delivery of human Sirt3 together with UTMD of cationic microbubbles (CMBs). Fluorescence imaging, western blotting, and quantitative real-time PCR revealed that the targeted destruction of ultrasonic CMBs in cardiac tissues greatly boosted Sirt3 delivery. Overexpression of Sirt3 ameliorated oxidative stress and partially improved the diastolic function and prevented the apoptosis and profibrotic response. Lastly, our data revealed that Sirt3 may regulate the potential transcription of catalase and MnSOD through Foxo3a. Combining the advantages of ultrasound CMBs with preclinical hypertrophy large animal models for gene delivery, we established a classical hypertrophy model as well as a strategy for the targeted delivery of genes to hypertrophic heart tissues. Since oxidative stress, fibrosis and apoptosis are indispensable in the evolution of cardiac hypertrophy and heart failure, our findings suggest that Sirt3 is a promising therapeutic option for these diseases. STATEMENT OF SIGNIFICANCE: : Pathological cardiac hypertrophy is a central prepathology of heart failure and is seen to eventually precede it. Feasible targets that may prevent or reverse disease progression are scarce and urgently needed. In this study, we developed surface-filled lipid octafluoropropane gas core cationic microbubbles that could target the release of human Sirt3 reactivating the endogenous Sirt3 in hypertrophic hearts and protect against oxidative stress in a pig model of cardiac hypertrophy induced by aortic banding. Sirt3-CMBs may enhance cardiac diastolic function and ameliorate fibrosis and apoptosis. Our work provides a classical cationic lipid-based, UTMD-mediated Sirt3 delivery system for the treatment of Sirt3 in patients with established cardiac hypertrophy, as well as a promising therapeutic target to combat pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Xionghai Qin
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Peian Cai
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Chang Liu
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Kegong Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xingpei Jiang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Wei Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Jiarou Li
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xuan Jiao
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Erliang Guo
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Yixiu Yu
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Lu Sun
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hai Tian
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
8
|
Alipour Symakani RS, van Genuchten WJ, Zandbergen LM, Henry S, Taverne YJHJ, Merkus D, Helbing WA, Bartelds B. The right ventricle in tetralogy of Fallot: adaptation to sequential loading. Front Pediatr 2023; 11:1098248. [PMID: 37009270 PMCID: PMC10061113 DOI: 10.3389/fped.2023.1098248] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/27/2023] [Indexed: 04/04/2023] Open
Abstract
Right ventricular dysfunction is a major determinant of outcome in patients with complex congenital heart disease, as in tetralogy of Fallot. In these patients, right ventricular dysfunction emerges after initial pressure overload and hypoxemia, which is followed by chronic volume overload due to pulmonary regurgitation after corrective surgery. Myocardial adaptation and the transition to right ventricular failure remain poorly understood. Combining insights from clinical and experimental physiology and myocardial (tissue) data has identified a disease phenotype with important distinctions from other types of heart failure. This phenotype of the right ventricle in tetralogy of Fallot can be described as a syndrome of dysfunctional characteristics affecting both contraction and filling. These characteristics are the end result of several adaptation pathways of the cardiomyocytes, myocardial vasculature and extracellular matrix. As long as the long-term outcome of surgical correction of tetralogy of Fallot remains suboptimal, other treatment strategies need to be explored. Novel insights in failure of adaptation and the role of cardiomyocyte proliferation might provide targets for treatment of the (dysfunctional) right ventricle under stress.
Collapse
Affiliation(s)
- Rahi S. Alipour Symakani
- Department of Pediatrics, Division of Pediatric Cardiology, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, Netherlands
- Department of Cardiology, Division of Experimental Cardiology, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, Netherlands
| | - Wouter J. van Genuchten
- Department of Pediatrics, Division of Pediatric Cardiology, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Lotte M. Zandbergen
- Department of Cardiology, Division of Experimental Cardiology, Erasmus Medical Center, Rotterdam, Netherlands
- Walter Brendel Center of Experimental Medicine (WBex), University Clinic Munich, Munich, Germany
| | - Surya Henry
- Department of Pediatrics, Division of Pediatric Cardiology, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Daphne Merkus
- Department of Cardiology, Division of Experimental Cardiology, Erasmus Medical Center, Rotterdam, Netherlands
- Walter Brendel Center of Experimental Medicine (WBex), University Clinic Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Willem A. Helbing
- Department of Pediatrics, Division of Pediatric Cardiology, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Beatrijs Bartelds
- Department of Pediatrics, Division of Pediatric Cardiology, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, Netherlands
| |
Collapse
|
9
|
Suhail H, Peng H, Xu J, Sabbah HN, Matrougui K, Liao TD, Ortiz PA, Bernstein KE, Rhaleb NE. Knockout of ACE-N facilitates improved cardiac function after myocardial infarction. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 3:100024. [PMID: 36778784 PMCID: PMC9910327 DOI: 10.1016/j.jmccpl.2022.100024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Angiotensin-converting enzyme (ACE) hydrolyzes N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) into inactive fragments through its N-terminal site (ACE-N). We previously showed that Ac-SDKP mediates ACE inhibitors' cardiac effects. Whether increased bioavailability of endogenous Ac-SDKP caused by knocking out ACE-N also improves cardiac function in myocardial infarction (MI)-induced heart failure (HF) is unknown. Wild-type (WT) and ACE-N knockout (ACE-NKO) mice were subjected to MI by ligating the left anterior descending artery and treated with vehicle or Ac-SDKP (1.6 mg/kg/day, s.c.) for 5 weeks, after which echocardiography was performed and left ventricles (LV) were harvested for histology and molecular biology studies. ACE-NKO mice showed increased plasma Ac-SDKP concentrations in both sham and MI group compared to WT. Exogenous Ac-SDKP further increased its circulating concentrations in WT and ACE-NKO. Shortening (SF) and ejection (EF) fractions were significantly decreased in both WT and ACE-NKO mice post-MI, but ACE-NKO mice exhibited significantly lesser decrease. Exogenous Ac-SDKP ameliorated cardiac function post-MI only in WT but failed to show any additive improvement in ACE-NKO mice. Sarcoendoplasmic reticulum calcium transport ATPase (SERCA2), a marker of cardiac function and calcium homeostasis, was significantly decreased in WT post-MI but rescued with Ac-SDKP, whereas ACE-NKO mice displayed less loss of SERCA2 expression. Our study demonstrates that gene deletion of ACE-N resulted in improved LV cardiac function in mice post-MI, which is likely mediated by increased circulating Ac-SDKP and minimally reduced expression of SERCA2. Thus, future development of specific and selective inhibitors for ACE-N could represent a novel approach to increase endogenous Ac-SDKP toward protecting the heart from post-MI remodeling.
Collapse
Affiliation(s)
- Hamid Suhail
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Hongmei Peng
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Jiang Xu
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
- Division of Cardiovascular Medicine, Department of
Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Hani N. Sabbah
- Division of Cardiovascular Medicine, Department of
Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Khalid Matrougui
- Department of Physiology Sciences, Eastern Virginia
Medical School, Norfolk, VA 23501, USA
| | - Tang-Dong Liao
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Pablo A. Ortiz
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit,
MI 48201, USA
| | - Kenneth E. Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical
Center, Los Angeles, CA, USA
| | - Nour-Eddine Rhaleb
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit,
MI 48201, USA
| |
Collapse
|
10
|
Fishel Bartal M, Blackwell SC, Pedroza C, Lawal D, Amro F, Samuel J, Chauhan SP, Sibai BM. Oral combined hydrochlorothiazide and lisinopril vs nifedipine for postpartum hypertension: a comparative-effectiveness pilot randomized controlled trial. Am J Obstet Gynecol 2023; 228:571.e1-571.e10. [PMID: 36787814 DOI: 10.1016/j.ajog.2023.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 02/13/2023]
Abstract
BACKGROUND Angiotensin-converting enzyme inhibitors and diuretics may be underutilized for postpartum hypertension because of their teratogenicity during pregnancy. OBJECTIVE We evaluated whether combined oral hydrochlorothiazide and lisinopril therapy produced superior short-term blood pressure control when compared with nifedipine among postpartum individuals with hypertension requiring pharmacologic treatment. STUDY DESIGN We performed a pilot randomized controlled trial (October 2021 to June 2022) that included individuals with chronic hypertension or hypertensive disorders of pregnancy with 2 systolic blood pressure measurements ≥150 mm Hg and/or diastolic blood pressure measurements ≥100 mm Hg within 72 hours after delivery. Participants were randomized to receive either combined hydrochlorothiazide and lisinopril therapy or nifedipine therapy after stratifying the participants by diagnosis (chronic hypertension vs hypertensive disorders of pregnancy). The primary outcome was stage 2 hypertension (systolic blood pressure ≥140 mm Hg and/or diastolic blood pressure ≥90 mm Hg) determined using a home blood pressure monitor on days 7 to 10 after delivery or at readmission to the hospital for blood pressure control. The secondary outcomes included severe maternal morbidity (any of the following: intensive care unit admission; hemolysis, elevated liver enzymes, low platelet count syndrome; eclampsia; stroke; cardiomyopathy; or maternal death), need for intravenous medications after randomization, hospital length of stay, blood pressure during first clinic visit, medication compliance, and adverse events. A pilot trial with 70 individuals was planned given the limited available data on combined hydrochlorothiazide and lisinopril therapy use in postpartum care. We calculated relative risks and 95% credible intervals in an intention-to-treat analysis. Finally, we conducted a preplanned Bayesian analysis to estimate the probability of benefit or harm with a neutral informative prior. RESULTS Of 111 eligible individuals, 70 (63%) agreed and were randomized (31 in the hydrochlorothiazide and lisinopril group and 36 in the nifedipine group; 3 withdrew consent after randomization), and the characteristics were similar at baseline between the groups. The primary outcome was unavailable for 9 (12.8%) participants. The primary outcome occurred in 27% of participants in the hydrochlorothiazide and lisinopril group and in 43% of the participants in the nifedipine group (posterior adjusted relative risk, 0.74; 95% credible interval, 0.40-1.31). Bayesian analysis indicated an 85% posterior probability of a reduction in the primary outcome with combined hydrochlorothiazide and lisinopril therapy relative to nifedipine treatment. No differences were noted in the secondary outcomes or adverse medication events. CONCLUSION The results of the pilot trial suggest a high probability that combined hydrochlorothiazide and lisinopril therapy produces superior short-term BP control when compared with nifedipine. These findings should be confirmed in a larger trial.
Collapse
Affiliation(s)
- Michal Fishel Bartal
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX; Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Sean C Blackwell
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
| | - Claudia Pedroza
- Center for Clinical Research and Evidence-Based Medicine, The University of Texas Health Science Center at Houston, Houston, TX
| | - Daramoye Lawal
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
| | - Farah Amro
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
| | - Joyce Samuel
- Center for Clinical Research and Evidence-Based Medicine, The University of Texas Health Science Center at Houston, Houston, TX
| | - Suneet P Chauhan
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
| | - Baha M Sibai
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
11
|
Serum Metabolomics and Proteomics to Study the Antihypertensive Effect of Protein Extracts from Tenebrio molitor. Nutrients 2022; 14:nu14163288. [PMID: 36014793 PMCID: PMC9413627 DOI: 10.3390/nu14163288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
Hypertension is the leading risk factor for premature death worldwide and significantly contributes to the development of all major cardiovascular disease events. The management of high blood pressure includes lifestyle changes and treatment with antihypertensive drugs. Recently, it was demonstrated that a diet supplemented with Tenebrio molitor (TM) extracts is useful in the management of numerous pathologies, including hypertension. This study is aimed at unveiling the underlying mechanism and the molecular targets of intervention of TM dietary supplementation in hypertension treatment by means of proteomics and metabolomics techniques based on liquid chromatography coupled with high-resolution mass spectrometry. We demonstrate that serum proteome and metabolome of spontaneously hypertensive rats are severely altered with respect to their normotensive counterparts. Additionally, our results reveal that a diet enriched with TM extracts restores the expression of 15 metabolites and 17 proteins mainly involved in biological pathways associated with blood pressure maintenance, such as the renin–angiotensin and kallikrein–kinin systems, serin protease inhibitors, reactive oxygen scavenging, and lipid peroxidation. This study provides novel insights into the molecular pathways that may underlie the beneficial effects of TM, thus corroborating that TM could be proposed as a helpful functional food supplement in the treatment of hypertension.
Collapse
|
12
|
Boitard SE, Keck M, Deloux R, Girault-Sotias PE, Marc Y, De Mota N, Compere D, Agbulut O, Balavoine F, Llorens-Cortes C. QGC606, a best-in-class orally active centrally acting aminopeptidase A inhibitor prodrug, for treating heart failure following myocardial infarction. Can J Cardiol 2022; 38:815-827. [DOI: 10.1016/j.cjca.2022.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/02/2022] Open
|
13
|
Chérifi F, Laraba-Djebari F. Bioactive Molecules Derived from Snake Venoms with Therapeutic Potential for the Treatment of Thrombo-Cardiovascular Disorders Associated with COVID-19. Protein J 2021; 40:799-841. [PMID: 34499333 PMCID: PMC8427918 DOI: 10.1007/s10930-021-10019-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 01/08/2023]
Abstract
As expected, several new variants of Severe Acute Respiratory Syndrome-CoronaVirus-2 (SARS-CoV-2) emerged and have been detected around the world throughout this Coronavirus Disease of 2019 (COVID-19) pandemic. Currently, there is no specific developed drug against COVID-19 and the challenge of developing effective antiviral strategies based on natural agents with different mechanisms of action becomes an urgent need and requires identification of genetic differences among variants. Such data is used to improve therapeutics to combat SARS-CoV-2 variants. Nature is known to offer many biotherapeutics from animal venoms, algae and plant that have been historically used in traditional medicine. Among these bioresources, snake venom displays many bioactivities of interest such as antiviral, antiplatelet, antithrombotic, anti-inflammatory, antimicrobial and antitumoral. COVID-19 is a viral respiratory sickness due to SARS-CoV-2 which induces thrombotic disorders due to cytokine storm, platelet hyperactivation and endothelial dysfunction. This review aims to: (1) present an overview on the infection, the developed thrombo-inflammatory responses and mechanisms of induced thrombosis of COVID-19 compared to other similar pathogenesis; (2) underline the role of natural compounds such as anticoagulant, antiplatelet and thrombolytic agents; (3) investigate the management of coagulopathy related to COVID-19 and provide insight on therapeutic such as venom compounds. We also summarize the updated advances on antiviral proteins and peptides derived from snake venoms that could weaken coagulopathy characterizing COVID-19.
Collapse
Affiliation(s)
- Fatah Chérifi
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, USTHB, BP 32, El-Alia, Bab Ezzouar, Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, USTHB, BP 32, El-Alia, Bab Ezzouar, Algiers, Algeria.
| |
Collapse
|
14
|
Sharifi-Rad J, Quispe C, Zam W, Kumar M, Cardoso SM, Pereira OR, Ademiluyi AO, Adeleke O, Moreira AC, Živković J, Noriega F, Ayatollahi SA, Kobarfard F, Faizi M, Martorell M, Cruz-Martins N, Butnariu M, Bagiu IC, Bagiu RV, Alshehri MM, Cho WC. Phenolic Bioactives as Antiplatelet Aggregation Factors: The Pivotal Ingredients in Maintaining Cardiovascular Health. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2195902. [PMID: 34447485 PMCID: PMC8384526 DOI: 10.1155/2021/2195902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023]
Abstract
Cardiovascular diseases (CVD) are one of the main causes of mortality in the world. The development of these diseases has a specific factor-alteration in blood platelet activation. It has been shown that phenolic compounds have antiplatelet aggregation abilities and a positive impact in the management of CVD, exerting prominent antioxidant, anti-inflammatory, antitumor, cardioprotective, antihyperglycemic, and antimicrobial effects. Thus, this review is intended to address the antiplatelet activity of phenolic compounds with special emphasis in preventing CVD, along with the mechanisms of action through which they are able to prevent and treat CVD. In vitro and in vivo studies have shown beneficial effects of phenolic compound-rich plant extracts and isolated compounds against CVD, despite that the scientific literature available on the antiplatelet aggregation ability of phenolic compounds in vivo is scarce. Thus, despite the current advances, further studies are needed to confirm the cardioprotective potential of phenolic compounds towards their use alone or in combination with conventional drugs for effective therapeutic interventions.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Wissam Zam
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Andalus University for Medical Sciences, Tartous, Syria
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Olivia R. Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Adedayo O. Ademiluyi
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Oluwakemi Adeleke
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
- Department of Science Laboratory Technology, Ekiti State University, Ado-Ekiti, Nigeria
| | | | - Jelena Živković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Felipe Noriega
- Department of Plant Production, Faculty of Agronomy, Universidad de Concepción, Chillan 4070386, Chile
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Iulia Cristina Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara, Department of Microbiology, Timisoara, Romania
- Multidisciplinary Research Center on Antimicrobial Resistance, Timisoara, Romania
| | - Radu Vasile Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara, Department of Microbiology, Timisoara, Romania
- Preventive Medicine Study Center, Timisoara, Romania
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
15
|
Sanyal S, Alabraba E, Ibrahim H, Olaru A, Cameron I, Gomez D. ACE Inhibitor Therapy Does Not Influence the Survival Outcomes of Patients with Colorectal Liver Metastases Following Liver Resection. J Gastrointest Cancer 2021; 52:106-112. [PMID: 31853827 DOI: 10.1007/s12029-019-00350-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Angiotensin-converting enzyme (ACE) inhibitors have been shown to possibly influence the survival outcomes in certain cancers. The aim of this study was to evaluate the impact of ACE inhibitors on the outcomes of patients undergoing liver resection for colorectal liver metastases (CRLM). The secondary aim was to determine whether ACE inhibitors influenced histopathological changes in CRLM. METHODS Patients treated with liver resection for CRLM over a 13-year period were identified from a prospectively maintained database. Data including demographics, primary tumour treatment, surgical data, histopathology analysis and clinical outcome were collated and analysed. RESULTS A total of 586 patients underwent primary hepatic resections for CRLM during this period including 100 patients on ACE inhibitors. The median follow-up period was 23 (range: 12-96) months, in which 267 patients developed recurrent disease and 131 patients died. Independent predictors of disease-free survival on multivariate analysis included synchronous presentation, neoadjuvant chemotherapy, major liver resection, tumour size and number, extent of hepatic steatosis, R0 resection and presence of perineural invasion. Poorer overall survival was associated with neoadjuvant treatment, major liver resection, presence of multiple metastases, perineural invasion and positive resection margins on multivariate analysis. ACE inhibitors did not influence the survival outcome or histological presentation in CRLM. CONCLUSION The use of ACE inhibitors did not affect the survival outcome or tumour biology in patients with CRLM following liver resection.
Collapse
Affiliation(s)
- Sudip Sanyal
- Department of Hepatobiliary and Pancreatic Surgery, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Derby Rd, Nottingham, NG7 2UH, UK
| | - Edward Alabraba
- Department of Hepatobiliary and Pancreatic Surgery, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Derby Rd, Nottingham, NG7 2UH, UK
| | - Hussain Ibrahim
- Department of Hepatobiliary and Pancreatic Surgery, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Derby Rd, Nottingham, NG7 2UH, UK
| | - Adina Olaru
- Department of Hepatobiliary and Pancreatic Surgery, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Derby Rd, Nottingham, NG7 2UH, UK
| | - Iain Cameron
- Department of Hepatobiliary and Pancreatic Surgery, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Derby Rd, Nottingham, NG7 2UH, UK
| | - Dhanny Gomez
- Department of Hepatobiliary and Pancreatic Surgery, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Derby Rd, Nottingham, NG7 2UH, UK. .,NIHR Nottingham Digestive Disease Biomedical Research Uni, University of Nottingham, Nottingham, UK.
| |
Collapse
|
16
|
Cantero-Navarro E, Fernández-Fernández B, Ramos AM, Rayego-Mateos S, Rodrigues-Diez RR, Sánchez-Niño MD, Sanz AB, Ruiz-Ortega M, Ortiz A. Renin-angiotensin system and inflammation update. Mol Cell Endocrinol 2021; 529:111254. [PMID: 33798633 DOI: 10.1016/j.mce.2021.111254] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/05/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
The most classical view of the renin-angiotensin system (RAS) emphasizes its role as an endocrine regulator of sodium balance and blood pressure. However, it has long become clear that the RAS has pleiotropic actions that contribute to organ damage, including modulation of inflammation. Angiotensin II (Ang II) activates angiotensin type 1 receptors (AT1R) to promote an inflammatory response and organ damage. This represents the pathophysiological basis for the successful use of RAS blockers to prevent and treat kidney and heart disease. However, other RAS components could have a built-in capacity to brake proinflammatory responses. Angiotensin type 2 receptor (AT2R) activation can oppose AT1R actions, such as vasodilatation, but its involvement in modulation of inflammation has not been conclusively proven. Angiotensin-converting enzyme 2 (ACE2) can process Ang II to generate angiotensin-(1-7) (Ang-(1-7)), that activates the Mas receptor to exert predominantly anti-inflammatory responses depending on the context. We now review recent advances in the understanding of the interaction of the RAS with inflammation. Specific topics in which novel information became available recently include intracellular angiotensin receptors; AT1R posttranslational modifications by tissue transglutaminase (TG2) and anti-AT1R autoimmunity; RAS modulation of lymphoid vessels and T lymphocyte responses, especially of Th17 and Treg responses; interactions with toll-like receptors (TLRs), programmed necrosis, and regulation of epigenetic modulators (e.g. microRNAs and bromodomain and extraterminal domain (BET) proteins). We additionally discuss an often overlooked effect of the RAS on inflammation which is the downregulation of anti-inflammatory factors such as klotho, peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), transient receptor potential ankyrin 1 (TRPA1), SNF-related serine/threonine-protein kinase (SNRK), serine/threonine-protein phosphatase 6 catalytic subunit (Ppp6C) and n-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP). Both transcription factors, such as nuclear factor κB (NF-κB), and epigenetic regulators, such as miRNAs are involved in downmodulation of anti-inflammatory responses. A detailed analysis of pathways and targets for downmodulation of anti-inflammatory responses constitutes a novel frontier in RAS research.
Collapse
Affiliation(s)
- Elena Cantero-Navarro
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - Beatriz Fernández-Fernández
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Adrian M Ramos
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Sandra Rayego-Mateos
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - Raúl R Rodrigues-Diez
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - María Dolores Sánchez-Niño
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Ana B Sanz
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain.
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain.
| |
Collapse
|
17
|
Snake Venom Components: Tools and Cures to Target Cardiovascular Diseases. Molecules 2021; 26:molecules26082223. [PMID: 33921462 PMCID: PMC8070158 DOI: 10.3390/molecules26082223] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular diseases (CVDs) are considered as a major cause of death worldwide. Therefore, identifying and developing therapeutic strategies to treat and reduce the prevalence of CVDs is a major medical challenge. Several drugs used for the treatment of CVDs, such as captopril, emerged from natural products, namely snake venoms. These venoms are complex mixtures of bioactive molecules, which, among other physiological networks, target the cardiovascular system, leading to them being considered in the development and design of new drugs. In this review, we describe some snake venom molecules targeting the cardiovascular system such as phospholipase A2 (PLA2), natriuretic peptides (NPs), bradykinin-potentiating peptides (BPPs), cysteine-rich secretory proteins (CRISPs), disintegrins, fibrinolytic enzymes, and three-finger toxins (3FTXs). In addition, their molecular targets, and mechanisms of action—vasorelaxation, inhibition of platelet aggregation, cardioprotective activities—are discussed. The dissection of their biological effects at the molecular scale give insights for the development of future snake venom-derived drugs.
Collapse
|
18
|
A Romero C, Mathew S, Wasinski B, Reed B, Brody A, Dawood R, Twiner MJ, McNaughton CD, Fridman R, Flack JM, Carretero OA, Levy PD. Angiotensin-converting enzyme inhibitors increase anti-fibrotic biomarkers in African Americans with left ventricular hypertrophy. J Clin Hypertens (Greenwich) 2021; 23:1008-1016. [PMID: 33694311 PMCID: PMC8678784 DOI: 10.1111/jch.14206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 01/21/2023]
Abstract
Angiotensin‐converting enzyme inhibitors (ACEi) are part of the indicated treatment in hypertensive African Americans. ACEi have blood pressure‐independent effects that may make them preferred for certain patients. We aimed to evaluate the impact of ACEi on anti‐fibrotic biomarkers in African American hypertensive patients with left ventricular hypertrophy (LVH). We conducted a post hoc analysis of a randomized controlled trial in which hypertensive African American patients with LVH and vitamin D deficiency were randomized to receive intensive antihypertensive therapy plus vitamin D supplementation or placebo. We selected patients who had detectable lisinopril (lisinopril group) in plasma using liquid‐chromatography/mass spectrometry analysis and compared them to subjects who did not (comparison group) at the one‐year follow‐up. The pro‐fibrotic marker type 1 procollagen C‐terminal propeptide (PICP) and the anti‐fibrotic markers matrix metalloproteinase‐1 (MMP‐1), tissue inhibitor of metalloproteinases 1 (TIMP‐1), telopeptide of collagen type I (CITP), and N‐acetyl‐seryl‐aspartyl‐lysyl‐proline (Ac‐SDKP) peptide were measured. Sixty‐six patients were included, and the mean age was 46.2 ± 8 years. No difference was observed in the number and intensity of antihypertensive medications prescribed in each group. Patients with detectable lisinopril had lower blood pressure than those in the comparison group. The anti‐fibrotic markers Ac‐SDKP, MMP‐1, and MMP‐1/TIMP‐1 ratio were higher in patients with detectable ACEi (all p < .05). In a model adjusted for systolic blood pressure, MMP‐1/TIMP‐1 (p = .02) and Ac‐SDKP (p < .001) levels were associated with lisinopril. We conclude that ACEi increase anti‐fibrotic biomarkers in hypertensive African Americans with LVH, suggesting that they may offer added benefit over other agents in such patients.
Collapse
Affiliation(s)
- Cesar A Romero
- Hypertension and Vascular Research Division, Internal Medicine Department, Henry Ford Hospital, Detroit, MI, USA
| | - Shobi Mathew
- Department of Emergency Medicine and Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Benjamin Wasinski
- Department of Emergency Medicine and Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Brian Reed
- Department of Emergency Medicine and Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Aaron Brody
- Department of Emergency Medicine and Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Rachelle Dawood
- Department of Emergency Medicine and Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Michael J Twiner
- Department of Emergency Medicine and Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Candace D McNaughton
- Department of Emergency Medicine, Vanderbilt University Medical Center and Geriatric Research Education Clinical Center VA Medical Center, Nashville, TN, USA
| | - Rafael Fridman
- Department of Pathology and Oncology, Wayne State University, Detroit, MI, USA
| | - John M Flack
- School of Medicine Department of Internal Medicine, Southern Illinois University, Springfield, IL, USA
| | - Oscar A Carretero
- Hypertension and Vascular Research Division, Internal Medicine Department, Henry Ford Hospital, Detroit, MI, USA
| | - Phillip D Levy
- Department of Emergency Medicine and Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| |
Collapse
|
19
|
Kaewkes D, Ochiai T, Flint N, Patel V, Mahani S, Kim I, Patel D, Salseth T, Friedman M, Yoon SH, Singh S, Chakravarty T, Nakamura M, Cheng W, Makkar R. Optimal Medical Therapy Following Transcatheter Aortic Valve Implantation. Am J Cardiol 2021; 141:62-71. [PMID: 33221263 DOI: 10.1016/j.amjcard.2020.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/27/2022]
Abstract
Limited data exist on optimal medical therapy post-transcatheter aortic valve implantation (TAVI) for late cardiovascular events prevention. We aimed to evaluate the benefits of beta-blocker (BB), renin-angiotensin system inhibitor (RASi), and their combination on outcomes following successful TAVI. In a consecutive cohort of 1,684 patients with severe aortic stenosis undergoing TAVI, the status of BB and RASi treatment at discharge was collected, and patients were classified into 4 groups: no-treatment, BB alone, RASi alone, and combination groups. The primary outcome was a composite of all-cause mortality and rehospitalization for heart failure (HHF) at 2-year. There were 415 (25%), 462 (27%), 349 (21%), and 458 (27%) patients in no-treatment, BB alone, RASi alone, and combination groups, respectively. The primary outcome was lower in RASi alone (21%; adjusted hazard ratio [HR]adj: 0.58; 95% confidence interval [CI]: 0.42 to 0.81) and combination (22%; HRadj: 0.53; 95% CI: 0.39 to 0.72) groups than in no-treatment group (34%) but no significant difference between RASi alone and combination groups (HRadj: 1.14; 95% CI: 0.80 to 1.62). The primary outcome results were maintained in a sensitivity analysis of patients with reduced left ventricular systolic function. Furthermore, RASi treatment was an independent predictor of 2-year all-cause mortality (HRadj: 0.68; 95% CI: 0.51 to 0.90), while that was not observed in BB therapy (HRadj: 0.94; 95% CI: 0.71 to 1.25). In conclusion, post-TAVI treatment with RASi, but not with BB, was associated with lower all-cause mortality and HHF at 2-year. The combination of RASi and BB did not add an incremental reduction in the primary outcome over RASi alone.
Collapse
|
20
|
Garvin AM, Khokhar BS, Czubryt MP, Hale TM. RAS inhibition in resident fibroblast biology. Cell Signal 2020; 80:109903. [PMID: 33370581 DOI: 10.1016/j.cellsig.2020.109903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Angiotensin II (Ang II) is a primary mediator of profibrotic signaling in the heart and more specifically, the cardiac fibroblast. Ang II-mediated cardiomyocyte hypertrophy in combination with cardiac fibroblast proliferation, activation, and extracellular matrix production compromise cardiac function and increase mortality in humans. Profibrotic actions of Ang II are mediated by increasing production of fibrogenic mediators (e.g. transforming growth factor beta, scleraxis, osteopontin, and periostin), recruitment of immune cells, and via increased reactive oxygen species generation. Drugs that inhibit Ang II production or action, collectively referred to as renin angiotensin system (RAS) inhibitors, are first line therapeutics for heart failure. Moreover, transient RAS inhibition has been found to persistently alter hypertensive cardiac fibroblast responses to injury providing a useful tool to identify novel therapeutic targets. This review summarizes the profibrotic actions of Ang II and the known impact of RAS inhibition on cardiac fibroblast phenotype and cardiac remodeling.
Collapse
Affiliation(s)
- Alexandra M Garvin
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Bilal S Khokhar
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Michael P Czubryt
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA.
| |
Collapse
|
21
|
Hushmandi K, Bokaie S, Hashemi M, Moghadam ER, Raei M, Hashemi F, Bagheri M, Habtemariam S, Nabavi SM. A review of medications used to control and improve the signs and symptoms of COVID-19 patients. Eur J Pharmacol 2020; 887:173568. [PMID: 32956644 PMCID: PMC7501068 DOI: 10.1016/j.ejphar.2020.173568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022]
Abstract
In December 2019, an unprecedented outbreak of pneumonia associated with a novel coronavirus disease 2019 (COVID-19) emerged in Wuhan City, Hubei province, China. The virus that caused the disease was officially named by the World Health Organization (WHO) as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). According to the high transmission rate of SARS-CoV-2, it became a global pandemic and public health emergency within few months. Since SARS-CoV-2 is genetically 80% homologous with the SARS-CoVs family, it is hypothesized that medications developed for the treatment of SARS-CoVs may be useful in the control and management of SARS-CoV-2. In this regard, some medication being tested in clinical trials and in vitro studies include anti-viral RNA polymerase inhibitors, HIV-protease inhibitors, anti-inflammatory agents, angiotensin converting enzyme type 2 (ACE 2) blockers, and some other novel medications. In this communication, we reviewed the general characteristics of medications, medical usage, mechanism of action, as well as SARS-CoV-2 related trials.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Farid Hashemi
- Kazerun Health Technology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Bagheri
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent, ME4 4TB, United Kingdom
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Calafiore AM, Totaro A, Testa N, Sacra C, Castellano G, Guarracini S, Di Marco M, Prapas S, Gaudino M, Lorusso R, Paparella D, Di Mauro M. The secret life of the mitral valve. J Card Surg 2020; 36:247-259. [PMID: 33135267 DOI: 10.1111/jocs.15151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 01/08/2023]
Abstract
In secondary mitral regurgitation, the concept that the mitral valve (MV) is an innocent bystander, has been challenged by many studies in the last decades. The MV is a living structure with intrinsic plasticity that reacts to changes in stretch or in mechanical stress activating biohumoral mechanisms that have, as purpose, the adaptation of the valve to the new environment. If the adaptation is balanced, the leaflets increase both surface and length and the chordae tendineae lengthen: the result is a valve with different characteristics, but able to avoid or to limit the regurgitation. However, if the adaptation is unbalanced, the leaflets and the chords do not change their size, but become stiffer and rigid, with moderate or severe regurgitation. These changes are mediated mainly by a cytokine, the transforming growth factor-β (TGF-β), which is able to promote the changes that the MV needs to adapt to a new hemodynamic environment. In general, mild TGF-β activation facilitates leaflet growth, excessive TGF-β activation, as after myocardial infarction, results in profibrotic changes in the leaflets, with increased thickness and stiffness. The MV is then a plastic organism, that reacts to the external stimuli, trying to maintain its physiologic integrity. This review has the goal to unveil the secret life of the MV, to understand which stimuli can trigger its plasticity, and to explain why the equation "large heart = moderate/severe mitral regurgitation" and "small heart = no/mild mitral regurgitation" does not work into the clinical practice.
Collapse
Affiliation(s)
| | - Antonio Totaro
- Department of Cardiovascular Sciences, Gemelli Molise, Campobasso, Italy
| | - Nicola Testa
- Department of Cardiovascular Sciences, Gemelli Molise, Campobasso, Italy
| | - Cosimo Sacra
- Department of Cardiovascular Sciences, Gemelli Molise, Campobasso, Italy
| | - Gaetano Castellano
- Division of Anesthesia and Intensive Care, Gemelli Molise, Campobasso, Italy
| | | | - Massimo Di Marco
- Department of Cardiology, "Santo Spirito" Hospital, Pescara, Italy
| | - Sotirios Prapas
- Department of Cardiac Surgery, Henry Durant Hospital, Athens, Greece
| | - Mario Gaudino
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York City, New York, USA
| | - Roberto Lorusso
- Cardio-Thoracic Surgery Unit, Heart and Vascular Centre, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - Domenico Paparella
- Department of Emergency and Organ Transplants, Santa Maria Hospital, GVM Care & Research, Aldo Moro University of Bari, Bari, Italy
| | - Michele Di Mauro
- Department of Cardiology, "Pierangeli" Hospital, Pescara, Italy.,Cardio-Thoracic Surgery Unit, Heart and Vascular Centre, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| |
Collapse
|
23
|
Hamid S, Rhaleb IA, Kassem KM, Rhaleb NE. Role of Kinins in Hypertension and Heart Failure. Pharmaceuticals (Basel) 2020; 13:E347. [PMID: 33126450 PMCID: PMC7692223 DOI: 10.3390/ph13110347] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
The kallikrein-kinin system (KKS) is proposed to act as a counter regulatory system against the vasopressor hormonal systems such as the renin-angiotensin system (RAS), aldosterone, and catecholamines. Evidence exists that supports the idea that the KKS is not only critical to blood pressure but may also oppose target organ damage. Kinins are generated from kininogens by tissue and plasma kallikreins. The putative role of kinins in the pathogenesis of hypertension is discussed based on human mutation cases on the KKS or rats with spontaneous mutation in the kininogen gene sequence and mouse models in which the gene expressing only one of the components of the KKS has been deleted or over-expressed. Some of the effects of kinins are mediated via activation of the B2 and/or B1 receptor and downstream signaling such as eicosanoids, nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF) and/or tissue plasminogen activator (T-PA). The role of kinins in blood pressure regulation at normal or under hypertension conditions remains debatable due to contradictory reports from various laboratories. Nevertheless, published reports are consistent on the protective and mediating roles of kinins against ischemia and cardiac preconditioning; reports also demonstrate the roles of kinins in the cardiovascular protective effects of the angiotensin-converting enzyme (ACE) and angiotensin type 1 receptor blockers (ARBs).
Collapse
Affiliation(s)
- Suhail Hamid
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA; (S.H.); (I.A.R.)
| | - Imane A. Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA; (S.H.); (I.A.R.)
| | - Kamal M. Kassem
- Division of Cardiology, Department of Internal Medicine, University of Louisville Medical Center, Louisville, KY 40202, USA;
| | - Nour-Eddine Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA; (S.H.); (I.A.R.)
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
24
|
Smeets NJL, Schreuder MF, Dalinghaus M, Male C, Lagler FB, Walsh J, Laer S, de Wildt SN. Pharmacology of enalapril in children: a review. Drug Discov Today 2020; 25:S1359-6446(20)30336-6. [PMID: 32835726 DOI: 10.1016/j.drudis.2020.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 12/28/2022]
Abstract
Enalapril is an angiotensin-converting enzyme (ACE) inhibitor that is used for the treatment of (paediatric) hypertension, heart failure and chronic kidney diseases. Because its disposition, efficacy and safety differs across the paediatric continuum, data from adults cannot be automatically extrapolated to children. This review highlights paediatric enalapril pharmacokinetic data and demonstrates that these are inadequate to support with certainty an age-related effect on enalapril/enalaprilat pharmacokinetics. In addition, our review shows that evidence to support effective and safe prescribing of enalapril in children is limited, especially in young children and heart failure patients; studies in these groups are either absent or show conflicting results. We provide explanations for observed differences between age groups and indications, and describe areas for future research.
Collapse
Affiliation(s)
- Nori J L Smeets
- Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboud Institute of Molecular Sciences, Radboudumc Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Michiel Dalinghaus
- Department of Pediatric Cardiology, Erasmus MC - Sophia, Rotterdam, the Netherlands
| | - Christoph Male
- Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | - Stephanie Laer
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboudumc, Nijmegen, the Netherlands; Department of Intensive Care and Pediatric Surgery, Erasmus MC - Sophia Children's Hospital, Rotterdam, the Netherlands.
| |
Collapse
|
25
|
Cheung YF, Lam WWM, So EKF, Chow PC. Differential myocardial fibrosis of the systemic right ventricle and subpulmonary left ventricle after atrial switch operation for complete transposition of the great arteries. IJC HEART & VASCULATURE 2020; 30:100612. [PMID: 32817881 PMCID: PMC7424203 DOI: 10.1016/j.ijcha.2020.100612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 11/03/2022]
Abstract
Background This study aimed to assess diffuse myocardial fibrosis of the systemic right ventricle and subpulmonary left ventricle in patients after Senning or Mustard operation for complete transposition of the great artery (TGA) using cardiac magnetic resonance (CMR) T1 mapping. Methods Thirty-one adult TGA patients after Senning (n = 24) or Mustard (n = 7) operation were studied at the age of 33.3 ± 4.0 years. Systemic right ventricular (RV) and subpulmonary left ventricular (LV) volumes, ejection fraction, and myocardial T1 values and extracellular volume fraction (ECV) were determined using CMR. Results The RV and LV ejection fractions were 47.0 ± 10.9% and 61.3 ± 7.4%, respectively. Compared to published normative values, patients had significantly greater RV and LV native T1 and ECV values (all p < 0.001). For each of the basal, mid, and apical segments, the LV native T1 and ECV values were significantly greater in the left than the right ventricle (all p < 0.05). There is a significant trend on progressive increase in ECV value from the basal towards the apical segments in both the right (p = 0.002) and the left (p < 0.001) ventricle. Modestly strong correlations were found between RV and LV native T1 (r = 0.60, p < 0.001) and ECV (r = 0.49, p = 0.005) values but not with ejection fractions of the respective ventricles. Conclusions Differential myocardial fibrosis, with greater involvement of the subpulmonary left ventricle than the systemic right ventricle, is present in patients with TGA after atrial switch operation. Associations between the magnitude of RV and LV fibrosis suggests adverse ventricular-ventricular interaction at the cardiac extracellular matrix level.
Collapse
Affiliation(s)
- Yiu-Fai Cheung
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Wendy W M Lam
- Department of Radiology, Queen Mary, Hospital, Hong Kong, China
| | - Edwina K F So
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Pak-Cheong Chow
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
26
|
Brassicasterol with Dual Anti-Infective Properties against HSV-1 and Mycobacterium tuberculosis, and Cardiovascular Protective Effect: Nonclinical In Vitro and In Silico Assessments. Biomedicines 2020; 8:biomedicines8050132. [PMID: 32456343 PMCID: PMC7277493 DOI: 10.3390/biomedicines8050132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/10/2020] [Accepted: 05/19/2020] [Indexed: 01/16/2023] Open
Abstract
While few studies have revealed the biological properties of brassicasterol, a phytosterol, against some biological and molecular targets, it is believed that there are still many activities yet to be studied. In this work, brassicasterol exerts a therapeutic utility in an in vitro setting against herpes simplex virus type 1 (HSV-1) and Mycobacterium tuberculosis (Mtb) as well as a considerable inhibitory property against human angiotensin-converting enzyme (ACE) that plays a dynamic role in regulating blood pressure. The antireplicative effect of brassicasterol against HSV-1 is remarkably detected (50% inhibitory concentration (IC50): 1.2 µM; selectivity index (SI): 41.7), while the potency of its effect is ameliorated through the combination with standard acyclovir with proper SI (IC50: 0.7 µM; SI: 71.4). Moreover, the capacity of this compound to induce an adequate level of antituberculosis activity against all Mtb strains examined (minimum inhibitory concentration values ranging from 1.9 to 2.4 µM) is revealed. The anti-ACE effect (12.3 µg/mL; 91.2% inhibition) is also ascertained. Molecular docking analyses propose that the mechanisms by which brassicasterol induces anti-HSV-1 and anti-Mtb might be related to inhibiting vital enzymes involved in HSV-1 replication and Mtb cell wall biosynthesis. In summary, the obtained results suggest that brassicasterol might be promising for future anti-HSV-1, antituberculosis, and anti-ACE drug design.
Collapse
|
27
|
Rodriguez-Gabella T, Catalá P, Muñoz-García AJ, Nombela-Franco L, Del Valle R, Gutiérrez E, Regueiro A, Jimenez-Diaz VA, Ribeiro HB, Rivero F, Fernandez-Diaz JA, Pibarot P, Alonso-Briales JH, Tirado-Conte G, Moris C, Diez Del Hoyo F, Jiménez-Britez G, Zaderenko N, Alfonso F, Gómez I, Carrasco-Moraleja M, Rodés-Cabau J, San Román Calvar JA, Amat-Santos IJ. Renin-Angiotensin System Inhibition Following Transcatheter Aortic Valve Replacement. J Am Coll Cardiol 2020; 74:631-641. [PMID: 31370954 DOI: 10.1016/j.jacc.2019.05.055] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Several studies have demonstrated the benefits of transcatheter aortic valve replacement (TAVR) in patients with aortic stenosis, but the presence of persistent fibrosis and myocardial hypertrophy has been related to worse prognosis. OBJECTIVES The aim of this study was to explore the potential benefits of renin-angiotensin system (RAS) inhibitors on left ventricular remodeling and major clinical outcomes following successful transcatheter aortic valve replacement (TAVR). METHODS Patients from 10 institutions with severe aortic stenosis who underwent TAVR between August 2007 and August 2017 were included. All baseline data were prospectively recorded, and pre-specified follow-up was performed. Doses and types of RAS inhibitors at discharge were recorded, and matched comparison according to their prescription at discharge was performed. RESULTS A total of 2,785 patients were included. Patients treated with RAS inhibitors (n = 1,622) presented similar surgical risk scores but a higher rate of all cardiovascular risk factors, coronary disease, and myocardial infarction. After adjustment for these baseline differences, reduction of left ventricular volumes and hypertrophy was greater and cardiovascular mortality at 3-year follow-up was lower (odds ratio: 0.59; 95% confidence interval: 0.41 to 0.87; p = 0.007) in patients treated with RAS inhibitors. Moreover, RAS inhibitors demonstrated a global cardiovascular protective effect with significantly lower rates of new-onset atrial fibrillation, cerebrovascular events, and readmissions. CONCLUSIONS Post-TAVR RAS inhibitors are associated with lower cardiac mortality at 3-year follow-up and offer a global cardiovascular protective effect that might be partially explained by a positive left ventricular remodeling. An ongoing randomized trial will help confirm these hypothesis-generating findings. (Renin-Angiotensin System Blockade Benefits in Clinical Evolution and Ventricular Remodeling After Transcatheter Aortic Valve Implantation [RASTAVI]; NCT03201185).
Collapse
Affiliation(s)
| | - Pablo Catalá
- Cardiology Department, Hospital Clínico Universitario, Valladolid, Spain
| | | | | | - Raquel Del Valle
- Cardiology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Enrique Gutiérrez
- CIBERCV, Cardiology Department, Hospital Gregorio Marañon, Madrid, Spain
| | - Ander Regueiro
- CIBERCV, Cardiology Department, Hospital Clinic, Barcelona, Spain
| | | | | | | | | | | | | | | | - César Moris
- Cardiology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | | | | | | | - Itziar Gómez
- CIBERCV, Cardiology Department, Hospital Clínico Universitario, Valladolid, Spain
| | | | | | - J Alberto San Román Calvar
- Cardiology Department, Hospital Clínico Universitario, Valladolid, Spain; CIBERCV, Cardiology Department, Hospital Clínico Universitario, Valladolid, Spain
| | - Ignacio J Amat-Santos
- Cardiology Department, Hospital Clínico Universitario, Valladolid, Spain; CIBERCV, Cardiology Department, Hospital Clínico Universitario, Valladolid, Spain.
| |
Collapse
|
28
|
Grubb A, Mentz RJ. Pharmacological management of atrial fibrillation in patients with heart failure with reduced ejection fraction: review of current knowledge and future directions. Expert Rev Cardiovasc Ther 2020; 18:85-101. [PMID: 32066285 DOI: 10.1080/14779072.2020.1732210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Both heart failure with reduced ejection fraction (HFrEF) and atrial fibrillation (AF) independently cause significant morbidity and mortality. The two conditions commonly coexist and AF in the setting of HFrEF is associated with worse mortality, hospitalizations, and quality of life compared to HFrEF without AF. Despite the large burden of these conditions, there is no clear optimal management strategy for when they occur together.Areas covered: This review focuses on the pharmacological management of AF in HFrEF. Studies were identified through PubMed search of relevant keywords. The authors review key clinical trials that have influenced management strategies and guidelines. The authors focus on the classes of drugs used to treat AF for both rate and rhythm control strategies including beta-blockers, digoxin, amiodarone, and dofetilide. Additionally, the authors discuss select non-antiarrhythmic medications that affect AF in HFrEF. The authors highlight the strengths and weakness of the data supporting the use of these medications and suggest future directions.Expert opinion: The pharmacological treatment of AF in HFrEF will need further refinement alongside the emerging role of catheter ablation. Novel HF medications and antiarrhythmics offer new tools to prevent the development of AF, as well as for rate and rhythm control strategies.
Collapse
Affiliation(s)
- Alex Grubb
- Department of Medicine, Duke University Hospital, Durham, NC, USA
| | - Robert J Mentz
- Division of Cardiology, Department of Medicine, Duke University Hospital, Durham NC, USA.,Duke Clinical Research Institute, Durham NC, USA
| |
Collapse
|
29
|
Ali HA, Lomholt AF, Hamidreza Mahmoudpour S, Hermanrud T, Bygum A, von Buchwald C, Jakobsen MA, Rasmussen ER. Genetic susceptibility to angiotensin-converting enzyme-inhibitor induced angioedema: A systematic review and evaluation of methodological approaches. PLoS One 2019; 14:e0224858. [PMID: 31710633 PMCID: PMC6844479 DOI: 10.1371/journal.pone.0224858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/23/2019] [Indexed: 11/29/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) converts angiotensin I to angiotensin II which causes vasoconstriction. ACE inhibitors reduce blood pressure by inhibiting ACE. A well-known adverse drug reaction to ACE inhibitors is ACE inhibitor-induced angioedema (ACEi-AE). Angioedema is a swelling of skin and mucosa, which can be fatal if the airway is compromised. We have performed a systematic review of the evidence suggesting that genetic polymorphisms are associated with ACEi-AE and evaluated the methodological approaches of the included studies. The Cochrane Database of Systematic Reviews, Google Scholar, and PubMed were searched. Studies investigating the association between genetic markers and ACEi-AE were included. The Q-genie tool was used to evaluate the quality of the study methodologies. Seven studies were included. With the exception of one whole genome study, all of the included studies were candidate gene association studies. Study quality assessment scores ranged from 36 to 55. One study was found to be of good quality, suggesting that the detected associations may be unreliable. The inferior quality of some studies was due to poor organization, lack of analyses and missing information. Polymorphisms within XPEPNP2, BDKRB2–9/+ 9 and neprilysin genes, were reported to be associated with increased risk of ACEi-AE. However, due to low quality, these associations need to be confirmed in larger studies.
Collapse
Affiliation(s)
- Haivin Aziz Ali
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Fog Lomholt
- Department of Oto-Rhino-Laryngology—Head and Neck Surgery and Audiology, Denmark
| | - Seyed Hamidreza Mahmoudpour
- IMBEI—Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg, CTH -Center for Thrombosis and Hemostasis Mainz, Mainz, Germany
| | - Thorbjørn Hermanrud
- Department of Oto-Rhino-Laryngology—Head and Neck Surgery and Audiology, Denmark
| | - Anette Bygum
- Department of Dermatology I and Allergy Center, Odense University Hospital, Indgang, Odense C, Denmark
| | | | | | - Eva Rye Rasmussen
- Department of Oto-Rhino-Laryngology—Head and Neck Surgery and Audiology, Denmark
- * E-mail:
| |
Collapse
|
30
|
Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving. Toxins (Basel) 2019; 11:toxins11100564. [PMID: 31557973 PMCID: PMC6832721 DOI: 10.3390/toxins11100564] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 12/16/2022] Open
Abstract
Animal venoms are used as defense mechanisms or to immobilize and digest prey. In fact, venoms are complex mixtures of enzymatic and non-enzymatic components with specific pathophysiological functions. Peptide toxins isolated from animal venoms target mainly ion channels, membrane receptors and components of the hemostatic system with high selectivity and affinity. The present review shows an up-to-date survey on the pharmacology of snake-venom bioactive components and evaluates their therapeutic perspectives against a wide range of pathophysiological conditions. Snake venoms have also been used as medical tools for thousands of years especially in tradition Chinese medicine. Consequently, snake venoms can be considered as mini-drug libraries in which each drug is pharmacologically active. However, less than 0.01% of these toxins have been identified and characterized. For instance, Captopril® (Enalapril), Integrilin® (Eptifibatide) and Aggrastat® (Tirofiban) are drugs based on snake venoms, which have been approved by the FDA. In addition to these approved drugs, many other snake venom components are now involved in preclinical or clinical trials for a variety of therapeutic applications. These examples show that snake venoms can be a valuable source of new principle components in drug discovery.
Collapse
|
31
|
Peng H, Xu J, Yang XP, Kassem KM, Rhaleb IA, Peterson E, Rhaleb NE. N-acetyl-seryl-aspartyl-lysyl-proline treatment protects heart against excessive myocardial injury and heart failure in mice. Can J Physiol Pharmacol 2019; 97:753-765. [PMID: 30998852 PMCID: PMC6824427 DOI: 10.1139/cjpp-2019-0047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Myocardial infarction (MI) in mice results in cardiac rupture at 4-7 days after MI, whereas cardiac fibrosis and dysfunction occur later. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) has anti-inflammatory, anti-fibrotic, and pro-angiogenic properties. We hypothesized that Ac-SDKP reduces cardiac rupture and adverse cardiac remodeling, and improves function by promoting angiogenesis and inhibiting detrimental reactive fibrosis and inflammation after MI. C57BL/6J mice were subjected to MI and treated with Ac-SDKP (1.6 mg/kg per day) for 1 or 5 weeks. We analyzed (1) intercellular adhesion molecule-1 (ICAM-1) expression; (2) inflammatory cell infiltration and angiogenesis; (3) gelatinolytic activity; (4) incidence of cardiac rupture; (5) p53, the endoplasmic reticulum stress marker CCAAT/enhancer binding protein homology protein (CHOP), and cardiomyocyte apoptosis; (6) sarcoplasmic reticulum Ca2+ ATPase (SERCA2) expression; (7) interstitial collagen fraction and capillary density; and (8) cardiac remodeling and function. Acutely, Ac-SDKP reduced cardiac rupture, decreased ICAM-1 expression and the number of infiltrating macrophages, decreased gelatinolytic activity, p53 expression, and myocyte apoptosis, but increased capillary density in the infarction border. Chronically, Ac-SDKP improved cardiac structures and function, reduced CHOP expression and interstitial collagen fraction, and preserved myocardium SERCA2 expression. Thus, Ac-SDKP decreased cardiac rupture, ameliorated adverse cardiac remodeling, and improved cardiac function after MI, likely through preserved SERCA2 expression and inhibition of endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Hongmei Peng
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Detroit, MI 48202, USA
| | - Jiang Xu
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Detroit, MI 48202, USA
| | - Xiao-Ping Yang
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Detroit, MI 48202, USA
| | - Kamal M Kassem
- b Department of Internal Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45219, USA
| | - Imane A Rhaleb
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Detroit, MI 48202, USA
| | - Ed Peterson
- c Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Nour-Eddine Rhaleb
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Detroit, MI 48202, USA
- d Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
32
|
Kassem KM, Vaid S, Peng H, Sarkar S, Rhaleb NE. Tβ4-Ac-SDKP pathway: Any relevance for the cardiovascular system? Can J Physiol Pharmacol 2019; 97:589-599. [PMID: 30854877 PMCID: PMC6824425 DOI: 10.1139/cjpp-2018-0570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The last 20 years witnessed the emergence of the thymosin β4 (Tβ4)-N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) pathway as a new source of future therapeutic tools to treat cardiovascular and renal diseases. In this review article, we attempted to shed light on the numerous experimental findings pertaining to the many promising cardiovascular therapeutic avenues for Tβ4 and (or) its N-terminal derivative, Ac-SDKP. Specifically, Ac-SDKP is endogenously produced from the 43-amino acid Tβ4 by 2 successive enzymes, meprin α and prolyl oligopeptidase. We also discussed the possible mechanisms involved in the Tβ4-Ac-SDKP-associated cardiovascular biological effects. In infarcted myocardium, Tβ4 and Ac-SDKP facilitate cardiac repair after infarction by promoting endothelial cell migration and myocyte survival. Additionally, Tβ4 and Ac-SDKP have antifibrotic and anti-inflammatory properties in the arteries, heart, lungs, and kidneys, and stimulate both in vitro and in vivo angiogenesis. The effects of Tβ4 can be mediated directly through a putative receptor (Ku80) or via its enzymatically released N-terminal derivative Ac-SDKP. Despite the localization and characterization of Ac-SDKP binding sites in myocardium, more studies are needed to fully identify and clone Ac-SDKP receptors. It remains promising that Ac-SDKP or its degradation-resistant analogs could serve as new therapeutic tools to treat cardiac, vascular, and renal injury and dysfunction to be used alone or in combination with the already established pharmacotherapy for cardiovascular diseases.
Collapse
Affiliation(s)
- Kamal M Kassem
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
- b Internal Medicine Department, University of Cincinnati Medical Center, Cincinnati, OH 45219, USA
| | - Sonal Vaid
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
- c Internal Medicine Department, St. Vincent Indianapolis Hospital, Indianapolis, IN 46260, USA
| | - Hongmei Peng
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Sarah Sarkar
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Nour-Eddine Rhaleb
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
- d Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
33
|
Amerizadeh F, Bahrami A, Khazaei M, Hesari A, Rezayi M, Talebian S, Maftouh M, Moetamani-Ahmadi M, Seifi S, Shahidsales S, Joudi-Mashhad M, Ferns GA, Ghasemi F, Avan A. Current status and future prospects of transforming growth factor-β as a potential prognostic and therapeutic target in the treatment of breast cancer. J Cell Biochem 2019; 120:6962-6971. [PMID: 30672016 DOI: 10.1002/jcb.27831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/14/2018] [Indexed: 01/24/2023]
Abstract
The transforming growth factor-β (TGF-β) signaling pathway is one of the important pathways involved in the cancer cell proliferation, invasion, migration, angiogenesis, apoptosis, as well as in metastasis by agitation or invasion of metastasis-related factors, including matrix metalloproteinase (MMP), epithelial-to-mesenchymal transition (EMT), tumor microenvironment (TME), cancer stem cells (CSCs), and cell adhesion molecules (CAMs). These data suggest its potential value as a therapeutic object in the treatment of malignancies including breast cancer. Several pharmacological approaches have been established to suppress TGF-β pathway; such as vaccines, small molecular inhibitors, antisense oligonucleotides, and monoclonal antibodies. Some of these are now approved by the US Food and Drug Administration for targeting the TGF-β signaling pathway. This study attempts to summarize the current data about the functions of TGF-β in cancer cells, and their probable application in the cancer therapy with a specific emphasis on recent preclinical and clinical research in the treatment of breast cancer and its prognostic value.
Collapse
Affiliation(s)
- Forouzan Amerizadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - AmirReza Hesari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Talebian
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Maftouh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Sima Seifi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mona Joudi-Mashhad
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Brighton, UK
| | - Faezeh Ghasemi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Fintha A, Gasparics Á, Rosivall L, Sebe A. Therapeutic Targeting of Fibrotic Epithelial-Mesenchymal Transition-An Outstanding Challenge. Front Pharmacol 2019; 10:388. [PMID: 31057405 PMCID: PMC6482168 DOI: 10.3389/fphar.2019.00388] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/29/2019] [Indexed: 12/11/2022] Open
Abstract
Back in 1995, a landmark paper was published, which shaped the fibrosis literature for many years to come. During the characterization of a fibroblast-specific marker (FSP1) in the kidneys, an observation was made, which gave rise to the hypothesis that “fibroblasts in some cases arise from the local conversion of epithelium.” In the following years, epithelial-mesenchymal transition was in the spotlight of fibrosis research, especially in the kidney. However, the hypothesis came under scrutiny following some discouraging findings from lineage tracing experiments and clinical observations. In this review, we provide a timely overview of the current position of the epithelial-mesenchymal transition hypothesis in the context of fibrosis (with a certain focus on renal fibrosis) and highlight some of the potential hurdles and pitfalls preventing therapeutic breakthroughs targeting fibrotic epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Attila Fintha
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Ákos Gasparics
- 1st Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - László Rosivall
- Department of Pathophysiology, International Nephrology Research and Training Center, Semmelweis University, Budapest, Hungary
| | - Attila Sebe
- Department of Pathophysiology, International Nephrology Research and Training Center, Semmelweis University, Budapest, Hungary.,Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| |
Collapse
|
35
|
Hwang JY, Kan WC, Liu YB, Chuang LY, Guh JY, Yang YL, Huang JS. Angiotensin-converting enzyme inhibitors attenuated advanced glycation end products-induced renal tubular hypertrophy via enhancing nitric oxide signaling. J Cell Physiol 2019; 234:17473-17481. [PMID: 30825199 DOI: 10.1002/jcp.28369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022]
Abstract
Advanced glycation end products (AGE) and angiotensin II were closely correlated with the progression of diabetic nephopathy (DN). Nitric oxide (NO) is a protective mediator of renal tubular hypertrophy in DN. Here, we examined the molecular mechanisms of angiotensin-converting enzyme inhibitor (ACEI) and NO signaling responsible for diminishing AGE-induced renal tubular hypertrophy. In human renal proximal tubular cells, AGE decreased NO production, inducible NOS activity, guanosine 3',5'-cyclic monophosphate (cGMP) synthesis, and cGMP-dependent protein kinase (PKG) activation. All theses effects of AGE were reversed by treatment with ACEIs (captopril and enalapril), the NO donor S-nitroso-N-acetylpenicillamine (SNAP), and the PKG activator 8-para-chlorophenylthio-cGMPs (8-pCPT-cGMPs). In addition, AGE-enhanced activation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) were clearly reduced by captopril, enalapril, SNAP, and 8-pCPT-cGMPs. The abilities of ACEIs and NO/PKG activation to inhibit AGE-induced hypertrophic growth were verified by the observation that captopril, enalapril, SNAP, and 8-pCPT-cGMPs decreased protein levels of fibronectin, p21 Waf1/Cip1 , and receptor for AGE. The results of the present study suggest that ACEIs significantly reduced AGE-increased ERK/JNK/p38 MAPK activation and renal tubular hypertrophy partly through enhancement of the NO/PKG pathway.
Collapse
Affiliation(s)
- Jean-Yu Hwang
- Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan, Taiwan, ROC
| | - Wei-Chih Kan
- Department of Internal Medicine, Division of Nephology, Chi-Mei Medical Center, Tainan, Taiwan, ROC.,Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan, Taiwan, ROC
| | - Yao-Bin Liu
- Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan, Taiwan, ROC
| | - Lea-Yea Chuang
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Jinn-Yuh Guh
- Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Yu-Lin Yang
- Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan, Taiwan, ROC
| | - Jau-Shyang Huang
- Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan, Taiwan, ROC
| |
Collapse
|
36
|
Romero CA, Kumar N, Nakagawa P, Worou ME, Liao TD, Peterson EL, Carretero OA. Renal release of N-acetyl-seryl-aspartyl-lysyl-proline is part of an antifibrotic peptidergic system in the kidney. Am J Physiol Renal Physiol 2018; 316:F195-F203. [PMID: 30403163 DOI: 10.1152/ajprenal.00270.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is released from thymosin-β4 (Tβ4) by the meprin-α and prolyl oligopeptidase (POP) enzymes and is hydrolyzed by angiotensin-converting enzyme (ACE). Ac-SDKP is present in urine; however, it is not clear whether de novo tubular release occurs or if glomerular filtration is the main source. We hypothesized that Ac-SDKP is released into the lumen of the nephrons and that it exerts an antifibrotic effect. We determined the presence of Tβ4, meprin-α, and POP in the kidneys of Sprague-Dawley rats. The stop-flow technique was used to evaluate Ac-SDKP formation in different nephron segments. Finally, we decreased Ac-SDKP formation by inhibiting the POP enzyme and evaluated the long-term effect in renal fibrosis. The Tβ4 precursor and the releasing enzymes meprin-α and POP were expressed in the kidneys. POP enzyme activity was almost double that in the renal medulla compared with the renal cortex. With the use of the stop-flow technique, we detected the highest Ac-SDKP concentrations in the distal nephron. The infusion of a POP inhibitor into the kidney decreased the amount of Ac-SDKP in distal nephron segments and in the proximal nephron to a minor extent. An ACE inhibitor increased the Ac-SDKP content in all nephron segments, but the increase was highest in the distal portion. The chronic infusion of a POP inhibitor increased kidney medullary fibrosis, which was prevented by Ac-SDKP. We conclude that Ac-SDKP is released by the nephron and is part of an important antifibrotic system in the kidney.
Collapse
Affiliation(s)
- Cesar A Romero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Nitin Kumar
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Pablo Nakagawa
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Morel E Worou
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Tang-Dong Liao
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Edward L Peterson
- Department of Public Health Sciences, Henry Ford Hospital , Detroit, Michigan
| | - Oscar A Carretero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| |
Collapse
|
37
|
The anti-inflammatory peptide Ac-SDKP: Synthesis, role in ACE inhibition, and its therapeutic potential in hypertension and cardiovascular diseases. Pharmacol Res 2018; 134:268-279. [DOI: 10.1016/j.phrs.2018.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/12/2018] [Accepted: 07/07/2018] [Indexed: 01/27/2023]
|
38
|
Kumar N, Liao TD, Romero CA, Maheshwari M, Peterson EL, Carretero OA. Thymosin β4 Deficiency Exacerbates Renal and Cardiac Injury in Angiotensin-II-Induced Hypertension. Hypertension 2018; 71:1133-1142. [PMID: 29632102 DOI: 10.1161/hypertensionaha.118.10952] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/13/2018] [Accepted: 03/13/2018] [Indexed: 11/16/2022]
Abstract
Thymosin β4 (Tβ4), a ubiquitous peptide, regulates several cellular processes that include cell morphology, wound healing, and inflammatory response. Administration of exogenous Tβ4 is protective in diabetic nephropathy and in a unilateral ureteral obstruction model. However, the role of endogenous Tβ4 in health and disease conditions remains unclear. To elucidate the pathophysiological role of endogenous Tβ4 in hypertension, we examined angiotensin-II (Ang-II)-induced renal and cardiac damage in Tβ4 knockout (Tβ4 KO) mice. Tβ4 KO and wild-type C57BL/6 mice were infused continuously for 6 weeks with either vehicle or Ang-II (980 ng/kg per minute). At baseline, Tβ4 deficiency did not affect renal and cardiac function. Systolic blood pressure in the Ang-II group was similar in wild-type and Tβ4 KO mice (wild-type Ang-II, 179.25±10.11 mm Hg; Tβ4 KO Ang-II, 169.81±6.54 mm Hg). Despite the similar systolic blood pressure after Ang-II infusion, Tβ4-deficient mice had dramatically increased albuminuria and decreased nephrin expression in the kidney (P<0.005). In the heart of Tβ4 KO mice, Ang-II reduced ejection fraction and shortening fraction (ejection fraction: wild-type Ang-II 77.95%±1.03%; Tβ4 KO Ang-II 62.58%±3.25%; P<0.005), which was accompanied by cardiac hypertrophy and left ventricular dilatation. In addition, renal and cardiac infiltration of CD68 macrophages, intercellular adhesion molecule-1, and total collagen content were increased after Ang-II infusion in Tβ4 KO mice (P<0.005). Overall, our data indicate that endogenous Tβ4 is crucial in preventing tissue injury from Ang-II-induced hypertension. This study gives new insights into the protective role of endogenous Tβ4 in hypertensive end-organ damage.
Collapse
Affiliation(s)
- Nitin Kumar
- From the Hypertension and Vascular Research Division, Department of Internal Medicine (N.K., T.-D.L., C.A.R., M.M., O.A.C.)
| | - Tang-Dong Liao
- From the Hypertension and Vascular Research Division, Department of Internal Medicine (N.K., T.-D.L., C.A.R., M.M., O.A.C.)
| | - Cesar A Romero
- From the Hypertension and Vascular Research Division, Department of Internal Medicine (N.K., T.-D.L., C.A.R., M.M., O.A.C.)
| | - Mani Maheshwari
- From the Hypertension and Vascular Research Division, Department of Internal Medicine (N.K., T.-D.L., C.A.R., M.M., O.A.C.)
| | - Edward L Peterson
- and Department of Public Health Sciences (E.L.P.), Henry Ford Hospital, Detroit, MI
| | - Oscar A Carretero
- From the Hypertension and Vascular Research Division, Department of Internal Medicine (N.K., T.-D.L., C.A.R., M.M., O.A.C.)
| |
Collapse
|
39
|
Effect of Losartan on Mitral Valve Changes After Myocardial Infarction. J Am Coll Cardiol 2017; 70:1232-1244. [PMID: 28859786 DOI: 10.1016/j.jacc.2017.07.734] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/26/2017] [Accepted: 07/04/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND After myocardial infarction (MI), mitral valve (MV) tethering stimulates adaptive leaflet growth, but counterproductive leaflet thickening and fibrosis augment mitral regurgitation (MR), doubling heart failure and mortality. MV fibrosis post-MI is associated with excessive endothelial-to-mesenchymal transition (EMT), driven by transforming growth factor (TGF)-β overexpression. In vitro, losartan-mediated TGF-β inhibition reduces EMT of MV endothelial cells. OBJECTIVES This study tested the hypothesis that profibrotic MV changes post-MI are therapeutically accessible, specifically by losartan-mediated TGF-β inhibition. METHODS The study assessed 17 sheep, including 6 sham-operated control animals and 11 with apical MI and papillary muscle retraction short of producing MR; 6 of the 11 were treated with daily losartan, and 5 were untreated, with flexible epicardial mesh comparably limiting left ventricular (LV) remodeling. LV volumes, tethering, and MV area were quantified by using three-dimensional echocardiography at baseline and at 60 ± 6 days, and excised leaflets were analyzed by histopathology and flow cytometry. RESULTS Post-MI LV dilation and tethering were comparable in the losartan-treated and untreated LV constraint sheep. Telemetered sensors (n = 6) showed no significant losartan-induced changes in arterial pressure. Losartan strongly reduced leaflet thickness (0.9 ± 0.2 mm vs. 1.6 ± 0.2 mm; p < 0.05; 0.4 ± 0.1 mm sham animals), TGF-β, and downstream phosphorylated extracellular-signal-regulated kinase and EMT (27.2 ± 12.0% vs. 51.6 ± 11.7% α-smooth muscle actin-positive endothelial cells, p < 0.05; 7.2 ± 3.5% sham animals), cellular proliferation, collagen deposition, endothelial cell activation (vascular cell adhesion molecule-1 expression), neovascularization, and cells positive for cluster of differentiation (CD) 45, a hematopoietic marker associated with post-MI valve fibrosis. Leaflet area increased comparably (17%) in constrained and losartan-treated sheep. CONCLUSIONS Profibrotic changes of tethered MV leaflets post-MI can be modulated by losartan without eliminating adaptive growth. Understanding the cellular and molecular mechanisms could provide new opportunities to reduce ischemic MR.
Collapse
|
40
|
Malek R, Wang H, Taparra K, Tran PT. Therapeutic Targeting of Epithelial Plasticity Programs: Focus on the Epithelial-Mesenchymal Transition. Cells Tissues Organs 2017; 203:114-127. [PMID: 28214899 DOI: 10.1159/000447238] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2016] [Indexed: 12/14/2022] Open
Abstract
Mounting data points to epithelial plasticity programs such as the epithelial-mesenchymal transition (EMT) as clinically relevant therapeutic targets for the treatment of malignant tumors. In addition to the widely realized role of EMT in increasing cancer cell invasiveness during cancer metastasis, the EMT has also been implicated in allowing cancer cells to avoid tumor suppressor pathways during early tumorigenesis. In addition, data linking EMT to innate and acquired treatment resistance further points towards the desire to develop pharmacological therapies to target epithelial plasticity in cancer. In this review we organized our discussion on pathways and agents that can be used to target the EMT in cancer into 3 groups: (1) extracellular inducers of EMT, (2) the transcription factors that orchestrate the EMT transcriptome, and (3) the downstream effectors of EMT. We highlight only briefly specific canonical pathways known to be involved in EMT, such as the signal transduction pathways TGFβ, EFGR, and Axl-Gas6. We emphasize in more detail pathways that we believe are emerging novel pathways and therapeutic targets such as epigenetic therapies, glycosylation pathways, and immunotherapy. The heterogeneity of tumors and the dynamic nature of epithelial plasticity in cancer cells make it likely that targeting only 1 EMT-related process will be unsuccessful or only transiently successful. We suggest that with greater understanding of epithelial plasticity regulation, such as with the EMT, a more systematic targeting of multiple EMT regulatory networks will be the best path forward to improve cancer outcomes.
Collapse
Affiliation(s)
- Reem Malek
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
41
|
Mancini M, Scavone A, Sartorio CL, Baccaro R, Kleinert C, Pernazza A, Buia V, Leopizzi M, d'Amati G, Camici PG. Effect of different drug classes on reverse remodeling of intramural coronary arterioles in the spontaneously hypertensive rat. Microcirculation 2017; 24. [DOI: 10.1111/micc.12298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/19/2016] [Indexed: 02/01/2023]
Affiliation(s)
| | - Angela Scavone
- Vita Salute University and Scientific Institute San Raffaele; Milan Italy
| | | | - Rocco Baccaro
- Vita Salute University and Scientific Institute San Raffaele; Milan Italy
| | - Christina Kleinert
- Vita Salute University and Scientific Institute San Raffaele; Milan Italy
| | - Angelina Pernazza
- Department of Radiology; Oncology and Pathology; “Sapienza” University; Rome Italy
| | - Veronica Buia
- Vita Salute University and Scientific Institute San Raffaele; Milan Italy
| | - Martina Leopizzi
- Department of Radiology; Oncology and Pathology; “Sapienza” University; Rome Italy
| | - Giulia d'Amati
- Department of Radiology; Oncology and Pathology; “Sapienza” University; Rome Italy
| | - Paolo G. Camici
- Vita Salute University and Scientific Institute San Raffaele; Milan Italy
| |
Collapse
|
42
|
Danilov SM, Tovsky SI, Schwartz DE, Dull RO. ACE Phenotyping as a Guide Toward Personalized Therapy With ACE Inhibitors. J Cardiovasc Pharmacol Ther 2017; 22:374-386. [DOI: 10.1177/1074248416686188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Angiotensin-converting enzyme (ACE) inhibitors (ACEI) are widely used in the management of cardiovascular diseases but with significant interindividual variability in the patient’s response. Objectives: To investigate whether interindividual variability in the response to ACE inhibitors is explained by the “ACE phenotype”—for example, variability in plasma ACE concentration, activity, and conformation and/or the degree of ACE inhibition in each individual. Methods: The ACE phenotype was determined in plasma of 14 patients with hypertension treated chronically for 4 weeks with 40 mg enalapril (E) or 20 mg E + 16 mg candesartan (EC) and in 20 patients with hypertension treated acutely with a single dose (20 mg) of E with or without pretreatment with hydrochlorothiazide. The ACE phenotyping included (1) plasma ACE concentration; (2) ACE activity (with 2 substrates: Hip-His-Leu and Z-Phe-His-Leu and calculation of their ratio); (3) detection of ACE inhibitors in patient’s blood (indicator of patient compliance) and the degree of ACE inhibition (ie, adherence); and (4) ACE conformation. Results: Enalapril reduced systolic and diastolic blood pressure in most patients; however, 20% of patients were considered nonresponders. Chronic treatment results in 40% increase in serum ACE concentrations, with the exception of 1 patient. There was a trend toward better response to ACEI among patients who had a higher plasma ACE concentration. Conclusion: Due to the fact that “20% of patients do not respond to ACEI by blood pressure drop,” the initial blood ACE level could not be a predictor of blood pressure reduction in an individual patient. However, ACE phenotyping provides important information about conformational and kinetic changes in ACE of individual patients, and this could be a reason for resistance to ACE inhibitors in some nonresponders.
Collapse
Affiliation(s)
- Sergei M. Danilov
- Department of Anesthesiology, Anesthesiology Research Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Stan I. Tovsky
- Department of Anesthesiology, Anesthesiology Research Center, University of Illinois at Chicago, Chicago, IL, USA
| | - David E. Schwartz
- Department of Anesthesiology, Anesthesiology Research Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Randal O. Dull
- Department of Anesthesiology, Anesthesiology Research Center, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
43
|
Kumar N, Nakagawa P, Janic B, Romero CA, Worou ME, Monu SR, Peterson EL, Shaw J, Valeriote F, Ongeri EM, Niyitegeka JMV, Rhaleb NE, Carretero OA. The anti-inflammatory peptide Ac-SDKP is released from thymosin-β4 by renal meprin-α and prolyl oligopeptidase. Am J Physiol Renal Physiol 2016; 310:F1026-34. [PMID: 26962108 DOI: 10.1152/ajprenal.00562.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/07/2016] [Indexed: 11/22/2022] Open
Abstract
N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a natural tetrapeptide with anti-inflammatory and antifibrotic properties. Previously, we have shown that prolyl oligopeptidase (POP) is involved in the Ac-SDKP release from thymosin-β4 (Tβ4). However, POP can only hydrolyze peptides shorter than 30 amino acids, and Tβ4 is 43 amino acids long. This indicates that before POP hydrolysis takes place, Tβ4 is hydrolyzed by another peptidase that releases NH2-terminal intermediate peptide(s) with fewer than 30 amino acids. Our peptidase database search pointed out meprin-α metalloprotease as a potential candidate. Therefore, we hypothesized that, prior to POP hydrolysis, Tβ4 is hydrolyzed by meprin-α. In vitro, we found that the incubation of Tβ4 with both meprin-α and POP released Ac-SDKP, whereas no Ac-SDKP was released when Tβ4 was incubated with either meprin-α or POP alone. Incubation of Tβ4 with rat kidney homogenates significantly released Ac-SDKP, which was blocked by the meprin-α inhibitor actinonin. In addition, kidneys from meprin-α knockout (KO) mice showed significantly lower basal Ac-SDKP amount, compared with wild-type mice. Kidney homogenates from meprin-α KO mice failed to release Ac-SDKP from Tβ4. In vivo, we observed that rats treated with the ACE inhibitor captopril increased plasma concentrations of Ac-SDKP, which was inhibited by the coadministration of actinonin (vehicle, 3.1 ± 0.2 nmol/l; captopril, 15.1 ± 0.7 nmol/l; captopril + actinonin, 6.1 ± 0.3 nmol/l; P < 0.005). Similar results were obtained with urinary Ac-SDKP after actinonin treatment. We conclude that release of Ac-SDKP from Tβ4 is mediated by successive hydrolysis involving meprin-α and POP.
Collapse
Affiliation(s)
- Nitin Kumar
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Pablo Nakagawa
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Branislava Janic
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Cesar A Romero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Morel E Worou
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Sumit R Monu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Edward L Peterson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan
| | - Jiajiu Shaw
- 21st Century Therapeutics, Inc., Detroit, Michigan
| | - Frederick Valeriote
- Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan; and
| | - Elimelda M Ongeri
- Department of Biology, North Carolina A & T State University, Greensboro, North Carolina
| | | | - Nour-Eddine Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Oscar A Carretero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan;
| |
Collapse
|
44
|
Zhu L, Yang XP, Janic B, Rhaleb NE, Harding P, Nakagawa P, Peterson EL, Carretero OA. Ac-SDKP suppresses TNF-α-induced ICAM-1 expression in endothelial cells via inhibition of IκB kinase and NF-κB activation. Am J Physiol Heart Circ Physiol 2016; 310:H1176-83. [PMID: 26945075 DOI: 10.1152/ajpheart.00252.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 02/08/2016] [Indexed: 11/22/2022]
Abstract
N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a naturally occurring tetrapeptide that prevents inflammation and fibrosis in hypertension and other cardiovascular diseases. We previously showed that, in angiotensin II-induced hypertension, Ac-SDKP decreased the activation of nuclear transcription factor NF-κB, whereas, in experimental autoimmune myocarditis and hypertension animal models, it also reduced the expression of endothelial leukocyte adhesion molecule ICAM-1. However, the mechanisms by which Ac-SDKP downregulated ICAM-1 expression are still unclear. TNF-α is a proinflammatory cytokine that induces ICAM-1 expression in various cell types via TNF receptor 1 and activation of the classical NF-κB pathway. We hypothesized that in endothelial cells Ac-SDKP suppresses TNF-α-induced ICAM-1 expression by decreasing IKK phosphorylation that as a consequence leads to a decrease of IκB phosphorylation and NF-κB activation. To test this hypothesis, human coronary artery endothelial cells were treated with Ac-SDKP and then stimulated with TNF-α. We found that TNF-α-induced ICAM-1 expression was significantly decreased by Ac-SDKP in a dose-dependent manner. Ac-SDKP also decreased TNF-α-induced NF-κB translocation from cytosol to nucleus, as assessed by electrophoretic mobility shift assay, which correlated with a decrease in IκB phosphorylation. In addition, we found that Ac-SDKP decreased TNF-α-induced IKK phosphorylation and IKK-β expression. However, Ac-SDKP had no effect on TNF-α-induced phosphorylation of p38 MAP kinase or ERK. Thus we conclude that Ac-SDKP inhibition of TNF-α activation of canonical, i.e., IKK-β-dependent, NF-κB pathway and subsequent decrease in ICAM-1 expression is achieved via inhibition of IKK-β.
Collapse
Affiliation(s)
- Liping Zhu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Xiao-Ping Yang
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Branislava Janic
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Nour-Eddine Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Pamela Harding
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Pablo Nakagawa
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Edward L Peterson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan
| | - Oscar A Carretero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan;
| |
Collapse
|
45
|
Kumar S, Dietrich N, Kornfeld K. Angiotensin Converting Enzyme (ACE) Inhibitor Extends Caenorhabditis elegans Life Span. PLoS Genet 2016; 12:e1005866. [PMID: 26918946 PMCID: PMC4769152 DOI: 10.1371/journal.pgen.1005866] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/23/2016] [Indexed: 01/23/2023] Open
Abstract
Animal aging is characterized by progressive, degenerative changes in many organ systems. Because age-related degeneration is a major contributor to disability and death in humans, treatments that delay age-related degeneration are desirable. However, no drugs that delay normal human aging are currently available. To identify drugs that delay age-related degeneration, we used the powerful Caenorhabditis elegans model system to screen for FDA-approved drugs that can extend the adult lifespan of worms. Here we show that captopril extended mean lifespan. Captopril is an angiotensin-converting enzyme (ACE) inhibitor used to treat high blood pressure in humans. To explore the mechanism of captopril, we analyzed the acn-1 gene that encodes the C. elegans homolog of ACE. Reducing the activity of acn-1 extended the mean life span. Furthermore, reducing the activity of acn-1 delayed age-related degenerative changes and increased stress resistance, indicating that acn-1 influences aging. Captopril could not further extend the lifespan of animals with reduced acn-1, suggesting they function in the same pathway; we propose that captopril inhibits acn-1 to extend lifespan. To define the relationship with previously characterized longevity pathways, we analyzed mutant animals. The lifespan extension caused by reducing the activity of acn-1 was additive with caloric restriction and mitochondrial insufficiency, and did not require sir-2.1, hsf-1 or rict-1, suggesting that acn-1 functions by a distinct mechanism. The interactions with the insulin/IGF-1 pathway were complex, since the lifespan extensions caused by captopril and reducing acn-1 activity were additive with daf-2 and age-1 but required daf-16. Captopril treatment and reducing acn-1 activity caused similar effects in a wide range of genetic backgrounds, consistent with the model that they act by the same mechanism. These results identify a new drug and a new gene that can extend the lifespan of worms and suggest new therapeutic strategies for addressing age-related degenerative changes.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nicholas Dietrich
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
46
|
Worou ME, Liao TD, D'Ambrosio M, Nakagawa P, Janic B, Peterson EL, Rhaleb NE, Carretero OA. Renal protective effect of N-acetyl-seryl-aspartyl-lysyl-proline in dahl salt-sensitive rats. Hypertension 2015; 66:816-22. [PMID: 26324505 DOI: 10.1161/hypertensionaha.115.05970] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a natural tetrapeptide with anti-inflammatory and antifibrotic properties. Its effect on salt-sensitive (SS) hypertension is unknown. We hypothesized that in Dahl SS rats on high-salt (HS) diet, Ac-SDKP prevents loss of nephrin expression and renal immune cell infiltration, leading to a decrease in albuminuria, renal inflammation, fibrosis, and glomerulosclerosis. To test this, Dahl SS rats and consomic SS13BN controls were fed either a low-salt (0.23% NaCl) or HS (4% NaCl) diet and treated for 6 weeks with vehicle or Ac-SDKP at either low or high dose (800 or 1600 μg/kg per day, respectively). HS increased systolic blood pressure in SS rats (HS+vehicle, 186±5 versus low salt+vehicle, 141±3 mm Hg; P<0.005) but not in SS13BN rats. Ac-SDKP did not affect blood pressure. Compared with low salt, HS-induced albuminuria, renal inflammation, fibrosis, and glomerulosclerosis in both strains, but the damages were higher in SS than in SS13BN. Interestingly, in SS13BN rats, Ac-SDKP prevented albuminuria induced by HS (HS+vehicle, 44±8 versus HS+low Ac-SDKP, 24±3 or HS+high Ac-SDKP, 8±1 mg/24 h; P<0.05), whereas in SS rats, only high Ac-SDKP dose significantly attenuated albuminuria (HS+vehicle, 94±10 versus HS+high Ac-SDKP, 57±7 mg/24 h; P<0.05). In both strains, Ac-SDKP prevented HS-induced inflammation, interstitial fibrosis, and glomerulosclerosis. In summary, in SS rats on HS diet, at low and high doses, Ac-SDKP prevented renal damage without affecting the blood pressure. Only the high dose of Ac-SDKP attenuated HS-induced albuminuria. Conversely, in SS13BN rats, both doses of Ac-SDKP prevented HS-induced renal damage and albuminuria.
Collapse
Affiliation(s)
- Morel E Worou
- Hypertension and Vascular Research Division, Departments of Internal Medicine, Henry Ford Hospital, Detroit, MI
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Hale TM. Persistent phenotypic shift in cardiac fibroblasts: impact of transient renin angiotensin system inhibition. J Mol Cell Cardiol 2015; 93:125-32. [PMID: 26631495 DOI: 10.1016/j.yjmcc.2015.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/13/2022]
Abstract
Fibrotic cardiac remodeling ultimately leads to heart failure - a debilitating and costly condition. Select antihypertensive agents have been effective in reducing or slowing the development of cardiac fibrosis. Moreover, some experimental studies have shown that the reduction in fibrosis induced by these agents persists long after stopping treatment. What has not been as well investigated is whether this transient treatment results in a protection against future fibrotic cardiac remodeling. In the present review, previously published studies are re-examined to assess whether the relative percent increase in collagen deposition over an off-treatment period is attenuated, relative to control, following transient antihypertensive treatment in young or adult rats. Present findings suggest that transient inhibition of the renin angiotensin system (RAS) not only produces a sustained reduction in cardiac fibrosis, but also results in a degree of protection against future collagen deposition. In addition, prior transient RAS inhibition appears to alter the cardiac fibroblast phenotype such that these cells show a muted response to myocardial injury - namely reduced proliferation, chemokine release, and collagen deposition. This review puts forth several potential mechanisms underlying this long-term cardiac protection that is afforded by transient RAS inhibition. Specifically, fibroblast phenotypic change, cardiac fibroblast apoptosis, sustained suppression of the RAS, persistent reduction in left ventricular hypertrophy, and persistent reduction in arterial pressure are each discussed. Identifying the mechanisms ultimately responsible for this change in cardiac fibroblast response to injury, hypertension, and aging may reveal novel targets for therapy.
Collapse
Affiliation(s)
- Taben M Hale
- Department of Basic Medical Sciences, University of Arizona, College of Medicine - Phoenix, 425 N 5th St, ABC1, Rm 327, USA.
| |
Collapse
|
48
|
Horgan SJ, Watson CJ, Glezeva N, Collier P, Neary R, Tea IJ, Corrigan N, Ledwidge M, McDonald K, Baugh JA. Serum Amyloid P-Component Prevents Cardiac Remodeling in Hypertensive Heart Disease. J Cardiovasc Transl Res 2015; 8:554-66. [PMID: 26577946 DOI: 10.1007/s12265-015-9661-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/09/2015] [Indexed: 01/19/2023]
Abstract
The potential for serum amyloid P-component (SAP) to prevent cardiac remodeling and identify worsening diastolic dysfunction (DD) was investigated. The anti-fibrotic potential of SAP was tested in an animal model of hypertensive heart disease (spontaneously hypertensive rats treated with SAP [SHR - SAP] × 12 weeks). Biomarker analysis included a prospective study of 60 patients with asymptomatic progressive DD. Compared with vehicle-treated Wistar-Kyoto rats (WKY-V), the vehicle-treated SHRs (SHR-V) exhibited significant increases in left ventricular mass, perivascular collagen, cardiomyocyte size, and macrophage infiltration. SAP administration was associated with significantly lower left ventricular mass (p < 0.01), perivascular collagen (p < 0.01), and cardiomyocyte size (p < 0.01). Macrophage infiltration was significantly attenuated in the SHR-SAP group. Biomarker analysis showed significant decreases in SAP concentration over time in patients with progressive DD (p < 0.05). Our results indicate that SAP prevents cardiac remodeling by inhibiting recruitment of pro-fibrotic macrophages and that depleted SAP levels identify patients with advancing DD suggesting a role for SAP therapy.
Collapse
Affiliation(s)
- Stephen J Horgan
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine, University College Dublin, Belfield, Dublin, Ireland.,Chronic Cardiovascular Disease Unit, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Chris J Watson
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine, University College Dublin, Belfield, Dublin, Ireland.,Chronic Cardiovascular Disease Unit, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Nadia Glezeva
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine, University College Dublin, Belfield, Dublin, Ireland.,Chronic Cardiovascular Disease Unit, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Pat Collier
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine, University College Dublin, Belfield, Dublin, Ireland.,Chronic Cardiovascular Disease Unit, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland.,Cardiovascular Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Roisin Neary
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Isaac J Tea
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Niamh Corrigan
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Mark Ledwidge
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine, University College Dublin, Belfield, Dublin, Ireland.,Chronic Cardiovascular Disease Unit, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Ken McDonald
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine, University College Dublin, Belfield, Dublin, Ireland.,Chronic Cardiovascular Disease Unit, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - John A Baugh
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
49
|
Structural basis of Ac-SDKP hydrolysis by Angiotensin-I converting enzyme. Sci Rep 2015; 5:13742. [PMID: 26403559 PMCID: PMC4585900 DOI: 10.1038/srep13742] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/04/2015] [Indexed: 11/16/2022] Open
Abstract
Angiotensin-I converting enzyme (ACE) is a zinc dipeptidylcarboxypeptidase with two active domains and plays a key role in the regulation of blood pressure and electrolyte homeostasis, making it the principal target in the treatment of cardiovascular disease. More recently, the tetrapetide N-acetyl-Ser–Asp–Lys–Pro (Ac-SDKP) has emerged as a potent antifibrotic agent and negative regulator of haematopoietic stem cell differentiation which is processed exclusively by ACE. Here we provide a detailed biochemical and structural basis for the domain preference of Ac-SDKP. The high resolution crystal structures of N-domain ACE in complex with the dipeptide products of Ac-SDKP cleavage were obtained and offered a template to model the mechanism of substrate recognition of the enzyme. A comprehensive kinetic study of Ac-SDKP and domain co-operation was performed and indicated domain interactions affecting processing of the tetrapeptide substrate. Our results further illustrate the molecular basis for N-domain selectivity and should help design novel ACE inhibitors and Ac-SDKP analogues that could be used in the treatment of fibrosis disorders.
Collapse
|
50
|
D'Souza KM, Biwer LA, Madhavpeddi L, Ramaiah P, Shahid W, Hale TM. Persistent change in cardiac fibroblast physiology after transient ACE inhibition. Am J Physiol Heart Circ Physiol 2015; 309:H1346-53. [PMID: 26371174 DOI: 10.1152/ajpheart.00615.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/06/2015] [Indexed: 11/22/2022]
Abstract
Transient angiotensin-converting enzyme (ACE) inhibition induces persistent changes that protect against future nitric oxide synthase (NOS) inhibitor-induced cardiac fibrosis and inflammation. Given the role of fibroblasts in mediating these effects, the present study investigates whether prior ACE inhibition produced persistent changes in cardiac fibroblast physiology. Adult male spontaneously hypertensive rats (SHRs) were treated with vehicle (C+L) or the ACE inhibitor, enalapril (E+L) for 2 wk followed by a 2-wk washout period and a subsequent 7-day challenge with the NOS inhibitor N(ω)-nitro-l-arginine methyl ester. A third set of untreated SHRs served as controls. At the end of the study period, cardiac fibroblasts were isolated from control, C+L, and E+L left ventricles to assess proliferation rate, collagen expression, and chemokine release in vitro. After 7 days of NOS inhibition, there were areas of myocardial injury but no significant change in collagen deposition in E+L and C+L hearts in vivo. In vitro, cardiac fibroblasts isolated from C+L but not E+L hearts were hyperproliferative, demonstrated increased collagen type I gene expression, and an elevated secretion of the macrophage-recruiting chemokines monocyte chemoattractant protein-1 and granulocyte macrophage-colony stimulating factor. These findings demonstrate that in vivo N(ω)-nitro-l-arginine methyl ester treatment produces phenotypic changes in fibroblasts that persist in vitro. Moreover, this is the first demonstration that transient ACE inhibition can produce a persistent modification of the cardiac fibroblast phenotype to one that is less inflammatory and fibrogenic. It may be that the cardioprotective effects of ACE inhibition are related in part to beneficial changes in cardiac fibroblast physiology.
Collapse
Affiliation(s)
- K M D'Souza
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona
| | - L A Biwer
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona
| | - L Madhavpeddi
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona
| | - P Ramaiah
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona
| | - W Shahid
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona
| | - T M Hale
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona
| |
Collapse
|