1
|
Angeli E, Jordan M, Otto M, Stojanović SD, Karsdal M, Bauersachs J, Thum T, Fiedler J, Genovese F. The role of fibrosis in cardiomyopathies: An opportunity to develop novel biomarkers of disease activity. Matrix Biol 2024; 128:65-78. [PMID: 38423395 DOI: 10.1016/j.matbio.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Cardiomyopathies encompass a spectrum of heart disorders with diverse causes and presentations. Fibrosis stands out as a shared hallmark among various cardiomyopathies, reflecting a common thread in their pathogenesis. This prevalent fibrotic response is intricately linked to the consequences of dysregulated extracellular matrix (ECM) remodeling, emphasizing its significance in the development and progression the disease. This review explores the ECM involvement in various cardiomyopathies and its impact on myocardial stiffness and fibrosis. Additionally, we discuss the potential of ECM fragments as early diagnosis, prognosis, and risk stratification. Biomarkers deriving from turnover of collagens and other ECM proteins hold promise in clinical applications. We outline current clinical management, future directions, and the potential for personalized ECM-targeted therapies with specific focus on microRNAs. In summary, this review examines the role of the fibrosis in cardiomyopathies, highlighting the potential of ECM-derived biomarkers in improving disease management with implications for precision medicine.
Collapse
Affiliation(s)
- Elisavet Angeli
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Nordic Bioscience A/S, Herlev, Denmark.
| | - Maria Jordan
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Federal Republic of Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Hanover, Federal Republic of Germany
| | - Mandy Otto
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Federal Republic of Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Hanover, Federal Republic of Germany
| | - Stevan D Stojanović
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Federal Republic of Germany; Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Federal Republic of Germany
| | | | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Federal Republic of Germany
| | - Thomas Thum
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Federal Republic of Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Hanover, Federal Republic of Germany; Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Federal Republic of Germany
| | - Jan Fiedler
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Federal Republic of Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Hanover, Federal Republic of Germany
| | - Federica Genovese
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Bengel FM, Diekmann J, Hess A, Jerosch-Herold M. Myocardial Fibrosis: Emerging Target for Cardiac Molecular Imaging and Opportunity for Image-Guided Therapy. J Nucl Med 2023; 64:49S-58S. [PMID: 37918842 DOI: 10.2967/jnumed.122.264867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/25/2023] [Indexed: 11/04/2023] Open
Abstract
Myocardial fibrosis is a major contributor to the development and progression of heart failure. Significant progress in the understanding of its pathobiology has led to the introduction and preclinical testing of multiple highly specific antifibrotic therapies. Because the mechanisms of fibrosis are highly dynamic, and because the involved cell populations are heterogeneous and plastic, there is increasing emphasis that any therapy directed specifically against myocardial fibrosis will require personalization and guidance by equally specific diagnostic testing for successful clinical translation. Noninvasive imaging techniques have undergone significant progress and provide increasingly specific information about the quantity, quality, and activity of myocardial fibrosis. Cardiac MRI can precisely map the extracellular space of the myocardium, whereas nuclear imaging characterizes activated fibroblasts and immune cells as the cellular components contributing to fibrosis. Existing techniques may be used in complementarity to provide the imaging biomarkers needed for the success of novel targeted therapies. This review provides a road map on how progress in basic fibrosis research, antifibrotic drug development, and high-end noninvasive imaging may come together to facilitate the success of fibrosis-directed cardiovascular medicine.
Collapse
Affiliation(s)
- Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany; and
| | - Johanna Diekmann
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany; and
| | - Annika Hess
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany; and
| | | |
Collapse
|
3
|
Soni SS, D'Elia AM, Rodell CB. Control of the post-infarct immune microenvironment through biotherapeutic and biomaterial-based approaches. Drug Deliv Transl Res 2023; 13:1983-2014. [PMID: 36763330 PMCID: PMC9913034 DOI: 10.1007/s13346-023-01290-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 02/11/2023]
Abstract
Ischemic heart failure (IHF) is a leading cause of morbidity and mortality worldwide, for which heart transplantation remains the only definitive treatment. IHF manifests from myocardial infarction (MI) that initiates tissue remodeling processes, mediated by mechanical changes in the tissue (loss of contractility, softening of the myocardium) that are interdependent with cellular mechanisms (cardiomyocyte death, inflammatory response). The early remodeling phase is characterized by robust inflammation that is necessary for tissue debridement and the initiation of repair processes. While later transition toward an immunoregenerative function is desirable, functional reorientation from an inflammatory to reparatory environment is often lacking, trapping the heart in a chronically inflamed state that perpetuates cardiomyocyte death, ventricular dilatation, excess fibrosis, and progressive IHF. Therapies can redirect the immune microenvironment, including biotherapeutic and biomaterial-based approaches. In this review, we outline these existing approaches, with a particular focus on the immunomodulatory effects of therapeutics (small molecule drugs, biomolecules, and cell or cell-derived products). Cardioprotective strategies, often focusing on immunosuppression, have shown promise in pre-clinical and clinical trials. However, immunoregenerative therapies are emerging that often benefit from exacerbating early inflammation. Biomaterials can be used to enhance these therapies as a result of their intrinsic immunomodulatory properties, parallel mechanisms of action (e.g., mechanical restraint), or by enabling cell or tissue-targeted delivery. We further discuss translatability and the continued progress of technologies and procedures that contribute to the bench-to-bedside development of these critically needed treatments.
Collapse
Affiliation(s)
- Shreya S Soni
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Thorn SL, Shuman JA, Stacy MR, Purcell BP, Doviak H, Burdick JA, Spinale FG, Sinusas AJ. Matrix Metalloproteinase-Targeted SPECT/CT Imaging for Evaluation of Therapeutic Hydrogels for the Early Modulation of Post-Infarct Myocardial Remodeling. J Cardiovasc Transl Res 2023; 16:155-165. [PMID: 35697979 PMCID: PMC10836411 DOI: 10.1007/s12265-022-10280-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
Following myocardial infarction (MI), maladaptive upregulation of matrix metalloproteinase (MMP) alters extracellular matrix leading to cardiac remodeling. Intramyocardial hydrogel delivery provides a vehicle for local delivery of MMP tissue inhibitors (rTIMP-3) for MMP activity modulation. We evaluated swine 10-14 days following MI randomized to intramyocardial delivery of saline, degradable hyaluronic acid (HA) hydrogel, or rTIMP-3 releasing hydrogel with an MMP-targeted radiotracer (99mTc-RP805), 201Tl, and CT. Significant left ventricle (LV) wall thinning, increased wall stress, reduced circumferential wall strain occurred in the MI region of MI-Saline group along with left atrial (LA) dilation, while these changes were modulated in both hydrogel groups. 99mTc-RP805 activity increased twofold in MI-Saline group and attenuated in hydrogel animals. Infarct size significantly reduced only in rTIMP-3 hydrogel group. Hybrid SPECT/CT imaging demonstrated a therapeutic benefit of intramyocardial delivery of hydrogels post-MI and reduced remodeling of LA and LV in association with a reduction in MMP activation.
Collapse
Affiliation(s)
- Stephanie L Thorn
- Section of Cardiovascular Medicine, Department of Medicine, School of Medicine, Yale University, DANA-3, PO Box 208017, New Haven, CT, 06520, USA
| | - James A Shuman
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, SC, USA
| | - Mitchel R Stacy
- Department of Surgery, Ohio State University College of Medicine, Columbus, OH, USA
| | - Brendan P Purcell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Heather Doviak
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, SC, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Francis G Spinale
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, SC, USA
| | - Albert J Sinusas
- Section of Cardiovascular Medicine, Department of Medicine, School of Medicine, Yale University, DANA-3, PO Box 208017, New Haven, CT, 06520, USA.
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, DANA-3, PO Box 208017, New Haven, CT, 06520, USA.
- Department of Biomedical Engineering, Yale University, DANA-3, PO Box 208017, New Haven, CT, 06520, USA.
| |
Collapse
|
5
|
Toczek J, Gona K, Liu Y, Ahmad A, Ghim M, Ojha D, Kukreja G, Salarian M, Luehmann H, Heo GS, Guzman RJ, Ochoa Chaar CI, Tellides G, Hassab AH, Ye Y, Shoghi KI, Zayed MA, Gropler RJ, Sadeghi MM. Positron Emission Tomography Imaging of Vessel Wall Matrix Metalloproteinase Activity in Abdominal Aortic Aneurysm. Circ Cardiovasc Imaging 2023; 16:e014615. [PMID: 36649454 PMCID: PMC9858355 DOI: 10.1161/circimaging.122.014615] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/31/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) play a key role in the pathogenesis of abdominal aortic aneurysm (AAA). Imaging aortic MMP activity, especially using positron emission tomography to access high sensitivity, quantitative data, could potentially improve AAA risk stratification. Here, we describe the design, synthesis, characterization, and evaluation in murine AAA and human aortic tissue of a first-in-class MMP-targeted positron emission tomography radioligand, 64Cu-RYM2. METHODS The broad spectrum MMP inhibitor, RYM2 was synthetized, and its potency as an MMP inhibitor was evaluated by a competitive inhibition assay. Toxicology studies were performed. Tracer biodistribution was evaluated in a murine model of AAA induced by angiotensin II infusion in Apolipoprotein E-deficient mice. 64Cu-RYM2 binding to normal and aneurysmal human aortic tissues was assessed by autoradiography. RESULTS RYM2 functioned as an MMP inhibitor with nanomolar affinities. Toxicology studies showed no adverse reaction in mice. Upon radiolabeling with Cu-64, the resulting tracer was stable in murine and human blood in vitro. Biodistribution and metabolite analysis in mice showed rapid renal clearance and acceptable in vivo stability. In vivo positron emission tomography/computed tomography in a murine model of AAA showed a specific aortic signal, which correlated with ex vivo measured MMP activity and Cd68 gene expression. 64Cu-RYM2 specifically bound to normal and aneurysmal human aortic tissues in correlation with MMP activity. CONCLUSIONS 64Cu-RYM2 is a first-in-class MMP-targeted positron emission tomography tracer with favorable stability, biodistribution, performance in preclinical AAA, and importantly, specific binding to human tissues. These data set the stage for 64Cu-RYM2-based translational imaging studies of vessel wall MMP activity, and indirectly, inflammation, in AAA.
Collapse
Affiliation(s)
- Jakub Toczek
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Kiran Gona
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Yongjian Liu
- Department of Radiology, Washington University, St. Louis, MO (USA)
| | - Azmi Ahmad
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Mean Ghim
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Devi Ojha
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Gunjan Kukreja
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Mani Salarian
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Hannah Luehmann
- Department of Radiology, Washington University, St. Louis, MO (USA)
| | - Gyu Seong Heo
- Department of Radiology, Washington University, St. Louis, MO (USA)
| | - Raul J. Guzman
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale School of Medicine, New Haven, CT (USA)
| | - Cassius I. Ochoa Chaar
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale School of Medicine, New Haven, CT (USA)
| | - George Tellides
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
- Department of Surgery, Yale University School of Medicine, New Haven, CT (USA)
| | | | - Yunpeng Ye
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | | | - Mohamed A. Zayed
- Department of Surgery, Washington University, St. Louis, MO (USA)
| | | | - Mehran M. Sadeghi
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| |
Collapse
|
6
|
Zhao Y, Zhang Q, Zhang X, Zhang Y, Lu Y, Ma X, Li W, Niu X, Zhang G, Chang M, Shi W, Tian Y. The roles of MMP8/MMP10 polymorphisms in ischemic stroke susceptibility. Brain Behav 2022; 12:e2797. [PMID: 36282475 PMCID: PMC9759140 DOI: 10.1002/brb3.2797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Ischemic stroke (IS), a multifactorial and polygenic disease, is the most common cause of death. This study aimed to determine the roles of MMP8/MMP10 polymorphisms in IS susceptibility in the Chinese Han population. METHODS MMP8 rs1940475 and rs3765620, and MMP10 rs17860949 from 700 IS patients and 700 controls were genotyped by the MassARRAY iPLEX platform. The impact of polymorphisms on IS risk was evaluated by logistic regression analysis. RESULTS Our study indicated that rs17860949 in MMP10 was significantly associated with a reduced risk of IS (OR = 0.632, p = .002). Precisely, stratification analysis showed that rs17860949 was relate to a decreased susceptibility to IS in patients aged > 55 years (OR = 0.472, p < .001), males (OR = 0.632, p = .012), nonsmokers (OR = 0.610, p = .017), and nondrinkers (OR = 0.559, p = .006). All these significant findings were verified by false-positive report probability test. Furthermore, GG genotype and AG genotype in MMP8 rs3765620 polymorphism were related to a reduced triglycerides concentration (p = .018). CONCLUSION Our study suggests that rs17860949 in MMP10 may play a protective role in IS in the Chinese Han population.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Neurology, Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Qi Zhang
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Xiaobo Zhang
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yu Zhang
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Ying Lu
- Department of Neurology, Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Xiaojuan Ma
- Medical Research Center, Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Weiping Li
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Xiaochen Niu
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Gejuan Zhang
- Department of Neurology, Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Mingze Chang
- Department of Neurology, Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Wenzhen Shi
- Medical Research Center, Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Ye Tian
- Department of Neurology, Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
7
|
Park J, Young BD, Miller EJ. Potential novel imaging targets of inflammation in cardiac sarcoidosis. J Nucl Cardiol 2022; 29:2171-2187. [PMID: 34734365 DOI: 10.1007/s12350-021-02838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/26/2021] [Indexed: 10/19/2022]
Abstract
Cardiac sarcoidosis (CS) is an inflammatory disease with high morbidity and mortality, with a pathognomonic feature of non-caseating granulomatous inflammation. While 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is a well-established modality to image inflammation and diagnose CS, there are limitations to its specificity and reproducibility. Imaging focused on the molecular processes of inflammation including the receptors and cellular microenvironments present in sarcoid granulomas provides opportunities to improve upon FDG-PET imaging for CS. This review will highlight the current limitations of FDG-PET imaging for CS while discussing emerging new nuclear imaging molecular targets for the imaging of cardiac sarcoidosis.
Collapse
Affiliation(s)
- Jakob Park
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Bryan D Young
- Section of Cardiovascular Medicine, Department of Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Edward J Miller
- Section of Cardiovascular Medicine, Department of Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
8
|
Stendahl JC, Kwan JM, Pucar D, Sadeghi MM. Radiotracers to Address Unmet Clinical Needs in Cardiovascular Imaging, Part 2: Inflammation, Fibrosis, Thrombosis, Calcification, and Amyloidosis Imaging. J Nucl Med 2022; 63:986-994. [PMID: 35772956 PMCID: PMC9258561 DOI: 10.2967/jnumed.121.263507] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/22/2022] [Indexed: 01/03/2023] Open
Abstract
Cardiovascular imaging is evolving in response to systemwide trends toward molecular characterization and personalized therapies. The development of new radiotracers for PET and SPECT imaging is central to addressing the numerous unmet diagnostic needs that relate to these changes. In this 2-part review, we discuss select radiotracers that may help address key unmet clinical diagnostic needs in cardiovascular medicine. Part 1 examined key technical considerations pertaining to cardiovascular radiotracer development and reviewed emerging radiotracers for perfusion and neuronal imaging. Part 2 covers radiotracers for imaging cardiovascular inflammation, thrombosis, fibrosis, calcification, and amyloidosis. These radiotracers have the potential to address several unmet needs related to the risk stratification of atheroma, detection of thrombi, and the diagnosis, characterization, and risk stratification of cardiomyopathies. In the first section, we discuss radiotracers targeting various aspects of inflammatory responses in pathologies such as myocardial infarction, myocarditis, sarcoidosis, atherosclerosis, and vasculitis. In a subsequent section, we discuss radiotracers for the detection of systemic and device-related thrombi, such as those targeting fibrin (e.g., 64Cu-labeled fibrin-binding probe 8). We also cover emerging radiotracers for the imaging of cardiovascular fibrosis, such as those targeting fibroblast activation protein (e.g., 68Ga-fibroblast activation protein inhibitor). Lastly, we briefly review radiotracers for imaging of cardiovascular calcification (18F-NaF) and amyloidosis (e.g., 99mTc-pyrophosphate and 18F-florbetapir).
Collapse
Affiliation(s)
- John C Stendahl
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jennifer M Kwan
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Darko Pucar
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut; and
| | - Mehran M Sadeghi
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut;
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
9
|
Abstract
Major advances in biomedical imaging have occurred over the last 2 decades and now allow many physiological, cellular, and molecular processes to be imaged noninvasively in small animal models of cardiovascular disease. Many of these techniques can be also used in humans, providing pathophysiological context and helping to define the clinical relevance of the model. Ultrasound remains the most widely used approach, and dedicated high-frequency systems can obtain extremely detailed images in mice. Likewise, dedicated small animal tomographic systems have been developed for magnetic resonance, positron emission tomography, fluorescence imaging, and computed tomography in mice. In this article, we review the use of ultrasound and positron emission tomography in small animal models, as well as emerging contrast mechanisms in magnetic resonance such as diffusion tensor imaging, hyperpolarized magnetic resonance, chemical exchange saturation transfer imaging, magnetic resonance elastography and strain, arterial spin labeling, and molecular imaging.
Collapse
Affiliation(s)
- David E Sosnovik
- Cardiology Division, Cardiovascular Research Center (D.E.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,A.A. Martinos Center for Biomedical Imaging (D.E.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Cambridge (D.E.S.)
| | - Marielle Scherrer-Crosbie
- Cardiology Division, Hospital of the University of Pennsylvania and Perelman School of Medicine, Philadelphia (M.S.-C)
| |
Collapse
|
10
|
Feher A, Baldassarre LA, Sinusas AJ. Novel Cardiac Computed Tomography Methods for the Assessment of Anthracycline Induced Cardiotoxicity. Front Cardiovasc Med 2022; 9:875150. [PMID: 35571206 PMCID: PMC9094702 DOI: 10.3389/fcvm.2022.875150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Anthracyclines are among the most frequently utilized anti-cancer therapies; however, their use is frequently associated with off-target cardiotoxic effects. Cardiac computed tomography (CCT) is a validated and rapidly evolving technology for the evaluation of cardiac structures, coronary anatomy and plaque, cardiac function and preprocedural planning. However, with emerging new techniques, CCT is rapidly evolving to offer information beyond the evaluation of cardiac structure and epicardial coronary arteries to provide details on myocardial deformation, extracellular volume, and coronary vasoreactivity. The potential for molecular imaging in CCT is also growing. In the current manuscript we review these emerging computed tomography techniques and their potential role in the evaluation of anthracycline-induced cardiotoxicity.
Collapse
Affiliation(s)
- Attila Feher
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
- *Correspondence: Attila Feher,
| | - Lauren A. Baldassarre
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Albert J. Sinusas
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| |
Collapse
|
11
|
Fan D, Zheng C, Wu W, Chen Y, Chen D, Hu X, Shen C, Chen M, Li R, Chen Y. MMP9 SNP and MMP SNP-SNP interactions increase the risk for ischemic stroke in the Han Hakka population. Brain Behav 2022; 12:e2473. [PMID: 34984852 PMCID: PMC8865147 DOI: 10.1002/brb3.2473] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES To investigate the association of eight variants of four matrix metalloproteinase (MMP) genes with ischemic stroke (IS) and whether interactions among these single nucleotide polymorphisms (SNPs) increases the risk of IS. METHODS Among 547 patients with ischemic stroke and 350 controls, matrix-assisted laser desorption/ionization time of flight mass spectrometry was used to examine eight variants arising from four different genes, including MMP-1 (rs1799750), MMP-2 (rs243865, rs2285053, rs2241145), MMP-9 (rs17576), and MMP-12 (rs660599, rs2276109, and rs652438). Gene-gene interactions were employed using generalized multifactor dimensionality reduction (GMDR) methods. RESULTS The frequency of rs17576 was significantly higher in IS patients than in controls (p = .033). Logistic regression analysis revealed the AG and GG genotypes of rs17576 to be associated with a higher risk for IS, with the odds ratio and 95% confidence interval being 2.490 (1.251-4.959) and 2.494 (1.274-4.886), respectively. GMDR analysis showed a significant SNP-SNP interaction between rs17576 and rs660599 (the testing balanced accuracy was 53.70% and cross-validation consistency was 8/10, p = .0107). Logistic regression analysis showed the interaction between rs17576 and rs660599 to be an independent risk factor for IS with an odds ratio of 1.568 and a 95% confidence interval of 1.152-2.135. CONCLUSION An MMP-9 rs17576 polymorphism is associated with increased IS risk in the Han Hakka population and interaction between MMP-9 rs17576 and MMP-12 rs660599 is associated with increased IS risk as well.
Collapse
Affiliation(s)
- Daofeng Fan
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fijian, China
| | - Chong Zheng
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fijian, China
| | - Wenbao Wu
- Department of Acupuncture and Moxibustion, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fijian, China
| | - Yinjuan Chen
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fijian, China
| | - Dongping Chen
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fijian, China
| | - Xiaohong Hu
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fijian, China
| | - Chaoxiong Shen
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fijian, China
| | - Mingsheng Chen
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fijian, China
| | - Rongtong Li
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fijian, China
| | - Yangui Chen
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fijian, China
| |
Collapse
|
12
|
|
13
|
Towards Optimized Bioavailability of 99mTc-Labeled Barbiturates for Non-invasive Imaging of Matrix Metalloproteinase Activity. Mol Imaging Biol 2021; 24:434-443. [PMID: 34750717 PMCID: PMC9085681 DOI: 10.1007/s11307-021-01668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022]
Abstract
Introduction
Dysregulated activity of matrix metalloproteinases (MMPs) drives a variety of pathophysiological conditions. Non-invasive imaging of MMP activity in vivo promises diagnostic and prognostic value. However, current targeting strategies by small molecules are typically limited with respect to the bioavailability of the labeled MMP binders in vivo. To this end, we here introduce and compare three chemical modifications of a recently developed barbiturate-based radiotracer with respect to bioavailability and potential to image MMP activity in vivo. Methods Barbiturate-based MMP inhibitors with an identical targeting unit but varying hydrophilicity were synthesized, labeled with technetium-99m, and evaluated in vitro and in vivo. Biodistribution and radiotracer elimination were determined in C57/BL6 mice by serial SPECT imaging. MMP activity was imaged in a MMP-positive subcutaneous xenograft model of human K1 papillary thyroid tumors. In vivo data were validated by scintillation counting, autoradiography, and MMP immunohistochemistry. Results We prepared three new 99mTc‐labeled MMP inhibitors, bearing either a glycine ([99mTc]MEA39), lysine ([99mTc]MEA61), or the ligand HYNIC with the ionic co-ligand TPPTS ([99mTc]MEA223) yielding gradually increasing hydrophilicity. [99mTc]MEA39 and [99mTc]MEA61 were rapidly eliminated via hepatobiliary pathways. In contrast, [99mTc]MEA223 showed delayed in vivo clearance and primary renal elimination. In a thyroid tumor xenograft model, only [99mTc]MEA223 exhibited a high tumor-to-blood ratio that could easily be delineated in SPECT images. Conclusion Introduction of HYNIC/TPPTS into the barbiturate lead structure ([99mTc]MEA223) results in delayed renal elimination and allows non-invasive MMP imaging with high signal-to-noise ratios in a papillary thyroid tumor xenograft model. Supplementary Information The online version contains supplementary material available at 10.1007/s11307-021-01668-z.
Collapse
|
14
|
Young BD, Moreland H, Oatmen KE, Freeburg LA, Shahab Z, Herzog E, Miller EJ, Spinale FG. Cytokine Signaling and Matrix Remodeling Pathways Associated with Cardiac Sarcoidosis Disease Activity Defined Using FDG PET Imaging. Int Heart J 2021; 62:1096-1105. [PMID: 34544982 DOI: 10.1536/ihj.21-164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
While cardiac imaging has improved the diagnosis and risk assessment for cardiac sarcoidosis (CS), treatment regimens have consisted of generalized heart failure therapies and non-specific anti-inflammatory regimens. The overall goal of this study was to perform high-sensitivity plasma profiling of specific inflammatory pathways in patients with sarcoidosis and with CS.Specific inflammatory/proteolytic cascades were upregulated in sarcoidosis patients, and certain profiles emerged for CS patients.Plasma samples were collected from patients with biopsy-confirmed sarcoidosis undergoing F-18 fluorodeoxyglucose positron emission tomography (n = 47) and compared to those of referent control subjects (n = 6). Using a high-sensitivity, automated multiplex array, cytokines, soluble cytokine receptor profiles (an index of cytokine activation), as well as matrix metalloproteinase (MMP), and endogenous MMP inhibitors (TIMPs) were examined.The plasma tumor necrosis factor (TNF) and soluble TNF receptors sCD30 and sTNFRI were increased using sarcoidosis, and sTNFRII increased in CS patients (n = 18). The soluble interleukin sIL-2R and vascular endothelial growth factor receptors (sVEGFR2 and sVEGFR3) increased to the greatest degree in CS patients. When computed as a function of referent control values, the majority of soluble cytokine receptors increased in both sarcoidosis and CS groups. Plasma MMP-9 levels increased in sarcoidosis but not in the CS subset. Plasma TIMP levels declined in both groups.The findings from this study were the identification of increased activation of a cluster of soluble cytokine receptors, which augment not only inflammatory cell maturation but also transmigration in patients with sarcoidosis and patients with cardiac involvement.
Collapse
Affiliation(s)
- Bryan D Young
- Yale University School of Medicine.,VA Connecticut Healthcare System
| | - Hannah Moreland
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine
| | - Kelsie E Oatmen
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine
| | - Lisa A Freeburg
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine
| | | | - Erica Herzog
- Section of Pulmonary, Sleep, and Critical Care Medicine, Yale School of Medicine
| | | | - Francis G Spinale
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine.,Columbia VA Health Care System
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Current therapeutic strategies to mitigate heart failure progression after myocardial infarction involve support of endogenous repair through molecular targets. The capacity for repair varies greatly between individuals. In this review, we will assess how cardiac PET/CT enables precise characterization of early pathogenetic processes which govern ventricle remodeling and progression to heart failure. RECENT FINDINGS Inflammation in the first days after myocardial infarction predicts subsequent functional decline and can influence therapy decisions. The expansion of anti-inflammatory approaches to improve outcomes after myocardial infarction may benefit from noninvasive characterization using imaging. Novel probes also allow visualization of fibroblast transdifferentiation and activation, as a precursor to ventricle remodeling. The expanding arsenal of molecular imaging agents in parallel with new treatment options provides opportunity to harmonize diagnostic imaging with precision therapy.
Collapse
Affiliation(s)
- James T Thackeray
- Department of Nuclear Medicine, Hannover Medical School, Neuberg-Str. 1, D-30625, Hannover, Germany.
| |
Collapse
|
16
|
Gupta S, Ge Y, Singh A, Gräni C, Kwong RY. Multimodality Imaging Assessment of Myocardial Fibrosis. JACC Cardiovasc Imaging 2021; 14:2457-2469. [PMID: 34023250 DOI: 10.1016/j.jcmg.2021.01.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Myocardial fibrosis, seen in ischemic and nonischemic cardiomyopathies, is associated with adverse cardiac outcomes. Noninvasive imaging plays a key role in early identification and quantification of myocardial fibrosis with the use of an expanding array of techniques including cardiac magnetic resonance, computed tomography, and nuclear imaging. This review discusses currently available noninvasive imaging techniques, provides insights into their strengths and limitations, and examines novel developments that will affect the future of noninvasive imaging of myocardial fibrosis.
Collapse
Affiliation(s)
- Sumit Gupta
- Department of Radiology Brigham and Women's Hospital, Boston, Massachusetts, USA; Noninvasive Cardiovascular Imaging Section, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Yin Ge
- Noninvasive Cardiovascular Imaging Section, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Cardiology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Amitoj Singh
- Noninvasive Cardiovascular Imaging Section, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Christoph Gräni
- Noninvasive Cardiovascular Imaging Section, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Raymond Y Kwong
- Noninvasive Cardiovascular Imaging Section, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
17
|
Gona K, Toczek J, Ye Y, Sanzida N, Golbazi A, Boodagh P, Salarian M, Jung JJ, Rajendran S, Kukreja G, Wu TL, Devel L, Sadeghi MM. Hydroxamate-Based Selective Macrophage Elastase (MMP-12) Inhibitors and Radiotracers for Molecular Imaging. J Med Chem 2020; 63:15037-15049. [PMID: 33206510 PMCID: PMC8010999 DOI: 10.1021/acs.jmedchem.0c01514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Macrophage elastase [matrix metalloproteinase (MMP)-12] is the most upregulated MMP in abdominal aortic aneurysm (AAA) and, hence, MMP-12-targeted imaging may predict AAA progression and rupture risk. Here, we report the design, synthesis, and evaluation of three novel hydroxamate-based selective MMP-12 inhibitors (CGA, CGA-1, and AGA) and the methodology to obtain MMP-12 selectivity from hydroxamate-based panMMP inhibitors. Also, we report two 99mTc-radiotracers, 99mTc-AGA-1 and 99mTc-AGA-2, derived from AGA. 99mTc-AGA-2 displayed faster blood clearance in mice and better radiochemical stability compared to 99mTc-AGA-1. Based on this, 99mTc-AGA-2 was chosen as the lead tracer and tested in murine AAA. 99mTc-AGA-2 uptake detected by autoradiography was significantly higher in AAA compared to normal aortic regions. Specific binding of the tracer to MMP-12 was demonstrated through ex vivo competition. Accordingly, this study introduces a novel family of selective MMP-12 inhibitors and tracers, paving the way for further development of these agents as therapeutic and imaging agents.
Collapse
Affiliation(s)
- Kiran Gona
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT-06511 (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT-06516 (USA)
| | - Jakub Toczek
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT-06511 (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT-06516 (USA)
| | - Yunpeng Ye
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT-06511 (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT-06516 (USA)
| | - Nowshin Sanzida
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT-06511 (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT-06516 (USA)
| | - Arvene Golbazi
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT-06511 (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT-06516 (USA)
| | - Parnaz Boodagh
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT-06511 (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT-06516 (USA)
| | - Mani Salarian
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT-06511 (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT-06516 (USA)
| | - Jae-Joon Jung
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT-06511 (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT-06516 (USA)
| | - Saranya Rajendran
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT-06511 (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT-06516 (USA)
| | - Gunjan Kukreja
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT-06511 (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT-06516 (USA)
| | - Terence L. Wu
- Yale West Campus Analytical Core, Yale University, West Haven, CT-06516 (USA)
| | - Laurent Devel
- CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, Université Paris-Saclay, 91191, Gif-sur-Yvette, (France)
| | - Mehran M. Sadeghi
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT-06511 (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT-06516 (USA)
| |
Collapse
|
18
|
Boutagy NE, Feher A, Pfau D, Liu Z, Guerrera NM, Freeburg LA, Womack SJ, Hoenes AC, Zeiss C, Young LH, Spinale FG, Sinusas AJ. Dual Angiotensin Receptor-Neprilysin Inhibition With Sacubitril/Valsartan Attenuates Systolic Dysfunction in Experimental Doxorubicin-Induced Cardiotoxicity. JACC CardioOncol 2020; 2:774-787. [PMID: 33437965 PMCID: PMC7799406 DOI: 10.1016/j.jaccao.2020.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Doxorubicin (DOX) induces cardiotoxicity in part by activation of matrix metalloproteinases (MMPs). Sacubitril/valsartan (Sac/Val) exerts additive cardioprotective actions over renin-angiotensin-aldosterone inhibitors in preclinical models of myocardial infarction and in heart failure patients. We hypothesized that Sac/Val would be more cardioprotective than Val in a rodent model of progressive DOX-induced cardiotoxicity, and this benefit would be associated with modulation of MMP activation. OBJECTIVES We sought to investigate the efficacy of Sac/Val for the treatment of anthracycline-induced cardiotoxicity. METHODS Male Wistar rats received DOX intraperitoneally (15 mg/kg cumulative) or saline over 3 weeks. Following the first treatment, control animals were gavaged daily with water (n = 25), while DOX-treated animals were gavaged daily with water (n = 25), Val (31 mg/kg; n = 25) or Sac/Val (68 mg/kg; n = 25) for either 4 or 6 weeks. Echocardiography was performed at baseline, and 4 and 6 weeks after DOX initiation. In addition, myocardial MMP activity was assessed with 99mTc-RP805, and cardiotoxicity severity was assessed by histology at these time points in a subgroup of animals. RESULTS Left ventricular ejection fraction decreased by 10% at 6 weeks in DOX and DOX + Val rats (both p < 0.05), while this reduction was attenuated in DOX + Sac/Val rats. MMP activity was increased at 6 weeks by 76% in DOX-alone rats, and tended to increase in DOX + Val rats (36%; p = 0.051) but was similar in DOX + Sac/Val rats as compared with time-matched control animals. Both therapies attenuated histological evidence of cellular toxicity and fibrosis (p < 0.05). CONCLUSIONS Sac/Val offers greater protection against left ventricular remodeling and dysfunction compared with standard angiotensin receptor blocker therapy in a rodent model of progressive DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Nabil E. Boutagy
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Attila Feher
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Daniel Pfau
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Zhao Liu
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nicole M. Guerrera
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lisa A. Freeburg
- Department of Cell Biology & Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Sydney J. Womack
- Department of Cell Biology & Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Abigail C. Hoenes
- Department of Cell Biology & Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Caroline Zeiss
- Section of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lawrence H. Young
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Francis G. Spinale
- Department of Cell Biology & Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Albert J. Sinusas
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
19
|
Hahn VS, Sharma K. Angiotensin Receptor-Neprilysin Inhibition for Doxorubicin-Mediated Cardiotoxicity. JACC CardioOncol 2020; 2:788-790. [PMID: 34396294 PMCID: PMC8352215 DOI: 10.1016/j.jaccao.2020.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
Ezeani M, Hagemeyer CE, Lal S, Niego B. Molecular imaging of atrial myopathy: Towards early AF detection and non-invasive disease management. Trends Cardiovasc Med 2020; 32:20-31. [DOI: 10.1016/j.tcm.2020.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
|
21
|
Lindsey ML, Deleon-Pennell KY, Bradshaw AD, Larue RAC, Anderson DR, Thiele GM, Baicu CF, Jones JA, Menick DR, Zile MR, Spinale FG. Focusing Heart Failure Research on Myocardial Fibrosis to Prioritize Translation. J Card Fail 2020; 26:876-884. [PMID: 32446948 PMCID: PMC7584737 DOI: 10.1016/j.cardfail.2020.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 01/05/2023]
Abstract
Heart failure (HF) has traditionally been defined by symptoms of fluid accumulation and poor perfusion, but it is now recognized that specific HF classifications hold prognostic and therapeutic relevance. Specifically, HF with reduced ejection fraction is characterized by reduced left ventricular systolic pump function and dilation and HF with preserved ejection fraction is characterized primarily by abnormal left ventricular filling (diastolic failure) with relatively preserved left ventricular systolic function. These forms of HF are distributed equally among patients with HF and likely require distinctly different strategies to mitigate the morbidity, mortality, and medical resource utilization of this disease. In particular, HF is a significant medical issue within the US Department of Veterans Affairs (VA) hospital system and constitutes a major translational research priority for the VA. Because a common underpinning of both HF with reduced ejection fraction and HF with preserved ejection fraction seems to be changes in the structure and function of the myocardial extracellular matrix, a conference was convened sponsored by the VA, entitled, "Targeting Myocardial Fibrosis in Heart Failure" to explore the extracellular matrix as a potential therapeutic target and to propose specific research directions. The conference was conceptually framed around the hypothesis that although HF with reduced ejection fraction and HF with preserved ejection fraction clearly have distinct mechanisms, they may share modifiable pathways and biological mediators in common. Inflammation and extracellular matrix were identified as major converging themes. A summary of our discussion on unmet challenges and possible solutions to move the field forward, as well as recommendations for future research opportunities, are provided.
Collapse
Affiliation(s)
- Merry L Lindsey
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska.
| | - Kristine Y Deleon-Pennell
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina; Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Amy D Bradshaw
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina; Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - R Amanda C Larue
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Daniel R Anderson
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Geoffrey M Thiele
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Division of Rheumatology and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Catalin F Baicu
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Jeffrey A Jones
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina; Department of Surgery, Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Donald R Menick
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina; Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Michael R Zile
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina; Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Francis G Spinale
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, SC and William Jennings Bryan Dorn VA Medical Center, Columbia, South Carolina
| |
Collapse
|
22
|
Thackeray JT. Sound and Fibroblast Activation Protein Inhibitor: Imaging Fibroblast Activation in the Heart. Circ Cardiovasc Imaging 2020; 13:e011603. [PMID: 32912028 DOI: 10.1161/circimaging.120.011603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- James T Thackeray
- Translational Cardiovascular Molecular Imaging, Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
23
|
Thorn SL, Barlow SC, Feher A, Stacy MR, Doviak H, Jacobs J, Zellars K, Renaud JM, Klein R, deKemp RA, Khakoo AY, Lee T, Spinale FG, Sinusas AJ. Application of Hybrid Matrix Metalloproteinase-Targeted and Dynamic 201Tl Single-Photon Emission Computed Tomography/Computed Tomography Imaging for Evaluation of Early Post-Myocardial Infarction Remodeling. Circ Cardiovasc Imaging 2019; 12:e009055. [PMID: 31707811 PMCID: PMC7250243 DOI: 10.1161/circimaging.119.009055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The induction of matrix metalloproteinases (MMPs) and reduction in tissue inhibitors of MMPs (TIMPs) plays a role in ischemia/reperfusion (I/R) injury post-myocardial infarction (MI) and subsequent left ventricular remodeling. We developed a hybrid dual isotope single-photon emission computed tomography/computed tomography approach for noninvasive evaluation of regional myocardial MMP activation with 99mTc-RP805 and dynamic 201Tl for determination of myocardial blood flow, to quantify the effects of intracoronary delivery of recombinant TIMP-3 (rTIMP-3) on I/R injury. METHODS Studies were performed in control pigs (n=5) and pigs following 90-minute balloon occlusion-induced ischemia/reperfusion (I/R) of left anterior descending artery (n=9). Before reperfusion, pigs with I/R were randomly assigned to intracoronary infusion of rTIMP-3 (1.0 mg/kg; n=5) or saline (n=4). Three days post-I/R, dual isotope imaging was performed with 99mTc-RP805 and 201Tl along with contrast cineCT to assess left ventricular function. RESULTS The ischemic to nonischemic ratio of 99mTc-RP805 was significantly increased following I/R in saline group (4.03±1.40), and this ratio was significantly reduced with rTIMP-3 treatment (2.22±0.57; P=0.03). This reduction in MMP activity in the MI-rTIMP-3 treatment group was associated with an improvement in relative MI region myocardial blood flow compared with the MI-saline group and improved myocardial strain in the MI region. CONCLUSIONS We have established a novel hybrid single-photon emission computed tomography/computed tomography imaging approach for the quantitative assessment of regional MMP activation, myocardial blood flow, and cardiac function post-I/R that can be used to evaluate therapeutic interventions such as intracoronary delivery of rTIMP-3 for reduction of I/R injury in the early phases of post-MI remodeling.
Collapse
Affiliation(s)
- Stephanie L. Thorn
- Section of Cardiovascular Medicine, Department of Medicine, Yale University, School of Medicine, New Haven, CT
- Yale Translational Research Imaging Center, New Haven, CT
| | - Shayne C. Barlow
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, SC
| | - Attila Feher
- Section of Cardiovascular Medicine, Department of Medicine, Yale University, School of Medicine, New Haven, CT
- Yale Translational Research Imaging Center, New Haven, CT
| | - Mitchel R. Stacy
- Section of Cardiovascular Medicine, Department of Medicine, Yale University, School of Medicine, New Haven, CT
- Yale Translational Research Imaging Center, New Haven, CT
| | - Heather Doviak
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, SC
| | - Julia Jacobs
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, SC
| | - Kia Zellars
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, SC
| | | | - Ran Klein
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | | | | - TaeWeon Lee
- Amgen, CardioMetabolic Disorders, South San Francisco, CA
| | - Francis G. Spinale
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, SC
| | - Albert J. Sinusas
- Section of Cardiovascular Medicine, Department of Medicine, Yale University, School of Medicine, New Haven, CT
- Yale Translational Research Imaging Center, New Haven, CT
- Department of Radiology and Biomedical Imaging, Yale University, School of Medicine, New Haven, CT
| |
Collapse
|
24
|
Schelbert HR. Recombinant Tissue Inhibitor Subdues Matrix Metalloproteinases and Produces Novel Images With New Possibilities. Circ Cardiovasc Imaging 2019; 12:e009915. [DOI: 10.1161/circimaging.119.009915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Heinrich R. Schelbert
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California at Los Angeles
| |
Collapse
|
25
|
Molecular Imaging Probes Based on Matrix Metalloproteinase Inhibitors (MMPIs). Molecules 2019; 24:molecules24162982. [PMID: 31426440 PMCID: PMC6719134 DOI: 10.3390/molecules24162982] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc- and calcium-dependent endopeptidases which are secreted or anchored in the cell membrane and are capable of degrading the multiple components of the extracellular matrix (ECM). MMPs are frequently overexpressed or highly activated in numerous human diseases. Owing to the important role of MMPs in human diseases, many MMP inhibitors (MMPIs) have been developed as novel therapeutics, and some of them have entered clinical trials. However, so far, only one MMPI (doxycycline) has been approved by the FDA. Therefore, the evaluation of the activity of a specific subset of MMPs in human diseases using clinically relevant imaging techniques would be a powerful tool for the early diagnosis and assessment of the efficacy of therapy. In recent years, numerous MMPIs labeled imaging agents have emerged. This article begins by providing an overview of the MMP subfamily and its structure and function. The latest advances in the design of subtype selective MMPIs and their biological evaluation are then summarized. Subsequently, the potential use of MMPI-labeled diagnostic agents in clinical imaging techniques are discussed, including positron emission tomography (PET), single-photon emission computed tomography (SPECT) and optical imaging (OI). Finally, this article concludes with future perspectives and clinical utility.
Collapse
|
26
|
Lavin Plaza B, Theodoulou I, Rashid I, Hajhosseiny R, Phinikaridou A, Botnar RM. Molecular Imaging in Ischemic Heart Disease. CURRENT CARDIOVASCULAR IMAGING REPORTS 2019; 12:31. [PMID: 31281564 PMCID: PMC6557873 DOI: 10.1007/s12410-019-9500-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Purpose of Review The purpose of this paper is to review current and new modalities to image key biological processes in ischemic heart disease and after myocardial infarction non-invasively. Recent Findings New imaging targets have been developed to detect and quantify myocardial damage after ischemia. Although positron emission tomography (PET) has been leading the development of new probes in the past, continuous improvements of magnetic resonance imaging (MRI) together with the development of new novel MRI contrast agents opens new research avenues including the combination of both PET and MRI to obtain anatomic, functional, and molecular information simultaneously, which is not possible from a single imaging session. Summary This review summarizes the state of art of non-invasive molecular imaging of the myocardium during ischemia and after myocardial infarction using PET and MRI. We also describe the different contrast agents that have been developed to image the different phases of cardiac healing and the biological processes associated with each of those phases. Importantly, here we focus on imaging of inflammation as it is the key biological process that orchestrates clearance of dead cells, tissue remodeling, cardiac repair, and future outcome. We also focus on clinical translation of some of the novel contrast agents that have been tested in patients and discuss the need for larger, multi-center patient studies to fully validate the applicability of new imaging probes.
Collapse
Affiliation(s)
- Begoña Lavin Plaza
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth wing, St Thomas Hospital, London, SE1 7EH UK
| | - Iakovos Theodoulou
- 2Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Imran Rashid
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth wing, St Thomas Hospital, London, SE1 7EH UK
| | - Reza Hajhosseiny
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth wing, St Thomas Hospital, London, SE1 7EH UK
| | - Alkystis Phinikaridou
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth wing, St Thomas Hospital, London, SE1 7EH UK
| | - Rene M Botnar
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth wing, St Thomas Hospital, London, SE1 7EH UK.,3Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
27
|
Boutagy NE, Feher A, Alkhalil I, Umoh N, Sinusas AJ. Molecular Imaging of the Heart. Compr Physiol 2019; 9:477-533. [PMID: 30873600 DOI: 10.1002/cphy.c180007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multimodality cardiovascular imaging is routinely used to assess cardiac function, structure, and physiological parameters to facilitate the diagnosis, characterization, and phenotyping of numerous cardiovascular diseases (CVD), as well as allows for risk stratification and guidance in medical therapy decision-making. Although useful, these imaging strategies are unable to assess the underlying cellular and molecular processes that modulate pathophysiological changes. Over the last decade, there have been great advancements in imaging instrumentation and technology that have been paralleled by breakthroughs in probe development and image analysis. These advancements have been merged with discoveries in cellular/molecular cardiovascular biology to burgeon the field of cardiovascular molecular imaging. Cardiovascular molecular imaging aims to noninvasively detect and characterize underlying disease processes to facilitate early diagnosis, improve prognostication, and guide targeted therapy across the continuum of CVD. The most-widely used approaches for preclinical and clinical molecular imaging include radiotracers that allow for high-sensitivity in vivo detection and quantification of molecular processes with single photon emission computed tomography and positron emission tomography. This review will describe multimodality molecular imaging instrumentation along with established and novel molecular imaging targets and probes. We will highlight how molecular imaging has provided valuable insights in determining the underlying fundamental biology of a wide variety of CVDs, including: myocardial infarction, cardiac arrhythmias, and nonischemic and ischemic heart failure with reduced and preserved ejection fraction. In addition, the potential of molecular imaging to assist in the characterization and risk stratification of systemic diseases, such as amyloidosis and sarcoidosis will be discussed. © 2019 American Physiological Society. Compr Physiol 9:477-533, 2019.
Collapse
Affiliation(s)
- Nabil E Boutagy
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Attila Feher
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Imran Alkhalil
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Nsini Umoh
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Albert J Sinusas
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA.,Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, USA
| |
Collapse
|
28
|
Molecular Imaging to Monitor Left Ventricular Remodeling in Heart Failure. CURRENT CARDIOVASCULAR IMAGING REPORTS 2019. [DOI: 10.1007/s12410-019-9487-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Zhuang ZW, Huang Y, Ju R, Maxfield MW, Ren Y, Wang X, Wang X, Stacy MR, Hwa J. Molecular Imaging of Factor XIII Activity for the Early Detection of Mouse Coronary Microvascular Disease. Am J Cancer Res 2019; 9:1474-1489. [PMID: 30867844 PMCID: PMC6401499 DOI: 10.7150/thno.29255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/14/2018] [Indexed: 01/25/2023] Open
Abstract
Coronary microvascular disease (MVD) remains a major clinical problem due to limited mechanistic understanding and a challenging diagnosis. In the present study we evaluated the utility of targeted imaging of active factor XIII (FXIII) for detection of coronary MVD associated with thrombus. We hypothesized that a high specificity and sensitivity FXIII targeted radiolabeled probe can serve as a biomarker for cross-linked thrombi in the microvasculature, and thus an indicator for underlying coronary MVD. To evaluate this approach, a coronary MVD model was established for local induction of singlet oxygen and reactive oxygen species (ROS) via a photochemical reaction (PCR). Methods: PCR was used to induce endothelial injury and microthrombi via focal over-production of ROS only in the coronary microvasculature. Oxidative stress was initially evaluated in primary coronary endothelial cells to optimize parameters of PCR, which were then translated to in vivo experiments. To develop the coronary MVD model, 64 mice were assigned to one of four groups after thoracotomy: 1) sham control; 2) rose bengal; 3) green light; or 4) their combination. Following interventions, the mice underwent transmission electron microscopy, fluorescent myocardial perfusion, coronary angiography, and immunohistochemical staining. Echocardiography (n = 12) and gene expression (n = 10) studies were also performed after MVD induction to monitor serial changes in cardiac function and explore possible mechanisms. To diagnose early onset MVD, FXIII radioactivity was assessed in 104 mice using ex vivo gamma well counting (GWC) and in 14 mice using in vivo serial single photon emission computed tomography / computed tomography (SPECT/CT) imaging of a FXIII targeted technetium-labeled probe (99mTc-NC100668). Results:In vitro experiments demonstrated that photosensitizer concentration and light illumination time were critical parameters for PCR. In vivo experiments demonstrated manifestations of clinical MVD, including endothelial damage, a “no flow zone,” arteriole rarefaction with patent epicardial coronary arteries, infiltration of inflammatory cells in the PCR-treated region, and preserved cardiac function. Gene expression also demonstrated a pro-thrombotic and impaired fibrinolytic status. In the early stages of MVD, enhanced FXIII activity was confirmed within the MVD region using GWC and in vivo SPECT/CT imaging. Conclusion: Our results demonstrate that molecular imaging of FXIII activity may allow for early detection of coronary MVD associated with thrombus, in a novel pre-clinical model.
Collapse
|
30
|
Désogère P, Montesi SB, Caravan P. Molecular Probes for Imaging Fibrosis and Fibrogenesis. Chemistry 2019; 25:1128-1141. [PMID: 30014529 PMCID: PMC6542638 DOI: 10.1002/chem.201801578] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Indexed: 12/26/2022]
Abstract
Fibrosis, or the accumulation of extracellular matrix molecules that make up scar tissue, is a common result of chronic tissue injury. Advances in the clinical management of fibrotic diseases have been hampered by the low sensitivity and specificity of noninvasive early diagnostic options, lack of surrogate end points for use in clinical trials, and a paucity of noninvasive tools to assess fibrotic disease activity longitudinally. Hence, the development of new methods to image fibrosis and fibrogenesis is a large unmet clinical need. Herein, an overview of recent and selected molecular probes for imaging of fibrosis and fibrogenesis by magnetic resonance imaging, positron emission tomography, and single photon emission computed tomography is provided.
Collapse
Affiliation(s)
- Pauline Désogère
- The Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02128, USA
| | - Sydney B Montesi
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Peter Caravan
- The Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02128, USA
| |
Collapse
|
31
|
Ye Y, Toczek J, Gona K, Kim HY, Han J, Razavian M, Golestani R, Zhang J, Wu TL, Ghosh M, Jung JJ, Sadeghi MM. Novel Arginine-containing Macrocyclic MMP Inhibitors: Synthesis, 99mTc-labeling, and Evaluation. Sci Rep 2018; 8:11647. [PMID: 30076321 PMCID: PMC6076275 DOI: 10.1038/s41598-018-29941-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are involved in tissue remodeling. Accordingly, MMP inhibitors and related radiolabeled analogs are important tools for MMP-targeted imaging and therapy in a number of diseases. Herein, we report design, synthesis, and evaluation of a new Arginine-containing macrocyclic hydroxamate analog, RYM, its hydrazinonicotinamide conjugate, RYM1 and 99mTc-labeled analog 99mTc-RYM1 for molecular imaging. RYM exhibited potent inhibition against a panel of recombinant human (rh) MMPs in vitro. RYM1 was efficiently labeled with 99mTcO4- to give 99mTc-RYM1 in a high radiochemical yield and high radiochemical purity. RYM1 and its decayed labeling product displayed similar inhibition potencies against rhMMP-12. Furthermore, 99mTc-RYM1 exhibited specific binding with lung tissue from lung-specific interleukin-13 transgenic mice, in which MMP activity is increased in conjunction with tissue remodeling and inflammation. The results support further development of such new water-soluble Arginine-containing macrocyclic hydroxamate MMP inhibitors for targeted imaging and therapy.
Collapse
Affiliation(s)
- Yunpeng Ye
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Jakub Toczek
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Kiran Gona
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Hye-Yeong Kim
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Jinah Han
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Mahmoud Razavian
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Reza Golestani
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Jiasheng Zhang
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Terence L Wu
- Yale West Campus Analytical Core, Yale University, West Haven, CT, USA
| | - Mousumi Ghosh
- Yale West Campus Analytical Core, Yale University, West Haven, CT, USA
| | - Jae-Joon Jung
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Mehran M Sadeghi
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA.
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
32
|
de Haas HJ, Narula J. Playing slot to hitting the jackpot in molecular imaging: On probability of uncovering subcellular pathogenesis vs achieving clinical applicability. J Nucl Cardiol 2018; 25:1124-1127. [PMID: 28353214 DOI: 10.1007/s12350-017-0850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 12/27/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Hans J de Haas
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jagat Narula
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, 1190 Fifth Avenue, New York, NY, 10029, USA.
| |
Collapse
|
33
|
Kiugel M, Kytö V, Saanijoki T, Liljenbäck H, Metsälä O, Ståhle M, Tuomela J, Li XG, Saukko P, Knuuti J, Roivainen A, Saraste A. Evaluation of 68Ga-labeled peptide tracer for detection of gelatinase expression after myocardial infarction in rat. J Nucl Cardiol 2018; 25:1114-1123. [PMID: 27914007 DOI: 10.1007/s12350-016-0744-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 11/11/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Matrix metalloproteinases 2 and 9 (MMP-2/9) play a role in extracellular matrix remodeling after an ischemic myocardial injury. We evaluated 68Ga-DOTA-peptide targeting MMP-2/9 for the detection of gelatinase expression after myocardial infarction (MI) in rat. METHODS Rats were injected with 43 ± 7.7 MBq of 68Ga-DOTA-peptide targeting MMP-2/9 at 7 days (n = 7) or 4 weeks (n = 8) after permanent coronary ligation or sham operation (n = 5 at both time points) followed by positron emission tomography (PET). The left ventricle was cut in frozen sections for autoradiography and immunohistochemistry 30 minutes after tracer injection. RESULTS Immunohistochemical staining showed MMP-2 and MMP-9 expressing cells, CD31-positive endothelial cells, and CD68-positive macrophages in the infarcted myocardium. Autoradiography showed increased tracer uptake in the infarcted area both at 7 days and 4 weeks after MI (MI-to-remote area ratio 2.5 ± 0.46 and 3.1 ± 1.0, respectively). Tracer uptake in damaged tissue correlated with the amount of CD68-positive macrophages at 7 days after MI, and CD31-positive endothelial cells at 7 days and 4 weeks after MI. The tracer was rapidly metabolized, radioactivity in the blood exceeded that of the myocardium, and tracer accumulation in the heart was not detectable by in vivo PET. CONCLUSIONS 68Ga-DOTA-peptide targeting MMP-2/9 accumulates in the damaged rat myocardium after an ischemic injury, but tracer instability and slow clearance in vivo make it unsuitable for further evaluation.
Collapse
Affiliation(s)
- Max Kiugel
- Turku PET Centre, University of Turku, 20521, Turku, Finland
| | - Ville Kytö
- Heart Center, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Tiina Saanijoki
- Turku PET Centre, University of Turku, 20521, Turku, Finland
| | - Heidi Liljenbäck
- Turku PET Centre, University of Turku, 20521, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Olli Metsälä
- Turku PET Centre, University of Turku, 20521, Turku, Finland
| | - Mia Ståhle
- Turku PET Centre, University of Turku, 20521, Turku, Finland
| | - Johanna Tuomela
- Department of Cell Biology and Anatomy, University of Turku, Turku, Finland
| | - Xiang-Guo Li
- Turku PET Centre, University of Turku, 20521, Turku, Finland
- Turku PET Centre, Åbo Akademi University, Turku, Finland
| | - Pekka Saukko
- Department of Pathology and Forensic Medicine, University of Turku, Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, University of Turku, 20521, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, 20521, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Antti Saraste
- Turku PET Centre, University of Turku, 20521, Turku, Finland.
- Heart Center, Turku University Hospital, Turku, Finland.
- Institute of Clinical Medicine, University of Turku, Turku, Finland.
| |
Collapse
|
34
|
Boutagy NE, Wu J, Cai Z, Zhang W, Booth CJ, Kyriakides TC, Pfau D, Mulnix T, Liu Z, Miller EJ, Young LH, Carson RE, Huang Y, Liu C, Sinusas AJ. In Vivo Reactive Oxygen Species Detection With a Novel Positron Emission Tomography Tracer, 18F-DHMT, Allows for Early Detection of Anthracycline-Induced Cardiotoxicity in Rodents. JACC Basic Transl Sci 2018; 3:378-390. [PMID: 30062224 PMCID: PMC6058999 DOI: 10.1016/j.jacbts.2018.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 02/05/2023]
Abstract
LVEF is used to detect doxorubicin-induced cardiotoxicity in patients, but this index is variable and has limited ability to detect early cardiotoxicity. Doxorubicin induces cardiotoxicity largely through the excessive production of ROS. We hypothesized that 18F-DHMT, a PET tracer that detects superoxide production, would provide an early index of cardiotoxicity in rodents. 18F-DHMT PET imaging was able to detect an elevation in cardiac superoxide production before a fall in LVEF. The early elevation in myocardial superoxide production was associated with only mild myocardial toxicity and occurred before cellular apoptosis or significant activation of MMPs; enzymes associated with myocardial remodeling. A drop in LVEF was associated with a significant increase in MMP activation, cellular apoptosis, and significant myocardial toxicity.
Reactive oxygen species (ROS) are involved in doxorubicin-induced cardiotoxicity. The authors investigated the efficacy of 18F-DHMT, a marker of ROS, for early detection of doxorubicin-induced cardiotoxicity in rats. Echocardiography was performed at baseline and 4, 6, and 8 weeks post-doxorubicin initiation, whereas in vivo superoxide production was measured at 4 and 6 weeks with 18F-DHMT positron emission tomography. Left ventricular ejection fraction (LVEF) was not significantly decreased until 6 weeks post-doxorubicin treatment, whereas myocardial superoxide production was significantly elevated at 4 weeks. 18F-DHMT imaging detected an elevation in cardiac superoxide production before a fall in LVEF in rodents and may allow for early cardiotoxicity detection in cancer patients.
Collapse
Key Words
- 2D, 2-dimensional
- CT, computed tomography
- DOX, doxorubicin HCl
- H&E, hematoxylin and eosin
- LV, left ventricle/ventricular
- LVEF, left ventricular ejection fraction
- MMP, matrix metalloproteinase
- MT, Masson’s trichrome
- PET, positron emission tomography
- ROS, reactive oxygen species
- SUV, standardized uptake value
- TUNEL, terminal deoxynucleotidyl transferase-mediated nick-end labeling
- VOI, volume of interest
- cardiotoxicity
- doxorubicin
- positron emission tomography
- reactive oxygen species
Collapse
Affiliation(s)
- Nabil E. Boutagy
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, Connecticut
| | - Jing Wu
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Zhengxi Cai
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Wenjie Zhang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Carmen J. Booth
- Section of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Tassos C. Kyriakides
- Yale School of Public Health (Biostatistics), Yale School of Medicine, New Haven, Connecticut
| | - Daniel Pfau
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, Connecticut
| | - Tim Mulnix
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Zhao Liu
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, Connecticut
| | - Edward J. Miller
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, Connecticut
| | - Lawrence H. Young
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, Connecticut
| | - Richard E. Carson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Chi Liu
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Albert J. Sinusas
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, Connecticut
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
- Address for correspondence: Dr. Albert J. Sinusas, Section of Cardiovascular Medicine, Yale University School of Medicine, P.O. Box 208017, Dana 3, New Haven, Connecticut 06520-8017.
| |
Collapse
|
35
|
Molecular imaging of cardiac remodelling after myocardial infarction. Basic Res Cardiol 2018; 113:10. [PMID: 29344827 PMCID: PMC5772148 DOI: 10.1007/s00395-018-0668-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/17/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023]
Abstract
Myocardial infarction and subsequent heart failure is a major health burden associated with significant mortality and morbidity in western societies. The ability of cardiac tissue to recover after myocardial infarction is affected by numerous complex cellular and molecular pathways. Unbalance or failure of these pathways can lead to adverse remodelling of the heart and poor prognosis. Current clinical cardiac imaging modalities assess anatomy, perfusion, function, and viability of the myocardium, yet do not offer any insight into the specific molecular pathways involved in the repair process. Novel imaging techniques allow visualisation of these molecular processes and may have significant diagnostic and prognostic values, which could aid clinical management. Single photon-emission tomography, positron-emission tomography, and magnetic resonance imaging are used to visualise various aspects of these molecular processes. Imaging probes are usually attached to radioisotopes or paramagnetic nanoparticles to specifically target biological processes such as: apoptosis, necrosis, inflammation, angiogenesis, and scar formation. Although the results from preclinical studies are promising, translating this work to a clinical environment in a valuable and cost-effective way is extremely challenging. Extensive evaluation evidence of diagnostic and prognostic values in multi-centre clinical trials is still required.
Collapse
|
36
|
Hu C, Zhu K, Li J, Wang C, Lai L. Molecular targets in aortic aneurysm for establishing novel management paradigms. J Thorac Dis 2017; 9:4708-4722. [PMID: 29268541 DOI: 10.21037/jtd.2017.10.63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aortic aneurysm (AA) is a lethal disease and presents a large challenge for surgeons in the clinic. Although surgical management remains the major choice of AA, operative mortality remains high. With advances in understanding of the mechanisms of AAs, molecular targets, such as matrix metalloproteinases (MMPs), D-dimer, and inflammation markers, including C-reactive protein, interleukins and phagocytes, are important in the pathology of development of AA. These markers may become important for improving the diagnostic quality and provide more therapeutic choices for treatment of AA. Although these new markers require long-term trials before they can be translated into the clinic, they can still be helpful in determining new directions. The main aim of this review is to discuss the current findings of molecular targets in progression of AA and discuss the potential application of these new targets for managing this disease.
Collapse
Affiliation(s)
- Chengkai Hu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China
| | - Jun Li
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China
| | - Lao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China
| |
Collapse
|
37
|
Fibrosis imaging: Current concepts and future directions. Adv Drug Deliv Rev 2017; 121:9-26. [PMID: 29108860 DOI: 10.1016/j.addr.2017.10.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 02/08/2023]
Abstract
Fibrosis plays an important role in many different pathologies. It results from tissue injury, chronic inflammation, autoimmune reactions and genetic alterations, and it is characterized by the excessive deposition of extracellular matrix components. Biopsies are routinely employed for fibrosis diagnosis, but they suffer from several drawbacks, including their invasive nature, sampling variability and limited spatial information. To overcome these limitations, multiple different imaging tools and technologies have been evaluated over the years, including X-ray imaging, computed tomography (CT), ultrasound (US), magnetic resonance imaging (MRI), positron emission tomography (PET) and single-photon emission computed tomography (SPECT). These modalities can provide anatomical, functional and molecular imaging information which is useful for fibrosis diagnosis and staging, and they may also hold potential for the longitudinal assessment of therapy responses. Here, we summarize the use of non-invasive imaging techniques for monitoring fibrosis in systemic autoimmune diseases, in parenchymal organs (such as liver, kidney, lung and heart), and in desmoplastic cancers. We also discuss how imaging biomarkers can be integrated in (pre-) clinical research to individualize and improve anti-fibrotic therapies.
Collapse
|
38
|
An extremely high dietary iodide supply forestalls severe hypothyroidism in Na +/I - symporter (NIS) knockout mice. Sci Rep 2017; 7:5329. [PMID: 28706256 PMCID: PMC5509730 DOI: 10.1038/s41598-017-04326-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/12/2017] [Indexed: 12/27/2022] Open
Abstract
The sodium/iodide symporter (NIS) mediates active iodide (I−) accumulation in the thyroid, the first step in thyroid hormone (TH) biosynthesis. Mutations in the SLC5A5 gene encoding NIS that result in a non-functional protein lead to congenital hypothyroidism due to I− transport defect (ITD). ITD is a rare autosomal disorder that, if not treated promptly in infancy, can cause mental retardation, as the TH decrease results in improper development of the nervous system. However, in some patients, hypothyroidism has been ameliorated by unusually large amounts of dietary I−. Here we report the first NIS knockout (KO) mouse model, obtained by targeting exons 6 and 7 of the Slc5a5 gene. In NIS KO mice, in the thyroid, stomach, and salivary gland, NIS is absent, and hence there is no active accumulation of the NIS substrate pertechnetate (99mTcO4−). NIS KO mice showed undetectable serum T4 and very low serum T3 levels when fed a diet supplying the minimum I− requirement for rodents. These hypothyroid mice displayed oxidative stress in the thyroid, but not in the brown adipose tissue or liver. Feeding the mice a high-I− diet partially rescued TH biosynthesis, demonstrating that, at high I− concentrations, I− enters the thyroid through routes other than NIS.
Collapse
|
39
|
Hendrix AY, Kheradmand F. The Role of Matrix Metalloproteinases in Development, Repair, and Destruction of the Lungs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:1-29. [PMID: 28662821 DOI: 10.1016/bs.pmbts.2017.04.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Normal gas exchange after birth requires functional lung alveolar units that are lined with epithelial cells, parts of which are intricately fused with microvascular capillaries. A significant phase of alveolar lung development occurs in the perinatal period, continues throughout early stages in life, and requires activation of matrix-remodeling enzymes. Failure to achieve an optimum number of alveoli during lung maturation can cause several untoward medical consequences including disabling obstructive and/or restrictive lung diseases that limit physiological endurance and increase mortality. Several members of the matrix metalloproteinase (MMP) family are critical in lung remodeling before and after birth; however, their resurgence in response to environmental factors, infection, and injury can also compromise lung function. Therefore, temporal expression, regulation, and function of MMPs play key roles in developing and maintaining adequate oxygenation under steady state, as well as in diseased conditions. Broadly, with the exception of MMP2 and MMP14, most deletional mutations of MMPs fail to perturb lung development; however, their individual absence can alter the pathophysiology of respiratory diseases. Specifically, under stressed conditions such as acute respiratory infection and allergic inflammation, MMP2 and MMP9 can play a protective role through bacterial clearance and production of chemotactic gradient, while loss of MMP12 can protect mice from smoke-induced lung disease. Therefore, better understanding of the expression and function of MMPs under normal lung development and their resurgence in response respiratory diseases could provide new therapeutic options in the future.
Collapse
Affiliation(s)
- Amanda Y Hendrix
- Section of Pulmonary and Critical Care, and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Farrah Kheradmand
- Section of Pulmonary and Critical Care, and Immunology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
40
|
Meletta R, Slavik R, Mu L, Rancic Z, Borel N, Schibli R, Ametamey SM, Krämer SD, Müller Herde A. Cannabinoid receptor type 2 (CB2) as one of the candidate genes in human carotid plaque imaging: Evaluation of the novel radiotracer [ 11 C]RS-016 targeting CB2 in atherosclerosis. Nucl Med Biol 2017; 47:31-43. [DOI: 10.1016/j.nucmedbio.2017.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/15/2016] [Accepted: 01/05/2017] [Indexed: 01/15/2023]
|
41
|
Shirani J, Singh A, Agrawal S, Dilsizian V. Cardiac molecular imaging to track left ventricular remodeling in heart failure. J Nucl Cardiol 2017; 24:574-590. [PMID: 27480973 DOI: 10.1007/s12350-016-0620-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 07/13/2016] [Indexed: 12/11/2022]
Abstract
Cardiac left ventricular (LV) remodeling is the final common pathway of most primary cardiovascular diseases that manifest clinically as heart failure (HF). The more advanced the systolic HF and LV dysfunction, the worse the prognosis. The knowledge of the molecular, cellular, and neurohormonal mechanisms that lead to myocardial dysfunction and symptomatic HF has expanded rapidly and has allowed sophisticated approaches to understanding and management of the disease. New therapeutic targets for pharmacologic intervention in HF have also been identified through discovery of novel cellular and molecular components of membrane-bound receptor-mediated intracellular signal transduction cascades. Despite all advances, however, the prognosis of systolic HF has remained poor in general. This is, at least in part, related to the (1) relatively late institution of treatment due to reliance on gross functional and structural abnormalities that define the "heart failure phenotype" clinically; (2) remarkable genetic-based interindividual variations in the contribution of each of the many molecular components of cardiac remodeling; and (3) inability to monitor the activity of individual pathways to cardiac remodeling in order to estimate the potential benefits of pharmacologic agents, monitor the need for dose titration, and minimize side effects. Imaging of the recognized ultrastructural components of cardiac remodeling can allow redefinition of heart failure based on its "molecular phenotype," and provide a guide to implementation of "personalized" and "evidence-based" evaluation, treatment, and longitudinal monitoring of the disease beyond what is currently available through randomized controlled clinical trials.
Collapse
Affiliation(s)
- Jamshid Shirani
- Department of Cardiology, St. Luke's University Health Network, 801 Ostrum Street, Bethlehem, PA, USA.
| | - Amitoj Singh
- Department of Cardiology, St. Luke's University Health Network, 801 Ostrum Street, Bethlehem, PA, USA
| | - Sahil Agrawal
- Department of Cardiology, St. Luke's University Health Network, 801 Ostrum Street, Bethlehem, PA, USA
| | - Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
42
|
Toczek J, Ye Y, Gona K, Kim HY, Han J, Razavian M, Golestani R, Zhang J, Wu TL, Jung JJ, Sadeghi MM. Preclinical Evaluation of RYM1, a Matrix Metalloproteinase-Targeted Tracer for Imaging Aneurysm. J Nucl Med 2017; 58:1318-1323. [PMID: 28360209 DOI: 10.2967/jnumed.116.188656] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/20/2017] [Indexed: 12/18/2022] Open
Abstract
Matrix metalloproteinases (MMPs) play a key role in abdominal aortic aneurysm (AAA) development. Accordingly, MMP-targeted imaging provides important information regarding vessel wall biology in the course of aneurysm development. Given the small size of the vessel wall and its proximity with blood, molecular imaging of aneurysm optimally requires highly sensitive tracers with rapid blood clearance. To this end, we developed a novel hydrosoluble zwitterionic MMP inhibitor, RYM, on the basis of which a pan-MMP tracer, RYM1, was designed. Here, we describe the development and preclinical evaluation of RYM1 in comparison with RP805, a commonly used pan-MMP tracer in murine models of aneurysm. Methods: The macrocyclic hydroxamate-based pan-MMP inhibitor coupled with 6-hydrazinonicotinamide, RYM1, was synthesized and labeled with 99mTc. Radiochemical stability of 99mTc-RYM1 was evaluated by radio-high-performance liquid chromatography analysis. Tracer blood kinetics and biodistribution were compared with 99mTc-RP805 in C57BL/6J mice (n = 10). 99mTc-RYM1 binding to aneurysm and specificity were evaluated by quantitative autoradiography in apolipoprotein E-deficient (apoE-/-) mice with CaCl2-induced carotid aneurysm (n = 11). Angiotensin II-infused apoE-/- (n = 16) mice were used for small-animal SPECT/CT imaging. Aortic tissue MMP activity and macrophage marker CD68 expression were assessed by zymography and reverse-transcription polymerase chain reaction. Results: RYM1 showed nanomolar range inhibition constants for several MMPs. 99mTc-RYM1 was radiochemically stable in mouse blood for 5 h and demonstrated rapid renal clearance and lower blood levels in vivo compared with 99mTc-RP805. 99mTc-RYM1 binding to aneurysm and its specificity were shown by autoradiography in carotid aneurysm. Angiotensin II infusion in apoE-/- mice for 4 wk resulted in AAA formation in 36% (4/11) of surviving animals. In vivo 99mTc-RYM1 small-animal SPECT/CT images showed higher uptake of the tracer in AAA than nondilated aortae. Finally, aortic uptake of 99mTc-RYM1 in vivo correlated with aortic MMP activity and CD68 expression. Conclusion: The newly developed pan-MMP inhibitor-based tracer 99mTc-RYM1 displays favorable pharmacokinetics for early vascular imaging and enables specific detection of inflammation and MMP activity in aneurysm.
Collapse
Affiliation(s)
- Jakub Toczek
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; and
| | - Yunpeng Ye
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; and
| | - Kiran Gona
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; and
| | - Hye-Yeong Kim
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; and
| | - Jinah Han
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; and
| | - Mahmoud Razavian
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; and
| | - Reza Golestani
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; and
| | - Jiasheng Zhang
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; and
| | - Terence L Wu
- Yale West Campus Analytical Core, Yale University, West Haven, Connecticut
| | - Jae-Joon Jung
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; and
| | - Mehran M Sadeghi
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut .,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; and
| |
Collapse
|
43
|
Jung JJ, Razavian M, Kim HY, Ye Y, Golestani R, Toczek J, Zhang J, Sadeghi MM. Matrix metalloproteinase inhibitor, doxycycline and progression of calcific aortic valve disease in hyperlipidemic mice. Sci Rep 2016; 6:32659. [PMID: 27619752 PMCID: PMC5020643 DOI: 10.1038/srep32659] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/12/2016] [Indexed: 12/18/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is the most common cause of aortic stenosis. Currently, there is no non-invasive medical therapy for CAVD. Matrix metalloproteinases (MMPs) are upregulated in CAVD and play a role in its pathogenesis. Here, we evaluated the effect of doxycycline, a nonselective MMP inhibitor on CAVD progression in the mouse. Apolipoprotein (apo)E−/− mice (n = 20) were fed a Western diet (WD) to induce CAVD. After 3 months, half of the animals was treated with doxycycline, while the others continued WD alone. After 6 months, we evaluated the effect of doxycycline on CAVD progression by echocardiography, MMP-targeted micro single photon emission computed tomography (SPECT)/computed tomography (CT), and tissue analysis. Despite therapeutic blood levels, doxycycline had no significant effect on MMP activation, aortic valve leaflet separation or flow velocity. This lack of effect on in vivo images was confirmed on tissue analysis which showed a similar level of aortic valve gelatinase activity, and inflammation between the two groups of animals. In conclusion, doxycycline (100 mg/kg/day) had no effect on CAVD progression in apoE−/− mice with early disease. Studies with more potent and specific inhibitors are needed to establish any potential role of MMP inhibition in CAVD development and progression.
Collapse
Affiliation(s)
- Jae-Joon Jung
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| | - Mahmoud Razavian
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| | - Hye-Yeong Kim
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| | - Yunpeng Ye
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| | - Reza Golestani
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| | - Jakub Toczek
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| | - Jiasheng Zhang
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| | - Mehran M Sadeghi
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
44
|
Golestani R, Razavian M, Ye Y, Zhang J, Jung JJ, Toczek J, Gona K, Kim HY, Elias JA, Lee CG, Homer RJ, Sadeghi MM. Matrix Metalloproteinase-Targeted Imaging of Lung Inflammation and Remodeling. J Nucl Med 2016; 58:138-143. [PMID: 27469361 DOI: 10.2967/jnumed.116.176198] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/05/2016] [Indexed: 12/11/2022] Open
Abstract
Imaging techniques for detection of molecular and cellular processes that precede or accompany lung diseases are needed. Matrix metalloproteinases (MMPs) play key roles in the development of pulmonary pathology. The objective of this study was to investigate the feasibility of in vivo MMP-targeted molecular imaging for detection of lung inflammation and remodeling. METHODS Lung-specific IL-13 transgenic (Club cell 10-kDa protein [CC10]-IL-13 Tg) mice and wild-type littermates were used in this study. Lung structure, gene expression, and MMP activity were assessed by histology, real-time reverse transcription polymerase chain reaction, Western blotting, and zymography. MMP activation was imaged by in vivo small-animal SPECT/CT followed by ex vivo planar imaging. Signal specificity was addressed using a control tracer. The correlation between in vivo MMP signal and gene expression was addressed. RESULTS CC10-IL-13 Tg mice developed considerable pulmonary tissue remodeling and inflammation. CD68, MMP-12, and MMP-13 were significantly higher in CC10-IL-13 Tg lungs. On in vivo small-animal SPECT/CT and ex vivo planar images, the MMP signal was significantly higher in the lungs of CC10-IL-13 Tg mice than wild-type animals. Furthermore, a nonbinding analog tracer showed significantly lower accumulation in CC10-IL-13 Tg lungs relative to the specific tracer. There was a significant correlation between small-animal SPECT/CT-derived MMP signal and CD68 expression in the lungs (r = 0.70, P < 0.01). CONCLUSION Small-animal SPECT/CT-based MMP-targeted imaging of the lungs is feasible and reflects pulmonary inflammation. If validated in humans, molecular imaging of inflammation and remodeling can potentially help early diagnosis and monitoring of the effects of therapeutic interventions in pulmonary diseases.
Collapse
Affiliation(s)
- Reza Golestani
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut.,VA Connecticut Healthcare System, West Haven, Connecticut
| | - Mahmoud Razavian
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut.,VA Connecticut Healthcare System, West Haven, Connecticut
| | - Yunpeng Ye
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut.,VA Connecticut Healthcare System, West Haven, Connecticut
| | - Jiasheng Zhang
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut.,VA Connecticut Healthcare System, West Haven, Connecticut
| | - Jae-Joon Jung
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut.,VA Connecticut Healthcare System, West Haven, Connecticut
| | - Jakub Toczek
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut.,VA Connecticut Healthcare System, West Haven, Connecticut
| | - Kiran Gona
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut.,VA Connecticut Healthcare System, West Haven, Connecticut
| | - Hye-Yeong Kim
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut.,VA Connecticut Healthcare System, West Haven, Connecticut
| | | | | | - Robert J Homer
- VA Connecticut Healthcare System, West Haven, Connecticut.,Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Mehran M Sadeghi
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut .,VA Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
45
|
Mansour JM, Lee Z, Welter JF. Nondestructive Techniques to Evaluate the Characteristics and Development of Engineered Cartilage. Ann Biomed Eng 2016; 44:733-49. [PMID: 26817458 PMCID: PMC4792725 DOI: 10.1007/s10439-015-1535-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/12/2015] [Indexed: 12/16/2022]
Abstract
In this review, methods for evaluating the properties of tissue engineered (TE) cartilage are described. Many of these have been developed for evaluating properties of native and osteoarthritic articular cartilage. However, with the increasing interest in engineering cartilage, specialized methods are needed for nondestructive evaluation of tissue while it is developing and after it is implanted. Such methods are needed, in part, due to the large inter- and intra-donor variability in the performance of the cellular component of the tissue, which remains a barrier to delivering reliable TE cartilage for implantation. Using conventional destructive tests, such variability makes it near-impossible to predict the timing and outcome of the tissue engineering process at the level of a specific piece of engineered tissue and also makes it difficult to assess the impact of changing tissue engineering regimens. While it is clear that the true test of engineered cartilage is its performance after it is implanted, correlation of pre and post implantation properties determined non-destructively in vitro and/or in vivo with performance should lead to predictive methods to improve quality-control and to minimize the chances of implanting inferior tissue.
Collapse
Affiliation(s)
- Joseph M Mansour
- Departments of Mechanical and Aerospace Engineering, Case Western Reserve University, 2123 Martin Luther King Jr. Drive, Glennan Building Room 616A, Cleveland, OH, 44106, USA.
| | - Zhenghong Lee
- Radiology and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Jean F Welter
- Biology (Skeletal Research Center), Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
46
|
Lebel R, Lepage M. A comprehensive review on controls in molecular imaging: lessons from MMP-2 imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 9:187-210. [PMID: 24700747 DOI: 10.1002/cmmi.1555] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/11/2013] [Accepted: 06/19/2013] [Indexed: 12/31/2022]
Abstract
Metalloproteinases (MMPs), including MMP-2, play critical roles in tissue remodeling and are involved in a large array of pathologies, including cancer, arthritis and atherosclerosis. Their prognostic value warranted a large investment or resources in the development of noninvasive detection methods, based on probes for many current clinical and pre-clinical imaging modalities. However, the potential of imaging techniques is only matched by the complexity of the data they generate. This complexity must be properly assessed and accounted for in the early steps of probe design and testing in order to accurately determine the efficacy and efficiency of an imaging strategy. This review proposes basic rules for the evaluation of novel probes by addressing the specific case of MMP targeted probes.
Collapse
Affiliation(s)
- Réjean Lebel
- Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | |
Collapse
|
47
|
Zinnhardt B, Viel T, Wachsmuth L, Vrachimis A, Wagner S, Breyholz HJ, Faust A, Hermann S, Kopka K, Faber C, Dollé F, Pappata S, Planas AM, Tavitian B, Schäfers M, Sorokin LM, Kuhlmann MT, Jacobs AH. Multimodal imaging reveals temporal and spatial microglia and matrix metalloproteinase activity after experimental stroke. J Cereb Blood Flow Metab 2015; 35:1711-21. [PMID: 26126867 PMCID: PMC4635244 DOI: 10.1038/jcbfm.2015.149] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/11/2015] [Accepted: 05/15/2015] [Indexed: 12/12/2022]
Abstract
Stroke is the most common cause of death and disability from neurologic disease in humans. Activation of microglia and matrix metalloproteinases (MMPs) is involved in positively and negatively affecting stroke outcome. Novel, noninvasive, multimodal imaging methods visualizing microglial and MMP alterations were employed. The spatio-temporal dynamics of these parameters were studied in relation to blood flow changes. Micro positron emission tomography (μPET) using [(18)F]BR-351 showed MMP activity within the first days after transient middle cerebral artery occlusion (tMCAo), followed by increased [(18)F]DPA-714 uptake as a marker for microglia activation with a maximum at 14 days after tMCAo. The inflammatory response was spatially located in the infarct core and in adjacent (penumbral) tissue. For the first time, multimodal imaging based on PET, single photon emission computed tomography, and magnetic resonance imaging revealed insight into the spatio-temporal distribution of critical parameters of poststroke inflammation. This allows further evaluation of novel treatment paradigms targeting the postischemic inflammation.
Collapse
Affiliation(s)
- Bastian Zinnhardt
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms University Münster, Münster, Germany
| | - Thomas Viel
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms University Münster, Münster, Germany.,Paris Centre de Recherche Cardiovasculaire (PARC), Paris, France
| | - Lydia Wachsmuth
- Department of Clinical Radiology of the University Hospital, Westfälische Wilhelms University Münster, Münster, Germany
| | - Alexis Vrachimis
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms University Münster, Münster, Germany.,Department of Nuclear Medicine of the University Hospital, Westfälische Wilhelms University Münster, Münster, Germany
| | - Stefan Wagner
- Department of Nuclear Medicine of the University Hospital, Westfälische Wilhelms University Münster, Münster, Germany
| | - Hans-Jörg Breyholz
- Department of Nuclear Medicine of the University Hospital, Westfälische Wilhelms University Münster, Münster, Germany
| | - Andreas Faust
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms University Münster, Münster, Germany.,Department of Nuclear Medicine of the University Hospital, Westfälische Wilhelms University Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Westfälische Wilhelms University Münster, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms University Münster, Münster, Germany.,Department of Nuclear Medicine of the University Hospital, Westfälische Wilhelms University Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Westfälische Wilhelms University Münster, Münster, Germany
| | - Klaus Kopka
- Department of Nuclear Medicine of the University Hospital, Westfälische Wilhelms University Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Westfälische Wilhelms University Münster, Münster, Germany
| | - Cornelius Faber
- Department of Clinical Radiology of the University Hospital, Westfälische Wilhelms University Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Westfälische Wilhelms University Münster, Münster, Germany
| | - Frédéric Dollé
- Service Hospitalier Frédéric Joliot, Institut d'Imagerie BioMédicale, CEA, Orsay, France
| | - Sabina Pappata
- Institute of Biostructure and Bioimaging, CNR, Naples, Italy
| | - Anna M Planas
- Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms University Münster, Münster, Germany.,Department of Nuclear Medicine of the University Hospital, Westfälische Wilhelms University Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Westfälische Wilhelms University Münster, Münster, Germany
| | - Lydia M Sorokin
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Westfälische Wilhelms University Münster, Münster, Germany.,Institute of Physiological Chemistry and Pathobiochemistry, Westfälische Wilhelms University Münster, Münster, Germany
| | - Michael T Kuhlmann
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms University Münster, Münster, Germany
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms University Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Westfälische Wilhelms University Münster, Münster, Germany.,Department of Geriatrics, Johanniter Hospital, Evangelische Kliniken, Bonn, Germany
| |
Collapse
|
48
|
Affiliation(s)
- David E Sosnovik
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (D.E.S.) Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA (D.E.S.)
| |
Collapse
|
49
|
Jung JJ, Razavian M, Challa AA, Nie L, Golestani R, Zhang J, Ye Y, Russell KS, Robinson SP, Heistad DD, Sadeghi MM. Multimodality and molecular imaging of matrix metalloproteinase activation in calcific aortic valve disease. J Nucl Med 2015; 56:933-8. [PMID: 25908827 DOI: 10.2967/jnumed.114.152355] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 04/06/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Calcific aortic valve disease (CAVD) is the most common cause of aortic stenosis. Matrix metalloproteinases (MMPs) are upregulated in CAVD and contribute to valvular remodeling and calcification. We investigated the feasibility and correlates of MMP-targeted molecular imaging for detection of valvular biology in CAVD. METHODS Apolipoprotein E-deficient (apoE(-/-)) mice were fed a Western diet (WD) for 3, 6, and 9 mo (n = 108) to induce CAVD. Wild-type mice served as the control group (n = 24). The development of CAVD was tracked with CT, echocardiography, MMP-targeted small-animal SPECT imaging using (99m)Tc-RP805, and histologic analysis. RESULTS Key features of CAVD—leaflet thickening and valvular calcification—were noted after 6 mo of WD and were more pronounced after 9 mo. These findings were associated with a significant reduction in aortic valve leaflet separation and a significant increase in transaortic valve flow velocity. On in vivo SPECT/CT images, MMP signal in the aortic valve area was significantly higher at 6 mo in WD mice than in control mice and decreased thereafter. The specificity of the signal was demonstrated by blocking, using an excess of nonlabeled precursor. Similar to MMP signal, MMP activity as determined by in situ zymography and valvular inflammation by CD68 staining were maximal at 6 mo. In vivo (99m)Tc-RP805 uptake correlated significantly with MMP activity (R(2) = 0.94, P < 0.05) and CD68 expression (R(2) = 0.98, P < 0.01) in CAVD. CONCLUSION MMP-targeted imaging detected valvular inflammation and remodeling in a murine model of CAVD. If this ability is confirmed in humans, the technique may provide a tool for tracking the effect of emerging medical therapeutic interventions and for predicting outcome in CAVD.
Collapse
Affiliation(s)
- Jae-Joon Jung
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut VA Connecticut Healthcare Systems, West Haven, Connecticut
| | - Mahmoud Razavian
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut VA Connecticut Healthcare Systems, West Haven, Connecticut
| | - Azariyas A Challa
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut VA Connecticut Healthcare Systems, West Haven, Connecticut
| | - Lei Nie
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut VA Connecticut Healthcare Systems, West Haven, Connecticut
| | - Reza Golestani
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut VA Connecticut Healthcare Systems, West Haven, Connecticut
| | - Jiasheng Zhang
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut VA Connecticut Healthcare Systems, West Haven, Connecticut
| | - Yunpeng Ye
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut VA Connecticut Healthcare Systems, West Haven, Connecticut
| | - Kerry S Russell
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut
| | | | - Donald D Heistad
- Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Mehran M Sadeghi
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut VA Connecticut Healthcare Systems, West Haven, Connecticut
| |
Collapse
|
50
|
Golestani R, Razavian M, Nie L, Zhang J, Jung JJ, Ye Y, de Roo M, Hilgerink K, Liu C, Robinson SP, Sadeghi MM. Imaging vessel wall biology to predict outcome in abdominal aortic aneurysm. Circ Cardiovasc Imaging 2015; 8:e002471. [PMID: 25550400 PMCID: PMC4284949 DOI: 10.1161/circimaging.114.002471] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) rupture risk is currently determined based on size and symptoms. This approach does not address the rupture risk associated with small aneurysms. Given the role of matrix metalloproteinases (MMPs) in AAA weakening and rupture, we investigated the potential of MMP-targeted imaging for detection of aneurysm biology and prediction of outcome in a mouse model of AAA with spontaneous rupture. METHODS AND RESULTS Fifteen-week-old mice (n=66) were infused with angiotensin II for 4 weeks to induce AAA. Saline-infused mice (n=16) served as control. The surviving animals underwent in vivo MMP-targeted micro-single photon emission computed tomographic/computed tomographic imaging, using RP805, a technetium-99m-labeled MMP-specific tracer, followed by ex vivo planar imaging, morphometry, and gene expression analysis. RP805 uptake in suprarenal aorta on micro-single photon emission computed tomographic images was significantly higher in animals with AAA when compared with angiotensin II-infused animals without AAA or control animals. CD68 expression and MMP activity were increased in AAA, and significant correlations were noted between RP805 uptake and CD68 expression or MMP activity but not aortic diameter. A group of angiotensin II-infused animals (n=24) were imaged at 1 week and were followed up for additional 3 weeks. RP805 uptake in suprarenal aorta at 1 week was significantly higher in mice that later developed rupture or AAA. Furthermore, tracer uptake at 1 week correlated with aortic diameter at 4 weeks. CONCLUSIONS MMP-targeted imaging reflects vessel wall inflammation and can predict future aortic expansion or rupture in murine AAA. If confirmed in humans, this may provide a new paradigm for AAA risk stratification.
Collapse
MESH Headings
- Angiotensin II
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Aorta, Abdominal/diagnostic imaging
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/diagnosis
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Rupture/diagnosis
- Aortic Rupture/etiology
- Aortic Rupture/metabolism
- Aortography
- Biomarkers/metabolism
- Disease Models, Animal
- Disease Progression
- Enzyme Activation
- Feasibility Studies
- Male
- Matrix Metalloproteinases/metabolism
- Mice, Inbred C57BL
- Mice, Transgenic
- Molecular Imaging/methods
- Multimodal Imaging
- Predictive Value of Tests
- Radiopharmaceuticals
- Risk Assessment
- Risk Factors
- Time Factors
- Tomography, Emission-Computed, Single-Photon
- Tomography, X-Ray Computed
Collapse
Affiliation(s)
- Reza Golestani
- From the Section of Cardiovascular Medicine and Cardiovascular Research Center (R.G., M.R., L.N., J.Z., J.-J.J., Y.Y, M.d.R., K.H., M.M.S.), Department of Diagnostic Radiology (C.L.), Yale University School of Medicine, New Haven, CT; VA Connecticut Healthcare System, West Haven (R.G., M.R., L.N., J.Z., J.-J.J., Y.Y, M.d.R., K.H., M.M.S.); and Lantheus Medical Imaging, North Billerica, MA (S.P.R.)
| | - Mahmoud Razavian
- From the Section of Cardiovascular Medicine and Cardiovascular Research Center (R.G., M.R., L.N., J.Z., J.-J.J., Y.Y, M.d.R., K.H., M.M.S.), Department of Diagnostic Radiology (C.L.), Yale University School of Medicine, New Haven, CT; VA Connecticut Healthcare System, West Haven (R.G., M.R., L.N., J.Z., J.-J.J., Y.Y, M.d.R., K.H., M.M.S.); and Lantheus Medical Imaging, North Billerica, MA (S.P.R.)
| | - Lei Nie
- From the Section of Cardiovascular Medicine and Cardiovascular Research Center (R.G., M.R., L.N., J.Z., J.-J.J., Y.Y, M.d.R., K.H., M.M.S.), Department of Diagnostic Radiology (C.L.), Yale University School of Medicine, New Haven, CT; VA Connecticut Healthcare System, West Haven (R.G., M.R., L.N., J.Z., J.-J.J., Y.Y, M.d.R., K.H., M.M.S.); and Lantheus Medical Imaging, North Billerica, MA (S.P.R.)
| | - Jiasheng Zhang
- From the Section of Cardiovascular Medicine and Cardiovascular Research Center (R.G., M.R., L.N., J.Z., J.-J.J., Y.Y, M.d.R., K.H., M.M.S.), Department of Diagnostic Radiology (C.L.), Yale University School of Medicine, New Haven, CT; VA Connecticut Healthcare System, West Haven (R.G., M.R., L.N., J.Z., J.-J.J., Y.Y, M.d.R., K.H., M.M.S.); and Lantheus Medical Imaging, North Billerica, MA (S.P.R.)
| | - Jae-Joon Jung
- From the Section of Cardiovascular Medicine and Cardiovascular Research Center (R.G., M.R., L.N., J.Z., J.-J.J., Y.Y, M.d.R., K.H., M.M.S.), Department of Diagnostic Radiology (C.L.), Yale University School of Medicine, New Haven, CT; VA Connecticut Healthcare System, West Haven (R.G., M.R., L.N., J.Z., J.-J.J., Y.Y, M.d.R., K.H., M.M.S.); and Lantheus Medical Imaging, North Billerica, MA (S.P.R.)
| | - Yunpeng Ye
- From the Section of Cardiovascular Medicine and Cardiovascular Research Center (R.G., M.R., L.N., J.Z., J.-J.J., Y.Y, M.d.R., K.H., M.M.S.), Department of Diagnostic Radiology (C.L.), Yale University School of Medicine, New Haven, CT; VA Connecticut Healthcare System, West Haven (R.G., M.R., L.N., J.Z., J.-J.J., Y.Y, M.d.R., K.H., M.M.S.); and Lantheus Medical Imaging, North Billerica, MA (S.P.R.)
| | - Michelle de Roo
- From the Section of Cardiovascular Medicine and Cardiovascular Research Center (R.G., M.R., L.N., J.Z., J.-J.J., Y.Y, M.d.R., K.H., M.M.S.), Department of Diagnostic Radiology (C.L.), Yale University School of Medicine, New Haven, CT; VA Connecticut Healthcare System, West Haven (R.G., M.R., L.N., J.Z., J.-J.J., Y.Y, M.d.R., K.H., M.M.S.); and Lantheus Medical Imaging, North Billerica, MA (S.P.R.)
| | - Koen Hilgerink
- From the Section of Cardiovascular Medicine and Cardiovascular Research Center (R.G., M.R., L.N., J.Z., J.-J.J., Y.Y, M.d.R., K.H., M.M.S.), Department of Diagnostic Radiology (C.L.), Yale University School of Medicine, New Haven, CT; VA Connecticut Healthcare System, West Haven (R.G., M.R., L.N., J.Z., J.-J.J., Y.Y, M.d.R., K.H., M.M.S.); and Lantheus Medical Imaging, North Billerica, MA (S.P.R.)
| | - Chi Liu
- From the Section of Cardiovascular Medicine and Cardiovascular Research Center (R.G., M.R., L.N., J.Z., J.-J.J., Y.Y, M.d.R., K.H., M.M.S.), Department of Diagnostic Radiology (C.L.), Yale University School of Medicine, New Haven, CT; VA Connecticut Healthcare System, West Haven (R.G., M.R., L.N., J.Z., J.-J.J., Y.Y, M.d.R., K.H., M.M.S.); and Lantheus Medical Imaging, North Billerica, MA (S.P.R.)
| | - Simon P Robinson
- From the Section of Cardiovascular Medicine and Cardiovascular Research Center (R.G., M.R., L.N., J.Z., J.-J.J., Y.Y, M.d.R., K.H., M.M.S.), Department of Diagnostic Radiology (C.L.), Yale University School of Medicine, New Haven, CT; VA Connecticut Healthcare System, West Haven (R.G., M.R., L.N., J.Z., J.-J.J., Y.Y, M.d.R., K.H., M.M.S.); and Lantheus Medical Imaging, North Billerica, MA (S.P.R.)
| | - Mehran M Sadeghi
- From the Section of Cardiovascular Medicine and Cardiovascular Research Center (R.G., M.R., L.N., J.Z., J.-J.J., Y.Y, M.d.R., K.H., M.M.S.), Department of Diagnostic Radiology (C.L.), Yale University School of Medicine, New Haven, CT; VA Connecticut Healthcare System, West Haven (R.G., M.R., L.N., J.Z., J.-J.J., Y.Y, M.d.R., K.H., M.M.S.); and Lantheus Medical Imaging, North Billerica, MA (S.P.R.).
| |
Collapse
|