1
|
Habecker BA, Bers DM, Birren SJ, Chang R, Herring N, Kay MW, Li D, Mendelowitz D, Mongillo M, Montgomery JM, Ripplinger CM, Tampakakis E, Winbo A, Zaglia T, Zeltner N, Paterson DJ. Molecular and cellular neurocardiology in heart disease. J Physiol 2024. [PMID: 38778747 DOI: 10.1113/jp284739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
This paper updates and builds on a previous White Paper in this journal that some of us contributed to concerning the molecular and cellular basis of cardiac neurobiology of heart disease. Here we focus on recent findings that underpin cardiac autonomic development, novel intracellular pathways and neuroplasticity. Throughout we highlight unanswered questions and areas of controversy. Whilst some neurochemical pathways are already demonstrating prognostic viability in patients with heart failure, we also discuss the opportunity to better understand sympathetic impairment by using patient specific stem cells that provides pathophysiological contextualization to study 'disease in a dish'. Novel imaging techniques and spatial transcriptomics are also facilitating a road map for target discovery of molecular pathways that may form a therapeutic opportunity to treat cardiac dysautonomia.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Chemical Physiology & Biochemistry, Department of Medicine Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | - Susan J Birren
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Rui Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Johanna M Montgomery
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | | | - Annika Winbo
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nadja Zeltner
- Departments of Biochemistry and Molecular Biology, Cell Biology, and Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Eshraghi R, Shafie D, Raisi A, Goleij P, Mirzaei H. Circular RNAs: a small piece in the heart failure puzzle. Funct Integr Genomics 2024; 24:102. [PMID: 38760573 DOI: 10.1007/s10142-024-01386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/15/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Cardiovascular disease, specifically heart failure (HF), remains a significant concern in the realm of healthcare, necessitating the development of new treatments and biomarkers. The RNA family consists of various subgroups, including microRNAs, PIWI-interacting RNAs (piRAN) and long non-coding RNAs, which have shown potential in advancing personalized healthcare for HF patients. Recent research suggests that circular RNAs, a lesser-known subgroup of RNAs, may offer a novel set of targets and biomarkers for HF. This review will discuss the biogenesis of circular RNAs, their unique characteristics relevant to HF, their role in heart function, and their potential use as biomarkers in the bloodstream. Furthermore, future research directions in this field will be outlined. The stability of exosomal circRNAs makes them suitable as biomarkers, pathogenic regulators, and potential treatments for cardiovascular diseases such as atherosclerosis, acute coronary syndrome, ischemia/reperfusion injury, HF, and peripheral artery disease. Herein, we summarized the role of circular RNAs and their exosomal forms in HF diseases.
Collapse
Affiliation(s)
- Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Davood Shafie
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Raisi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran.
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Oluklu D, Menekse Beser D, Uyan Hendem D, Yildirim M, Tugrul Ersak D, Turgut E, Sahin D. The evaluation of fetal interventricular septum with M-mode and spectral tissue Doppler imaging in gestational diabetes mellitus: a case-control study. J Perinat Med 2024; 52:239-245. [PMID: 37853744 DOI: 10.1515/jpm-2023-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVES To demonstrate possible functional changes in the frequently affected fetal interventricular septum (IVS) with spectral tissue Doppler imaging (TDI) and M-mode imaging to compare gestational diabetes mellitus (GDM) and control groups. METHODS A total of 63 pregnant women with GDM, 30 on diet (A1 GDM) and 33 on treated with insulin (A2 GDM), and 63 healthy pregnant women randomly selected and matched to the case group in the control group were included. RESULTS The GDM fetuses had significantly thickened IVS, increased early diastole (E'), atrial contraction (A'), systole (S'), higher myocardial performance index (MPI'), prolonged isovolumetric relaxation time (IVRT'), shortened ejection time (ET'), and decreased septal annular plane systolic excursion (SAPSE) than the controls. The A2 GDM group fetuses had significantly thickened IVS, increased S' and shortened ET' than the A1 GDM group. In the GDM group, we found a significantly positive low correlation between glycated hemoglobin levels and maternal serum fasting glucose and one-hour postprandial glucose with fetal IVS thickness. We demonstrated a significantly negative low correlation between maternal serum one-hour postprandial glucose, glycated hemoglobin levels, and gestational weight gain with fetal IVS ET'. CONCLUSIONS Fetal IVS diastolic and systolic functions were altered in the GDM group compared to controls, and systolic functions were altered in A2 GDM compared to A1 GDM. This may alert clinicians to possible cardiovascular diseases in the postnatal life, and early preventive strategies and long-term lifestyle changes may provide protection in fetuses with GDM.
Collapse
Affiliation(s)
- Deniz Oluklu
- Department of Obstetrics and Gynecology, Division of Perinatology, Turkish Ministry of Health, Ankara City Hospital, Ankara, Türkiye
| | - Dilek Menekse Beser
- Department of Obstetrics and Gynecology, Division of Perinatology, Turkish Ministry of Health, Ankara City Hospital, Ankara, Türkiye
| | - Derya Uyan Hendem
- Department of Obstetrics and Gynecology, Division of Perinatology, Turkish Ministry of Health, Ankara City Hospital, Ankara, Türkiye
| | - Muradiye Yildirim
- Department of Obstetrics and Gynecology, Division of Perinatology, Turkish Ministry of Health, Ankara City Hospital, Ankara, Türkiye
| | - Duygu Tugrul Ersak
- Department of Obstetrics and Gynecology, Division of Perinatology, Turkish Ministry of Health, Ankara City Hospital, Ankara, Türkiye
| | - Ezgi Turgut
- Department of Obstetrics and Gynecology, Division of Perinatology, Turkish Ministry of Health, Ankara City Hospital, Ankara, Türkiye
| | - Dilek Sahin
- Department of Obstetrics and Gynecology, Division of Perinatology, Turkish Ministry of Health, Ankara City Hospital, University of Health Sciences, Ankara, Türkiye
| |
Collapse
|
4
|
Elia A, Mohsin S, Khan M. Cardiomyocyte Ploidy, Metabolic Reprogramming and Heart Repair. Cells 2023; 12:1571. [PMID: 37371041 DOI: 10.3390/cells12121571] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 06/29/2023] Open
Abstract
The adult heart is made up of cardiomyocytes (CMs) that maintain pump function but are unable to divide and form new myocytes in response to myocardial injury. In contrast, the developmental cardiac tissue is made up of proliferative CMs that regenerate injured myocardium. In mammals, CMs during development are diploid and mononucleated. In response to cardiac maturation, CMs undergo polyploidization and binucleation associated with CM functional changes. The transition from mononucleation to binucleation coincides with unique metabolic changes and shift in energy generation. Recent studies provide evidence that metabolic reprogramming promotes CM cell cycle reentry and changes in ploidy and nucleation state in the heart that together enhances cardiac structure and function after injury. This review summarizes current literature regarding changes in CM ploidy and nucleation during development, maturation and in response to cardiac injury. Importantly, how metabolism affects CM fate transition between mononucleation and binucleation and its impact on cell cycle progression, proliferation and ability to regenerate the heart will be discussed.
Collapse
Affiliation(s)
- Andrea Elia
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sadia Mohsin
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Mohsin Khan
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
5
|
Garrud TAC, Teulings NEWD, Niu Y, Skeffington KL, Beck C, Itani N, Conlon FG, Botting KJ, Nicholas LM, Tong W, Derks JB, Ozanne SE, Giussani DA. Molecular mechanisms underlying adverse effects of dexamethasone and betamethasone in the developing cardiovascular system. FASEB J 2023; 37:e22887. [PMID: 37132324 PMCID: PMC10946807 DOI: 10.1096/fj.202200676rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 05/04/2023]
Abstract
Antenatal glucocorticoids accelerate fetal lung maturation and reduce mortality in preterm babies but can trigger adverse effects on the cardiovascular system. The mechanisms underlying off-target effects of the synthetic glucocorticoids mostly used, Dexamethasone (Dex) and Betamethasone (Beta), are unknown. We investigated effects of Dex and Beta on cardiovascular structure and function, and underlying molecular mechanism using the chicken embryo, an established model system to isolate effects of therapy on the developing heart and vasculature, independent of effects on the mother or placenta. Fertilized eggs were treated with Dex (0.1 mg kg-1 ), Beta (0.1 mg kg-1 ), or water vehicle (Control) on embryonic day 14 (E14, term = 21 days). At E19, biometry, cardiovascular function, stereological, and molecular analyses were determined. Both glucocorticoids promoted growth restriction, with Beta being more severe. Beta compared with Dex induced greater cardiac diastolic dysfunction and also impaired systolic function. While Dex triggered cardiomyocyte hypertrophy, Beta promoted a decrease in cardiomyocyte number. Molecular changes of Dex on the developing heart included oxidative stress, activation of p38, and cleaved caspase 3. In contrast, impaired GR downregulation, activation of p53, p16, and MKK3 coupled with CDK2 transcriptional repression linked the effects of Beta on cardiomyocyte senescence. Beta but not Dex impaired NO-dependent relaxation of peripheral resistance arteries. Beta diminished contractile responses to potassium and phenylephrine, but Dex enhanced peripheral constrictor reactivity to endothelin-1. We conclude that Dex and Beta have direct differential detrimental effects on the developing cardiovascular system.
Collapse
Affiliation(s)
- Tessa A. C. Garrud
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Noor E. W. D. Teulings
- Institute of Metabolic Science‐Metabolic Research Laboratories, MRC Metabolic Diseases UnitUniversity of Cambridge, Addenbrooke's HospitalCambridgeUK
| | - Youguo Niu
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Katie L. Skeffington
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Christian Beck
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Nozomi Itani
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Fiona G. Conlon
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Kimberley J. Botting
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Lisa M. Nicholas
- Institute of Metabolic Science‐Metabolic Research Laboratories, MRC Metabolic Diseases UnitUniversity of Cambridge, Addenbrooke's HospitalCambridgeUK
| | - Wen Tong
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Jan B. Derks
- Department of Perinatal MedicineUniversity Medical CentreUtrechtNetherlands
| | - Susan E. Ozanne
- Institute of Metabolic Science‐Metabolic Research Laboratories, MRC Metabolic Diseases UnitUniversity of Cambridge, Addenbrooke's HospitalCambridgeUK
- BHF Cardiovascular Centre for Research ExcellenceUniversity of CambridgeCambridgeUK
- Strategic Research Initiative in ReproductionUniversity of CambridgeCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Dino A. Giussani
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- BHF Cardiovascular Centre for Research ExcellenceUniversity of CambridgeCambridgeUK
- Strategic Research Initiative in ReproductionUniversity of CambridgeCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| |
Collapse
|
6
|
Sun W, Xu J, Wang L, Jiang Y, Cui J, Su X, Yang F, Tian L, Si Z, Xing Y. Non-coding RNAs in cancer therapy-induced cardiotoxicity: Mechanisms, biomarkers, and treatments. Front Cardiovasc Med 2022; 9:946137. [PMID: 36082126 PMCID: PMC9445363 DOI: 10.3389/fcvm.2022.946137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/28/2022] [Indexed: 02/06/2023] Open
Abstract
As a result of ongoing breakthroughs in cancer therapy, cancer patients' survival rates have grown considerably. However, cardiotoxicity has emerged as the most dangerous toxic side effect of cancer treatment, negatively impacting cancer patients' prognosis. In recent years, the link between non-coding RNAs (ncRNAs) and cancer therapy-induced cardiotoxicity has received much attention and investigation. NcRNAs are non-protein-coding RNAs that impact gene expression post-transcriptionally. They include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). In several cancer treatments, such as chemotherapy, radiotherapy, and targeted therapy-induced cardiotoxicity, ncRNAs play a significant role in the onset and progression of cardiotoxicity. This review focuses on the mechanisms of ncRNAs in cancer therapy-induced cardiotoxicity, including apoptosis, mitochondrial damage, oxidative stress, DNA damage, inflammation, autophagy, aging, calcium homeostasis, vascular homeostasis, and fibrosis. In addition, this review explores potential ncRNAs-based biomarkers and therapeutic strategies, which may help to convert ncRNAs research into clinical practice in the future for early detection and improvement of cancer therapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Wanli Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juping Xu
- The Second People's Hospital of Jiaozuo, Jiaozuo, China
| | - Li Wang
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, China
| | - Yuchen Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingrun Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Tian
- Beijing University of Chinese Medicine, Beijing, China
| | - Zeyu Si
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Taiyuan, China
- Zeyu Si
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanwei Xing
| |
Collapse
|
7
|
Hao L, Ma J, Wu F, Ma X, Qian M, Sheng W, Yan T, Tang N, Jiang X, Zhang B, Xiao D, Qian Y, Zhang J, Jiang N, Zhou W, Chen W, Ma D, Huang G. WDR62 variants contribute to congenital heart disease by inhibiting cardiomyocyte proliferation. Clin Transl Med 2022; 12:e941. [PMID: 35808830 PMCID: PMC9270576 DOI: 10.1002/ctm2.941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background Congenital heart disease (CHD) is the most common birth defect and has high heritability. Although some susceptibility genes have been identified, the genetic basis underlying the majority of CHD cases is still undefined. Methods A total of 1320 unrelated CHD patients were enrolled in our study. Exome‐wide association analysis between 37 tetralogy of Fallot (TOF) patients and 208 Han Chinese controls from the 1000 Genomes Project was performed to identify the novel candidate gene WD repeat‐containing protein 62 (WDR62). WDR62 variants were searched in another expanded set of 200 TOF patients by Sanger sequencing. Rescue experiments in zebrafish were conducted to observe the effects of WDR62 variants. The roles of WDR62 in heart development were examined in mouse models with Wdr62 deficiency. WDR62 variants were investigated in an additional 1083 CHD patients with similar heart phenotypes to knockout mice by multiplex PCR‐targeting sequencing. The cellular phenotypes of WDR62 deficiency and variants were tested in cardiomyocytes, and the molecular mechanisms were preliminarily explored by RNA‐seq and co‐immunoprecipitation. Results Seven WDR62 coding variants were identified in the 237 TOF patients and all were indicated to be loss of function variants. A total of 25 coding and 22 non‐coding WDR62 variants were identified in 80 (6%) of the 1320 CHD cases sequenced, with a higher proportion of WDR62 variation (8%) found in the ventricular septal defect (VSD) cohort. WDR62 deficiency resulted in a series of heart defects affecting the outflow tract and right ventricle in mouse models, including VSD as the major abnormality. Cell cycle arrest and an increased number of cells with multipolar spindles that inhibited proliferation were observed in cardiomyocytes with variants or knockdown of WDR62. WDR62 deficiency weakened the association between WDR62 and the cell cycle‐regulated kinase AURKA on spindle poles, reduced the phosphorylation of AURKA, and decreased expression of target genes related to cell cycle and spindle assembly shared by WDR62 and AURKA. Conclusions WDR62 was identified as a novel susceptibility gene for CHD with high variant frequency. WDR62 was shown to participate in the cardiac development by affecting spindle assembly and cell cycle pathway in cardiomyocytes.
Collapse
Affiliation(s)
- Lili Hao
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jing Ma
- ENT institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Feizhen Wu
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaojing Ma
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Maoxiang Qian
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Wei Sheng
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Tizhen Yan
- Department of Medical Genetics, Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Ning Tang
- Department of Medical Genetics, Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Xin Jiang
- Medical Laboratory of Nantong ZhongKe, Nantong, Jiangsu
| | - Bowen Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Deyong Xiao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanyan Qian
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenhao Zhou
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Weicheng Chen
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Duan Ma
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guoying Huang
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.,Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
8
|
Bogush N, Tan L, Naqvi E, Calvert JW, Graham RM, Taylor WR, Naqvi N, Husain A. Remuscularization with triiodothyronine and β 1-blocker therapy reverses post-ischemic left ventricular dysfunction and adverse remodeling. Sci Rep 2022; 12:8852. [PMID: 35614155 PMCID: PMC9132945 DOI: 10.1038/s41598-022-12723-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
Abstract
Renewal of the myocardium by preexisting cardiomyocytes is a powerful strategy for restoring the architecture and function of hearts injured by myocardial infarction. To advance this strategy, we show that combining two clinically approved drugs, but neither alone, muscularizes the heart through cardiomyocyte proliferation. Specifically, in adult murine cardiomyocytes, metoprolol, a cardioselective β1-adrenergic receptor blocker, when given with triiodothyronine (T3, a thyroid hormone) accentuates the ability of T3 to stimulate ERK1/2 phosphorylation and proliferative signaling by inhibiting expression of the nuclear phospho-ERK1/2-specific phosphatase, dual-specificity phosphatase-5. While short-duration metoprolol plus T3 therapy generates new heart muscle in healthy mice, in mice with myocardial infarction-induced left ventricular dysfunction and pathological remodeling, it remuscularizes the heart, restores contractile function and reverses chamber dilatation; outcomes that are enduring. If the beneficial effects of metoprolol plus T3 are replicated in humans, this therapeutic strategy has the potential to definitively address ischemic heart failure.
Collapse
Affiliation(s)
- Nikolay Bogush
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 3311 WMRB, 323 WMRB, 101 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Lin Tan
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 3311 WMRB, 323 WMRB, 101 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Emmen Naqvi
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 3311 WMRB, 323 WMRB, 101 Woodruff Circle, Atlanta, GA, 30322, USA
| | - John W Calvert
- Department of Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Robert M Graham
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
| | - W Robert Taylor
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 3311 WMRB, 323 WMRB, 101 Woodruff Circle, Atlanta, GA, 30322, USA
- Cardiology Division, Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Nawazish Naqvi
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 3311 WMRB, 323 WMRB, 101 Woodruff Circle, Atlanta, GA, 30322, USA.
| | - Ahsan Husain
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 3311 WMRB, 323 WMRB, 101 Woodruff Circle, Atlanta, GA, 30322, USA.
| |
Collapse
|
9
|
Long D, Chen C, Li W, Peng W, Li D, Zhou R, Dang X. Cardiac Expression of Esophageal Cancer-Related Gene-4 is Regulated by Sp1 and is a Potential Early Target of Doxorubicin-Induced Cardiotoxicity. Cardiovasc Toxicol 2022; 22:404-418. [PMID: 35129819 DOI: 10.1007/s12012-022-09722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/18/2022] [Indexed: 11/26/2022]
Abstract
Esophageal Cancer-Related Gene 4 (Ecrg4) expressed in cardiomyocytes and the cardiac conduction system is downregulated during cardiac ischemia and atrial fibrillation. To explore whether Ecrg4 plays any role in doxorubicin (DOX)-induced cardiotoxicity. Rats and neonatal rat cardiomyocytes (NRCMs) were employed to study the effect of DOX on Ecrg4 transcription. Bioinformatics combined with promoter analysis were used to map the rat Ecrg4 promoter. ChIP assay was used to evaluate the binding of Sp1 to the Ecrg4 promoter. Transient transfection was used to study the effect of Sp1 on the expression of endogenous Ecrg4. DOX decreased endogenous Ecrg4 gene expression in the heart and cultured NRCMs. In silico analysis showed that the 5'UTR immediately upstream of the start codon ATG, harbors a putative promoter that is GC-rich, and contains CpG islands, multiple overlapping Sp1sites. Transcription is initiated mainly on the 'C' at - 15. Serial 5'-deletion combined with dual-luciferase assays showed that the rat Ecrg4 core promoter resides at - 1/- 800. Sp1 transactivated Ecrg4 gene, which was almost abolished by DOX. Furthermore, ChIP assay showed that Sp1 specifically bound to the Ecrg4 promoter was interrupted by DOX. Finally, DOX suppressed Sp1 protein expression, and restoration of Sp1 increased Ecrg4 expression that was resistant to DOX-induced Ecrg4 downregulation. Importantly, cardiomyocyte-specific loss of Ecrg4 significantly enriched the differentially expressed proteins in the signaling pathways commonly involved in DOX-induced cardiotoxicity. Our results indicate that Sp1 mediates DOX-induced suppression of Ecrg4, which may contribute indirectly to its cardiotoxicity.
Collapse
Affiliation(s)
- Dandan Long
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 1-1 Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Chunyue Chen
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 1-1 Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Wei Li
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 1-1 Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Wanling Peng
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 1-1 Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Dongmei Li
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 1-1 Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Rui Zhou
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 1-1 Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China.
| | - Xitong Dang
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 1-1 Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
10
|
Kusmic C, Vizzoca A, Taranta M, Tedeschi L, Gherardini L, Pelosi G, Giannetti A, Tombelli S, Grimaldi S, Baldini F, Domenici C, Trivella MG, Cinti C. Silencing Survivin: a Key Therapeutic Strategy for Cardiac Hypertrophy. J Cardiovasc Transl Res 2021; 15:391-407. [PMID: 34409583 DOI: 10.1007/s12265-021-10165-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022]
Abstract
Cardiac hypertrophy, in its aspects of localized thickening of the interventricular septum and concentric increase of the left ventricle, constitutes a risk factor of heart failure. Myocardial hypertrophy, in the presence of different degree of myocardial fibrosis, is paralleled by significant molecular, cellular, and histological changes inducing alteration of cardiac extracellular matrix composition as well as sarcomeres and cytoskeleton remodeling. Previous studies indicate osteopontin (OPN) and more recently survivin (SURV) overexpression as the hallmarks of heart failure although SURV function in the heart is not completely clarified. In this study, we investigated the involvement of SURV in intracellular signaling of hypertrophic cardiomyocytes and the impact of its transcriptional silencing, laying the foundation for novel target gene therapy in cardiac hypertrophy. Oligonucleotide-based molecules, like theranostic optical nanosensors (molecular beacons) and siRNAs, targeting SURV and OPN mRNAs, were developed. Their diagnostic and therapeutic potential was evaluated in vitro in hypertrophic FGF23-induced human cardiomyocytes and in vivo in transverse aortic constriction hypertrophic mouse model. Engineered erythrocyte was used as shuttle to selectively target and transfer siRNA molecules into unhealthy cardiac cells in vivo. The results highlight how the SURV knockdown could negatively influence the expression of genes involved in myocardial fibrosis in vitro and restores structural, functional, and morphometric features in vivo. Together, these data suggested that SURV is a key factor in inducing cardiomyocytes hypertrophy, and its shutdown is crucial in slowing disease progression as well as reversing cardiac hypertrophy. In the perspective, targeted delivery of siRNAs through engineered erythrocytes can represent a promising therapeutic strategy to treat cardiac hypertrophy. Theranostic SURV molecular beacon (MB-SURV), transfected into FGF23-induced hypertrophic human cardiomyocytes, significantly dampened SURV overexpression. SURV down-regulation determines the tuning down of MMP9, TIMP1 and TIMP4 extracellular matrix remodeling factors while induces the overexpression of the cardioprotective MCAD factor, which counterbalance the absence of pro-survival and anti-apoptotic SURV activity to protect cardiomyocytes from death. In transverse aortic constriction (TAC) mouse model, the SURV silencing restores the LV mass levels to values not different from the sham group and counteracts the progressive decline of EF, maintaining its values always higher with respect to TAC group. These data demonstrate the central role of SURV in the cardiac reverse remodeling and its therapeutic potential to reverse cardiac hypertrophy.
Collapse
Affiliation(s)
- Claudia Kusmic
- Institute of Clinical Physiology (IFC), National Research Council of Italy (CNR), via Moruzzi 1, 56124, Pisa, Italy
| | - Alessio Vizzoca
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via Gobetti 101, 40129, Bologna, Italy
| | - Monia Taranta
- Institute of Clinical Physiology (IFC), National Research Council of Italy (CNR), via Moruzzi 1, 56124, Pisa, Italy
| | - Lorena Tedeschi
- Institute of Clinical Physiology (IFC), National Research Council of Italy (CNR), via Moruzzi 1, 56124, Pisa, Italy
| | - Lisa Gherardini
- Institute of Clinical Physiology (IFC), National Research Council of Italy (CNR), via Moruzzi 1, 56124, Pisa, Italy
| | - Gualtiero Pelosi
- Institute of Clinical Physiology (IFC), National Research Council of Italy (CNR), via Moruzzi 1, 56124, Pisa, Italy
| | - Ambra Giannetti
- Institute of Applied Physics, Nello Carrara"(IFAC), National Research Council of Italy (CNR), Florence, Italy
| | - Sara Tombelli
- Institute of Applied Physics, Nello Carrara"(IFAC), National Research Council of Italy (CNR), Florence, Italy
| | - Settimio Grimaldi
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Rome, Italy
| | - Francesco Baldini
- Institute of Applied Physics, Nello Carrara"(IFAC), National Research Council of Italy (CNR), Florence, Italy
| | - Claudio Domenici
- Institute of Clinical Physiology (IFC), National Research Council of Italy (CNR), via Moruzzi 1, 56124, Pisa, Italy
| | - Maria Giovanna Trivella
- Institute of Clinical Physiology (IFC), National Research Council of Italy (CNR), via Moruzzi 1, 56124, Pisa, Italy.
| | - Caterina Cinti
- Institute of Clinical Physiology (IFC), National Research Council of Italy (CNR), via Moruzzi 1, 56124, Pisa, Italy.
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via Gobetti 101, 40129, Bologna, Italy.
| |
Collapse
|
11
|
Kirillova A, Han L, Liu H, Kühn B. Polyploid cardiomyocytes: implications for heart regeneration. Development 2021; 148:271050. [PMID: 34897388 DOI: 10.1242/dev.199401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Terminally differentiated cells are generally thought to have arrived at their final form and function. Many terminally differentiated cell types are polyploid, i.e. they have multiple copies of the normally diploid genome. Mammalian heart muscle cells, termed cardiomyocytes, are one such example of polyploid cells. Terminally differentiated cardiomyocytes are bi- or multi-nucleated, or have polyploid nuclei. Recent mechanistic studies of polyploid cardiomyocytes indicate that they can limit cellular proliferation and, hence, heart regeneration. In this short Spotlight, we present the mechanisms generating bi- and multi-nucleated cardiomyocytes, and the mechanisms generating polyploid nuclei. Our aim is to develop hypotheses about how these mechanisms might relate to cardiomyocyte proliferation and cardiac regeneration. We also discuss how these new findings could be applied to advance cardiac regeneration research, and how they relate to studies of other polyploid cells, such as cancer cells.
Collapse
Affiliation(s)
- Anna Kirillova
- Medical Scientist Training Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA 15219, USA
| | - Lu Han
- Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, 4401 Penn Ave, Pittsburgh, PA 15224, USA.,Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, 4401 Penn Ave, Pittsburgh, PA 15224, USA
| | - Honghai Liu
- Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, 4401 Penn Ave, Pittsburgh, PA 15224, USA.,Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, 4401 Penn Ave, Pittsburgh, PA 15224, USA
| | - Bernhard Kühn
- Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, 4401 Penn Ave, Pittsburgh, PA 15224, USA.,Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, 4401 Penn Ave, Pittsburgh, PA 15224, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
12
|
Yovera L, Zaharia M, Jachymski T, Velicu-Scraba O, Coronel C, de Paco Matallana C, Georgiopoulos G, Nicolaides KH, Charakida M. Impact of gestational diabetes mellitus on fetal cardiac morphology and function: cohort comparison of second- and third-trimester fetuses. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2021; 57:607-613. [PMID: 32691497 DOI: 10.1002/uog.22148] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVES To assess differences in cardiac morphology and function in fetuses of mothers with gestational diabetes mellitus (GDM) compared to controls, and to assess whether, in women with GDM, fetal cardiac changes are accentuated with advancing gestational age. METHODS We studied 112 women with GDM and 224 women with uncomplicated pregnancy at 24-40 weeks' gestation. In all fetuses, a standard four-chamber oblique view was obtained and offline speckle-tracking analysis was performed to measure right and left endocardial global longitudinal strain (GLS) and tricuspid and mitral annular plane systolic excursion. Global sphericity index was also calculated. Echocardiographic parameters were compared between GDM fetuses and controls at two gestational time periods of 24 + 0 to 32 + 0 weeks and 32 + 1 to 40 + 1 weeks. RESULTS At 24 + 0 to 32 + 0 weeks, we phenotyped 43 fetuses from mothers with GDM and 71 from uncomplicated pregnancies, and, at 32 + 1 to 40 + 1 weeks, we phenotyped 69 fetuses from mothers with GDM and 153 from women with uncomplicated pregnancy. In fetuses of mothers with GDM, compared to controls, right ventricular functional indices were consistently lower both at 24 + 0 to 32 + 0 weeks and at 32 + 1 to 40 + 1 weeks. Right ventricular GLS was reduced in the GDM group at 24 + 0 to 32 + 0 weeks (adjusted mean difference, 0.7%; 95% CI, 0.3-1.1%) and at 32 + 1 to 40 + 1 weeks (adjusted mean difference, 0.9%; 95% CI, 0.6-1.1%). Fetal left ventricular global longitudinal function was similar in GDM pregnancies compared with controls, with the exception of the contractility of the left ventricular basal segment, which was reduced. Global sphericity index was reduced in GDM pregnancies only at 32 + 1 to 40 + 1 weeks (adjusted mean difference, -0.4; 95% CI, -0.7 to 0.1). CONCLUSIONS The offspring of women with GDM are at high risk for development of cardiovascular disease in childhood and early adulthood. Our study demonstrates that GDM is associated with a reduction mainly in fetal right ventricular function, compared to controls, and this response is not exaggerated with increasing gestational age. Further studies are needed to determine whether fetuses with the observed alterations in cardiac function are those at highest risk for subsequent development of cardiovascular disease. © 2020 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- L Yovera
- Harris Birthright Research Centre for Fetal Medicine, Fetal Medicine Research Institute, King's College Hospital, London, UK
- Hospital Clínico Universitario Virgen de la Arrixaca, Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - M Zaharia
- Harris Birthright Research Centre for Fetal Medicine, Fetal Medicine Research Institute, King's College Hospital, London, UK
- Hospital Clínico Universitario Virgen de la Arrixaca, Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - T Jachymski
- Harris Birthright Research Centre for Fetal Medicine, Fetal Medicine Research Institute, King's College Hospital, London, UK
| | - O Velicu-Scraba
- Harris Birthright Research Centre for Fetal Medicine, Fetal Medicine Research Institute, King's College Hospital, London, UK
- Hospital Clínico Universitario Virgen de la Arrixaca, Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - C Coronel
- Harris Birthright Research Centre for Fetal Medicine, Fetal Medicine Research Institute, King's College Hospital, London, UK
- Hospital Clínico Universitario Virgen de la Arrixaca, Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - C de Paco Matallana
- Hospital Clínico Universitario Virgen de la Arrixaca, Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - G Georgiopoulos
- Harris Birthright Research Centre for Fetal Medicine, Fetal Medicine Research Institute, King's College Hospital, London, UK
| | - K H Nicolaides
- Harris Birthright Research Centre for Fetal Medicine, Fetal Medicine Research Institute, King's College Hospital, London, UK
| | - M Charakida
- Harris Birthright Research Centre for Fetal Medicine, Fetal Medicine Research Institute, King's College Hospital, London, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
13
|
Troponin T amino acid mutation (ΔK210) knock-in mice as a neonatal dilated cardiomyopathy model. Pediatr Res 2021; 89:846-857. [PMID: 32563186 DOI: 10.1038/s41390-020-1016-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/25/2020] [Accepted: 06/01/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) in children is often associated with poor morbidity and mortality and exhibits distinct pathological entities from those of adult DCM. Owing to the limited number of patients and the lack of a good animal model, the molecular mechanisms underlying pediatric DCM remain poorly understood. The purpose of this study is to establish an animal model of neonatal DCM and identify early progression factors. METHODS Cardiac phenotypes and comprehensive gene expression profiles in homozygous ΔK210 knock-in (TNNT2ΔK210/ΔK210) mice were analyzed and compared to TNNT2+/ΔK210 and wild-type mice at 0 days and 1 week of age. RESULTS Immediately after birth, the cardiac weight in TNNT2ΔK210/ΔK210 mice was already increased compared to that in TNNT2+/ΔK210 and wild-type mice. Echocardiographic examination of 0-day-old and 1-week-old TNNT2ΔK210/ΔK210 mice revealed similar phenotypes of pediatric DCM. In addition, several genes were significantly upregulated in the ventricular tissues of TNNT2ΔK210/ΔK210 mice, and the KEGG PATHWAY analysis revealed several important pathways such as cancer and focal adhesion that might be associated with the pathogenesis and development of DCM. CONCLUSIONS TNNT2ΔK210/ΔK210 mice have already developed DCM at birth, indicating that they should be an excellent animal model to identify early progression factors of DCM. IMPACT TNNT2ΔK210/ΔK210 mice are excellent animal model for DCM. TNNT2ΔK210/ΔK210 mice are excellent animal model to identify early progression factors of DCM. KEGG PATHWAY analysis revealed that several important pathways such as cancer and focal adhesion might be associated with the pathogenesis and development of neonatal DCM.
Collapse
|
14
|
Blondelle J, Biju A, Lange S. The Role of Cullin-RING Ligases in Striated Muscle Development, Function, and Disease. Int J Mol Sci 2020; 21:E7936. [PMID: 33114658 PMCID: PMC7672578 DOI: 10.3390/ijms21217936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The well-orchestrated turnover of proteins in cross-striated muscles is one of the fundamental processes required for muscle cell function and survival. Dysfunction of the intricate protein degradation machinery is often associated with development of cardiac and skeletal muscle myopathies. Most muscle proteins are degraded by the ubiquitin-proteasome system (UPS). The UPS involves a number of enzymes, including E3-ligases, which tightly control which protein substrates are marked for degradation by the proteasome. Recent data reveal that E3-ligases of the cullin family play more diverse and crucial roles in cross striated muscles than previously anticipated. This review highlights some of the findings on the multifaceted functions of cullin-RING E3-ligases, their substrate adapters, muscle protein substrates, and regulatory proteins, such as the Cop9 signalosome, for the development of cross striated muscles, and their roles in the etiology of myopathies.
Collapse
Affiliation(s)
- Jordan Blondelle
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Andrea Biju
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Stephan Lange
- Department of Medicine, University of California, La Jolla, CA 92093, USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|
15
|
Aguilera J, Semmler J, Anzoategui S, Zhang H, Nicolaides KH, Charakida M. Cardiac function in gestational diabetes mellitus: A longitudinal study from fetal life to infancy. BJOG 2020; 128:272-279. [PMID: 32725766 DOI: 10.1111/1471-0528.16434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To determine whether cardiac functional and structural changes in fetuses of mothers with gestational diabetes mellitus (GDM) persist in the offspring beyond the neonatal period. DESIGN Longitudinal study. SETTING Fetal Medicine Unit in a UK teaching hospital. METHODS 73 women with GDM and 73 women with uncomplicated pregnancy were recruited and fetal cardiac scans were performed at 35-36 weeks' gestation. Repeat echocardiogram was performed in their offspring during infancy. MAIN OUTCOME MEASURES Fetal and infant cardiac functional and structural changes. RESULTS Fetuses of mothers with GDM, compared with controls, had more globular right ventricles (sphericity index 0.7, interquartile range [IQR] 0.6/0.7 versus 0.6, IQR 0.5/0.6, P < 0.001) and reduced right global longitudinal systolic strain (-16.4, IQR -18.9/-15.3 versus -18.5, IQR -20.6/-16.8, P = 0.001) and left global longitudinal systolic strain (-20.1, IQR -22.5/-16.9 versus -21.3, IQR -23.5/-19.5), P = 0.021). In the GDM group, compared with controls, in infancy there was higher left ventricular E/e' (8.7, IQR 7.3/9.7 versus 7.9 IQR, 6.8/8.9 P = 0.011) and lower left ventricular global longitudinal systolic strain (-21.0, IQR -22.5/-19.4 versus -22.3, IQR -23.5/-20.7, P = 0.001) and tricuspid annular plane systolic excursion (13.8, IQR 12.7/16.1 versus 15.2, IQR 13.8/16.8, P = 0.003). These differences remained following multivariable analysis. CONCLUSION Gestational diabetes mellitus is associated with alterations in fetal cardiac function and structure compared with controls and persistent cardiac changes in infancy. TWEETABLE ABSTRACT Gestational diabetes mellitus, even when well controlled, is associated with fetal cardiac changes and these persist in infancy.
Collapse
Affiliation(s)
- J Aguilera
- Harris Birthright Research Centre for Fetal Medicine, Fetal Medicine Research Institute, King's College Hospital, London, UK
| | - J Semmler
- Harris Birthright Research Centre for Fetal Medicine, Fetal Medicine Research Institute, King's College Hospital, London, UK
| | - S Anzoategui
- Harris Birthright Research Centre for Fetal Medicine, Fetal Medicine Research Institute, King's College Hospital, London, UK
| | - H Zhang
- Harris Birthright Research Centre for Fetal Medicine, Fetal Medicine Research Institute, King's College Hospital, London, UK
| | - K H Nicolaides
- Harris Birthright Research Centre for Fetal Medicine, Fetal Medicine Research Institute, King's College Hospital, London, UK
| | - M Charakida
- Harris Birthright Research Centre for Fetal Medicine, Fetal Medicine Research Institute, King's College Hospital, London, UK.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
16
|
Teulings NEWD, Garrud TAC, Niu Y, Skeffington KL, Beck C, Itani N, Conlon FG, Botting KJ, Nicholas LM, Ashmore TJ, Blackmore HL, Tong W, Camm EJ, Derks JB, Logan A, Murphy MP, Ozanne SE, Giussani DA. Isolating adverse effects of glucocorticoids on the embryonic cardiovascular system. FASEB J 2020; 34:9664-9677. [PMID: 32502311 PMCID: PMC7611332 DOI: 10.1096/fj.202000697r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 01/07/2023]
Abstract
Antenatal glucocorticoid therapy reduces mortality in the preterm infant, but evidence suggests off-target adverse effects on the developing cardiovascular system. Whether deleterious effects are direct on the offspring or secondary to alterations in uteroplacental physiology is unclear. Here, we isolated direct effects of glucocorticoids using the chicken embryo, a model system in which the effects on the developing heart and circulation of therapy can be investigated, independent of effects on the mother and/or the placenta. Fertilized chicken eggs were incubated and divided randomly into control (C) or dexamethasone (Dex) treatment at day 14 out of the 21-day incubation period. Combining functional experiments at the isolated organ, cellular and molecular levels, embryos were then studied close to term. Chicken embryos exposed to dexamethasone were growth restricted and showed systolic and diastolic dysfunction, with an increase in cardiomyocyte volume but decreased cardiomyocyte nuclear density in the left ventricle. Underlying mechanisms included a premature switch from tissue accretion to differentiation, increased oxidative stress, and activated signaling of cellular senescence. These findings, therefore, demonstrate that dexamethasone treatment can have direct detrimental off-target effects on the cardiovascular system in the developing embryo, which are independent of effects on the mother and/or placenta.
Collapse
Affiliation(s)
- Noor E. W. D. Teulings
- Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Tessa A. C. Garrud
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Youguo Niu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Katie L. Skeffington
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Christian Beck
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Nozomi Itani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Fiona G. Conlon
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Kimberley J. Botting
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Lisa M. Nicholas
- Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Thomas J. Ashmore
- Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Heather L. Blackmore
- Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Wen Tong
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emily J. Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jan B. Derks
- Department of Perinatal Medicine, University Medical Centre, Utrecht, Netherlands
| | - Angela Logan
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michael P. Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Susan E. Ozanne
- Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Dino A. Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
Han D, Wang Y, Wang Y, Dai X, Zhou T, Chen J, Tao B, Zhang J, Cao F. The Tumor-Suppressive Human Circular RNA CircITCH Sponges miR-330-5p to Ameliorate Doxorubicin-Induced Cardiotoxicity Through Upregulating SIRT6, Survivin, and SERCA2a. Circ Res 2020; 127:e108-e125. [PMID: 32392088 DOI: 10.1161/circresaha.119.316061] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RATIONALE Doxorubicin is one of the most potent antitumor agents available; however, its clinical use is restricted because it poses a risk of severe cardiotoxicity. Previous work has established that CircITCH (circular RNA ITCH [E3 ubiquitin-protein ligase]) is a broad-spectrum tumor-suppressive circular RNA and that its host gene, ITCH (E3 ubiquitin protein ligase), is involved in doxorubicin-induced cardiotoxicity (DOXIC). Whether CircITCH plays a role in DOXIC remains unknown. OBJECTIVE We aimed to dissect the role of CircITCH in DOXIC and further decipher its potential mechanisms. METHODS AND RESULTS Circular RNA sequencing was performed to screen the potentially involved circRNAs in DOXI pathogenesis. Quantitative polymerase chain reaction and RNA in situ hybridization revealed that CircITCH was downregulated in doxorubicin-treated human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as well as in the autopsy specimens from cancer patients who suffered from doxorubicin-induced cardiomyopathy. Cell death/viability assays, detection of cardiomyocyte necrosis markers, microelectrode array, and cardiomyocyte functional assays revealed that CircITCH ameliorated doxorubicin-induced cardiomyocyte injury and dysfunction. Detection of cellular/mitochondrial oxidative stress and DNA damage markers verified that CircITCH alleviated cellular/mitochondrial oxidative stress and DNA damage induced by doxorubicin. RNA pull-down assays, Ago2 immunoprecipitation and double fluorescent in situ hybridization identified miR-330-5p as a direct target of CircITCH. Moreover, CircITCH was found to function by acting as an endogenous sponge that sequestered miR-330-5p. Bioinformatic analysis, luciferase reporter assays, and quantitative polymerase chain reaction showed that SIRT6 (sirtuin 6), BIRC5 (baculoviral IAP repeat containing 5, Survivin), and ATP2A2 (ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2, SERCA2a [SR Ca2+-ATPase 2]) were direct targets of miR-330-5p and that they were regulated by the CircITCH/miR-330-5p axis in DOXIC. Further experiments demonstrated that CircITCH-mediated alleviation of DOXIC was dependent on the interactions between miR-330-5p and the 3'-UTRs of SIRT6, BIRC5, and ATP2A2 mRNA. Finally, AAV9 (adeno-associated virus serotype 9) vector-based overexpression of the well-conserved CircITCH partly prevented DOXIC in mice. CONCLUSIONS CircITCH represents a novel therapeutic target for DOXIC because it acts as a natural sponge of miR-330-5p, thereby upregulating SIRT6, Survivin and SERCA2a to alleviate doxorubicin-induced cardiomyocyte injury and dysfunction.
Collapse
Affiliation(s)
- Dong Han
- From the Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing (D.H., J.Z., Yabin Wang, F.C.).,Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an Shaanxi Province, China (D.H., X.D., J.C., F.C.)
| | - Yongjun Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei Province, China (Yongjun Wang, T.Z.)
| | - Yabin Wang
- From the Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing (D.H., J.Z., Yabin Wang, F.C.)
| | - Xinchun Dai
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an Shaanxi Province, China (D.H., X.D., J.C., F.C.)
| | - Tingwen Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei Province, China (Yongjun Wang, T.Z.)
| | - Jiangwei Chen
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an Shaanxi Province, China (D.H., X.D., J.C., F.C.)
| | | | - Jibin Zhang
- From the Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing (D.H., J.Z., Yabin Wang, F.C.)
| | - Feng Cao
- From the Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing (D.H., J.Z., Yabin Wang, F.C.).,Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an Shaanxi Province, China (D.H., X.D., J.C., F.C.)
| |
Collapse
|
18
|
Galow AM, Wolfien M, Müller P, Bartsch M, Brunner RM, Hoeflich A, Wolkenhauer O, David R, Goldammer T. Integrative Cluster Analysis of Whole Hearts Reveals Proliferative Cardiomyocytes in Adult Mice. Cells 2020; 9:cells9051144. [PMID: 32384695 PMCID: PMC7291011 DOI: 10.3390/cells9051144] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 01/22/2023] Open
Abstract
The recent development and broad application of sequencing techniques at the single-cell level is generating an unprecedented amount of data. The different techniques have their individual limits, but the datasets also offer unexpected possibilities when utilized collectively. Here, we applied snRNA-seq in whole adult murine hearts from an inbred (C57BL/6NRj) and an outbred (Fzt:DU) mouse strain to directly compare the data with the publicly available scRNA-seq data of the tabula muris project. Explicitly choosing a single-nucleus approach allowed us to pin down the typical heart tissue-specific technical bias, coming up with novel insights on the mammalian heart cell composition. For our integrated dataset, cardiomyocytes, fibroblasts, and endothelial cells constituted the three main cell populations accounting for about 75% of all cells. However, their numbers severely differed between the individual datasets, with cardiomyocyte proportions ranging from about 9% in the tabula muris data to around 23% for our BL6 data, representing the prime example for cell capture technique related bias when using a conventional single-cell approach for these large cells. Most strikingly in our comparison was the discovery of a minor population of cardiomyocytes characterized by proliferation markers that could not be identified by analyzing the datasets individually. It is now widely accepted that the heart has an, albeit very restricted, regenerative potential. However there is still an ongoing debate where new cardiomyocytes arise from. Our findings support the idea that the renewal of the cardiomyocyte pool is driven by cytokinesis of resident cardiomyocytes rather than differentiation of progenitor cells. We thus provide data that can contribute to an understanding of heart cell regeneration, which is a prerequisite for future applications to enhance the process of heart repair.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (A.-M.G.); (R.M.B.); (A.H.)
| | - Markus Wolfien
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany;
| | - Paula Müller
- Reference and Translation Center for Cardiac Stem Cell therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (P.M.); (M.B.)
- Department of Life, Light, and Matter of the Interdisciplinary Faculty at Rostock University, 18059 Rostock, Germany
| | - Madeleine Bartsch
- Reference and Translation Center for Cardiac Stem Cell therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (P.M.); (M.B.)
- Department of Life, Light, and Matter of the Interdisciplinary Faculty at Rostock University, 18059 Rostock, Germany
| | - Ronald M. Brunner
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (A.-M.G.); (R.M.B.); (A.H.)
| | - Andreas Hoeflich
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (A.-M.G.); (R.M.B.); (A.H.)
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany;
- Stellenbosch Institute of Advanced Study, Wallenberg Research Centre, Stellenbosch University, 7602 Stellenbosch, South Africa
- Correspondence: (O.W.); (R.D.); (T.G.)
| | - Robert David
- Reference and Translation Center for Cardiac Stem Cell therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (P.M.); (M.B.)
- Department of Life, Light, and Matter of the Interdisciplinary Faculty at Rostock University, 18059 Rostock, Germany
- Correspondence: (O.W.); (R.D.); (T.G.)
| | - Tom Goldammer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (A.-M.G.); (R.M.B.); (A.H.)
- Molecular Biology and Fish Genetics, Faculty of Agriculture and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
- Correspondence: (O.W.); (R.D.); (T.G.)
| |
Collapse
|
19
|
Abstract
The hallmark of most cardiac diseases is the progressive loss of cardiomyocytes. In the perinatal period, cardiomyocytes still proliferate, and the heart shows the capacity to regenerate upon injury. In the adult heart, however, the actual rate of cardiomyocyte renewal is too low to efficiently counteract substantial cell loss caused by cardiac injury. In mammals, cardiac growth by cell number expansion changes to growth by cardiomyocyte enlargement soon after birth, coinciding with a period in which most cardiomyocytes increase their DNA content by multinucleation and nuclear polyploidization. Although cardiomyocyte hypertrophy is often associated with these processes, whether polyploidy is a prerequisite or a consequence of hypertrophic growth is unclear. Both the benefits of cardiomyocyte enlargement over proliferative growth of the heart and the physiological role of polyploidy in cardiomyocytes are enigmatic. Interestingly, hearts in animal species with substantial cardiac regenerative capacity dominantly comprise diploid cardiomyocytes, raising the hypothesis that cardiomyocyte polyploidy poses a barrier for cardiomyocyte proliferation and subsequent heart regeneration. On the contrary, there is also evidence for self-duplication of multinucleated myocytes, suggesting a more complex picture of polyploidy in heart regeneration. Polyploidy is not restricted to the heart but also occurs in other cell types in the body. In this review, we explore the biological relevance of polyploidy in different species and tissues to acquire insight into its specific role in cardiomyocytes. Furthermore, we speculate about the physiological role of polyploidy in cardiomyocytes and how this might relate to renewal and regeneration.
Collapse
Affiliation(s)
- Wouter Derks
- From the Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany (W.D., O.B.)
| | - Olaf Bergmann
- From the Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany (W.D., O.B.).,Karolinska Institutet, Cell and Molecular Biology, Stockholm, Sweden (O.B.)
| |
Collapse
|
20
|
Oh J, Lee BS, Lim G, Lim H, Lee CJ, Park S, Lee SH, Chung JH, Kang SM. Atorvastatin protects cardiomyocyte from doxorubicin toxicity by modulating survivin expression through FOXO1 inhibition. J Mol Cell Cardiol 2019; 138:244-255. [PMID: 31866378 DOI: 10.1016/j.yjmcc.2019.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/10/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Survivin has an anti-apoptotic effect against anthracycline-induced cardiotoxicity. Clinically, statin use is associated with a lower risk for heart failure in breast cancer patients with anthracycline chemotherapy. So, the purpose of our study was to investigate whether survivin mediates the protective effect of statin against anthracycline-induced cardiotoxicity. METHODS Mice were treated once a week with 5 mg/kg doxorubicin for 4 weeks with or without atorvastatin 20 mg/kg every day then heart tissues were analyzed. Molecular and cellular biology analyses were performed with H9c2 cell lysates. RESULTS Doxorubicin suppressed survivin expression via activation of FOXO1 in H9c2 cardiomyocytes. Whereas, atorvastatin inhibited FOXO1 by increasing phosphorylation and inhibiting nuclear localization. Doxorubicin induced FOXO1 binding to STAT3 and prevented STAT3 from interacting with Sp1. However, atorvastatin inhibited these interactions and stabilized STAT3/Sp1 transcription complex. Chromatin immunoprecipitation analysis demonstrated that doxorubicin decreased STAT3/Sp1 complex binding to survivin promoter, whereas atorvastatin stabilized this binding. In mouse model, atorvastatin rescued doxorubicin-induced reduction of survivin expression and of heart function measured by cardiac magnetic resonance imaging. CONCLUSIONS Our study suggested a new pathophysiologic mechanism that survivin mediated protective effect of atorvastatin against doxorubicin-induced cardiotoxicity via FOXO1/STAT3/Sp1 transcriptional network.
Collapse
Affiliation(s)
- Jaewon Oh
- Cardiology, Severance Cardiovascular Hospital, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Beom Seob Lee
- Graduate Program in Science for Aging, Yonsei University, Seoul, Republic of Korea; Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases (SIRIC), Yonsei University Health System, Seoul, Republic of Korea
| | - Gibbeum Lim
- Cardiology, Severance Cardiovascular Hospital, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Graduate Program in Science for Aging, Yonsei University, Seoul, Republic of Korea; Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases (SIRIC), Yonsei University Health System, Seoul, Republic of Korea
| | - Heejung Lim
- Cardiology, Severance Cardiovascular Hospital, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Graduate Program in Science for Aging, Yonsei University, Seoul, Republic of Korea; Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases (SIRIC), Yonsei University Health System, Seoul, Republic of Korea
| | - Chan Joo Lee
- Cardiology, Severance Cardiovascular Hospital, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sungha Park
- Cardiology, Severance Cardiovascular Hospital, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Graduate Program in Science for Aging, Yonsei University, Seoul, Republic of Korea; Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases (SIRIC), Yonsei University Health System, Seoul, Republic of Korea
| | - Sang-Hak Lee
- Cardiology, Severance Cardiovascular Hospital, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Graduate Program in Science for Aging, Yonsei University, Seoul, Republic of Korea; Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases (SIRIC), Yonsei University Health System, Seoul, Republic of Korea
| | - Ji Hyung Chung
- Department of Applied Bioscience, College of Life Science, CHA University, Gyeonggi-do, Republic of Korea
| | - Seok-Min Kang
- Cardiology, Severance Cardiovascular Hospital, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Graduate Program in Science for Aging, Yonsei University, Seoul, Republic of Korea; Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases (SIRIC), Yonsei University Health System, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Piché J, Van Vliet PP, Pucéat M, Andelfinger G. The expanding phenotypes of cohesinopathies: one ring to rule them all! Cell Cycle 2019; 18:2828-2848. [PMID: 31516082 PMCID: PMC6791706 DOI: 10.1080/15384101.2019.1658476] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/13/2019] [Accepted: 08/17/2019] [Indexed: 12/13/2022] Open
Abstract
Preservation and development of life depend on the adequate segregation of sister chromatids during mitosis and meiosis. This process is ensured by the cohesin multi-subunit complex. Mutations in this complex have been associated with an increasing number of diseases, termed cohesinopathies. The best characterized cohesinopathy is Cornelia de Lange syndrome (CdLS), in which intellectual and growth retardations are the main phenotypic manifestations. Despite some overlap, the clinical manifestations of cohesinopathies vary considerably. Novel roles of the cohesin complex have emerged during the past decades, suggesting that important cell cycle regulators exert important biological effects through non-cohesion-related functions and broadening the potential pathomechanisms involved in cohesinopathies. This review focuses on non-cohesion-related functions of the cohesin complex, gene dosage effect, epigenetic regulation and TGF-β in cohesinopathy context, especially in comparison to Chronic Atrial and Intestinal Dysrhythmia (CAID) syndrome, a very distinct cohesinopathy caused by a homozygous Shugoshin-1 (SGO1) mutation (K23E) and characterized by pacemaker failure in both heart (sick sinus syndrome followed by atrial flutter) and gut (chronic intestinal pseudo-obstruction) with no intellectual or growth delay. We discuss the possible impact of SGO1 alterations in human pathologies and the potential impact of the SGO1 K23E mutation in the sinus node and gut development and functions. We suggest that the human phenotypes observed in CdLS, CAID syndrome and other cohesinopathies can inform future studies into the less well-known non-cohesion-related functions of cohesin complex genes. Abbreviations: AD: Alzheimer Disease; AFF4: AF4/FMR2 Family Member 4; ANKRD11: Ankyrin Repeat Domain 11; APC: Anaphase Promoter Complex; ASD: Atrial Septal Defect; ATRX: ATRX Chromatin Remodeler; ATRX: Alpha Thalassemia X-linked intellectual disability syndrome; BIRC5: Baculoviral IAP Repeat Containing 5; BMP: Bone Morphogenetic Protein; BRD4: Bromodomain Containing 4; BUB1: BUB1 Mitotic Checkpoint Serine/Threonine Kinase; CAID: Chronic Atrial and Intestinal Dysrhythmia; CDK1: Cyclin Dependent Kinase 1; CdLS: Cornelia de Lange Syndrome; CHD: Congenital Heart Disease; CHOPS: Cognitive impairment, coarse facies, Heart defects, Obesity, Pulmonary involvement, Short stature, and skeletal dysplasia; CIPO: Chronic Intestinal Pseudo-Obstruction; c-kit: KIT Proto-Oncogene Receptor Tyrosine Kinase; CoATs: Cohesin Acetyltransferases; CTCF: CCCTC-Binding Factor; DDX11: DEAD/H-Box Helicase 11; ERG: Transcriptional Regulator ERG; ESCO2: Establishment of Sister Chromatid Cohesion N-Acetyltransferase 2; GJC1: Gap Junction Protein Gamma 1; H2A: Histone H2A; H3K4: Histone H3 Lysine 4; H3K9: Histone H3 Lysine 9; HCN4: Hyperpolarization Activated Cyclic Nucleotide Gated Potassium and Sodium Channel 4;p HDAC8: Histone deacetylases 8; HP1: Heterochromatin Protein 1; ICC: Interstitial Cells of Cajal; ICC-MP: Myenteric Plexus Interstitial cells of Cajal; ICC-DMP: Deep Muscular Plexus Interstitial cells of Cajal; If: Pacemaker Funny Current; IP3: Inositol trisphosphate; JNK: C-Jun N-Terminal Kinase; LDS: Loeys-Dietz Syndrome; LOAD: Late-Onset Alzheimer Disease; MAPK: Mitogen-Activated Protein Kinase; MAU: MAU Sister Chromatid Cohesion Factor; MFS: Marfan Syndrome; NIPBL: NIPBL, Cohesin Loading Factor; OCT4: Octamer-Binding Protein 4; P38: P38 MAP Kinase; PDA: Patent Ductus Arteriosus; PDS5: PDS5 Cohesin Associated Factor; P-H3: Phospho Histone H3; PLK1: Polo Like Kinase 1; POPDC1: Popeye Domain Containing 1; POPDC2: Popeye Domain Containing 2; PP2A: Protein Phosphatase 2; RAD21: RAD21 Cohesin Complex Component; RBS: Roberts Syndrome; REC8: REC8 Meiotic Recombination Protein; RNAP2: RNA polymerase II; SAN: Sinoatrial node; SCN5A: Sodium Voltage-Gated Channel Alpha Subunit 5; SEC: Super Elongation Complex; SGO1: Shogoshin-1; SMAD: SMAD Family Member; SMC1A: Structural Maintenance of Chromosomes 1A; SMC3: Structural Maintenance of Chromosomes 3; SNV: Single Nucleotide Variant; SOX2: SRY-Box 2; SOX17: SRY-Box 17; SSS: Sick Sinus Syndrome; STAG2: Cohesin Subunit SA-2; TADs: Topology Associated Domains; TBX: T-box transcription factors; TGF-β: Transforming Growth Factor β; TGFBR: Transforming Growth Factor β receptor; TOF: Tetralogy of Fallot; TREK1: TREK-1 K(+) Channel Subunit; VSD: Ventricular Septal Defect; WABS: Warsaw Breakage Syndrome; WAPL: WAPL Cohesin Release Factor.
Collapse
Affiliation(s)
- Jessica Piché
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montréal, QC, Canada
| | - Patrick Piet Van Vliet
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montréal, QC, Canada
- LIA (International Associated Laboratory), CHU Sainte-Justine, Montréal, QC, Canada
- LIA (International Associated Laboratory), INSERM, Marseille, U1251-13885, France
| | - Michel Pucéat
- LIA (International Associated Laboratory), CHU Sainte-Justine, Montréal, QC, Canada
- LIA (International Associated Laboratory), INSERM, Marseille, U1251-13885, France
- INSERM U-1251, MMG,Aix-Marseille University, Marseille, 13885, France
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montréal, QC, Canada
| |
Collapse
|
22
|
Iborra-Egea O, Santiago-Vacas E, Yurista SR, Lupón J, Packer M, Heymans S, Zannad F, Butler J, Pascual-Figal D, Lax A, Núñez J, de Boer RA, Bayés-Genís A. Unraveling the Molecular Mechanism of Action of Empagliflozin in Heart Failure With Reduced Ejection Fraction With or Without Diabetes. JACC Basic Transl Sci 2019; 4:831-840. [PMID: 31998851 PMCID: PMC6978551 DOI: 10.1016/j.jacbts.2019.07.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023]
Abstract
Using artificial intelligence, followed by in vivo validation, this study identified the key cardiac mechanism of action of empagliflozin in heart failure in patients with or without diabetes mellitus. The most robust mechanism of action involved the NHE-1 co-transporter with 94.7% accuracy. NHE-1 blockade by empagliflozin administration in rats restored the antiapoptotic activity of XIAP and BIRC5. The beneficial reduction in cardiomyocyte cell death after empagliflozin treatment is independent of the presence of diabetes mellitus. Empagliflozin could emerge as a new treatment for heart failure patients regardless of their glycemic status.
The mechanism of action of empagliflozin in heart failure with reduced ejection fraction (HFrEF) was deciphered using deep learning in silico analyses together with in vivo validation. The most robust mechanism of action involved the sodium-hydrogen exchanger (NHE)-1 co-transporter with 94.7% accuracy, which was similar for diabetics and nondiabetics. Notably, direct NHE1 blockade by empagliflozin ameliorated cardiomyocyte cell death by restoring expression of X-linked inhibitor of apoptosis (XIAP) and baculoviral IAP repeat-containing protein 5 (BIRC5). These results were independent of diabetes mellitus comorbidity, suggesting that empagliflozin may emerge as a new treatment in HFrEF.
Collapse
Affiliation(s)
- Oriol Iborra-Egea
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovascualres (CIBERCV), Madrid, Spain
| | - Evelyn Santiago-Vacas
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovascualres (CIBERCV), Madrid, Spain
| | - Salva R Yurista
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Josep Lupón
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovascualres (CIBERCV), Madrid, Spain
| | - Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas
| | - Stephane Heymans
- Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | - Faiez Zannad
- Centre d'Investigation Clinique Plurithématique 1433, INSERM U1116, Université de Lorraine, Centre Hospitalier Régional et Universitaire de Nancy, French Clinical Research Infrastructure Network (F-CRIN), Investigation Network Initiative-Cardiovascular and Renal Clinical Trialists (INI-CRCT), Nancy, France
| | - Javed Butler
- Department of Medicine, University of Mississippi, Jackson, Mississippi
| | - Domingo Pascual-Figal
- Domingo Hospital Universitario Virgen de la Arrixaca, University of Murcia, Centro Nacional de Investigaciones Cardiovasculares, CIBERCV, Murcia, Spain
| | - Antonio Lax
- Domingo Hospital Universitario Virgen de la Arrixaca, University of Murcia, Centro Nacional de Investigaciones Cardiovasculares, CIBERCV, Murcia, Spain
| | - Julio Núñez
- Cardiology Department, Hospital Clínico Universitario, CIBERCV, INCLIVA, Universitat de València, València, Spain
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Antoni Bayés-Genís
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovascualres (CIBERCV), Madrid, Spain
| |
Collapse
|
23
|
Lin TY, Chan HH, Chen SH, Sarvagalla S, Chen PS, Coumar MS, Cheng SM, Chang YC, Lin CH, Leung E, Cheung CHA. BIRC5/Survivin is a novel ATG12-ATG5 conjugate interactor and an autophagy-induced DNA damage suppressor in human cancer and mouse embryonic fibroblast cells. Autophagy 2019; 16:1296-1313. [PMID: 31612776 PMCID: PMC7469615 DOI: 10.1080/15548627.2019.1671643] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BIRC5/Survivin is known as a dual cellular functions protein that directly regulates both apoptosis and mitosis in embryonic cells during embryogenesis and in cancer cells during tumorigenesis and tumor metastasis. However, BIRC5 has seldom been demonstrated as a direct macroautophagy/autophagy regulator in cells. ATG7 expression and ATG12-ATG5-ATG16L1 complex formation are crucial for the phagophore elongation during autophagy in mammalian cells. In this study, we observed that the protein expression levels of BIRC5 and ATG7 were inversely correlated, whereas the expression levels of BIRC5 and SQSTM1/p62 were positively correlated in normal breast tissues and tumor tissues. Mechanistically, we found that BIRC5 negatively modulates the protein stability of ATG7 and physically binds to the ATG12-ATG5 conjugate, preventing the formation of the ATG12-ATG5-ATG16L1 protein complex in human cancer (MDA-MB-231, MCF7, and A549) and mouse embryonic fibroblast (MEF) cells. We also observed a concurrent physical dissociation between BIRC5 and ATG12-ATG5 (but not CASP3/caspase-3) and upregulation of autophagy in MDA-MB-231 and A549 cells under serum-deprived conditions. Importantly, despite the fact that upregulation of autophagy is widely thought to promote DNA repair in cells under genotoxic stress, we found that BIRC5 maintains DNA integrity through autophagy negative-modulations in both human cancer and MEF cells under non-stressed conditions. In conclusion, our study reveals a novel role of BIRC5 in cancer cells as a direct regulator of autophagy. BIRC5 may act as a "bridging molecule", which regulates the interplay between mitosis, apoptosis, and autophagy in embryonic and cancer cells. ABBREVIATIONS ACTA1: actin; ATG: autophagy related; BIRC: baculoviral inhibitor of apoptosis repeat-containing; BAF: bafilomycin A1; CQ: chloroquine; CASP3: caspase 3; HSPB1/Hsp27: heat shock protein family B (small) member 1/heat shock protein 27; IAPs: inhibitors of apoptosis proteins; IP: immunoprecipitation; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PLA: proximity ligation assay; SQSTM1/p62: sequestosome 1; siRNA: small interfering RNA.
Collapse
Affiliation(s)
- Tzu-Yu Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Hsiu-Han Chan
- Department of Pharmacology, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Shang-Hung Chen
- National Institute of Cancer Research, National Health Research Institutes , Tainan, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Sailu Sarvagalla
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University , Puducherry, India
| | - Pai-Sheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University , Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Mohane Selvaraj Coumar
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University , Puducherry, India
| | - Siao Muk Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Yung-Chieh Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Chun-Hui Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Euphemia Leung
- Auckland Cancer Society Research Centre and Department of Molecular Medicine and Pathology, University of Auckland , Auckland, New Zealand
| | - Chun Hei Antonio Cheung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University , Tainan, Taiwan.,Department of Pharmacology, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| |
Collapse
|
24
|
Rehmani T, Salih M, Tuana BS. Cardiac-Specific Cre Induces Age-Dependent Dilated Cardiomyopathy (DCM) in Mice. Molecules 2019; 24:molecules24061189. [PMID: 30917606 PMCID: PMC6471127 DOI: 10.3390/molecules24061189] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022] Open
Abstract
The genetic modification of the mouse genome using the cre-lox system has been an invaluable tool in deciphering gene and protein function in a temporal and/or spatial manner. However, it has its pitfalls, as researchers have shown that the unregulated expression of cre recombinase can cause DNA damage, the consequences of which can be very detrimental to mouse health. Previously published literature on the most utilized cardiac-specific cre, αMHC-cre, mouse model exhibited a nonlethal hypertrophic cardiomyopathy (HCM) with aging. However, using the same αMHC-cre mice, we observed a cardiac pathology, resulting in complete lethality by 11 months of age. Echocardiography and histology revealed that the αMHC-cre mice were displaying symptoms of dilated cardiomyopathy (DCM) by seven months of age, which ultimately led to their demise in the absence of any HCM at any age. Molecular analysis showed that this phenotype was associated with the DNA damage response through the downregulation of activated p38 and increased expression of JNK, p53, and Bax, known inducers of myocyte death resulting in fibrosis. Our data urges strong caution when interpreting the phenotypic impact of gene responses using αMHC-cre mice, since a lethal DCM was induced by the cre driver in an age-dependent manner in this commonly utilized model system.
Collapse
Affiliation(s)
- Taha Rehmani
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Balwant S Tuana
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
25
|
Sheng L, Wan B, Feng P, Sun J, Rigo F, Bennett CF, Akerman M, Krainer AR, Hua Y. Downregulation of Survivin contributes to cell-cycle arrest during postnatal cardiac development in a severe spinal muscular atrophy mouse model. Hum Mol Genet 2019; 27:486-498. [PMID: 29220503 DOI: 10.1093/hmg/ddx418] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/28/2017] [Indexed: 11/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality, characterized by progressive degeneration of spinal-cord motor neurons, leading to atrophy of skeletal muscles. However, accumulating evidence indicates that it is a multi-system disorder, particularly in its severe forms. Several studies delineated structural and functional cardiac abnormalities in SMA patients and mouse models, yet the abnormalities have been primarily attributed to autonomic dysfunction. Here, we show in a severe mouse model that its cardiomyocytes undergo G0/G1 cell-cycle arrest and enhanced apoptosis during postnatal development. Microarray and real-time RT-PCR analyses revealed that a set of genes associated with cell cycle and apoptosis were dysregulated in newborn pups. Of particular interest, the Birc5 gene, which encodes Survivin, an essential protein for heart development, was down-regulated even on pre-symptomatic postnatal day 0. Interestingly, cultured cardiomyocytes depleted of SMN recapitulated the gene expression changes including downregulation of Survivin and abnormal cell-cycle progression; and overexpression of Survivin rescued the cell-cycle defect. Finally, increasing SMN in SMA mice with a therapeutic antisense oligonucleotide improved heart pathology and recovered expression of deregulated genes. Collectively, our data demonstrate that the cardiac malfunction of the severe SMA mouse model is mainly a cell-autonomous defect, caused by widespread gene deregulation in heart tissue, particularly of Birc5, resulting in developmental abnormalities through cell-cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Lei Sheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bo Wan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pengchao Feng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Junjie Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | | | - Martin Akerman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.,Envisagenics, Inc., New York, NY 10017, USA
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| | - Yimin Hua
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
26
|
Liu J, Cui Y, Yu S, Huang Y, Liu P, Song L, Sun J, Zhang Q, He J. Survivin expression and localization in different organs of yaks (Bos grunniens). Gen Comp Endocrinol 2018; 268:80-87. [PMID: 30077795 DOI: 10.1016/j.ygcen.2018.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 12/26/2022]
Abstract
Yaks (Bos grunniens) have special physiological structures that help them adapt to high-altitude environments. Survivin is actively studied in cancer tissues, but less in normal tissues. Therefore, the aim of the present study was to analysis the relationship between survivin expression and apoptosis rate in yaks. A partial gene sequence of survivin was cloned and characterized using bioinformatics. The expression of survivin was investigated using real-time quantitative PCR (RT-qPCR) and western blot (WB) analysis and localized using immunohistochemistry (IHC). The results revealed that in normal physiological organs, survivin is mainly expressed in cytoplasm and its expression was up-regulated with age. Its expression in heart and liver was higher than in other organs, such as spleen, lung, brain, kidney, and testis. It is noteworthy that the expression of survivin in spleen is differed from that in other organs. Therefore, we selected immune organs (lymph node, thymus and spleen) to investigate the relationship between survivin expression and apoptosis. Caspase-3 was used as a reference. Within the same age group, the expression of survivin was the highest in the spleen, but that of caspase-3 was the highest in the lymph node (P < 0.01). Furthermore, the IHC analysis revealed that survivin and caspase-3 are expressed in the same location (mainly in the cytoplasm, Hassall's corpuscles, the medulla of the lymph node, the red pulp and marginal zone of the spleen. More importantly, survivin expression was down-regulated with age in immune organs, and the opposite trend was observed for caspase-3 expression (P < 0.01). The results proved that the expression of survivin and caspase-3 is down- and up-regulated with age, respectively, suggesting that survivin and caspase-3 might coordinating and participating in slowing down the rate of apoptosis rate in immune organs of healthy yak.
Collapse
Affiliation(s)
- Jun Liu
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Yan Cui
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China; Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Yufeng Huang
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Penggang Liu
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Liangli Song
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Juan Sun
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Qian Zhang
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Junfeng He
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| |
Collapse
|
27
|
Piché J, Gosset N, Legault LM, Pacis A, Oneglia A, Caron M, Chetaille P, Barreiro L, Liu D, Qi X, Nattel S, Leclerc S, Breton-Larrivée M, McGraw S, Andelfinger G. Molecular Signature of CAID Syndrome: Noncanonical Roles of SGO1 in Regulation of TGF-β Signaling and Epigenomics. Cell Mol Gastroenterol Hepatol 2018; 7:411-431. [PMID: 30739867 PMCID: PMC6369230 DOI: 10.1016/j.jcmgh.2018.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS A generalized human pacemaking syndrome, chronic atrial and intestinal dysrhythmia (CAID) (OMIM 616201), is caused by a homozygous SGO1 mutation (K23E), leading to chronic intestinal pseudo-obstruction and arrhythmias. Because CAID patients do not show phenotypes consistent with perturbation of known roles of SGO1, we hypothesized that noncanonical roles of SGO1 drive the clinical manifestations observed. METHODS To identify a molecular signature for CAID syndrome, we achieved unbiased screens in cell lines and gut tissues from CAID patients vs wild-type controls. We performed RNA sequencing along with stable isotope labeling with amino acids in cell culture. In addition, we determined the genome-wide DNA methylation and chromatin accessibility signatures using reduced representative bisulfite sequencing and assay for transposase-accessible chromatin with high-throughput sequencing. Functional studies included patch-clamp, quantitation of transforming growth factor-β (TGF-β) signaling, and immunohistochemistry in CAID patient gut biopsy specimens. RESULTS Proteome and transcriptome studies converge on cell-cycle regulation, cardiac conduction, and smooth muscle regulation as drivers of CAID syndrome. Specifically, the inward rectifier current, an important regulator of cellular function, was disrupted. Immunohistochemistry confirmed overexpression of Budding Uninhibited By Benzimidazoles 1 (BUB1) in patients, implicating the TGF-β pathway in CAID pathogenesis. Canonical TGF-β signaling was up-regulated and uncoupled from noncanonical signaling in CAID patients. Reduced representative bisulfite sequencing and assay for transposase-accessible chromatin with high-throughput sequencing experiments showed significant changes of chromatin states in CAID, pointing to epigenetic regulation as a possible pathologic mechanism. CONCLUSIONS Our findings point to impaired inward rectifier potassium current, dysregulation of canonical TGF-β signaling, and epigenetic regulation as potential drivers of intestinal and cardiac manifestations of CAID syndrome. Transcript profiling and genomics data are as follows: repository URL: https://www.ncbi.nlm.nih.gov/geo; SuperSeries GSE110612 was composed of the following subseries: GSE110309, GSE110576, and GSE110601.
Collapse
Affiliation(s)
- Jessica Piché
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Natacha Gosset
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Lisa-Marie Legault
- Department of Biochemistry and Molecular Medicine, Centre Hospitalier Universitaire Sainte Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Alain Pacis
- Department of Genetics, Centre Hospitalier Universitaire Sainte Justine Research Center, Université de Montréal, Montréal, Québec, Canada,Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
| | - Andrea Oneglia
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Maxime Caron
- Centre Hospitalier Universitaire Sainte Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Philippe Chetaille
- Service of Pediatric Cardiology, Department of Pediatrics, Centre Mère Enfants Soleil, Centre Hospitalier de l’Université de Québec, Québec City, Québec, Canada
| | - Luis Barreiro
- Department of Genetics, Centre Hospitalier Universitaire Sainte Justine Research Center, Université de Montréal, Montréal, Québec, Canada,Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada,Department of Pediatrics, Université de Montréal, Québec, Canada
| | - Donghai Liu
- Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Xioyan Qi
- Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Stanley Nattel
- Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Séverine Leclerc
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Mélanie Breton-Larrivée
- Department of Biochemistry and Molecular Medicine, Centre Hospitalier Universitaire Sainte Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | | | - Serge McGraw
- Department of Biochemistry and Molecular Medicine, Centre Hospitalier Universitaire Sainte Justine Research Center, Université de Montréal, Montréal, Québec, Canada,Departement of Obstetrics and Gynecology, Centre Hospitalier Universitaire Sainte Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte Justine Research Center, Université de Montréal, Montréal, Québec, Canada,Correspondence Address correspondence to: Gregor Andelfinger, MD, FRCPC, Service of Cardiology, Department of Pediatrics, Cardiovascular Genetics Research Laboratory, Centre Hospitalier Sainte Justine Research Center, Université de Montréal 3175, Chemin Côte Sainte Catherine, Montréal, Québec, H3T 1C5 Canada. fax: (514) 345-4896.
| |
Collapse
|
28
|
Masoumy EP, Sawyer AA, Sharma S, Patel JA, Gordon PMK, Regnault TRH, Matushewski B, Weintraub NL, Richardson B, Thompson JA, Stansfield BK. The lifelong impact of fetal growth restriction on cardiac development. Pediatr Res 2018; 84:537-544. [PMID: 29967522 PMCID: PMC6265071 DOI: 10.1038/s41390-018-0069-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/11/2018] [Accepted: 05/20/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Maternal nutrient restriction (MNR) is a widespread cause of fetal growth restriction (FGR), an independent predictor of heart disease and cardiovascular mortality. Our objective was to examine the developmental and long-term impact of MNR-induced FGR on cardiac structure in a model that closely mimics human development. METHODS A reduction in total caloric intake spanning pregestation through to lactation in guinea pig sows was used to induce FGR. Proliferation, differentiation, and apoptosis of cardiomyocytes were assessed in late-gestation fetal, neonatal, and adult guinea pig hearts. Proteomic analysis and pathway enrichment were performed on fetal hearts. RESULTS Cardiomyocyte proliferation and the number of mononucleated cells were enhanced in the MNR-FGR fetal and neonatal heart, suggesting a delay in cardiomyocyte differentiation. In fetal hearts of MNR-FGR animals, apoptosis was markedly elevated and the total number of cardiomyocytes reduced, the latter remaining so throughout neonatal and into adult life. A reduction in total cardiomyocyte number in adult MNR-FGR hearts was accompanied by exaggerated hypertrophy and a disorganized architecture. Pathway analysis identified genes related to cell proliferation, differentiation, and survival. CONCLUSIONS FGR influences cardiomyocyte development during critical windows of development, leading to a permanent deficiency in cardiomyocyte number and compensatory hypertrophy in a rodent model that recapitulates human development.
Collapse
Affiliation(s)
- Emily P Masoumy
- Division of Neonatology, Augusta University, Augusta, GA, Georgia
| | | | - Suash Sharma
- Department of Pathology, Augusta University, Augusta, GA, Georgia
| | - Jenny A Patel
- Division of Neonatology, Augusta University, Augusta, GA, Georgia
| | - Paul M K Gordon
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Timothy R H Regnault
- Departments of Obstetrics and Gynecology, Physiology and Pharmacology, and Children's Health Research Institute, Western University, London, ON, Canada
| | - Brad Matushewski
- Departments of Obstetrics and Gynecology, Physiology and Pharmacology, and Children's Health Research Institute, Western University, London, ON, Canada
| | - Neal L Weintraub
- Vascular Biology Center, Augusta University, Augusta, GA, Georgia
- Division of Cardiology, Augusta University, Augusta, GA, Georgia
| | - Bryan Richardson
- Departments of Obstetrics and Gynecology, Physiology and Pharmacology, and Children's Health Research Institute, Western University, London, ON, Canada
| | - Jennifer A Thompson
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.
| | - Brian K Stansfield
- Division of Neonatology, Augusta University, Augusta, GA, Georgia.
- Vascular Biology Center, Augusta University, Augusta, GA, Georgia.
| |
Collapse
|
29
|
Agnew EJ, Ivy JR, Stock SJ, Chapman KE. Glucocorticoids, antenatal corticosteroid therapy and fetal heart maturation. J Mol Endocrinol 2018; 61:R61-R73. [PMID: 29720513 PMCID: PMC5976079 DOI: 10.1530/jme-18-0077] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023]
Abstract
Glucocorticoids are essential in mammals to mature fetal organs and tissues in order to survive after birth. Hence, antenatal glucocorticoid treatment (termed antenatal corticosteroid therapy) can be life-saving in preterm babies and is commonly used in women at risk of preterm birth. While the effects of glucocorticoids on lung maturation have been well described, the effects on the fetal heart remain less clear. Experiments in mice have shown that endogenous glucocorticoid action is required to mature the fetal heart. However, whether the potent synthetic glucocorticoids used in antenatal corticosteroid therapy have similar maturational effects on the fetal heart is less clear. Moreover, antenatal corticosteroid therapy may increase the risk of cardiovascular disease in adulthood. Here, we present a narrative review of the evidence relating to the effects of antenatal glucocorticoid action on the fetal heart and discuss the implications for antenatal corticosteroid therapy.
Collapse
Affiliation(s)
- Emma J Agnew
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, UK
| | - Jessica R Ivy
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, UK
| | - Sarah J Stock
- MRC Centre for Reproductive HealthUniversity of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, UK
| | - Karen E Chapman
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, UK
- Correspondence should be addressed to K E Chapman:
| |
Collapse
|
30
|
Anti-apoptosis in nonmyocytes and pro-autophagy in cardiomyocytes: two strategies against postinfarction heart failure through regulation of cell death/degeneration. Heart Fail Rev 2018; 23:759-772. [DOI: 10.1007/s10741-018-9708-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Tsang TJ, Hsueh YC, Wei EI, Lundy DJ, Cheng B, Chen YT, Wang SS, Hsieh PC. Subcellular Localization of Survivin Determines Its Function in Cardiomyocytes. Am J Cancer Res 2017; 7:4577-4590. [PMID: 29158846 PMCID: PMC5695150 DOI: 10.7150/thno.20005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/10/2017] [Indexed: 12/30/2022] Open
Abstract
Rationale:Reducing cardiomyocyte death and enhancing their proliferation after myocardial infarction is perhaps the single largest challenge for cardiac tissue regeneration. Survivin (SVV) is the smallest member of the inhibitor of apoptosis (IAP) family but plays two important roles; inhibiting caspase-9 activation in the intrinsic apoptosis pathway, and regulating microtubule dynamics and chromosome segregation during cell division. Genetic depletion of cardiac SVV leads to incomplete cardiomyocyte division and abnormal heart development. However, the function of SVV in adult hearts after myocardial infarction remains unclear. Methods: A homozygous inducible cardiomyocyte-specific SVV knockout transgenic mouse model was established through crossbreeding SVVflox/flox and αMHC-MCM transgenic mice. Adult mice received consecutive intraperitoneal injection of tamoxifen to induce genetic removal of SVV in cardiomyocytes. A SVV overexpressing model was established via local delivery of SVV in wild-type mouse hearts. Results: We found that 30.82% of cardiomyocytes in the peri-infarct region of SVV knockout mice were apoptotic, significantly higher than the 22.18% in control mice. In addition, ejection fraction was 29.00±0.40% in knockout mice compared to 38.04±0.50% in control mice 21 days after myocardial infarction. On the contrary, locally overexpressing SVV in the heart improved cardiac functions. Unexpectedly, we found that altering the subcellular localization of SVV overexpression produced different outcomes. Overexpression of SVV in the cytoplasm decreased cardiomyocyte apoptosis, whereas overexpression of SVV in the nucleus enhanced cardiac regeneration. The ejection fraction of mice overexpressing SVV was 36.58±0.91%, significantly higher than 28.18±1.70% in the GFP control group. Apoptotic cardiomyocytes were only 4.63% in mouse overexpressing cytosolic SVV, compared to 9.31% in the GFP group, and activation of caspase-3 was also reduced. Moreover, mice overexpressing NLS-SVV exhibited a better ejection fraction (36.19±1.02%,) than GFP controls (26.69±0.75%). NLS-SVV enhanced H3P-positive cardiomyocytes in the border zone to 0.28%, compared to only 0.08% in GFP group, through interacting with Aurora B. Conclusions:We demonstrate the importance of SVV subcellular localization in regulating post-MI cardiac repair and regeneration. We hope that this will open new translational approaches through targeted delivery of SVV.
Collapse
|
32
|
Gedik N, Kottenberg E, Thielmann M, Frey UH, Jakob H, Peters J, Heusch G, Kleinbongard P. Potential humoral mediators of remote ischemic preconditioning in patients undergoing surgical coronary revascularization. Sci Rep 2017; 7:12660. [PMID: 28978919 PMCID: PMC5627278 DOI: 10.1038/s41598-017-12833-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/15/2017] [Indexed: 01/03/2023] Open
Abstract
Remote ischemic preconditioning (RIPC) by repeated brief cycles of limb ischemia/reperfusion may reduce myocardial ischemia/reperfusion injury and improve patients‘ prognosis after elective coronary artery bypass graft (CABG) surgery. The signal transducer and activator of transcription (STAT)5 activation in left ventricular myocardium is associated with RIPC´s cardioprotection. Cytokines and growth hormones typically activate STATs and could therefore act as humoral transfer factors of RIPC´s cardioprotection. We here determined arterial plasma concentrations of 25 different cytokines, growth hormones, and other factors which have previously been associated with cardioprotection, before (baseline)/after RIPC or placebo (n = 23/23), respectively, and before/after ischemic cardioplegic arrest in CABG patients. RIPC-induced protection was reflected by a 35% reduction of serum troponin I release. With the exception of interleukin-1α, none of the humoral factors changed in their concentrations after RIPC or placebo, respectively. Interleukin-1α, when normalized to baseline, increased after RIPC (280 ± 56%) but not with placebo (97 ± 15%). The interleukin-1α concentration remained increased until after ischemic cardioplegic arrest and was also higher than with placebo in absolute concentrations (25 ± 6 versus 16 ± 3 pg/mL). Only interleukin-1α possibly fulfills the criteria which would be expected from a substance to be released in response to RIPC and to protect the myocardium during ischemic cardioplegic arrest.
Collapse
Affiliation(s)
- Nilgün Gedik
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg- Essen, Essen, Germany
| | - Eva Kottenberg
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Matthias Thielmann
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg- Essen, Essen, Germany
| | - Ulrich H Frey
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Heinz Jakob
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg- Essen, Essen, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg- Essen, Essen, Germany
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg- Essen, Essen, Germany.
| |
Collapse
|
33
|
Preserved heart function after left ventricular pressure overload in adult mice subjected to neonatal cardiac hypoplasia. J Dev Orig Health Dis 2017; 9:112-124. [PMID: 28737122 DOI: 10.1017/s2040174417000514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intrauterine growth restriction in animal models reduces heart size and cardiomyocyte number at birth. Such incomplete cardiomyocyte endowment is believed to increase susceptibility toward cardiovascular disease in adulthood, a phenomenon referred to as developmental programming. We have previously described a mouse model of impaired myocardial development leading to a 25% reduction of cardiomyocyte number in neonates. This study investigated the response of these hypoplastic hearts to pressure overload in adulthood, applied by abdominal aortic constriction (AAC). Echocardiography revealed a similar hypertrophic response in hypoplastic hearts compared with controls over the first 2 weeks. Subsequently, control mice develop mild left ventricular (LV) dilation, wall thinning and contractile dysfunction 4 weeks after AAC, whereas hypoplastic hearts fully maintain LV dimensions, wall thickness and contractility. At the cellular level, controls exhibit increased cardiomyocyte cross-sectional area after 4 weeks pressure overload compared with sham operated animals, but this hypertrophic response is markedly attenuated in hypoplastic hearts. AAC mediated induction of fibrosis, apoptosis or cell cycle activity was not different between groups. Expression of fetal genes, indicative of pathological conditions, was similar in hypoplastic and control hearts after AAC. Among various signaling pathways involved in cardiac hypertrophy, pressure overload induces p38 MAP-kinase activity in hypoplastic hearts but not controls compared with the respective sham operated animals. In summary, based on the mouse model used in this study, our data indicates that adult hearts after neonatal cardiac hypoplasia show an altered growth response to pressure overload, eventually resulting in better functional outcome compared with controls.
Collapse
|
34
|
Scheer A, Knauer SK, Verhaegh R. Survivin expression pattern in the intestine of normoxic and ischemic rats. BMC Gastroenterol 2017; 17:76. [PMID: 28615071 PMCID: PMC5471735 DOI: 10.1186/s12876-017-0625-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 05/12/2017] [Indexed: 01/04/2023] Open
Abstract
Background Survivin, a member of the inhibitor of apoptosis protein (IAP) family, regulates mitosis and chromosome segregation. The expression of survivin proceeds during embryonic development and in addition has already been demonstrated in cancer cells. However, there is also evidence of survivin expression in differentiated tissues, including the gastro-intestinal tract of adult rats. A study with human colon specimens exhibited survivin in most basal crypt epithelial cells of normal mucosa. There is rather limited information on survivin expression in the small intestine. In order to paint a more detailed and thus complete picture of survivin expression patterns in the gastrointestinal tract, we used an immunohistochemical approach in normal adult rat small intestinal and ascending colonic tissue. Moreover, to get deeper insights in the regulation of survivin expression after tissue damage, we also studied its expression in mesenteric ischemia-reperfusion (I/R) injury. Methods Mesenteric ischemia-reperfusion injury was induced in male Wistar rats (six animals/group) by occlusion of the superior mesenteric artery for 90 min and subsequent reperfusion for 120 min. Paraffin sections of untreated or ischemically treated tissue were assessed immunohistochemically by survivin and Ki-67 staining. Results Survivin could be detected in the small intestine and ascending colon of the normoxia group. It was expressed mainly in the epithelial cells of the crypts and only marginally in the villi. The individual small intestinal segments studied revealed comparable staining intensities. Likewise, expression of survivin was detected in the ischemically damaged small intestine and ascending colon. The expression pattern corresponded to the normoxic animals, as far as verifiable due to the existing tissue damage. Comparison of the expression pattern of Ki-67, a protein that acts as a cellular marker for proliferation, and survivin demonstrated a coincidental localization of the two proteins in the small intestinal and ascending colonic tissue. Conclusions Survivin was expressed strongly in epithelial cells of small intestinal as well as ascending colonic tissue. Its expression was located in cells with a high proliferation rate and regenerative capacity. This further supports the decisive role of survivin in cell division. Surprisingly, the ischemically damaged small intestinal and ascending colonic tissue showed a comparably high expression level. These results suggest that there is already a maximal survivin expression under normal conditions. However, the intestine is able to maintain the regenerative capacity even in spite of an ischemic injury. These findings reflect the important relevance of an intact intestinal barrier.
Collapse
Affiliation(s)
- Alexandra Scheer
- Institute of Physiological Chemistry, University Hospital Essen, Hufelandstraße 55, D-45147, Essen, Germany
| | - Shirley K Knauer
- Institute for Molecular Biology, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Rabea Verhaegh
- Institute of Physiological Chemistry, University Hospital Essen, Hufelandstraße 55, D-45147, Essen, Germany.
| |
Collapse
|
35
|
Kulkarni A, Li L, Craft M, Nanda M, Lorenzo JMM, Danford D, Kutty S. Fetal myocardial deformation in maternal diabetes mellitus and obesity. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2017; 49:630-636. [PMID: 27218437 DOI: 10.1002/uog.15971] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/14/2016] [Accepted: 05/16/2016] [Indexed: 06/05/2023]
Abstract
OBJECTIVE Experimental evidence suggests that changes in the fetal myocardium result from intrauterine effects of maternal diabetes mellitus and obesity. The aim of this study was to assess fetal cardiac function using two-dimensional speckle-tracking echocardiography to determine the effects of maternal diabetes and obesity on the fetal myocardium. METHODS Comparative cross-sectional evaluation of myocardial function in fetuses of mothers with diabetes mellitus (FDM) or obesity (FO) and normal gestational age-matched control fetuses (FC) was performed using two-dimensional speckle-tracking echocardiography at two centers. RESULTS In total, 178 fetuses (82 FDM, 26 FO and 70 FC) met the enrolment criteria. Mean gestational age at assessment was similar among groups: 25.3 ± 5.1 weeks for FDM, 25.0 ± 4.6 weeks for FO and 25.1 ± 4.9 weeks for FC. Mean maternal body mass index was significantly higher in FDM and FO groups compared with the FC group. Statistically significant differences in fetal cardiac function were detected between FDM and FC for global longitudinal strain (mean ± SD, -21.4 ± 6.5% vs -27.0 ± 5.2%; P < 0.001), global circumferential strain (mean ± SD, -22.6 ± 6.5% vs -26.2 ± 6.8%; P = 0.002), average longitudinal systolic strain rate (median, -1.4 (interquartile range (IQR), -1.7 to -1.1)/s vs -1.6 (IQR, -2.0 to -1.4)/s; P = 0.001) and average circumferential systolic strain rate (median, -1.4 (IQR, -1.9 to -1.1)/s vs -1.6 (IQR, -2.1 to -1.3)/s; P = 0.006). Cases of non-obese FDM also had abnormal strain parameters compared with FC. Global longitudinal strain (mean ± SD, -21.1 ± 7.5%) and average circumferential systolic strain rate (median, -1.3 (IQR, -1.8 to -1.1)/s) were significantly lower in FO compared with FC. CONCLUSIONS Unfavorable changes occur in the fetal myocardium in response to both maternal diabetes mellitus and obesity. The long-term prognostic implications of these changes require further study. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- A Kulkarni
- Department of Pediatrics, Bronx Lebanon Hospital Center, Bronx, NY, USA
| | - L Li
- Children's Hospital and Medical Center, Omaha, NE, USA
| | - M Craft
- Children's Hospital and Medical Center, Omaha, NE, USA
| | - M Nanda
- Department of Pediatrics, Bronx Lebanon Hospital Center, Bronx, NY, USA
| | - J M M Lorenzo
- Department of Pediatrics, Bronx Lebanon Hospital Center, Bronx, NY, USA
| | - D Danford
- Children's Hospital and Medical Center, Omaha, NE, USA
| | - S Kutty
- Children's Hospital and Medical Center, Omaha, NE, USA
| |
Collapse
|
36
|
Wang Y, Wu Y, Quadri F, Prox JD, Guo L. Cytotoxicity of ZnO Nanowire Arrays on Excitable Cells. NANOMATERIALS 2017; 7:nano7040080. [PMID: 28387734 PMCID: PMC5408172 DOI: 10.3390/nano7040080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 11/25/2022]
Abstract
Zinc oxide (ZnO) nanowires have been widely studied for their applications in electronics, optics, and catalysts. Their semiconducting, piezoelectric, fluorescent, and antibacterial properties have also attracted broad interest in their biomedical applications. Thus, it is imperative to evaluate the biosafety of ZnO nanowires and their biological effects. In this study, the cellular level biological effects of ZnO nanowire arrays are specifically tested on three types of excitable cells, including NG108-15 neuronal cell line, HL-1 cardiac muscle cell line, and neonatal rat cardiomyocytes. Vertically aligned and densely packed ZnO nanowire arrays are synthesized using a solution-based method and used as a substrate for cell culture. The metabolism levels of all three types of cells cultured on ZnO nanowire arrays are studied using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays of a full factorial design. Under the studied settings, the results show statistically significant inhibitory effects of ZnO nanowire arrays on the metabolism of NG108-15 and HL-1 cells in comparison to gold, glass, and polystyrene substrates, and on the metabolism of cardiomyocytes in comparison to gold substrate.
Collapse
Affiliation(s)
- Yongchen Wang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Yu Wu
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Farhan Quadri
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Jordan D Prox
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Liang Guo
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA.
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
37
|
Nagarajan N, Vyas V, Huey BD, Zorlutuna P. Modulation of the contractility of micropatterned myocardial cells with nanoscale forces using atomic force microscopy. Nanobiomedicine (Rij) 2016; 3:1849543516675348. [PMID: 29942390 PMCID: PMC5998274 DOI: 10.1177/1849543516675348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/29/2016] [Indexed: 11/16/2022] Open
Abstract
The ability to modulate cardiomyocyte contractility is important for bioengineering applications ranging from heart disease treatments to biorobotics. In this study, we examined the changes in contraction frequency of neonatal rat cardiomyocytes upon single-cell-level nanoscale mechanical stimulation using atomic force microscopy. To measure the response of same density of cells, they were micropatterned into micropatches of fixed geometry. To examine the effect of the substrate stiffness on the behavior of cells, they were cultured on a stiffer and a softer surface, glass and poly (dimethylsiloxane), respectively. Upon periodic cyclic stimulation of 300 nN at 5 Hz, a significant reduction in the rate of synchronous contraction of the cell patches on poly(dimethylsiloxane) substrates was observed with respect to their spontaneous beat rate, while the cell patches on glass substrates maintained or increased their contraction rate after the stimulation. On the other hand, single cells mostly maintained their contraction rate and could only withstand a lower magnitude of forces compared to micropatterned cell patches. This study reveals that the contraction behavior of cardiomyocytes can be modulated mechanically through cyclic nanomechanical stimulation, and the degree and mode of this modulation depend on the cell connectivity and substrate mechanical properties.
Collapse
Affiliation(s)
- Neerajha Nagarajan
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA
| | - Varun Vyas
- Institute of Materials Science, University of Connecticut, Storrs, CT, USA
| | - Bryan D Huey
- Institute of Materials Science, University of Connecticut, Storrs, CT, USA.,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Pinar Zorlutuna
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
38
|
Ashok A, Kanwar JR, Krishnan UM, Kanwar RK. SurR9C84A protects and recovers human cardiomyocytes from hypoxia induced apoptosis. Exp Cell Res 2016; 350:19-31. [PMID: 27816606 DOI: 10.1016/j.yexcr.2016.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 10/19/2016] [Accepted: 10/22/2016] [Indexed: 02/05/2023]
Abstract
Survivin, as an anti-apoptotic protein and a cell cycle regulator, is recently gaining importance for its regenerative potential in salvaging injured hypoxic cells of vital organs such as heart. Different strategies are being employed to upregulate survivin expression in dying hypoxic cardiomyocytes. We investigated the cardioprotective potential of a cell permeable survivin mutant protein SurR9C84A, for the management of hypoxia mediated cardiomyocyte apoptosis, in a novel and clinically relevant model employing primary human cardiomyocytes (HCM). The aim of this research work was to study the efficacy and mechanism of SurR9C84A facilitated cardioprotection and regeneration in hypoxic HCM. To mimic hypoxic microenvironment in vitro, well characterized HCM were treated with 100µm (48h) cobalt chloride to induce hypoxia. Hypoxia induced (HI) HCM were further treated with SurR9C84A (1µg/mL) in order to analyse its cardioprotective efficacy. Confocal microscopy showed rapid internalization of SurR9C84A and scanning electron microscopy revealed the reinstatement of cytoskeleton projections in HI HCM. SurR9C84A treatment increased cell viability, reduced cell death via, apoptosis (Annexin-V assay), and downregulated free cardiac troponin T and MMP-9 expression. SurR9C84A also upregulated the expression of proliferation markers (PCNA and Ki-67) and downregulated mitochondrial depolarization and ROS levels thereby, impeding cell death. Human Apoptosis Array further revealed that SurR9C84A downregulated expression of pro-apoptotic markers and augmented expression of HSPs and HTRA2/Omi. SurR9C84A treatment led to enhanced levels of survivin, VEGF, PI3K and pAkt. SurR9C84A proved non-toxic to normoxic HCM, as validated through unaltered cell proliferation and other marker levels. Its pre-treatment exhibited lesser susceptibility to hypoxia/damage. SurR9C84A holds a promising clinical potential for human cardiomyocyte survival and proliferation following hypoxic injury.
Collapse
Affiliation(s)
- Ajay Ashok
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Faculty of Health, Centre for Molecular and Medical Research (C-MMR), Deakin University, Waurn Ponds, Victoria 3216, Australia; Department of Pathology, Case Western Reserve University, 2103 Cornell Rd. WRB 5128, Cleveland, OH 44106-7288, USA
| | - Jagat Rakesh Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Faculty of Health, Centre for Molecular and Medical Research (C-MMR), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical & Biotechnology (SCBT), SASTRA University, Thanjavur 613401, India
| | - Rupinder Kaur Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Faculty of Health, Centre for Molecular and Medical Research (C-MMR), Deakin University, Waurn Ponds, Victoria 3216, Australia.
| |
Collapse
|
39
|
Chung WB, Youn HJ. Pathophysiology and preventive strategies of anthracycline-induced cardiotoxicity. Korean J Intern Med 2016; 31:625-33. [PMID: 27378126 PMCID: PMC4939510 DOI: 10.3904/kjim.2016.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 05/20/2016] [Indexed: 02/07/2023] Open
Abstract
Cardiotoxicity is a well-known complication following treatment with anthracyclines. However, they are still widely used in chemotherapy for breast cancer, lymphoma, leukemia, and sarcoma, among others. Patient clinical characteristics, such as age, sex, comorbidities, anthracycline dose and infusion schedule, and the combined anti-cancer agents used, are diverse among cancer types. It is difficult to recommend guidelines for the prevention or management of anthracycline-induced cardiotoxicity applicable to all cancer types. Therefore, anthracycline-induced cardiotoxicity remains a major limitation in the proper management of cancer patients treated with an anthracycline-combined regimen. Efforts have been extensive to determine the mechanism and treatment of anthracycline-induced cardiotoxicity. Because cardiotoxicity causes irreversible damage to the myocardium, prevention is a more effective approach than treatment of cardiotoxicity after symptomatic or asymptomatic cardiac dysfunction develops. This article will review the pathophysiological mechanisms of anthracycline-induced cardiotoxicity and strategies for protecting the myocardium from anthracycline.
Collapse
Affiliation(s)
| | - Ho-Joong Youn
- Correspondence to Ho-Joong Youn, M.D. Cardiovascular Center, Division of Cardiology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-6029 Fax: +82-2-591-1506 E-mail:
| |
Collapse
|
40
|
Keul P, van Borren MMGJ, Ghanem A, Müller FU, Baartscheer A, Verkerk AO, Stümpel F, Schulte JS, Hamdani N, Linke WA, van Loenen P, Matus M, Schmitz W, Stypmann J, Tiemann K, Ravesloot JH, Alewijnse AE, Hermann S, Spijkers LJA, Hiller KH, Herr D, Heusch G, Schäfers M, Peters SLM, Chun J, Levkau B. Sphingosine-1-Phosphate Receptor 1 Regulates Cardiac Function by Modulating Ca2+ Sensitivity and Na+/H+ Exchange and Mediates Protection by Ischemic Preconditioning. J Am Heart Assoc 2016; 5:JAHA.116.003393. [PMID: 27207969 PMCID: PMC4889204 DOI: 10.1161/jaha.116.003393] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background Sphingosine‐1‐phosphate plays vital roles in cardiomyocyte physiology, myocardial ischemia–reperfusion injury, and ischemic preconditioning. The function of the cardiomyocyte sphingosine‐1‐phosphate receptor 1 (S1P1) in vivo is unknown. Methods and Results Cardiomyocyte‐restricted deletion of S1P1 in mice (S1P1αMHCCre) resulted in progressive cardiomyopathy, compromised response to dobutamine, and premature death. Isolated cardiomyocytes from S1P1αMHCCre mice revealed reduced diastolic and systolic Ca2+ concentrations that were secondary to reduced intracellular Na+ and caused by suppressed activity of the sarcolemmal Na+/H+ exchanger NHE‐1 in the absence of S1P1. This scenario was successfully reproduced in wild‐type cardiomyocytes by pharmacological inhibition of S1P1 or sphingosine kinases. Furthermore, Sarcomere shortening of S1P1αMHCCre cardiomyocytes was intact, but sarcomere relaxation was attenuated and Ca2+ sensitivity increased, respectively. This went along with reduced phosphorylation of regulatory myofilament proteins such as myosin light chain 2, myosin‐binding protein C, and troponin I. In addition, S1P1 mediated the inhibitory effect of exogenous sphingosine‐1‐phosphate on β‐adrenergic–induced cardiomyocyte contractility by inhibiting the adenylate cyclase. Furthermore, ischemic precondtioning was abolished in S1P1αMHCCre mice and was accompanied by defective Akt activation during preconditioning. Conclusions Tonic S1P1 signaling by endogenous sphingosine‐1‐phosphate contributes to intracellular Ca2+ homeostasis by maintaining basal NHE‐1 activity and controls simultaneously myofibril Ca2+ sensitivity through its inhibitory effect on adenylate cyclase. Cardioprotection by ischemic precondtioning depends on intact S1P1 signaling. These key findings on S1P1 functions in cardiac physiology may offer novel therapeutic approaches to cardiac diseases.
Collapse
Affiliation(s)
- Petra Keul
- Institute for Pathophysiology, Westdeutsches Herz- und Gefäßzentrum, Universitätsklinikum Essen, Essen, Germany
| | | | - Alexander Ghanem
- Department of Cardiology, Universitätsklinikum Bonn, Bonn, Germany
| | | | | | - Arie O Verkerk
- Heart Failure Research Center, AMC, University of Amsterdam, The Netherlands
| | - Frank Stümpel
- Institute for Pharmakology und Toxikology, Münster, Germany
| | | | - Nazha Hamdani
- Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany
| | - Wolfgang A Linke
- Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany
| | - Pieter van Loenen
- Department of Pharmacology & Pharmacotherapy, AMC, University of Amsterdam, The Netherlands
| | - Marek Matus
- Institute for Pharmakology und Toxikology, Münster, Germany Department of Pharmacology and Toxicology, Comenius University, Bratislava, Slovakia
| | | | - Jörg Stypmann
- Medizinische Klinik und Poliklinik C, Universitätsklinikum Münster, Münster, Germany
| | - Klaus Tiemann
- Medizinische Klinik und Poliklinik C, Universitätsklinikum Münster, Münster, Germany
| | | | - Astrid E Alewijnse
- Department of Pharmacology & Pharmacotherapy, AMC, University of Amsterdam, The Netherlands
| | - Sven Hermann
- European Institute for Molecular Imaging, Münster, Germany
| | - Léon J A Spijkers
- Department of Pharmacology & Pharmacotherapy, AMC, University of Amsterdam, The Netherlands
| | - Karl-Heinz Hiller
- MRB Forschungszentrum Magnet-Resonanz-Bayern e.V., Würzburg, Germany
| | - Deron Herr
- Department of Molecular Biology, Scripps Research Institute, La Jolla, CA
| | - Gerd Heusch
- Institute for Pathophysiology, Westdeutsches Herz- und Gefäßzentrum, Universitätsklinikum Essen, Essen, Germany
| | | | - Stephan L M Peters
- Department of Pharmacology & Pharmacotherapy, AMC, University of Amsterdam, The Netherlands
| | - Jerold Chun
- Department of Molecular Biology, Scripps Research Institute, La Jolla, CA
| | - Bodo Levkau
- Institute for Pathophysiology, Westdeutsches Herz- und Gefäßzentrum, Universitätsklinikum Essen, Essen, Germany
| |
Collapse
|
41
|
Zhan H, Aizawa K, Sun J, Tomida S, Otsu K, Conway SJ, Mckinnon PJ, Manabe I, Komuro I, Miyagawa K, Nagai R, Suzuki T. Ataxia telangiectasia mutated in cardiac fibroblasts regulates doxorubicin-induced cardiotoxicity. Cardiovasc Res 2016; 110:85-95. [PMID: 26862121 PMCID: PMC4798048 DOI: 10.1093/cvr/cvw032] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/18/2015] [Accepted: 01/07/2016] [Indexed: 12/19/2022] Open
Abstract
AIMS Doxorubicin (Dox) is a potent anticancer agent that is widely used in the treatment of a variety of cancers, but its usage is limited by cumulative dose-dependent cardiotoxicity mainly due to oxidative damage. Ataxia telangiectasia mutated (ATM) kinase is thought to play a role in mediating the actions of oxidative stress. Here, we show that ATM in cardiac fibroblasts is essential for Dox-induced cardiotoxicity. METHODS AND RESULTS ATM knockout mice showed attenuated Dox-induced cardiotoxic effects (e.g. cardiac dysfunction, apoptosis, and mortality). As ATM was expressed and activated predominantly in cardiac fibroblasts, fibroblast-specific Atm-deleted mice (Atm(fl/fl);Postn-Cre) were generated to address cell type-specific effects, which showed that the fibroblast is the key lineage mediating Dox-induced cardiotoxicity through ATM. Mechanistically, ATM activated the Fas ligand, which subsequently regulated apoptosis in cardiomyocytes at later stages. Therapeutically, a potent and selective inhibitor of ATM, KU55933, when administered systemically was able to prevent Dox-induced cardiotoxicity. CONCLUSION ATM-regulated effects within cardiac fibroblasts are pivotal in Dox-induced cardiotoxicity, and antagonism of ATM and its functions may have potential therapeutic implications.
Collapse
Affiliation(s)
- Hong Zhan
- Jichi Medical University, Tochigi, Japan Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichi Aizawa
- Jichi Medical University, Tochigi, Japan Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junqing Sun
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan The Key Laboratory of Biomedical Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Shota Tomida
- Jichi Medical University, Tochigi, Japan Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kinya Otsu
- Cardiovascular Division, King's College London, London, UK
| | - Simon J Conway
- Program in Developmental Biology and Neonatal Medicine, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter J Mckinnon
- Department of Genetics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ichiro Manabe
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Miyagawa
- Department of Radiation Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Toru Suzuki
- Jichi Medical University, Tochigi, Japan Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan Department of Cardiovascular Sciences, University of Leicester Cardiovascular Research Centre, University of Leicester, Glenfield Hospital Groby Road, Glenfield, Leicester LE3 9QP, UK National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| |
Collapse
|
42
|
Zhou J, Ahmad F, Parikh S, Hoffman NE, Rajan S, Verma VK, Song J, Yuan A, Shanmughapriya S, Guo Y, Gao E, Koch W, Woodgett JR, Madesh M, Kishore R, Lal H, Force T. Loss of Adult Cardiac Myocyte GSK-3 Leads to Mitotic Catastrophe Resulting in Fatal Dilated Cardiomyopathy. Circ Res 2016; 118:1208-22. [PMID: 26976650 DOI: 10.1161/circresaha.116.308544] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/14/2016] [Indexed: 11/16/2022]
Abstract
RATIONALE Cardiac myocyte-specific deletion of either glycogen synthase kinase (GSK)-3α and GSK-3β leads to cardiac protection after myocardial infarction, suggesting that deletion of both isoforms may provide synergistic protection. This is an important consideration because of the fact that all GSK-3-targeted drugs, including the drugs already in clinical trial target both isoforms of GSK-3, and none are isoform specific. OBJECTIVE To identify the consequences of combined deletion of cardiac myocyte GSK-3α and GSK-3β in heart function. METHODS AND RESULTS We generated tamoxifen-inducible cardiac myocyte-specific mice lacking both GSK-3 isoforms (double knockout). We unexpectedly found that cardiac myocyte GSK-3 is essential for cardiac homeostasis and overall survival. Serial echocardiographic analysis reveals that within 2 weeks of tamoxifen treatment, double-knockout hearts leads to excessive dilatative remodeling and ventricular dysfunction. Further experimentation with isolated adult cardiac myocytes and fibroblasts from double-knockout implicated cardiac myocytes intrinsic factors responsible for observed phenotype. Mechanistically, loss of GSK-3 in adult cardiac myocytes resulted in induction of mitotic catastrophe, a previously unreported event in cardiac myocytes. Double-knockout cardiac myocytes showed cell cycle progression resulting in increased DNA content and multinucleation. However, increased cell cycle activity was rivaled by marked activation of DNA damage, cell cycle checkpoint activation, and mitotic catastrophe-induced apoptotic cell death. Importantly, mitotic catastrophe was also confirmed in isolated adult cardiac myocytes. CONCLUSIONS Together, our findings suggest that cardiac myocyte GSK-3 is required to maintain normal cardiac homeostasis, and its loss is incompatible with life because of cell cycle dysregulation that ultimately results in a severe fatal dilated cardiomyopathy.
Collapse
Affiliation(s)
- Jibin Zhou
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Firdos Ahmad
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Shan Parikh
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Nichole E Hoffman
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Sudarsan Rajan
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Vipin K Verma
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Jianliang Song
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Ancai Yuan
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Santhanam Shanmughapriya
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Yuanjun Guo
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Erhe Gao
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Walter Koch
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - James R Woodgett
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Muniswamy Madesh
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Raj Kishore
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Hind Lal
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.).
| | - Thomas Force
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.).
| |
Collapse
|
43
|
Loss of Survivin in Intestinal Epithelial Progenitor Cells Leads to Mitotic Catastrophe and Breakdown of Gut Immune Homeostasis. Cell Rep 2016; 14:1062-1073. [DOI: 10.1016/j.celrep.2016.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/25/2015] [Accepted: 12/29/2015] [Indexed: 01/17/2023] Open
|
44
|
Jonker SS, Louey S. Endocrine and other physiologic modulators of perinatal cardiomyocyte endowment. J Endocrinol 2016; 228:R1-18. [PMID: 26432905 PMCID: PMC4677998 DOI: 10.1530/joe-15-0309] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2015] [Indexed: 01/09/2023]
Abstract
Immature contractile cardiomyocytes proliferate to rapidly increase cell number, establishing cardiomyocyte endowment in the perinatal period. Developmental changes in cellular maturation, size and attrition further contribute to cardiac anatomy. These physiological processes occur concomitant with a changing hormonal environment as the fetus prepares itself for the transition to extrauterine life. There are complex interactions between endocrine, hemodynamic and nutritional regulators of cardiac development. Birth has been long assumed to be the trigger for major differences between the fetal and postnatal cardiomyocyte growth patterns, but investigations in normally growing sheep and rodents suggest this may not be entirely true; in sheep, these differences are initiated before birth, while in rodents they occur after birth. The aim of this review is to draw together our understanding of the temporal regulation of these signals and cardiomyocyte responses relative to birth. Further, we consider how these dynamics are altered in stressed and suboptimal intrauterine environments.
Collapse
Affiliation(s)
- S S Jonker
- Knight Cardiovascular Institute Center for Developmental HealthOregon Health and Science University, Portland, Oregon 97239, USA
| | - S Louey
- Knight Cardiovascular Institute Center for Developmental HealthOregon Health and Science University, Portland, Oregon 97239, USA
| |
Collapse
|
45
|
Kreipke RE, Birren SJ. Innervating sympathetic neurons regulate heart size and the timing of cardiomyocyte cell cycle withdrawal. J Physiol 2015; 593:5057-73. [PMID: 26420487 DOI: 10.1113/jp270917] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/07/2015] [Indexed: 12/28/2022] Open
Abstract
Sympathetic drive to the heart is a key modulator of cardiac function and interactions between heart tissue and innervating sympathetic fibres are established early in development. Significant innervation takes place during postnatal heart development, a period when cardiomyocytes undergo a rapid transition from proliferative to hypertrophic growth. The question of whether these innervating sympathetic fibres play a role in regulating the modes of cardiomyocyte growth was investigated using 6-hydroxydopamine (6-OHDA) to abolish early sympathetic innervation of the heart. Postnatal chemical sympathectomy resulted in rats with smaller hearts, indicating that heart growth is regulated by innervating sympathetic fibres during the postnatal period. In vitro experiments showed that sympathetic interactions resulted in delays in markers of cardiomyocyte maturation, suggesting that changes in the timing of the transition from hyperplastic to hypertrophic growth of cardiomyocytes could underlie changes in heart size in the sympathectomized animals. There was also an increase in the expression of Meis1, which has been linked to cardiomyocyte cell cycle withdrawal, suggesting that sympathetic signalling suppresses cell cycle withdrawal. This signalling involves β-adrenergic activation, which was necessary for sympathetic regulation of cardiomyocyte proliferation and hypertrophy. The effect of β-adrenergic signalling on cardiomyocyte hypertrophy underwent a developmental transition. While young postnatal cardiomyocytes responded to isoproterenol (isoprenaline) with a decrease in cell size, mature cardiomyocytes showed an increase in cell size in response to the drug. Together, these results suggest that early sympathetic effects on proliferation modulate a key transition between proliferative and hypertrophic growth of the heart and contribute to the sympathetic regulation of adult heart size.
Collapse
Affiliation(s)
- R E Kreipke
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, MA, USA
| | - S J Birren
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, MA, USA
| |
Collapse
|
46
|
Ho YS, Tsai WH, Lin FC, Huang WP, Lin LC, Wu SM, Liu YR, Chen WP. Cardioprotective Actions of TGFβRI Inhibition Through Stimulating Autocrine/Paracrine of Survivin and Inhibiting Wnt in Cardiac Progenitors. Stem Cells 2015; 34:445-55. [PMID: 26418219 DOI: 10.1002/stem.2216] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/17/2015] [Accepted: 09/14/2015] [Indexed: 01/10/2023]
Abstract
Heart failure due to myocardial infarction (MI) is a major cause of morbidity and mortality in the world. We found previously that A83-01, a TGFβRI inhibitor, could facilitate cardiac repair in post-MI mice and induce the expansion of a Nkx2.5 + cardiomyoblast population. This study aimed to investigate the key autocrine/paracrine factors regulated by A83-01 in the injured heart and the mechanism of cardioprotection by this molecule. Using a previously described transgenic Nkx2.5 enhancer-green fluorescent protein (GFP) reporter mice, we isolated cardiac progenitor cells (CPC) including Nkx2.5-GFP + (Nkx2.5+), sca1+, and Nkx2.5+/sca1 + cells. A83-01 was found to induce proliferation of these three subpopulations mainly through increasing Birc5 expression in the MEK/ERK-dependent pathway. Survivin, encoded by Birc5, could also directly proliferate Nkx2.5 + cells and enhance cultured cardiomyocytes viability. A83-01 could also reverse the downregulation of Birc5 in postinjured mice hearts (n = 6) to expand CPCs. Moreover, the increased Wnt3a in postinjured hearts could decrease CPCs, which could be reversed by A83-01 via inhibiting Fzd6 and Wnt1-induced signaling protein 1 expressions in CPCs. Next, we used inducible αMHC-cre/mTmG mice to label cardiomyocytes with GFP and nonmyocytes with RFP. We found A83-01 preserved more GFP + myocytes (68.6% ± 3.1% vs. 80.9% ± 3.0%; p < .05, n = 6) and fewer renewed RFP + myocytes (0.026% ± 0.005% vs. 0.062% ± 0.008%; p < .05, n = 6) in parallel with less cardiac fibrosis in isoprenaline-injected mice treated with A83-01. TGFβRI inhibition in an injured adult heart could both stimulate the autocrine/paracrine activity of survivin and inhibit Wnt in CPCs to mediate cardioprotection and improve cardiac function.
Collapse
Affiliation(s)
- Yu-Sian Ho
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Wan-Hsuan Tsai
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Fen-Chiung Lin
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei City, Taiwan.,Division of Cardiology, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Wei-Pang Huang
- Department of Life Science, National Taiwan University, Taipei City, Taiwan
| | - Lung-Chun Lin
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Sean M Wu
- Division of Cardiovascular Medicine, Department of Medicine, Cardiovascular Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Yu-Ru Liu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Wen-Pin Chen
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
47
|
Lucas A, Mialet-Perez J, Daviaud D, Parini A, Marber MS, Sicard P. Gadd45γ regulates cardiomyocyte death and post-myocardial infarction left ventricular remodelling. Cardiovasc Res 2015; 108:254-67. [PMID: 26370247 DOI: 10.1093/cvr/cvv219] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/08/2015] [Indexed: 11/13/2022] Open
Abstract
AIMS Post-infarction remodelling is accompanied and influenced by perturbations in mitogen-activated protein kinase (MAPK) signalling. The growth arrest and DNA-damage-inducible 45 (Gadd45) proteins are small acidic proteins involved in DNA repair and modulation of MAPK activity. Little is known about the role of Gadd45 in the heart. Here, we explored the potential contribution of Gadd45 gamma (γ) isoform to the acute and late phase of heart failure (HF) after myocardial infarction (MI) and determined the mechanisms underlying Gadd45γ actions. METHODS AND RESULTS The Gadd45γ isoform is up-regulated in murine cardiomyocytes subjected to simulated ischaemia and in the mouse heart during MI. To mimic the situation observed during MI, we enhanced Gadd45γ content in cardiomyocytes with a single injection of an adeno-associated viral (AAV9) vector encoding Gadd45γ under the cTNT promoter. Gadd45γ overexpression induces cardiomyocyte apoptosis, fibrosis, left ventricular dysfunction, and HF. On the other hand, genetic deletion of Gadd45γ in knockout mice confers resistance to ischaemic injury, at least in part by limiting cardiomyocyte apoptosis. Mechanistically, Gadd45γ activates receptor-interacting protein 1 (RIP1) and caspase-8 in a p38 MAPK-dependent manner to promote cardiomyocyte death. CONCLUSION This work is the first to demonstrate that Gadd45γ accumulation during MI promotes the development and persistence of HF by inducing cardiomyocyte apoptosis in a p38 MAPK-dependent manner. We clearly identify Gadd45γ as a therapeutic target in the development of HF.
Collapse
Affiliation(s)
- Alexandre Lucas
- INSERM, UMR-1048, Institute of Metabolic and Cardiovascular Diseases, 1 Avenue Jean Poulhes, 31432 Toulouse, France University Paul Sabatier, CHU of Toulouse, 31432 Toulouse, France
| | - Jeanne Mialet-Perez
- INSERM, UMR-1048, Institute of Metabolic and Cardiovascular Diseases, 1 Avenue Jean Poulhes, 31432 Toulouse, France University Paul Sabatier, CHU of Toulouse, 31432 Toulouse, France
| | - Danièle Daviaud
- INSERM, UMR-1048, Institute of Metabolic and Cardiovascular Diseases, 1 Avenue Jean Poulhes, 31432 Toulouse, France University Paul Sabatier, CHU of Toulouse, 31432 Toulouse, France
| | - Angelo Parini
- INSERM, UMR-1048, Institute of Metabolic and Cardiovascular Diseases, 1 Avenue Jean Poulhes, 31432 Toulouse, France University Paul Sabatier, CHU of Toulouse, 31432 Toulouse, France
| | - Michael S Marber
- Cardiovascular Division, King's College London, The Rayne Institute, St. Thomas' Hospital, London, UK
| | - Pierre Sicard
- INSERM, UMR-1048, Institute of Metabolic and Cardiovascular Diseases, 1 Avenue Jean Poulhes, 31432 Toulouse, France University Paul Sabatier, CHU of Toulouse, 31432 Toulouse, France
| |
Collapse
|
48
|
Lee BS, Oh J, Kang SK, Park S, Lee SH, Choi D, Chung JH, Chung YW, Kang SM. Insulin Protects Cardiac Myocytes from Doxorubicin Toxicity by Sp1-Mediated Transactivation of Survivin. PLoS One 2015; 10:e0135438. [PMID: 26271039 PMCID: PMC4535909 DOI: 10.1371/journal.pone.0135438] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/23/2015] [Indexed: 12/15/2022] Open
Abstract
Insulin inhibits ischemia/reperfusion-induced myocardial apoptosis through the PI3K/Akt/mTOR pathway. Survivin is a key regulator of anti-apoptosis against doxorubicin-induced cardiotoxicity. Insulin increases survivin expression in cardiac myocytes to mediate cytoprotection. However, the mechanism by which survivin mediates the protective effect of insulin against doxorubicin-associated injury remains to be determined. In this study, we demonstrated that pretreatment of H9c2 cardiac myocytes with insulin resulted in a significant decrease in doxorubicin-induced apoptotic cell death by reducing cytochrome c release and caspase-3 activation. Doxorubicin-induced reduction of survivin mRNA and protein levels was also significantly perturbed by insulin pretreatment. Reducing survivin expression with survivin siRNA abrogated insulin-mediated inhibition of caspase-3 activation, suggesting that insulin signals to survivin inhibited caspase-3 activation. Interestingly, pretreatment of H9c2 cells with insulin or MG132, a proteasome inhibitor, inhibited doxorubicin-induced degradation of the transcription factor Sp1. ChIP assay showed that pretreatment with insulin inhibited doxorubicin-stimulated Sp1 dissociation from the survivin promoter. Finally using pharmacological inhibitors of the PI3K pathway, we showed that insulin-mediated activation of the PI3K/Akt/mTORC1 pathway prevented doxorubicin-induced proteasome-mediated degradation of Sp1. Taken together, insulin pretreatment confers a protective effect against doxorubicin-induced cardiotoxicity by promoting Sp1-mediated transactivation of survivin to inhibit apoptosis. Our study is the first to define a role for survivin in cellular protection by insulin against doxorubicin-associated injury and show that Sp1 is a critical factor in the transcriptional regulation of survivin.
Collapse
Affiliation(s)
- Beom Seob Lee
- Graduate Program in Science for Aging, Yonsei University, Seoul, Republic of Korea
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases (SIRIC), Yonsei University Health System, Seoul, Republic of Korea
| | - Jaewon Oh
- Cardiology Division, Severance Cardiovascular Hospital, Seoul, Republic of Korea
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Ku Kang
- Avon Old Farms School, Avon, Connecticut, United States of America
| | - Sungha Park
- Cardiology Division, Severance Cardiovascular Hospital, Seoul, Republic of Korea
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Hak Lee
- Cardiology Division, Severance Cardiovascular Hospital, Seoul, Republic of Korea
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Donghoon Choi
- Cardiology Division, Severance Cardiovascular Hospital, Seoul, Republic of Korea
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases (SIRIC), Yonsei University Health System, Seoul, Republic of Korea
| | - Ji Hyung Chung
- Department of Applied Bioscience, College of Life Science, CHA University, Gyeonggi-do, Republic of Korea
| | - Youn Wook Chung
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- * E-mail: (SMK); (YWC)
| | - Seok-Min Kang
- Cardiology Division, Severance Cardiovascular Hospital, Seoul, Republic of Korea
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases (SIRIC), Yonsei University Health System, Seoul, Republic of Korea
- * E-mail: (SMK); (YWC)
| |
Collapse
|
49
|
XU YIGUAN, TAN XUERUI, WANG DONGMING, WANG WEI, LI YUGUANG, WU MIN, CHEN SONGMING, WU YINGE, TAN CHUNJIANG. Elevated survivin expression in peripheral blood mononuclear cells is central to collateral formation in coronary chronic total occlusion. Int J Mol Med 2015; 35:1501-10. [PMID: 25816072 PMCID: PMC4432932 DOI: 10.3892/ijmm.2015.2154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 03/09/2015] [Indexed: 02/05/2023] Open
Abstract
Survivin is essential to angiogenesis and revascularization, but its role in coronary collateral formation remains unclear. The role of survivin in peripheral blood mononuclear cells (PBMCs) of coronary chronic total occlusion (CTO) patients was investigated. Coronary CTO patients (n=46; mean age 60.1±8.5, male 54.3%) (CTO group) and normal control patients (n=18; mean age 58.0±10.0, male 55.6%) underwent angiographic collateral vessel grading by Rentrop classification (C0 - C3) and provided peripheral blood between June 2006 and February 2007. Rat hind limb ischemia models were constructed using four equal groups of Sprague-Dawley rats (n=36): normal control, sham operation, operation and granulocyte macrophage colony-stimulating factor (GM-CSF). PBMC numbers and characteristics, collateral vessels, survivin, CD4, CD8, CD44, vascular endothelial growth factor (VEGF) and intercellular adhesion molecule-1 (ICAM-1) expression were determined using RT-PCR, flow cytometry, immunocytochemistry and western blot analysis. PBMC survivin mRNA and protein expression levels were higher in patients with good collateral circulation (C2 + C3) than in patients with no collateral flow (C0) (all P<0.05). Survivin single-positive and survivin and CD8, VEGF and ICAM-1 double-positive percentages were elevated in patients with good collateral circulation compared to those with normal and no collateral flow (all P<0.05), consistent with the rat model results, wherein higher survivin levels produced significantly larger and more visible collateral vessels. In conclusion, elevated survivin expression in PBMCs, particularly survivin and CD8, VEGF, and ICAM-1 double-positive PBMCs, may be crucial for good collateral formation in patients with coronary CTO, as confirmed by assessment of a rat model.
Collapse
Affiliation(s)
| | | | | | | | - YUGUANG LI
- Correspondence to: Dr Yuguang Li, Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, No. 57, Changping Road, Shantou, Guangdong 515041, P.R. China, E-mail:
| | | | | | | | | |
Collapse
|
50
|
Drenckhahn JD, Strasen J, Heinecke K, Langner P, Yin KV, Skole F, Hennig M, Spallek B, Fischer R, Blaschke F, Heuser A, Cox TC, Black MJ, Thierfelder L. Impaired myocardial development resulting in neonatal cardiac hypoplasia alters postnatal growth and stress response in the heart. Cardiovasc Res 2015; 106:43-54. [PMID: 25661081 DOI: 10.1093/cvr/cvv028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIMS Foetal growth has been proposed to influence cardiovascular health in adulthood, a process referred to as foetal programming. Indeed, intrauterine growth restriction in animal models alters heart size and cardiomyocyte number in the perinatal period, yet the consequences for the adult or challenged heart are largely unknown. The aim of this study was to elucidate postnatal myocardial growth pattern, left ventricular function, and stress response in the adult heart after neonatal cardiac hypoplasia in mice. METHODS AND RESULTS Utilizing a new mouse model of impaired cardiac development leading to fully functional but hypoplastic hearts at birth, we show that myocardial mass is normalized until early adulthood by accelerated physiological cardiomyocyte hypertrophy. Compensatory hypertrophy, however, cannot be maintained upon ageing, resulting in reduced organ size without maladaptive myocardial remodelling. Angiotensin II stress revealed aberrant cardiomyocyte growth kinetics in adult hearts after neonatal hypoplasia compared with normally developed controls, characterized by reversible overshooting hypertrophy. This exaggerated growth mainly depends on STAT3, whose inhibition during angiotensin II treatment reduces left ventricular mass in both groups but causes contractile dysfunction in developmentally impaired hearts only. Whereas JAK/STAT3 inhibition reduces cardiomyocyte cross-sectional area in the latter, it prevents fibrosis in control hearts, indicating fundamentally different mechanisms of action. CONCLUSION Impaired prenatal development leading to neonatal cardiac hypoplasia alters postnatal cardiac growth and stress response in vivo, thereby linking foetal programming to organ size control in the heart.
Collapse
Affiliation(s)
- Jörg-Detlef Drenckhahn
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Jette Strasen
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Kirsten Heinecke
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Patrick Langner
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Kom Voy Yin
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Friederike Skole
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Maria Hennig
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Bastian Spallek
- Experimental and Clinical Research Center, Charité Medical Faculty, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Robert Fischer
- Experimental and Clinical Research Center, Charité Medical Faculty, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Florian Blaschke
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany Charité Universitätsmedizin Berlin, Medizinische Klinik mit Schwerpunkt Kardiologie, Berlin, Germany
| | - Arnd Heuser
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Timothy C Cox
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia Department of Pediatrics, University of Washington, Seattle, USA Center of Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, USA
| | - Mary Jane Black
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Ludwig Thierfelder
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany
| |
Collapse
|