1
|
Rahman S, Gamboa A, Saleem M, Kulapatana S, Diedrich A, Biaggioni I, Kirabo A, Shibao CA. Complete autonomic blockade reveals nitric oxide contribution to blood pressure regulation in obese Black women. Clin Auton Res 2024; 34:427-436. [PMID: 39090323 PMCID: PMC11362192 DOI: 10.1007/s10286-024-01050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE Hypertension is one of the major causes of cardiovascular morbidity and mortality in the USA and disproportionately affects Black women. Endothelial-derived nitric oxide (eNO) substantially regulates blood pressure in humans, and impaired NO-mediated vasodilation has been reported in the Black population. Previous studies using an NO synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA) did not fully determine the NO contribution to blood pressure because of baroreflex buffering. Therefore, in the present study we used trimethaphan, a ganglionic blocker, to inhibit baroreflex buffering and study NO modulation of blood pressure in Black women during L-NMMA infusion. METHODS L-NMMA at doses of 250 μg/kg per minute was infused in combination with trimethaphan at doses of 4 mg/min to eliminate baroreflex mechanisms. Heart rate (HR) was obtained with continuous electrocardiogram monitoring, and continuous blood pressure was measured with the volume clamp method. The increase in systolic blood pressure (SBP) during both infusions was used to estimate the contribution of NO to blood pressure. RESULTS Ten Black (age range 30-50 years, body mass index [BMI] 30-45 kg/m2), and nine White women (age range 30-50 years, body mass index 30-45 kg/m2) were enrolled in this study. During autonomic blockade, there was no difference in the decrease in SBP between Black and White women (- 20 ± 16.45 vs. - 24 ± 15.49 mm Hg, respectively; P = 0.659). When autonomic blockade was combined with L-NMMA, Black women had a significant increase in SBP compared to White women (54 ± 13.62 vs. 39 ± 09.64 mm Hg, respectively; P = 0.022, respectively). CONCLUSION Autonomic blood pressure regulation was similar between Black and White women. However, NO contribution to blood pressure was significantly greater in Black women compared to White women. REGISTRATION ClinicalTrials.gov: NCT01122407.
Collapse
Affiliation(s)
- Sharla Rahman
- Department of Medicine, Epidemiology, Vanderbilt University School of Medicine, Nashville, TN, 37212-8802, USA
| | - Alfredo Gamboa
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37212-8802, USA
| | - Mohammad Saleem
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37212-8802, USA
| | - Surat Kulapatana
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37212-8802, USA
- Department of Physiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - André Diedrich
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37212-8802, USA
| | - Italo Biaggioni
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37212-8802, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, P415C Medical Research Building IV, 2215 Garland Avenue, Nashville, TN, 37232, USA.
| | - Cyndya A Shibao
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37212-8802, USA.
| |
Collapse
|
2
|
Wong BJ, Turner CG, Hayat MJ, Otis JS, Quyyumi AA. Inhibition of superoxide and iNOS augment cutaneous nitric oxide-dependent vasodilation in non-Hispanic black young adults. Physiol Rep 2024; 12:e16021. [PMID: 38639714 PMCID: PMC11027894 DOI: 10.14814/phy2.16021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
We assessed the combined effect of superoxide and iNOS inhibition on microvascular function in non-Hispanic Black and non-Hispanic White participants (n = 15 per group). Participants were instrumented with four microdialysis fibers: (1) lactated Ringer's (control), (2) 10 μM tempol (superoxide inhibition), (3) 0.1 mM 1400 W (iNOS inhibition), (4) tempol + 1400 W. Cutaneous vasodilation was induced via local heating and NO-dependent vasodilation was quantified. At control sites, NO-dependent vasodilation was lower in non-Hispanic Black (45 ± 9% NO) relative to non-Hispanic White (79 ± 9% NO; p < 0.01; effect size, d = 3.78) participants. Tempol (62 ± 16% NO), 1400 W (78 ± 12% NO) and tempol +1400 W (80 ± 13% NO) increased NO-dependent vasodilation in non-Hispanic Black participants relative to control sites (all p < 0.01; d = 1.22, 3.05, 3.03, respectively). The effect of 1400 W (p = 0.04, d = 1.11) and tempol +1400 W (p = 0.03, d = 1.22) was greater than tempol in non-Hispanic Black participants. There was no difference between non-Hispanic Black and non-Hispanic White participants at 1400 W or tempol + 1400 W sites. These data suggest iNOS has a greater effect on NO-dependent vasodilation than superoxide in non-Hispanic Black participants.
Collapse
Affiliation(s)
- Brett J. Wong
- Department of Kinesiology & HealthGeorgia State UniversityAtlantaGeorgiaUSA
| | - Casey G. Turner
- Department of Kinesiology & HealthGeorgia State UniversityAtlantaGeorgiaUSA
- Molecular Cardiology Research InstituteTufts Medical CenterBostonMassachusettsUSA
| | - Matthew J. Hayat
- Department of Population Health Sciences, School of Public HealthGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jeffrey S. Otis
- Department of Kinesiology & HealthGeorgia State UniversityAtlantaGeorgiaUSA
| | - Arshed A. Quyyumi
- Emory Clinical Cardiology Research InstituteEmory University School of MedicineAtlantaGeorgiaUSA
| |
Collapse
|
3
|
Bokayeva K, Jamka M, Banaszak M, Makarewicz-Bukowska A, Adamczak A, Chrobot M, Janicka A, Jaworska N, Walkowiak J. The Effect of Folic Acid Supplementation on Endothelial Function and Arterial Stiffness Markers in Adults: A Systematic Review and Meta-Analysis. Healthcare (Basel) 2023; 11:2524. [PMID: 37761721 PMCID: PMC10531078 DOI: 10.3390/healthcare11182524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Folic acid might improve endothelial function, but the results are inconclusive. This systematic review evaluated the effect of folic acid supplementation on endothelial parameters and arterial stiffness in adults. The study protocol was registered with the PROSPERO database (CRD42021290195). The PubMed, Web of Sciences, Cochrane and Scopus databases were searched to identify English-language randomised controlled trials of the effect of folate supplementation on arterial stiffness and endothelial function markers in adults. There were significant differences between the effect of folic acid and placebo on flow-mediated dilation (random-effects model, standardized mean differences (SMD): 0.888, 95% confidence interval (CI): 0.447, 1.329, p < 0.001) and monocyte chemotactic protein 1 (random-effects model, SMD: -1.364, 95% CI: -2.164, -0.563, p < 0.001), but there was no significant difference in the central pulse wave velocity (fixed-effects model, SMD: -0.069, 95% CI: -0.264, 0.125, p = 0.485) and peripheral pulse wave velocity (fixed-effects model, SMD: -0.093, 95% CI: -0.263, 0.077, p = 0.284). In conclusion, folic acid might have a favourable effect on endothelial function but may not affect arterial stiffness. Further studies are needed to confirm these results.
Collapse
Affiliation(s)
- Kamila Bokayeva
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (K.B.); (M.J.); (A.M.-B.); (A.A.); (M.C.); (A.J.); (N.J.)
| | - Małgorzata Jamka
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (K.B.); (M.J.); (A.M.-B.); (A.A.); (M.C.); (A.J.); (N.J.)
| | - Michalina Banaszak
- Department of Bromatology, Poznan University of Medical Sciences, Rokietnicka Str. 3, 60-806 Poznań, Poland;
| | - Aleksandra Makarewicz-Bukowska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (K.B.); (M.J.); (A.M.-B.); (A.A.); (M.C.); (A.J.); (N.J.)
| | - Ada Adamczak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (K.B.); (M.J.); (A.M.-B.); (A.A.); (M.C.); (A.J.); (N.J.)
| | - Maria Chrobot
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (K.B.); (M.J.); (A.M.-B.); (A.A.); (M.C.); (A.J.); (N.J.)
| | - Adrianna Janicka
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (K.B.); (M.J.); (A.M.-B.); (A.A.); (M.C.); (A.J.); (N.J.)
| | - Natalia Jaworska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (K.B.); (M.J.); (A.M.-B.); (A.A.); (M.C.); (A.J.); (N.J.)
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (K.B.); (M.J.); (A.M.-B.); (A.A.); (M.C.); (A.J.); (N.J.)
| |
Collapse
|
4
|
Abstract
Hypertension is associated with important alterations in the morphology of small arteries and arterioles. Vascular-specific manifestations are changes in the structure and function of vascular smooth muscle cells, extracellular matrix, perivascular tissues, and endothelial cells. Arteriole and capillary remodeling and capillary rarefaction have been observed in hypertensive animals and human beings which contribute to increased vascular resistance. An impairment of different angiogenetic factors, such as VEGF (vascular endothelial growth factor), VEGFR-2 (vascular endothelial growth factor receptor-2), TIMP-1 (tissue inhibitor matrix metalloproteinases-1), and TSP-1 (thrombospondin-1), seems to be responsible for the reduction of the microvascular network. Exercise training has been shown to improve vascular structure and function in hypertension not only in the large arteries but also in the peripheral circulation. Exercise training may regress microvascular remodeling and normalize capillary density, leading to capillary growth possibly by increasing proangiogenic stimuli such as VEGF. Exercise enhances endothelium-dependent vascular relaxation through nitric oxide release increase and oxidative stress reduction. Other mechanisms include improved balance between prostacyclin and thromboxane levels, lower circulating levels of endothelin-1, attenuation of infiltration of immune cells into perivascular adipose tissue, and increase of local adiponectin secretion. In addition, exercise training favorably modulates the expression of several microRNAs leading to a positive modification in muscle fiber composition. Identifying the bioactive molecules and biological mechanisms that mediate exercise benefits through pathways that differ from those used by antihypertensive drugs may help to improve our knowledge of hypertension pathophysiology and facilitate the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Carolina De Ciuceis
- Department of Clinical and Experimental Sciences, University of Brescia, Italy (C.D.C., D.R.)
| | - Damiano Rizzoni
- Department of Clinical and Experimental Sciences, University of Brescia, Italy (C.D.C., D.R.).,Division of Medicine, Spedali Civili di Brescia, Montichiari, Brescia, Italy (D.R.)
| | - Paolo Palatini
- Department of Medicine, University of Padova, Padua, Italy (P.P.)
| |
Collapse
|
5
|
Ivnitsky JJ, Schäfer TV, Rejniuk VL, Golovko AI. Endogenous humoral determinants of vascular endothelial dysfunction as triggers of acute poisoning complications. J Appl Toxicol 2023; 43:47-65. [PMID: 35258106 DOI: 10.1002/jat.4312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/13/2022] [Accepted: 02/26/2022] [Indexed: 12/16/2022]
Abstract
The vascular endothelium is not only the semipermeable membrane that separates tissue from blood but also an organ that regulates inflammation, vascular tone, blood clotting, angiogenesis and synthesis of connective tissue proteins. It is susceptible to the direct cytotoxic action of numerous xenobiotics and to the acute hypoxia that accompanies acute poisoning. This damage is superimposed on the preformed state of the vascular endothelium, which, in turn, depends on many humoral factors. The probability that an exogenous toxicant will cause life-threatening dysfunction of the vascular endothelium, thereby complicating the course of acute poisoning, increases with an increase in the content of endogenous substances in the blood that disrupt endothelial function. These include ammonia, bacterial endotoxin, indoxyl sulfate, para-cresyl sulfate, trimethylamine N-oxide, asymmetric dimethylarginine, glucose, homocysteine, low-density and very-low-density lipoproteins, free fatty acids and products of intravascular haemolysis. Some other endogenous substances (albumin, haptoglobin, haemopexin, biliverdin, bilirubin, tetrahydrobiopterin) or food-derived compounds (ascorbic acid, rutin, omega-3 polyunsaturated fatty acids, etc.) reduce the risk of lethal vascular endothelial dysfunction. The individual variability of the content of these substances in the blood contributes to the stochasticity of the complications of acute poisoning and is a promising target for the risk reduction measures. Another feasible option may be the repositioning of drugs that affect the function of the vascular endothelium while being currently used for other indications.
Collapse
Affiliation(s)
- Jury Ju Ivnitsky
- Golikov Research Clinical Center of Toxicology under the Federal Medical Biological Agency, Saint Petersburg, Russia
| | - Timur V Schäfer
- State Scientific Research Test Institute of the Military Medicine of Defense Ministry of the Russian Federation, Saint Petersburg, Russia
| | - Vladimir L Rejniuk
- Golikov Research Clinical Center of Toxicology under the Federal Medical Biological Agency, Saint Petersburg, Russia
| | - Alexandr I Golovko
- Golikov Research Clinical Center of Toxicology under the Federal Medical Biological Agency, Saint Petersburg, Russia
| |
Collapse
|
6
|
Astley C, Houacine C, Zaabalawi A, Wilkinson F, Lightfoot AP, Alexander Y, Whitehead D, Singh KK, Azzawi M. Nanostructured Lipid Carriers Deliver Resveratrol, Restoring Attenuated Dilation in Small Coronary Arteries, via the AMPK Pathway. Biomedicines 2021; 9:biomedicines9121852. [PMID: 34944670 PMCID: PMC8699041 DOI: 10.3390/biomedicines9121852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/21/2022] Open
Abstract
Nanostructured lipid carriers (NLCs) are an emerging drug delivery platform for improved drug stability and the bioavailability of antihypertensive drugs and vasoprotective nutraceutical compounds, such as resveratrol (RV). The objective of this study was to ascertain NLCs’ potential to deliver RV and restore attenuated dilator function, using an ex vivo model of acute hypertension. Trimyristin–triolein NLCs were synthesized and loaded with RV. The uptake of RV-NLCs by human coronary artery endothelial cells (HCAECs) maintained their viability and reduced both mitochondrial and cytosolic superoxide levels. Acute pressure elevation in isolated coronary arteries significantly attenuated endothelial-dependent dilator responses, which were reversed following incubation in RV-NLCs, superoxide dismutase or apocynin (p < 0.0001). RV-NLCs demonstrated a five-fold increase in potency in comparison to RV solution. At elevated pressure, in the presence of RV-NLCs, incubation with Nω-nitro-l-arginine (L-NNA) or indomethacin resulted in a significant reduction in the restored dilator component (p < 0.0001), whereas apamin and TRAM-34 had no overall effect. Incubation with the adenosine monophosphate-activated protein kinase (AMPK) inhibitor dorsomorphin significantly attenuated dilator responses (p < 0.001), whereas the SIRT-1 inhibitor EX-527 had no effect. RV-NLCs improved the impaired endothelial-dependent dilation of small coronary arteries, following acute pressure elevation, via NO and downstream COX elements, mediated by AMPK. We suggest that RV-NLCs are an effective delivery modality for improved potency and sustained drug release into the vasculature. Our findings have important implications for the future design and implementation of antihypertensive treatment strategies.
Collapse
Affiliation(s)
- Cai Astley
- Centre for Bioscience, Department of Life Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (C.A.); (A.Z.); (F.W.); (A.P.L.); (Y.A.)
| | - Chahinez Houacine
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Azziza Zaabalawi
- Centre for Bioscience, Department of Life Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (C.A.); (A.Z.); (F.W.); (A.P.L.); (Y.A.)
| | - Fiona Wilkinson
- Centre for Bioscience, Department of Life Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (C.A.); (A.Z.); (F.W.); (A.P.L.); (Y.A.)
| | - Adam P. Lightfoot
- Centre for Bioscience, Department of Life Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (C.A.); (A.Z.); (F.W.); (A.P.L.); (Y.A.)
| | - Yvonne Alexander
- Centre for Bioscience, Department of Life Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (C.A.); (A.Z.); (F.W.); (A.P.L.); (Y.A.)
| | - Debra Whitehead
- Department of Natural Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK;
| | - Kamalinder K. Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
- Correspondence: (K.K.S.); (M.A.)
| | - May Azzawi
- Centre for Bioscience, Department of Life Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (C.A.); (A.Z.); (F.W.); (A.P.L.); (Y.A.)
- Correspondence: (K.K.S.); (M.A.)
| |
Collapse
|
7
|
The Potential Role of Creatine in Vascular Health. Nutrients 2021; 13:nu13030857. [PMID: 33807747 PMCID: PMC7999364 DOI: 10.3390/nu13030857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Creatine is an organic compound, consumed exogenously in the diet and synthesized endogenously via an intricate inter-organ process. Functioning in conjunction with creatine kinase, creatine has long been known for its pivotal role in cellular energy provision and energy shuttling. In addition to the abundance of evidence supporting the ergogenic benefits of creatine supplementation, recent evidence suggests a far broader application for creatine within various myopathies, neurodegenerative diseases, and other pathologies. Furthermore, creatine has been found to exhibit non-energy related properties, contributing as a possible direct and in-direct antioxidant and eliciting anti-inflammatory effects. In spite of the new clinical success of supplemental creatine, there is little scientific insight into the potential effects of creatine on cardiovascular disease (CVD), the leading cause of mortality. Taking into consideration the non-energy related actions of creatine, highlighted in this review, it can be speculated that creatine supplementation may serve as an adjuvant therapy for the management of vascular health in at-risk populations. This review, therefore, not only aims to summarize the current literature surrounding creatine and vascular health, but to also shed light onto the potential mechanisms in which creatine may be able to serve as a beneficial supplement capable of imparting vascular-protective properties and promoting vascular health.
Collapse
|
8
|
Petterson JL, O'Brien MW, Johns JA, Chiasson J, Kimmerly DS. Influence of prostaglandins and endothelial-derived hyperpolarizing factors on brachial and popliteal endothelial-dependent function in young adults. J Appl Physiol (1985) 2021; 130:17-25. [PMID: 33119467 DOI: 10.1152/japplphysiol.00698.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Heterogeneous flow-mediated dilation (FMD) and low-flow-mediated constriction (L-FMC) responses have been reported between upper- and lower-limb arteries. Radial artery L-FMC, but not FMD, responses are blunted when endothelial-derived hyperpolarizing factors (EDHFs) or prostaglandin production is inhibited in young adults. However, it is unknown if these mechanisms similarly impact endothelial-dependent responses in the brachial (BA) and popliteal (POP) arteries. We tested whether BA- and POP-L-FMC and FMD would be influenced by independent EDHF and prostaglandin inhibition. Eighteen participants (23 ± 3 yr; 6♀) completed three randomized and double-blinded ultrasound assessments following ingestion of an opaque capsule containing maltodextrin (control), 150 mg of fluconazole (EDHF inhibition), or 500 mg of aspirin (prostaglandin inhibition). POP resting diameter was reduced following fluconazole administration (6.13 ± 0.63 mm vs. 6.19 ± 0.65 mm in control, P = 0.03). Compared with control, fluconazole also blunted the relative L-FMC responses in both the BA (-2.1 ± 0.8% vs. -0.8 ± 1.0%, P = 0.001) and POP (-1.7 ± 1.1% vs. -0.8 ± 0.9%, P = 0.009). In contrast, aspirin did not impact either the BA (-1.9 ± 0.7%) or POP-L-FMC (-1.3 ± 0.6%) responses (both, P > 0.35). The FMD response was unchanged following fluconazole or aspirin administration in either artery (both, P > 0.36). Our findings demonstrate that EDHF mediates L-FMC responses in both the brachial and popliteal arteries. Complementary to the nitric oxide-mediated FMD response, L-FMC appears to provide information regarding the EDHF pathway. Future research should uncover if these mechanisms impact older adults and/or patient populations characterized by vascular endothelial dysfunction associated with low aerobic fitness and habitual physical activity levels.NEW & NOTEWORTHY We compared changes in upper- and lower-limb artery endothelial-dependent vasodilatory and vasoconstrictor responses between control, prostaglandin inhibition, and endothelial-derived hyperpolarizing factor inhibition conditions. Neither prostaglandins nor endothelial-derived hyperpolarizing factor influenced flow-mediated dilation responses in either the brachial or popliteal artery. In contrast, endothelial-derived hyperpolarizing factor, but not prostaglandins, reduced resting brachial artery blood flow and shear rate and resting popliteal artery diameter, as well as low-flow-mediated constriction responses in both the popliteal and brachial arteries.
Collapse
Affiliation(s)
- Jennifer L Petterson
- Division of Kinesiology, Faculty of Health, School of Health and Human Performance, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Myles W O'Brien
- Division of Kinesiology, Faculty of Health, School of Health and Human Performance, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jarrett A Johns
- Division of Kinesiology, Faculty of Health, School of Health and Human Performance, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jack Chiasson
- Division of Kinesiology, Faculty of Health, School of Health and Human Performance, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Derek S Kimmerly
- Division of Kinesiology, Faculty of Health, School of Health and Human Performance, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
9
|
Trinity JD, Kwon OS, Broxterman RM, Gifford JR, Kithas AC, Hydren JR, Jarrett CL, Shields KL, Bisconti AV, Park SH, Craig JC, Nelson AD, Morgan DE, Jessop JE, Bledsoe AD, Richardson RS. The role of the endothelium in the hyperemic response to passive leg movement: looking beyond nitric oxide. Am J Physiol Heart Circ Physiol 2020; 320:H668-H678. [PMID: 33306447 DOI: 10.1152/ajpheart.00784.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Passive leg movement (PLM) evokes a robust and predominantly nitric oxide (NO)-mediated increase in blood flow that declines with age and disease. Consequently, PLM is becoming increasingly accepted as a sensitive assessment of endothelium-mediated vascular function. However, a substantial PLM-induced hyperemic response is still evoked despite nitric oxide synthase (NOS) inhibition. Therefore, in nine young healthy men (25 ± 4 yr), this investigation aimed to determine whether the combination of two potent endothelium-dependent vasodilators, specifically prostaglandin (PG) and endothelium-derived hyperpolarizing factor (EDHF), account for the remaining hyperemic response to the two variants of PLM, PLM (60 movements) and single PLM (sPLM, 1 movement), when NOS is inhibited. The leg blood flow (LBF, Doppler ultrasound) response to PLM and sPLM following the intra-arterial infusion of NG-monomethyl-l-arginine (l-NMMA), to inhibit NOS, was compared to the combined inhibition of NOS, cyclooxygenase (COX), and cytochrome P-450 (CYP450) by l-NMMA, ketorolac tromethamine (KET), and fluconazole (FLUC), respectively. NOS inhibition attenuated the overall LBF [area under the curve (LBFAUC)] response to both PLM (control: 456 ± 194, l-NMMA: 168 ± 127 mL, P < 0.01) and sPLM (control: 185 ± 171, l-NMMA: 62 ± 31 mL, P = 0.03). The combined inhibition of NOS, COX, and CYP450 (i.e., l-NMMA+KET+FLUC) did not further attenuate the hyperemic responses to PLM (LBFAUC: 271 ± 97 mL, P > 0.05) or sPLM (LBFAUC: 72 ± 45 mL, P > 0.05). Therefore, PG and EDHF do not collectively contribute to the non-NOS-derived NO-mediated, endothelium-dependent hyperemic response to either PLM or sPLM in healthy young men. These findings add to the mounting evidence and understanding of the vasodilatory pathways assessed by the PLM and sPLM vascular function tests.NEW & NOTEWORTHY Passive leg movement (PLM) evokes a highly nitric oxide (NO)-mediated hyperemic response and may provide a novel evaluation of vascular function. The contributions of endothelium-dependent vasodilatory pathways, beyond NO and including prostaglandins and endothelium-derived hyperpolarizing factor, to the PLM-induced hyperemic response to PLM have not been evaluated. With intra-arterial drug infusion, the combined inhibition of nitric oxide synthase (NOS), cyclooxygenase, and cytochrome P-450 (CYP450) pathways did not further diminish the hyperemic response to PLM compared with NOS inhibition alone.
Collapse
Affiliation(s)
- Joel D Trinity
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Oh Sung Kwon
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Ryan M Broxterman
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Jayson R Gifford
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Exercise Science, Brigham Young University, Provo, Utah
| | - Andrew C Kithas
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Jay R Hydren
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Catherine L Jarrett
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Katherine L Shields
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Angela V Bisconti
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Soung Hun Park
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Jesse C Craig
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Ashley D Nelson
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - David E Morgan
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah
| | - Jacob E Jessop
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah
| | - Amber D Bledsoe
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
10
|
Godo S, Shimokawa H. Gender Differences in Endothelial Function and Coronary Vasomotion Abnormalities. GENDER AND THE GENOME 2020. [DOI: 10.1177/2470289720957012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Introduction: Structural and functional abnormalities of coronary microvasculature, referred to as coronary microvascular dysfunction (CMD), have been implicated in a wide range of cardiovascular diseases and have gained growing attention in patients with chest pain with no obstructive coronary artery disease, especially in females. The central mechanisms of coronary vasomotion abnormalities encompass enhanced coronary vasoconstrictive reactivity (ie, coronary spasm), reduced endothelium-dependent and -independent coronary vasodilator capacities, and increased coronary microvascular resistance. The 2 major endothelium-derived relaxing factors, nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) factors, modulate vascular tone in a distinct vessel size–dependent manner; NO mainly mediates vasodilatation of relatively large, conduit vessels, while EDH factors in small resistance vessels. Endothelium-dependent hyperpolarization–mediated vasodilatation is more prominent in female resistance arteries, where estrogens exert beneficial effects on endothelium-dependent vasodilatation via multiple mechanisms. In the clinical settings, therapeutic approaches targeting NO are disappointing for the treatment of various cardiovascular diseases, where endothelial dysfunction and CMD are substantially involved. Significance: In this review, we will discuss the current knowledge on the pathophysiology and molecular mechanisms of endothelial function and coronary vasomotion abnormalities from bench to bedside, with a special reference to gender differences. Results: Recent experimental and clinical studies have demonstrated distinct gender differences in endothelial function and coronary vasomotion abnormalities with major clinical implications. Moreover, recent landmark clinical trials regarding the management of stable coronary artery disease have questioned the benefit of percutaneous coronary intervention, supporting the importance of the coronary microvascular physiology. Conclusion: Further characterization and a better understanding of the gender differences in basic vascular biology as well as those in cardiovascular diseases are indispensable to improve health care and patient outcomes in cardiovascular medicine.
Collapse
Affiliation(s)
- Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
11
|
Shabbir A, Rathod KS, Khambata RS, Ahluwalia A. Sex Differences in the Inflammatory Response: Pharmacological Opportunities for Therapeutics for Coronary Artery Disease. Annu Rev Pharmacol Toxicol 2020; 61:333-359. [PMID: 33035428 DOI: 10.1146/annurev-pharmtox-010919-023229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Coordinated molecular responses are key to effective initiation and resolution of both acute and chronic inflammation. Vascular inflammation plays an important role in initiating and perpetuating atherosclerotic disease, specifically at the site of plaque and subsequent fibrous cap rupture. Both men and women succumb to this disease process, and although management strategies have focused on revascularization and pharmacological therapies in the acute situation to reverse vessel closure and prevent thrombogenesis, data now suggest that regulation of host inflammation may improve both morbidity and mortality, thus supporting the notion that prevention is better than cure. There is a clear sex difference in the incidence of vascular disease, and data confirm biological differences in inflammatory initiation and resolution between men and women. This article reviews contemporary opinions describing the sex difference in the initiation and resolution of inflammatory responses, with a view to explore potential targets for pharmacological intervention.
Collapse
Affiliation(s)
- Asad Shabbir
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom;
| | - Krishnaraj Sinhji Rathod
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom;
| | - Rayomand Syrus Khambata
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom;
| | - Amrita Ahluwalia
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom;
| |
Collapse
|
12
|
Shi Y, Leung SWS. Long-term nitric oxide synthase inhibition prevents 17β-estradiol-induced suppression of cyclooxygenase-dependent contractions and enhancement of endothelium-dependent hyperpolarization-like relaxation in mesenteric arteries of ovariectomized rats. Eur J Pharmacol 2020; 882:173275. [PMID: 32535100 DOI: 10.1016/j.ejphar.2020.173275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
Abstract
Endothelial dysfunction is associated with a reduced bioavailability of nitric oxide (NO). In this study, the effects of 17β-estradiol supplement on endothelial function were examined in ovariectomized (OVX) rats following long-term inhibition of NO synthases with L-NAME. Female Sprague Dawley rats were ovariectomized at 12 weeks old. They were supplemented with 17β-estradiol (25 μg/kg/day, intramuscularly) or its vehicle (olive oil) until they were killed. At 18 weeks old, they were administered daily with NO synthase inhibitor L-NAME (60 mg/kg, by gavage) or its vehicle (distilled water) for 6 weeks. Rats were then anesthetized for blood pressure measurement and for isolation of mesenteric arteries and aortae for isometric tension measurement. Long-term L-NAME-treatment, without or with 17β-estradiol supplement, resulted in reduced plasma nitrite/nitrate level without causing an increase in blood pressure in OVX rats. Acute inhibition of cyclooxygenase (COX) with indomethacin improved relaxations of mesenteric arteries to the calcium ionophore A23187 in OVX rats, and in those with long-term L-NAME-treatment without or with 17β-estradiol supplement, but not in those with female hormone supplement only. 17β-estradiol supplement or long-term L-NAME-treatment resulted in a greater endothelium-dependent hyperpolarization-like relaxation in mesenteric arteries. In the quiescent aorta, 17β-estradiol supplement or long-term L-NAME-treatment unmasked the COX-dependent components of A23187-induced contractions, but prevented that of the smooth muscle contractions to U46619 in OVX rats. In summary, long-term 17β-estradiol-supplement results in differential effects in different blood vessel types, and its beneficial vascular effects are masked under the conditions with NO synthase inhibition.
Collapse
Affiliation(s)
- Yi Shi
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, PR China
| | - Susan Wai Sum Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China.
| |
Collapse
|
13
|
The Effect of an Atherogenic Diet and Acute Hyperglycaemia on Endothelial Function in Rabbits Is Artery Specific. Nutrients 2020; 12:nu12072108. [PMID: 32708633 PMCID: PMC7400854 DOI: 10.3390/nu12072108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/30/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Hyperglycaemia has a toxic effect on blood vessels and promotes coronary artery disease. It is unclear whether the dysfunction caused by hyperglycaemia is blood vessel specific and whether the dysfunction is exacerbated following an atherogenic diet. Abdominal aorta, iliac, and mesenteric arteries were dissected from New Zealand White rabbits following either a 4-week normal or atherogenic diet (n = 6–12 per group). The arteries were incubated ex vivo in control or high glucose solution (20 mM or 40 mM) for 2 h. Isometric tension myography was used to determine endothelial-dependent vasodilation. The atherogenic diet reduced relaxation as measured by area under the curve (AUC) by 25% (p < 0.05), 17% (p = 0.06) and 40% (p = 0.07) in the aorta, iliac, and mesenteric arteries, respectively. In the aorta from the atherogenic diet fed rabbits, the 20 mM glucose altered EC50 (p < 0.05). Incubation of the iliac artery from atherogenic diet fed rabbits in 40 mM glucose altered EC50 (p < 0.05). No dysfunction occurred in the mesentery with high glucose incubation following either the normal or atherogenic diet. High glucose induced endothelial dysfunction appears to be blood vessel specific and the aorta may be the optimal artery to study potential therapeutic treatments of hyperglycaemia induced endothelial dysfunction.
Collapse
|
14
|
Serviente C, Berry CW, Kenney WL, Alexander LM. Healthy active older adults have enhanced K + channel-dependent endothelial vasodilatory mechanisms. Am J Physiol Regul Integr Comp Physiol 2020; 319:R19-R25. [PMID: 32401629 PMCID: PMC7468792 DOI: 10.1152/ajpregu.00049.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/10/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022]
Abstract
Microvascular endothelial dysfunction, a precursor to atherosclerotic cardiovascular disease, increases with aging. Endothelium-derived hyperpolarizing factors (EDHFs), which act through K+ channels, regulate blood flow and are important to vascular health. It is unclear how EDHFs change with healthy aging. To evaluate microvascular endothelial reliance on K+ channel-mediated dilation as a function of age in healthy humans. Microvascular function was assessed using intradermal microdialysis in healthy younger (Y; n = 7; 3 M/4 W; 26 ± 1 yr) and older adults (O; n = 12; 5 M/7 W; 64 ± 2 yr) matched for V̇o2peak (Y: 39.0 ± 3.8, O: 37.6 ± 3.1 mL·kg-1·min-1). Participants underwent graded local infusions of: the K+ channel activator Na2S (10-6 to 10-1 M), acetylcholine (ACh, 10-10 to 10-1 M), ACh + the K+ channel inhibitor tetraethylammonium (TEA; 25 or 50 mM), and ACh + the nitric oxide synthase-inhibitor l-NAME (15 mM). Red blood cell flux was measured with laser-Doppler flowmetry and used to calculate cutaneous vascular conductance (CVC; flux/mean arterial pressure) as a percentage of each site-specific maximum (%CVCmax, 43°C+28 mM sodium nitroprusside). The %CVCmax response to Na2S was higher in older adults (mean, O: 51.7 ± 3.9% vs. Y: 36.1 ± 5.3%; P = 0.03). %CVCmax was lower in the ACh+TEA vs. the ACh site starting at 10-5 M (ACh: 34.0 ± 5.7% vs. ACh+TEA: 19.4 ± 4.5%; P = 0.002) in older and at 10-4 M (ACh: 54.5 ± 9.4% vs. ACh+TEA: 31.2 ± 6.7%; P = 0.0002) in younger adults. %CVCmax was lower in the ACh+l-NAME vs. the ACh site in both groups starting at 10-4 M ACh (Y: P < 0.001; O: P = 0.02). Healthy active older adults have enhanced K+ channel-dependent endothelial vasodilatory mechanisms, suggesting increased responsiveness to EDHFs with age.
Collapse
Affiliation(s)
- Corinna Serviente
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania
- Center for Healthy Aging, Pennsylvania State University, University Park, Pennsylvania
| | - Craig W Berry
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania
| | - W Larry Kenney
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania
- Center for Healthy Aging, Pennsylvania State University, University Park, Pennsylvania
| | - Lacy M Alexander
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania
- Center for Healthy Aging, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
15
|
Ohura-Kajitani S, Shiroto T, Godo S, Ikumi Y, Ito A, Tanaka S, Sato K, Sugisawa J, Tsuchiya S, Suda A, Shindo T, Ikeda S, Hao K, Kikuchi Y, Nochioka K, Matsumoto Y, Takahashi J, Miyata S, Shimokawa H. Marked Impairment of Endothelium-Dependent Digital Vasodilatations in Patients With Microvascular Angina. Arterioscler Thromb Vasc Biol 2020; 40:1400-1412. [DOI: 10.1161/atvbaha.119.313704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective:
It remains to be elucidated whether and how endothelial functions are impaired in peripheral circulation of patients with coronary functional disorders, such as vasospastic angina (VSA) and microvascular angina (MVA). We simultaneously examined endothelial functions of peripheral conduit and resistance arteries in patients with coronary functional disorders, with a special reference to NO and endothelium-dependent hyperpolarization factors.
Approach and Results:
Based on the results of invasive coronary acetylcholine testing and coronary physiological measurements, we divided 43 patients into 3 groups; VSA, MVA, and VSA+MVA. Endothelium-dependent vasodilatations of the brachial artery and fingertip arterioles to intra-arterial infusion of bradykinin were simultaneously evaluated by ultrasonography and peripheral arterial tonometry, respectively. To assess NO and endothelium-dependent hyperpolarization factors, measurements were repeated after oral aspirin and intra-arterial infusion of N
G
-monomethyl-L-arginine. Additionally, endothelium-independent vasodilatations to sublingual nitroglycerin and plasma levels of biomarkers for endothelial functions were measured. Surprisingly, digital vasodilatations to bradykinin were almost absent in patients with MVA alone and those with VSA+MVA compared with those with VSA alone. Mechanistically, both NO- and endothelium-dependent hyperpolarization–mediated digital vasodilatations were markedly impaired in patients with MVA alone. In contrast, endothelium-independent vasodilatations to nitroglycerin were comparable among the 3 groups. Plasma levels of soluble VCAM (vascular cell adhesion molecule)-1 were significantly higher in patients with MVA alone compared with those with VSA alone.
Conclusions:
These results provide the first evidence that both NO- and endothelium-dependent hyperpolarization–mediated digital vasodilatations are markedly impaired in MVA patients, suggesting that MVA is a cardiac manifestation of the systemic small artery disease.
Collapse
Affiliation(s)
- Shoko Ohura-Kajitani
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Shiroto
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeo Godo
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yosuke Ikumi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiyo Ito
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuhei Tanaka
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koichi Sato
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Sugisawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Tsuchiya
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Suda
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiko Shindo
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shohei Ikeda
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kiyotaka Hao
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoku Kikuchi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kotaro Nochioka
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuharu Matsumoto
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Takahashi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Miyata
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
16
|
Shimokawa H. Reactive oxygen species in cardiovascular health and disease: special references to nitric oxide, hydrogen peroxide, and Rho-kinase. J Clin Biochem Nutr 2020; 66:83-91. [PMID: 32231403 DOI: 10.3164/jcbn.19-119] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 01/09/2023] Open
Abstract
The interaction between endothelial cells and vascular smooth muscle cells (VSMC) plays an important role in regulating cardiovascular homeostasis. Endothelial cells synthesize and release endothelium-derived relaxing factors (EDRFs), including vasodilator prostaglandins, nitric oxide (NO), and endothelium-dependent hyperpolarization (EDH) factors. Importantly, the contribution of EDRFs to endothelium-dependent vasodilatation markedly varies in a vessel size-dependent manner; NO mainly mediates vasodilatation of relatively large vessels, while EDH factors in small resistance vessels. We have previously identified that endothelium-derived hydrogen peroxide (H2O2) is an EDH factor especially in microcirculation. Several lines of evidence indicate the importance of the physiological balance between NO and H2O2/EDH factor. Rho-kinase was identified as the effectors of the small GTP-binding protein, RhoA. Both endothelial NO production and NO-mediated signaling in VSMC are targets and effectors of the RhoA/Rho-kinase pathway. In endothelial cells, the RhoA/Rho-kinase pathway negatively regulates NO production. On the contrary, the pathway enhances VSMC contraction with resultant occurrence of coronary artery spasm and promotes the development of oxidative stress and vascular remodeling. In this review, I will briefly summarize the current knowledge on the regulatory roles of endothelium-derived relaxing factors, with special references to NO and H2O2/EDH factor, in relation to Rho-kinase, in cardiovascular health and disease.
Collapse
Affiliation(s)
- Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| |
Collapse
|
17
|
Shimokawa H, Godo S. Nitric oxide and endothelium-dependent hyperpolarization mediated by hydrogen peroxide in health and disease. Basic Clin Pharmacol Toxicol 2020; 127:92-101. [PMID: 31846200 DOI: 10.1111/bcpt.13377] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/12/2019] [Indexed: 01/09/2023]
Abstract
The endothelium plays crucial roles in modulating vascular tone by synthesizing and releasing endothelium-derived relaxing factors (EDRFs), including vasodilator prostaglandins, nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) factors. Thus, endothelial dysfunction is the hallmark of atherosclerotic cardiovascular diseases. Importantly, the contribution of EDRFs to endothelium-dependent vasodilatation varies in a distinct vessel size-dependent manner; NO mainly mediates vasodilatation of relatively large, conduit vessels (eg epicardial coronary arteries), while EDH factors in small resistance vessels (eg coronary microvessels). Endothelium-derived hydrogen peroxide (H2 O2 ) is a physiological signalling molecule serving as one of the major EDH factors especially in microcirculations and has gained increasing attention in view of its emerging relevance for cardiovascular diseases. In the clinical settings, therapeutic approaches targeting NO (eg NO donors) or non-specific elimination of reactive oxygen species (eg antioxidant supplements) are disappointingly ineffective for the treatment of various cardiovascular diseases, in which endothelial dysfunction and coronary microvascular dysfunction are substantially involved. These lines of evidence indicate the potential importance of the physiological balance between NO and H2 O2 /EDH factor. Further characterization and better understanding of endothelium-dependent vasodilatations are important to develop novel therapeutic strategies in cardiovascular medicine. In this MiniReview, we will briefly summarize the current knowledge on the emerging regulatory roles of endothelium-dependent vasodilatations in the cardiovascular system, with a special reference to the two major EDRFs, NO and H2 O2 /EDH factor, in health and disease.
Collapse
Affiliation(s)
- Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
18
|
Acute vascular effects of vascular endothelial growth factor inhibition in the forearm arterial circulation. J Hypertens 2019; 38:257-265. [PMID: 31449168 PMCID: PMC7197298 DOI: 10.1097/hjh.0000000000002230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although vascular endothelial growth factor inhibition (VEGFi) represents a major therapeutic advance in oncology, it is associated with hypertension and adverse vascular thrombotic events. Our objective was to determine whether VEGFi caused direct vascular dysfunction through increased endothelin-1 (ET-1) activity or impaired endothelial vasomotor or fibrinolytic function.
Collapse
|
19
|
Cheng J, Wen J, Wang N, Wang C, Xu Q, Yang Y. Ion Channels and Vascular Diseases. Arterioscler Thromb Vasc Biol 2019; 39:e146-e156. [DOI: 10.1161/atvbaha.119.312004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jun Cheng
- From the Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (J.C., J.W., N.W., Q.X., Y.Y.)
| | - Jing Wen
- From the Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (J.C., J.W., N.W., Q.X., Y.Y.)
| | - Na Wang
- From the Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (J.C., J.W., N.W., Q.X., Y.Y.)
| | - Claire Wang
- Gonville and Caius College, University of Cambridge, United Kingdom (C.W.)
| | - Qingbo Xu
- From the Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (J.C., J.W., N.W., Q.X., Y.Y.)
- School of Cardiovascular Medicine and Sciences, King’s College London BHF Centre, London, United Kingdom (Q.X.)
| | - Yan Yang
- From the Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (J.C., J.W., N.W., Q.X., Y.Y.)
| |
Collapse
|
20
|
Al-Badri A, Kim JH, Liu C, Mehta PK, Quyyumi AA. Peripheral Microvascular Function Reflects Coronary Vascular Function. Arterioscler Thromb Vasc Biol 2019; 39:1492-1500. [PMID: 31018659 PMCID: PMC6594879 DOI: 10.1161/atvbaha.119.312378] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objectives- Coronary endothelial dysfunction is a precursor of atherosclerosis and adverse outcomes. Whether endothelial dysfunction is a localized or generalized phenomenon in humans remains uncertain. We simultaneously measured femoral and coronary vascular function with the hypothesis that peripheral vascular endothelial function will be reflective of coronary endothelial function. Approach and Results- Eighty-five subjects underwent coronary angiography for evaluation of chest pain or abnormal stress tests. Endothelium-dependent and -independent vascular function were measured using intracoronary and intrafemoral infusions of acetylcholine and sodium nitroprusside, respectively. Coronary flow reserve was assessed using intracoronary adenosine infusion. Flow velocity was measured in each circulation using a Doppler wire (FloWire, EndoSonics). Coronary vascular resistance and femoral vascular resistance were calculated as mean arterial pressure (mm Hg)/coronary blood flow (mL/min) and mean arterial pressure (mm Hg)/femoral average peak velocity (cm/s), respectively. Mean age was 53±11 years, 37% were female, 44% had hypertension, 12% had diabetes mellitus, and 38% had obstructive coronary artery disease. There was a correlation between the change in femoral vascular resistance with acetylcholine and acetylcholine-mediated changes in both the coronary vascular resistance ( r=0.27; P=0.014) and in the epicardial coronary artery diameter ( r=-0.25; P=0.021), indicating that subjects with normal endothelial function in the femoral circulation had normal endothelial function in the coronary epicardial and microcirculation and vice versa. The coronary vasodilator response to adenosine also correlated with the femoral vasodilatation with acetylcholine ( r=0.4; P=0.0002). There was no correlation between the coronary and femoral responses to sodium nitroprusside. Conclusions- Endothelial functional changes in the peripheral and coronary circulations were modestly correlated. Thus, peripheral microvascular endothelial function reflects endothelium-dependent coronary epicardial and microvascular function and the coronary flow reserve. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Ahmed Al-Badri
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Jeong Hwan Kim
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Chang Liu
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Puja K Mehta
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Arshed A Quyyumi
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
21
|
Zhou K, Parker JD. The role of vascular endothelium in nitroglycerin-mediated vasodilation. Br J Clin Pharmacol 2018; 85:377-384. [PMID: 30378151 DOI: 10.1111/bcp.13804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/23/2018] [Accepted: 10/16/2018] [Indexed: 12/16/2022] Open
Abstract
AIMS Nitroglycerin (or glyceryl trinitrate, GTN) has been long considered an endothelium-independent vasodilator because GTN vasodilation is intact in the absence of the endothelium and in the presence of endothelial dysfunction. However, in animal and in vitro models, GTN has been shown to stimulate the release of certain endothelium-derived vasodilators such as nitric oxide (NO) and prostacyclin (PGI2 ). In addition, chronic GTN therapy leads to endothelial dysfunction. In this series of experiments, we explored how GTN might interact with the vascular endothelium in normal humans, without cardiovascular disease or risk factors associated with abnormalities in vascular function. METHODS We examined the effect of inhibition of NO, PGI2 , and epoxyeicosatrienoic acids (EETs, a class of endothelium-derived hyperpolarizing factor) on GTN-mediated vasodilation. We measured arterial blood flow responses to brachial artery infusions of GTN in the absence and presence of L-NMMA (n = 13), ketorolac (n = 14) and fluconazole (n = 16), which are inhibitors of endothelium-derived NO, PGI2 and EETs, respectively, in healthy volunteers. RESULTS Our results demonstrate that inhibition of endothelium-dependent vasodilator mechanisms does not alter forearm resistance vessel responses to GTN. CONCLUSION We conclude that GTN-mediated dilation of forearm resistance vessels is largely independent of vascular endothelium.
Collapse
Affiliation(s)
- Kangbin Zhou
- Department Pharmacology and Toxicology, the University of Toronto
| | - John D Parker
- Department Pharmacology and Toxicology, the University of Toronto.,Division of Cardiology, Department of Medicine, Sinai Health System and the Peter Munk Cardiac Centre, University Health Network, Toronto.,The Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto
| |
Collapse
|
22
|
Bock JM, Treichler DP, Norton SL, Ueda K, Hughes WE, Casey DP. Inorganic nitrate supplementation enhances functional capacity and lower-limb microvascular reactivity in patients with peripheral artery disease. Nitric Oxide 2018; 80:45-51. [PMID: 30118808 DOI: 10.1016/j.niox.2018.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/07/2018] [Accepted: 08/14/2018] [Indexed: 11/18/2022]
Abstract
Peripheral artery disease (PAD) is characterized by functional and vascular impairments as well as elevated levels of inflammation which are associated with reduced nitric oxide (NO) bioavailability. Inorganic nitrate supplementation boosts NO bioavailability potentially improving functional and vasodilatory capacities and may reduce inflammation. Twenty-one patients with PAD were randomly assigned to sodium nitrate (NaNO3) or placebo supplementation groups for eight-weeks. Outcome measures included a 6-min walk test (6 MWT), blood flow and vasodilator function in the forearm and calf, as well as plasma inflammatory and adhesion biomarker concentrations. NaNO3 elevated plasma nitrate (32.3 ± 20.0 to 379.8 ± 204.6 μM) and nitrite (192.2 ± 51.8 to 353.1 ± 134.2 nM), improved 6 MWT performance (387 ± 90 to 425 ± 82 m), peak calf blood flow (BFPeak; 11.6 ± 4.9 to 14.1 ± 5.1 mL/dL tissue/min), and peak calf vascular conductance (VCPeak; 11.1 ± 4.3 to 14.2 ± 4.9 mL/dL tissue/min/mmHg) (p < 0.05 for all). Improvements in calf BFPeak (r = 0.70, p < 0.05) and VCPeak (r = 0.61, p < 0.05) correlated with changes in 6 MWT distance. Placebo supplementation did not change plasma nitrate or nitrite, 6 MWT, calf BFPeak, or calf VCPeak. Forearm vascular function nor inflammatory and adhesion biomarker concentrations changed in either group. Eight-weeks of NaNO3 supplementation improves vasodilatory capacity in the lower-limbs of patients with PAD, which correlated with improvement in functional capacity.
Collapse
Affiliation(s)
- Joshua M Bock
- Department of Physical Therapy and Rehabilitation Science, USA.
| | | | - Samuel L Norton
- Department of Physical Therapy and Rehabilitation Science, USA.
| | - Kenichi Ueda
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | | | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, USA; Abboud Cardiovascular Research Center, USA; Fraternal Order of Eagles Diabetes Research Center, USA.
| |
Collapse
|
23
|
Racine ML, Crecelius AR, Luckasen GJ, Larson DG, Dinenno FA. Inhibition of Na + /K + -ATPase and K IR channels abolishes hypoxic hyperaemia in resting but not contracting skeletal muscle of humans. J Physiol 2018; 596:3371-3389. [PMID: 29603743 DOI: 10.1113/jp275913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Increasing blood flow (hyperaemia) to exercising muscle helps match oxygen delivery and metabolic demand. During exercise in hypoxia, there is a compensatory increase in muscle hyperaemia that maintains oxygen delivery and tissue oxygen consumption. Nitric oxide (NO) and prostaglandins (PGs) contribute to around half of the augmented hyperaemia during hypoxic exercise, although the contributors to the remaining response are unknown. In the present study, inhibiting NO, PGs, Na+ /K+ -ATPase and inwardly rectifying potassium (KIR ) channels did not blunt augmented hyperaemia during hypoxic exercise beyond previous observations with NO/PG block alone. Furthermore, although inhibition of only Na+ /K+ -ATPase and KIR channels abolished hyperaemia during hypoxia at rest, it had no effect on augmented hyperaemia during hypoxic exercise. This is the first study in humans to demonstrate that Na+ /K+ -ATPase and KIR channel activation is required for augmented muscle hyperaemia during hypoxia at rest but not during hypoxic exercise, thus providing new insight into vascular control. ABSTRACT Exercise hyperaemia in hypoxia is augmented relative to the same exercise intensity in normoxia. During moderate-intensity handgrip exercise, endothelium-derived nitric oxide (NO) and vasodilating prostaglandins (PGs) contribute to ∼50% of the augmented forearm blood flow (FBF) response to hypoxic exercise (HypEx), although the mechanism(s) underlying the remaining response are unclear. We hypothesized that combined inhibition of NO, PGs, Na+ /K+ -ATPase and inwardly rectifying potassium (KIR ) channels would abolish the augmented hyperaemic response in HypEx. In healthy young adults, FBF responses were measured (Doppler ultrasound) and forearm vascular conductance was calculated during 5 min of rhythmic handgrip exercise at 20% maximum voluntary contraction under regional sympathoadrenal inhibition in normoxia and isocapnic HypEx (O2 saturation ∼80%). Compared to control, combined inhibition of NO, PGs, Na+ /K+ -ATPase and KIR channels (l-NMMA + ketorolac + ouabain + BaCl2; Protocol 1; n = 10) blunted the compensatory increase in FBF during HypEx by ∼50% (29 ± 6 mL min-1 vs. 62 ± 8 mL min-1 , respectively, P < 0.05). By contrast, ouabain + BaCl2 alone (Protocol 2; n = 10) did not affect this augmented hyperaemic response (50 ± 11 mL min-1 vs. 60 ± 13 mL min-1 , respectively, P > 0.05). However, the blocked condition in both protocols abolished the hyperaemic response to hypoxia at rest (P < 0.05). We conclude that activation of Na+ /K+ -ATPase and KIR channels is involved in the hyperaemic response to hypoxia at rest, although it does not contribute to the augmented exercise hyperaemia during hypoxia in humans.
Collapse
Affiliation(s)
- Matthew L Racine
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Anne R Crecelius
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Gary J Luckasen
- Cardiovascular Research Center, Colorado State University, Fort Collins, CO, USA.,Medical Center of the Rockies Foundation, University of Colorado Health System, Loveland, CO, USA
| | - Dennis G Larson
- Medical Center of the Rockies Foundation, University of Colorado Health System, Loveland, CO, USA
| | - Frank A Dinenno
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA.,Cardiovascular Research Center, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
24
|
Abstract
Endothelium-dependent relaxations are predominantly regulated by nitric oxide (NO) in large conduit arteries and by endothelium-dependent hyperpolarization (EDH) in small resistance vessels. Although the nature of EDH factors varies depending on species and vascular beds, we have previously demonstrated that endothelial NO synthases (eNOS)-derived hydrogen peroxide (H2O2) is an EDH factor in animals and humans. This vessel size-dependent contribution of NO and EDH is, at least in part, attributable to the diverse roles of endothelial NOSs system; in large conduit arteries, eNOS mainly serves as a NO-generating system to elicit soluble guanylate cyclase–cyclic guanosine monophosphate-mediated relaxations, whereas in small resistance vessels, it serves as a superoxide-generating system to cause EDH/H2O2-mediated relaxations. Endothelial caveolin-1 may play an important role for the diverse roles of NOSs. Although reactive oxygen species are generally regarded harmful, the physiological roles of H2O2 have attracted much attention as accumulating evidence has shown that endothelium-derived H2O2 contributes to cardiovascular homeostasis. The diverse functions of endothelial NOSs system with NO and EDH/H2O2 could account for a compensatory mechanism in the setting of endothelial dysfunction. In this review, we will briefly summarize the current knowledge on the diverse functions of endothelial NOSs system: NO and EDH/H2O2.
Collapse
|
25
|
Godo S, Shimokawa H. Divergent roles of endothelial nitric oxide synthases system in maintaining cardiovascular homeostasis. Free Radic Biol Med 2017; 109:4-10. [PMID: 27988339 DOI: 10.1016/j.freeradbiomed.2016.12.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/11/2016] [Accepted: 12/13/2016] [Indexed: 12/14/2022]
Abstract
Accumulating evidence has demonstrated the importance of reactive oxygen species (ROS) as an essential second messenger in health and disease. Endothelial dysfunction is the hallmark of atherosclerotic cardiovascular diseases, in which pathological levels of ROS are substantially involved. The endothelium plays a crucial role in modulating tone of underlying vascular smooth muscle by synthesizing and releasing nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) factors in a distinct vessel size-dependent manner through the diverse roles of the endothelial NO synthases (NOSs) system. Endothelium-derived hydrogen peroxide (H2O2) is a physiological signaling molecule serving as one of the major EDH factors especially in microcirculations and has gained increasing attention in view of its emerging relevance for cardiovascular homeostasis. In the clinical settings, it has been reported that antioxidant supplements are unexpectedly ineffective to prevent cardiovascular events. These lines of evidence indicate the potential importance of the physiological balance between NO and H2O2/EDH through the diverse functions of endothelial NOSs system in maintaining cardiovascular homeostasis. A better understanding of cardiovascular redox signaling is certainly needed to develop novel therapeutic strategies in cardiovascular medicine. In this review, we will briefly summarize the current knowledge on the emerging regulatory roles of redox signaling pathways in cardiovascular homeostasis, with particular focus on the two endothelial NOSs-derived mediators, NO and H2O2/EDH.
Collapse
Affiliation(s)
- Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
26
|
Sun H, Yang M, Fung M, Chan S, Jawi M, Anderson T, Poon MC, Jackson S. Adult males with haemophilia have a different macrovascular and microvascular endothelial function profile compared with healthy controls. Haemophilia 2017. [DOI: 10.1111/hae.13278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- H. Sun
- Division of Hematology; Department of Medicine; University of British Columbia; Vancouver Canada
- British Columbia Provincial Bleeding Disorders Program-Adult Division; Vancouver Canada
| | - M. Yang
- British Columbia Provincial Bleeding Disorders Program-Adult Division; Vancouver Canada
| | - M. Fung
- Department of Medicine; University of Calgary; Calgary Canada
| | - S. Chan
- Division of Cardiology; Department of Medicine; University of British Columbia; Vancouver Canada
| | - M. Jawi
- Healthy Heart Program; St. Paul's Hospital; University of British Columbia; Vancouver Canada
| | - T. Anderson
- Department of Cardiac Sciences and the Libin Cardiovascular Institute of Alberta; University of Calgary; Calgary Canada
| | - M.-C. Poon
- Division of Hematology; Department of Medicine; University of Calgary; Calgary Canada
- Southern Alberta Rare Blood and Bleeding Disorders Comprehensive Care Program; University of Calgary Foothills Hospital; Calgary Canada
| | - S. Jackson
- Division of Hematology; Department of Medicine; University of British Columbia; Vancouver Canada
- British Columbia Provincial Bleeding Disorders Program-Adult Division; Vancouver Canada
| |
Collapse
|
27
|
Wojewodzka-Zelezniakowicz M, Gromotowicz-Poplawska A, Kisiel W, Konarzewska E, Szemraj J, Ladny JR, Chabielska E. Angiotensin-converting enzyme inhibitors attenuate propofol-induced pro-oxidative and antifibrinolytic effect in human endothelial cells. J Renin Angiotensin Aldosterone Syst 2017; 18:1470320316687197. [PMID: 28090801 PMCID: PMC5843862 DOI: 10.1177/1470320316687197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction: The aim of this study was to investigate the effects of plasma and tissue angiotensin-converting enzyme inhibitors (ACE-Is) against propofol-induced endothelial dysfunction and to elucidate the involved mechanisms in vitro. Materials and methods: We examined the effects of propofol (50 μM), quinaprilat and enalaprilat (10−5 M) on fibrinolysis (t-PA, PAI-1, TAFI antigen levels), oxidative stress parameters (H2O2 and MDA antigen levels and SOD and NADPH oxidase mRNA levels) and nitric oxide bioavailability (NO2/NO3 concentration and NOS expression at the level of mRNA) in human umbilical vein endothelial cells (HUVECs). Results: We found that both ACE-Is promoted similar endothelial fibrinolytic properties and decreased oxidative stress in vitro. Propofol alone increased the release of antifibrinolytic and pro-oxidative factors from the endothelium and increased mRNA iNOS expression. We also found that the incubation of HUVECs in the presence of propofol following ACE-Is pre-incubation caused weakness of the antifibrinolytic and pro-oxidative potential of propofol and this effect was similar after both ACE-Is. Conclusions: This observation suggests that the studied ACE-Is exerted protective effects against endothelial cell dysfunction caused by propofol, independently of hemodynamics.
Collapse
Affiliation(s)
| | | | - Wioleta Kisiel
- 2 Department of Biopharmacy, Medical University of Bialystok, Poland
| | - Emilia Konarzewska
- 1 Department of Emergency and Disaster Medicine, Medical University of Bialystok, Poland
| | - Janusz Szemraj
- 3 Department of Medical Biochemistry, Medical University of Lodz, Poland
| | - Jerzy Robert Ladny
- 1 Department of Emergency and Disaster Medicine, Medical University of Bialystok, Poland
| | - Ewa Chabielska
- 2 Department of Biopharmacy, Medical University of Bialystok, Poland
| |
Collapse
|
28
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
29
|
Leung SWS, Vanhoutte PM. Endothelium-dependent hyperpolarization: age, gender and blood pressure, do they matter? Acta Physiol (Oxf) 2017; 219:108-123. [PMID: 26548576 DOI: 10.1111/apha.12628] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 09/21/2015] [Accepted: 11/02/2015] [Indexed: 12/14/2022]
Abstract
Under physiological conditions, the endothelium generates vasodilator signals [prostacyclin, nitric oxide NO and endothelium-dependent hyperpolarization (EDH)], for the regulation of vascular tone. The relative importance of these two signals depends on the diameter of the blood vessels: as the diameter of the arteries decreases, the contribution of EDH to the regulation of vascular tone increases. The mechanism involved in EDH varies with species and blood vessel types; nevertheless, activation of endothelial intermediate- and small-conductance calcium-activated potassium channels (IKCa and SKCa , respectively) is characteristic of the EDH pathway. IKCa - and SKCa -mediated EDH are reduced with endothelial dysfunction, which develops with ageing and hypertension, and is less pronounced in female than in age-matched male until after menopause. Impaired EDH-mediated relaxation is related to a reduced involvement of SKCa , so that the response becomes more dependent on IKCa . The latter depends on the activation of adenosine monophosphate-activated protein kinase (AMPK) and silent information regulator T1 (SIRT1), proteins associated with the process of cellular senescence and vascular signalling in response to the female hormone. An understanding of the role of AMPK and/or SIRT1 in EDH-like responses may help identifying effective pharmacological strategies to prevent the development of vascular complications of different aetiologies.
Collapse
Affiliation(s)
- S. W. S. Leung
- Department of Pharmacology & Pharmacy; University of Hong Kong; Hong Kong Hong Kong SAR China
| | - P. M. Vanhoutte
- Department of Pharmacology & Pharmacy; University of Hong Kong; Hong Kong Hong Kong SAR China
| |
Collapse
|
30
|
Schinzari F, Tesauro M, Cardillo C. Vascular hyperpolarization in human physiology and cardiovascular risk conditions and disease. Acta Physiol (Oxf) 2017; 219:124-137. [PMID: 28009486 DOI: 10.1111/apha.12630] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/05/2015] [Accepted: 11/05/2015] [Indexed: 12/11/2022]
Abstract
Hyperpolarization causing smooth muscle relaxation contributes to the maintenance of vascular homeostasis, particularly in small-calibre arteries and arterioles. It may also become a compensatory vasodilator mechanism upregulated in states with impaired nitric oxide (NO) availability. Bioassay of vascular hyperpolarization in the human circulation has been hampered by the complexity of mechanisms involved and the limited availability of investigational tools. Firm evidence, however, supports the notion that hyperpolarization participates in the regulation of resting vasodilator tone and vascular reactivity in healthy subjects. In addition, an enhanced endothelium-derived hyperpolarization contributes to both resting and agonist-stimulated vasodilation in a variety of cardiovascular risk conditions and disease. Thus, hyperpolarization mediated by epoxyeicosatrienoic acids (EETs) and H2 O2 has been observed in coronary arterioles of patients with coronary artery disease. Similarly, ouabain-sensitive and EETs-mediated hyperpolarization has been observed to compensate for NO deficiency in patients with essential hypertension. Moreover, in non-hypertensive patients with multiple cardiovascular risk factors and in hypercholesterolaemia, KCa channel-mediated vasodilation appears to be activated. A novel paradigm establishes that perivascular adipose tissue (PVAT) is an additional regulator of vascular tone/function and endothelium is not the only agent in vascular hyperpolarization. Indeed, some PVAT-derived relaxing substances, such as adiponectin and angiotensin 1-7, may exert anticontractile and vasodilator actions by the opening of KCa channels in smooth muscle cells. Conversely, PVAT-derived factors impair coronary vasodilation via differential inhibition of some K+ channels. In view of adipose tissue abnormalities occurring in human obesity, changes in PVAT-dependent hyperpolarization may be relevant for vascular dysfunction also in this condition.
Collapse
Affiliation(s)
- F. Schinzari
- Department of Internal Medicine; Catholic University; Rome Italy
| | - M. Tesauro
- Department of Internal Medicine; Tor Vergata University; Rome Italy
| | - C. Cardillo
- Department of Internal Medicine; Catholic University; Rome Italy
| |
Collapse
|
31
|
Yang L, Cheriyan J, Gutterman DD, Mayer RJ, Ament Z, Griffin JL, Lazaar AL, Newby DE, Tal-Singer R, Wilkinson IB. Mechanisms of Vascular Dysfunction in COPD and Effects of a Novel Soluble Epoxide Hydrolase Inhibitor in Smokers. Chest 2016; 151:555-563. [PMID: 27884766 PMCID: PMC5332206 DOI: 10.1016/j.chest.2016.10.058] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/04/2016] [Accepted: 10/28/2016] [Indexed: 12/03/2022] Open
Abstract
Background Smoking and COPD are risk factors for cardiovascular disease, and the pathogenesis may involve endothelial dysfunction. We tested the hypothesis that endothelium-derived epoxyeicosatrienoic acid (EET)-mediated endothelial function is impaired in patients with COPD and that a novel soluble epoxide hydrolase inhibitor, GSK2256294, attenuates EET-mediated endothelial dysfunction in human resistance vessels both in vitro and in vivo. Methods Endogenous and stimulated endothelial release of EETs was assessed in 12 patients with COPD, 11 overweight smokers, and two matched control groups, using forearm plethysmography with intraarterial infusions of fluconazole, bradykinin, and the combination. The effects of GSK2256294 on EET-mediated vasodilation in human resistance arteries were assessed in vitro and in vivo in a phase I clinical trial in healthy overweight smokers. Results Compared with control groups, there was reduced vasodilation with bradykinin (P = .005), a blunted effect of fluconazole on bradykinin-induced vasodilation (P = .03), and a trend toward reduced basal EET/dihydroxyepoxyeicosatrienoic acid ratio in patients with COPD (P = .08). A similar pattern was observed in overweight smokers. In vitro, 10 μM GSK2256294 increased 11,12-EET-mediated vasodilation compared with vehicle (90% ± 4.2% vs 72.6% ± 6.2% maximal dilatation) and shifted the bradykinin half-maximal effective concentration (EC50) (–8.33 ± 0.172 logM vs –8.10 ± 0.118 logM; P = .001 for EC50). In vivo, 18 mg GSK2256294 improved the maximum bradykinin response from 338% ± 46% before a dose to 566% ± 110% after a single dose (P = .02) and to 503% ± 123% after a chronic dose (P = .003). Conclusions GSK2256294 attenuates smoking-related EET-mediated endothelial dysfunction, suggesting potential therapeutic benefits in patients with COPD. Trial Registry ClinicalTrials.gov; No.: NCT01762774; URL: www.clinicaltrials.gov
Collapse
Affiliation(s)
- Lucy Yang
- Experimental Medicine and Immunotherapeutics (EMIT), University of Cambridge, Addenbrooke's Hospital, Cambridge, England
| | - Joseph Cheriyan
- Experimental Medicine and Immunotherapeutics (EMIT), University of Cambridge, Addenbrooke's Hospital, Cambridge, England; Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Clinical Unit Cambridge, GSK R&D, Cambridge, England.
| | - David D Gutterman
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
| | | | - Zsuzsanna Ament
- MRC Human Nutrition Research, Elsie Widdowson Laboratory; and Department of Biochemistry, University of Cambridge, Cambridge, England
| | - Jules L Griffin
- MRC Human Nutrition Research, Elsie Widdowson Laboratory; and Department of Biochemistry, University of Cambridge, Cambridge, England
| | | | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland
| | | | - Ian B Wilkinson
- Experimental Medicine and Immunotherapeutics (EMIT), University of Cambridge, Addenbrooke's Hospital, Cambridge, England; Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England
| |
Collapse
|
32
|
Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:89-144. [PMID: 28212804 DOI: 10.1016/bs.apha.2016.07.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+, and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. VSM cells express multiple isoforms of at least five classes of K+ channels that contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression, and function of large conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells.
Collapse
|
33
|
Neuman RB, Hayek SS, Poole JC, Rahman A, Menon V, Kavtaradze N, Polhemus D, Veledar E, Lefer DJ, Quyyumi AA. Nitric Oxide Contributes to Vasomotor Tone in Hypertensive African Americans Treated With Nebivolol and Metoprolol. J Clin Hypertens (Greenwich) 2016; 18:223-31. [PMID: 26285691 PMCID: PMC4760906 DOI: 10.1111/jch.12649] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/30/2015] [Accepted: 07/05/2015] [Indexed: 11/29/2022]
Abstract
Endothelial dysfunction is more prevalent in African Americans (AAs) compared with whites. The authors hypothesized that nebivolol, a selective β1 -antagonist that stimulates nitric oxide (NO), will improve endothelial function in AAs with hypertension when compared with metoprolol. In a double-blind, randomized, crossover study, 19 AA hypertensive patients were randomized to a 12-week treatment period with either nebivolol 10 mg or metoprolol succinate 100 mg daily. Forearm blood flow (FBF) was measured using plethysmography at rest and after intra-arterial infusion of acetylcholine and sodium nitroprusside to estimate endothelium-dependent and independent vasodilation, respectively. Physiologic vasodilation was assessed during hand-grip exercise. Measurements were repeated after NO blockade with L-N(G) -monomethylarginine (L-NMMA) and after inhibition of endothelium-derived hyperpolarizing factor (EDHF) with tetraethylammonium chloride (TEA). NO blockade with L-NMMA produced a trend toward greater vasoconstriction during nebivolol compared with metoprolol treatment (21% vs 12% reduction in FBF, P=.06, respectively). This difference was more significant after combined administration of L-NMMA and TEA (P<.001). Similarly, there was a contribution of NO to exercise-induced vasodilation during nebivolol but not during metoprolol treatment. There were significantly greater contributions of NO and EDHF to resting vasodilator tone and of NO to exercise-induced vasodilation with nebivolol compared with metoprolol in AAs with hypertension.
Collapse
Affiliation(s)
- Robert B. Neuman
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - Salim S. Hayek
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - Joseph C. Poole
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - Ayaz Rahman
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - Vivek Menon
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - Nino Kavtaradze
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - David Polhemus
- Department of PharmacologyLouisiana State University Health Sciences CenterNew OrleansLA
| | - Emir Veledar
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - David J. Lefer
- Department of PharmacologyLouisiana State University Health Sciences CenterNew OrleansLA
| | | |
Collapse
|
34
|
Mokhtar SS, Vanhoutte PM, Leung SWS, Yusof MI, Wan Sulaiman WA, Mat Saad AZ, Suppian R, Rasool AHG. Endothelium dependent hyperpolarization-type relaxation compensates for attenuated nitric oxide-mediated responses in subcutaneous arteries of diabetic patients. Nitric Oxide 2016; 53:35-44. [DOI: 10.1016/j.niox.2015.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/23/2015] [Accepted: 12/28/2015] [Indexed: 01/17/2023]
|
35
|
Limberg JK, Johansson RE, Peltonen GL, Harrell JW, Kellawan JM, Eldridge MW, Sebranek JJ, Schrage WG. β-Adrenergic-mediated vasodilation in young men and women: cyclooxygenase restrains nitric oxide synthase. Am J Physiol Heart Circ Physiol 2016; 310:H756-64. [PMID: 26747505 DOI: 10.1152/ajpheart.00886.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/06/2016] [Indexed: 01/22/2023]
Abstract
We tested the hypothesis that women exhibit greater vasodilator responses to β-adrenoceptor stimulation compared with men. We further hypothesized women exhibit a greater contribution of nitric oxide synthase and cyclooxygenase to β-adrenergic-mediated vasodilation compared with men. Forearm blood flow (Doppler ultrasound) was measured in young men (n = 29, 26 ± 1 yr) and women (n = 33, 25 ± 1 yr) during intra-arterial infusion of isoproterenol (β-adrenergic agonist). In subset of subjects, isoproterenol responses were examined before and after local inhibition of nitric oxide synthase [N(G)-monomethyl-l-arginine (l-NMMA); 6 male/10 female] and/or cyclooxygenase (ketorolac; 5 male/5 female). Vascular conductance (blood flow ÷ mean arterial pressure) was calculated to assess vasodilation. Vascular conductance increased with isoproterenol infusion (P < 0.01), and this effect was not different between men and women (P = 0.41). l-NMMA infusion had no effect on isoproterenol-mediated dilation in men (P > 0.99) or women (P = 0.21). In contrast, ketorolac infusion markedly increased isoproterenol-mediated responses in both men (P < 0.01) and women (P = 0.04) and this rise was lost with subsequent l-NMMA infusion (men, P < 0.01; women, P < 0.05). β-Adrenergic vasodilation is not different between men and women and sex differences in the independent contribution of nitric oxide synthase and cyclooxygenase to β-mediated vasodilation are not present. However, these data are the first to demonstrate β-adrenoceptor activation of cyclooxygenase suppresses nitric oxide synthase signaling in human forearm microcirculation and may have important implications for neurovascular control in both health and disease.
Collapse
Affiliation(s)
| | | | | | - John W Harrell
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin
| | | | - Marlowe W Eldridge
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin; Department of Pediatrics, University of Wisconsin, Madison, Wisconsin; and
| | - Joshua J Sebranek
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin
| | - William G Schrage
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin;
| |
Collapse
|
36
|
Pang J, Zhang Z, Zheng TZ, Bassig BA, Mao C, Liu X, Zhu Y, Shi K, Ge J, Yang YJ, Dejia-Huang, Bai M, Peng Y. Green tea consumption and risk of cardiovascular and ischemic related diseases: A meta-analysis. Int J Cardiol 2016; 202:967-74. [DOI: 10.1016/j.ijcard.2014.12.176] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/16/2014] [Accepted: 12/31/2014] [Indexed: 12/31/2022]
|
37
|
Eisenach JH, Gullixson LR, Allen AR, Kost SL, Nicholson WT. Cyclo-oxygenase-2 inhibition and endothelium-dependent vasodilation in younger vs. older healthy adults. Br J Clin Pharmacol 2015; 78:815-23. [PMID: 24698105 DOI: 10.1111/bcp.12397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/29/2014] [Indexed: 12/01/2022] Open
Abstract
AIM A major feature of endothelial dysfunction is reduced endothelium-dependent vasodilation, which in ageing may be due to decreased production of endothelial prostacyclin, or nitric oxide (NO), or both. METHOD We tested this hypothesis in 12 younger (age 18-38 years, six women) and 12 older healthy adults (age 55-73 years, six post-menopausal women). Endothelium-dependent vasodilation was assessed by the forearm vascular conductance (FVC) response to intra-arterial acetylcholine (ACh) (0.5, 1.0, 2.0, 4.0 μg dl(-1) forearm tissue min(-1) ) before and 90 min after inhibition of the enzyme cyclo-oxygenase-2 (COX-2) with oral celecoxib (400 mg), followed by the addition of endothelial NO synthase inhibition with intra-arterial N(G) -monomethyl-l arginine acetate (L-NMMA). RESULTS Ageing was associated with a significantly reduced FVC response to ACh (P = 0.009, age-by-dose interaction; highest dose FVC ± SEM in ageing: 11.2 ± 1.4 vs. younger: 17.7 ± 2.4 units, P = 0.02). Celecoxib did not reduce resting FVC or the responses to ACh in any group. L-NMMA significantly reduced resting FVC and the responses to ACh in all groups, and absolute FVC values following L-NMMA were similar between groups. CONCLUSION In healthy normotensive younger and older adults, there is minimal contribution of prostacyclin to ACh-mediated vasodilation, yet the NO component of vasodilation is reduced with ageing. In the clinical context, these findings suggest that acute administration of medications that inhibit prostacyclin (i.e. COX-2 inhibitors) evoke modest vascular consequences in healthy persons. Additional studies are necessary to test whether chronic use of COX-2 medications reduces endothelium dependent vasodilation in older persons with or without cardiovascular risk factors.
Collapse
Affiliation(s)
- John H Eisenach
- Departments of Anesthesiology, Physiology and Biomedical Engineering, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905
| | | | | | | | | |
Collapse
|
38
|
Holt RR, Yim SJ, Shearer GC, Hackman RM, Djurica D, Newman JW, Shindel AW, Keen CL. Effects of short-term walnut consumption on human microvascular function and its relationship to plasma epoxide content. J Nutr Biochem 2015; 26:1458-66. [PMID: 26396054 DOI: 10.1016/j.jnutbio.2015.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 07/12/2015] [Accepted: 07/18/2015] [Indexed: 12/21/2022]
Abstract
Improved vascular function after the incorporation of walnuts into controlled or high-fat diets has been reported; however, the mechanism(s) underlying this effect of walnuts is(are) poorly defined. The objective of the current study was to evaluate the acute and short-term effects of walnut intake on changes in microvascular function and the relationship of these effects to plasma epoxides, the cytochrome-P450-derived metabolites of fatty acids. Thirty-eight hypercholesterolemic postmenopausal women were randomized to 4 weeks of 5 g or 40 g of daily walnut intake. All outcomes were measured after an overnight fast and 4 h after walnut intake. Microvascular function, assessed as the reactive hyperemia index (RHI), was the primary outcome measure, with serum lipids and plasma epoxides as secondary measures. Compared to 5 g of daily walnut intake, consuming 40 g/d of walnuts for 4 weeks increased the RHI and Framingham RHI. Total cholesterol and low- and high-density cholesterol did not significantly change after walnut intake. The change in RHI after 4 weeks of walnut intake was associated with the change in the sum of plasma epoxides (r=0.65, P=.002) but not with the change in the sum of plasma hydroxyeicosatetraenoic acids. Of the individual plasma epoxides, arachidonic-acid-derived 14(15)-epoxyeicosatrienoic acid was most strongly associated with the change in microvascular function (r=0.72, P<.001). These data support the concept that the intake of walnut-derived fatty acids can favorably affect plasma epoxide production, resulting in improved microvascular function.
Collapse
Affiliation(s)
- Roberta R Holt
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis CA, 95616, USA.
| | - Sun J Yim
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis CA, 95616, USA
| | - Gregory C Shearer
- Cardiovascular Health Research Center, Sanford Research/USD 2301 E 60th St N, Sioux Falls SD 57104; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, 1400 West 22nd Street, Sioux Falls, SD 57105; Department of Nutritional Sciences, The Pennsylvania State University, 110 Chandlee Laboratory, University Park PA, 16802, USA
| | - Robert M Hackman
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis CA, 95616, USA
| | - Dragana Djurica
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis CA, 95616, USA
| | - John W Newman
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis CA, 95616, USA; United States Department of Agriculture, Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis CA, 95616, USA
| | - Alan W Shindel
- Department of Urology, University of California, Davis Medical Center, 4860 Y. Street, Suite 3500, Sacramento CA, 95817, USA
| | - Carl L Keen
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis CA, 95616, USA; Department of Internal Medicine, University of California, Davis Medical Center, 4150 V. Street, Suite 3100, Sacramento CA, 95817, USA
| |
Collapse
|
39
|
Yang L, Mäki-Petäjä K, Cheriyan J, McEniery C, Wilkinson IB. The role of epoxyeicosatrienoic acids in the cardiovascular system. Br J Clin Pharmacol 2015; 80:28-44. [PMID: 25655310 PMCID: PMC4500322 DOI: 10.1111/bcp.12603] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/19/2015] [Accepted: 01/23/2015] [Indexed: 12/29/2022] Open
Abstract
There is increasing evidence suggesting that epoxyeicosatrienoic acids (EETs) play an important role in cardioprotective mechanisms. These include regulating vascular tone, modulating inflammatory responses, improving cardiomyocyte function and reducing ischaemic damage, resulting in attenuation of animal models of cardiovascular risk factors. This review discusses the current knowledge on the role of EETs in endothelium-dependent control of vascular tone in the healthy and in subjects with cardiovascular risk factors, and considers the pharmacological potential of targeting this pathway.
Collapse
Affiliation(s)
- L Yang
- Experimental Medicine and Immunotherapeutics, Department of Medicine, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - K Mäki-Petäjä
- Experimental Medicine and Immunotherapeutics, Department of Medicine, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - J Cheriyan
- Experimental Medicine and Immunotherapeutics, Department of Medicine, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - C McEniery
- Experimental Medicine and Immunotherapeutics, Department of Medicine, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - I B Wilkinson
- Experimental Medicine and Immunotherapeutics, Department of Medicine, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|
40
|
Frömel T, Fleming I. Whatever happened to the epoxyeicosatrienoic Acid-like endothelium-derived hyperpolarizing factor? The identification of novel classes of lipid mediators and their role in vascular homeostasis. Antioxid Redox Signal 2015; 22:1273-92. [PMID: 25330284 DOI: 10.1089/ars.2014.6150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid (AA) to generate epoxyeicosatrienoic acids (EETs). The latter are biologically active and reported to act as an endothelium-derived hyperpolarizing factor as well as to affect angiogenic and inflammatory signaling pathways. RECENT ADVANCES In addition to AA, the CYP enzymes also metabolize the ω-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid and docosahexaenoic acid to generate bioactive lipid epoxide mediators. The latter can be more potent than the EETs, but their actions are under investigated. The ω3-epoxides, like the EETs, are metabolized by the soluble epoxide hydrolase (sEH) to corresponding diols, and epoxide hydrolase inhibition increases epoxide levels and demonstrates anti-hypertensive as well as anti-inflammatory effects. CRITICAL ISSUES It seems that the overall consequences of CYP activation largely depend on enzyme substrate preference and the endogenous ω-3/ω-6 PUFA ratio. FUTURE DIRECTIONS More studies combining PUFA profiling with cell signaling and disease studies are required to determine the spectrum of molecular pathways affected by the different ω-6 and ω-3 PUFA epoxides and diols. Such information may help improve dietary studies aimed at promoting health via ω-3 PUFA supplementation and/or sEH inhibition.
Collapse
Affiliation(s)
- Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University , Frankfurt am Main, Frankfurt, Germany
| | | |
Collapse
|
41
|
Ozkor MA, Hayek SS, Rahman AM, Murrow JR, Kavtaradze N, Lin J, Manatunga A, Quyyumi AA. Contribution of endothelium-derived hyperpolarizing factor to exercise-induced vasodilation in health and hypercholesterolemia. Vasc Med 2015; 20:14-22. [PMID: 25648989 PMCID: PMC9135050 DOI: 10.1177/1358863x14565374] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of endothelium-derived hyperpolarizing factor (EDHF) in either the healthy circulation or in those with hypercholesterolemia is unknown. In healthy and hypercholesterolemic subjects, we measured forearm blood flow (FBF) using strain-gauge plethysmography at rest, during graded handgrip exercise, and after sodium nitroprusside infusion. Measurements were repeated after l-NMMA, tetraethylammonium (TEA), and combined infusions. At rest, l-NMMA infusion reduced FBF in healthy but not hypercholesterolemic subjects. At peak exercise, vasodilation was lower in hypercholesterolemic compared to healthy subjects (274% vs 438% increase in FBF, p=0.017). TEA infusion reduced exercise-induced vasodilation in both healthy and hypercholesterolemic subjects (27%, p<0.0001 and -20%, p<0.0001, respectively). The addition of l-NMMA to TEA further reduced FBF in healthy (-14%, p=0.012) but not in hypercholesterolemic subjects, indicating a reduced nitric oxide and greater EDHF-mediated contribution to exercise-induced vasodilation in hypercholesterolemia. In conclusion, exercise-induced vasodilation is impaired and predominantly mediated by EDHF in hypercholesterolemic subjects. CLINICAL TRIAL REGISTRATION IDENTIFIER NCT00166166:
Collapse
Affiliation(s)
- Muhiddin A Ozkor
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Salim S Hayek
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ayaz M Rahman
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan R Murrow
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Nino Kavtaradze
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ji Lin
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Amita Manatunga
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Arshed A Quyyumi
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
42
|
Abstract
Coronary vasomotion abnormalities play important roles in the pathogenesis of ischaemic heart disease, in which endothelial dysfunction and coronary artery spasm are substantially involved. Endothelial vasodilator functions are heterogeneous depending on the vessel size, with relatively greater role of nitric oxide (NO) in conduit arteries and predominant role of endothelium-derived hyperpolarizing factor (EDHF) in resistance arteries, where endothelium-derived hydrogen peroxide serves as an important EDHF. The functions of NO synthases in the endothelium are also heterogeneous with multiple mechanisms involved, accounting for the diverse functions of the endothelium in vasomotor as well as metabolic modulations. Cardiovascular abnormalities and metabolic phenotypes become evident when all three NO synthases are deleted, suggesting the importance of both NO and EDHF. Coronary artery spasm plays important roles in the pathogenesis of a wide range of ischaemic heart disease. The central mechanism of the spasm is hypercontraction of vascular smooth muscle cells (VSMCs), but not endothelial dysfunction, where activation of Rho-kinase, a molecular switch of VSMC contraction, plays a major role through inhibition of myosin light-chain phosphatase. The Rho-kinase pathway is also involved in the pathogenesis of a wide range of cardiovascular diseases and new Rho-kinase inhibitors are under development for various indications. The registry study by the Japanese Coronary Spasm Association has demonstrated many important aspects of vasospastic angina. The ongoing international registry study of vasospastic angina in six nations should elucidate the unknown aspects of the disorder. Coronary vasomotion abnormalities appear to be an important therapeutic target in cardiovascular medicine.
Collapse
Affiliation(s)
- Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| |
Collapse
|
43
|
Shao Y, Cheng Z, Li X, Chernaya V, Wang H, Yang XF. Immunosuppressive/anti-inflammatory cytokines directly and indirectly inhibit endothelial dysfunction--a novel mechanism for maintaining vascular function. J Hematol Oncol 2014; 7:80. [PMID: 25387998 PMCID: PMC4236671 DOI: 10.1186/s13045-014-0080-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/13/2014] [Indexed: 12/14/2022] Open
Abstract
Endothelial dysfunction is a pathological status of the vascular system, which can be broadly defined as an imbalance between endothelium-dependent vasoconstriction and vasodilation. Endothelial dysfunction is a key event in the progression of many pathological processes including atherosclerosis, type II diabetes and hypertension. Previous reports have demonstrated that pro-inflammatory/immunoeffector cytokines significantly promote endothelial dysfunction while numerous novel anti-inflammatory/immunosuppressive cytokines have recently been identified such as interleukin (IL)-35. However, the effects of anti-inflammatory cytokines on endothelial dysfunction have received much less attention. In this analytical review, we focus on the recent progress attained in characterizing the direct and indirect effects of anti-inflammatory/immunosuppressive cytokines in the inhibition of endothelial dysfunction. Our analyses are not only limited to the importance of endothelial dysfunction in cardiovascular disease progression, but also expand into the molecular mechanisms and pathways underlying the inhibition of endothelial dysfunction by anti-inflammatory/immunosuppressive cytokines. Our review suggests that anti-inflammatory/immunosuppressive cytokines serve as novel therapeutic targets for inhibiting endothelial dysfunction, vascular inflammation and cardio- and cerebro-vascular diseases.
Collapse
Affiliation(s)
- Ying Shao
- Department of Pharmacology, Center for Metabolic Disease Research and Cardiovascular Research Center, Temple University School of Medicine, MERB 1059, 3500 North Broad Street, Philadelphia, PA, 19140, USA.
| | - Zhongjian Cheng
- Department of Pharmacology, Center for Metabolic Disease Research and Cardiovascular Research Center, Temple University School of Medicine, MERB 1059, 3500 North Broad Street, Philadelphia, PA, 19140, USA.
| | - Xinyuan Li
- Department of Pharmacology, Center for Metabolic Disease Research and Cardiovascular Research Center, Temple University School of Medicine, MERB 1059, 3500 North Broad Street, Philadelphia, PA, 19140, USA.
| | - Valeria Chernaya
- Department of Pharmacology, Center for Metabolic Disease Research and Cardiovascular Research Center, Temple University School of Medicine, MERB 1059, 3500 North Broad Street, Philadelphia, PA, 19140, USA.
| | - Hong Wang
- Department of Pharmacology, Center for Metabolic Disease Research and Cardiovascular Research Center, Temple University School of Medicine, MERB 1059, 3500 North Broad Street, Philadelphia, PA, 19140, USA.
| | - Xiao-feng Yang
- Department of Pharmacology, Center for Metabolic Disease Research and Cardiovascular Research Center, Temple University School of Medicine, MERB 1059, 3500 North Broad Street, Philadelphia, PA, 19140, USA. .,Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
44
|
Alley H, Owens CD, Gasper WJ, Grenon SM. Ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery in clinical research. J Vis Exp 2014:e52070. [PMID: 25406739 PMCID: PMC4353419 DOI: 10.3791/52070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The vascular endothelium is a monolayer of cells that cover the interior of blood vessels and provide both structural and functional roles. The endothelium acts as a barrier, preventing leukocyte adhesion and aggregation, as well as controlling permeability to plasma components. Functionally, the endothelium affects vessel tone. Endothelial dysfunction is an imbalance between the chemical species which regulate vessel tone, thombroresistance, cellular proliferation and mitosis. It is the first step in atherosclerosis and is associated with coronary artery disease, peripheral artery disease, heart failure, hypertension, and hyperlipidemia. The first demonstration of endothelial dysfunction involved direct infusion of acetylcholine and quantitative coronary angiography. Acetylcholine binds to muscarinic receptors on the endothelial cell surface, leading to an increase of intracellular calcium and increased nitric oxide (NO) production. In subjects with an intact endothelium, vasodilation was observed while subjects with endothelial damage experienced paradoxical vasoconstriction. There exists a non-invasive, in vivo method for measuring endothelial function in peripheral arteries using high-resolution B-mode ultrasound. The endothelial function of peripheral arteries is closely related to coronary artery function. This technique measures the percent diameter change in the brachial artery during a period of reactive hyperemia following limb ischemia. This technique, known as endothelium-dependent, flow-mediated vasodilation (FMD) has value in clinical research settings. However, a number of physiological and technical issues can affect the accuracy of the results and appropriate guidelines for the technique have been published. Despite the guidelines, FMD remains heavily operator dependent and presents a steep learning curve. This article presents a standardized method for measuring FMD in the brachial artery on the upper arm and offers suggestions to reduce intra-operator variability.
Collapse
Affiliation(s)
- Hugh Alley
- Department of Surgery, University of California, San Francisco; Department of Surgery, Veterans Affairs Medical Center, San Francisco; VipeRx Lab, Veterans Affairs Medical Center, San Francisco
| | - Christopher D Owens
- Department of Surgery, University of California, San Francisco; Department of Surgery, Veterans Affairs Medical Center, San Francisco; VipeRx Lab, Veterans Affairs Medical Center, San Francisco
| | - Warren J Gasper
- Department of Surgery, University of California, San Francisco; Department of Surgery, Veterans Affairs Medical Center, San Francisco; VipeRx Lab, Veterans Affairs Medical Center, San Francisco
| | - S Marlene Grenon
- Department of Surgery, University of California, San Francisco; Department of Surgery, Veterans Affairs Medical Center, San Francisco; VipeRx Lab, Veterans Affairs Medical Center, San Francisco;
| |
Collapse
|
45
|
Fleming I. The Pharmacology of the Cytochrome P450 Epoxygenase/Soluble Epoxide Hydrolase Axis in the Vasculature and Cardiovascular Disease. Pharmacol Rev 2014; 66:1106-40. [DOI: 10.1124/pr.113.007781] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
46
|
Rahman AM, Murrow JR, Ozkor MA, Kavtaradze N, Lin J, De Staercke C, Hooper WC, Manatunga A, Hayek S, Quyyumi AA. Endothelium-derived hyperpolarizing factor mediates bradykinin-stimulated tissue plasminogen activator release in humans. J Vasc Res 2014; 51:200-8. [PMID: 24925526 DOI: 10.1159/000362666] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/28/2014] [Indexed: 12/20/2022] Open
Abstract
AIMS Bradykinin (BK) stimulates tissue plasminogen activator (t-PA) release from human endothelium. Although BK stimulates both nitric oxide and endothelium-derived hyperpolarizing factor (EDHF) release, the role of EDHF in t-PA release remains unexplored. This study sought to determine the mechanisms of BK-stimulated t-PA release in the forearm vasculature of healthy human subjects. METHODS In 33 healthy subjects (age 40.3 ± 1.9 years), forearm blood flow (FBF) and t-PA release were measured at rest and after intra-arterial infusions of BK (400 ng/min) and sodium nitroprusside (3.2 mg/min). Measurements were repeated after intra-arterial infusion of tetraethylammonium chloride (TEA; 1 µmol/min), fluconazole (0.4 µmol·min(-1)·l(-1)), and N(G)-monomethyl-L-arginine (L-NMMA, 8 µmol/min) to block nitric oxide, and their combination in separate studies. RESULTS BK significantly increased net t-PA release across the forearm (p < 0.0001). Fluconazole attenuated both BK-mediated vasodilation (-23.3 ± 2.7% FBF, p < 0.0001) and t-PA release (from 50.9 ± 9.0 to 21.3 ± 8.9 ng/min/100 ml, p = 0.02). TEA attenuated FBF (-14.7 ± 3.2%, p = 0.002) and abolished BK-stimulated t-PA release (from 22.9 ± 5.7 to -0.8 ± 3.6 ng/min/100 ml, p = 0.0002). L-NMMA attenuated FBF (p < 0.0001), but did not inhibit BK-induced t-PA release (nonsignificant). CONCLUSION BK-stimulated t-PA release is partly due to cytochrome P450-derived epoxides and is inhibited by K(+)Ca channel blockade. Thus, BK stimulates both EDHF-dependent vasodilation and t-PA release.
Collapse
Affiliation(s)
- Ayaz M Rahman
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Ga., USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Liu Y, Tian T, Zhang H, Gao L, Zhou X. The effect of homocysteine-lowering therapy with folic acid on flow-mediated vasodilation in patients with coronary artery disease: a meta-analysis of randomized controlled trials. Atherosclerosis 2014; 235:31-5. [PMID: 24814647 DOI: 10.1016/j.atherosclerosis.2014.03.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 03/12/2014] [Accepted: 03/26/2014] [Indexed: 02/06/2023]
Abstract
OBJECTIVE High level of homocysteine induces injury of endothelial cells and predicts adverse cardiovascular events. The objective was to assess the effect of homocysteine-lowering therapy with folic acid on flow-mediated vasodilation in patients with coronary artery disease. METHODS AND RESULTS We conducted a meta-analysis of randomized controlled trials identified from PubMed, Embase, the Cochrane Library. Eight studies were included. Homocysteine-lowering therapy with folic acid in patients with coronary artery disease significantly improve FMD as compared with placebo using random-effect model (SMD = 1.65 with 95% CI 1.12-2.17, p < 0.001). Subgroup analysis of subjects revealed that lipid-lowering therapy, study duration, and Delphi criteria had no effects on FMD. CONCLUSION Our meta-analysis demonstrated that folic acid supplementation can significantly improve endothelial dysfunction as assessed by FMD in the brachial artery in patients with coronary heart disease.
Collapse
Affiliation(s)
- Yaxin Liu
- Department of Cardiology, FuWai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Tao Tian
- Department of Cardiology, FuWai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Huijun Zhang
- Department of Geriatric Cardiology, General Hospital of Beijing Armed Police Corps Beijing 100027, China
| | - Linggen Gao
- Department of Geriatric Cardiology, General Hospital of Chinese People's Liberation Army, Beijing 100853, China.
| | - Xianliang Zhou
- Department of Cardiology, FuWai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China.
| |
Collapse
|
48
|
Ozkor MA, Rahman AM, Murrow JR, Kavtaradze N, Lin J, Manatunga A, Hayek S, Quyyumi AA. Differences in vascular nitric oxide and endothelium-derived hyperpolarizing factor bioavailability in blacks and whites. Arterioscler Thromb Vasc Biol 2014; 34:1320-7. [PMID: 24675657 DOI: 10.1161/atvbaha.113.303136] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Abnormalities in nitric oxide (NO) bioavailability have been reported in blacks. Whether there are differences in endothelium-derived hyperpolarizing factor (EDHF) in addition to NO between blacks and whites and how these affect physiological vasodilation remain unknown. We hypothesized that the bioavailability of vascular NO and EDHF, at rest and with pharmacological and physiological vasodilation, varies between whites and blacks. APPROACH AND RESULTS In 74 white and 86 black subjects without known cardiovascular disease risk factors, forearm blood flow was measured using plethysmography at rest and during inhibition of NO with N(G)-monomethyl-L-arginine and of K(+) Ca channels (EDHF) with tetraethylammonium. The reduction in resting forearm blood flow was greater with N(G)-monomethyl-L-arginine (P=0.019) and similar with tetraethylammonium in whites compared with blacks. Vasodilation with bradykinin, acetylcholine, and sodium nitroprusside was lower in blacks compared with whites (all P<0.0001). Inhibition with N(G)-monomethyl-L-arginine was greater in whites compared with blacks with bradykinin, acetylcholine, and exercise. Inhibition with tetraethylammonium was lower in blacks with bradykinin, but greater during exercise and with acetylcholine. CONCLUSIONS The contribution to both resting and stimulus-mediated vasodilator tone of NO is greater in whites compared with blacks. EDHF partly compensates for the reduced NO release in exercise and acetylcholine-mediated vasodilation in blacks. Preserved EDHF but reduced NO bioavailability and sensitivity characterizes the vasculature in healthy blacks. CLINICAL TRIAL REGISTRATION URL http://clinicaltrials.gov/. Unique identifier: NCT00166166.
Collapse
Affiliation(s)
- Muhiddin A Ozkor
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (M.A.O., A.M.R., J.R.M., N.K., S.H., A.A.Q.); and Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA (J.L., A.M.)
| | - Ayaz M Rahman
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (M.A.O., A.M.R., J.R.M., N.K., S.H., A.A.Q.); and Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA (J.L., A.M.)
| | - Jonathan R Murrow
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (M.A.O., A.M.R., J.R.M., N.K., S.H., A.A.Q.); and Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA (J.L., A.M.)
| | - Nino Kavtaradze
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (M.A.O., A.M.R., J.R.M., N.K., S.H., A.A.Q.); and Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA (J.L., A.M.)
| | - Ji Lin
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (M.A.O., A.M.R., J.R.M., N.K., S.H., A.A.Q.); and Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA (J.L., A.M.)
| | - Amita Manatunga
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (M.A.O., A.M.R., J.R.M., N.K., S.H., A.A.Q.); and Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA (J.L., A.M.)
| | - Salim Hayek
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (M.A.O., A.M.R., J.R.M., N.K., S.H., A.A.Q.); and Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA (J.L., A.M.)
| | - Arshed A Quyyumi
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (M.A.O., A.M.R., J.R.M., N.K., S.H., A.A.Q.); and Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA (J.L., A.M.).
| |
Collapse
|
49
|
Hayward CE, Cowley EJ, Mills TA, Sibley CP, Wareing M. Maternal obesity impairs specific regulatory pathways in human myometrial arteries. Biol Reprod 2014; 90:65. [PMID: 24478391 DOI: 10.1095/biolreprod.113.112623] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Obese women (body mass index ≥30 kg/m(2)) are at greater risk than normal weight women of pregnancy complications associated with maternal and infant morbidity, particularly the development of cardiovascular disease and metabolic disorders in later life; why this occurs is unknown. Nonpregnant, obese individuals exhibit systemic vascular endothelial dysfunction. We tested the hypothesis that obese pregnant women have altered myometrial arterial function compared to pregnant women of normal (18-24 kg/m(2)) and overweight (25-29 kg/m(2)) body mass index. Responses to vasoconstrictors, U46619 (thromboxane mimetic) and arginine vasopressin, and vasodilators, bradykinin and the nitric oxide donor sodium nitroprusside, were assessed by wire myography in myometrial arteries from normal weight (n = 18), overweight (n = 18), and obese (n = 20) women with uncomplicated pregnancies. Thromboxane-prostanoid receptor expression was assessed using immunostaining in myometrial arteries of normal weight and obese women. Vasoconstriction and vasodilatation were impaired in myometrial arteries from obese women with otherwise uncomplicated pregnancies. Disparate agonist responses suggest that vascular function in obese women is not globally dysregulated but may be specific to thromboxane and nitric oxide pathways. Because obesity rates are escalating, it is important to identify the mechanisms underlying impaired vascular function and establish why some obese women compensate for vascular dysfunction and some do not. Future studies are needed to determine whether central adiposity results in an altered endocrine milieu that may promote vascular dysfunction by altering the function of perivascular adipose tissue.
Collapse
Affiliation(s)
- Christina E Hayward
- Maternal and Fetal Health Research Centre, Institute of Human Development, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
50
|
Mheid IA, Quyyumi AA. Allometric scaling of endothelium-dependent vasodilation: Brachial artery flow-mediated dilation coming of age? Vasc Med 2013; 18:368-71. [DOI: 10.1177/1358863x13513825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ibhar Al Mheid
- Emory Clinical Cardiovascular Research Institute and Emory-Georgia Tech. Predictive Health Institute, Atlanta, GA, USA
| | - Arshed A Quyyumi
- Emory Clinical Cardiovascular Research Institute and Emory-Georgia Tech. Predictive Health Institute, Atlanta, GA, USA
| |
Collapse
|