1
|
Parichatikanond W, Duangrat R, Kurose H, Mangmool S. Regulation of β-Adrenergic Receptors in the Heart: A Review on Emerging Therapeutic Strategies for Heart Failure. Cells 2024; 13:1674. [PMID: 39451192 PMCID: PMC11506672 DOI: 10.3390/cells13201674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
The prolonged overstimulation of β-adrenergic receptors (β-ARs), a member of the G protein-coupled receptor (GPCR) family, causes abnormalities in the density and functionality of the receptor and contributes to cardiac dysfunctions, leading to the development and progression of heart diseases, especially heart failure (HF). Despite recent advancements in HF therapy, mortality and morbidity rates continue to be high. Treatment with β-AR antagonists (β-blockers) has improved clinical outcomes and reduced overall hospitalization and mortality rates. However, several barriers in the management of HF remain, providing opportunities to develop new strategies that focus on the functions and signal transduction of β-ARs involved in the pathogenesis of HF. As β-AR can signal through multiple pathways influenced by different receptor subtypes, expression levels, and signaling components such as G proteins, G protein-coupled receptor kinases (GRKs), β-arrestins, and downstream effectors, it presents a complex mechanism that could be targeted in HF management. In this narrative review, we focus on the regulation of β-ARs at the receptor, G protein, and effector loci, as well as their signal transductions in the physiology and pathophysiology of the heart. The discovery of potential ligands for β-AR that activate cardioprotective pathways while limiting off-target signaling is promising for the treatment of HF. However, applying findings from preclinical animal models to human patients faces several challenges, including species differences, the genetic variability of β-ARs, and the complexity and heterogeneity of humans. In this review, we also summarize recent updates and future research on the regulation of β-ARs in the molecular basis of HF and highlight potential therapeutic strategies for HF.
Collapse
Affiliation(s)
| | - Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Hitoshi Kurose
- Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan;
- Pharmacology for Life Sciences, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Xing Y, Tian T, Zhang X, Yang D, Zhang C, Wang M, Wang Y, Luo T, Wang Z, Wang H, Li H. ENDOGENOUS β 3 -ADRENERGIC RECEPTOR ACTIVATION ALLEVIATES SEPSIS-INDUCED CARDIOMYOCYTE APOPTOSIS VIA PI3K/AKT SIGNALING PATHWAY. Shock 2024; 61:915-923. [PMID: 38662592 DOI: 10.1097/shk.0000000000002354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT β 3 -adrenergic receptor (β 3 -AR) has been proposed as a new therapy for several myocardial diseases. However, the effect of β 3 -AR activation on sepsis-induced myocardial apoptosis is unclear. Here, we investigated the effect of β 3 -AR activation on the cardiomyocyte apoptosis and cardiac dysfunction in cecal ligation and puncture (CLP)-operated rats and lipopolysaccharide (LPS)-treated cardiomyocytes. We found that β 3 -AR existed both in adult rat ventricular myocytes (ARVMs) and H9c2 cells. The expression of β 3 -AR was upregulated in LPS-treated ARVMs and the heart of CLP rats. Pretreatment with β 3 -AR agonist, BRL37344, inhibited LPS-induced cardiomyocyte apoptosis and caspase-3, -8, and -9 activation in ARVMs. BRL37344 also reduced apoptosis and increased the protein levels of PI3K, p-Akt Ser473 and p-eNOS Ser1177 in LPS-treated H9c2 cells. Inhibition of PI3K using LY294002 abolished the inhibitory effect of BRL37344 on LPS-induced caspase-3, -8, and -9 activation in H9c2 cells. Furthermore, administration of β 3 -AR antagonist, SR59230A (5 mg/kg), significantly decreased the maximum rate of left ventricular pressure rise (+dP/dt) in CLP-induced septic rats. SR59230A not only increased myocardial apoptosis, reduced p-Akt Ser473 and Bcl-2 contents, but also increased mitochondrial Bax, cytoplasm cytochrome c, cleaved caspase-9, and cleaved caspase-3 levels of the myocardium in septic rats. These results suggest that endogenous β 3 -AR activation alleviates sepsis-induced cardiomyocyte apoptosis via PI3K/Akt signaling pathway and maintains intrinsic myocardial systolic function in sepsis.
Collapse
Affiliation(s)
- Yun Xing
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| | - Tian Tian
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| | - Xue Zhang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| | - Duomeng Yang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| | - Chanjuan Zhang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| | - Miao Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| | - Yiyang Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| | - Tao Luo
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Zhi Wang
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| | - Hongmei Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Bahrami HSZ, Hasselbalch RB, Søholm H, Thomsen JH, Sørgaard M, Kofoed KF, Valeur N, Boesgaard S, Fry NAS, Møller JE, Raja AA, Køber L, Iversen K, Rasmussen H, Bundgaard H. First-In-Man Trial of β3-Adrenoceptor Agonist Treatment in Chronic Heart Failure: Impact on Diastolic Function. J Cardiovasc Pharmacol 2024; 83:466-473. [PMID: 38452283 DOI: 10.1097/fjc.0000000000001545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/10/2024] [Indexed: 03/09/2024]
Abstract
ABSTRACT Diastolic dysfunction (DD) in heart failure is associated with increased myocardial cytosolic calcium and calcium-efflux through the sodium-calcium exchanger depends on the sodium gradient. Beta-3-adrenoceptor (β3-AR) agonists lower cytosolic sodium and have reversed organ congestion. Accordingly, β3-AR agonists might improve diastolic function, which we aimed to assess. In a first-in-man, randomized, double-blinded trial, we assigned 70 patients with HF with reduced ejection fraction, New York Heart Association II-III, and left ventricular ejection fraction <40% to receive the β3-AR agonist mirabegron (300 mg/day) or placebo for 6 months, in addition to recommended heart failure therapy. We performed echocardiography and cardiac computed tomography and measured N-terminal probrain natriuretic peptide at baseline and follow-up. DD was graded per multiple renowned algorithms. Baseline and follow-up data were available in 57 patients (59 ± 11 years, 88% male, 49% ischemic heart disease). No clinically significant changes in diastolic measurements were found within or between the groups by echocardiography (E/e' placebo: 13 ± 7 to 13 ± 5, P = 0.21 vs. mirabegron: 12 ± 6 to 13 ± 8, P = 0.74, between-group follow-up difference 0.2 [95% CI, -3 to 4], P = 0.89) or cardiac computed tomography (left atrial volume index: between-group follow-up difference 9 mL/m 2 [95% CI, -3 to 19], P = 0.15). DD gradings did not change within or between the groups following 2 algorithms ( P = 0.72, P = 0.75). N-terminal probrain natriuretic peptide remained unchanged in both the groups ( P = 0.74, P = 0.64). In patients with HF with reduced ejection fraction, no changes were identified in diastolic measurements, gradings or biomarker after β3-AR stimulation compared with placebo. The findings add to the previous literature questioning the role of impaired Na + -Ca 2+ -mediated calcium export as a major culprit in DD. NCT01876433.
Collapse
Affiliation(s)
- Hashmat Sayed Zohori Bahrami
- Department of Cardiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Bo Hasselbalch
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Helle Søholm
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Zealand University Hospital, Roskilde, Denmark
| | - Jakob Hartvig Thomsen
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Mathias Sørgaard
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Fuglsang Kofoed
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Nana Valeur
- Department of Cardiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Søren Boesgaard
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Natasha Alexandria Sarah Fry
- Department of Cardiology, Royal North Shore Hospital and University of Sydney, St Leonards, NSW, Australia ; and
| | - Jacob Eifer Møller
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anna Axelsson Raja
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lars Køber
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Iversen
- Department of Emergency Medicine, Copenhagen University Hospital Herlev-Gentofte, Herlev, Denmark
| | - Helge Rasmussen
- Department of Cardiology, Royal North Shore Hospital and University of Sydney, St Leonards, NSW, Australia ; and
| | - Henning Bundgaard
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Wong YW, Haqqani H, Molenaar P. Roles of β-adrenoceptor Subtypes and Therapeutics in Human Cardiovascular Disease: Heart Failure, Tachyarrhythmias and Other Cardiovascular Disorders. Handb Exp Pharmacol 2024; 285:247-295. [PMID: 38844580 DOI: 10.1007/164_2024_720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
β-Adrenoceptors (β-ARs) provide an important therapeutic target for the treatment of cardiovascular disease. Three β-ARs, β1-AR, β2-AR, β3-AR are localized to the human heart. Activation of β1-AR and β2-ARs increases heart rate, force of contraction (inotropy) and consequently cardiac output to meet physiological demand. However, in disease, chronic over-activation of β1-AR is responsible for the progression of disease (e.g. heart failure) mediated by pathological hypertrophy, adverse remodelling and premature cell death. Furthermore, activation of β1-AR is critical in the pathogenesis of cardiac arrhythmias while activation of β2-AR directly influences blood pressure haemostasis. There is an increasing awareness of the contribution of β2-AR in cardiovascular disease, particularly arrhythmia generation. All β-blockers used therapeutically to treat cardiovascular disease block β1-AR with variable blockade of β2-AR depending on relative affinity for β1-AR vs β2-AR. Since the introduction of β-blockers into clinical practice in 1965, β-blockers with different properties have been trialled, used and evaluated, leading to better understanding of their therapeutic effects and tolerability in various cardiovascular conditions. β-Blockers with the property of intrinsic sympathomimetic activity (ISA), i.e. β-blockers that also activate the receptor, were used in the past for post-treatment of myocardial infarction and had limited use in heart failure. The β-blocker carvedilol continues to intrigue due to numerous properties that differentiate it from other β-blockers and is used successfully in the treatment of heart failure. The discovery of β3-AR in human heart created interest in the role of β3-AR in heart failure but has not resulted in therapeutics at this stage.
Collapse
Affiliation(s)
- Yee Weng Wong
- Cardiovascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, University of Queensland, The Prince Charles Hospital, Chermside, QLD, Australia
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Haris Haqqani
- Cardiovascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, University of Queensland, The Prince Charles Hospital, Chermside, QLD, Australia
- Department of Cardiology, The Prince Charles Hospital, Chermside, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Peter Molenaar
- Cardiovascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, University of Queensland, The Prince Charles Hospital, Chermside, QLD, Australia.
- Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Balligand JL, Michel LYM. Clinical pharmacology of β-3 adrenergic receptor agonists for cardiovascular diseases. Expert Rev Clin Pharmacol 2023; 16:1073-1084. [PMID: 37728503 DOI: 10.1080/17512433.2023.2193681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/17/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION Few agonists of the third isotype of beta-adrenergic receptors, the β3-adrenoreceptor, are currently used clinically, and new agonists are under development for the treatment of overactive bladder disease. As the receptor is expressed in human cardiac and vascular tissues, it is important to understand their beneficial (or adverse) effect(s) on these targets. AREAS COVERED We discuss the most recent results of clinical trials testing the benefit and safety of β3-adrenoreceptor activation on cardiovascular outcomes in light of current knowledge on the receptor biology, genetic polymorphisms, and agonist pharmacology. EXPERT OPINION While evidence from small clinical trials is limited so far, the β3-agonist, mirabegron seems to be safe in patients at high cardiovascular risk but produces benefits on selected cardiovascular outcomes only at higher than standard doses. Activation of cardiovascular β3-adrenoreceptors deserves to be tested with more potent agonists, such as vibegron.
Collapse
Affiliation(s)
- Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics, Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Lauriane Y M Michel
- Pole of Pharmacology and Therapeutics, Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
6
|
Karimi Galougahi K, Zhang Y, Kienzle V, Liu C, Quek L, Patel S, Lau E, Cordina R, Figtree GA, Celermajer DS. β3 adrenergic agonism: A novel pathway which improves right ventricular-pulmonary arterial hemodynamics in pulmonary arterial hypertension. Physiol Rep 2023; 11:e15549. [PMID: 36597221 PMCID: PMC9810839 DOI: 10.14814/phy2.15549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023] Open
Abstract
Efficacy of therapies that target the downstream nitric oxide (NO) pathway in pulmonary arterial hypertension (PAH) depends on the bioavailability of NO. Reduced NO level in PAH is secondary to "uncoupling" of endothelial nitric oxide synthase (eNOS). Stimulation of β3 adrenergic receptors (β3 ARs) may lead to the recoupling of NOS and therefore be beneficial in PAH. We aimed to examine the efficacy of β3 AR agonism as a novel pathway in experimental PAH. In hypoxia (5 weeks) and Sugen hypoxia (hypoxia for 5 weeks + SU5416 injection) models of PAH, we examined the effects of the selective β3 AR agonist CL316243. We measured echocardiographic indices and invasive right ventricular (RV)-pulmonary arterial (PA) hemodynamics and compared CL316243 with riociguat and sildenafil. We assessed treatment effects on RV-PA remodeling, oxidative stress, and eNOS glutathionylation, an oxidative modification that uncouples eNOS. Compared with normoxic mice, RV systolic pressure was increased in the control hypoxic mice (p < 0.0001) and Sugen hypoxic mice (p < 0.0001). CL316243 reduced RV systolic pressure, to a similar degree to riociguat and sildenafil, in both hypoxia (p < 0.0001) and Sugen hypoxia models (p < 0.03). CL316243 reversed pulmonary vascular remodeling, decreased RV afterload, improved RV-PA coupling efficiency and reduced RV stiffness, hypertrophy, and fibrosis. Although all treatments decreased oxidative stress, CL316243 significantly reduced eNOS glutathionylation. β3 AR stimulation improved RV hemodynamics and led to beneficial RV-PA remodeling in experimental models of PAH. β3 AR agonists may be effective therapies in PAH.
Collapse
Affiliation(s)
- Keyvan Karimi Galougahi
- Heart Research InstituteSydneyAustralia
- Royal Prince Alfred HospitalSydneyAustralia
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
| | | | | | - Chia‐Chi Liu
- Heart Research InstituteSydneyAustralia
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
- Kolling Institute for Medical ResearchSydneyAustralia
| | - Lake‐Ee Quek
- Charles Perkins CenterUniversity of SydneySydneyAustralia
| | - Sanjay Patel
- Heart Research InstituteSydneyAustralia
- Royal Prince Alfred HospitalSydneyAustralia
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
| | - Edmund Lau
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
- Department of Respiratory MedicineRoyal Prince Alfred HospitalSydneyAustralia
| | - Rachael L. Cordina
- Royal Prince Alfred HospitalSydneyAustralia
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
| | - Gemma A. Figtree
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
- Kolling Institute for Medical ResearchSydneyAustralia
- Department of CardiologyRoyal North Shore HospitalSydneyAustralia
| | - David S. Celermajer
- Heart Research InstituteSydneyAustralia
- Royal Prince Alfred HospitalSydneyAustralia
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
| |
Collapse
|
7
|
Pun-García A, Clemente-Moragón A, Villena-Gutierrez R, Gómez M, Sanz-Rosa D, Díaz-Guerra A, Prados B, Medina JP, Montó F, Ivorra MD, Márquez-López C, Cannavo A, Bernal JA, Koch WJ, Fuster V, de la Pompa JL, Oliver E, Ibanez B. Beta-3 adrenergic receptor overexpression reverses aortic stenosis-induced heart failure and restores balanced mitochondrial dynamics. Basic Res Cardiol 2022; 117:62. [PMID: 36445563 PMCID: PMC9708808 DOI: 10.1007/s00395-022-00966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022]
Abstract
Aortic stenosis (AS) is associated with left ventricular (LV) hypertrophy and heart failure (HF). There is a lack of therapies able to prevent/revert AS-induced HF. Beta3 adrenergic receptor (β3AR) signaling is beneficial in several forms of HF. Here, we studied the potential beneficial effect of β3AR overexpression on AS-induced HF. Selective β3AR stimulation had a positive inotropic effect. Transgenic mice constitutively overexpressing human β3AR in the heart (c-hβ3tg) were protected from the development of HF in response to induced AS, and against cardiomyocyte mitochondrial dysfunction (fragmented mitochondria with remodeled cristae and metabolic reprogramming featuring altered substrate use). Similar beneficial effects were observed in wild-type mice inoculated with adeno-associated virus (AAV9) inducing cardiac-specific overexpression of human β3AR before AS induction. Moreover, AAV9-hβ3AR injection into wild-type mice at late disease stages, when cardiac hypertrophy and metabolic reprogramming are already advanced, reversed the HF phenotype and restored balanced mitochondrial dynamics, demonstrating the potential of gene-therapy-mediated β3AR overexpression in AS. Mice with cardiac specific ablation of Yme1l (cYKO), characterized by fragmented mitochondria, showed an increased mortality upon AS challenge. AAV9-hβ3AR injection in these mice before AS induction reverted the fragmented mitochondria phenotype and rescued them from death. In conclusion, our results step out that β3AR overexpression might have translational potential as a therapeutic strategy in AS-induced HF.
Collapse
Affiliation(s)
- Andrés Pun-García
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Agustín Clemente-Moragón
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Rocio Villena-Gutierrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
| | - Monica Gómez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
| | - David Sanz-Rosa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
- Universidad Europea de Madrid, Madrid, Spain
| | - Anabel Díaz-Guerra
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
| | - Belén Prados
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, CNIC, Madrid, Spain
| | - Juan Pablo Medina
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Fermí Montó
- Departamento de Farmacología, Facultad de Farmacia, ERI BIOTECMED, Universitat de València, Burjassot, Spain
| | - Maria Dolores Ivorra
- Departamento de Farmacología, Facultad de Farmacia, ERI BIOTECMED, Universitat de València, Burjassot, Spain
| | - Cristina Márquez-López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
| | - Alessandro Cannavo
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Juan A Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Walter J Koch
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Valentin Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - José Luis de la Pompa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, CNIC, Madrid, Spain
| | - Eduardo Oliver
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain.
- CIBERCV, Madrid, Spain.
- Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain.
| |
Collapse
|
8
|
Kavurma MM, Bursill C, Stanley CP, Passam F, Cartland SP, Patel S, Loa J, Figtree GA, Golledge J, Aitken S, Robinson DA. Endothelial cell dysfunction: Implications for the pathogenesis of peripheral artery disease. Front Cardiovasc Med 2022; 9:1054576. [PMID: 36465438 PMCID: PMC9709122 DOI: 10.3389/fcvm.2022.1054576] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 08/27/2023] Open
Abstract
Peripheral artery disease (PAD) is caused by occluded or narrowed arteries that reduce blood flow to the lower limbs. The treatment focuses on lifestyle changes, management of modifiable risk factors and vascular surgery. In this review we focus on how Endothelial Cell (EC) dysfunction contributes to PAD pathophysiology and describe the largely untapped potential of correcting endothelial dysfunction. Moreover, we describe current treatments and clinical trials which improve EC dysfunction and offer insights into where future research efforts could be made. Endothelial dysfunction could represent a target for PAD therapy.
Collapse
Affiliation(s)
- Mary M. Kavurma
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Christina Bursill
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, Australia
| | | | - Freda Passam
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- Central Clinical School, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Siân P. Cartland
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Sanjay Patel
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Jacky Loa
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Gemma A. Figtree
- Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
- The Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, QLD, Australia
| | - Sarah Aitken
- Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, Australia
- Concord Institute of Academic Surgery, Concord Hospital, Sydney, NSW, Australia
| | | |
Collapse
|
9
|
Roy R, Koch WJ. Not All β-Receptors Appear the Same in Heart Failure: Emergence of β3-Agonists as a Therapeutic Option. Circ Heart Fail 2022; 15:e009685. [PMID: 35758037 DOI: 10.1161/circheartfailure.122.009685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Rajika Roy
- Center for Translational Medicine and Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Walter J Koch
- Center for Translational Medicine and Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| |
Collapse
|
10
|
Bundgaard H, Axelsson Raja A, Iversen K, Valeur N, Tønder N, Schou M, Christensen AH, Bruun NE, Søholm H, Ghanizada M, Fry NAS, Hamilton EJ, Boesgaard S, Møller MB, Wolsk E, Rossing K, Køber L, Rasmussen HH, Vissing CR. Hemodynamic Effects of Cyclic Guanosine Monophosphate-Dependent Signaling Through β3 Adrenoceptor Stimulation in Patients With Advanced Heart Failure: A Randomized Invasive Clinical Trial. Circ Heart Fail 2022; 15:e009120. [PMID: 35758031 DOI: 10.1161/circheartfailure.121.009120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND β3-AR (β3-adrenergic receptor) stimulation improved systolic function in a sheep model of systolic heart failure (heart failure with reduced ejection fraction [HFrEF]). Exploratory findings in patients with New York Heart Association functional class II HFrEF treated with the β3-AR-agonist mirabegron supported this observation. Here, we measured the hemodynamic response to mirabegron in patients with severe HFrEF. METHODS In this randomized, double-blind, placebo-controlled trial we assigned patients with New York Heart Association functional class III-IV HFrEF, left ventricular ejection fraction <35% and increased NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels to receive mirabegron (300 mg daily) or placebo orally for a week, as add on to recommended HF therapy. Invasive hemodynamic measurements during rest and submaximal exercise at baseline, 3 hours after first study dose and repeated after 1 week's treatment were obtained. Predefined parameters for analyses were changes in cardiac- and stroke volume index, pulmonary and systemic vascular resistance, heart rate, and blood pressure. RESULTS We randomized 22 patients (age 66±11 years, 18 men, 16, New York Heart Association functional class III), left ventricular ejection fraction 20±7%, median NT-proBNP 1953 ng/L. No significant changes were seen after 3 hours, but after 1 week, there was a significantly larger increase in cardiac index in the mirabegron group compared with the placebo group (mean difference, 0.41 [CI, 0.07-0.75] L/min/BSA; P=0.039). Pulmonary vascular resistance decreased significantly more in the mirabegron group compared with the placebo group (-1.6 [CI, -0.4 to -2.8] Wood units; P=0.02). No significant differences were seen during exercise. There were no differences in changes in heart rate, systemic vascular resistance, blood pressure, or renal function between groups. Mirabegron was well-tolerated. CONCLUSIONS Oral treatment with the β3-AR-agonist mirabegron for 1 week increased cardiac index and decreased pulmonary vascular resistance in patients with moderate to severe HFrEF. Mirabegron may be useful in patients with worsening or terminal HF. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: 2016-002367-34.
Collapse
Affiliation(s)
- Henning Bundgaard
- Department of Cardiology, Rigshospitalet (H.B., A.A.R., A.H.C., H.S., M.G., S.B., M.B.M, E.W., K.R., L.K., C.R.V.), Copenhagen University Hospital, Denmark.,Department of Clinical Medicine, University of Copenhagen, Denmark (H.B., A.A.R., K.I., N.V., N.T., M.S., A.H.C., N.E.B., H.S., M.G., S.B., M.B.M., E.W., K.R., L.K., H.H.R., C.R.V.)
| | - Anna Axelsson Raja
- Department of Cardiology, Rigshospitalet (H.B., A.A.R., A.H.C., H.S., M.G., S.B., M.B.M, E.W., K.R., L.K., C.R.V.), Copenhagen University Hospital, Denmark.,Department of Clinical Medicine, University of Copenhagen, Denmark (H.B., A.A.R., K.I., N.V., N.T., M.S., A.H.C., N.E.B., H.S., M.G., S.B., M.B.M., E.W., K.R., L.K., H.H.R., C.R.V.)
| | - Kasper Iversen
- Department of Cardiology, Herlev-Gentofte Hospital (K.I., M.S., A.H.C., E.W.), Copenhagen University Hospital, Denmark.,Department of Clinical Medicine, University of Copenhagen, Denmark (H.B., A.A.R., K.I., N.V., N.T., M.S., A.H.C., N.E.B., H.S., M.G., S.B., M.B.M., E.W., K.R., L.K., H.H.R., C.R.V.)
| | - Nana Valeur
- Department of Cardiology, Bispebjerg Hospital (N.V.), Copenhagen University Hospital, Denmark.,Department of Clinical Medicine, University of Copenhagen, Denmark (H.B., A.A.R., K.I., N.V., N.T., M.S., A.H.C., N.E.B., H.S., M.G., S.B., M.B.M., E.W., K.R., L.K., H.H.R., C.R.V.)
| | - Niels Tønder
- Department of Cardiology, North Zealand Hospital (N.T.), Copenhagen University Hospital, Denmark.,Department of Clinical Medicine, University of Copenhagen, Denmark (H.B., A.A.R., K.I., N.V., N.T., M.S., A.H.C., N.E.B., H.S., M.G., S.B., M.B.M., E.W., K.R., L.K., H.H.R., C.R.V.)
| | - Morten Schou
- Department of Cardiology, Herlev-Gentofte Hospital (K.I., M.S., A.H.C., E.W.), Copenhagen University Hospital, Denmark.,Department of Clinical Medicine, University of Copenhagen, Denmark (H.B., A.A.R., K.I., N.V., N.T., M.S., A.H.C., N.E.B., H.S., M.G., S.B., M.B.M., E.W., K.R., L.K., H.H.R., C.R.V.)
| | - Alex Hørby Christensen
- Department of Cardiology, Rigshospitalet (H.B., A.A.R., A.H.C., H.S., M.G., S.B., M.B.M, E.W., K.R., L.K., C.R.V.), Copenhagen University Hospital, Denmark.,Department of Cardiology, Herlev-Gentofte Hospital (K.I., M.S., A.H.C., E.W.), Copenhagen University Hospital, Denmark.,Department of Clinical Medicine, University of Copenhagen, Denmark (H.B., A.A.R., K.I., N.V., N.T., M.S., A.H.C., N.E.B., H.S., M.G., S.B., M.B.M., E.W., K.R., L.K., H.H.R., C.R.V.)
| | - Niels Eske Bruun
- Department of Cardiology, Zealand University Hospital, Roskilde, Denmark (N.E.B., H.S.).,Department of Clinical Medicine, University of Copenhagen, Denmark (H.B., A.A.R., K.I., N.V., N.T., M.S., A.H.C., N.E.B., H.S., M.G., S.B., M.B.M., E.W., K.R., L.K., H.H.R., C.R.V.)
| | - Helle Søholm
- Department of Cardiology, Rigshospitalet (H.B., A.A.R., A.H.C., H.S., M.G., S.B., M.B.M, E.W., K.R., L.K., C.R.V.), Copenhagen University Hospital, Denmark.,Department of Cardiology, Zealand University Hospital, Roskilde, Denmark (N.E.B., H.S.).,Department of Clinical Medicine, University of Copenhagen, Denmark (H.B., A.A.R., K.I., N.V., N.T., M.S., A.H.C., N.E.B., H.S., M.G., S.B., M.B.M., E.W., K.R., L.K., H.H.R., C.R.V.)
| | - Muzhda Ghanizada
- Department of Cardiology, Rigshospitalet (H.B., A.A.R., A.H.C., H.S., M.G., S.B., M.B.M, E.W., K.R., L.K., C.R.V.), Copenhagen University Hospital, Denmark.,Department of Clinical Medicine, University of Copenhagen, Denmark (H.B., A.A.R., K.I., N.V., N.T., M.S., A.H.C., N.E.B., H.S., M.G., S.B., M.B.M., E.W., K.R., L.K., H.H.R., C.R.V.)
| | - Natasha A S Fry
- Department of Cardiology, Royal North Shore Hospital, and University of Sydney, Australia (N.A.S.F., E.J.H., H.H.R.)
| | - Elisha J Hamilton
- Department of Cardiology, Royal North Shore Hospital, and University of Sydney, Australia (N.A.S.F., E.J.H., H.H.R.)
| | - Søren Boesgaard
- Department of Cardiology, Rigshospitalet (H.B., A.A.R., A.H.C., H.S., M.G., S.B., M.B.M, E.W., K.R., L.K., C.R.V.), Copenhagen University Hospital, Denmark.,Department of Clinical Medicine, University of Copenhagen, Denmark (H.B., A.A.R., K.I., N.V., N.T., M.S., A.H.C., N.E.B., H.S., M.G., S.B., M.B.M., E.W., K.R., L.K., H.H.R., C.R.V.)
| | - Mathias B Møller
- Department of Cardiology, Rigshospitalet (H.B., A.A.R., A.H.C., H.S., M.G., S.B., M.B.M, E.W., K.R., L.K., C.R.V.), Copenhagen University Hospital, Denmark.,Department of Clinical Medicine, University of Copenhagen, Denmark (H.B., A.A.R., K.I., N.V., N.T., M.S., A.H.C., N.E.B., H.S., M.G., S.B., M.B.M., E.W., K.R., L.K., H.H.R., C.R.V.)
| | - Emil Wolsk
- Department of Cardiology, Rigshospitalet (H.B., A.A.R., A.H.C., H.S., M.G., S.B., M.B.M, E.W., K.R., L.K., C.R.V.), Copenhagen University Hospital, Denmark.,Department of Cardiology, Herlev-Gentofte Hospital (K.I., M.S., A.H.C., E.W.), Copenhagen University Hospital, Denmark.,Department of Clinical Medicine, University of Copenhagen, Denmark (H.B., A.A.R., K.I., N.V., N.T., M.S., A.H.C., N.E.B., H.S., M.G., S.B., M.B.M., E.W., K.R., L.K., H.H.R., C.R.V.)
| | - Kasper Rossing
- Department of Cardiology, Rigshospitalet (H.B., A.A.R., A.H.C., H.S., M.G., S.B., M.B.M, E.W., K.R., L.K., C.R.V.), Copenhagen University Hospital, Denmark.,Department of Clinical Medicine, University of Copenhagen, Denmark (H.B., A.A.R., K.I., N.V., N.T., M.S., A.H.C., N.E.B., H.S., M.G., S.B., M.B.M., E.W., K.R., L.K., H.H.R., C.R.V.)
| | - Lars Køber
- Department of Cardiology, Rigshospitalet (H.B., A.A.R., A.H.C., H.S., M.G., S.B., M.B.M, E.W., K.R., L.K., C.R.V.), Copenhagen University Hospital, Denmark.,Department of Clinical Medicine, University of Copenhagen, Denmark (H.B., A.A.R., K.I., N.V., N.T., M.S., A.H.C., N.E.B., H.S., M.G., S.B., M.B.M., E.W., K.R., L.K., H.H.R., C.R.V.)
| | - Helge H Rasmussen
- Department of Cardiology, Royal North Shore Hospital, and University of Sydney, Australia (N.A.S.F., E.J.H., H.H.R.).,Department of Clinical Medicine, University of Copenhagen, Denmark (H.B., A.A.R., K.I., N.V., N.T., M.S., A.H.C., N.E.B., H.S., M.G., S.B., M.B.M., E.W., K.R., L.K., H.H.R., C.R.V.)
| | - Christoffer Rasmus Vissing
- Department of Cardiology, Rigshospitalet (H.B., A.A.R., A.H.C., H.S., M.G., S.B., M.B.M, E.W., K.R., L.K., C.R.V.), Copenhagen University Hospital, Denmark.,Department of Clinical Medicine, University of Copenhagen, Denmark (H.B., A.A.R., K.I., N.V., N.T., M.S., A.H.C., N.E.B., H.S., M.G., S.B., M.B.M., E.W., K.R., L.K., H.H.R., C.R.V.)
| |
Collapse
|
11
|
Bubb KJ, Harmer JA, Finemore M, Aitken SJ, Ali ZS, Billot L, Chow C, Golledge J, Mister R, Gray MP, Grieve SM, Hamburg N, Keech AC, Patel S, Puttaswamy V, Figtree GA. Protocol for the Stimulating β 3-Adrenergic Receptors for Peripheral Artery Disease (STAR-PAD) trial: a double-blinded, randomised, placebo-controlled study evaluating the effects of mirabegron on functional performance in patients with peripheral arterial disease. BMJ Open 2021; 11:e049858. [PMID: 34588252 PMCID: PMC8479946 DOI: 10.1136/bmjopen-2021-049858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION There is currently only one approved medication effective at improving walking distance in people with intermittent claudication. Preclinical data suggest that the β3-adrenergic receptor agonist (mirabegron) could be repurposed to treat intermittent claudication associated with peripheral artery disease. The aim of the Stimulating β3-Adrenergic Receptors for Peripheral Artery Disease (STAR-PAD) trial is to test whether mirabegron improves walking distance in people with intermittent claudication. METHODS AND ANALYSIS The STAR-PAD trial is a Phase II, multicentre, double-blind, randomised, placebo-controlled trial of mirabegron versus placebo on walking distance in patients with PAD. A total of 120 patients aged ≥40 years with stable PAD and intermittent claudication will be randomly assigned (1:1 ratio) to receive either mirabegron (50 mg orally once a day) or matched placebo, for 12 weeks. The primary endpoint is change in peak walking distance as assessed by a graded treadmill test. Secondary endpoints will include: (i) initial claudication distance; (ii) average daily step count and total step count and (iii) functional status and quality of life assessment. Mechanistic substudies will examine potential effects of mirabegron on vascular function, including brachial artery flow-mediate dilatation; MRI assessment of lower limb blood flow, tissue perfusion and arterial stiffness and numbers and angiogenesis potential of endothelial progenitor cells. Given that mirabegron is safe and clinically available for alternative purposes, a positive study is positioned to immediately impact patient care. ETHICS AND DISSEMINATION The STAR-PAD trial is approved by the Northern Sydney Local Health District Human Research Ethics Committee (HREC/18/HAWKE/50). The study results will be published in peer-reviewed medical or scientific journals and presented at scientific meetings, regardless of the study outcomes. TRIAL REGISTRATION NUMBER ACTRN12619000423112; Results.
Collapse
Affiliation(s)
- Kristen J Bubb
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Kolling Institute of Medical Research, Cardiothoracic and Vascular Health, University of Sydney, St Leonards, New South Wales, Australia
| | - Jason A Harmer
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Meghan Finemore
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Kolling Institute of Medical Research, Cardiothoracic and Vascular Health, University of Sydney, St Leonards, New South Wales, Australia
| | - Sarah Joy Aitken
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | - Zara S Ali
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Kolling Institute of Medical Research, Cardiothoracic and Vascular Health, University of Sydney, St Leonards, New South Wales, Australia
| | - Laurent Billot
- The George Institute for Global Health, UNSW Sydney, Newtown, New South Wales, Australia
| | - Clara Chow
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- The George Institute for Global Health, UNSW Sydney, Newtown, New South Wales, Australia
- Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Jonathan Golledge
- Vascular Biology Unit, James Cook University Queensland Research Centre for Peripheral Vascular Disease, Townsville, Queensland, Australia
| | - Rebecca Mister
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Michael P Gray
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Kolling Institute of Medical Research, Cardiothoracic and Vascular Health, University of Sydney, St Leonards, New South Wales, Australia
| | - Stuart M Grieve
- The Heart Research Institute, Newtown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | | | - Anthony C Keech
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Sanjay Patel
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- The Heart Research Institute, Newtown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Vikram Puttaswamy
- Vascular Surgery, North Shore Private Hospital, Sydney, New South Wales, Australia
| | - Gemma A Figtree
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Kolling Institute of Medical Research, Cardiothoracic and Vascular Health, University of Sydney, St Leonards, New South Wales, Australia
- Department of Cardiology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
12
|
Wright PT, Gorelik J, Harding SE. Electrophysiological Remodeling: Cardiac T-Tubules and ß-Adrenoceptors. Cells 2021; 10:cells10092456. [PMID: 34572106 PMCID: PMC8468945 DOI: 10.3390/cells10092456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/09/2023] Open
Abstract
Beta-adrenoceptors (βAR) are often viewed as archetypal G-protein coupled receptors. Over the past fifteen years, investigations in cardiovascular biology have provided remarkable insights into this receptor family. These studies have shifted pharmacological dogma, from one which centralized the receptor to a new focus on structural micro-domains such as caveolae and t-tubules. Important studies have examined, separately, the structural compartmentation of ion channels and βAR. Despite links being assumed, relatively few studies have specifically examined the direct link between structural remodeling and electrical remodeling with a focus on βAR. In this review, we will examine the nature of receptor and ion channel dysfunction on a substrate of cardiomyocyte microdomain remodeling, as well as the likely ramifications for cardiac electrophysiology. We will then discuss the advances in methodologies in this area with a specific focus on super-resolution microscopy, fluorescent imaging, and new approaches involving microdomain specific, polymer-based agonists. The advent of powerful computational modelling approaches has allowed the science to shift from purely empirical work, and may allow future investigations based on prediction. Issues such as the cross-reactivity of receptors and cellular heterogeneity will also be discussed. Finally, we will speculate as to the potential developments within this field over the next ten years.
Collapse
Affiliation(s)
- Peter T. Wright
- School of Life & Health Sciences, University of Roehampton, Holybourne Avenue, London SW15 4JD, UK;
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
| | - Julia Gorelik
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
| | - Sian E. Harding
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
- Correspondence:
| |
Collapse
|
13
|
Lteif C, Ataya A, Duarte JD. Therapeutic Challenges and Emerging Treatment Targets for Pulmonary Hypertension in Left Heart Disease. J Am Heart Assoc 2021; 10:e020633. [PMID: 34032129 PMCID: PMC8483544 DOI: 10.1161/jaha.120.020633] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pulmonary hypertension (PH) attributable to left heart disease (LHD) is believed to be the most common form of PH and is strongly associated with increased mortality and morbidity in this patient population. Specific therapies for PH‐LHD have not yet been identified and the use of pulmonary artery hypertension‐targeted therapies in PH‐LHD are not recommended. Endothelin receptor antagonists, phosphodiesterase‐5 inhibitors, guanylate cyclase stimulators, and prostacyclins have all been studied in PH‐LHD with conflicting results. Understanding the mechanisms underlying PH‐LHD could potentially provide novel therapeutic targets. Fibrosis, oxidative stress, and metabolic syndrome have been proposed as pathophysiological components of PH‐LHD. Genetic associations have also been identified, offering additional mechanisms with biological plausibility. This review summarizes the evidence and challenges for treatment of PH‐LHD and focuses on underlying mechanisms on the horizon that could develop into potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Christelle Lteif
- Department of Pharmacotherapy and Translational Research Center for Pharmacogenomics and Precision Medicine University of Florida College of Pharmacy Gainesville FL
| | - Ali Ataya
- Division of Pulmonary, Critical Care & Sleep Medicine University of Florida College of Medicine Gainesville FL
| | - Julio D Duarte
- Department of Pharmacotherapy and Translational Research Center for Pharmacogenomics and Precision Medicine University of Florida College of Pharmacy Gainesville FL
| |
Collapse
|
14
|
Bubb KJ, Ravindran D, Cartland SP, Finemore M, Clayton ZE, Tsang M, Tang O, Kavurma MM, Patel S, Figtree GA. β 3 Adrenergic Receptor Stimulation Promotes Reperfusion in Ischemic Limbs in a Murine Diabetic Model. Front Pharmacol 2021; 12:666334. [PMID: 33967810 PMCID: PMC8100512 DOI: 10.3389/fphar.2021.666334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Aims/Hypothesis: Peripheral arterial disease (PAD) is a major burden, resulting in limb claudication, repeated surgical interventions and amputation. There is an unmet need for improved medical management of PAD that improves quality of life, maintains activities of daily life and reduces complications. Nitric oxide (NO)/redox balance is a key regulator of angiogenesis. We have previously shown beneficial effects of a β3 adrenergic receptor (β3AR) agonist on NO/redox balance. We hypothesized that β3AR stimulation would have therapeutic potential in PAD by promoting limb angiogenesis. Methods: The effect of the β3AR agonist CL 316,243 (1–1,000 nmol/L in vitro, 1 mg/kg/day s. c) was tested in established angiogenesis assays with human endothelial cells and patient-derived endothelial colony forming cells. Post-ischemia reperfusion was determined in streptozotocin and/or high fat diet-induced diabetic and non-diabetic mice in vivo using the hind limb ischemia model. Results: CL 316,243 caused accelerated recovery from hind limb ischemia in non-diabetic and type 1 and 2 diabetic mice. Increased eNOS activity and decreased superoxide generation were detected in hind limb ischemia calf muscle from CL 316, 243 treated mice vs. controls. The protective effect of CL 316,243 in diabetic mice was associated with >50% decreases in eNOS glutathionylation and nitrotyrosine levels. The β3AR agonist directly promoted angiogenesis in endothelial cells in vitro. These pro-angiogenic effects were β3AR and NOS-dependent. Conclusion/Interpretation:β3AR stimulation increased angiogenesis in diabetic ischemic limbs, with demonstrable improvements in NO/redox balance and angiogenesis elicited by a selective agonist. The orally available β3AR agonist, Mirabegron, used for overactive bladder syndrome, makes translation to a clinical trial by repurposing of a β3AR agonist to target PAD immediately feasible.
Collapse
Affiliation(s)
- Kristen J Bubb
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia.,Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,Department of Physiology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Dhanya Ravindran
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia.,Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,Heart Research Institute, Eliza St Newtown, Sydney, NSW, Australia
| | - Siân P Cartland
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia.,Heart Research Institute, Eliza St Newtown, Sydney, NSW, Australia
| | - Meghan Finemore
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia.,Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Zoe E Clayton
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia.,Heart Research Institute, Eliza St Newtown, Sydney, NSW, Australia
| | - Michael Tsang
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia.,Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Owen Tang
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia.,Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Mary M Kavurma
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia.,Heart Research Institute, Eliza St Newtown, Sydney, NSW, Australia
| | - Sanjay Patel
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia.,Heart Research Institute, Eliza St Newtown, Sydney, NSW, Australia
| | - Gemma A Figtree
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia.,Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| |
Collapse
|
15
|
Yap JQ, Seflova J, Sweazey R, Artigas P, Robia SL. FXYD proteins and sodium pump regulatory mechanisms. J Gen Physiol 2021; 153:211866. [PMID: 33688925 PMCID: PMC7953255 DOI: 10.1085/jgp.202012633] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The sodium/potassium-ATPase (NKA) is the enzyme that establishes gradients of sodium and potassium across the plasma membrane. NKA activity is tightly regulated for different physiological contexts through interactions with single-span transmembrane peptides, the FXYD proteins. This diverse family of regulators has in common a domain containing a Phe-X-Tyr-Asp (FXYD) motif, two conserved glycines, and one serine residue. In humans, there are seven tissue-specific FXYD proteins that differentially modulate NKA kinetics as appropriate for each system, providing dynamic responsiveness to changing physiological conditions. Our understanding of how FXYD proteins contribute to homeostasis has benefitted from recent advances described in this review: biochemical and biophysical studies have provided insight into regulatory mechanisms, genetic models have uncovered remarkable complexity of FXYD function in integrated physiological systems, new posttranslational modifications have been identified, high-resolution structural studies have revealed new details of the regulatory interaction with NKA, and new clinical correlations have been uncovered. In this review, we address the structural determinants of diverse FXYD functions and the special roles of FXYDs in various physiological systems. We also discuss the possible roles of FXYDs in protein trafficking and regulation of non-NKA targets.
Collapse
Affiliation(s)
- John Q Yap
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Jaroslava Seflova
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Ryan Sweazey
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| |
Collapse
|
16
|
Lymperopoulos A, Cora N, Maning J, Brill AR, Sizova A. Signaling and function of cardiac autonomic nervous system receptors: Insights from the GPCR signalling universe. FEBS J 2021; 288:2645-2659. [DOI: 10.1111/febs.15771] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| | - Ava R. Brill
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| | - Anastasiya Sizova
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| |
Collapse
|
17
|
Saunders SL, Hutchinson DS, Britton FC, Liu L, Markus I, Sandow SL, Murphy TV. Effect of β 1 /β 2 -adrenoceptor blockade on β 3 -adrenoceptor activity in the rat cremaster muscle artery. Br J Pharmacol 2021; 178:1789-1804. [PMID: 33506492 DOI: 10.1111/bph.15398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The physiological role of vascular β3 -adrenoceptors is not fully understood. Recent evidence suggests cardiac β3 -adrenoceptors are functionally effective after down-regulation of β1 /β2 -adrenoceptors. The functional interaction between the β3 -adrenoceptor and other β-adrenoceptor subtypes in rat striated muscle arteries was investigated. EXPERIMENTAL APPROACH Studies were performed in cremaster muscle arteries isolated from male Sprague-Dawley rats. β-adrenoceptor expression was assessed through RT-PCR and immunofluorescence. Functional effects of β3 -adrenoceptor agonists and antagonists and other β-adrenoceptor ligands were measured using pressure myography. KEY RESULTS All three β-adrenoceptor subtypes were present in the endothelium of the cremaster muscle artery. The β3 -adrenoceptor agonists mirabegron and CL 316,243 had no effect on the diameter of pressurized (70 mmHg) cremaster muscle arterioles with myogenic tone, while the β3 -adrenoceptor agonist SR 58611A and the nonselective β-adrenoceptor agonist isoprenaline caused concentration-dependent dilation. In the presence of β1/2 -adrenoceptor antagonists nadolol (10 μM), atenolol (1 μM) and ICI 118,551 (0.1 μM) both mirabegron and CL 316,243 were effective in causing vasodilation and the potency of SR 58611A was enhanced, while responses to isoprenaline were inhibited. The β3 -adrenoceptor antagonist L 748,337 (1 μM) inhibited vasodilation caused by β3 -adrenoceptor agonists (in the presence of β1/2 -adrenoceptor blockade), but L 748,337 had no effect on isoprenaline-induced vasodilation. CONCLUSION AND IMPLICATIONS All three β-adrenoceptor subtypes were present in the endothelium of the rat cremaster muscle artery, but β3 -adrenoceptor mediated vasodilation was only evident after blockade of β1/2 -adrenoceptors. This suggests constitutive β1/2 -adrenoceptor activity inhibits β3 -adrenoceptor function in the endothelium of skeletal muscle resistance arteries.
Collapse
Affiliation(s)
- Samantha L Saunders
- Physiology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Fiona C Britton
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Lu Liu
- Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Irit Markus
- Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Shaun L Sandow
- Physiology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia.,Biomedical Science, School of Health and Sports Science, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Timothy V Murphy
- Physiology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Infante T, Costa D, Napoli C. Novel Insights Regarding Nitric Oxide and Cardiovascular Diseases. Angiology 2021; 72:411-425. [PMID: 33478246 DOI: 10.1177/0003319720979243] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a powerful mediator with biological activities such as vasodilation and prevention of vascular smooth muscle cell proliferation as well as functional regulation of cardiac cells. Thus, impaired production or reduced bioavailability of NO predisposes to the onset of different cardiovascular (CV) diseases. Alterations in the redox balance associated with excitation-contraction coupling have been identified in heart failure (HF), thus contributing to contractile abnormalities and arrhythmias. For its ability to influence cell proliferation and angiogenesis, NO may be considered a therapeutic option for the management of several CV diseases. Several clinical studies and trials investigated therapeutic NO strategies for systemic hypertension, atherosclerosis, and/or prevention of in stent restenosis, coronary heart disease (CHD), pulmonary arterial hypertension (PAH), and HF, although with mixed results in long-term treatment and effective dose administered in selected groups of patients. Tadalafil, sildenafil, and cinaguat were evaluated for the treatment of PAH, whereas vericiguat was investigated in the treatment of HF patients with reduced ejection fraction. Furthermore, supplementation with hydrogen sulfide, tetrahydrobiopterin, and nitrite/nitrate has shown beneficial effects at the vascular level.
Collapse
Affiliation(s)
- Teresa Infante
- Department of Advanced Clinical and Surgical Sciences, 18994University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Dario Costa
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, 18994University of Campania "L. Vanvitelli," Naples, Italy
| | - Claudio Napoli
- Department of Advanced Clinical and Surgical Sciences, 18994University of Campania "Luigi Vanvitelli," Naples, Italy.,IRCCS SDN, Naples, Italy
| |
Collapse
|
19
|
Kamiya M, Asai K, Maejima Y, Shirakabe A, Murai K, Noma S, Komiyama H, Sato N, Mizuno K, Shimizu W. β 3-Adrenergic Receptor Agonist Prevents Diastolic Dysfunction in an Angiotensin II-Induced Cardiomyopathy Mouse Model. J Pharmacol Exp Ther 2020; 376:473-481. [PMID: 33318077 DOI: 10.1124/jpet.120.000140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/11/2020] [Indexed: 01/01/2023] Open
Abstract
β3-Adrenergic receptor expression is enhanced in the failing heart, but its functional effects are unclear. We tested the hypothesis that a β3-agonist improves left ventricular (LV) performance in heart failure. We examined the chronic effects of a β3-agonist in the angiotensin II (Ang II)-induced cardiomyopathy mouse model. C57BL/6J mice were treated with Ang II alone or Ang II + BRL 37344 (β3-agonist, BRL) for 4 weeks. Systolic blood pressure in conscious mice was significantly elevated in Ang II and Ang II + BRL mice compared with control mice. Heart rate was not different among the three groups. Systolic performance parameters that were measured by echocardiography and an LV catheter were similar among the groups. LV end-diastolic pressure and end-diastolic pressure-volume relationships were higher in Ang II mice compared with control mice. However, the increase in these parameters was prevented in Ang II + BRL mice, which suggested improvement in myocardial stiffness by BRL. Pathologic analysis showed that LV hypertrophy was induced in Ang II mice and failed to be prevented by BRL. However, increased collagen I/III synthesis, cardiac fibrosis, and lung congestion observed in Ang II mice were inhibited by BRL treatment. The cardioprotective benefits of BRL were associated with downregulation of transforming growth factor-β1 expression and phosphorylated-Smad2/3. Chronic infusion of a β3-agonist has a beneficial effect on LV diastolic function independent of blood pressure in the Ang II-induced cardiomyopathy mouse model. SIGNIFICANCE STATEMENT: Chronic infusion of a β3-adrenergic receptor agonist attenuates cardiac fibrosis and improves diastolic dysfunction independently of blood pressure in an angiotensin II-induced hypertensive mouse model. This drug might be an effective treatment of heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Masataka Kamiya
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Kuniya Asai
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Yasuhiro Maejima
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Akihiro Shirakabe
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Koji Murai
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Satsuki Noma
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Hidenori Komiyama
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Naoki Sato
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Kyoichi Mizuno
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| |
Collapse
|
20
|
Michel LYM, Farah C, Balligand JL. The Beta3 Adrenergic Receptor in Healthy and Pathological Cardiovascular Tissues. Cells 2020; 9:cells9122584. [PMID: 33276630 PMCID: PMC7761574 DOI: 10.3390/cells9122584] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
The third isotype of beta-adrenoreceptors (β3-AR) has recently come (back) into focus after the observation of its expression in white and beige human adipocytes and its implication in metabolic regulation. This coincides with the recent development and marketing of agonists at the human receptor with superior specificity. Twenty years ago, however, we and others described the expression of β3-AR in human myocardium and its regulation of contractility and cardiac remodeling. Subsequent work from many laboratories has since expanded the characterization of β3-AR involvement in many aspects of cardiovascular physio(patho)logy, justifying the present effort to update current paradigms under the light of the most recent evidence.
Collapse
Affiliation(s)
- Lauriane Y. M. Michel
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain, B1.57.04, 57 Avenue Hippocrate, 1200 Brussels, Belgium; (L.Y.M.M.); (C.F.)
| | - Charlotte Farah
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain, B1.57.04, 57 Avenue Hippocrate, 1200 Brussels, Belgium; (L.Y.M.M.); (C.F.)
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain, B1.57.04, 57 Avenue Hippocrate, 1200 Brussels, Belgium; (L.Y.M.M.); (C.F.)
- Department of Medicine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 10 Avenue Hippocrate, 1200 Brussels, Belgium
- Correspondence: ; Tel.: +32-27645262
| |
Collapse
|
21
|
Erdogan BR, Michel MC, Arioglu-Inan E. Expression and Signaling of β-Adrenoceptor Subtypes in the Diabetic Heart. Cells 2020; 9:cells9122548. [PMID: 33256212 PMCID: PMC7759850 DOI: 10.3390/cells9122548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Diabetes is a chronic, endocrine disorder that effects millions of people worldwide. Cardiovascular complications are the major cause of diabetes-related morbidity and mortality. Cardiac β1- and β2-adrenoceptor (AR) stimulation mediates positive inotropy and chronotropy, whereas β3-AR mediates negative inotropic effect. Changes in β-AR responsiveness are thought to be an important factor that contributes to the diabetic cardiac dysfunction. Diabetes related changes in β-AR expression, signaling, and β-AR mediated cardiac function have been studied by several investigators for many years. In the present review, we have screened PubMed database to obtain relevant articles on this topic. Our search has ended up with wide range of different findings about the effect of diabetes on β-AR mediated changes both in molecular and functional level. Considering these inconsistent findings, the effect of diabetes on cardiac β-AR still remains to be clarified.
Collapse
Affiliation(s)
- Betul R. Erdogan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey;
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, 35620 Izmir, Turkey
| | - Martin C. Michel
- Department of Pharmacology, Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey;
- Correspondence:
| |
Collapse
|
22
|
Neurohormonal Modulation as a Therapeutic Target in Pulmonary Hypertension. Cells 2020; 9:cells9112521. [PMID: 33266371 PMCID: PMC7700466 DOI: 10.3390/cells9112521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
The autonomic nervous system (ANS) and renin-angiotensin-aldosterone system (RAAS) are involved in many cardiovascular disorders, including pulmonary hypertension (PH). The current review focuses on the role of the ANS and RAAS activation in PH and updated evidence of potential therapies targeting both systems in this condition, particularly in Groups 1 and 2. State of the art knowledge in preclinical and clinical use of pharmacologic drugs (beta-blockers, beta-three adrenoceptor agonists, or renin-angiotensin-aldosterone signaling drugs) and invasive procedures, such as pulmonary artery denervation, is provided.
Collapse
|
23
|
Castro-Torres Y, Katholi RE. Recently Approved and Under Investigation Drugs for Treating Patients with Heart Failure. Curr Cardiol Rev 2020; 16:202-211. [PMID: 32351188 PMCID: PMC7536816 DOI: 10.2174/1573403x14666180702151626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
Heart Failure (HF) represents a leading cause of morbidity and mortality worldwide. Despite the recent advances in the treatment of this condition, patients´ prognosis remains unfavorable in most cases. Sacubitril/valsartan and ivabradine have been recently approved to improve clinical outcomes in patients with HF with reduced ejection fraction. Drugs under investigation for treating patients with HF encompass many novel mechanisms including vasoactive peptides, blocking inflammatory- mediators, natriuretic peptides, selective non-steroidal mineralocorticoid-receptor antagonists, myocardial β3 adrenoreceptor agonists, inhibiting the cytochrome C/cardiolipin peroxidase complex, neuregulin-1/ErbB signaling and inhibiting late inward sodium current. The aim of this manuscript is to review the main drugs under investigation for the treatment of patients with HF and give perspectives for their implementation into clinical practice.
Collapse
Affiliation(s)
- Yaniel Castro-Torres
- Servicio de Cardiología, Hospital Universitario Celestino Hernández Robau, Santa Clara, Villa Clara, Cuba
| | - Richard E Katholi
- Department of Pharmacology, Southern Illinois School of Medicine, Springfield, IL 62702, United States
| |
Collapse
|
24
|
Petrushanko IY, Mitkevich VA, Makarov AA. Molecular Mechanisms of the Redox Regulation of the Na,K-ATPase. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920050139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
25
|
Fry NAS, Liu CC, Garcia A, Hamilton EJ, Karimi Galougahi K, Kim YJ, Whalley DW, Bundgaard H, Rasmussen HH. Targeting Cardiac Myocyte Na +-K + Pump Function With β3 Adrenergic Agonist in Rabbit Model of Severe Congestive Heart Failure. Circ Heart Fail 2020; 13:e006753. [PMID: 32842758 DOI: 10.1161/circheartfailure.119.006753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Abnormally high cytosolic Na+ concentrations in advanced heart failure impair myocardial contractility. Stimulation of the membrane Na+-K+ pump should lower Na+ concentrations, and the β3 adrenoceptor (β3 AR) mediates pump stimulation in myocytes. We examined if β3 AR-selective agonists given in vivo increase myocyte Na+-K+ pump activity and reverse organ congestion in severe heart failure (HF). METHODS Indices for HF were lung-, heart-, and liver: body weight ratios and ascites after circumflex coronary artery ligation in rabbits. Na+-K+ pump current, Ip, was measured in voltage-clamped myocytes from noninfarct myocardium. Rabbits were treated with the β3 AR agonists CL316,243 or ASP9531, starting 2 weeks after coronary ligation. RESULTS Coronary ligation caused ascites in most rabbits, significantly increased lung-, heart-, and liver: body weight ratios, and decreased Ip relative to that for 10 sham-operated rabbits. Treatment with CL316,243 for 3 days significantly reduced lung-, heart-, and liver: body weight ratios and prevalence of ascites in 8 rabbits with HF relative to indices for 13 untreated rabbits with HF. It also increased Ip significantly to levels of myocytes from sham-operated rabbits. Treatment with ASP9531 for 14 days significantly reduced indices of organ congestion in 6 rabbits with HF relative to indices of 6 untreated rabbits, and it eliminated ascites. β3 AR agonists did not significantly change heart rates or blood pressures. CONCLUSIONS Parallel β3 AR agonists-induced reversal of Na+-K+ pump inhibition and indices of congestion suggest pump inhibition is a useful target for treatment with β3 AR agonists in congestive HF.
Collapse
Affiliation(s)
- Natasha A S Fry
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Australia (N.A.S.F., E.J.H., Y.J.K., H.H.R.)
| | - Chia-Chi Liu
- University of Sydney, Australia (C.-C.L., K.K.G., Y.J.K., D.W.W., H.H.R.)
| | | | - Elisha J Hamilton
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Australia (N.A.S.F., E.J.H., Y.J.K., H.H.R.)
| | | | - Yeon Jae Kim
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Australia (N.A.S.F., E.J.H., Y.J.K., H.H.R.).,University of Sydney, Australia (C.-C.L., K.K.G., Y.J.K., D.W.W., H.H.R.)
| | - David W Whalley
- University of Sydney, Australia (C.-C.L., K.K.G., Y.J.K., D.W.W., H.H.R.).,Department of Cardiology, Royal North Shore Hospital, Sydney, Australia (D.W.W., H.H.R.)
| | - Henning Bundgaard
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark (H.B.)
| | - Helge H Rasmussen
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Australia (N.A.S.F., E.J.H., Y.J.K., H.H.R.).,University of Sydney, Australia (C.-C.L., K.K.G., Y.J.K., D.W.W., H.H.R.).,Department of Cardiology, Royal North Shore Hospital, Sydney, Australia (D.W.W., H.H.R.)
| |
Collapse
|
26
|
Garcia-Lunar I, Blanco I, Fernández-Friera L, Prat-Gonzàlez S, Jordà P, Sánchez J, Pereda D, Pujadas S, Rivas M, Solé-Gonzalez E, Vázquez J, Blázquez Z, García-Picart J, Caravaca P, Escalera N, Garcia-Pavia P, Delgado J, Segovia-Cubero J, Fuster V, Roig E, Barberá JA, Ibanez B, García-Álvarez A. Design of the β3-Adrenergic Agonist Treatment in Chronic Pulmonary Hypertension Secondary to Heart Failure Trial. JACC Basic Transl Sci 2020; 5:317-327. [PMID: 32368692 PMCID: PMC7188870 DOI: 10.1016/j.jacbts.2020.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
Abstract
CpcPH is a relatively common complication of chronic HF, is associated with poor survival, and has no specific pharmacological treatment. ß3AR stimulation has shown improvement in pulmonary hemodynamics and RV performance in a translational large animal model mimicking this condition. The SPHERE-HF trial is a Phase II randomized, double-blind clinical trial designed to evaluate the efficacy and safety of mirabegron (oral β3 AR agonist) in patients with CpcPH secondary to HF. The SPHERE-HF trial will include 80 patients treated with mirabegron or placebo for 16 weeks. The main outcome is the change in PVR. Secondary outcomes include changes in RV performance, clinical status, NT-proBNP levels, and additional pulmonary hemodynamic parameters.
Combined pre-and post-capillary hypertension (CpcPH) is a relatively common complication of heart failure (HF) associated with a poor prognosis. Currently, there is no specific therapy approved for this entity. Recently, treatment with beta-3 adrenergic receptor (β3AR) agonists was able to improve pulmonary hemodynamics and right ventricular (RV) performance in a translational, large animal model of chronic PH. The authors present the design of a phase II randomized clinical trial that tests the benefits of mirabegron (a clinically available β3AR agonist) in patients with CpcPH due to HF. The effect of β3AR treatment will be evaluated on pulmonary hemodynamics, as well as clinical, biochemical, and advanced cardiac imaging parameters. (Beta3 Agonist Treatment in Chronic Pulmonary Hypertension Secondary to Heart Failure [SPHERE-HF]; NCT02775539)
Collapse
Key Words
- CCT, cardiac computed tomography
- CMR, cardiac magnetic resonance
- CpcPH, combined pre- and post-capillary pulmonary hypertension
- ECG, electrocardiography
- HF, heart failure
- ITT, intention to treat
- IpcPH, isolated post-capillary pulmonary hypertension
- LHD, left heart disease
- LV, left ventricular
- LVEF, left ventricular ejection fraction
- NT-proBNP, N-terminal prohormone of brain natriuretic peptide
- NYHA, New York Heart Association
- PAP, pulmonary artery pressure
- PH, pulmonary hypertension
- PP, Per protocol
- PVR, pulmonary vascular resistance
- RV, right ventricle
- adrenoreceptors
- cGMP, cyclic guanosine monophosphate
- imaging
- pulmonary hypertension
- treatment
- β3AR, beta-3 adrenoreceptor
Collapse
Affiliation(s)
- Ines Garcia-Lunar
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Hospital Universitario Quirónsalud Madrid, UEM, Madrid, Spain
| | - Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic-IDIBAPS, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Leticia Fernández-Friera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,HM Hospitales-Centro Integral de Enfermedades Cardiovasculares HM-CIEC, Madrid, Spain
| | - Susanna Prat-Gonzàlez
- Institut Clinic Cardiovascular, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Paloma Jordà
- Institut Clinic Cardiovascular, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Javier Sánchez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Philips Healthcare Iberia, Madrid, Spain
| | - Daniel Pereda
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Institut Clinic Cardiovascular, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Sandra Pujadas
- Cardiology Department, Hospital Santa Creu i Sant Pau, IIb-Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Mercedes Rivas
- Cardiology Department, Hospital Santa Creu i Sant Pau, IIb-Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Jorge Vázquez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Cardiology Department, University Hospital Puerta de Hierro, University Autonoma de Madrid, Madrid, Spain
| | - Zorba Blázquez
- Cardiology Department, University Hospital 12 de Octubre, Universidad Complutense, Madrid, Spain
| | - Juan García-Picart
- Cardiology Department, Hospital Santa Creu i Sant Pau, IIb-Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Pedro Caravaca
- Cardiology Department, University Hospital 12 de Octubre, Universidad Complutense, Madrid, Spain
| | - Noemí Escalera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Pablo Garcia-Pavia
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Cardiology Department, University Hospital Puerta de Hierro, University Autonoma de Madrid, Madrid, Spain.,University Francisco de Vitoria (UFV), Pozuelo de Alarcon, Spain
| | - Juan Delgado
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Cardiology Department, University Hospital 12 de Octubre, Universidad Complutense, Madrid, Spain
| | - Javier Segovia-Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Cardiology Department, University Hospital Puerta de Hierro, University Autonoma de Madrid, Madrid, Spain
| | - Valentín Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eulalia Roig
- Cardiology Department, Hospital Santa Creu i Sant Pau, IIb-Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Joan Albert Barberá
- Department of Pulmonary Medicine, Hospital Clínic-IDIBAPS, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Ana García-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Institut Clinic Cardiovascular, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
Beta-3 adrenoceptors: A potential therapeutic target for heart disease. Eur J Pharmacol 2019; 858:172468. [DOI: 10.1016/j.ejphar.2019.172468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 12/21/2022]
|
28
|
van der Velden J, Tocchetti CG, Varricchi G, Bianco A, Sequeira V, Hilfiker-Kleiner D, Hamdani N, Leite-Moreira AF, Mayr M, Falcão-Pires I, Thum T, Dawson DK, Balligand JL, Heymans S. Metabolic changes in hypertrophic cardiomyopathies: scientific update from the Working Group of Myocardial Function of the European Society of Cardiology. Cardiovasc Res 2019; 114:1273-1280. [PMID: 29912308 PMCID: PMC6054261 DOI: 10.1093/cvr/cvy147] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
Disturbed metabolism as a consequence of obesity and diabetes may cause cardiac diseases (recently highlighted in the cardiovascular research spotlight issue on metabolic cardiomyopathies).1 In turn, the metabolism of the heart may also be disturbed in genetic and acquired forms of hypertrophic cardiac disease. Herein, we provide an overview of recent insights on metabolic changes in genetic hypertrophic cardiomyopathy and discuss several therapies, which may be explored to target disturbed metabolism and prevent onset of cardiac hypertrophy. This article is part of the Mini Review Series from the Varenna 2017 meeting of the Working Group of Myocardial Function of the European Society of Cardiology.
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, NA, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, Federico II University, Naples, NA, Italy
| | - Anna Bianco
- Department of Translational Medical Sciences, Federico II University, Naples, NA, Italy.,Department of Cardiology, Maastricht University Medical Center & CARIM, Maastricht University, Maastricht, The Netherlands
| | - Vasco Sequeira
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Denise Hilfiker-Kleiner
- Molecular Cardiology, Department of Cardiology and Angiology, Medical School Hannover, Germany
| | - Nazha Hamdani
- Department of Systems Physiology, Ruhr University Bochum, Bochum, Germany
| | - Adelino F Leite-Moreira
- Department of Surgery and Physiology, Faculty of Medicine, Cardiovascular Research Centre, University of Porto, Porto, Portugal
| | - Manuel Mayr
- The James Black Centre & King's British Heart Foundation Centre, King's College, University of London, London, UK
| | - Ines Falcão-Pires
- Department of Surgery and Physiology, Faculty of Medicine, Cardiovascular Research Centre, University of Porto, Porto, Portugal
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,National Heart and Lung Institute, Imperial College London, London, UK.,REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany
| | - Dana K Dawson
- School of Medicine & Dentistry, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics, Institut de Recherche Experimentale et Clinique (IREC), and Clinique Universitaire Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Stephane Heymans
- Netherlands Heart Institute, Utrecht, The Netherlands.,Department of Cardiology, Maastricht University Medical Center & CARIM, Maastricht University, Maastricht, The Netherlands.,Department of Cardiovascular Sciences, Leuven University, Leuven, Belgium
| |
Collapse
|
29
|
Arioglu-Inan E, Kayki-Mutlu G, Michel MC. Cardiac β 3 -adrenoceptors-A role in human pathophysiology? Br J Pharmacol 2019; 176:2482-2495. [PMID: 30801686 DOI: 10.1111/bph.14635] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/11/2019] [Accepted: 01/29/2019] [Indexed: 01/06/2023] Open
Abstract
As β3 -adrenoceptors were first demonstrated to be expressed in adipose tissue they have received much attention for their metabolic effects in obesity and diabetes. After the existence of this subtype had been suggested to be present in the heart, studies focused on its role in cardiac function. While the presence and functional role of β3 -adrenoceptors in the heart has not uniformly been detected, there is a broad consensus that they become up-regulated in pathological conditions associated with increased sympathetic activity such as heart failure and diabetes. When detected, the β3 -adrenceptor has been demonstrated to mediate negative inotropic effects in an inhibitory G protein-dependent manner through the NO-cGMP-PKG signalling pathway. Whether these negative inotropic effects provide protection from the adverse effects induced by overstimulation of β1 /β2 -adrenoceptors or in themselves are potentially harmful is controversial, but ongoing clinical studies in patients with congestive heart failure are testing the hypothesis that β3 -adrenceptor agonism has a beneficial effect. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Gizem Kayki-Mutlu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
30
|
Effects of β3-adrenergic receptor stimulation on the resting holding current of medial prefrontal cortex pyramidal neurons in young rats. Neurosci Lett 2019; 698:192-197. [DOI: 10.1016/j.neulet.2019.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/25/2018] [Accepted: 01/10/2019] [Indexed: 11/19/2022]
|
31
|
Abstract
Heart failure (HF) has become increasingly common within the elderly population, decreasing their survival and overall quality of life. In fact, despite the improvements in treatment, many elderly people suffer from cardiac dysfunction (HF, valvular diseases, arrhythmias or hypertension-induced cardiac hypertrophy) that are much more common in an older fragile heart. Since β-adrenergic receptor (β-AR) signaling is abnormal in failing as well as aged hearts, this pathway is an effective diagnostic and therapeutic target. Both HF and aging are characterized by activation/hyperactivity of various neurohormonal pathways, the most important of which is the sympathetic nervous system (SNS). SNS hyperactivity is initially a compensatory mechanism to stimulate contractility and maintain cardiac output. Unfortunately, this chronic stimulation becomes detrimental and causes decreased cardiac function as well as reduced inotropic reserve due to a decrease in cardiac β-ARs responsiveness. Therapies which (e.g., β-blockers and physical activity) restore β-ARs responsiveness can ameliorate cardiac performance and outcomes during HF, particularly in older patients. In this review, we will discuss physiological β-adrenergic signaling and its alterations in both HF and aging as well as the potential clinical application of targeting β-adrenergic signaling in these disease processes.
Collapse
|
32
|
de Lucia C, Eguchi A, Koch WJ. New Insights in Cardiac β-Adrenergic Signaling During Heart Failure and Aging. Front Pharmacol 2018; 9:904. [PMID: 30147654 PMCID: PMC6095970 DOI: 10.3389/fphar.2018.00904] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Heart failure (HF) has become increasingly common within the elderly population, decreasing their survival and overall quality of life. In fact, despite the improvements in treatment, many elderly people suffer from cardiac dysfunction (HF, valvular diseases, arrhythmias or hypertension-induced cardiac hypertrophy) that are much more common in an older fragile heart. Since β-adrenergic receptor (β-AR) signaling is abnormal in failing as well as aged hearts, this pathway is an effective diagnostic and therapeutic target. Both HF and aging are characterized by activation/hyperactivity of various neurohormonal pathways, the most important of which is the sympathetic nervous system (SNS). SNS hyperactivity is initially a compensatory mechanism to stimulate contractility and maintain cardiac output. Unfortunately, this chronic stimulation becomes detrimental and causes decreased cardiac function as well as reduced inotropic reserve due to a decrease in cardiac β-ARs responsiveness. Therapies which (e.g., β-blockers and physical activity) restore β-ARs responsiveness can ameliorate cardiac performance and outcomes during HF, particularly in older patients. In this review, we will discuss physiological β-adrenergic signaling and its alterations in both HF and aging as well as the potential clinical application of targeting β-adrenergic signaling in these disease processes.
Collapse
Affiliation(s)
| | | | - Walter J. Koch
- Department of Pharmacology – Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
33
|
Pouleur AC, Anker S, Brito D, Brosteanu O, Hasenclever D, Casadei B, Edelmann F, Filippatos G, Gruson D, Ikonomidis I, Lhommel R, Mahmod M, Neubauer S, Persu A, Gerber BL, Piechnik S, Pieske B, Pieske-Kraigher E, Pinto F, Ponikowski P, Senni M, Trochu JN, Van Overstraeten N, Wachter R, Balligand JL. Rationale and design of a multicentre, randomized, placebo-controlled trial of mirabegron, a Beta3-adrenergic receptor agonist on left ventricular mass and diastolic function in patients with structural heart disease Beta3-left ventricular hypertrophy (Beta3-LVH). ESC Heart Fail 2018; 5:830-841. [PMID: 29932311 PMCID: PMC6165933 DOI: 10.1002/ehf2.12306] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/22/2018] [Indexed: 12/28/2022] Open
Abstract
Aims Progressive left ventricular (LV) remodelling with cardiac myocyte hypertrophy, myocardial fibrosis, and endothelial dysfunction plays a key role in the onset and progression of heart failure with preserved ejection fraction. The Beta3‐LVH trial will test the hypothesis that the β3 adrenergic receptor agonist mirabegron will improve LV hypertrophy and diastolic function in patients with hypertensive structural heart disease at high risk for developing heart failure with preserved ejection fraction. Methods and results Beta3‐LVH is a randomized, placebo‐controlled, double‐blind, two‐armed, multicentre, European, parallel group study. A total of 296 patients will be randomly assigned to receive either mirabegron 50 mg daily or placebo over 12 months. The main inclusion criterion is the presence of LV hypertrophy, that is, increased LV mass index (LVMi) or increased wall thickening by echocardiography. The co‐primary endpoints are a change in LVMi by cardiac magnetic resonance imaging and a change in LV diastolic function (assessed by the E/e′ ratio). Secondary endpoints include mirabegron's effects on cardiac fibrosis, left atrial volume index, maximal exercise capacity, and laboratory markers. Two substudies will evaluate mirabegron's effect on endothelial function by pulse amplitude tonometry and brown fat activity by positron emission tomography using 17F‐fluorodeoxyglucose. Morbidity and mortality as well as safety aspects will also be assessed. Conclusions Beta3‐LVH is the first large‐scale clinical trial to evaluate the effects of mirabegron on LVMi and diastolic function in patients with LVH. Beta3‐LVH will provide important information about the clinical course of this condition and may have significant impact on treatment strategies and future trials in these patients.
Collapse
Affiliation(s)
- Anne-Catherine Pouleur
- Cardiovascular Department, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Stefan Anker
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany.,Division of Cardiology and Metabolism-Heart Failure, Cachexia and Sarcopenia, Department of Cardiology, Berlin Brandenburg Center for Regenerative Therapies, Charité University of Medicine, Berlin, Germany
| | - Dulce Brito
- Department of Cardiology, CHLN, CCUL (Cardiovascular Centre), AIDFM, Hospital de Santa Maria, Universidade de Lisboa, Lisbon, Portugal
| | - Oana Brosteanu
- Clinical Trial Centre Leipzig-ZKS, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Dirk Hasenclever
- Institute for Medical Informatics, Statistics & Epidemiology-IMISE, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Barbara Casadei
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Frank Edelmann
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin-Campus Virchow Klinikum, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens, School of Medicine and Department of Cardiology, Heart Failure Unit, Athens University Hospital Attikon, Athens, Greece
| | - Damien Gruson
- Clinical Biology Department, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Ignatios Ikonomidis
- National and Kapodistrian University of Athens, School of Medicine and Department of Cardiology, Heart Failure Unit, Athens University Hospital Attikon, Athens, Greece
| | - Renaud Lhommel
- Nuclear Medicine Department, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Masliza Mahmod
- Cardiovascular Imaging Core Laboratory, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Stefan Neubauer
- Cardiovascular Imaging Core Laboratory, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Alexandre Persu
- Cardiovascular Department, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Bernhard L Gerber
- Cardiovascular Department, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Stefan Piechnik
- Cardiovascular Imaging Core Laboratory, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin-Campus Virchow Klinikum, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Institute, Berlin, Germany
| | - Elisabeth Pieske-Kraigher
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Fausto Pinto
- Division of Cardiology and Metabolism-Heart Failure, Cachexia and Sarcopenia, Department of Cardiology, Berlin Brandenburg Center for Regenerative Therapies, Charité University of Medicine, Berlin, Germany
| | - Piotr Ponikowski
- Department of Heart Diseases, Wrocław Medical University, Wrocław, Poland.,Cardiology Department, Military Hospital, Wrocław, Poland
| | - Michele Senni
- Department Cardiovascular Medicine, Cardiology Division, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Jean-Noël Trochu
- Institut du thorax, Centre Hospitalier Universitaire de Nantes, Nantes, France.,Medical School, University of Nantes, Nantes, France
| | - Nancy Van Overstraeten
- Cardiovascular Department, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Rolf Wachter
- Clinic for Cardiology and Pneumology, University of Göttingen Medical Centre, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Jean-Luc Balligand
- Department of Medicine, Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, B1.53.09, 52 avenue Mounier, 1200, Brussels, Belgium
| |
Collapse
|
34
|
Yang N, Shi XL, Zhang BL, Rong J, Zhang TN, Xu W, Liu CF. The Trend of β3-Adrenergic Receptor in the Development of Septic Myocardial Depression: A Lipopolysaccharide-Induced Rat Septic Shock Model. Cardiology 2018; 139:234-244. [PMID: 29566368 DOI: 10.1159/000487126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/18/2018] [Indexed: 01/08/2023]
Abstract
Septic shock with low cardiac output is very common in children. However, the mechanism underlying myocardial depression is unclear. The role of β3-AR in the development of myocardial depression in sepsis is unknown. In the present study, we generated an adolescent rat model of hypodynamic septic shock induced by lipopolysaccharide (LPS). Neonatal cardiomyocytes were also treated with LPS to mimic myocardial depression in sepsis, which was confirmed via an in vivo left ventricular hemodynamic study, and measurements of contractility and the Ca2+ transient in isolated adolescent and neonatal cardiomyocytes. After 16 h of LPS treatment, cultured neonatal cardiomyocytes showed a diminished Ca2+ transient amplitude associated with an increase in the β3-AR level. With the addition of a β3-AR agonist, the Ca2+ transient in LPS-treated neonatal rat cardiomyocytes gradually decreased over time; such a change was absent in cells treated with nitric oxide synthase (NOS) inhibitors prior to treatment with a β3-AR agonist. In adolescent rats with septic myocardial depression, cardiac function declined as indicated by decreased MAP, dP/dtmax, and dP/dtmix for 6 h after LPS injection; however, the β3-AR level first increased 2 h after LPS treatment and then decreased 6 h after LPS treatment in the absence of exogenous catecholamines. The results indicate that, in vitro, at the cellular level β3-AR may be involved in the development of myocardial depression (Ca2+ transient depression) in sepsis through NOS signaling pathways; however, in vivo, a complicated mechanism for modulating β3-AR may exist.
Collapse
Affiliation(s)
- Ni Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao-Lu Shi
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bing-Lun Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jian Rong
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Xu
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chun-Feng Liu
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
Role of the β 3-adrenergic receptor subtype in catecholamine-induced myocardial remodeling. Mol Cell Biochem 2018; 446:149-160. [PMID: 29363058 DOI: 10.1007/s11010-018-3282-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
Abstract
β3-Adrenoceptors (AR) stimulate cardiac Na+/K+ pump in healthy hearts. β3-ARs are upregulated by persistent sympathetic hyperactivity; however, their effect on Na+/K+ ATPase activity and ventricular function in this condition is still unknown. Here, we investigate preventive effects of additional β3-AR activation (BRL) on Na+/K+ ATPase activity and in vivo hemodynamics in a model of noradrenaline-induced hypertrophy. Rats received NA or NA plus simultaneously administered BRL in vivo infusion for 14 days; their cardiac function was investigated by left ventricular pressure-volume analysis. Moreover, fibrosis and apoptosis were also assessed histologically. NA induced an hypertrophic pattern, as detected by morphological, histological, and biochemical markers. Additional BRL exposure reversed the hypertrophic pattern and restored Na+/K+ ATPase activity. NA treatment increased systolic function and depressed diastolic function (slowed relaxation). Additional BRL treatment reversed most NA-induced hemodynamic changes. NA decreased Na+/K+ pump α2 subunit expression selectively, a change also reversed by additional BRL treatment. Increasing β3-AR stimulation may prevent the consequences of chronic NA exposure on Na+/K+ pump and in vivo hemodynamics. β3-AR agonism may thus represent a new therapeutic strategy for pharmacological modulation of hypertrophy under conditions of chronically enhanced sympathetic activity.
Collapse
|
36
|
Abstract
Cardiac diseases, such as heart failure, remain leading causes of morbidity and mortality worldwide, with myocardial infarction as the most common etiology. HF is characterized by β-adrenergic receptor (βAR) dysregulation that is primarily due to the upregulation of G protein–coupled receptor kinases that leads to overdesensitization of β1 and β2ARs, and this clinically manifests as a loss of inotropic reserve. Interestingly, the “minor” βAR isoform, the β3AR, found in the heart, lacks G protein–coupled receptor kinases recognition sites, and is not subject to desensitization, and as a consequence of this, in human failing myocardium, the levels of this receptor remain unchanged or are even increased. In different preclinical studies, it has been shown that β3ARs can activate different signaling pathways that can protect the heart. The clinical relevance of this is also supported by the effects of β-blockers which are well known for their proangiogenic and cardioprotective effects, and data are emerging showing that these are mediated, at least in part, by enhancement of β3AR activity. In this regard, targeting of β3ARs could represent a novel potential strategy to improve cardiac metabolism, function, and remodeling.
Collapse
|
37
|
Cui X, Xie Z. Protein Interaction and Na/K-ATPase-Mediated Signal Transduction. Molecules 2017; 22:molecules22060990. [PMID: 28613263 PMCID: PMC6152704 DOI: 10.3390/molecules22060990] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 02/05/2023] Open
Abstract
The Na/K-ATPase (NKA), or Na pump, is a member of the P-type ATPase superfamily. In addition to pumping ions across cell membrane, it is engaged in assembly of multiple protein complexes in the plasma membrane. This assembly allows NKA to perform many non-pumping functions including signal transduction that are important for animal physiology and disease progression. This article will focus on the role of protein interaction in NKA-mediated signal transduction, and its potential utility as target for developing new therapeutics.
Collapse
Affiliation(s)
- Xiaoyu Cui
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA.
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA.
| |
Collapse
|
38
|
Balligand JL. Cardiac beta3-adrenergic receptors in the clinical arena: the end of the beginning. Eur J Heart Fail 2017; 19:576-578. [DOI: 10.1002/ejhf.784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/09/2017] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jean-Luc Balligand
- Institut de Recherche Experimentale et Clinique, Pole of Pharmacology and Therapeutics and Cliniques Universitaires Saint-Luc, Université catholique de Louvain; Brussels Belgium
| |
Collapse
|
39
|
Dulce RA, Kulandavelu S, Schulman IH, Fritsch J, Hare JM. Nitric Oxide Regulation of Cardiovascular Physiology and Pathophysiology. Nitric Oxide 2017. [DOI: 10.1016/b978-0-12-804273-1.00024-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
40
|
Abstract
While crucial for the acute physiologic response to stress, the adrenergic system may become maladaptive upon prolonged stimulation in the course of development of heart failure. This has been the basis for the development of beta-blocking therapies, targeting mainly beta1-2 adrenoreceptors (B1-2AR). The third isotype, B3AR, was more recently identified in cardiac myocytes and endothelial cells from human (and many other animal species), where its distinctive coupling to nitric oxide and antioxidant pathways suggested potential protective properties that were unexploited so far. The observation of beneficial effects of B3AR expression/activation on myocardial remodeling and the availability of specific agonists for clinical use now open the way for directly testing the hypothesis in heart failure patients. We will briefly review the specificities of B3AR signaling in the context of the cardiovascular adrenergic system, the evidence supporting its beneficial effects and outline an ongoing clinical trial using the B3AR agonist, mirabegron in patients with/at risk of developing heart failure with preserved ejection fraction (HFpEF).
Collapse
Affiliation(s)
- Lauriane Y M Michel
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain, B1.53.09, 52 Ave. Mounier, 1200, Brussels, Belgium
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain, B1.53.09, 52 Ave. Mounier, 1200, Brussels, Belgium.
- Department of Medicine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 10 Ave. Hippocrate, 1200, Brussels, Belgium.
| |
Collapse
|
41
|
Festschrift for Professor Stephen Hunyor — Celebrating his Clinical and Scientific Contribution and the Legacy he has Left at Royal North Shore Hospital, and the Broader Cardiovascular Research Community. Heart Lung Circ 2017; 26:6-9. [DOI: 10.1016/j.hlc.2016.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Bundgaard H, Axelsson A, Hartvig Thomsen J, Sørgaard M, Kofoed KF, Hasselbalch R, Fry NAS, Valeur N, Boesgaard S, Gustafsson F, Køber L, Iversen K, Rasmussen HH. The first-in-man randomized trial of a beta3 adrenoceptor agonist in chronic heart failure: the BEAT-HF trial. Eur J Heart Fail 2016; 19:566-575. [PMID: 27990717 DOI: 10.1002/ejhf.714] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/21/2016] [Accepted: 11/14/2016] [Indexed: 12/22/2022] Open
Abstract
AIMS The third isotype of beta adrenergic receptors (β3 ARs) has distinctly different effects on cardiomyocytes compared with β1 and β2 ARs. Stimulation of β3 ARs may reduce cardiomyocyte Na+ overload and reduce oxidative stress in heart failure (HF). We examined if treatment with the β3 AR agonist mirabegron increases LVEF in patients with HF. METHODS AND RESULTS In a double-blind trial we randomly assigned 70 patients with NYHA class II-III HF and LVEF <40% at screening-echocardiography to receive mirabegron or placebo for 6 months as add-on to optimized standard therapy. The primary endpoint was an increase in LVEF after 6 months as measured by computed tomography (CT). Changes in LVEF after 6 months between treatment groups were not significantly different (0.4%, -3.5 to 3.8%, P = 0.82). In an exploratory analysis, based on an expectation that the pathophysiological substrate targeted with treatment is dependent on the baseline LVEF, patients with LVEF <40% by CT given mirabegron had a significant increase in LVEF while no increase was seen in patients given placebo. The changes were significantly different between groups (5.5%, 0.6-10.4%, P < 0.03). Additionally, there was interaction between baseline LVEF and change in LVEF in the entire group of patients treated with mirabegron (R2 = 0.40, β = -0.63, P < 0.001), but not in the placebo group (R2 = 0.00, β = -0.01, P = 0.95). Treatment was generally well tolerated. Three patients in each group had fatal or life-threatening events. CONCLUSIONS The primary endpoint was not reached. Exploratory analysis indicated that β3 AR stimulation by mirabegron increased LVEF in patients with severe HF. Treatment appeared safe. Additional studies in severe HF are needed. TRIAL REGISTRATION NCT01876433.
Collapse
Affiliation(s)
- Henning Bundgaard
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anna Axelsson
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Hartvig Thomsen
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mathias Sørgaard
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Klaus F Kofoed
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Radiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Hasselbalch
- Department of Cardiology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Nana Valeur
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Søren Boesgaard
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Finn Gustafsson
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lars Køber
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Iversen
- Department of Cardiology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Helge H Rasmussen
- Department of Cardiology, Royal North Shore Hospital and University of Sydney, Sydney, Australia
| |
Collapse
|
43
|
Bogdanova A, Petrushanko IY, Hernansanz-Agustín P, Martínez-Ruiz A. "Oxygen Sensing" by Na,K-ATPase: These Miraculous Thiols. Front Physiol 2016; 7:314. [PMID: 27531981 PMCID: PMC4970491 DOI: 10.3389/fphys.2016.00314] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/12/2016] [Indexed: 12/16/2022] Open
Abstract
Control over the Na,K-ATPase function plays a central role in adaptation of the organisms to hypoxic and anoxic conditions. As the enzyme itself does not possess O2 binding sites its "oxygen-sensitivity" is mediated by a variety of redox-sensitive modifications including S-glutathionylation, S-nitrosylation, and redox-sensitive phosphorylation. This is an overview of the current knowledge on the plethora of molecular mechanisms tuning the activity of the ATP-consuming Na,K-ATPase to the cellular metabolic activity. Recent findings suggest that oxygen-derived free radicals and H2O2, NO, and oxidized glutathione are the signaling messengers that make the Na,K-ATPase "oxygen-sensitive." This very ancient signaling pathway targeting thiols of all three subunits of the Na,K-ATPase as well as redox-sensitive kinases sustains the enzyme activity at the "optimal" level avoiding terminal ATP depletion and maintaining the transmembrane ion gradients in cells of anoxia-tolerant species. We acknowledge the complexity of the underlying processes as we characterize the sources of reactive oxygen and nitrogen species production in hypoxic cells, and identify their targets, the reactive thiol groups which, upon modification, impact the enzyme activity. Structured accordingly, this review presents a summary on (i) the sources of free radical production in hypoxic cells, (ii) localization of regulatory thiols within the Na,K-ATPase and the role reversible thiol modifications play in responses of the enzyme to a variety of stimuli (hypoxia, receptors' activation) (iii) redox-sensitive regulatory phosphorylation, and (iv) the role of fine modulation of the Na,K-ATPase function in survival success under hypoxic conditions. The co-authors attempted to cover all the contradictions and standing hypotheses in the field and propose the possible future developments in this dynamic area of research, the importance of which is hard to overestimate. Better understanding of the processes underlying successful adaptation strategies will make it possible to harness them and use for treatment of patients with stroke and myocardial infarction, sleep apnoea and high altitude pulmonary oedema, and those undergoing surgical interventions associated with the interruption of blood perfusion.
Collapse
Affiliation(s)
- Anna Bogdanova
- Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of ZurichZurich, Switzerland
| | - Irina Y. Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Pablo Hernansanz-Agustín
- Servicio de Inmunología, Instituto de Investigación Sanitaria Princesa (IIS-IP), Hospital Universitario de La PrincesaMadrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de MadridMadrid, Spain
| | - Antonio Martínez-Ruiz
- Servicio de Inmunología, Instituto de Investigación Sanitaria Princesa (IIS-IP), Hospital Universitario de La PrincesaMadrid, Spain
| |
Collapse
|
44
|
García-Álvarez A, Pereda D, García-Lunar I, Sanz-Rosa D, Fernández-Jiménez R, García-Prieto J, Nuño-Ayala M, Sierra F, Santiago E, Sandoval E, Campelos P, Agüero J, Pizarro G, Peinado VI, Fernández-Friera L, García-Ruiz JM, Barberá JA, Castellá M, Sabaté M, Fuster V, Ibañez B. Beta-3 adrenergic agonists reduce pulmonary vascular resistance and improve right ventricular performance in a porcine model of chronic pulmonary hypertension. Basic Res Cardiol 2016; 111:49. [PMID: 27328822 PMCID: PMC4916192 DOI: 10.1007/s00395-016-0567-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 06/06/2016] [Indexed: 11/27/2022]
Abstract
Beta-3 adrenergic receptor (β3AR) agonists have been shown to produce vasodilation and prevention of ventricular remodeling in different conditions. Given that these biological functions are critical in pulmonary hypertension (PH), we aimed to demonstrate a beneficial effect of β3AR agonists in PH. An experimental study in pigs (n = 34) with chronic PH created by pulmonary vein banding was designed to evaluate the acute hemodynamic effect and the long-term effect of β3AR agonists on hemodynamics, vascular remodeling and RV performance in chronic PH. Ex vivo human experiments were performed to explore the expression of β3AR mRNA and the vasodilator response of β3AR agonists in pulmonary arteries. Single intravenous administration of the β3AR agonist BRL37344 produced a significant acute reduction in PVR, and two-weeks treatment with two different β3AR selective agonists, intravenous BRL37344 or oral mirabegron, resulted in a significant reduction in PVR (median of −2.0 Wood units/m2 for BRL37344 vs. +1.5 for vehicle, p = 0.04; and −1.8 Wood units/m2 for mirabegron vs. +1.6 for vehicle, p = 0.002) associated with a significant improvement in magnetic resonance-measured RV performance. Histological markers of pulmonary vascular proliferation (p27 and Ki67) were significantly attenuated in β3AR agonists-treated pigs. β3AR was expressed in human pulmonary arteries and β3AR agonists produced vasodilatation. β3AR agonists produced a significant reduction in PVR and improved RV performance in experimental PH, emerging as a potential novel approach for treating patients with chronic PH.
Collapse
Affiliation(s)
- Ana García-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain. .,Hospital Clínic, IDIBAPS, Barcelona, Spain.
| | - Daniel Pereda
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Inés García-Lunar
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Hospital Universitario Quirón Madrid, UEM, Madrid, Spain
| | - David Sanz-Rosa
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Rodrigo Fernández-Jiménez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Hospital Clínico San Carlos, Madrid, Spain
| | - Jaime García-Prieto
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Mario Nuño-Ayala
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Federico Sierra
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | | | | | - Jaume Agüero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Gonzalo Pizarro
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Hospital Universitario Quirón Madrid, UEM, Madrid, Spain
| | - Víctor I Peinado
- Hospital Clínic, IDIBAPS, Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Barcelona, Spain
| | - Leticia Fernández-Friera
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Hospital Universitario Montepríncipe, Madrid, Spain
| | - José M García-Ruiz
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Joan A Barberá
- Hospital Clínic, IDIBAPS, Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Barcelona, Spain
| | | | | | - Valentín Fuster
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, USA
| | - Borja Ibañez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain. .,Department of Cardiology, IIS-Fundación Jiménez Díaz, Madrid, Spain.
| |
Collapse
|
45
|
Balligand JL. Cardiac salvage by tweaking with beta-3-adrenergic receptors. Cardiovasc Res 2016; 111:128-33. [PMID: 27001422 DOI: 10.1093/cvr/cvw056] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/22/2016] [Indexed: 11/14/2022] Open
Abstract
Overstimulation of the orthosympathetic system leads to cardiovascular cell and tissue damage through prolonged activation of β-1-2 adrenergic receptors (BARs). The more recent identification of the third isotype of BAR (B3AR) in cardiac myocytes and endothelial cells with a distinctive coupling and effect on cardiac function and remodelling introduced a new facet to this paradigm. In particular, B3AR is up-regulated in cardiac disease and less prone to homologous desensitization, which may reinforce its influence on the diseased myocardium. Mice with transgenic cardiac-specific expression of the human B3AR are protected from cardiac hypertrophy and fibrosis in response to neurohormonal stimulation. B3AR has also been implicated in cardiac protection after ischaemia-reperfusion and the benefits of exercise on the heart. Many of these salvage mechanisms are mediated by B3AR coupling to nitric oxide synthase (eNOS and nNOS) and downstream cGMP/protein kinase G signalling. Notably, B3AR exerts antioxidant protective effects on these and other signalling elements, which may subserve its protective properties in the setting of chronic heart failure. Additional vasorelaxing properties and paracrine NO-mediated signalling by B3AR in endothelium, together with systemic metabolic effects on beige/brown fat complete the pleiotropic protective properties of this new therapeutic target.
Collapse
Affiliation(s)
- Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC), and Department of Medicine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, B1.53.09, 52 avenue Mounier, 1200 Brussels, Belgium
| |
Collapse
|
46
|
Michel MC, Gravas S. Safety and tolerability of β3-adrenoceptor agonists in the treatment of overactive bladder syndrome - insight from transcriptosome and experimental studies. Expert Opin Drug Saf 2016; 15:647-57. [PMID: 26954275 DOI: 10.1517/14740338.2016.1160055] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION We have reviewed the safety and tolerability of β3-adrenoceptor agonists, specifically mirabegron and solabegron, a newly emerging drug class for the treatment of the overactive bladder syndrome. We discuss them mechanistically in the context of expression and other preclinical data. AREAS COVERED Based on a systematic PubMed search, incidence of overall adverse events, hypertension, dry mouth, and constipation are comparable between mirabegron or solabegron and placebo. Hypertension is the most frequently observed adverse event, but has a similar incidence with mirabegron and placebo. Nevertheless, severe uncontrolled hypertension has become a contraindication for use of mirabegron based on observation of severe hypertension in association with mirabegron exposure. The overall incidence of adverse events is also similar between mirabegron and the muscarinic receptor antagonist tolterodine, but the incidence of dry mouth is much lower with mirabegron. EXPERT OPINION The high β3-adrenoceptor mRNA expression in the human ovaries is not associated with reproductive side effects. Generally, β3-adrenoceptors exhibit a rather restricted expression in human tissues, which may explain the overall good tolerability of agonists acting on this receptor. We propose that expression profiles and functional preclinical studies can be important tools in the prediction of adverse event profiles in first-in-class drugs.
Collapse
Affiliation(s)
- Martin C Michel
- a Department of Pharmacology , Johannes Gutenberg University , Mainz , Germany
| | - Stavros Gravas
- b Department of Urology, Faculty of Medicine , School of Health Sciences, University of Thessaly , Larissa , Greece
| |
Collapse
|
47
|
Karimi Galougahi K, Liu CC, Garcia A, Gentile C, Fry NA, Hamilton EJ, Hawkins CL, Figtree GA. β3 Adrenergic Stimulation Restores Nitric Oxide/Redox Balance and Enhances Endothelial Function in Hyperglycemia. J Am Heart Assoc 2016; 5:e002824. [PMID: 26896479 PMCID: PMC4802476 DOI: 10.1161/jaha.115.002824] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/07/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Perturbed balance between NO and O2 (•-). (ie, NO/redox imbalance) is central in the pathobiology of diabetes-induced vascular dysfunction. We examined whether stimulation of β3 adrenergic receptors (β3 ARs), coupled to endothelial nitric oxide synthase (eNOS) activation, would re-establish NO/redox balance, relieve oxidative inhibition of the membrane proteins eNOS and Na(+)-K(+) (NK) pump, and improve vascular function in a new animal model of hyperglycemia. METHODS AND RESULTS We established hyperglycemia in male White New Zealand rabbits by infusion of S961, a competitive high-affinity peptide inhibitor of the insulin receptor. Hyperglycemia impaired endothelium-dependent vasorelaxation by "uncoupling" of eNOS via glutathionylation (eNOS-GSS) that was dependent on NADPH oxidase activity. Accordingly, NO levels were lower while O2 (•-) levels were higher in hyperglycemic rabbits. Infusion of the β3 AR agonist CL316243 (CL) decreased eNOS-GSS, reduced O2 (•-), restored NO levels, and improved endothelium-dependent relaxation. CL decreased hyperglycemia-induced NADPH oxidase activation as suggested by co-immunoprecipitation experiments, and it increased eNOS co-immunoprecipitation with glutaredoxin-1, which may reflect promotion of eNOS de-glutathionylation by CL. Moreover, CL reversed hyperglycemia-induced glutathionylation of the β1 NK pump subunit that causes NK pump inhibition, and improved K(+)-induced vasorelaxation that reflects enhancement in NK pump activity. Lastly, eNOS-GSS was higher in vessels of diabetic patients and was reduced by CL, suggesting potential significance of the experimental findings in human diabetes. CONCLUSIONS β3 AR activation restored NO/redox balance and improved endothelial function in hyperglycemia. β3 AR agonists may confer protection against diabetes-induced vascular dysfunction.
Collapse
MESH Headings
- Adrenergic beta-3 Receptor Agonists/pharmacology
- Animals
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/physiopathology
- Diabetic Angiopathies/chemically induced
- Diabetic Angiopathies/enzymology
- Diabetic Angiopathies/physiopathology
- Diabetic Angiopathies/prevention & control
- Dioxoles/pharmacology
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/physiopathology
- Enzyme Activation
- Glutathione/metabolism
- Hyperglycemia/chemically induced
- Hyperglycemia/drug therapy
- Hyperglycemia/enzymology
- Hyperglycemia/physiopathology
- Hypoglycemic Agents/pharmacology
- Male
- NADPH Oxidases/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Oxidation-Reduction
- Oxidative Stress/drug effects
- Peptides
- Rabbits
- Receptors, Adrenergic, beta-3/drug effects
- Receptors, Adrenergic, beta-3/metabolism
- Signal Transduction/drug effects
- Sodium-Potassium-Exchanging ATPase/metabolism
- Superoxides/metabolism
- Time Factors
Collapse
Affiliation(s)
- Keyvan Karimi Galougahi
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia University of Sydney Medical School Foundation, Sydney, Australia Columbia University Medical Center, New York, NY
| | - Chia-Chi Liu
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia
| | - Alvaro Garcia
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia
| | - Carmine Gentile
- School of Medicine, University of Sydney, Australia Heart Research Institute, Sydney, Australia
| | - Natasha A Fry
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia
| | - Elisha J Hamilton
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia
| | | | - Gemma A Figtree
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia Department of Cardiology, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
48
|
Karimi Galougahi K, Liu CC, Garcia A, Fry NA, Hamilton EJ, Figtree GA, Rasmussen HH. β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade. Am J Physiol Cell Physiol 2015; 309:C286-95. [PMID: 26063704 PMCID: PMC4556897 DOI: 10.1152/ajpcell.00071.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/09/2015] [Indexed: 01/20/2023]
Abstract
Dysregulated nitric oxide (NO)- and superoxide (O2 (·-))-dependent signaling contributes to the pathobiology of diabetes-induced cardiovascular complications. We examined if stimulation of β3-adrenergic receptors (β3-ARs), coupled to endothelial NO synthase (eNOS) activation, relieves oxidative inhibition of eNOS and the Na(+)-K(+) pump induced by hyperglycemia. Hyperglycemia was established in male New Zealand White rabbits by infusion of the insulin receptor antagonist S961 for 7 days. Hyperglycemia increased tissue and blood indexes of oxidative stress. It induced glutathionylation of the Na(+)-K(+) pump β1-subunit in cardiac myocytes, an oxidative modification causing pump inhibition, and reduced the electrogenic pump current in voltage-clamped myocytes. Hyperglycemia also increased glutathionylation of eNOS, which causes its uncoupling, and increased coimmunoprecipitation of cytosolic p47(phox) and membranous p22(phox) NADPH oxidase subunits, consistent with NADPH oxidase activation. Blocking translocation of p47(phox) to p22(phox) with the gp91ds-tat peptide in cardiac myocytes ex vivo abolished the hyperglycemia-induced increase in glutathionylation of the Na(+)-K(+) pump β1-subunit and decrease in pump current. In vivo treatment with the β3-AR agonist CL316243 for 3 days eliminated the increase in indexes of oxidative stress, decreased coimmunoprecipitation of p22(phox) with p47(phox), abolished the hyperglycemia-induced increase in glutathionylation of eNOS and the Na(+)-K(+) pump β1-subunit, and abolished the decrease in pump current. CL316243 also increased coimmunoprecipitation of glutaredoxin-1 with the Na(+)-K(+) pump β1-subunit, which may reflect facilitation of deglutathionylation. In vivo β3-AR activation relieves oxidative inhibition of key cardiac myocyte proteins in hyperglycemia and may be effective in targeting the deleterious cardiac effects of diabetes.
Collapse
Affiliation(s)
- Keyvan Karimi Galougahi
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and Department of Cardiology, Royal North Shore Hospital, Sydney, Australia
| | - Chia-Chi Liu
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and
| | - Alvaro Garcia
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and
| | - Natasha A Fry
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and
| | - Elisha J Hamilton
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and
| | - Gemma A Figtree
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and Department of Cardiology, Royal North Shore Hospital, Sydney, Australia
| | - Helge H Rasmussen
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and Department of Cardiology, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
49
|
Chia KKM, Liu CC, Hamilton EJ, Garcia A, Fry NA, Hannam W, Figtree GA, Rasmussen HH. Stimulation of the cardiac myocyte Na+-K+ pump due to reversal of its constitutive oxidative inhibition. Am J Physiol Cell Physiol 2015; 309:C239-50. [PMID: 26084308 DOI: 10.1152/ajpcell.00392.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 06/09/2015] [Indexed: 11/22/2022]
Abstract
Protein kinase C can activate NADPH oxidase and induce glutathionylation of the β1-Na(+)-K(+) pump subunit, inhibiting activity of the catalytic α-subunit. To examine if signaling of nitric oxide-induced soluble guanylyl cyclase (sGC)/cGMP/protein kinase G can cause Na(+)-K(+) pump stimulation by counteracting PKC/NADPH oxidase-dependent inhibition, cardiac myocytes were exposed to ANG II to activate NADPH oxidase and inhibit Na(+)-K(+) pump current (Ip). Coexposure to 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) to stimulate sGC prevented the decrease of Ip. Prevention of the decrease was abolished by inhibition of protein phosphatases (PP) 2A but not by inhibition of PP1, and it was reproduced by an activator of PP2A. Consistent with a reciprocal relationship between β1-Na(+)-K(+) pump subunit glutathionylation and pump activity, YC-1 decreased ANG II-induced β1-subunit glutathionylation. The decrease induced by YC-1 was abolished by a PP2A inhibitor. YC-1 decreased phosphorylation of the cytosolic p47(phox) NADPH oxidase subunit and its coimmunoprecipitation with the membranous p22(phox) subunit, and it decreased O2 (·-)-sensitive dihydroethidium fluorescence of myocytes. Addition of recombinant PP2A to myocyte lysate decreased phosphorylation of p47(phox) indicating the subunit could be a substrate for PP2A. The effects of YC-1 to decrease coimmunoprecipitation of p22(phox) and p47(phox) NADPH oxidase subunits and decrease β1-Na(+)-K(+) pump subunit glutathionylation were reproduced by activation of nitric oxide-dependent receptor signaling. We conclude that sGC activation in cardiac myocytes causes a PP2A-dependent decrease in NADPH oxidase activity and a decrease in β1 pump subunit glutathionylation. This could account for pump stimulation with neurohormonal oxidative stress expected in vivo.
Collapse
Affiliation(s)
- Karin K M Chia
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Sydney, Australia; Royal Brisbane and Women's Hospital, The University of Queensland, Queensland, Australia; and
| | - Chia-Chi Liu
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Sydney, Australia
| | - Elisha J Hamilton
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Sydney, Australia
| | - Alvaro Garcia
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Sydney, Australia
| | - Natasha A Fry
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Sydney, Australia
| | - William Hannam
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Sydney, Australia
| | - Gemma A Figtree
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Sydney, Australia; Department of Cardiology, Royal North Shore Hospital, St. Leonards, Australia
| | - Helge H Rasmussen
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Sydney, Australia; Department of Cardiology, Royal North Shore Hospital, St. Leonards, Australia
| |
Collapse
|
50
|
Imbrogno S, Gattuso A, Mazza R, Angelone T, Cerra MC. β3 -AR and the vertebrate heart: a comparative view. Acta Physiol (Oxf) 2015; 214:158-75. [PMID: 25809182 DOI: 10.1111/apha.12493] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/04/2014] [Accepted: 03/16/2015] [Indexed: 01/13/2023]
Abstract
Recent cardiovascular research showed that, together with β1- and β2-adrenergic receptors (ARs), β3-ARs contribute to the catecholamine (CA)-dependent control of the heart. β3-ARs structure, function and ligands were investigated in mammals because of their applicative potential in human cardiovascular diseases. Only recently, the concept of a β3-AR-dependent cardiac modulation was extended to non-mammalian vertebrates, although information is still scarce and fragmentary. β3-ARs were structurally described in fish, showing a closer relationship to mammalian β1-AR than β2-AR. Functional β3-ARs are present in the cardiac tissue of teleosts and amphibians. As in mammals, activation of these receptors elicits a negative modulation of the inotropic performance through the involvement of the endothelium endocardium (EE), Gi/0 proteins and the nitric oxide (NO) signalling. This review aims to comparatively analyse data from literature on β3-ARs in mammals, with those on teleosts and amphibians. The purpose is to highlight aspects of uniformity and diversity of β3-ARs structure, ligands activity, function and signalling cascades throughout vertebrates. This may provide new perspectives aimed to clarify the biological relevance of β3-ARs in the context of the nervous and humoral control of the heart and its functional plasticity.
Collapse
Affiliation(s)
- S. Imbrogno
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Arcavacata di Rende Italy
| | - A. Gattuso
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Arcavacata di Rende Italy
| | - R. Mazza
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Arcavacata di Rende Italy
| | - T. Angelone
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Arcavacata di Rende Italy
- National Institute of Cardiovascular Research; Bologna Italy
| | - M. C. Cerra
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Arcavacata di Rende Italy
- National Institute of Cardiovascular Research; Bologna Italy
| |
Collapse
|