1
|
Sykes A, Caruth L, Setia Verma S, Hoshi T, Deutsch C. Disease-associated Kv1.3 variants are energy compromised with impaired nascent chain folding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.631970. [PMID: 39868087 PMCID: PMC11761497 DOI: 10.1101/2025.01.17.631970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Human Kv1.3, encoded by KCNA3 , is expressed in neuronal and immune cells. Its impaired expression or function produces chronic inflammatory disease and autoimmune disorders, the severity of which correlates with Kv1.3 protein expression. The intersubunit recognition domain, T1, at the cytosolic N-terminus of Kv1.3, acquires secondary, tertiary, and quaternary structures during early biogenesis while the nascent protein is attached to the ribosome and/or the ER membrane. In this study, we ask whether native KCNA3 gene variants in T1 are associated with human disease and whether they manifest early-stage folding defects, energetic instabilities, and conformational distortion of subunits. We use three approaches: first, the unbiased "genome-first" approach to determine phenotype associations of specific KCNA3 rare variants. Second, we use biochemical assays to assess early-stage tertiary and quaternary folding and membrane association of these variants during early biogenesis. Third, we use all-atom molecular dynamics simulations of the T1 tetramer to assess structural macroscopic and energetic stability differences between wildtype (WT) Kv1.3 and a single-point variant, R114G. Measured folding probabilities and membrane associations are dramatically reduced in several of the native variants compared to WT. Simulations strikingly show that the R114G variant produces more energetically unstable and dynamic T1 domains, concomitant with tertiary unwinding and impaired formation of symmetrical tetramers. Our findings identify molecular mechanisms by which rare variants influence channel assembly, potentially contributing to diverse clinical phenotypes underlying human disease.
Collapse
|
2
|
Mun D, Kang JY, Park M, Yoo G, Kim H, Yun N, Mi Hwang Y, Joung B. Establishment of a human-induced pluripotent stem cell line from a long QT syndrome type 2 patient harboring a KCNH2 mutation. Stem Cell Res 2024; 81:103592. [PMID: 39454535 DOI: 10.1016/j.scr.2024.103592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 08/13/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Long QT syndrome type 2 (LQT2) is a heart disorder resulting from a loss-of-function mutation in theKCNH2gene that causes loss of Kv11.1 channel function, potentially resulting in syncope, arrhythmias, and sudden death. We derived induced pluripotent stem cell line from PBMC of LQT2 patient carrying a variant of pathogenic variant (c.157G > A; p.Gly53Ser). The generation of iPSC lines was achieved using the non-integrative Sendai virus-mediated iPSC reprogramming method. The iPSC cell line exhibit pluripotency, normal karyotype, stem cell morphology, and differentiation capability, resulting a reliable cell source to study the effects of KCNH2 mutation in disease-specific cell types.
Collapse
Affiliation(s)
- Dasom Mun
- Division of Cardiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ji-Young Kang
- Division of Cardiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Malgeum Park
- Division of Cardiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Gyeongseo Yoo
- Division of Cardiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyoeun Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Nuri Yun
- GNTPharma Science and Technology Center for Health, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - You Mi Hwang
- Department of Cardiology, St. Vincent's Hospital, The Catholic University of Korea, 93 Jungbu-daero, Paldal-gu, Suwon 16247, Republic of Korea; Catholic Research Institute for Intractable Cardiovascular Disease (CRID), College of Medicine, The Catholic University of Korea, 93 Jungbu-daero, Paldal-gu, Suwon 16247, Republic of Korea
| | - Boyoung Joung
- Division of Cardiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
3
|
Zhang L, Xu M, Yan Z, Han Y, Jiang X, Xiao T, Hou C, Li Y. Torsades de Pointes electrical storm in children with KCNH2 mutations. BMC Med Genomics 2024; 17:250. [PMID: 39394151 PMCID: PMC11468024 DOI: 10.1186/s12920-024-02025-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
Congenital long QT syndrome (LQTS) is a genetic heart disorder, which may lead to life-threatening arrhythmias, especially in children. Here, we reported two children who were initially misdiagnosed with epilepsy and experienced Torsades de Pointes (TdP) cardiac electrical storm (ES). Through whole exome sequencing (WES), we identified two Potassium voltage-gated channel subfamily H member 2 (KCHN2) mutations (c.1841 C > T and c.1838 C > T) respectively in a 6-year-old boy and a 13-year-old girl. Clinical data indicated that the QT interval was significantly prolonged, the T-wave pattern of chest V5-V6 leads and limb leads were inverted. Our study suggests that patients with epilepsy, especially those refractory epilepsy with atypical features, need comprehensive evaluation of cardiovascular function. KCNH2 mutation in pore region, QT interval prolongation and T wave inversion are high risk factors for ES. For LQT2 patients with ES, Nadolol and left cardiac sympathetic denervation are indicated, sometimes with an ICD.
Collapse
Affiliation(s)
- Li Zhang
- Department of Cardiology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Meng Xu
- Department of Cardiology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Zhen Yan
- Department of Cardiology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Yan Han
- Department of Cardiology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Xunwei Jiang
- Department of Cardiology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Tingting Xiao
- Department of Cardiology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Cuilan Hou
- Department of Cardiology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China.
| | - Yun Li
- Department of Cardiology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China.
| |
Collapse
|
4
|
Singh V, Auerbach DS. Neurocardiac pathologies associated with potassium channelopathies. Epilepsia 2024; 65:2537-2552. [PMID: 39087855 DOI: 10.1111/epi.18066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Voltage-gated potassium channels are expressed throughout the human body and are essential for physiological functions. These include delayed rectifiers, A-type channels, outward rectifiers, and inward rectifiers. They impact electrical function in the heart (repolarization) and brain (repolarization and stabilization of the resting membrane potential). KCNQx and KCNHx encode Kv7.x and Kv11.x proteins, which form delayed rectifier potassium channels. KCNQx and KCNHx channelopathies are associated with both cardiac and neuronal pathologies. These include electrocardiographic abnormalities, cardiac arrhythmias, sudden cardiac death (SCD), epileptiform discharges, seizures, bipolar disorder, and sudden unexpected death in epilepsy (SUDEP). Due to the ubiquitous expression of KCNQx and KCNHx channels, abnormalities in their function can be particularly harmful, increasing the risk of sudden death. For example, KCNH2 variants have a dual role in both cardiac and neuronal pathologies, whereas KCNQ2 and KCNQ3 variants are associated with severe and refractory epilepsy. Recurrent and uncontrolled seizures lead to secondary abnormalities, which include autonomics, cardiac electrical function, respiratory drive, and neuronal electrical activity. Even with a wide array of anti-seizure therapies available on the market, one-third of the more than 70 million people worldwide with epilepsy have uncontrolled seizures (i.e., intractable/drug-resistant epilepsy), which negatively impact neurodevelopment and quality of life. To capture the current state of the field, this review examines KCNQx and KCNHx expression patterns and electrical function in the brain and heart. In addition, it discusses several KCNQx and KCNHx variants that have been clinically and electrophysiologically characterized. Because these channel variants are associated with multi-system pathologies, such as epileptogenesis, Kv7 channel modulators provide a potential anti-seizure therapy, particularly for people with intractable epilepsy. Ultimately an increased understanding of the role of Kv channels throughout the body will fuel the development of innovative, safe, and effective therapies for people at a high risk of sudden death (SCD and SUDEP).
Collapse
Affiliation(s)
- Veronica Singh
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - David S Auerbach
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
5
|
AlRawashdeh S, Mosa FES, Barakat KH. Computational insights into the mechanisms underlying structural destabilization and recovery in trafficking-deficient hERG mutants. Front Mol Biosci 2024; 11:1341727. [PMID: 39193219 PMCID: PMC11347279 DOI: 10.3389/fmolb.2024.1341727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Cardiovascular diseases are a major global health concern, responsible for a significant number of deaths each year, often linked to cardiac arrhythmias resulting from dysfunction in ion channels. Hereditary Long QT Syndrome (LQTS) is a condition characterized by a prolonged QT interval on ECG, increasing the risk of sudden cardiac death. The most common type of LQTS, LQT2, is caused by mutations in the hERG gene, affecting a potassium ion channel. The majority of these mutations disrupt the channel's trafficking to the cell membrane, leading to intracellular retention. Specific high-affinity hERG blockers (e.g., E-4031) can rescue this mutant phenotype, but the exact mechanism is unknown. This study used accelerated molecular dynamics simulations to investigate how these mutations affect the hERG channel's structure, folding, endoplasmic reticulum (ER) retention, and trafficking. We reveal that these mutations induce structural changes in the channel, narrowing its central pore and altering the conformation of the intracellular domains. These changes expose internalization signals that contribute to ER retention and degradation of the mutant hERG channels. Moreover, the study found that the trafficking rescue drug E-4031 can inhibit these structural changes, potentially rescuing the mutant channels. This research offers valuable insights into the structural issues responsible for the degradation of rescuable transmembrane trafficking mutants. Understanding the defective trafficking structure of the hERG channel could help identify binding sites for small molecules capable of restoring proper folding and facilitating channel trafficking. This knowledge has the potential to lead to mechanism-based therapies that address the condition at the cellular level, which may prove more effective than treating clinical symptoms, ultimately offering hope for individuals with hereditary Long QT Syndrome.
Collapse
Affiliation(s)
| | | | - Khaled H. Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Davis J, Cornwell JD, Campagna N, Guo J, Li W, Yang T, Wang T, Zhang S. Rescue of expression and function of long QT syndrome-causing mutant hERG channels by enhancing channel stability in the plasma membrane. J Biol Chem 2024; 300:107526. [PMID: 38960041 PMCID: PMC11325228 DOI: 10.1016/j.jbc.2024.107526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024] Open
Abstract
The human ether-a-go-go-related gene (hERG) encodes the Kv11.1 (or hERG) channel that conducts the rapidly activating delayed rectifier potassium current (IKr). Naturally occurring mutations in hERG impair the channel function and cause long QT syndrome type 2. Many missense hERG mutations lead to a lack of channel expression on the cell surface, representing a major mechanism for the loss-of-function of mutant channels. While it is generally thought that a trafficking defect underlies the lack of channel expression on the cell surface, in the present study, we demonstrate that the trafficking defective mutant hERG G601S can reach the plasma membrane but is unstable and quickly degrades, which is akin to WT hERG channels under low K+ conditions. We previously showed that serine (S) residue at 624 in the innermost position of the selectivity filter of hERG is involved in hERG membrane stability such that substitution of serine 624 with threonine (S624T) enhances hERG stability and renders hERG insensitive to low K+ culture. Here, we report that the intragenic addition of S624T substitution to trafficking defective hERG mutants G601S, N470D, and P596R led to a complete rescue of the function of these otherwise loss-of-function mutant channels to a level similar to the WT channel, representing the most effective rescue means for the function of mutant hERG channels. These findings not only provide novel insights into hERG mutation-mediated channel dysfunction but also point to the critical role of S624 in hERG stability on the plasma membrane.
Collapse
Affiliation(s)
- Jordan Davis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - James D Cornwell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Noah Campagna
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jun Guo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Wentao Li
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tonghua Yang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tingzhong Wang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
7
|
Stevens-Sostre WA, Flores-Aldama L, Bustos D, Li J, Morais-Cabral JH, Delemotte L, Robertson GA. An intracellular hydrophobic nexus critical for hERG1 channel slow deactivation. Biophys J 2024; 123:2024-2037. [PMID: 38219015 PMCID: PMC11309987 DOI: 10.1016/j.bpj.2024.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/17/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Slow deactivation is a critical property of voltage-gated K+ channels encoded by the human Ether-à-go-go-Related Gene 1 (hERG). hERG1 channel deactivation is modulated by interactions between intracellular N-terminal Per-Arnt-Sim (PAS) and C-terminal cyclic nucleotide-binding homology (CNBh) domains. The PAS domain is multipartite, comprising a globular domain (gPAS; residues 26-135) and an N-terminal PAS-cap that is further subdivided into an initial unstructured "tip" (residues 1-12) and an amphipathic α-helical region (residues 13-25). Although the PAS-cap tip has long been considered the effector of slow deactivation, how its position near the gating machinery is controlled has not been elucidated. Here, we show that a triad of hydrophobic interactions among the gPAS, PAS-cap α helix, and the CNBh domains is required to support slow deactivation in hERG1. The primary sequence of this "hydrophobic nexus" is highly conserved among mammalian ERG channels but shows key differences to fast-deactivating Ether-à-go-go 1 (EAG1) channels. Combining sequence analysis, structure-directed mutagenesis, electrophysiology, and molecular dynamics simulations, we demonstrate that polar serine substitutions uncover an intermediate deactivation mode that is also mimicked by deletion of the PAS-cap α helix. Molecular dynamics simulation analyses of the serine-substituted channels show an increase in distance among the residues of the hydrophobic nexus, a rotation of the intracellular gating ring, and a retraction of the PAS-cap tip from its receptor site near the voltage sensor domain and channel gate. These findings provide compelling evidence that the hydrophobic nexus coordinates the respective components of the intracellular gating ring and positions the PAS-cap tip to control hERG1 deactivation gating.
Collapse
Affiliation(s)
- Whitney A Stevens-Sostre
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Lisandra Flores-Aldama
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Daniel Bustos
- Centro de Investigación de Estudios Avanzados Del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica Del Maule, Talca, Chile; Laboratorio de Bioinformática y Química Computacional (LBQC), Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica Del Maule, Talca, Chile
| | - Jin Li
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - João H Morais-Cabral
- Instituto de Investigação e Inovação Em Saude da Universidade Do Porto (i3S); Instituto de Biologia Molecular e Celular, Universidade Do Porto, Porto, Portugal
| | - Lucie Delemotte
- KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Gail A Robertson
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| |
Collapse
|
8
|
Teles D, Fine BM. Using induced pluripotent stem cells for drug discovery in arrhythmias. Expert Opin Drug Discov 2024; 19:827-840. [PMID: 38825838 PMCID: PMC11227103 DOI: 10.1080/17460441.2024.2360420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
INTRODUCTION Arrhythmias are disturbances in the normal rhythm of the heart and account for significant cardiovascular morbidity and mortality worldwide. Historically, preclinical research has been anchored in animal models, though physiological differences between these models and humans have limited their clinical translation. The discovery of human induced pluripotent stem cells (iPSC) and subsequent differentiation into cardiomyocyte has led to the development of new in vitro models of arrhythmias with the hope of a new pathway for both exploration of pathogenic variants and novel therapeutic discovery. AREAS COVERED The authors describe the latest two-dimensional in vitro models of arrhythmias, several examples of the use of these models in drug development, and the role of gene editing when modeling diseases. They conclude by discussing the use of three-dimensional models in the study of arrythmias and the integration of computational technologies and machine learning with experimental technologies. EXPERT OPINION Human iPSC-derived cardiomyocytes models have significant potential to augment disease modeling, drug discovery, and toxicity studies in preclinical development. While there is initial success with modeling arrhythmias, the field is still in its nascency and requires advances in maturation, cellular diversity, and readouts to emulate arrhythmias more accurately.
Collapse
Affiliation(s)
- Diogo Teles
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Barry M. Fine
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
9
|
Zhang ZH, Barajas-Martinez H, Jiang H, Huang CX, Antzelevitch C, Xia H, Hu D. Gene and stem cell therapy for inherited cardiac arrhythmias. Pharmacol Ther 2024; 256:108596. [PMID: 38301770 DOI: 10.1016/j.pharmthera.2024.108596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/11/2023] [Accepted: 01/13/2024] [Indexed: 02/03/2024]
Abstract
Inherited cardiac arrhythmias are a group of genetic diseases predisposing to sudden cardiac arrest, mainly resulting from variants in genes encoding cardiac ion channels or proteins involved in their regulation. Currently available therapeutic options (pharmacotherapy, ablative therapy and device-based therapy) can not preclude the occurrence of arrhythmia events and/or provide complete protection. With growing understanding of the genetic background and molecular mechanisms of inherited cardiac arrhythmias, advancing insight of stem cell technology, and development of vectors and delivery strategies, gene therapy and stem cell therapy may be promising approaches for treatment of inherited cardiac arrhythmias. Recent years have witnessed impressive progress in the basic science aspects and there is a clear and urgent need to be translated into the clinical management of arrhythmic events. In this review, we present a succinct overview of gene and cell therapy strategies, and summarize the current status of gene and cell therapy. Finally, we discuss future directions for implementation of gene and cell therapy in the therapy of inherited cardiac arrhythmias.
Collapse
Affiliation(s)
- Zhong-He Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Hector Barajas-Martinez
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnwood, PA, 19096, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnwood, PA, 19096, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| | - Dan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| |
Collapse
|
10
|
Papaioannou P, Wallace MJ, Malhotra N, Mohler PJ, El Refaey M. Biochemical Structure and Function of TRAPP Complexes in the Cardiac System. JACC Basic Transl Sci 2023; 8:1599-1612. [PMID: 38205348 PMCID: PMC10774597 DOI: 10.1016/j.jacbts.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/14/2023] [Indexed: 01/12/2024]
Abstract
Trafficking protein particle (TRAPP) is well reported to play a role in the trafficking of protein products within the Golgi and endoplasmic reticulum. Dysfunction in TRAPP has been associated with disorders in the nervous and cardiovascular systems, but the majority of literature focuses on TRAPP function in the nervous system solely. Here, we highlight the known pathways of TRAPP and hypothesize potential impacts of TRAPP dysfunction on the cardiovascular system, particularly the role of TRAPP as a guanine-nucleotide exchange factor for Rab1 and Rab11. We also review the various cardiovascular phenotypes associated with changes in TRAPP complexes and their subunits.
Collapse
Affiliation(s)
- Peter Papaioannou
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Michael J. Wallace
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Nipun Malhotra
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Peter J. Mohler
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mona El Refaey
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
11
|
Hata Y, Ichimata S, Yoshida K, Yamaguchi Y, Hirono K, Nishida N. Comprehensive pathological and genetic investigation of three young adult myotonic dystrophy type 1 patients with sudden unexpected death. J Neurol 2023; 270:5380-5391. [PMID: 37432518 DOI: 10.1007/s00415-023-11850-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/12/2023]
Abstract
OBJECTIVES The mechanism and pathological substrate of arrhythmogenic events in dystrophic myopathy type 1 (DM1) have not been fully established, especially for patients without progression of motor and/or cardiac disability. Therefore, we aimed to clarify the pathological appearance and genetic factors, other than CTG repeats in DMPK, associated with sudden cardiac death in patients with DM1. METHODS A pathological investigation including the cardiac conduction system in the heart and whole-exome sequencing was conducted for three young adults (Patient 1; 25-year-old female, Patient 2; 35-year-old female, Patient 3; 18-year-old male) with DM1 who suffered sudden death. RESULTS Only Patient 1 showed abnormal electrocardiogram findings before death. The pathological investigation showed severe fibrosis of the atrioventricular conduction system in Patient 1 and severe fatty infiltration in the right ventricle in Patient 2. Several minimal necrotic/inflammatory foci were found in both patients. Patient 3 showed no significant pathological findings. A genetic investigation showed CORIN_p.W813* and MYH2_p. R793* in Patient 1, KCNH2_p. V794D and PLEC_p. A4147T in Patient 2, and SCN5A_p.E428K and SCN3B_ p.V145L in Patient 3 as highly possible pathogenic variants. CONCLUSION AND RELEVANCE The present study showed varied heart morphology in young adults with DM1 and sudden death. Synergistic effects of various genetic factors other than CTG repeats may increase the risk of sudden cardiac death in DM1 patients, even if signs of cardiac and skeletal muscle involvement are mild. Comprehensive genetic investigations, other than CTG repeat assessment, may be useful to estimate the risk of sudden cardiac death in DM1 patients.
Collapse
Affiliation(s)
- Yukiko Hata
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Shojiro Ichimata
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
- Tanz Centre for Research in Neurodegenerative Disease, Krembil Discovery Tower, University of Toronto, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Koji Yoshida
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
- Tanz Centre for Research in Neurodegenerative Disease, Krembil Discovery Tower, University of Toronto, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yoshiaki Yamaguchi
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
- Department of Cardiology, Saiseikai Takaoka Hospital, 387-1 Futatsuka, Takaoka, Toyama, 933-8525, Japan
| | - Keiichi Hirono
- Department of Pediatrics, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Naoki Nishida
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
12
|
Jin Q, Greenstein JL, Winslow RL. Estimating the probability of early afterdepolarizations and predicting arrhythmic risk associated with long QT syndrome type 1 mutations. Biophys J 2023; 122:4042-4056. [PMID: 37705243 PMCID: PMC10598291 DOI: 10.1016/j.bpj.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023] Open
Abstract
Early afterdepolarizations (EADs) are action potential (AP) repolarization abnormalities that can trigger lethal arrhythmias. Simulations using biophysically detailed cardiac myocyte models can reveal how model parameters influence the probability of these cellular arrhythmias; however, such analyses can pose a huge computational burden. We have previously developed a highly simplified approach in which logistic regression models (LRMs) map parameters of complex cell models to the probability of ectopic beats. Here, we extend this approach to predict the probability of EADs (P(EAD)) as a mechanistic metric of arrhythmic risk. We use the LRM to investigate how changes in parameters of the slow-activating delayed rectifier current (IKs) affect P(EAD) for 17 different long QT syndrome type 1 (LQTS1) mutations. In this LQTS1 clinical arrhythmic risk prediction task, we compared P(EAD) for these 17 mutations with two other recently published model-based arrhythmia risk metrics (AP morphology metric across populations of myocyte models and transmural repolarization prolongation based on a one-dimensional [1D] tissue-level model). These model-based risk metrics yield similar prediction performance; however, each fails to stratify clinical risk for a significant number of the 17 studied LQTS1 mutations. Nevertheless, an interpretable ensemble model using multivariate linear regression built by combining all of these model-based risk metrics successfully predicts the clinical risk of 17 mutations. These results illustrate the potential of computational approaches in arrhythmia risk prediction.
Collapse
Affiliation(s)
- Qingchu Jin
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Joseph L Greenstein
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Raimond L Winslow
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
13
|
Campagna N, Wall E, Lee K, Guo J, Li W, Yang T, Baranchuk A, El-Diasty M, Zhang S. Differential Effects of Remdesivir and Lumacaftor on Homomeric and Heteromeric hERG Channels. Mol Pharmacol 2023; 104:164-173. [PMID: 37419691 DOI: 10.1124/molpharm.123.000708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023] Open
Abstract
The human ether-a-go-go-related gene (hERG) encodes for the pore-forming subunit of the channel that conducts the rapidly activating delayed K+ current (IKr) in the heart. The hERG channel is important for cardiac repolarization, and reduction of its expression in the plasma membrane due to mutations causes long QT syndrome type 2 (LQT2). As such, promoting hERG membrane expression is a strategy to rescue mutant channel function. In the present study, we applied patch clamp, western blots, immunocytochemistry, and quantitative reverse transcription polymerase chain reaction techniques to investigate the rescue effects of two drugs, remdesivir and lumacaftor, on trafficking-defective mutant hERG channels. As our group has recently reported that the antiviral drug remdesivir increases wild-type (WT) hERG current and surface expression, we studied the effects of remdesivir on trafficking-defective LQT2-causing hERG mutants G601S and R582C expressed in HEK293 cells. We also investigated the effects of lumacaftor, a drug used to treat cystic fibrosis, that promotes CFTR protein trafficking and has been shown to rescue membrane expression of some hERG mutations. Our results show that neither remdesivir nor lumacaftor rescued the current or cell-surface expression of homomeric mutants G601S and R582C. However, remdesivir decreased while lumacaftor increased the current and cell-surface expression of heteromeric channels formed by WT hERG and mutant G601S or R582C hERG. We concluded that drugs can differentially affect homomeric WT and heteromeric WT+G601S (or WT+R582C) hERG channels. These findings extend our understanding of drug-channel interaction and may have clinical implications for patients with hERG mutations. SIGNIFICANCE STATEMENT: Various naturally occurring mutations in a cardiac potassium channel called hERG can impair channel function by decreasing cell-surface channel expression, resulting in cardiac electrical disturbances and even sudden cardiac death. Promotion of cell-surface expression of mutant hERG channels represents a strategy to rescue channel function. This work demonstrates that drugs such as remdesivir and lumacaftor can differently affect homomeric and heteromeric mutant hERG channels, which have biological and clinical implications.
Collapse
Affiliation(s)
- Noah Campagna
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Erika Wall
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Kevin Lee
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Jun Guo
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Wentao Li
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Tonghua Yang
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Adrian Baranchuk
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Mohammad El-Diasty
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
14
|
Huang X, Miyata H, Wang H, Mori G, Iida-Norita R, Ikawa M, Percudani R, Chung JJ. A CUG-initiated CATSPERθ functions in the CatSper channel assembly and serves as a checkpoint for flagellar trafficking. Proc Natl Acad Sci U S A 2023; 120:e2304409120. [PMID: 37725640 PMCID: PMC10523455 DOI: 10.1073/pnas.2304409120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/10/2023] [Indexed: 09/21/2023] Open
Abstract
Calcium signaling is critical for successful fertilization. In spermatozoa, calcium influx into the sperm flagella mediated by the sperm-specific CatSper calcium channel is necessary for hyperactivated motility and male fertility. CatSper is a macromolecular complex and is repeatedly arranged in zigzag rows within four linear nanodomains along the sperm flagella. Here, we report that the Tmem249-encoded transmembrane (TM) domain-containing protein, CATSPERθ is essential for the CatSper channel assembly during sperm tail formation. CATSPERθ facilitates the channel assembly by serving as a scaffold for a pore-forming subunit CATSPER4. CATSPERθ is specifically localized at the interface of a CatSper dimer and can self-interact, suggesting its potential role in CatSper dimer formation. Male mice lacking CATSPERθ are infertile because the sperm lack the entire CatSper channel from sperm flagella, rendering sperm unable to hyperactivate, regardless of their normal expression in the testis. In contrast, genetic abrogation of any of the other CatSper TM subunits results in loss of CATSPERθ protein in the spermatid cells during spermatogenesis. CATSPERθ might act as a checkpoint for the properly assembled CatSper channel complex to traffic to sperm flagella. This study provides insights into the CatSper channel assembly and elucidates the physiological role of CATSPERθ in sperm motility and male fertility.
Collapse
Affiliation(s)
- Xiaofang Huang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Suita565-0871, Japan
| | - Huafeng Wang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Giulia Mori
- Department of Chemistry, Life sciences, and Environmental Sustainability, University of Parma, Parma43124, Italy
| | - Rie Iida-Norita
- Research Institute for Microbial Diseases, Osaka University, Suita565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita565-0871, Japan
| | - Riccardo Percudani
- Department of Chemistry, Life sciences, and Environmental Sustainability, University of Parma, Parma43124, Italy
| | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT06510
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT06510
| |
Collapse
|
15
|
Meier S, Grundland A, Dobrev D, Volders PG, Heijman J. In silico analysis of the dynamic regulation of cardiac electrophysiology by K v 11.1 ion-channel trafficking. J Physiol 2023; 601:2711-2731. [PMID: 36752166 PMCID: PMC10313819 DOI: 10.1113/jp283976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Cardiac electrophysiology is regulated by continuous trafficking and internalization of ion channels occurring over minutes to hours. Kv 11.1 (also known as hERG) underlies the rapidly activating delayed-rectifier K+ current (IKr ), which plays a major role in cardiac ventricular repolarization. Experimental characterization of the distinct temporal effects of genetic and acquired modulators on channel trafficking and gating is challenging. Computer models are instrumental in elucidating these effects, but no currently available model incorporates ion-channel trafficking. Here, we present a novel computational model that reproduces the experimentally observed production, forward trafficking, internalization, recycling and degradation of Kv 11.1 channels, as well as their modulation by temperature, pentamidine, dofetilide and extracellular K+ . The acute effects of these modulators on channel gating were also incorporated and integrated with the trafficking model in the O'Hara-Rudy human ventricular cardiomyocyte model. Supraphysiological dofetilide concentrations substantially increased Kv 11.1 membrane levels while also producing a significant channel block. However, clinically relevant concentrations did not affect trafficking. Similarly, severe hypokalaemia reduced Kv 11.1 membrane levels based on long-term culture data, but had limited effect based on short-term data. By contrast, clinically relevant elevations in temperature acutely increased IKr due to faster kinetics, while after 24 h, IKr was decreased due to reduced Kv 11.1 membrane levels. The opposite was true for lower temperatures. Taken together, our model reveals a complex temporal regulation of cardiac electrophysiology by temperature, hypokalaemia, and dofetilide through competing effects on channel gating and trafficking, and provides a framework for future studies assessing the role of impaired trafficking in cardiac arrhythmias. KEY POINTS: Kv 11.1 channels underlying the rapidly activating delayed-rectifier K+ current are important for ventricular repolarization and are continuously shuttled from the cytoplasm to the plasma membrane and back over minutes to hours. Kv 11.1 gating and trafficking are modulated by temperature, drugs and extracellular K+ concentration but experimental characterization of their combined effects is challenging. Computer models may facilitate these analyses, but no currently available model incorporates ion-channel trafficking. We introduce a new two-state ion-channel trafficking model able to reproduce a wide range of experimental data, along with the effects of modulators of Kv 11.1 channel functioning and trafficking. The model reveals complex dynamic regulation of ventricular repolarization by temperature, extracellular K+ concentration and dofetilide through opposing acute (millisecond) effects on Kv 11.1 gating and long-term (hours) modulation of Kv 11.1 trafficking. This in silico trafficking framework provides a tool to investigate the roles of acute and long-term processes on arrhythmia promotion and maintenance.
Collapse
Affiliation(s)
- Stefan Meier
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine, and Life Sciences, Maastricht University and Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Adaïa Grundland
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine, and Life Sciences, Maastricht University and Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Data Science and Knowledge Engineering, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Quebec, Canada
| | - Paul G.A. Volders
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine, and Life Sciences, Maastricht University and Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine, and Life Sciences, Maastricht University and Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
16
|
Giannetti F, Barbieri M, Shiti A, Casini S, Sager PT, Das S, Pradhananga S, Srinivasan D, Nimani S, Alerni N, Louradour J, Mura M, Gnecchi M, Brink P, Zehender M, Koren G, Zaza A, Crotti L, Wilde AAM, Schwartz PJ, Remme CA, Gepstein L, Sala L, Odening KE. Gene- and variant-specific efficacy of serum/glucocorticoid-regulated kinase 1 inhibition in long QT syndrome types 1 and 2. Europace 2023; 25:euad094. [PMID: 37099628 PMCID: PMC10228615 DOI: 10.1093/europace/euad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/20/2023] [Indexed: 04/28/2023] Open
Abstract
AIMS Current long QT syndrome (LQTS) therapy, largely based on beta-blockade, does not prevent arrhythmias in all patients; therefore, novel therapies are warranted. Pharmacological inhibition of the serum/glucocorticoid-regulated kinase 1 (SGK1-Inh) has been shown to shorten action potential duration (APD) in LQTS type 3. We aimed to investigate whether SGK1-Inh could similarly shorten APD in LQTS types 1 and 2. METHODS AND RESULTS Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and hiPSC-cardiac cell sheets (CCS) were obtained from LQT1 and LQT2 patients; CMs were isolated from transgenic LQT1, LQT2, and wild-type (WT) rabbits. Serum/glucocorticoid-regulated kinase 1 inhibition effects (300 nM-10 µM) on field potential durations (FPD) were investigated in hiPSC-CMs with multielectrode arrays; optical mapping was performed in LQT2 CCS. Whole-cell and perforated patch clamp recordings were performed in isolated LQT1, LQT2, and WT rabbit CMs to investigate SGK1-Inh (3 µM) effects on APD. In all LQT2 models across different species (hiPSC-CMs, hiPSC-CCS, and rabbit CMs) and independent of the disease-causing variant (KCNH2-p.A561V/p.A614V/p.G628S/IVS9-28A/G), SGK1-Inh dose-dependently shortened FPD/APD at 0.3-10 µM (by 20-32%/25-30%/44-45%). Importantly, in LQT2 rabbit CMs, 3 µM SGK1-Inh normalized APD to its WT value. A significant FPD shortening was observed in KCNQ1-p.R594Q hiPSC-CMs at 1/3/10 µM (by 19/26/35%) and in KCNQ1-p.A341V hiPSC-CMs at 10 µM (by 29%). No SGK1-Inh-induced FPD/APD shortening effect was observed in LQT1 KCNQ1-p.A341V hiPSC-CMs or KCNQ1-p.Y315S rabbit CMs at 0.3-3 µM. CONCLUSION A robust SGK1-Inh-induced APD shortening was observed across different LQT2 models, species, and genetic variants but less consistently in LQT1 models. This suggests a genotype- and variant-specific beneficial effect of this novel therapeutic approach in LQTS.
Collapse
Affiliation(s)
- Federica Giannetti
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Miriam Barbieri
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Assad Shiti
- Rappaport Faculty of Medicine and Research Institute, Technion–Israel Institute of Technology, Haifa, Israel
| | - Simona Casini
- Amsterdam UMC Location AMC Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam, The Netherlands
| | - Philip T Sager
- Thryv Therapeutics Inc., Montreal, Canada
- Cardiovascular Research Institute, Stanford University, Palo Alto, CA, USA
| | - Saumya Das
- Thryv Therapeutics Inc., Montreal, Canada
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Saranda Nimani
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Nicolò Alerni
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Julien Louradour
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Manuela Mura
- Department of Cardiothoracic and Vascular Sciences–Translational Cardiology Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Massimiliano Gnecchi
- Department of Cardiothoracic and Vascular Sciences–Translational Cardiology Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy
| | - Paul Brink
- Department of Medicine, University of Stellenbosch, Tygerberg, South Africa
| | - Manfred Zehender
- Department of Cardiology and Angiology I, University Heart Center Freiburg, University Medical Center Freiburg, Freiburg, Germany
| | - Gideon Koren
- Cardiovascular Research Center, Brown University, Providence, RI, USA
| | - Antonio Zaza
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Lia Crotti
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Arthur A M Wilde
- Amsterdam UMC Location AMC Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam, The Netherlands
| | - Peter J Schwartz
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Carol Ann Remme
- Amsterdam UMC Location AMC Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam, The Netherlands
| | - Lior Gepstein
- Rappaport Faculty of Medicine and Research Institute, Technion–Israel Institute of Technology, Haifa, Israel
- Cardiology Department, Rambam Health Care Campus, Haifa, Israel
| | - Luca Sala
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| |
Collapse
|
17
|
Zheng Z, Song Y, Tan X. Deciphering hERG Mutation in Long QT Syndrome Type 2 Using Antisense Oligonucleotide-Mediated Techniques: Lessons from Cystic Fibrosis. Heart Rhythm 2023:S1547-5271(23)02180-X. [PMID: 37121422 DOI: 10.1016/j.hrthm.2023.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Long QT syndrome type 2 (LQT2) is a genetic disorder caused by mutations in the KCNH2 gene, also known as the human ether-a-go-go-related gene (hERG). Over 30% of hERG mutations result in a premature termination codon (PTC) that triggers a process called nonsense-mediated mRNA decay (NMD), where the mRNA transcript is degraded. NMD is a quality control mechanism that removes faulty mRNA to prevent the translation of truncated proteins. Recent advances in antisense oligonucleotide (ASO) technology in the field of cystic fibrosis (CF) have yielded significant progress, including the ASO-mediated comprehensive characterization of key NMD factors and exon-skipping therapy. These advances have contributed to our understanding of the role of PTC-containing mutations in disease phenotypes and have also led to the development of potentially useful therapeutic strategies. Historically, studies of CF have provided valuable insights for the research on LQT2, particularly concerning increasing the expression of hERG. In this article, we outline the current state of knowledge regarding ASO, NMD, and hERG and discuss the introduction of ASO technology in the CF to elucidate the pathogenic mechanisms through targeting NMD. We also discuss the potential clinical therapeutic benefits and limitations of ASO for the management of LQT2. By drawing on lessons learned from CF research, we explore the potential translational values of these advances into LQT2 studies.
Collapse
Affiliation(s)
- Zequn Zheng
- Department of Cardiology, Shantou University Medical College, Shantou, China; Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, China; Clinical Research Center, First Affiliated Hospital of Shantou University Medical College, Shantou, China.
| | - Yongfei Song
- Ningbo Institute for Medicine &Biomedical Engineering Combined Innovation, Ningbo, China
| | - Xuerui Tan
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, China; Clinical Research Center, First Affiliated Hospital of Shantou University Medical College, Shantou, China.
| |
Collapse
|
18
|
Kodirov SA. Whole-cell patch-clamp recording and parameters. Biophys Rev 2023; 15:257-288. [PMID: 37124922 PMCID: PMC10133435 DOI: 10.1007/s12551-023-01055-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
The patch-clamp technique represents an electrophysiology type of method. This is one of several insightful approaches with five major configurations, namely a loose patch, cell-attached (also known as on-cell), whole-cell, inside-out, and outside-out modes. The patch-clamp method is more advanced compared to classical electrophysiology since it elucidates single-channel activation in a tiny portion of the membrane in addition to action potential (AP), junction potential (JP), endplate potential (EP), electrical coupling between two adjacent cells via Gap junction hemi-channels, excitatory/inhibitory postsynaptic potentials, and resting membrane potential (RMP). In fact, a malfunction of only one channel or even one component will alter AP amplitude or duration in vitro. If parameters are inferred appropriately and recordings are performed properly, the patch-clamp trace readouts and results are robust. The main hallmarks of currents via voltage-dependent calcium (Cav), hyperpolarization-activated cyclic nucleotide gated non-selective cation (HCN), inwardly rectifying potassium (Kir), voltage-dependent potassium (Kv), and voltage-dependent sodium (Nav) channels are similar and tractable among cells even when they are derived from evolutionary distinct organs and species. However, the size of the membrane area, where the functional subunits reside, and current magnitudes vary among cells of the same type. Therefore, dividing current magnitudes by cell capacitance- current density enables the estimate of functional and active channels relative to recorded cytoplasmic membrane area. Since the patch-clamp recordings can be performed in both current- and voltage-clamp modes, the action potential or spike durations can be adequately elucidated. Sometimes, optical methods are preferred to patch-clamp electrophysiology, but the obtained signals and traces are not robust. Finally, not only an alternans of AP durations, but also that of 'action potential shape' is observed with electrophysiology.
Collapse
Affiliation(s)
- Sodikdjon A. Kodirov
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
- Almazov Federal Medical Research Centre, Saint Petersburg, 197341 Russia
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Linz, Austria
| |
Collapse
|
19
|
Huang X, Miyata H, Wang H, Mori G, Iida-Norita R, Ikawa M, Percudani R, Chung JJ. A CUG-initiated CATSPERθ functions in the CatSper channel assembly and serves as a checkpoint for flagellar trafficking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.532952. [PMID: 36993167 PMCID: PMC10055175 DOI: 10.1101/2023.03.17.532952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Calcium signaling is critical for successful fertilization. In spermatozoa, calcium influx into the sperm flagella mediated by the sperm specific CatSper calcium channel is necessary for hyperactivated motility and male fertility. CatSper is a macromolecular complex and is repeatedly arranged in zigzag rows within four linear nanodomains along the sperm flagella. Here, we report that the Tmem249 -encoded transmembrane domain containing protein, CATSPERθ, is essential for the CatSper channel assembly during sperm tail formation. CATSPERθ facilitates the channel assembly by serving as a scaffold for a pore forming subunit CATSPER4. CATSPERθ is specifically localized at the interface of a CatSper dimer and can self-interact, suggesting its potential role in CatSper dimer formation. Male mice lacking CATSPERθ are infertile because the sperm lack the entire CatSper channel from sperm flagella, rendering sperm unable to hyperactivate, regardless of their normal expression in the testis. In contrast, genetic abrogation of any of the other CatSper transmembrane subunits results in loss of CATSPERθ protein in the spermatid cells during spermatogenesis. CATSPERθ might acts as a checkpoint for the properly assembled CatSper channel complex to traffic to sperm flagella. This study provides insights into the CatSper channel assembly and elucidates the physiological role of CATSPERθ in sperm motility and male fertility.
Collapse
Affiliation(s)
- Xiaofang Huang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Suita 5650871, Japan
| | - Huafeng Wang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Giulia Mori
- Department of Chemistry, Life sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Rie Iida-Norita
- Research Institute for Microbial Diseases, Osaka University, Suita 5650871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita 5650871, Japan
| | - Riccardo Percudani
- Department of Chemistry, Life sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT, 06510
| |
Collapse
|
20
|
Nguyen NH, Brodsky JL. The cellular pathways that maintain the quality control and transport of diverse potassium channels. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194908. [PMID: 36638864 PMCID: PMC9908860 DOI: 10.1016/j.bbagrm.2023.194908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Potassium channels are multi-subunit transmembrane proteins that permit the selective passage of potassium and play fundamental roles in physiological processes, such as action potentials in the nervous system and organismal salt and water homeostasis, which is mediated by the kidney. Like all ion channels, newly translated potassium channels enter the endoplasmic reticulum (ER) and undergo the error-prone process of acquiring post-translational modifications, folding into their native conformations, assembling with other subunits, and trafficking through the secretory pathway to reach their final destinations, most commonly the plasma membrane. Disruptions in these processes can result in detrimental consequences, including various human diseases. Thus, multiple quality control checkpoints evolved to guide potassium channels through the secretory pathway and clear potentially toxic, aggregation-prone misfolded species. We will summarize current knowledge on the mechanisms underlying potassium channel quality control in the secretory pathway, highlight diseases associated with channel misfolding, and suggest potential therapeutic routes.
Collapse
Affiliation(s)
- Nga H Nguyen
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|
21
|
Alameh M, Oliveira-Mendes BR, Kyndt F, Rivron J, Denjoy I, Lesage F, Schott JJ, De Waard M, Loussouarn G. A need for exhaustive and standardized characterization of ion channels activity. The case of K V11.1. Front Physiol 2023; 14:1132533. [PMID: 36860515 PMCID: PMC9968853 DOI: 10.3389/fphys.2023.1132533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
hERG, the pore-forming subunit of the rapid component of the delayed rectifier K+ current, plays a key role in ventricular repolarization. Mutations in the KCNH2 gene encoding hERG are associated with several cardiac rhythmic disorders, mainly the Long QT syndrome (LQTS) characterized by prolonged ventricular repolarization, leading to ventricular tachyarrhythmias, sometimes progressing to ventricular fibrillation and sudden death. Over the past few years, the emergence of next-generation sequencing has revealed an increasing number of genetic variants including KCNH2 variants. However, the potential pathogenicity of the majority of the variants remains unknown, thus classifying them as variants of uncertain significance or VUS. With diseases such as LQTS being associated with sudden death, identifying patients at risk by determining the variant pathogenicity, is crucial. The purpose of this review is to describe, on the basis of an exhaustive examination of the 1322 missense variants, the nature of the functional assays undertaken so far and their limitations. A detailed analysis of 38 hERG missense variants identified in Long QT French patients and studied in electrophysiology also underlies the incomplete characterization of the biophysical properties for each variant. These analyses lead to two conclusions: first, the function of many hERG variants has never been looked at and, second, the functional studies done so far are excessively heterogeneous regarding the stimulation protocols, cellular models, experimental temperatures, homozygous and/or the heterozygous condition under study, a context that may lead to conflicting conclusions. The state of the literature emphasizes how necessary and important it is to perform an exhaustive functional characterization of hERG variants and to standardize this effort for meaningful comparison among variants. The review ends with suggestions to create a unique homogeneous protocol that could be shared and adopted among scientists and that would facilitate cardiologists and geneticists in patient counseling and management.
Collapse
Affiliation(s)
- Malak Alameh
- CNRS, INSERM, l’institut du thorax, Nantes Université, CHU Nantes, Nantes, France,Labex ICST, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Barbara Ribeiro Oliveira-Mendes
- CNRS, INSERM, l’institut du thorax, Nantes Université, CHU Nantes, Nantes, France,*Correspondence: Barbara Ribeiro Oliveira-Mendes,
| | - Florence Kyndt
- CNRS, INSERM, l’institut du thorax, Nantes Université, CHU Nantes, Nantes, France
| | - Jordan Rivron
- CNRS, INSERM, l’institut du thorax, Nantes Université, CHU Nantes, Nantes, France
| | - Isabelle Denjoy
- Service de Cardiologie et CNMR Maladies Cardiaques Héréditaires Rares, Hôpital Bichat, Paris, France
| | - Florian Lesage
- Labex ICST, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Jean-Jacques Schott
- CNRS, INSERM, l’institut du thorax, Nantes Université, CHU Nantes, Nantes, France
| | - Michel De Waard
- CNRS, INSERM, l’institut du thorax, Nantes Université, CHU Nantes, Nantes, France,Labex ICST, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Gildas Loussouarn
- CNRS, INSERM, l’institut du thorax, Nantes Université, CHU Nantes, Nantes, France
| |
Collapse
|
22
|
Cai D, Zheng Z, Jin X, Fu Y, Cen L, Ye J, Song Y, Lian J. The Advantages, Challenges, and Future of Human-Induced Pluripotent Stem Cell Lines in Type 2 Long QT Syndrome. J Cardiovasc Transl Res 2023; 16:209-220. [PMID: 35976484 DOI: 10.1007/s12265-022-10298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/23/2022] [Indexed: 02/05/2023]
Abstract
Type 2 long QT syndrome (LQT2) is the second most common subtype of long QT syndrome and is caused by mutations in KCHN2 encoding the rapidly activating delayed rectifier potassium channel vital for ventricular repolarization. Sudden cardiac death is a sentinel event of LQT2. Preclinical diagnosis by genetic testing is potentially life-saving.Traditional LQT2 models cannot wholly recapitulate genetic and phenotypic features; therefore, there is a demand for a reliable experimental model. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) meet this challenge. This review introduces the advantages of the hiPSC-CM model over the traditional model and discusses how hiPSC-CM and gene editing are used to decipher mechanisms of LQT2, screen for cardiotoxicity, and identify therapeutic strategies, thus promoting the realization of precision medicine for LQT2 patients.
Collapse
Affiliation(s)
- Dihui Cai
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
| | - Zequn Zheng
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
- Department of Cardiovascular, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiaojun Jin
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
| | - Yin Fu
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
| | - Lichao Cen
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
| | - Jiachun Ye
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
| | - Yongfei Song
- Department of Cardiovascular, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Jiangfang Lian
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China.
- Department of Cardiovascular, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China.
| |
Collapse
|
23
|
Abstract
Long QT syndrome (LQTS) is a detrimental arrhythmia syndrome mainly caused by dysregulated expression or aberrant function of ion channels. The major clinical symptoms of ventricular arrhythmia, palpitations and syncope vary among LQTS subtypes. Susceptibility to malignant arrhythmia is a result of delayed repolarisation of the cardiomyocyte action potential (AP). There are 17 distinct subtypes of LQTS linked to 15 autosomal dominant genes with monogenic mutations. However, due to the presence of modifier genes, the identical mutation may result in completely different clinical manifestations in different carriers. In this review, we describe the roles of various ion channels in orchestrating APs and discuss molecular aetiologies of various types of LQTS. We highlight the usage of patient-specific induced pluripotent stem cell (iPSC) models in characterising fundamental mechanisms associated with LQTS. To mitigate the outcomes of LQTS, treatment strategies are initially focused on small molecules targeting ion channel activities. Next-generation treatments will reap the benefits from development of LQTS patient-specific iPSC platform, which is bolstered by the state-of-the-art technologies including whole-genome sequencing, CRISPR genome editing and machine learning. Deep phenotyping and high-throughput drug testing using LQTS patient-specific cardiomyocytes herald the upcoming precision medicine in LQTS.
Collapse
|
24
|
Miguel L, Gervais J, Nicolas G, Lecourtois M. SorLA Protective Function Is Restored by Improving SorLA Protein Maturation in a Subset of Alzheimer's Disease-Associated SORL1 Missense Variants. J Alzheimers Dis 2023; 94:1343-1349. [PMID: 37424467 DOI: 10.3233/jad-230211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
SORL1 loss of function is associated with Alzheimer's disease (AD) risk through increased Aβ peptide secretion. We expressed 10 maturation-defective rare missense SORL1 variants in HEK cells and showed that decreasing growing temperature led to a significant increase in the maturation of the encoded protein SorLA for 6/10. In edited hiPSC carrying two of these variants, maturation of the protein was restored partially by decreasing the culture temperature and was associated with concomitant decrease in Aβ secretion. Correcting SorLA maturation in the context of maturation-defective missense variants could thus be a relevant strategy to improve SorLA protective function against AD.
Collapse
Affiliation(s)
- Laetitia Miguel
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and CNR-MAJ, F-76000 Rouen, France
| | - Juliette Gervais
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and CNR-MAJ, F-76000 Rouen, France
| | - Gaël Nicolas
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and CNR-MAJ, F-76000 Rouen, France
| | - Magalie Lecourtois
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and CNR-MAJ, F-76000 Rouen, France
| |
Collapse
|
25
|
Lalaguna L, Ramos-Hernández L, Priori SG, Lara-Pezzi E. Genome Editing and Inherited Cardiac Arrhythmias. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:115-127. [DOI: 10.1007/978-981-19-5642-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
26
|
Veldhuizen J, Mann HF, Karamanova N, Van Horn WD, Migrino RQ, Brafman D, Nikkhah M. Modeling long QT syndrome type 2 on-a-chip via in-depth assessment of isogenic gene-edited 3D cardiac tissues. SCIENCE ADVANCES 2022; 8:eabq6720. [PMID: 36525500 PMCID: PMC9757749 DOI: 10.1126/sciadv.abq6720] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/16/2022] [Indexed: 06/09/2023]
Abstract
Long QT syndrome (LQTS) is a cardiovascular disease characterized by QT interval prolongation that can lead to sudden cardiac death. Many mutations with heterogeneous mechanisms have been identified in KCNH2, the gene that encodes for hERG (Kv11.1), which lead to onset of LQTS type 2 (LQTS2). In this work, we developed a LQTS2-diseased tissue-on-a-chip model, using 3D coculture of isogenic stem cell-derived cardiomyocytes (CMs) and cardiac fibroblasts (CFs) within an organotypic microfluidic chip technology. Primarily, we created a hiPSC line with R531W mutation in KCNH2 using CRISPR-Cas9 gene-editing technique and characterized the resultant differentiated CMs and CFs. A deficiency in hERG trafficking was identified in KCNH2-edited hiPSC-CMs, revealing a possible mechanism of R531W mutation in LQTS2 pathophysiology. Following creation of a 3D LQTS2 tissue-on-a-chip, the tissues were extensively characterized, through analysis of calcium handling and response to β-agonist. Furthermore, attempted phenotypic rescue via pharmacological intervention of LQTS2 on a chip was investigated.
Collapse
Affiliation(s)
- Jaimeson Veldhuizen
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ 85287, USA
| | - Helen F. Mann
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Nina Karamanova
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ 85012, USA
| | - Wade D. Van Horn
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, AZ 85287, USA
| | - Raymond Q. Migrino
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ 85012, USA
- University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - David Brafman
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ 85287, USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
27
|
Zhang Y, Grimwood AL, Hancox JC, Harmer SC, Dempsey CE. Evolutionary coupling analysis guides identification of mistrafficking-sensitive variants in cardiac K + channels: Validation with hERG. Front Pharmacol 2022; 13:1010119. [PMID: 36339618 PMCID: PMC9632996 DOI: 10.3389/fphar.2022.1010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/30/2022] [Indexed: 09/27/2023] Open
Abstract
Loss of function (LOF) mutations of voltage sensitive K+ channel proteins hERG (Kv11.1) and KCNQ1 (Kv7.1) account for the majority of instances of congenital Long QT Syndrome (cLQTS) with the dominant molecular phenotype being a mistrafficking one resulting from protein misfolding. We explored the use of Evolutionary Coupling (EC) analysis, which identifies evolutionarily conserved pairwise amino acid interactions that may contribute to protein structural stability, to identify regions of the channels susceptible to misfolding mutations. Comparison with published experimental trafficking data for hERG and KCNQ1 showed that the method strongly predicts "scaffolding" regions of the channel membrane domains and has useful predictive power for trafficking phenotypes of individual variants. We identified a region in and around the cytoplasmic S2-S3 loop of the hERG Voltage Sensor Domain (VSD) as susceptible to destabilising mutation, and this was confirmed using a quantitative LI-COR ® based trafficking assay that showed severely attenuated trafficking in eight out of 10 natural hERG VSD variants selected using EC analysis. Our analysis highlights an equivalence in the scaffolding structures of the hERG and KCNQ1 membrane domains. Pathogenic variants of ion channels with an underlying mistrafficking phenotype are likely to be located within similar scaffolding structures that are identifiable by EC analysis.
Collapse
Affiliation(s)
- Yihong Zhang
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Amy L. Grimwood
- School of Biological Sciences, Life Sciences Building, Bristol, United Kingdom
| | - Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Stephen C. Harmer
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Christopher E. Dempsey
- School of Biochemistry, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| |
Collapse
|
28
|
Bajaj A, Senthivel V, Bhoyar R, Jain A, Imran M, Rophina M, Divakar MK, Jolly B, Verma A, Mishra A, Sharma D, Deepti S, Sharma G, Bansal R, Yadav R, Scaria V, Naik N, Sivasubbu S. 1029 genomes of self-declared healthy individuals from India reveal prevalent and clinically relevant cardiac ion channelopathy variants. Hum Genomics 2022; 16:30. [PMID: 35932045 PMCID: PMC9354277 DOI: 10.1186/s40246-022-00402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The prevalence and genetic spectrum of cardiac channelopathies exhibit population-specific differences. We aimed to understand the spectrum of cardiac channelopathy-associated variations in India, which is characterised by a genetically diverse population and is largely understudied in the context of these disorders. RESULTS We utilised the IndiGenomes dataset comprising 1029 whole genomes from self-declared healthy individuals as a template to filter variants in 36 genes known to cause cardiac channelopathies. Our analysis revealed 186,782 variants, of which we filtered 470 variants that were identified as possibly pathogenic (440 nonsynonymous, 30 high-confidence predicted loss of function ). About 26% (124 out of 470) of these variants were unique to the Indian population as they were not reported in the global population datasets and published literature. Classification of 470 variants by ACMG/AMP guidelines unveiled 13 pathogenic/likely pathogenic (P/LP) variants mapping to 19 out of the 1029 individuals. Further query of 53 probands in an independent cohort of cardiac channelopathy, using exome sequencing, revealed the presence of 3 out of the 13 P/LP variants. The identification of p.G179Sfs*62, p.R823W and c.420 + 2 T > C variants in KCNQ1, KCNH2 and CASQ2 genes, respectively, validate the significance of the P/LP variants in the context of clinical applicability as well as for large-scale population analysis. CONCLUSION A compendium of ACMG/AMP classified cardiac channelopathy variants in 1029 self-declared healthy Indian population was created. A conservative genotypic prevalence was estimated to be 0.9-1.8% which poses a huge public health burden for a country with large population size like India. In the majority of cases, these disorders are manageable and the risk of sudden cardiac death can be alleviated by appropriate lifestyle modifications as well as treatment regimens/clinical interventions. Clinical utility of the obtained variants was demonstrated using a cardiac channelopathy patient cohort. Our study emphasises the need for large-scale population screening to identify at-risk individuals and take preventive measures. However, we suggest cautious clinical interpretation to be exercised by taking other cardiac channelopathy risk factors into account.
Collapse
Affiliation(s)
- Anjali Bajaj
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Vigneshwar Senthivel
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Rahul Bhoyar
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India
| | - Abhinav Jain
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Mohamed Imran
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Mercy Rophina
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Mohit Kumar Divakar
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Bani Jolly
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Ankit Verma
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India
| | - Anushree Mishra
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India
| | - Disha Sharma
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Siddharthan Deepti
- grid.413618.90000 0004 1767 6103Department of Cardiology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029 India
| | - Gautam Sharma
- grid.413618.90000 0004 1767 6103Department of Cardiology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029 India
| | - Raghav Bansal
- grid.413618.90000 0004 1767 6103Department of Cardiology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029 India
| | - Rakesh Yadav
- grid.413618.90000 0004 1767 6103Department of Cardiology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029 India
| | - Vinod Scaria
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Nitish Naik
- grid.413618.90000 0004 1767 6103Department of Cardiology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029 India
| | - Sridhar Sivasubbu
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
29
|
Wu CI, Schwartz PJ, Ackerman MJ, Wilde AA. COVID-19 vaccination in patients with long QT syndrome. Heart Rhythm O2 2022; 3:706-709. [PMID: 35937046 PMCID: PMC9345651 DOI: 10.1016/j.hroo.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Cheng-I. Wu
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Peter J. Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy
- European Reference Network (ERN) GUARD-Heart
| | - Michael J. Ackerman
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services and the Windland Smith Rice Genetic Heart Rhythm Clinic), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, Minnesota
| | - Arthur A.M. Wilde
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- European Reference Network (ERN) GUARD-Heart
- Address reprint requests and correspondence: Dr Arthur A.M. Wilde, Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Ng CA, Ullah R, Farr J, Hill AP, Kozek KA, Vanags LR, Mitchell DW, Kroncke BM, Vandenberg JI. A massively parallel assay accurately discriminates between functionally normal and abnormal variants in a hotspot domain of KCNH2. Am J Hum Genet 2022; 109:1208-1216. [PMID: 35688148 PMCID: PMC9300756 DOI: 10.1016/j.ajhg.2022.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/03/2022] [Indexed: 01/09/2023] Open
Abstract
Many genes, including KCNH2, contain "hotspot" domains associated with a high density of variants associated with disease. This has led to the suggestion that variant location can be used as evidence supporting classification of clinical variants. However, it is not known what proportion of all potential variants in hotspot domains cause loss of function. Here, we have used a massively parallel trafficking assay to characterize all single-nucleotide variants in exon 2 of KCNH2, a known hotspot for variants that cause long QT syndrome type 2 and an increased risk of sudden cardiac death. Forty-two percent of KCNH2 exon 2 variants caused at least 50% reduction in protein trafficking, and 65% of these trafficking-defective variants exerted a dominant-negative effect when co-expressed with a WT KCNH2 allele as assessed using a calibrated patch-clamp electrophysiology assay. The massively parallel trafficking assay was more accurate (AUC of 0.94) than bioinformatic prediction tools (REVEL and CardioBoost, AUC of 0.81) in discriminating between functionally normal and abnormal variants. Interestingly, over half of variants in exon 2 were found to be functionally normal, suggesting a nuanced interpretation of variants in this "hotspot" domain is necessary. Our massively parallel trafficking assay can provide this information prospectively.
Collapse
Affiliation(s)
- Chai-Ann Ng
- Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Rizwan Ullah
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jessica Farr
- Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; School of Computer Science and Engineering, UNSW Sydney, Kensington, NSW, Australia
| | - Adam P Hill
- Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Krystian A Kozek
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Loren R Vanags
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Devyn W Mitchell
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brett M Kroncke
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Jamie I Vandenberg
- Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Darlinghurst, NSW, Australia.
| |
Collapse
|
31
|
Anderson CL, Munawar S, Reilly L, Kamp TJ, January CT, Delisle BP, Eckhardt LL. How Functional Genomics Can Keep Pace With VUS Identification. Front Cardiovasc Med 2022; 9:900431. [PMID: 35859585 PMCID: PMC9291992 DOI: 10.3389/fcvm.2022.900431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/09/2022] [Indexed: 01/03/2023] Open
Abstract
Over the last two decades, an exponentially expanding number of genetic variants have been identified associated with inherited cardiac conditions. These tremendous gains also present challenges in deciphering the clinical relevance of unclassified variants or variants of uncertain significance (VUS). This review provides an overview of the advancements (and challenges) in functional and computational approaches to characterize variants and help keep pace with VUS identification related to inherited heart diseases.
Collapse
Affiliation(s)
- Corey L. Anderson
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Saba Munawar
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Louise Reilly
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Timothy J. Kamp
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Craig T. January
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Brian P. Delisle
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Lee L. Eckhardt
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
32
|
Kekenes-Huskey PM, Burgess DE, Sun B, Bartos DC, Rozmus ER, Anderson CL, January CT, Eckhardt LL, Delisle BP. Mutation-Specific Differences in Kv7.1 ( KCNQ1) and Kv11.1 ( KCNH2) Channel Dysfunction and Long QT Syndrome Phenotypes. Int J Mol Sci 2022; 23:7389. [PMID: 35806392 PMCID: PMC9266926 DOI: 10.3390/ijms23137389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
The electrocardiogram (ECG) empowered clinician scientists to measure the electrical activity of the heart noninvasively to identify arrhythmias and heart disease. Shortly after the standardization of the 12-lead ECG for the diagnosis of heart disease, several families with autosomal recessive (Jervell and Lange-Nielsen Syndrome) and dominant (Romano-Ward Syndrome) forms of long QT syndrome (LQTS) were identified. An abnormally long heart rate-corrected QT-interval was established as a biomarker for the risk of sudden cardiac death. Since then, the International LQTS Registry was established; a phenotypic scoring system to identify LQTS patients was developed; the major genes that associate with typical forms of LQTS were identified; and guidelines for the successful management of patients advanced. In this review, we discuss the molecular and cellular mechanisms for LQTS associated with missense variants in KCNQ1 (LQT1) and KCNH2 (LQT2). We move beyond the "benign" to a "pathogenic" binary classification scheme for different KCNQ1 and KCNH2 missense variants and discuss gene- and mutation-specific differences in K+ channel dysfunction, which can predispose people to distinct clinical phenotypes (e.g., concealed, pleiotropic, severe, etc.). We conclude by discussing the emerging computational structural modeling strategies that will distinguish between dysfunctional subtypes of KCNQ1 and KCNH2 variants, with the goal of realizing a layered precision medicine approach focused on individuals.
Collapse
Affiliation(s)
- Peter M. Kekenes-Huskey
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Don E. Burgess
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (D.E.B.); (E.R.R.)
| | - Bin Sun
- Department of Pharmacology, Harbin Medical University, Harbin 150081, China;
| | | | - Ezekiel R. Rozmus
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (D.E.B.); (E.R.R.)
| | - Corey L. Anderson
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (C.L.A.); (C.T.J.); (L.L.E.)
| | - Craig T. January
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (C.L.A.); (C.T.J.); (L.L.E.)
| | - Lee L. Eckhardt
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (C.L.A.); (C.T.J.); (L.L.E.)
| | - Brian P. Delisle
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (D.E.B.); (E.R.R.)
| |
Collapse
|
33
|
Al Salmani MK, Tavakoli R, Zaman W, Al Harrasi A. Multiple mechanisms underlie reduced potassium conductance in the p.T1019PfsX38 variant of hERG. Physiol Rep 2022; 10:e15341. [PMID: 35854468 PMCID: PMC9296870 DOI: 10.14814/phy2.15341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
Long QT syndrome type II (LQT2) is caused by loss-of-function mutations in the hERG K+ channel, leading to increased incidence of cardiac arrest and sudden death. Many genetic variants have been reported in the hERG gene with various consequences on channel expression, permeation, and gating. Only a small number of LQT2 causing variants has been characterized to define the underlying pathophysiological causes of the disease. We sought to determine the characteristics of the frameshift variant p.Thr1019ProfsX38 (T1019PfsX38) which affects the C-terminus of the protein. This mutation was identified in an extended Omani family of LQT2. It replaces the last 140 amino acids of hERG with 37 unique amino acids. T1019 is positioned at a distinguished region of the C-terminal tail of hERG, as predicted from the deep learning system AlphaFold v2.0. We employed the whole-cell configuration of the patch-clamp technique to study wild-type and mutant channels that were transiently expressed in human embryonic kidney 293 (HEK293) cells. Depolarizing voltages elicited slowly deactivating tail currents that appeared upon repolarization of cells that express either wild-type- or T1019PfsX38-hERG. There were no differences in the voltage and time dependencies of activation between the two variants. However, the rates of hERG channel deactivation at hyperpolarizing potentials were accelerated by T1019PfsX38. In addition, the voltage dependence of inactivation of T1019PfsX38-hERG was shifted by 20 mV in the negative direction when compared with wild-type hERG. The rates of channel inactivation were increased in the mutant channel variant. Next, we employed a step-ramp protocol to mimic membrane repolarization by the cardiac action potential. The amplitudes of outward currents and their integrals were reduced in the mutant variant when compared with the wild-type variant during repolarization. Thus, changes in the gating dynamics of hERG by the T1019PfsX38 variant contribute to the pathology seen in affected LQT2 patients.
Collapse
Affiliation(s)
| | - Rezvan Tavakoli
- Natural and Medical Sciences Research CenterUniversity of NizwaNizwaOman
| | - Wajid Zaman
- Natural and Medical Sciences Research CenterUniversity of NizwaNizwaOman
| | - Ahmed Al Harrasi
- Natural and Medical Sciences Research CenterUniversity of NizwaNizwaOman
| |
Collapse
|
34
|
Sanchez-Conde FG, Jimenez-Vazquez EN, Auerbach DS, Jones DK. The ERG1 K+ Channel and Its Role in Neuronal Health and Disease. Front Mol Neurosci 2022; 15:890368. [PMID: 35600076 PMCID: PMC9113952 DOI: 10.3389/fnmol.2022.890368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
The ERG1 potassium channel, encoded by KCNH2, has long been associated with cardiac electrical excitability. Yet, a growing body of work suggests that ERG1 mediates physiology throughout the human body, including the brain. ERG1 is a regulator of neuronal excitability, ERG1 variants are associated with neuronal diseases (e.g., epilepsy and schizophrenia), and ERG1 serves as a potential therapeutic target for neuronal pathophysiology. This review summarizes the current state-of-the-field regarding the ERG1 channel structure and function, ERG1’s relationship to the mammalian brain and highlights key questions that have yet to be answered.
Collapse
Affiliation(s)
| | - Eric N. Jimenez-Vazquez
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - David S. Auerbach
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, United States
- *Correspondence: David S. Auerbach,
| | - David K. Jones
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- David K. Jones,
| |
Collapse
|
35
|
Egly CL, Blackwell DJ, Schmeckpeper J, Delisle BP, Weaver CD, Knollmann BC. A High-Throughput Screening Assay to Identify Drugs that Can Treat Long QT Syndrome Caused by Trafficking-Deficient K V11.1 (hERG) Variants. Mol Pharmacol 2022; 101:236-245. [PMID: 35125346 PMCID: PMC9638947 DOI: 10.1124/molpharm.121.000421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/01/2022] [Indexed: 11/22/2022] Open
Abstract
Loss-of-function (LOF) variants in the KV11.1 potassium channel cause long QT syndrome (LQTS). Most variants disrupt intracellular channel transport (trafficking) to the cell membrane. Since some channel inhibitors improve trafficking of KV11.1 variants, a high-throughput screening (HTS) assay to detect trafficking enhancement would be valuable to the identification of drug candidates. The thallium (Tl+) flux assay technique, widely used for drug screening, was optimized using human embryonic kidney (HEK-293) cells expressing a trafficking-deficient KV11.1 variant in 384-well plates. Assay quality was assessed using Z prime (Z') scores comparing vehicle to E-4031, a drug that increases KV11.1 membrane trafficking. The optimized assay was validated by immunoblot, electrophysiology experiments, and a pilot drug screen. The combination of: 1) truncating the trafficking-deficient variant KV11.1-G601S (KV11.1-G601S-G965*X) with the addition of 2) KV11.1 channel activator (VU0405601) and 3) cesium (Cs+) to the Tl+ flux assay buffer resulted in an outstanding Z' of 0.83. To validate the optimized trafficking assay, we carried out a pilot screen that identified three drugs (ibutilide, azaperone, and azelastine) that increase KV11.1 trafficking. The new assay exhibited 100% sensitivity and specificity. Immunoblot and voltage-clamp experiments confirmed that all three drugs identified by the new assay improved membrane trafficking of two additional LQTS KV11.1 variants. We report two new ways to increase target-specific activity in trafficking assays-genetic modification and channel activation-that yielded a novel HTS assay for identifying drugs that improve membrane expression of pathogenic KV11.1 variants. SIGNIFICANCE STATEMENT: This manuscript reports the development of a high-throughput assay (thallium flux) to identify drugs that can increase function in KV11.1 variants that are trafficking-deficient. Two key aspects that improved the resolving power of the assay and could be transferable to other ion channel trafficking-related assays include genetic modification and channel activation.
Collapse
Affiliation(s)
- Christian L Egly
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (C.L.E., D.J.B., J.S., B.C.K.); Department of Physiology, University of Kentucky, Lexington, Kentucky (B.P.D.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (C.D.W.)
| | - Daniel J Blackwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (C.L.E., D.J.B., J.S., B.C.K.); Department of Physiology, University of Kentucky, Lexington, Kentucky (B.P.D.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (C.D.W.)
| | - Jeffrey Schmeckpeper
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (C.L.E., D.J.B., J.S., B.C.K.); Department of Physiology, University of Kentucky, Lexington, Kentucky (B.P.D.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (C.D.W.)
| | - Brian P Delisle
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (C.L.E., D.J.B., J.S., B.C.K.); Department of Physiology, University of Kentucky, Lexington, Kentucky (B.P.D.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (C.D.W.)
| | - C David Weaver
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (C.L.E., D.J.B., J.S., B.C.K.); Department of Physiology, University of Kentucky, Lexington, Kentucky (B.P.D.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (C.D.W.)
| | - Björn C Knollmann
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (C.L.E., D.J.B., J.S., B.C.K.); Department of Physiology, University of Kentucky, Lexington, Kentucky (B.P.D.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (C.D.W.)
| |
Collapse
|
36
|
Zhou Z, Li JV, Martinac B, Cox CD. Loss-of-Function Piezo1 Mutations Display Altered Stability Driven by Ubiquitination and Proteasomal Degradation. Front Pharmacol 2021; 12:766416. [PMID: 34867393 PMCID: PMC8640252 DOI: 10.3389/fphar.2021.766416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/03/2021] [Indexed: 01/02/2023] Open
Abstract
Missense mutations in the gene that encodes for the mechanically-gated ion channel Piezo1 have been linked to a number of diseases. Gain-of-function variants are linked to a hereditary anaemia and loss-of-function variants have been linked to generalized lymphatic dysplasia and bicuspid aortic valve. Two previously characterized mutations, S217L and G2029R, both exhibit reduced plasma membrane trafficking. Here we show that both mutations also display reduced stability and higher turnover rates than wild-type Piezo1 channels. This occurs through increased ubiquitination and subsequent proteasomal degradation. Congruent with this, proteasome inhibition using N-acetyl-l-leucyl-l-leucyl-l-norleucinal (ALLN) reduced the degradation of both mutant proteins. While ALLN treatment could not rescue the function of S217L we show via multiple complementary methodologies that proteasome inhibition via ALLN treatment can not only prevent G2029R turnover but increase the membrane localized pool of this variant and the functional Piezo1 mechanosensitive currents. This data in combination with a precision medicine approach provides a new potential therapeutic avenue for the treatment of Piezo1 mediated channelopathies.
Collapse
Affiliation(s)
- Zijing Zhou
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Jinyuan Vero Li
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
37
|
Brown KA, Anderson C, Reilly L, Sondhi K, Ge Y, Eckhardt LL. Proteomic Analysis of the Functional Inward Rectifier Potassium Channel (Kir) 2.1 Reveals Several Novel Phosphorylation Sites. Biochemistry 2021; 60:3292-3301. [PMID: 34676745 DOI: 10.1021/acs.biochem.1c00555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Membrane proteins represent a large family of proteins that perform vital physiological roles and represent key drug targets. Despite their importance, bioanalytical methods aiming to comprehensively characterize the post-translational modification (PTM) of membrane proteins remain challenging compared to other classes of proteins in part because of their inherent low expression and hydrophobicity. The inward rectifier potassium channel (Kir) 2.1, an integral membrane protein, is critical for the maintenance of the resting membrane potential and phase-3 repolarization of the cardiac action potential in the heart. The importance of this channel to cardiac physiology is highlighted by the recognition of several sudden arrhythmic death syndromes, Andersen-Tawil and short QT syndromes, which are associated with loss or gain of function mutations in Kir2.1, often triggered by changes in the β-adrenergic tone. Therefore, understanding the PTMs of this channel (particularly β-adrenergic tone-driven phosphorylation) is important for arrhythmia prevention. Here, we developed a proteomic method, integrating both top-down (intact protein) and bottom-up (after enzymatic digestion) proteomic analyses, to characterize the PTMs of recombinant wild-type and mutant Kir2.1, successfully mapping five novel sites of phosphorylation and confirming a sixth site. Our study provides a framework for future work to assess the role of PTMs in regulating Kir2.1 functions.
Collapse
Affiliation(s)
- Kyle A Brown
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Corey Anderson
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Louise Reilly
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kunal Sondhi
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Lee L Eckhardt
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
38
|
Oliveira‐Mendes B, Feliciangeli S, Ménard M, Chatelain F, Alameh M, Montnach J, Nicolas S, Ollivier B, Barc J, Baró I, Schott J, Probst V, Kyndt F, Denjoy I, Lesage F, Loussouarn G, De Waard M. A standardised hERG phenotyping pipeline to evaluate KCNH2 genetic variant pathogenicity. Clin Transl Med 2021; 11:e609. [PMID: 34841674 PMCID: PMC8609418 DOI: 10.1002/ctm2.609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND AIMS Mutations in KCNH2 cause long or short QT syndromes (LQTS or SQTS) predisposing to life-threatening arrhythmias. Over 1000 hERG variants have been described by clinicians, but most remain to be characterised. The objective is to standardise and accelerate the phenotyping process to contribute to clinician diagnosis and patient counselling. In silico evaluation was also included to characterise the structural impact of the variants. METHODS We selected 11 variants from known LQTS patients and two variants for which diagnosis was problematic. Using the Gibson assembly strategy, we efficiently introduced mutations in hERG cDNA despite GC-rich sequences. A pH-sensitive fluorescent tag was fused to hERG for efficient evaluation of channel trafficking. An optimised 35-s patch-clamp protocol was developed to evaluate hERG channel activity in transfected cells. R software was used to speed up analyses. RESULTS In the present work, we observed a good correlation between cell surface expression, assessed by the pH-sensitive tag, and current densities. Also, we showed that the new biophysical protocol allows a significant gain of time in recording ion channel properties and provides extensive information on WT and variant channel biophysical parameters, that can all be recapitulated in a single parameter defined herein as the repolarisation power. The impacts of the variants on channel structure were also reported where structural information was available. These three readouts (trafficking, repolarisation power and structural impact) define three pathogenicity indexes that may help clinical diagnosis. CONCLUSIONS Fast-track characterisation of KCNH2 genetic variants shows its relevance to discriminate mutants that affect hERG channel activity from variants with undetectable effects. It also helped the diagnosis of two new variants. This information is meant to fill a patient database, as a basis for personalised medicine. The next steps will be to further accelerate the process using an automated patch-clamp system.
Collapse
Affiliation(s)
| | - Sylvain Feliciangeli
- Labex ICST, Université Côte d'Azur, INSERMCentre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et CellulaireValbonneFrance
| | - Mélissa Ménard
- l'Institut du ThoraxInserm UMR 1087/CNRS UMR 6291NantesFrance
| | - Frank Chatelain
- Labex ICST, Université Côte d'Azur, INSERMCentre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et CellulaireValbonneFrance
| | - Malak Alameh
- l'Institut du ThoraxInserm UMR 1087/CNRS UMR 6291NantesFrance
| | - Jérôme Montnach
- l'Institut du ThoraxInserm UMR 1087/CNRS UMR 6291NantesFrance
| | | | | | - Julien Barc
- l'Institut du ThoraxInserm UMR 1087/CNRS UMR 6291NantesFrance
| | - Isabelle Baró
- l'Institut du ThoraxInserm UMR 1087/CNRS UMR 6291NantesFrance
| | | | - Vincent Probst
- CHU Nantes, l'Institut du Thorax, INSERM, CNRSUNIV NantesNantesFrance
| | - Florence Kyndt
- CHU Nantes, l'Institut du Thorax, INSERM, CNRSUNIV NantesNantesFrance
| | - Isabelle Denjoy
- Service de Cardiologie et CNMR Maladies Cardiaques Héréditaires RaresHôpital BichatParisFrance
| | - Florian Lesage
- Labex ICST, Université Côte d'Azur, INSERMCentre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et CellulaireValbonneFrance
| | | | - Michel De Waard
- l'Institut du ThoraxInserm UMR 1087/CNRS UMR 6291NantesFrance
| |
Collapse
|
39
|
Derivation and characterization of two human induced pluripotent stem cell lines (NUIGi004-A) and (NUIGi012-A) from two patients with LQT2 disease. Stem Cell Res 2021; 56:102555. [PMID: 34628246 DOI: 10.1016/j.scr.2021.102555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/19/2021] [Accepted: 09/26/2021] [Indexed: 11/22/2022] Open
Abstract
Long QT syndrome type 2 (LQT2) is associated with KCNH2, which encodes the α subunit of the ion channel that controls the K+ current in the heart. Mutations of KCNH2 cause loss of Kv11.1 channel function by disrupting subunit folding, assembly, or trafficking of the channel to the cell surface. Here we generated two induced pluripotent stem cell (iPSC) lines from two patients carrying mutation in KCNH2 gene. These iPSCs express the pluripotent markers and have the capacity of differentiation into other cell types. These patient-derived iPSCs are useful for investigating the disease pathology and identifying the therapeutic target.
Collapse
|
40
|
Chen L, He Y, Wang X, Ge J, Li H. Ventricular voltage-gated ion channels: Detection, characteristics, mechanisms, and drug safety evaluation. Clin Transl Med 2021; 11:e530. [PMID: 34709746 PMCID: PMC8516344 DOI: 10.1002/ctm2.530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac voltage-gated ion channels (VGICs) play critical roles in mediating cardiac electrophysiological signals, such as action potentials, to maintain normal heart excitability and contraction. Inherited or acquired alterations in the structure, expression, or function of VGICs, as well as VGIC-related side effects of pharmaceutical drug delivery can result in abnormal cellular electrophysiological processes that induce life-threatening cardiac arrhythmias or even sudden cardiac death. Hence, to reduce possible heart-related risks, VGICs must be acknowledged as important targets in drug discovery and safety studies related to cardiac disease. In this review, we first summarize the development and application of electrophysiological techniques that are employed in cardiac VGIC studies alone or in combination with other techniques such as cryoelectron microscopy, optical imaging and optogenetics. Subsequently, we describe the characteristics, structure, mechanisms, and functions of various well-studied VGICs in ventricular myocytes and analyze their roles in and contributions to both physiological cardiac excitability and inherited cardiac diseases. Finally, we address the implications of the structure and function of ventricular VGICs for drug safety evaluation. In summary, multidisciplinary studies on VGICs help researchers discover potential targets of VGICs and novel VGICs in heart, enrich their knowledge of the properties and functions, determine the operation mechanisms of pathological VGICs, and introduce groundbreaking trends in drug therapy strategies, and drug safety evaluation.
Collapse
Affiliation(s)
- Lulan Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yue He
- Department of CardiologyShanghai Xuhui District Central Hospital & Zhongshan‐xuhui HospitalShanghaiChina
| | - Xiangdong Wang
- Institute of Clinical Science, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Hua Li
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
41
|
Blandin CE, Gravez BJ, Hatem SN, Balse E. Remodeling of Ion Channel Trafficking and Cardiac Arrhythmias. Cells 2021; 10:cells10092417. [PMID: 34572065 PMCID: PMC8468138 DOI: 10.3390/cells10092417] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 01/08/2023] Open
Abstract
Both inherited and acquired cardiac arrhythmias are often associated with the abnormal functional expression of ion channels at the cellular level. The complex machinery that continuously traffics, anchors, organizes, and recycles ion channels at the plasma membrane of a cardiomyocyte appears to be a major source of channel dysfunction during cardiac arrhythmias. This has been well established with the discovery of mutations in the genes encoding several ion channels and ion channel partners during inherited cardiac arrhythmias. Fibrosis, altered myocyte contacts, and post-transcriptional protein changes are common factors that disorganize normal channel trafficking during acquired cardiac arrhythmias. Channel availability, described notably for hERG and KV1.5 channels, could be another potent arrhythmogenic mechanism. From this molecular knowledge on cardiac arrhythmias will emerge novel antiarrhythmic strategies.
Collapse
Affiliation(s)
- Camille E. Blandin
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
| | - Basile J. Gravez
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
| | - Stéphane N. Hatem
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
- ICAN—Institute of Cardiometabolism and Nutrition, Institute of Cardiology, Pitié-Salpêtrière Hospital, Sorbonne University, F-75013 Paris, France
| | - Elise Balse
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
- Correspondence:
| |
Collapse
|
42
|
H1153Y- KCNH2 Mutation Identified in a Sudden Arrhythmic Death Syndrome Case Alters Channel Gating. Int J Mol Sci 2021; 22:ijms22179235. [PMID: 34502138 PMCID: PMC8431075 DOI: 10.3390/ijms22179235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Long QT syndrome is one of the most common hereditary channelopathies inducing fatal arrhythmias and sudden cardiac death. We identified in a sudden arrhythmic death syndrome case a C-term KCNH2 mutation (c.3457C > T; p.His1153Tyr) classified as variant of unknown significance and functional impact. Heterologous expression in HEK293 cells combined with western-blot, flow-cytometry, immunocytochemical and microscope analyses shows no modification of channel trafficking to the cell membrane. Electrophysiological studies reveal that the mutation causes a loss of HERG channel function through an alteration of channel biophysical properties that reduces the current density leading to LQT2. These results provide the first functional evidence for H1153Y-KCNH2 mutation-induced abnormal channel properties. They concur with previous biophysical and clinical presentations of a survived patient with another variant that is G1036D. Therefore, the present report importantly highlights the potential severity of variants that may have useful implications for treatment, surveillance, and follow-up of LQT2 patients.
Collapse
|
43
|
Song KC, Molina AV, Chen R, Gagnon IA, Koh YH, Roux B, Sosnick TR. Folding and misfolding of potassium channel monomers during assembly and tetramerization. Proc Natl Acad Sci U S A 2021; 118:e2103674118. [PMID: 34413192 PMCID: PMC8403937 DOI: 10.1073/pnas.2103674118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dynamics and folding of potassium channel pore domain monomers are connected to the kinetics of tetramer assembly. In all-atom molecular dynamics simulations of Kv1.2 and KcsA channels, monomers adopt multiple nonnative conformations while the three helices remain folded. Consistent with this picture, NMR studies also find the monomers to be dynamic and structurally heterogeneous. However, a KcsA construct with a disulfide bridge engineered between the two transmembrane helices has an NMR spectrum with well-dispersed peaks, suggesting that the monomer can be locked into a native-like conformation that is similar to that observed in the folded tetramer. During tetramerization, fluoresence resonance energy transfer (FRET) data indicate that monomers rapidly oligomerize upon insertion into liposomes, likely forming a protein-dense region. Folding within this region occurs along separate fast and slow routes, with τfold ∼40 and 1,500 s, respectively. In contrast, constructs bearing the disulfide bond mainly fold via the faster pathway, suggesting that maintaining the transmembrane helices in their native orientation reduces misfolding. Interestingly, folding is concentration independent despite the tetrameric nature of the channel, indicating that the rate-limiting step is unimolecular and occurs after monomer association in the protein-dense region. We propose that the rapid formation of protein-dense regions may help with the assembly of multimeric membrane proteins by bringing together the nascent components prior to assembly. Finally, despite its name, the addition of KcsA's C-terminal "tetramerization" domain does not hasten the kinetics of tetramerization.
Collapse
Affiliation(s)
- Kevin C Song
- Graduate Program in the Biophysical Sciences, The University of Chicago, Chicago, IL 60637
| | - Andrew V Molina
- Graduate Program in the Biophysical Sciences, The University of Chicago, Chicago, IL 60637
- Medical Scientist Training Program, The University of Chicago, Chicago, IL 60637
| | - Ruofan Chen
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637
| | - Isabelle A Gagnon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Young Hoon Koh
- Graduate Program in the Biophysical Sciences, The University of Chicago, Chicago, IL 60637
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637;
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Tobin R Sosnick
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637;
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
44
|
Kozek K, Wada Y, Sala L, Denjoy I, Egly C, O'Neill MJ, Aiba T, Shimizu W, Makita N, Ishikawa T, Crotti L, Spazzolini C, Kotta MC, Dagradi F, Castelletti S, Pedrazzini M, Gnecchi M, Leenhardt A, Salem JE, Ohno S, Zuo Y, Glazer AM, Mosley JD, Roden DM, Knollmann BC, Blume JD, Extramiana F, Schwartz PJ, Horie M, Kroncke BM. Estimating the Posttest Probability of Long QT Syndrome Diagnosis for Rare KCNH2 Variants. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2021; 14:e003289. [PMID: 34309407 PMCID: PMC8373797 DOI: 10.1161/circgen.120.003289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND The proliferation of genetic profiling has revealed many associations between genetic variations and disease. However, large-scale phenotyping efforts in largely healthy populations, coupled with DNA sequencing, suggest variants currently annotated as pathogenic are more common in healthy populations than previously thought. In addition, novel and rare variants are frequently observed in genes associated with disease both in healthy individuals and those under suspicion of disease. This raises the question of whether these variants can be useful predictors of disease. To answer this question, we assessed the degree to which the presence of a variant in the cardiac potassium channel gene KCNH2 was diagnostically predictive for the autosomal dominant long QT syndrome. METHODS We estimated the probability of a long QT diagnosis given the presence of each KCNH2 variant using Bayesian methods that incorporated variant features such as changes in variant function, protein structure, and in silico predictions. We call this estimate the posttest probability of disease. Our method was applied to over 4000 individuals heterozygous for 871 missense or in-frame insertion/deletion variants in KCNH2 and validated against a separate international cohort of 933 individuals heterozygous for 266 missense or in-frame insertion/deletion variants. RESULTS Our method was well-calibrated for the observed fraction of heterozygotes diagnosed with long QT syndrome. Heuristically, we found that the innate diagnostic information one learns about a variant from 3-dimensional variant location, in vitro functional data, and in silico predictors is equivalent to the diagnostic information one learns about that same variant by clinically phenotyping 10 heterozygotes. Most importantly, these data can be obtained in the absence of any clinical observations. CONCLUSIONS We show how variant-specific features can inform a prior probability of disease for rare variants even in the absence of clinically phenotyped heterozygotes.
Collapse
Affiliation(s)
- Krystian Kozek
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Departments of Medicine & Pharmacology (K.K., Y.W., C.E., M.J.O., A.M.G., J.D.M., D.M.R., B.C.K., B.M.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Yuko Wada
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Departments of Medicine & Pharmacology (K.K., Y.W., C.E., M.J.O., A.M.G., J.D.M., D.M.R., B.C.K., B.M.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan (Y.W., S.O., M.H.)
| | - Luca Sala
- Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy (L.S., L.C., C.K., M.P., P.J.S.)
| | - Isabelle Denjoy
- CNMR Maladies Cardiaques Héréditaires Rares, AP-HP, Hôpital Bichat, Paris, France (I.D., A.L., F.E.)
| | - Christian Egly
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Departments of Medicine & Pharmacology (K.K., Y.W., C.E., M.J.O., A.M.G., J.D.M., D.M.R., B.C.K., B.M.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Matthew J O'Neill
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Departments of Medicine & Pharmacology (K.K., Y.W., C.E., M.J.O., A.M.G., J.D.M., D.M.R., B.C.K., B.M.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Takeshi Aiba
- Department of Cardiovascular Medicine (T.A., N.M., S.O.), National Cerebral and Cardiovascular Center, Suita
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan (W.S.)
| | - Naomasa Makita
- Department of Cardiovascular Medicine (T.A., N.M., S.O.), National Cerebral and Cardiovascular Center, Suita
- 7Omics Research Center (N.M., T.I.), National Cerebral and Cardiovascular Center, Suita
| | - Taisuke Ishikawa
- 7Omics Research Center (N.M., T.I.), National Cerebral and Cardiovascular Center, Suita
| | - Lia Crotti
- Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy (L.S., L.C., C.K., M.P., P.J.S.)
- Department of Cardiovascular, Neural & Metabolic Sciences, San Luca Hospital (L.C.), Istituto Auxologico Italiano IRCCS
- Center for Cardiac Arrhythmias of Genetic Origin (L.C., C.S., F.D., S.C., P.J.S.), Istituto Auxologico Italiano IRCCS
- Department of Medicine and Surgery, University Milano Bicocca, Milan (L.C.)
| | - Carla Spazzolini
- Center for Cardiac Arrhythmias of Genetic Origin (L.C., C.S., F.D., S.C., P.J.S.), Istituto Auxologico Italiano IRCCS
| | | | - Federica Dagradi
- Center for Cardiac Arrhythmias of Genetic Origin (L.C., C.S., F.D., S.C., P.J.S.), Istituto Auxologico Italiano IRCCS
| | - Silvia Castelletti
- Center for Cardiac Arrhythmias of Genetic Origin (L.C., C.S., F.D., S.C., P.J.S.), Istituto Auxologico Italiano IRCCS
| | - Matteo Pedrazzini
- Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy (L.S., L.C., C.K., M.P., P.J.S.)
| | - Massimiliano Gnecchi
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia (M.G.)
- Intensive Cardiac Care Unit and Lab of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (M.G.)
| | - Antoine Leenhardt
- CNMR Maladies Cardiaques Héréditaires Rares, AP-HP, Hôpital Bichat, Paris, France (I.D., A.L., F.E.)
- University de Paris (A.L., F.E.)
| | - Joe-Elie Salem
- Division of Cardiovascular Medicine, Cardio-oncology Program (J.-E.S.), Vanderbilt University Medical Center, Nashville, TN
- Sorbonne Université, INSERM CIC-1901, AP-HP, Department of Pharmacology, Regional Pharmacovigilance Center, Pitié-Salpêtrière Hospital, Paris, France (J.-E.S.)
| | - Seiko Ohno
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan (Y.W., S.O., M.H.)
- Department of Cardiovascular Medicine (T.A., N.M., S.O.), National Cerebral and Cardiovascular Center, Suita
| | - Yi Zuo
- Department of Biostatistics (Y.Z., J.D.M., D.M.R.), Vanderbilt University, Nashville, TN
| | - Andrew M Glazer
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Departments of Medicine & Pharmacology (K.K., Y.W., C.E., M.J.O., A.M.G., J.D.M., D.M.R., B.C.K., B.M.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Jonathan D Mosley
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Departments of Medicine & Pharmacology (K.K., Y.W., C.E., M.J.O., A.M.G., J.D.M., D.M.R., B.C.K., B.M.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Biostatistics (Y.Z., J.D.M., D.M.R.), Vanderbilt University, Nashville, TN
- Biomedical Informatics (J.D.M.), Vanderbilt University, Nashville, TN
| | - Dan M Roden
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Departments of Medicine & Pharmacology (K.K., Y.W., C.E., M.J.O., A.M.G., J.D.M., D.M.R., B.C.K., B.M.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Biostatistics (Y.Z., J.D.M., D.M.R.), Vanderbilt University, Nashville, TN
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Departments of Medicine & Pharmacology (K.K., Y.W., C.E., M.J.O., A.M.G., J.D.M., D.M.R., B.C.K., B.M.K.), Vanderbilt University Medical Center, Nashville, TN
| | | | - Fabrice Extramiana
- CNMR Maladies Cardiaques Héréditaires Rares, AP-HP, Hôpital Bichat, Paris, France (I.D., A.L., F.E.)
- University de Paris (A.L., F.E.)
| | - Peter J Schwartz
- Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy (L.S., L.C., C.K., M.P., P.J.S.)
- Center for Cardiac Arrhythmias of Genetic Origin (L.C., C.S., F.D., S.C., P.J.S.), Istituto Auxologico Italiano IRCCS
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan (Y.W., S.O., M.H.)
| | - Brett M Kroncke
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Departments of Medicine & Pharmacology (K.K., Y.W., C.E., M.J.O., A.M.G., J.D.M., D.M.R., B.C.K., B.M.K.), Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
45
|
Abstract
The physiological heart function is controlled by a well-orchestrated interplay of different ion channels conducting Na+, Ca2+ and K+. Cardiac K+ channels are key players of cardiac repolarization counteracting depolarizating Na+ and Ca2+ currents. In contrast to Na+ and Ca2+, K+ is conducted by many different channels that differ in activation/deactivation kinetics as well as in their contribution to different phases of the action potential. Together with modulatory subunits these K+ channel α-subunits provide a wide range of repolarizing currents with specific characteristics. Moreover, due to expression differences, K+ channels strongly influence the time course of the action potentials in different heart regions. On the other hand, the variety of different K+ channels increase the number of possible disease-causing mutations. Up to now, a plethora of gain- as well as loss-of-function mutations in K+ channel forming or modulating proteins are known that cause severe congenital cardiac diseases like the long-QT-syndrome, the short-QT-syndrome, the Brugada syndrome and/or different types of atrial tachyarrhythmias. In this chapter we provide a comprehensive overview of different K+ channels in cardiac physiology and pathophysiology.
Collapse
|
46
|
Role and mechanism of chaperones calreticulin and ERP57 in restoring trafficking to mutant HERG‑A561V protein. Int J Mol Med 2021; 48:159. [PMID: 34212985 PMCID: PMC8262656 DOI: 10.3892/ijmm.2021.4992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Long QT syndrome type 2 is caused by a mutation in the human‑ether‑a‑go‑go‑related gene (HERG) gene encoding the rapidly activating delayed rectifier K‑current. HERG is a key cell membrane glycoprotein; however, whether the maturation process of HERG protein involves key molecules derived from the calnexin (CNX)/calreticulin (CRT) cycle and how these molecules work remains unknown. Using western blotting, the present study screened the key molecules CNX/CRT/endoplasmic reticulum protein 57 (ERP57) involved in this cycle, and it was revealed that the protein expression levels of CNX/CRT/ERP57 in wild‑type (WT)/A561V cells were increased compared with those in WT cells (n=3; P<0.05). Additionally, a co‑immunoprecipitation experiment was used to reveal that the ability of CNX/ERP57/CRT to interact with HERG was significantly increased in A561V and WT/A561V cells (n=3; P<0.05). A plasmid lacking the bb' domain of ERP57 was constructed and it was demonstrated that the key site of ERP57 binding to CRT and immature HERG protein is the bb' domain. The whole‑cell patch‑clamp technique detected that the tail current density increased by 46% following overexpression of CRT and by 53% following overexpression of ERP57 in WT/A561V cells. Overexpression of CRT and ERP57 could increased HERG protein levels on the membrane detected by confocal imaging. Furthermore, overexpression of ERP57 and CRT proteins could restore the HERG‑A561V mutant protein trafficking process and rescue the dominant‑negative suppression of WT. Overall, ERP57/CRT served a crucial role in the HERG‑A561V mutant protein trafficking deficiency and degradation process.
Collapse
|
47
|
Mondéjar-Parreño G, Jahng JWS, Belbachir N, Wu BC, Zhang X, Perez MV, Badhwar N, Wu JC. Generation of three heterozygous KCNH2 mutation-carrying human induced pluripotent stem cell lines for modeling LQT2 syndrome. Stem Cell Res 2021; 54:102402. [PMID: 34051449 PMCID: PMC10875632 DOI: 10.1016/j.scr.2021.102402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 02/04/2023] Open
Abstract
Congenital long QT syndrome type 2 (LQT2) results from KCNH2 mutations that cause loss of Kv11.1 channel function which can lead to arrhythmias, syncope, and sudden death. Here, we generated three human-induced pluripotent stem cell (iPSC) lines from peripheral blood mononuclear cells (PBMCs) of two LQT2 patients carrying pathogenic variants (c.1714G > A and c.2960del) and one LQT2 patient carrying a variant of uncertain significance (c.1870A > T) in KCNH2. All lines show typical iPSC morphology, high expression of pluripotent markers, normal karyotype, and differentiate into three germ layers in vitro. These lines are valuable resources for studying the pathological mechanisms of LQTS caused by caused by KCNH2 mutations.
Collapse
Affiliation(s)
- Gema Mondéjar-Parreño
- Stanford Cardiovascular Institute, United States; Depart of Medicine, Division of Cardiovascular Medicine, United States
| | - James W S Jahng
- Stanford Cardiovascular Institute, United States; Depart of Medicine, Division of Cardiovascular Medicine, United States
| | - Nadjet Belbachir
- Stanford Cardiovascular Institute, United States; Depart of Medicine, Division of Cardiovascular Medicine, United States
| | - Blake C Wu
- Stanford Cardiovascular Institute, United States
| | | | - Marco V Perez
- Stanford Cardiovascular Institute, United States; Depart of Medicine, Division of Cardiovascular Medicine, United States
| | - Nitish Badhwar
- Stanford Cardiovascular Institute, United States; Depart of Medicine, Division of Cardiovascular Medicine, United States
| | - Joseph C Wu
- Stanford Cardiovascular Institute, United States; Depart of Medicine, Division of Cardiovascular Medicine, United States; Department of Radiology, Stanford University School of Medicine, United States.
| |
Collapse
|
48
|
Jenewein T, Kanner SA, Bauer D, Hertel B, Colecraft HM, Moroni A, Thiel G, Kauferstein S. The mutation L69P in the PAS domain of the hERG potassium channel results in LQTS by trafficking deficiency. Channels (Austin) 2021; 14:163-174. [PMID: 32253972 PMCID: PMC7188350 DOI: 10.1080/19336950.2020.1751522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The congenital long QT syndrome (LQTS) is a cardiac disorder characterized by a prolonged QT interval on the electrocardiogram and an increased susceptibility to ventricular arrhythmias and sudden cardiac death. A frequent cause for LQTS is mutations in the KCNH2 gene (also known as the human ether-a-go-go-related gene or hERG), which reduce or modulate the potassium current IKr and hence alter cardiac repolarization. In a patient with a clinically diagnosed LQTS, we identified the mutation L69P in the N-terminal PAS (Per-Arnt-Sim) domain of hERG. Functional expression in HEK293 cells shows that a homotetrameric hERG channel reconstituted with only mutant subunits exhibits a drastically reduced surface expression of the channel protein thus leading to a diminished hERG current. Unlike many other mutations in the hERG-PAS domain the negative impact of the L69P substitution cannot be rescued by facilitated protein folding at a lower incubation temperature. Further, co-expression of wt and mutant monomers does not restore either wt like surface expression or the full hERG current. These results indicate L69P is a dominant negative mutation, with deficits which most likely occurs at the level of protein folding and subsequently inhibits trafficking to the plasma membrane. The functional deficits of the mutant channel support the clinical diagnosis of a LQTS.
Collapse
Affiliation(s)
- Tina Jenewein
- Institute of Legal Medicine, University of Frankfurt, Frankfurt Am Main, Germany
| | - Scott A Kanner
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Daniel Bauer
- Computational Biology and Simulation Group, Department of Biology, Technische Universita ̈t Darmstadt, Darmstadt, Germany
| | - Brigitte Hertel
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Anna Moroni
- Department of Biosciences and CNR IBF-Mi, University of Milano, Milano, Italy
| | - Gerhard Thiel
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Silke Kauferstein
- Institute of Legal Medicine, University of Frankfurt, Frankfurt Am Main, Germany
| |
Collapse
|
49
|
Lazzerini PE, Cartocci A, Qu YS, Saponara S, Furini S, Fusi F, Fabris F, Gamberucci A, El-Sherif N, Cevenini G, Pettini F, Laghi-Pasini F, Acampa M, Bertolozzi I, Capecchi PL, Lazaro D, Boutjdir M. Proton Pump Inhibitors Directly Block hERG-Potassium Channel and Independently Increase the Risk of QTc Prolongation in a Large Cohort of US Veterans. Circ Arrhythm Electrophysiol 2021; 14:e010042. [PMID: 34143643 DOI: 10.1161/circep.121.010042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Pietro Enea Lazzerini
- Department of Medical Sciences, Surgery and Neurosciences (P.E.L., F.L.-P., P.L.C.), University of Siena, Italy
| | - Alessandra Cartocci
- Department of Medical Biotechnologies (A.C., S.F., G.C., F.P.), University of Siena, Italy
| | - Yongxia Sarah Qu
- Research and Development Department, VA New York Harbor Healthcare System, SUNY Downstate Medical Center (Y.S.Q., F.F., N.E.-S., D.L., M.B.).,Department of Cardiology, New York Presbyterian Brooklyn Methodist Hospital (Y.S.Q.)
| | - Simona Saponara
- Department of Life Sciences (S.S.), University of Siena, Italy
| | - Simone Furini
- Department of Medical Biotechnologies (A.C., S.F., G.C., F.P.), University of Siena, Italy
| | - Fabio Fusi
- Department of Biotechnology, Chemistry and Pharmacy (F.F.), University of Siena, Italy
| | | | - Alessandra Gamberucci
- Department of Molecular and Developmental Medicine (A.G.), University of Siena, Italy
| | | | - Gabriele Cevenini
- Department of Medical Biotechnologies (A.C., S.F., G.C., F.P.), University of Siena, Italy.,Research and Development Department, VA New York Harbor Healthcare System, SUNY Downstate Medical Center (Y.S.Q., F.F., N.E.-S., D.L., M.B.)
| | - Francesco Pettini
- Department of Medical Biotechnologies (A.C., S.F., G.C., F.P.), University of Siena, Italy
| | - Franco Laghi-Pasini
- Department of Medical Sciences, Surgery and Neurosciences (P.E.L., F.L.-P., P.L.C.), University of Siena, Italy
| | - Maurizio Acampa
- Research and Development Department, VA New York Harbor Healthcare System, SUNY Downstate Medical Center (Y.S.Q., F.F., N.E.-S., D.L., M.B.).,Department of Neurological and Sensorineural Sciences, Stroke Unit, University Hospital of Siena, Italy (M.A.)
| | - Iacopo Bertolozzi
- Cardiology Intensive Therapy Unit, Department of Internal Medicine, Nuovo Ospedale San Giovanni di Dio, Florence, Italy (I.B.)
| | - Pier Leopoldo Capecchi
- Department of Medical Sciences, Surgery and Neurosciences (P.E.L., F.L.-P., P.L.C.), University of Siena, Italy
| | - Deana Lazaro
- Research and Development Department, VA New York Harbor Healthcare System, SUNY Downstate Medical Center (Y.S.Q., F.F., N.E.-S., D.L., M.B.)
| | - Mohamed Boutjdir
- Research and Development Department, VA New York Harbor Healthcare System, SUNY Downstate Medical Center (Y.S.Q., F.F., N.E.-S., D.L., M.B.).,Department of Medicine, NYU School of Medicine, New York, NY (M.B.)
| |
Collapse
|
50
|
Ben-Bassat A, Giladi M, Haitin Y. Structure of KCNH2 cyclic nucleotide-binding homology domain reveals a functionally vital salt-bridge. J Gen Physiol 2021; 152:151568. [PMID: 32191791 PMCID: PMC7141593 DOI: 10.1085/jgp.201912505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/24/2020] [Accepted: 02/12/2020] [Indexed: 01/04/2023] Open
Abstract
Human KCNH2 channels (hKCNH2, ether-à-go-go [EAG]–related gene, hERG) are best known for their contribution to cardiac action potential repolarization and have key roles in various pathologies. Like other KCNH family members, hKCNH2 channels contain a unique intracellular complex, consisting of an N-terminal eag domain and a C-terminal cyclic nucleotide-binding homology domain (CNBHD), which is crucial for channel function. Previous studies demonstrated that the CNBHD is occupied by an intrinsic ligand motif, in a self-liganded conformation, providing a structural mechanism for the lack of KCNH channel regulation by cyclic nucleotides. While there have been significant advancements in the structural and functional characterization of the CNBHD of KCNH channels, a high-resolution structure of the hKCNH2 intracellular complex has been missing. Here, we report the 1.5 Å resolution structure of the hKCNH2 channel CNBHD. The structure reveals the canonical fold shared by other KCNH family members, where the spatial organization of the intrinsic ligand is preserved within the β-roll region. Moreover, measurements of small-angle x-ray scattering profile in solution, as well as comparison with a recent NMR analysis of hKCNH2, revealed high agreement with the crystallographic structure, indicating an overall low flexibility in solution. Importantly, we identified a novel salt-bridge (E807-R863) which was not previously resolved in the NMR and cryo-EM structures. Electrophysiological analysis of charge-reversal mutations revealed the bridge’s crucial role in hKCNH2 function. Moreover, comparison with other KCNH members revealed the structural conservation of this salt-bridge, consistent with its functional significance. Together with the available structure of the mouse KCNH1 intracellular complex and previous electrophysiological and spectroscopic studies of KCNH family members, we propose that this salt-bridge serves as a strategically positioned linchpin to support both the spatial organization of the intrinsic ligand and the maintenance of the intracellular complex interface.
Collapse
Affiliation(s)
- Ariel Ben-Bassat
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Giladi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yoni Haitin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|