1
|
Bosa Ojeda F, Méndez Vargas C, Lacalzada Almeida J, Izquierdo Gómez MM, Jiménez Sosa A, Rodríguez Jiménez C, Sánchez-Grande Flecha A, Bosa Santana M, Yanes Bowden G. Efficacy and safety of levosimendan in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: The LEVOCEST trial. Catheter Cardiovasc Interv 2024. [PMID: 39425551 DOI: 10.1002/ccd.31267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Primary angioplasty is the standard procedure for patients with ST-segment elevation myocardial infarction (STEMI). However, myocardial reperfusion results in additional cell damage. Levosimendan, due to its pleiotropic effects, may be a therapeutic alternative to prevent this damage. The objective of this study was to evaluate whether this drug can reduce infarct size in patients with STEMI. METHODS Patients were randomized to receive a 24-h infusion of either levosimendan (0.1 μg/kg/min) or placebo after the primary angioplasty. The main objective was to assess the size of the infarct by cardiac resonance at 30 days and 6 months after the event. Other variables such as left ventricular ejection fraction (LVEF) and adverse ventricular remodeling (AVR) were assessed by speckle-tracking echocardiography and magnetic resonance. Major adverse cardiovascular events (MACE) were also collected. RESULTS 157 patients were analysed (levosimendan, n = 79; placebo, n = 78). We found that after 6 months, patients treated with levosimendan had a greater reduction in infarct size (13.19% ± 9.5% vs.11.79% ± 9%, p = 0.001), compared with those in the placebo group (13.35% ± 7.1% vs. 13.43% ± 7.8%, p = 0.38). There were no significant differences in MACE between both groups. CONCLUSIONS Levosimendan is a safe and effective therapeutic option for reducing infarct size in patients with STEMI.
Collapse
Affiliation(s)
- Francisco Bosa Ojeda
- Department of Interventional Cardiology, University Hospital of the Canary Islands, La Laguna, Santa Cruz de Tenerife, Canary Islands, Spain
- Department of Cardiology, University Hospital of the Canary Islands, La Laguna, Santa Cruz de Tenerife, Canary Islands, Spain
| | - Corabel Méndez Vargas
- Department of Interventional Cardiology, University Hospital of the Canary Islands, La Laguna, Santa Cruz de Tenerife, Canary Islands, Spain
- Department of Cardiology, University Hospital of the Canary Islands, La Laguna, Santa Cruz de Tenerife, Canary Islands, Spain
| | - Juan Lacalzada Almeida
- Department of Cardiology, University Hospital of the Canary Islands, La Laguna, Santa Cruz de Tenerife, Canary Islands, Spain
| | - María M Izquierdo Gómez
- Department of Cardiology, University Hospital of the Canary Islands, La Laguna, Santa Cruz de Tenerife, Canary Islands, Spain
| | - Alejandro Jiménez Sosa
- Research Unit, University Hospital of the Canary Islands, La Laguna, Santa Cruz de Tenerife, Canary Islands, Spain
| | - Consuelo Rodríguez Jiménez
- Clinical Pharmacology Service, Clinical Research and Clinical Trials Unit of the University Hospital of the Canary Islands, Canary Islands, Spain
| | - Alejandro Sánchez-Grande Flecha
- Department of Interventional Cardiology, University Hospital of the Canary Islands, La Laguna, Santa Cruz de Tenerife, Canary Islands, Spain
- Department of Cardiology, University Hospital of the Canary Islands, La Laguna, Santa Cruz de Tenerife, Canary Islands, Spain
| | - Marta Bosa Santana
- Emergency Department, University Hospital Nuestra Señora de Candelaria, Canary Islands, Spain
| | - Geoffrey Yanes Bowden
- Department of Interventional Cardiology, University Hospital of the Canary Islands, La Laguna, Santa Cruz de Tenerife, Canary Islands, Spain
- Department of Cardiology, University Hospital of the Canary Islands, La Laguna, Santa Cruz de Tenerife, Canary Islands, Spain
| |
Collapse
|
2
|
Dai Z, Nishihata Y, Urayama KY, Komiyama N. Early initiation of oral beta-blocker improves long-term survival in patients with acute myocardial infarction who underwent primary percutaneous coronary intervention. BMC Cardiovasc Disord 2024; 24:511. [PMID: 39327569 PMCID: PMC11429823 DOI: 10.1186/s12872-024-04188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND The optimal timing for the initiation of oral beta-blockers after acute myocardial infarction (MI) remains unclear within the context of current primary percutaneous coronary intervention (PCI) practice. METHODS This retrospective cohort study included 412 consecutive patients admitted with a diagnosis of acute MI between January 2007 and August 2016 who underwent successful primary PCI and were given oral carvedilol during hospitalization. Early and late carvedilol groups were based on initiation within the first 24 h or after. Propensity score matching (1:1) incorporating 21 baseline characteristics yielded 47 matched pairs. Timing of carvedilol initiation was evaluated in relation to patient outcomes including time to all-cause mortality, using Kaplan-Meier estimates on the matched cohort and additional confirmation in multivariable regression analysis among the entire cohort. RESULTS Median follow-up period was 828 days. All-cause death occurred in 14 patients (4.7%) and 18 patients (15.8%) of the early and late carvedilol groups. After propensity score matching, initiation of oral carvedilol within the first 24 h was associated with lower all-cause mortality (6.4% vs. 25.5%, hazard ratio 0.28, 95% confidence interval 0.06 - 0.89, p = 0.036), as well as lower in-hospital mortality (0 vs. 14.9%, p = 0.018). CONCLUSIONS These results provide evidence that initiation of oral carvedilol within the first 24 h reduces the risk of long-term mortality, in acute MI patients who underwent primary PCI, supporting current guidelines recommendation.
Collapse
Affiliation(s)
- Zhehao Dai
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
- Department of Cardiovascular Medicine, St. Luke's International Hospital, Tokyo, Japan.
- Graduate School of Public Health, St. Luke's International University, Tokyo, Japan.
| | - Yosuke Nishihata
- Department of Cardiovascular Medicine, St. Luke's International Hospital, Tokyo, Japan
| | - Kevin Y Urayama
- Graduate School of Public Health, St. Luke's International University, Tokyo, Japan
- Department of Social Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Nobuyuki Komiyama
- Department of Cardiovascular Medicine, St. Luke's International Hospital, Tokyo, Japan
| |
Collapse
|
3
|
Maslov LN, Naryzhnaya NV, Voronkov NS, Kurbatov BK, Derkachev IA, Ryabov VV, Vyshlov EV, Kolpakov VV, Tomilova EA, Sapozhenkova EV, Singh N, Fu F, Pei J. The role of β-adrenergic receptors in the regulation of cardiac tolerance to ischemia/reperfusion. Why do β-adrenergic receptor agonists and antagonists protect the heart? Fundam Clin Pharmacol 2024; 38:658-673. [PMID: 38423796 DOI: 10.1111/fcp.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Catecholamines and β-adrenergic receptors (β-ARs) play an important role in the regulation of cardiac tolerance to the impact of ischemia and reperfusion. This systematic review analyzed the molecular mechanisms of the cardioprotective activity of β-AR ligands. METHODS We performed an electronic search of topical articles using PubMed databases from 1966 to 2023. We cited original in vitro and in vivo studies and review articles that documented the cardioprotective properties of β-AR agonists and antagonists. RESULTS The infarct-reducing effect of β-AR antagonists did not depend on a decrease in the heart rate. The target for β-blockers is not only cardiomyocytes but also neutrophils. β1-blockers (metoprolol, propranolol, timolol) and the selective β2-AR agonist arformoterol have an infarct-reducing effect in coronary artery occlusion (CAO) in animals. Antagonists of β1- and β2-АR (metoprolol, propranolol, nadolol, carvedilol, bisoprolol, esmolol) are able to prevent reperfusion cardiac injury. All β-AR ligands that reduced infarct size are the selective or nonselective β1-blockers. It was hypothesized that β1-AR blocking promotes an increase in cardiac tolerance to I/R. The activation of β1-AR, β2-AR, and β3-AR can increase cardiac tolerance to I/R. The cardioprotective effect of β-AR agonists is mediated via the activation of kinases and reactive oxygen species production. CONCLUSIONS It is unclear why β-blockers with the similar receptor selectivity have the infarct-sparing effect while other β-blockers with the same selectivity do not affect infarct size. What is the molecular mechanism of the infarct-reducing effect of β-blockers in reperfusion? Why did in early studies β-blockers decrease the mortality rate in patients with acute myocardial infarction (AMI) and without reperfusion and in more recent studies β-blockers had no effect on the mortality rate in patients with AMI and reperfusion? The creation of more effective β-AR ligands depends on the answers to these questions.
Collapse
Affiliation(s)
- Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Natalia V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Nikita S Voronkov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Boris K Kurbatov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Ivan A Derkachev
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Vyacheslav V Ryabov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Evgeny V Vyshlov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | | | | | | | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Sun B, Wang CY, Chen RR. Clinical Efficacy and Safety of Early Intravenous Administration of Beta-Blockers in Patients Suffering from Acute ST-Segment Elevation Myocardial Infarction Without Heart Failure Undergoing Primary Percutaneous Coronary Intervention: A Study-Level Meta-Analysis of Randomized Clinical Trials. Cardiovasc Drugs Ther 2024; 38:833-846. [PMID: 37002468 PMCID: PMC11266243 DOI: 10.1007/s10557-023-07448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Several clinical studies have produced diverse results regarding the efficacy and safety of early intravenous beta-blockers in patients with acute ST-segment elevation myocardial infarction (STEMI). A study-level meta-analysis of randomized clinical trials (RCTs) comparing early intravenous beta-blockers versus placebo or routine care in STEMI patients undergoing primary percutaneous coronary intervention (PCI) was performed. METHODS A database search was conducted using PubMed, EMBASE, the Cochrane Library, and Clinicaltrials.gov for randomized clinical trials (RCTs) that compared intravenous beta-blockers versus placebo or routine care in STEMI patients who underwent primary PCI. The efficacy outcomes were infarct size (IS, % of LV) and the myocardial salvage index (MSI) based on magnetic resonance imaging, electrocardiographic findings, heart rate, ST-segment reduction percent (STR%), and complete STR. Safety outcomes included arrhythmias in the first 24 h (ventricular tachycardia and fibrillation [VT/VF], atrial fibrillation [AF], bradycardia, and advanced atrioventricular [AV] block), cardiogenic shock and hypotension during hospitalization, left ventricular ejection fraction (LVEF), and major adverse cardiovascular events (cardiac death, stroke, reinfarction, and heart failure readmission) at follow-up. RESULTS Seven RCTs with 1428 patients were included in this study, with 709 patients in the intravenous beta-blockers and 719 in the control group. Intravenous beta-blockers improved MSI compared to the control group (weighted mean difference [WMD] 8.46, 95% confidence interval [CI] 3.12-13.80, P = 0.002, I2 = 0%), but no differences were observed in IS (% of LV) between groups. Compared to the control group, the intravenous beta-blockers group had a lower risk of VT/VF (relative risk [RR] 0.65, 95% CI 0.45-0.94, P = 0.02, I2 = 35%) without an increase of AF, bradycardia, and AV-block and significantly decreased HR, hypotension. LVEF at 1 week ± 7 days (WMD 2.06, 95% CI 0.25-3.88, P = 0.03, I2 = 12%) and 6 months ± 7 days (WMD 3.24, 95% CI 1.54-4.95, P = 0.0002, I2 = 0%) was improved in the intravenous beta-blockers group compared to the control group. Subgroup analysis showed that intravenous beta-blockers before PCI decreased the risk of VT/VF and improved LVEF compared to the control group. Furthermore, sensitivity analysis showed that patients with a left anterior descending (LAD) artery lesion had a smaller IS (% of LV) in the intravenous beta-blockers group compared to the control group. CONCLUSION Intravenous beta-blockers improved the MSI, decreased the risk of VT/VF in the first 24 h, and were associated with increased LVEF at 1 week and 6 months following PCI. In particular, intravenous beta-blockers started before PCI is beneficial for patients with LAD lesions.
Collapse
Affiliation(s)
- Bing Sun
- Department of Cardiology, Tang Du Hospital, Air Force Medical University, Shaanxi, China
| | - Chi Yao Wang
- Department of Cardiology, Tang Du Hospital, Air Force Medical University, Shaanxi, China
| | - Rui Rui Chen
- Department of Cardiology, Tang Du Hospital, Air Force Medical University, Shaanxi, China.
| |
Collapse
|
5
|
He R, Li L, Han C, An W, Liu Z, Gao J. Effect of the combined use of ivabradine and metoprolol in patients with acute myocardial infarction early after percutaneous coronary intervention: A randomized controlled study. Heliyon 2024; 10:e33779. [PMID: 39050427 PMCID: PMC11268166 DOI: 10.1016/j.heliyon.2024.e33779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Objective To investigate the effect and safety of the combined use of ivabradine and metoprolol in patients with acute myocardial infarction (AMI) after percutaneous coronary intervention (PCI). Methods Eighty patients with AMI were randomly divided into the ivabradine group and the control group. The ivabradine group was treated with ivabradine combined with metoprolol after PCI, while the control group was treated with metoprolol only. Both groups were treated continuously for 1 year. Echocardiography-derived parameters, heart rate, cardiopulmonary exercise testing (CPET) data, major adverse cardiac events (MACE) and myocardial markers were analyzed. The primary endpoint was the left ventricular ejection fraction (LVEF). The safety outcomes were blood pressure, liver and kidney function. Results The LVEF was significantly higher in the ivabradine group than in the control group at 1 week, 3 months and 1 year after PCI. The heart rate of the ivabradine group was significantly lower than that of the control group at 1 week and 1month after PCI. The VO2max, metabolic equivalents, anaerobic threshold heart rate, peak heart rate, and heart rate recovery at 8 min of the ivabradine group were significantly higher than those of the control group at 1 year after PCI. Kaplan-Meier analysis demonstrated the one-year total incidence of MACE in the ivabradine group was significantly lower than that in the control group. The B-type natriuretic peptide of the ivabradine group was significantly lower than that of the control group on Day 2 and Day 3 after PCI. The high-sensitivity cardiac troponin I level of the ivabradine group was significantly lower than that of the control group on Day 5 after PCI. Conclusion Early use of ivabradine in patients with AMI after PCI can achieve effective heart rate control, reduce myocardial injury, improve cardiac function and exercise tolerance, and may reduce the incidence of major adverse cardiac events. (Clinical research registration number: ChiCTR2000032731).
Collapse
Affiliation(s)
- Ruiqing He
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingyan Li
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Han
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Translational Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen An
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Translational Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zongjun Liu
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Translational Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junqing Gao
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Translational Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Młynarska E, Czarnik W, Fularski P, Hajdys J, Majchrowicz G, Stabrawa M, Rysz J, Franczyk B. From Atherosclerotic Plaque to Myocardial Infarction-The Leading Cause of Coronary Artery Occlusion. Int J Mol Sci 2024; 25:7295. [PMID: 39000400 PMCID: PMC11242737 DOI: 10.3390/ijms25137295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Cardiovascular disease (CVD) constitutes the most common cause of death worldwide. In Europe alone, approximately 4 million people die annually due to CVD. The leading component of CVD leading to mortality is myocardial infarction (MI). MI is classified into several types. Type 1 is associated with atherosclerosis, type 2 results from inadequate oxygen supply to cardiomyocytes, type 3 is defined as sudden cardiac death, while types 4 and 5 are associated with procedures such as percutaneous coronary intervention and coronary artery bypass grafting, respectively. Of particular note is type 1, which is also the most frequently occurring form of MI. Factors predisposing to its occurrence include, among others, high levels of low-density lipoprotein cholesterol (LDL-C) in the blood, cigarette smoking, chronic kidney disease (CKD), diabetes mellitus (DM), hypertension, and familial hypercholesterolaemia (FH). The primary objective of this review is to elucidate the issues with regard to type 1 MI. Our paper delves into, amidst other aspects, its pathogenesis, risk assessment, diagnosis, pharmacotherapy, and interventional treatment options in both acute and long-term conditions.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Witold Czarnik
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Piotr Fularski
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Hajdys
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Gabriela Majchrowicz
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Magdalena Stabrawa
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
7
|
Welt FGP, Batchelor W, Spears JR, Penna C, Pagliaro P, Ibanez B, Drakos SG, Dangas G, Kapur NK. Reperfusion Injury in Patients With Acute Myocardial Infarction: JACC Scientific Statement. J Am Coll Cardiol 2024; 83:2196-2213. [PMID: 38811097 DOI: 10.1016/j.jacc.2024.02.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 05/31/2024]
Abstract
Despite impressive improvements in the care of patients with ST-segment elevation myocardial infarction, mortality remains high. Reperfusion is necessary for myocardial salvage, but the abrupt return of flow sets off a cascade of injurious processes that can lead to further necrosis. This has been termed myocardial ischemia-reperfusion injury and is the subject of this review. The pathologic and molecular bases for myocardial ischemia-reperfusion injury are increasingly understood and include injury from reactive oxygen species, inflammation, calcium overload, endothelial dysfunction, and impaired microvascular flow. A variety of pharmacologic strategies have been developed that have worked well in preclinical models and some have shown promise in the clinical setting. In addition, there are newer mechanical approaches including mechanical unloading of the heart prior to reperfusion that are in current clinical trials.
Collapse
Affiliation(s)
- Frederick G P Welt
- Department of Medicine, Division of Cardiovascular Medicine, University of Utah Hospital, Salt Lake City, Utah, USA.
| | | | - J Richard Spears
- Department of Cardiovascular Medicine, Beaumont Systems, Royal Oak, Michigan, USA
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Madrid, Spain; Department of Cardiology, Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Stavros G Drakos
- Department of Medicine, Division of Cardiovascular Medicine, University of Utah Hospital, Salt Lake City, Utah, USA; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, USA
| | - George Dangas
- Division of Cardiology, Mount Sinai Health System, New York, New York, USA
| | - Navin K Kapur
- The CardioVascular Center and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Galli M, Niccoli G, De Maria G, Brugaletta S, Montone RA, Vergallo R, Benenati S, Magnani G, D'Amario D, Porto I, Burzotta F, Abbate A, Angiolillo DJ, Crea F. Coronary microvascular obstruction and dysfunction in patients with acute myocardial infarction. Nat Rev Cardiol 2024; 21:283-298. [PMID: 38001231 DOI: 10.1038/s41569-023-00953-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 11/26/2023]
Abstract
Despite prompt epicardial recanalization in patients presenting with ST-segment elevation myocardial infarction (STEMI), coronary microvascular obstruction and dysfunction (CMVO) is still fairly common and is associated with poor prognosis. Various pharmacological and mechanical strategies to treat CMVO have been proposed, but the positive results reported in preclinical and small proof-of-concept studies have not translated into benefits in large clinical trials conducted in the modern treatment setting of patients with STEMI. Therefore, the optimal management of these patients remains a topic of debate. In this Review, we appraise the pathophysiological mechanisms of CMVO, explore the evidence and provide future perspectives on strategies to be implemented to reduce the incidence of CMVO and improve prognosis in patients with STEMI.
Collapse
Affiliation(s)
- Mattia Galli
- Department of Cardiology, Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | | | - Gianluigi De Maria
- Oxford Heart Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Salvatore Brugaletta
- Institut Clinic Cardiovascular, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Rocco A Montone
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Rocco Vergallo
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, IRCCS Italian Cardiology Network, Genova, Italy
| | - Stefano Benenati
- Oxford Heart Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, IRCCS Italian Cardiology Network, Genova, Italy
| | - Giulia Magnani
- Department of Cardiology, University of Parma, Parma, Italy
| | - Domenico D'Amario
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
- Division of Cardiology, Azienda Ospedaliero Universitaria 'Maggiore Della Carita', Novara, Italy
| | - Italo Porto
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, IRCCS Italian Cardiology Network, Genova, Italy
| | - Francesco Burzotta
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Cardiovascular Sciencies, Catholic University of the Sacred Heart, Rome, Italy
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Division of Cardiology - Heart and Vascular Center, University of Virginia, Charlottesville, VA, USA
| | - Dominick J Angiolillo
- Division of Cardiology, University of Florida College of Medicine - Jacksonville, Jacksonville, FL, USA.
| | - Filippo Crea
- Department of Cardiovascular Sciencies, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
9
|
Fan X, Cao J, Li M, Zhang D, El‐Battrawy I, Chen G, Zhou X, Yang G, Akin I. Stroke Related Brain-Heart Crosstalk: Pathophysiology, Clinical Implications, and Underlying Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307698. [PMID: 38308187 PMCID: PMC11005719 DOI: 10.1002/advs.202307698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/09/2024] [Indexed: 02/04/2024]
Abstract
The emergence of acute ischemic stroke (AIS) induced cardiovascular dysfunctions as a bidirectional interaction has gained paramount importance in understanding the intricate relationship between the brain and heart. Post AIS, the ensuing cardiovascular dysfunctions encompass a spectrum of complications, including heart attack, congestive heart failure, systolic or diastolic dysfunction, arrhythmias, electrocardiographic anomalies, hemodynamic instability, cardiac arrest, among others, all of which are correlated with adverse outcomes and mortality. Mounting evidence underscores the intimate crosstalk between the heart and the brain, facilitated by intricate physiological and neurohumoral complex networks. The primary pathophysiological mechanisms contributing to these severe cardiac complications involve the hypothalamic-pituitary-adrenal (HPA) axis, sympathetic and parasympathetic hyperactivity, immune and inflammatory responses, and gut dysbiosis, collectively shaping the stroke-related brain-heart axis. Ongoing research endeavors are concentrated on devising strategies to prevent AIS-induced cardiovascular dysfunctions. Notably, labetalol, nicardipine, and nitroprusside are recommended for hypertension control, while β-blockers are employed to avert chronic remodeling and address arrhythmias. However, despite these therapeutic interventions, therapeutic targets remain elusive, necessitating further investigations into this complex challenge. This review aims to delineate the state-of-the-art pathophysiological mechanisms in AIS through preclinical and clinical research, unraveling their intricate interplay within the brain-heart axis, and offering pragmatic suggestions for managing AIS-induced cardiovascular dysfunctions.
Collapse
Affiliation(s)
- Xuehui Fan
- Key Laboratory of Medical ElectrophysiologyMinistry of Education and Medical Electrophysiological Key Laboratory of Sichuan ProvinceCollaborative Innovation Center for Prevention of Cardiovascular DiseasesInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhou646000China
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
| | - Jianyang Cao
- School of Physical EducationSouthwest Medical UniversityLuzhouSichuan Province646000China
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Mingxia Li
- School of Physical EducationSouthwest Medical UniversityLuzhouSichuan Province646000China
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Dechou Zhang
- Department of NeurologyThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Ibrahim El‐Battrawy
- Department of Cardiology and AngiologyRuhr University44780BochumGermany
- Institut für Forschung und Lehre (IFL)Department of Molecular and Experimental CardiologyRuhr‐University Bochum44780BochumGermany
| | - Guiquan Chen
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Xiaobo Zhou
- Key Laboratory of Medical ElectrophysiologyMinistry of Education and Medical Electrophysiological Key Laboratory of Sichuan ProvinceCollaborative Innovation Center for Prevention of Cardiovascular DiseasesInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhou646000China
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
| | - Guoqiang Yang
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Ibrahim Akin
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
| |
Collapse
|
10
|
Zhang C, Wang F, Hao C, Liang W, Hou T, Xin J, Su B, Ning M, Liu Y. Prognostic Impact of Early Administration of β-Blockers in Critically Ill Patients with Acute Myocardial Infarction. J Clin Pharmacol 2024; 64:410-417. [PMID: 37830391 DOI: 10.1002/jcph.2370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
In critically ill patients with acute myocardial infarction (AMI), the relationship between the early administration of β-blockers and the risks of in-hospital and long-term mortality remains controversial. Furthermore, there are conflicting evidences for the efficacy of the early administration of intravenous followed by oral β-blockers in AMI. We conducted a retrospective analysis of critically ill patients with AMI who received the early administration of β-blockers within 24 hours of admission. The data were extracted from the Medical Information Mart for Intensive Care IV database. We enrolled 2467 critically ill patients with AMI in the study, with 1355 patients who received the early administration of β-blockers and 1112 patients who were non-users. Kaplan-Meier survival analysis and Cox proportional hazards models showed that the early administration of β-blockers was associated with a lower risk of in-hospital mortality (adjusted hazard ratio [aHR] 0.52; 95% confidence interval [95%CI] 0.42-0.64), 1-year mortality (aHR 0.54, 95%CI 0.47-0.63), and 5-year mortality (aHR 0.60, 95%CI 0.52-0.69). Furthermore, the early administration of both oral β-blockers and intravenous β-blockers followed by oral β-blockers may reduce the mortality risk, compared with non-users. The risks of in-hospital and long-term mortality were significantly decreased in patients who underwent revascularization with the early administration of β-blockers. We found that the early administration of β-blockers could lower the risks of in-hospital and long-term mortality. Furthermore, the early administration of both oral β-blockers and intravenous β-blockers followed by oral β-blockers may reduce the mortality risk, compared with non-users. Notably, patients who underwent revascularization with the early administration of β-blockers showed the lowest risks of in-hospital and long-term mortality.
Collapse
Affiliation(s)
- Chong Zhang
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, The Third Central Hospital of Tianjin, Tianjin, China
- Artificial Cell Engineering Technology Research Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, The Third Central Hospital of Tianjin, Tianjin, China
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
| | - Fei Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, The Third Central Hospital of Tianjin, Tianjin, China
- Artificial Cell Engineering Technology Research Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, The Third Central Hospital of Tianjin, Tianjin, China
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
| | - Cuijun Hao
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, The Third Central Hospital of Tianjin, Tianjin, China
- Artificial Cell Engineering Technology Research Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, The Third Central Hospital of Tianjin, Tianjin, China
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
| | - Weiru Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Tianhua Hou
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, The Third Central Hospital of Tianjin, Tianjin, China
- Artificial Cell Engineering Technology Research Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, The Third Central Hospital of Tianjin, Tianjin, China
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
| | - Jiayan Xin
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, The Third Central Hospital of Tianjin, Tianjin, China
- Artificial Cell Engineering Technology Research Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, The Third Central Hospital of Tianjin, Tianjin, China
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
| | - Bin Su
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, The Third Central Hospital of Tianjin, Tianjin, China
- Artificial Cell Engineering Technology Research Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, The Third Central Hospital of Tianjin, Tianjin, China
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
| | - Meng Ning
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, The Third Central Hospital of Tianjin, Tianjin, China
- Artificial Cell Engineering Technology Research Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, The Third Central Hospital of Tianjin, Tianjin, China
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
| | - Yingwu Liu
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, The Third Central Hospital of Tianjin, Tianjin, China
- Artificial Cell Engineering Technology Research Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, The Third Central Hospital of Tianjin, Tianjin, China
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
| |
Collapse
|
11
|
Mirna M. Reply to: "The beneficial effects of beta-blocker in patients with myocardial infarction: What are the underlying mechanisms?". Int J Cardiol 2024; 398:131646. [PMID: 38072130 DOI: 10.1016/j.ijcard.2023.131646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024]
Affiliation(s)
- Moritz Mirna
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Austria.
| |
Collapse
|
12
|
Bai X, Wang N, Si Y, Liu Y, Yin P, Xu C. The Clinical Characteristics of Heart Rate Variability After Stroke: A Systematic Review. Neurologist 2024; 29:133-141. [PMID: 38042172 DOI: 10.1097/nrl.0000000000000540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
The autonomic nervous system dysfunction has been reported in up to 76% of stroke patients 7 days after an acute stroke. Heart rate variability (HRV) is one of the important indicators reflecting the balance of sympathetic and parasympathetic nerves. Therefore, we performed a systematic literature review of existing literature on the association between heart rate variability and the different types of stroke. We included studies published in the last 32 years (1990 to 2022). The electronic databases MEDLINE and PubMed were searched. We selected the research that met the inclusion or exclusion criteria. A narrative synthesis was performed. This review aimed to summarize evidence regarding the potential mechanism of heart rate variability among patients after stroke. In addition, the association of clinical characteristics of heart rate variability and stroke has been depicted. The review further discussed the relationship between post-stroke infection and heart rate variability, which could assist in curbing clinical infection in patients with stroke. HRVas a noninvasive clinical monitoring tool can quantitatively assess the changes in autonomic nervous system activity and further predict the outcome of stroke. HRV could play an important role in guiding the clinical practice for autonomic nervous system disorder after stroke.
Collapse
Affiliation(s)
- Xue Bai
- Department of Cardiov ascular Surgery
| | - Na Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Yueqiao Si
- Department of Cardiology, Daping Hospital, The Third Military Medical University
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Yunchang Liu
- Department of Cardiology, Daping Hospital, The Third Military Medical University
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Ping Yin
- Department of Cardiology, Daping Hospital, The Third Military Medical University
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Chunmei Xu
- Department of Cardiology, Daping Hospital, The Third Military Medical University
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| |
Collapse
|
13
|
Byrne RA, Rossello X, Coughlan JJ, Barbato E, Berry C, Chieffo A, Claeys MJ, Dan GA, Dweck MR, Galbraith M, Gilard M, Hinterbuchner L, Jankowska EA, Jüni P, Kimura T, Kunadian V, Leosdottir M, Lorusso R, Pedretti RFE, Rigopoulos AG, Rubini Gimenez M, Thiele H, Vranckx P, Wassmann S, Wenger NK, Ibanez B. 2023 ESC Guidelines for the management of acute coronary syndromes. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2024; 13:55-161. [PMID: 37740496 DOI: 10.1093/ehjacc/zuad107] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
|
14
|
Maslov LN, Popov SV, Naryzhnaya NV, Mukhomedzyanov AV, Kurbatov BK, Derkachev IA, Boshchenko AA, Prasad NR, Ma H, Zhang Y, Sufianova GZ, Fu F, Pei JM. K ATP channels are regulators of programmed cell death and targets for the creation of novel drugs against ischemia/reperfusion cardiac injury. Fundam Clin Pharmacol 2023; 37:1020-1049. [PMID: 37218378 DOI: 10.1111/fcp.12924] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/29/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND The use of percutaneous coronary intervention (PCI) in patients with ST-segment elevation myocardial infarction (STEMI) is associated with a mortality rate of 5%-7%. It is clear that there is an urgent need to develop new drugs that can effectively prevent cardiac reperfusion injury. ATP-sensitive K+ (KATP ) channel openers (KCOs) can be classified as such drugs. RESULTS KCOs prevent irreversible ischemia and reperfusion injury of the heart. KATP channel opening promotes inhibition of apoptosis, necroptosis, pyroptosis, and stimulation of autophagy. KCOs prevent the development of cardiac adverse remodeling and improve cardiac contractility in reperfusion. KCOs exhibit antiarrhythmic properties and prevent the appearance of the no-reflow phenomenon in animals with coronary artery occlusion and reperfusion. Diabetes mellitus and a cholesterol-enriched diet abolish the cardioprotective effect of KCOs. Nicorandil, a KCO, attenuates major adverse cardiovascular event and the no-reflow phenomenon, reduces infarct size, and decreases the incidence of ventricular arrhythmias in patients with acute myocardial infarction. CONCLUSION The cardioprotective effect of KCOs is mediated by the opening of mitochondrial KATP (mitoKATP ) and sarcolemmal KATP (sarcKATP ) channels, triggered free radicals' production, and kinase activation.
Collapse
Affiliation(s)
- Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Sergey V Popov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Natalia V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Alexandr V Mukhomedzyanov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Boris K Kurbatov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Ivan A Derkachev
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Alla A Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Galina Z Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen, Russia
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jian-Ming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
15
|
Zilinyi RS, Fertel BS, Chang BC, Abrukin L, Suh EH, Sayan OR, McCarty M, Stant JA, Chuich T, Smyth ET, Neuberg G, Collins MB, Kirtane AJ, Moses J, Rabbani L. Updating a Healthcare System-wide Clinical Pathway for Managing Chest Pain and Acute Coronary Syndromes. Crit Pathw Cardiol 2023; 22:103-109. [PMID: 37782621 DOI: 10.1097/hpc.0000000000000334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Clinical pathways are useful tools for conveying and reinforcing best practices to standardize care and optimize patient outcomes across myriad conditions. The NewYork-Presbyterian Healthcare System has utilized a clinical chest pain pathway for more than 20 years to facilitate the timely recognition and management of patients presenting with chest pain syndromes and acute coronary syndromes. This chest pain pathway is regularly updated by an expanding group of key stakeholders, which has extended from the Columbia University Irving Medical Center to encompass the entire regional healthcare system, which includes 8 hospitals. In this 2023 update of the NewYork-Presbyterian clinical chest pain pathway, we present the key changes to the healthcare system-wide clinical chest pain pathway.
Collapse
Affiliation(s)
- Robert S Zilinyi
- From the Division of Cardiology, Department of Medicine, NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY
| | - Baruch S Fertel
- Quality and Patient Safety, NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY
- Department of Emergency Medicine, NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY
| | - Betty C Chang
- Department of Emergency Medicine, NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY
| | - Liliya Abrukin
- Department of Emergency Medicine, NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY
| | - Edward H Suh
- Department of Emergency Medicine, NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY
| | - Osman R Sayan
- Department of Emergency Medicine, NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY
| | - Matthew McCarty
- Department of Emergency Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY
| | - Jennifer A Stant
- From the Division of Cardiology, Department of Medicine, NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY
| | | | - Emily T Smyth
- Department of Emergency Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY
| | - Gerald Neuberg
- Division of Cardiology, Department of Medicine, NewYork-Presbyterian Hospital/Allen Hospital, New York, NY
| | - Michael B Collins
- From the Division of Cardiology, Department of Medicine, NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY
| | - Ajay J Kirtane
- From the Division of Cardiology, Department of Medicine, NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY
| | - Jeffrey Moses
- From the Division of Cardiology, Department of Medicine, NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY
| | - LeRoy Rabbani
- From the Division of Cardiology, Department of Medicine, NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
16
|
Heusch G, Andreadou I, Bell R, Bertero E, Botker HE, Davidson SM, Downey J, Eaton P, Ferdinandy P, Gersh BJ, Giacca M, Hausenloy DJ, Ibanez B, Krieg T, Maack C, Schulz R, Sellke F, Shah AM, Thiele H, Yellon DM, Di Lisa F. Health position paper and redox perspectives on reactive oxygen species as signals and targets of cardioprotection. Redox Biol 2023; 67:102894. [PMID: 37839355 PMCID: PMC10590874 DOI: 10.1016/j.redox.2023.102894] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The present review summarizes the beneficial and detrimental roles of reactive oxygen species in myocardial ischemia/reperfusion injury and cardioprotection. In the first part, the continued need for cardioprotection beyond that by rapid reperfusion of acute myocardial infarction is emphasized. Then, pathomechanisms of myocardial ischemia/reperfusion to the myocardium and the coronary circulation and the different modes of cell death in myocardial infarction are characterized. Different mechanical and pharmacological interventions to protect the ischemic/reperfused myocardium in elective percutaneous coronary interventions and coronary artery bypass grafting, in acute myocardial infarction and in cardiotoxicity from cancer therapy are detailed. The second part keeps the focus on ROS providing a comprehensive overview of molecular and cellular mechanisms involved in ischemia/reperfusion injury. Starting from mitochondria as the main sources and targets of ROS in ischemic/reperfused myocardium, a complex network of cellular and extracellular processes is discussed, including relationships with Ca2+ homeostasis, thiol group redox balance, hydrogen sulfide modulation, cross-talk with NAPDH oxidases, exosomes, cytokines and growth factors. While mechanistic insights are needed to improve our current therapeutic approaches, advancements in knowledge of ROS-mediated processes indicate that detrimental facets of oxidative stress are opposed by ROS requirement for physiological and protective reactions. This inevitable contrast is likely to underlie unsuccessful clinical trials and limits the development of novel cardioprotective interventions simply based upon ROS removal.
Collapse
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Robert Bell
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Edoardo Bertero
- Chair of Cardiovascular Disease, Department of Internal Medicine and Specialties, University of Genova, Genova, Italy
| | - Hans-Erik Botker
- Department of Cardiology, Institute for Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - James Downey
- Department of Physiology, University of South Alabama, Mobile, AL, USA
| | - Philip Eaton
- William Harvey Research Institute, Queen Mary University of London, Heart Centre, Charterhouse Square, London, United Kingdom
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Bernard J Gersh
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Mauro Giacca
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College, London, United Kingdom
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, National Heart Research Institute Singapore, National Heart Centre, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, and CIBERCV, Madrid, Spain
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig -Universität, Giessen, Germany
| | - Frank Sellke
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Holger Thiele
- Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, Leipzig, Germany
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Fabio Di Lisa
- Dipartimento di Scienze Biomediche, Università degli studi di Padova, Padova, Italy.
| |
Collapse
|
17
|
Mirna M, Berezin A, Schmutzler L, Demirel O, Hoppe UC, Lichtenauer M. Early beta-blocker therapy improves in-hospital mortality of patients with non-ST-segment elevation myocardial infarction - a meta-analysis. Int J Cardiol 2023; 389:131160. [PMID: 37423571 DOI: 10.1016/j.ijcard.2023.131160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Although current guidelines endorse early beta-blocker therapy in stable patients with STEMI, there is no clear recommendation on the early use of these drugs in patients with NSTEMI. METHODS Literature search was conducted by 3 independent researchers using PubMed/MEDLINE, CDSR, CENTRAL, CCAs, EBM Reviews, Web of Science and LILACS. Studies were eligible if (P) patients included were ≥ 18 years of age and had non-ST-segment elevation myocardial infarction (NSTEMI), (I) early (<24 h) treatment with intravenous or oral beta-blockers was compared to (C) no treatment with beta-blockers and data on (O) in-hospital mortality and/or in-hospital cardiogenic shock were depicted. Odds ratios and 95% confidence intervals were calculated using random effects models with the Mantel-Haenszel method. The Hartung-Knapp-Sidik-Jonkman method was used as estimator for τ2. RESULTS 977 records were screened for eligibility, which led to the inclusion of 4 retrospective, nonrandomized, observational cohort studies comprising a total of N = 184,951 patients. After pooling of the effect sizes, early therapy with beta-blockers resulted in a reduction of in-hospital mortality (OR 0.43 [0.36-0.51], p = 0.0022) despite no significant effect on the prevalence of cardiogenic shock (OR 0.36 [0.07-1.91], p = 0.1196). CONCLUSION Early treatment with beta-blockers was associated with an attenuation of in-hospital mortality despite no increase in cardiogenic shock. Thus, early therapy with these drugs could elicit beneficial effects on top of reperfusion therapy, similar to the effects seen in STEMI-patients. The low number of studies (k = 4) has to be considered when interpreting the findings of this analysis.
Collapse
Affiliation(s)
- Moritz Mirna
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Austria.
| | - Alexander Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Austria
| | - Lukas Schmutzler
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Austria
| | - Ozan Demirel
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Austria
| | - Uta C Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Austria
| |
Collapse
|
18
|
Byrne RA, Rossello X, Coughlan JJ, Barbato E, Berry C, Chieffo A, Claeys MJ, Dan GA, Dweck MR, Galbraith M, Gilard M, Hinterbuchner L, Jankowska EA, Jüni P, Kimura T, Kunadian V, Leosdottir M, Lorusso R, Pedretti RFE, Rigopoulos AG, Rubini Gimenez M, Thiele H, Vranckx P, Wassmann S, Wenger NK, Ibanez B. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur Heart J 2023; 44:3720-3826. [PMID: 37622654 DOI: 10.1093/eurheartj/ehad191] [Citation(s) in RCA: 869] [Impact Index Per Article: 869.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
|
19
|
Choe JC, Oh JH, Lee HC, Lee JW, Park TS, Park JH, Kim LE, Kim MS, Ahn J, Park JS, Lee HW, Choi JH, Cha KS. The effect of nicorandil on cardiac function and clinical outcomes in ST-segment elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: a randomised trial. Acta Cardiol 2023; 78:880-888. [PMID: 36942830 DOI: 10.1080/00015385.2022.2129592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/05/2022] [Indexed: 03/23/2023]
Abstract
BACKGROUND We investigated the effect of nicorandil on infarct size, cardiac function assessed by cardiac magnetic resonance imaging (CMR) and outcomes in ST-segment elevation myocardial infarction (STEMI) patients undergoing primary percutaneous coronary intervention (PCI). METHODS In a prospective, randomised, controlled trial, 83 patients with STEMI receiving primary PCI were randomised into the nicorandil (n = 40) or placebo (n = 43) groups. Nicorandil was administered in the emergency room before primary PCI as an intravenous bolus of 4 mg followed by a continuous infusion of 6 mg/h for 24 h and as 2-mg intracoronary injections prior to balloon dilatation and coronary stenting. Nicorandil was continued orally at 10-20 mg/d for 6 months. Infarct size and cardiac function were measured by CMR at 5 d and 6 months after primary PCI. Furthermore, major adverse cardiac events (MACEs) including all-cause death, nonfatal myocardial infarction (MI), any revascularisation, stroke, and definite/probable stent thrombosis (ST) were compared. RESULTS There were no significant differences in baseline clinical characteristics between the groups. Infarct size at baseline and 6 months as well as infarct size changes during 6 months as measured by CMR were similar between the groups. Similarly, other CMR parameters were comparable at baseline and 6 months between the groups. MACEs occurred in four patients (4.8%) during 6 months. No significant difference in the risk of MACEs was observed between the groups. CONCLUSIONS Treatment with nicorandil for 6 months after primary PCI was not associated with any improvement in infarct size, CMR-determined cardiac function, and outcomes in STEMI patients.
Collapse
Affiliation(s)
- Jeong Cheon Choe
- Department of Internal Medicine, Division of Cardiology, Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jun-Hyok Oh
- Department of Internal Medicine, Division of Cardiology, Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Han Cheol Lee
- Department of Internal Medicine, Division of Cardiology, Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Ji Won Lee
- Department of Radiology, Pusan National University Hospital, Busan, Republic of Korea
| | - Tae Sik Park
- Department of Internal Medicine, Division of Cardiology, Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jong Ha Park
- Department of Internal Medicine, Division of Cardiology, Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - La Eun Kim
- Department of Internal Medicine, Division of Cardiology, Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Min Su Kim
- Department of Thoracic and Cardiovascular Surgery, Pusan National University Hospital, Busan, Republic of Korea
| | - Jinhee Ahn
- Department of Internal Medicine, Division of Cardiology, Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jin Sup Park
- Department of Internal Medicine, Division of Cardiology, Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Hye Won Lee
- Department of Internal Medicine, Division of Cardiology, Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jung Hyun Choi
- Department of Internal Medicine, Division of Cardiology, Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Kwang Soo Cha
- Department of Internal Medicine, Division of Cardiology, Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
20
|
von Lewinski D, Kolesnik E, Aziz F, Benedikt M, Tripolt NJ, Wallner M, Pferschy PN, von Lewinski F, Schwegel N, Holman RR, Oulhaj A, Moertl D, Siller-Matula J, Sourij H. Timing of SGLT2i initiation after acute myocardial infarction. Cardiovasc Diabetol 2023; 22:269. [PMID: 37777743 PMCID: PMC10544140 DOI: 10.1186/s12933-023-02000-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Pharmacological post-MI treatment is routinely initiated at intensive/cardiac care units. However, solid evidence for an early start of these therapies is only available for dual platelet therapy and statins, whereas data on beta blockers and RAAS inhibitors are heterogenous and mainly limited to STEMI and heart failure patients. Recently, the EMMY trial provided the first evidence on the beneficial effects of SGLT2 inhibitors (SGLT2i) when initiated early after PCI. In patients with type 2 diabetes mellitus, SGLT2i are considered "sick days drugs" and it, therefore, remains unclear if very early SGLT2i initiation following MI is as safe and effective as delayed initiation. METHODS AND RESULTS The EMMY trial evaluated the effect of empagliflozin on NT-proBNP and functional and structural measurements. Within the Empagliflozin group, 22 (9.5%) received early treatment (< 24 h after PCI), 98 (42.2%) within a 24 to < 48 h window (intermediate), and 111 (48.1%) between 48 and 72 h (late). NT-proBNP levels declined by 63.5% (95%CI: - 69.1; - 48.1) in the early group compared to 61.0% (- 76.0; - 41.4) in the intermediate and 61.9% (- 70.8; - 45.7) in the late group (n.s.) within the Empagliflozin group with no significant treatment groups-initiation time interaction (pint = 0.96). Secondary endpoints of left ventricular function (LV-EF, e/e`) as well as structure (LVESD and LVEDD) were also comparable between the groups. No significant difference in severe adverse event rate between the initiation time groups was detected. CONCLUSION Very early administration of SGLT2i after acute myocardial infarction does not show disadvantageous signals with respect to safety and appears to be as effective in reducing NT-proBNP as well as improving structural and functional LV markers as initiation after 2-3 days.
Collapse
Affiliation(s)
- Dirk von Lewinski
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
| | - Ewald Kolesnik
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Faisal Aziz
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Martin Benedikt
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Norbert J Tripolt
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Markus Wallner
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Peter N Pferschy
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Friederike von Lewinski
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Nora Schwegel
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Rury R Holman
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Abderrahim Oulhaj
- Department of Epidemiology and Population Health, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, UAE
| | - Deddo Moertl
- Karl Landsteiner University of Health Sciences, 3050, Krems, Austria
- Department of Internal Medicine 3, University Hospital St. Poelten, 3100, St. Poelten, Austria
| | | | - Harald Sourij
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| |
Collapse
|
21
|
Ndrepepa G, Kastrati A. Coronary No-Reflow after Primary Percutaneous Coronary Intervention-Current Knowledge on Pathophysiology, Diagnosis, Clinical Impact and Therapy. J Clin Med 2023; 12:5592. [PMID: 37685660 PMCID: PMC10488607 DOI: 10.3390/jcm12175592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Coronary no-reflow (CNR) is a frequent phenomenon that develops in patients with ST-segment elevation myocardial infarction (STEMI) following reperfusion therapy. CNR is highly dynamic, develops gradually (over hours) and persists for days to weeks after reperfusion. Microvascular obstruction (MVO) developing as a consequence of myocardial ischemia, distal embolization and reperfusion-related injury is the main pathophysiological mechanism of CNR. The frequency of CNR or MVO after primary PCI differs widely depending on the sensitivity of the tools used for diagnosis and timing of examination. Coronary angiography is readily available and most convenient to diagnose CNR but it is highly conservative and underestimates the true frequency of CNR. Cardiac magnetic resonance (CMR) imaging is the most sensitive method to diagnose MVO and CNR that provides information on the presence, localization and extent of MVO. CMR imaging detects intramyocardial hemorrhage and accurately estimates the infarct size. MVO and CNR markedly negate the benefits of reperfusion therapy and contribute to poor clinical outcomes including adverse remodeling of left ventricle, worsening or new congestive heart failure and reduced survival. Despite extensive research and the use of therapies that target almost all known pathophysiological mechanisms of CNR, no therapy has been found that prevents or reverses CNR and provides consistent clinical benefit in patients with STEMI undergoing reperfusion. Currently, the prevention or alleviation of MVO and CNR remain unmet goals in the therapy of STEMI that continue to be under intense research.
Collapse
Affiliation(s)
- Gjin Ndrepepa
- Deutsches Herzzentrum München, Technische Universität München, Lazarettstrasse 36, 80636 Munich, Germany;
| | - Adnan Kastrati
- Deutsches Herzzentrum München, Technische Universität München, Lazarettstrasse 36, 80636 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
22
|
Ibáñez B. A tale of pigs, beta-blockers and genetic variants. Basic Res Cardiol 2023; 118:27. [PMID: 37439879 DOI: 10.1007/s00395-023-00998-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/01/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Affiliation(s)
- Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, c/ Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
23
|
Kleinbongard P, Lieder HR, Skyschally A, Heusch G. No robust reduction of infarct size and no-reflow by metoprolol pretreatment in adult Göttingen minipigs. Basic Res Cardiol 2023; 118:23. [PMID: 37289247 PMCID: PMC10250284 DOI: 10.1007/s00395-023-00993-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/09/2023] [Accepted: 05/20/2023] [Indexed: 06/09/2023]
Abstract
Whereas prior experiments in juvenile pigs had reported infarct size reduction by intravenous metoprolol early during myocardial ischaemia, two major clinical trials in patients with reperfused acute myocardial infarction were equivocal. We, therefore, went back and tested the translational robustness of infarct size reduction by metoprolol in minipigs. Using a power analysis-based prospective design, we pretreated 20 anaesthetised adult Göttingen minipigs with 1 mg kg-1 metoprolol or placebo and subjected them to 60-min coronary occlusion and 180-min reperfusion. Primary endpoint was infarct size (triphenyl tetrazolium chloride staining) as a fraction of area at risk; no-reflow area (thioflavin-S staining) was a secondary endpoint. There was no significant reduction in infarct size (46 ± 8% of area at risk with metoprolol vs. 42 ± 8% with placebo) or area of no-reflow (19 ± 21% of infarct size with metoprolol vs. 15 ± 23% with placebo). However, the inverse relationship between infarct size and ischaemic regional myocardial blood flow was modestly, but significantly shifted downwards with metoprolol, whereas ischaemic blood flow tended to be reduced by metoprolol. With an additional dose of 1 mg kg-1 metoprolol after 30-min ischaemia in 4 additional pigs, infarct size was also not reduced (54 ± 9% vs. 46 ± 8% in 3 contemporary placebo, n.s.), and area of no-reflow tended to be increased (59 ± 20% vs. 29 ± 12%, n.s.).Infarct size reduction by metoprolol in pigs is not robust, and this result reflects the equivocal clinical trials. The lack of infarct size reduction may be the result of opposite effects of reduced infarct size at any given blood flow and reduced blood flow, possibly through unopposed alpha-adrenergic coronary vasoconstriction.
Collapse
Affiliation(s)
- Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Helmut Raphael Lieder
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Andreas Skyschally
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| |
Collapse
|
24
|
Wang X, Guo R, Guo Y, Guo Q, Yan Y, Gong W, Zheng W, Wang H, Xu L, Ai H, Que B, Yan X, Ma X, Nie S. Rationale and design of the RESTORE trial: A multicenter, randomized, double-blinded, parallel-group, placebo-controlled trial to evaluate the effect of Shenfu injection on myocardial injury in STEMI patients after primary PCI. Am Heart J 2023; 260:9-17. [PMID: 36822255 DOI: 10.1016/j.ahj.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/12/2023] [Accepted: 02/05/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND The mortality following ST-segment elevation myocardial infarction (STEMI) remains substantial in the reperfusion era. Shenfu injection, as a traditional Chinese herbal formula, can alleviate ischemia-reperfusion injury through multiple pharmacologic effects. However, no robust data are available regarding the role of Shenfu injection in reducing infarct size for patients with STEMI undergoing primary percutaneous coronary intervention (PPCI). METHODS/DESIGN This RESTORE trial is a multicenter, randomized, double-blind, parallel-group, placebo-controlled trial (NCT04493840). A total of 326 eligible patients with first-time anterior STEMI undergoing PPCI within 12 h of symptom onset will be enrolled from 10 centers in mainland China. Patients are randomized in a 1:1 fashion to receive either intravenous Shenfu injection (80mL Shenfu injection + 70mL 5% glucose injection) or placebo group (150mL 5% glucose injection) before reperfusion and followed by once a day until 5 days after PPCI. The primary end point is infarct size assessed by cardiac magnetic resonance (CMR) imaging 5±2 days after PPCI. The major secondary end points include enzymatic infarct size, microvascular obstruction, intramyocardial hemorrhage, left ventricular volume and ejection fraction assessed by CMR, as well as cardiovascular events at 30 days. CONCLUSIONS The RESTORE trial is sufficiently powered to demonstrate the clinical effects of Shenfu injection on myocardial injury in STEMI patients undergoing PPCI in the contemporary era.
Collapse
Affiliation(s)
- Xiao Wang
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ruifeng Guo
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yingying Guo
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qian Guo
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yan Yan
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wei Gong
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wen Zheng
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hui Wang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lei Xu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hui Ai
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Bin Que
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Yan
- Peking University Clinical Research Institute, Beijing, China
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Shaoping Nie
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
25
|
Yang T, Zhang D. Research progress on the effects of novel hypoglycemic drugs in diabetes combined with myocardial ischemia/reperfusion injury. Ageing Res Rev 2023; 86:101884. [PMID: 36801379 DOI: 10.1016/j.arr.2023.101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Acute myocardial infarction (AMI) reperfusion is associated with ischemia/reperfusion (I/R) injury, which leads to enlarged myocardial infarction size, poor healing of the infarcted myocardium, and poor left ventricular remodeling, thus increasing the risk of major adverse cardiovascular events (MACEs). Diabetes increases myocardial susceptibility to I/R injury, decreases myocardial responsiveness to cardioprotective strategies, exacerbates myocardial I/R injury, and expands the infarct size of AMI, thereby increasing the incidence of malignant arrhythmias and heart failure. Currently, evidence regarding pharmacological interventions for diabetes combined with AMI and I/R injury is lacking. Traditional hypoglycemic drugs have a limited role in the prevention and treatment of diabetes combined with I/R injury. Current evidence suggests that novel hypoglycemic drugs may exert a preventive effect on diabetes combined with myocardial I/R injury, especially glucagon-like peptide-1 receptor agonists (GLP-1 RA) and sodium-dependent glucose transporter protein 2 inhibitors (SGLT2i), which may increase coronary blood flow, reduce acute thrombosis, attenuate I/R injury, decrease myocardial infarction size, inhibit structural and functional remodeling of the ischemic heart, improve cardiac function, and reduce the occurrence of MACEs of diabetes patients combined with AMI via mechanisms such as reduction of inflammatory response, inhibition of oxidative stress, and improvement of vascular endothelial function. This paper will systematically elaborate the protective role and molecular mechanisms of GLP-1 RA and SGLT2i in diabetes combined with myocardial I/R injury, aiming to provide clinical assistance.
Collapse
Affiliation(s)
- Tiangui Yang
- Department of Cardiology, Shengjing Hospital of China Medical University, China.
| | - Daqing Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
26
|
Zhang RYK, Cochran BJ, Thomas SR, Rye KA. Impact of Reperfusion on Temporal Immune Cell Dynamics After Myocardial Infarction. J Am Heart Assoc 2023; 12:e027600. [PMID: 36789837 PMCID: PMC10111498 DOI: 10.1161/jaha.122.027600] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Excessive inflammation and impaired healing of cardiac tissue following a myocardial infarction (MI) can drive the development of heart failure. Cardiac repair begins immediately after the onset of MI and continues for months. The repair process can be divided into the following 3 overlapping phases, each having distinct functions and sequelae: the inflammatory phase, the proliferative phase, and the maturation phase. Macrophages, neutrophils, and lymphocytes are present in the myocardium throughout the repair process and govern the duration and function of each of these phases. However, changes in the functions of these cell types across each phase are poorly characterized. Numerous immunomodulatory therapies that specifically target inflammation have been developed for promoting cardiac repair and preventing heart failure after MI. However, these treatments have been largely unsuccessful in large-scale clinical randomized controlled trials. A potential explanation for this failure is the lack of a thorough understanding of the time-dependent evolution of the functions of immune cells after a major cardiovascular event. Failure to account for this temporal plasticity in cell function may reduce the efficacy of immunomodulatory approaches that target cardiac repair. This review is concerned with how the functions of different immune cells change with time following an MI. Improved understanding of the temporal changes in immune cell function is important for the future development of effective and targeted treatments for preventing heart failure after MI.
Collapse
Affiliation(s)
| | - Blake J Cochran
- School of Medical Sciences University of New South Wales Sydney New South Wales
| | - Shane R Thomas
- School of Medical Sciences University of New South Wales Sydney New South Wales
| | - Kerry-Anne Rye
- School of Medical Sciences University of New South Wales Sydney New South Wales
| |
Collapse
|
27
|
Ferdinandy P, Andreadou I, Baxter GF, Bøtker HE, Davidson SM, Dobrev D, Gersh BJ, Heusch G, Lecour S, Ruiz-Meana M, Zuurbier CJ, Hausenloy DJ, Schulz R. Interaction of Cardiovascular Nonmodifiable Risk Factors, Comorbidities and Comedications With Ischemia/Reperfusion Injury and Cardioprotection by Pharmacological Treatments and Ischemic Conditioning. Pharmacol Rev 2023; 75:159-216. [PMID: 36753049 PMCID: PMC9832381 DOI: 10.1124/pharmrev.121.000348] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/07/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
Preconditioning, postconditioning, and remote conditioning of the myocardium enhance the ability of the heart to withstand a prolonged ischemia/reperfusion insult and the potential to provide novel therapeutic paradigms for cardioprotection. While many signaling pathways leading to endogenous cardioprotection have been elucidated in experimental studies over the past 30 years, no cardioprotective drug is on the market yet for that indication. One likely major reason for this failure to translate cardioprotection into patient benefit is the lack of rigorous and systematic preclinical evaluation of promising cardioprotective therapies prior to their clinical evaluation, since ischemic heart disease in humans is a complex disorder caused by or associated with cardiovascular risk factors and comorbidities. These risk factors and comorbidities induce fundamental alterations in cellular signaling cascades that affect the development of ischemia/reperfusion injury and responses to cardioprotective interventions. Moreover, some of the medications used to treat these comorbidities may impact on cardioprotection by again modifying cellular signaling pathways. The aim of this article is to review the recent evidence that cardiovascular risk factors as well as comorbidities and their medications may modify the response to cardioprotective interventions. We emphasize the critical need for taking into account the presence of cardiovascular risk factors as well as comorbidities and their concomitant medications when designing preclinical studies for the identification and validation of cardioprotective drug targets and clinical studies. This will hopefully maximize the success rate of developing rational approaches to effective cardioprotective therapies for the majority of patients with multiple comorbidities. SIGNIFICANCE STATEMENT: Ischemic heart disease is a major cause of mortality; however, there are still no cardioprotective drugs on the market. Most studies on cardioprotection have been undertaken in animal models of ischemia/reperfusion in the absence of comorbidities; however, ischemic heart disease develops with other systemic disorders (e.g., hypertension, hyperlipidemia, diabetes, atherosclerosis). Here we focus on the preclinical and clinical evidence showing how these comorbidities and their routine medications affect ischemia/reperfusion injury and interfere with cardioprotective strategies.
Collapse
Affiliation(s)
- Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Ioanna Andreadou
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Gary F Baxter
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Hans Erik Bøtker
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Sean M Davidson
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Dobromir Dobrev
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Bernard J Gersh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Gerd Heusch
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Sandrine Lecour
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Marisol Ruiz-Meana
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Coert J Zuurbier
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Derek J Hausenloy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| |
Collapse
|
28
|
Johri N, Matreja PS, Maurya A, Varshney S, Smritigandha. Role of β-blockers in Preventing Heart Failure and Major Adverse Cardiac Events Post Myocardial Infarction. Curr Cardiol Rev 2023; 19:e110123212591. [PMID: 36635926 PMCID: PMC10494272 DOI: 10.2174/1573403x19666230111143901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 01/14/2023] Open
Abstract
β-blockers have been widely utilized as a part of acute myocardial infarction (AMI) treatment for the past 40 years. Patients receiving β-adrenergic blockers for an extended period following myocardial infarction have a higher chance of surviving. Although many patients benefited from β-blockers, many do not, including those with myocardial infarction, left ventricle dysfunction, chronic pulmonary disease, and elderly people. In individuals with the post-acute coronary syndrome and normal left ventricular ejection fraction (LVEF), the appropriate duration of betablocker therapy is still unknown. There is also no time limit for those without angina and those who do not need β-blockers for arrhythmia or hypertension. Interestingly, β-blockers have been prescribed for more than four decades. The novel mechanism of action on cellular compartments has been found continually, which opens a new way for their potential application in cardiac failure and other cardiac events like post-myocardial infarction. Here, in this review, we studied β-blocker usage in these circumstances and the current recommendations for β-blocker use from clinical practice guidelines.
Collapse
Affiliation(s)
- Nishant Johri
- Department of Pharmacy Practice, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| | - Prithpal S. Matreja
- Department of Pharmacology, Teerthanker Mahaveer Medical College and Research Centre, Moradabad, Uttar Pradesh, India
| | - Aditya Maurya
- Department of Pharmacy Practice, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| | - Shivani Varshney
- Department of Pharmacy Practice, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| | - Smritigandha
- Department of Pharmacy Practice, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| |
Collapse
|
29
|
Khan O, Patel M, Tomdio AN, Beall J, Jovin IS. Beta-Blockers in the Prevention and Treatment of Ischemic Heart Disease: Evidence and Clinical Practice. Heart Views 2023; 24:41-49. [PMID: 37124437 PMCID: PMC10144413 DOI: 10.4103/heartviews.heartviews_75_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/02/2022] [Indexed: 02/25/2023] Open
Abstract
Coronary artery disease (CAD) is the most prevalent cardiovascular disease characterized by atherosclerotic plaque buildup that can lead to partial or full obstruction of blood flow in the coronary arteries. Treatment for CAD involves a combination of lifestyle changes, pharmacologic therapy, and modern revascularization procedures. Beta-adrenoceptor antagonists (or beta-blockers) have been widely used for decades as a key therapy for CAD. In this review, prior studies are examined to better understand beta-adrenoceptor antagonist use in patients with acute coronary syndrome, stable coronary heart disease, and in the perioperative setting. The evidence for the benefit of beta-blocker therapy is well established for patients with acute myocardial infarction, but it diminishes as the time from the index cardiac event elapses. The evidence for benefit in the perioperative setting is not strong.
Collapse
Affiliation(s)
- Omer Khan
- Department of Medicine, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Murti Patel
- Department of Medicine, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
- Department of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Anna N. Tomdio
- Department of Medicine, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
- Department of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jeffrey Beall
- Department of Medicine, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Ion S. Jovin
- Department of Medicine, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
- Department of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
30
|
Van Avondt K, Strecker J, Tulotta C, Minnerup J, Schulz C, Soehnlein O. Neutrophils in aging and aging‐related pathologies. Immunol Rev 2022; 314:357-375. [PMID: 36315403 DOI: 10.1111/imr.13153] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Over the past millennia, life expectancy has drastically increased. While a mere 25 years during Bronze and Iron ages, life expectancy in many European countries and in Japan is currently above 80 years. Such an increase in life expectancy is a result of improved diet, life style, and medical care. Yet, increased life span and aging also represent the most important non-modifiable risk factors for several pathologies including cardiovascular disease, neurodegenerative diseases, and cancer. In recent years, neutrophils have been implicated in all of these pathologies. Hence, this review provides an overview of how aging impacts neutrophil production and function and conversely how neutrophils drive aging-associated pathologies. Finally, we provide a perspective on how processes of neutrophil-driven pathologies in the context of aging can be targeted therapeutically.
Collapse
Affiliation(s)
- Kristof Van Avondt
- Institute of Experimental Pathology (ExPat), Centre of Molecular Biology of Inflammation (ZMBE) University of Münster Münster Germany
| | - Jan‐Kolja Strecker
- Department of Neurology with Institute of Translational Neurology University Hospital Münster Münster Germany
| | - Claudia Tulotta
- Institute of Experimental Pathology (ExPat), Centre of Molecular Biology of Inflammation (ZMBE) University of Münster Münster Germany
| | - Jens Minnerup
- Department of Neurology with Institute of Translational Neurology University Hospital Münster Münster Germany
| | - Christian Schulz
- Department of Medicine I University Hospital, Ludwig Maximilian University Munich Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance Munich Germany
| | - Oliver Soehnlein
- Institute of Experimental Pathology (ExPat), Centre of Molecular Biology of Inflammation (ZMBE) University of Münster Münster Germany
- Department of Physiology and Pharmacology (FyFa) Karolinska Institute Stockholm Sweden
| |
Collapse
|
31
|
Vig N, Mor S, Ravindra K. The multiple value characteristics of fly ash from Indian coal thermal power plants: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:33. [PMID: 36287250 DOI: 10.1007/s10661-022-10473-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Coal-powered thermal plants are the primary source of energy production around the globe. More than half (56.89%) of the Indian power plants use coal for power production. Coal burning in power plants results in coal combustion residuals, which contain coal fly ash (CFA) that is recognized as principle by-product. CFA is difficult to characterize due to its broad compositional variation. Hence, the present article summarizes the various physical, chemical, mineralogical, and petrological characterizations of CFA to its use in different applications. Indian coal thermal power plants are found to release two types of CFA: F (fine) and C (coarse). CFA particles are identified as unburned carbon particles with a large fraction of silica oxides, alumina oxides, and iron oxides with a small fraction of calcium oxide (CaO). Morphologically, CFA particles are spherical, with large carbon molecules and a smooth texture surface. In terms of mineralogy; quartz, mullite, magnetite, and hematite are the dominant mineral phases of CFA and tend to be non-plastic, with permeability levels ranging from 8 × 10-6 to 1.87 × 10-4 cms-1. Petrographically, CFA is enriched in inertinite and liptinites as well as collotelinite, collodetrinite, and vitrodetrinite particles. Moreover, CFA is found to be composed of various organic and inorganic particles. By virtue of multiple characterizations, it has been utilized in several applications for decades, which is still quite limited. Therefore, current study aim to provide helpful insights into the potential use of CFA-derived products in different ways to increase sustainability.
Collapse
Affiliation(s)
- Nitasha Vig
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India.
| | - Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| |
Collapse
|
32
|
Qian G, Zhang Y, Dong W, Jiang ZC, Li T, Cheng LQ, Zou YT, Jiang XS, Zhou H, A X, Li P, Chen ML, Su X, Tian JW, Shi B, Li ZZ, Wu YQ, Li YJ, Chen YD. Effects of Nicorandil Administration on Infarct Size in Patients With ST-Segment-Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention: The CHANGE Trial. J Am Heart Assoc 2022; 11:e026232. [PMID: 36073634 DOI: 10.1161/jaha.122.026232] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Nicorandil was reported to improve microvascular dysfunction and reduce reperfusion injury when administered before primary percutaneous coronary intervention. In this multicenter, prospective, randomized, double-blind clinical trial (CHANGE [Effects of Nicorandil Administration on Infarct Size in Patients With ST-Segment-Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention]), we investigated the effects of nicorandil administration on infarct size in patients with ST-segment-elevation myocardial infarction treated with primary percutaneous coronary intervention. Methods and Results A total of 238 patients with ST-segment-elevation myocardial infarction were randomized to receive intravenous nicorandil (n=120) or placebo (n=118) before reperfusion. Patients in the nicorandil group received a 6-mg intravenous bolus of nicorandil followed by continuous infusion at a rate of 6 mg/h. Patients in the placebo group received the same dose of placebo. The predefined primary end point was infarct size on cardiac magnetic resonance (CMR) imaging performed at 5 to 7 days and 6 months after reperfusion. CMR imaging was performed in 201 patients (84%). Infarct size on CMR imaging at 5 to 7 days after reperfusion was significantly smaller in the nicorandil group compared with the placebo (control) group (26.5±17.1 g versus 32.4±19.3 g; P=0.022), and the effect remained significant on long-term CMR imaging at 6 months after reperfusion (19.5±14.4 g versus 25.7±15.4 g; P=0.008). The incidence of no-reflow/slow-flow phenomenon during primary percutaneous coronary intervention was much lower in the nicorandil group (9.2% [11/120] versus 26.3% [31/118]; P=0.001), and thus, complete ST-segment resolution was more frequently observed in the nicorandil group (90.8% [109/120] versus 78.0% [92/118]; P=0.006). Left ventricular ejection fraction on CMR imaging was significantly higher in the nicorandil group than in the placebo group at both 5 to 7 days (47.0±10.2% versus 43.3±10.0%; P=0.011) and 6 months (50.1±9.7% versus 46.4±8.5%; P=0.009) after reperfusion. Conclusions In the present trial, administration of nicorandil before primary percutaneous coronary intervention led to improved myocardial perfusion grade, increased left ventricular ejection fraction, and reduced myocardial infarct size in patients with ST-segment-elevation myocardial infarction. Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT03445728.
Collapse
Affiliation(s)
- Geng Qian
- Department of Cardiology Chinese PLA General Hospital Beijing China
| | - Ying Zhang
- Department of Cardiology Chinese PLA General Hospital Beijing China
| | - Wei Dong
- Department of Cardiology Chinese PLA General Hospital Beijing China
| | - Zi-Chao Jiang
- Department of Cardiology Chinese PLA General Hospital Beijing China
| | - Tao Li
- Department of Cardiology Chinese PLA General Hospital Beijing China
| | - Liu-Quan Cheng
- Department of Cardiology Chinese PLA General Hospital Beijing China
| | - Yu-Ting Zou
- Department of Cardiology Chinese PLA General Hospital Beijing China
| | - Xiao-Si Jiang
- Department of Cardiology Chinese PLA General Hospital Beijing China
| | - Hao Zhou
- Department of Cardiology Chinese PLA General Hospital Beijing China
| | - Xin A
- Department of Cardiology Chinese PLA General Hospital Beijing China
| | - Ping Li
- Department of Cardiology First People's Hospital of Yulin Guangxi
| | - Mu-Lei Chen
- Department of Cardiology, Beijing Chaoyang Hospital Capital Medical University Beijing China
| | - Xi Su
- Department of Cardiology Wuhan Asia Heart Hospital Wuhan China
| | - Jin-Wen Tian
- Department of Cardiology Hainan Hospital of PLA General Hospital Hainan
| | - Bei Shi
- Department of Cardiology Affiliated Hospital of Zunyi Medical College Zunyi China
| | - Zong-Zhuang Li
- Department of Cardiology Guizhou Provincial People's Hospital Guizhou
| | - Yan-Qing Wu
- Department of Cardiology Second Affiliated Hospital of Nanchang University Jiangxi
| | - Yong-Jun Li
- Department of Cardiology Second Hospital of Hebei Medical University Hebei
| | - Yun-Dai Chen
- Department of Cardiology Chinese PLA General Hospital Beijing China
| |
Collapse
|
33
|
Motawea KR, Gaber H, Singh RB, Swed S, Elshenawy S, Talat NE, Elgabrty N, Shoib S, Wahsh EA, Chébl P, Reyad SM, Rozan SS, Aiash H. Effect of early metoprolol before PCI in ST-segment elevation myocardial infarction on infarct size and left ventricular ejection fraction. A systematic review and meta-analysis of clinical trials. Clin Cardiol 2022; 45:1011-1028. [PMID: 36040709 PMCID: PMC9574721 DOI: 10.1002/clc.23894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/15/2022] Open
Abstract
Aim This meta‐analysis aims to look at the impact of early intravenous Metoprolol in ST‐segment elevation myocardial infarction (STEMI) before percutaneous coronary intervention (PCI) on infarct size, as measured by cardio magnetic resonance (CMR) and left ventricular ejection fraction. Methods We searched the following databases: PubMed, Scopus, Cochrane library, and Web of Science. We included only randomized control trials that reported the use of early intravenous Metoprolol in STEMI before PCI on infarct size, as measured by CMR and left ventricular ejection fraction. RevMan software 5.4 was used for performing the analysis. Results Following a literature search, 340 publications were found. Finally, 18 studies were included for the systematic review, and 8 clinical trials were included in the meta‐analysis after the full‐text screening. At 6 months, the pooled effect revealed a statistically significant association between Metoprolol and increased left ventricular ejection fraction (LVEF) (%) compared to controls (mean difference [MD] = 3.57, [95% confidence interval [CI] = 2.22–4.92], p < .00001), as well as decreased infarcted myocardium(g) compared to controls (MD = −3.84, [95% [CI] = −5.75 to −1.93], p < .0001). At 1 week, the pooled effect revealed a statistically significant association between Metoprolol and increased LVEF (%) compared to controls (MD = 2.98, [95% CI = 1.26−4.69], p = .0007), as well as decreased infarcted myocardium(%) compared to controls (MD = −3.21, [95% CI = −5.24 to −1.18], p = .002). Conclusion A significant decrease in myocardial infarction and increase in LVEF (%) was linked to receiving Metoprolol at 1 week and 6‐month follow‐up.
Collapse
Affiliation(s)
- Karam R Motawea
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hamed Gaber
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ravi B Singh
- Department of Internal Medicine, Suny Upstate Medical university, Syracuse, New York, USA
| | - Sarya Swed
- Faculty of Medicine, Aleppo University, Aleppo, Syria
| | - Salem Elshenawy
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Nawal Elgabrty
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Sheikh Shoib
- Department of Psychiatry, Jawahar Lal Nehru Memorial Hospital, Srinagar, Jammu and Kashmir, India
| | - Engy A Wahsh
- Department of Clinical Pharmacy, Faculty of Pharmacy, October 6 university, Giza, Egypt
| | - Pensée Chébl
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Sarraa M Reyad
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Samah S Rozan
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hani Aiash
- Department of Cardiovascular perfusion, Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
34
|
Irwandi RA, Chiesa ST, Hajishengallis G, Papayannopoulos V, Deanfield JE, D’Aiuto F. The Roles of Neutrophils Linking Periodontitis and Atherosclerotic Cardiovascular Diseases. Front Immunol 2022; 13:915081. [PMID: 35874771 PMCID: PMC9300828 DOI: 10.3389/fimmu.2022.915081] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/13/2022] [Indexed: 01/02/2023] Open
Abstract
Inflammation plays a crucial role in the onset and development of atherosclerosis. Periodontitis is a common chronic disease linked to other chronic inflammatory diseases such as atherosclerotic cardiovascular disease (ASCVD). The mechanistic pathways underlying this association are yet to be fully understood. This critical review aims at discuss the role of neutrophils in mediating the relationship between periodontitis and ASCVD. Systemic inflammation triggered by periodontitis could lead to adaptations in hematopoietic stem and progenitor cells (HSPCs) resulting in trained granulopoiesis in the bone marrow, thereby increasing the production of neutrophils and driving the hyper-responsiveness of these abundant innate-immune cells. These alterations may contribute to the onset, progression, and complications of atherosclerosis. Despite the emerging evidence suggesting that the treatment of periodontitis improves surrogate markers of cardiovascular disease, the resolution of periodontitis may not necessarily reverse neutrophil hyper-responsiveness since the hyper-inflammatory re-programming of granulopoiesis can persist long after the inflammatory inducers are removed. Novel and targeted approaches to manipulate neutrophil numbers and functions are warranted within the context of the treatment of periodontitis and also to mitigate its potential impact on ASCVD.
Collapse
Affiliation(s)
- Rizky A. Irwandi
- Periodontology Unit, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | - Scott T. Chiesa
- UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - George Hajishengallis
- Department of Basic & Translational Sciences, Laboratory of Innate Immunity & Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - John E. Deanfield
- UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Francesco D’Aiuto
- Periodontology Unit, UCL Eastman Dental Institute, University College London, London, United Kingdom
- *Correspondence: Francesco D’Aiuto,
| |
Collapse
|
35
|
Li M, Zheng C, Kawada T, Uemura K, Inagaki M, Saku K, Sugimachi M. Early donepezil monotherapy or combination with metoprolol significantly prevents subsequent chronic heart failure in rats with reperfused myocardial infarction. J Physiol Sci 2022; 72:12. [PMID: 35725377 PMCID: PMC10717938 DOI: 10.1186/s12576-022-00836-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
Despite the presence of clinical guidelines recommending that β-blocker treatment be initiated early after reperfused myocardial infarction (RMI), acute myocardial infarction remains a leading cause of chronic heart failure (CHF). In this study, we compared the effects of donepezil, metoprolol, and their combination on the progression of cardiac remodeling in rats with RMI. The animals were randomly assigned to untreated (UT), donepezil-treated (DT), metoprolol-treated (MT), and a combination of donepezil and metoprolol (DMT) groups. On day 8 after surgery, compared to the UT, the DT and DMT significantly improved myocardial salvage, owing to the suppression of macrophage infiltration and apoptosis. After the 10-week treatment, the DT and DMT exhibited decreased heart rate, reduced myocardial infarct size, attenuated cardiac dysfunction, and decreased plasma levels of brain natriuretic peptide and catecholamine, thereby preventing subsequent CHF. These results suggest that donepezil monotherapy or combined therapy with β-blocker may be an alternative pharmacotherapy post-RMI.
Collapse
Affiliation(s)
- Meihua Li
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan.
| | - Can Zheng
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Kazunori Uemura
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Masashi Inagaki
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Keita Saku
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Masaru Sugimachi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| |
Collapse
|
36
|
Nuche J, Huertas S, Galán-Arriola C, López-Ayala P, Lobo M, Ibáñez B. Cardioprotective effect of the short-acting beta-blocker esmolol in experimental ischemia/reperfusion. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2022; 75:527-529. [PMID: 34952825 DOI: 10.1016/j.rec.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Jorge Nuche
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Servicio de Cardiología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Sergio Huertas
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Servicio de Cardiología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Carlos Galán-Arriola
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Pedro López-Ayala
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Manuel Lobo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Servicio de Cardiología, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Borja Ibáñez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Servicio de Cardiología, IIS-Fundación Jiménez Díaz, Madrid, Spain.
| |
Collapse
|
37
|
Annibali G, Scrocca I, Aranzulla TC, Meliga E, Maiellaro F, Musumeci G. "No-Reflow" Phenomenon: A Contemporary Review. J Clin Med 2022; 11:2233. [PMID: 35456326 PMCID: PMC9028464 DOI: 10.3390/jcm11082233] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
Primary percutaneous angioplasty (pPCI), represents the reperfusion strategy of choice for patients with STEMI according to current international guidelines of the European Society of Cardiology. Coronary no-reflow is characterized by angiographic evidence of slow or no anterograde epicardial flow, resulting in inadequate myocardial perfusion in the absence of evidence of mechanical vessel obstruction. No reflow (NR) is related to a functional and structural alteration of the coronary microcirculation and we can list four main pathophysiological mechanisms: distal atherothrombotic embolization, ischemic damage, reperfusion injury, and individual susceptibility to microvascular damage. This review will provide a contemporary overview of the pathogenesis, diagnosis, and treatment of NR.
Collapse
Affiliation(s)
| | | | | | | | | | - Giuseppe Musumeci
- Cardiology Department, Azienda Ospedaliera Ordine Mauriziano Umberto I, 10128 Turin, Italy; (G.A.); (I.S.); (T.C.A.); (E.M.); (F.M.)
| |
Collapse
|
38
|
Therapeutic Targets for Regulating Oxidative Damage Induced by Ischemia-Reperfusion Injury: A Study from a Pharmacological Perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8624318. [PMID: 35450409 PMCID: PMC9017553 DOI: 10.1155/2022/8624318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 12/22/2022]
Abstract
Ischemia-reperfusion (I-R) injury is damage caused by restoring blood flow into ischemic tissues or organs. This complex and characteristic lesion accelerates cell death induced by signaling pathways such as apoptosis, necrosis, and even ferroptosis. In addition to the direct association between I-R and the release of reactive oxygen species and reactive nitrogen species, it is involved in developing mitochondrial oxidative damage. Thus, its mechanism plays a critical role via reactive species scavenging, calcium overload modulation, electron transport chain blocking, mitochondrial permeability transition pore activation, or noncoding RNA transcription. Other receptors and molecules reduce tissue and organ damage caused by this pathology and other related diseases. These molecular targets have been gradually discovered and have essential roles in I-R resolution. Therefore, the current study is aimed at highlighting the importance of these discoveries. In this review, we inquire about the oxidative damage receptors that are relevant to reducing the damage induced by oxidative stress associated with I-R. Several complications on surgical techniques and pathology interventions do not mitigate the damage caused by I-R. Nevertheless, these therapies developed using alternative targets could work as coadjuvants in tissue transplants or I-R-related pathologies
Collapse
|
39
|
Penna C, Comità S, Tullio F, Alloatti G, Pagliaro P. Challenges facing the clinical translation of cardioprotection: 35 years after the discovery of ischemic preconditioning. Vascul Pharmacol 2022; 144:106995. [DOI: 10.1016/j.vph.2022.106995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/17/2022] [Accepted: 04/16/2022] [Indexed: 12/19/2022]
|
40
|
Fabris E, Selvarajah A, Tavenier A, Hermanides R, Kedhi E, Sinagra G, van’t Hof A. Complementary Pharmacotherapy for STEMI Undergoing Primary PCI: An Evidence-Based Clinical Approach. Am J Cardiovasc Drugs 2022; 22:463-474. [PMID: 35316483 PMCID: PMC9468081 DOI: 10.1007/s40256-022-00531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/24/2022] [Indexed: 11/25/2022]
Abstract
Antithrombotic therapy is the cornerstone of pharmacological treatment in patients undergoing primary percutaneous coronary intervention (PCI). However, the acute management of ST elevation myocardial infarction (STEMI) patients includes therapy for pain relief and potential additional strategies for cardioprotection. The safety and efficacy of some commonly used treatments have been questioned by recent evidence. Indeed a concern about morphine use is the interaction between opioids and oral P2Y12 inhibitors; early beta-blocker treatment has shown conflicting results for the improvement of clinical outcomes; and supplemental oxygen therapy lacks benefit in patients without hypoxia and may be of potential harm. Other additional strategies remain disappointing; however, some treatments may be selectively used. Therefore, we intend to present a critical updated review of complementary pharmacotherapy for a modern treatment approach for STEMI patients undergoing primary PCI.
Collapse
|
41
|
Hoffmann F, Fassbender P, Zander W, Ulbrich L, Kuhr K, Adler C, Halbach M, Reuter H. The Hypertension Paradox: Survival Benefit After ST-Elevation Myocardial Infarction in Patients With History of Hypertension. A Prospective Cohort- and Risk-Analysis. Front Cardiovasc Med 2022; 9:785657. [PMID: 35282337 PMCID: PMC8907999 DOI: 10.3389/fcvm.2022.785657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
BackgroundMortality after ST-elevation myocardial infarction (STEMI) is dependent from best-medical treatment after initial event.ObjectivesDetermining the impact of prescription of guideline-recommended therapy after STEMI in two cohorts, patients with and without history of arterial hypertension, on survival.Methods1,025 patients of the Cologne Infarction Model registry with invasively adjudicated STEMI were dichotomized according to their history of arterial hypertension. We recorded prescription rates and dosing of RAS-inhibitors, β-blockers and statins in all patients. The primary outcome was all-cause death. Mean follow-up was 2.5 years.ResultsMean age was 64 ± 13 years, 246 (25%) were women. 749 (76%) patients had a history of hypertension. All-cause mortality was 24.2%, 30-day and 1-year mortality was 11.3% and 16.6%, respectively. History of hypertension correlated with lower mortality (hazard ratio [HR], @30 days: 0.41 [0.27-0.62], @1 year: 0.37 [0.26-0.53]). After adjusting for age, sex, Killip-class, diabetes mellitus, body-mass index, kidney function and statin prescription at discharge 1-year mortality HR was 0.24 (0.12-0.48). At discharge, prescription rates for RAS-inhibitors, β-blockers and statins, as well as individual dosing and long-term persistence of RAS-inhibitors were higher in patients with history of hypertension. On the same lines, prescription rates for RAS-inhibitors, β-blockers and statins at discharge correlated significantly with lower mortality regardless of history of hypertension.ConclusionPatients with history of hypertension show higher penetration of guideline recommended drug therapy after STEMI, which may contribute to better survival. Better tolerance of β-blockers and RAS-inhibitors in patients with history of hypertension, not hypertension itself, likely explains these differences in prescription and dosing.
Collapse
Affiliation(s)
- Fabian Hoffmann
- Department of Internal Medicine III, University of Cologne, Cologne, Germany
- Department of Cardiovascular Aerospace Medicine, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Patricia Fassbender
- Department of Internal Medicine, Evangelisches Klinikum Köln Weyertal, Cologne, Germany
| | - Wilhelm Zander
- Department of Internal Medicine III, University of Cologne, Cologne, Germany
| | - Lisa Ulbrich
- Department of Internal Medicine III, University of Cologne, Cologne, Germany
| | - Kathrin Kuhr
- Medical Faculty, Institute of Medical Statistics and Computational Biology, University Hospital Cologne, Cologne, Germany
| | - Christoph Adler
- Department of Internal Medicine III, University of Cologne, Cologne, Germany
- Fire Department City of Cologne, Institute for Security Science and Rescue Technology, Cologne, Germany
| | - Marcel Halbach
- Department of Internal Medicine III, University of Cologne, Cologne, Germany
| | - Hannes Reuter
- Department of Internal Medicine III, University of Cologne, Cologne, Germany
- Department of Internal Medicine, Evangelisches Klinikum Köln Weyertal, Cologne, Germany
- *Correspondence: Hannes Reuter
| |
Collapse
|
42
|
Zhang W, Zhang L, Zhou H, Li C, Shao C, He Y, Yang J, Wan H. Astragaloside IV Alleviates Infarction Induced Cardiomyocyte Injury by Improving Mitochondrial Morphology and Function. Front Cardiovasc Med 2022; 9:810541. [PMID: 35265681 PMCID: PMC8899080 DOI: 10.3389/fcvm.2022.810541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The protective effect of astragaloside IV (AS-IV) on myocardial injury after myocardial infarction has been reported. However, the underlying mechanism is still largely unknown. We established a myocardial infarction model in C57BL/6 mice and injected intraperitoneally with 10 mg/kg/d AS-IV for 4 weeks. The cardiac function, myocardial fibrosis, and angiogenesis were investigated by echocardiography, Masson's trichrome staining, and CD31 and smooth muscle actin staining, respectively. Cardiac mitochondrial morphology was visualized by transmission electron microscopy. Cardiac function, infarct size, vascular distribution, and mitochondrial morphology were significantly better in AS-IV-treated mice than in the myocardial infarction model mice. In vitro, a hypoxia-induced H9c2 cell model was established to observe cellular apoptosis and mitochondrial function. H9c2 cells transfected with silent information regulator 3 (Sirt3) targeting siRNA were assayed for Sirt3 expression and activity. Sirt3 silencing eliminated the beneficial effects of AS-IV and abrogated the inhibitory effect of AS-IV on mitochondrial division. These results suggest that AS-IV protects cardiomyocytes from hypoxic injury by maintaining mitochondrial homeostasis in a Sirt3-dependent manner.
Collapse
Affiliation(s)
- Wen Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ling Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huifen Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chang Li
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chongyu Shao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Yu He
| | - Jiehong Yang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Jiehong Yang
| | - Haitong Wan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Haitong Wan
| |
Collapse
|
43
|
Efecto cardioprotector del bloqueador beta de acción ultracorta esmolol en isquemia/reperfusión experimental. Rev Esp Cardiol 2022. [DOI: 10.1016/j.recesp.2021.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Kahraman F, Arslan A, Dogan A, Turker Y, Guler S. Effect of prior beta-blocker use on in-hospital atrial fibrillation development in patients with ST-elevation myocardial infarction. Clin Exp Hypertens 2022; 44:263-267. [DOI: 10.1080/10641963.2022.2029473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Fatih Kahraman
- Cardiology Clinic, Evliya Celebi Research and Training Hospital, Kutahya, Turkey
| | - Akif Arslan
- Cardiology Clinic, Private Anatolia Hospital, Antalya, Turkey
| | - Abdullah Dogan
- Cardiology Clinic, Private Alfa Medical Center, İzmir, Turkey
| | - Yasin Turker
- Cardiology Clinic, Private Meddem Hospital, Ispart, Turkey
| | - Serdar Guler
- Cardiology Clinic, Acıpayam State Hospital, Denizli, Turkey
| |
Collapse
|
45
|
Chen W, Wang J, Wang X, Chang P, Liang M. Knockdown of hypoxia-inducible factor 1-alpha (HIF1α) interferes with angiopoietin-like protein 2 (ANGPTL2) to attenuate high glucose-triggered hypoxia/reoxygenation injury in cardiomyocytes. Bioengineered 2022; 13:1476-1490. [PMID: 34974813 PMCID: PMC8805963 DOI: 10.1080/21655979.2021.2019874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To investigate the role of hypoxia-inducible factor 1-alpha (HIF1A) in hypoxia/reoxygenation (H/R) injury of cardiomyocytes induced by high glucose (HG). The in vitro model of coronary heart disease with diabetes was that H9c2 cells were stimulated by H/R and HG. Quantitative reverse transcription PCR (RT-qPCR) and Western blot analysis were used to detect the expression of HIF1A and angiopoietin-like protein 2 (ANGPTL2) in H9c2 cells. Cell viability and apoptosis were, respectively, estimated by Cell Counting Kit 8 (CCK-8) and TUNEL assays. Lactate dehydrogenase (LDH) activity, inflammation and oxidative stress were in turn detected by their commercial assay kits. Luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were used to confirm the association between HIF1A and ANGPTL2 promoter. The expression of nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway-related proteins and apoptosis-related proteins were also detected by Western blot analysis. As a result, ANGPTL2 expression was upregulated in H9c2 cells induced by HG or/and H/R. ANGPTL2 positively modulated HIF1A expression in H9c2 cells. HG or/and H/R suppressed the cell viability and promoted apoptosis, inflammatory response and oxidative stress levels in H9c2 cells. However, the knockdown of ANGPTL2 could reverse the above phenomena in H/R-stimulated-H9c2 cells through activation of Nrf2/HO-1 pathway. HIF1A transcriptionally activated ANGPTL2 expression. The effect of knockdown of ANGPTL2 on H/R triggered-H9c2 cells was weakened by HIF1A overexpression. In conclusion, knockdown of HIF1A downregulated ANGPTL2 to alleviate H/R injury in HG-induced H9c2 cells by activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Weiguo Chen
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, P.R. China
| | - Jianbang Wang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, P.R. China
| | - Xihui Wang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, P.R. China
| | - Pan Chang
- Experimental Center, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, P.R. China
| | - Meng Liang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, P.R. China
| |
Collapse
|
46
|
Liu T, Howarth AG, Chen Y, Nair AR, Yang HJ, Ren D, Tang R, Sykes J, Kovacs MS, Dey D, Slomka P, Wood JC, Finney R, Zeng M, Prato FS, Francis J, Berman DS, Shah PK, Kumar A, Dharmakumar R. Intramyocardial Hemorrhage and the "Wave Front" of Reperfusion Injury Compromising Myocardial Salvage. J Am Coll Cardiol 2022; 79:35-48. [PMID: 34991787 DOI: 10.1016/j.jacc.2021.10.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND Reperfusion therapy for acute myocardial infarction (MI) is lifesaving. However, the benefit of reperfusion therapy can be paradoxically diminished by reperfusion injury, which can increase MI size. OBJECTIVES Hemorrhage is known to occur in reperfused MIs, but whether hemorrhage plays a role in reperfusion-mediated MI expansion is not known. METHODS We studied cardiac troponin kinetics (cTn) of ST-segment elevation MI patients (n = 70) classified by cardiovascular magnetic resonance to be hemorrhagic (70%) or nonhemorrhagic following primary percutaneous coronary intervention. To isolate the effects of hemorrhage from ischemic burden, we performed controlled canine studies (n = 25), and serially followed both cTn and MI size with time-lapse imaging. RESULTS CTn was not different before reperfusion; however, an increase in cTn following primary percutaneous coronary intervention peaked earlier (12 hours vs 24 hours; P < 0.05) and was significantly higher in patients with hemorrhage (P < 0.01). In hemorrhagic animals, reperfusion led to rapid expansion of myocardial necrosis culminating in epicardial involvement, which was not present in nonhemorrhagic cases (P < 0.001). MI size and salvage were not different at 1 hour postreperfusion in animals with and without hemorrhage (P = 0.65). However, within 72 hours of reperfusion, a 4-fold greater loss in salvageable myocardium was evident in hemorrhagic MIs (P < 0.001). This paralleled observations in patients with larger MIs occurring in hemorrhagic cases (P < 0.01). CONCLUSIONS Myocardial hemorrhage is a determinant of MI size. It drives MI expansion after reperfusion and compromises myocardial salvage. This introduces a clinical role of hemorrhage in acute care management, risk assessment, and future therapeutics.
Collapse
Affiliation(s)
- Ting Liu
- Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Radiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Andrew G Howarth
- Cedars-Sinai Medical Center, Los Angeles, California, USA; University of Calgary, Calgary, Alberta, Canada
| | - Yinyin Chen
- Cedars-Sinai Medical Center, Los Angeles, California, USA; Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, China
| | - Anand R Nair
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Hsin-Jung Yang
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Daoyuan Ren
- Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, China
| | - Richard Tang
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jane Sykes
- Lawson Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Michael S Kovacs
- Lawson Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Damini Dey
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Piotr Slomka
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - John C Wood
- University of Southern California, Los Angeles, California, USA
| | | | - Mengsu Zeng
- Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, China
| | - Frank S Prato
- Lawson Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | | | | | - Andreas Kumar
- Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - Rohan Dharmakumar
- Cedars-Sinai Medical Center, Los Angeles, California, USA; Krannert Cardiovascular Research Center, Indiana University School of Medicine/IU Health Cardiovascular Institute, Indianapolis, Indiana, USA.
| |
Collapse
|
47
|
Remote ischemic preconditioning can extend the tolerance to extended drug-coated balloon inflation time by reducing myocardial damage during percutaneous coronary intervention. Int J Cardiol 2022; 353:3-8. [DOI: 10.1016/j.ijcard.2022.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/24/2022]
|
48
|
Li D, Li Y, Lin M, Zhang W, Fu G, Chen Z, Jin C, Zhang W. Effects of Metoprolol on Periprocedural Myocardial Infarction After Percutaneous Coronary Intervention (Type 4a MI): An Inverse Probability of Treatment Weighting Analysis. Front Cardiovasc Med 2021; 8:746988. [PMID: 34888360 PMCID: PMC8650586 DOI: 10.3389/fcvm.2021.746988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Metoprolol is the most used cardiac selective β-blocker and has been recommended as a mainstay drug in the management of acute myocardial infarction (AMI). However, the evidence supporting this regimen in periprocedural myocardial infarction (PMI) is limited. Methods: This study identified 860 individuals who suffered PMI following percutaneous coronary intervention (PCI) procedure and median followed up for 3.2 years. Subjects were dichotomized according to whether they received chronic oral sustained-release metoprolol succinate following PMI. After inverse probability of treatment weighting (IPTW) adjustment, logistic regression analysis, Kaplan-Meier curve, and Cox regression analysis were performed to estimate the effects of metoprolol on major adverse cardiovascular events (MACEs) which composed of cardiac death, myocardial infarction (MI), stroke, and revascularization. Moreover, an exploratory analysis was performed according to hypertension, cardiac troponin I (cTnI) elevation, and cardiac function. A double robust adjustment was used for sensitivity analysis. Results: Among enrolled PMI subjects, 456 (53%) patients received metoprolol treatment and 404 (47%) patients received observation. After IPTW adjustment, receiving metoprolol was found to reduce the subsequent 3-year risk of MACEs by nearly 7.1% [15 vs. 22.1%, absolute risk difference (ARD) = 0.07, number needed to treat (NNT) = 14, relative risk (RR) = 0.682]. In IPTW-adjusted Cox regression analyses, receiving metoprolol was related to a reduced risk of MACEs (hazard ratio [HR] = 0.588, 95%CI [0.385–0.898], P = 0.014) and revascularization (HR = 0.538, 95%CI [0.326–0.89], P = 0.016). Additionally, IPTW-adjusted logistic regression analysis showed that receiving metoprolol reduced the risk of MI at the third year (odds ratio [OR] = 0.972, 95% CI [0.948–997], P = 0.029). Exploratory analysis showed that the protective effect of metoprolol was more pronounced in subgroups of hypertension and cTnI elevation ≥1,000%, and was remained in patients without cardiac dysfunction. The benefits above were consistent when double robust adjustments were performed. Conclusion: In the real-world setting, receiving metoprolol treatment following PCI-related PMI has decreased the subsequent risk of MACEs, particularly the risk of recurrent MI and revascularization.
Collapse
Affiliation(s)
- Duanbin Li
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Ya Li
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Maoning Lin
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Wenjuan Zhang
- Department of Information Technology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Zhaoyang Chen
- Department of Cardiology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Chongying Jin
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Wenbin Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| |
Collapse
|
49
|
Qian G, A X, Jiang X, Jiang Z, Li T, Dong W, Guo J, Chen Y. Early Trimetazidine Therapy in Patients Undergoing Primary Percutaneous Coronary Intervention for ST Segment Elevation Myocardial Infarction Reduces Myocardial Infarction Size. Cardiovasc Drugs Ther 2021; 37:497-506. [PMID: 34767131 DOI: 10.1007/s10557-021-07259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Trimetazidine, a metabolic agent with anti-ischemic effects, was reported to reduce reperfusion injury in animal models. In this randomized double-blind placebo-controlled trial, we investigated the effects of trimetazidine on the reduction of infarction size in patients undergoing revascularization for ST segment elevation myocardial infarction (STEMI). METHODS Patients with STEMI randomly received trimetazidine (n = 87) or placebo (n = 86) before primary percutaneous coronary intervention (PCI), and subsequently received oral trimetazidine or placebo for 12 months after reperfusion. The predefined primary endpoint was infarction size on cardiac magnetic resonance (CMR) performed at 7 days after primary PCI. The trial was registered on www.clinicaltrials.gov (registration number: NCT02826616). RESULTS The clinical characteristics of the patients in both groups were well-matched at baseline. At 7 days after primary PCI, the percentage and absolute infarction size in the trimetazidine group were significantly smaller than those in the control group (22% ± 12% [n = 74] vs. 27% ± 13% [n = 74], p = 0.011 and 28 ± 18 g [n = 74] vs. 35 ± 19 g [n = 74], p = 0.022, respectively), and the incidence of myocardial microvascular obstruction (MVO) measured by CMR was significantly reduced in the trimetazidine group (29.7% [22/74] vs. 52.7% [39/74], p = 0.005). The myocardial salvage index (MSI) measured by CMR was significantly higher in the trimetazidine group (48% ± 20% vs. 39% ± 20%, p = 0.008). The incidence of readmission due to aggravated heart failure did not differ significantly between the trimetazidine group and the control group (8.0% vs. 14.0%, p = 0.234). CONCLUSIONS In patients with STEMI undergoing primary PCI, early trimetazidine before reperfusion reduced myocardial infarction size and MVO, and improved MSI.
Collapse
Affiliation(s)
- Geng Qian
- Department of Cardiology, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China.
| | - Xin A
- Department of Cardiology, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Xiaosi Jiang
- Department of Cardiology, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Zichao Jiang
- Department of Cardiology, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Tao Li
- Department of Cardiology, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Wei Dong
- Department of Cardiology, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Jun Guo
- Department of Cardiology, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China.
| |
Collapse
|
50
|
Qin H, Li S, Liu Z. Protective Effect of Shexiang Baoxin Pill on Myocardial Ischemia/Reperfusion Injury in Patients With STEMI. Front Pharmacol 2021; 12:721011. [PMID: 34603032 PMCID: PMC8479593 DOI: 10.3389/fphar.2021.721011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/25/2021] [Indexed: 01/11/2023] Open
Abstract
Background: There is no definite effect in the treatment of myocardial ischemia/reperfusion (I/R) injury in patients with acute ST-segment elevation myocardial infarction (STEMI). We evaluated the protective effect of Shexiang Baoxin Pill (SBP) on I/R injury in STEMI patients. Methods: STEMI patients were randomly divided into a primary percutaneous coronary intervention (PPCI) group (n = 52) and a PPCI + SBP group (n = 51). The area at risk of infarction (AAR) and final infarct size (FIS) were examined by single-photon emission computed tomography (SPECT). I/R injury was assessed using myocardial salvage (MS) and salvage index (SI) calculated from AAR and FIS. Results: The ST-segment resolution (STR) in the PPCI + SBP group was significantly higher than that in the PPCI group (p = 0.036), and the peak value of high-sensitivity troponin T (hsTNT) was lower than that in the PPCI group (p = 0.048). FIS in the PPCI + SBP group was smaller than that in the PPCI group (p = 0.047). MS (p = 0.023) and SI (p = 0.006) in the PPCI + SBP group were larger than those in the PPCI group. The left ventricular ejection fraction (LVEF) in the PPCI + SBP group was higher than that in the PPCI group (p = 0.049), and N-terminal pro-B type natriuretic peptide (NT-proBNP) level in the PPCI + SBP group was lower than that in the PPCI group (p = 0.048). Conclusions: SBP can alleviate I/R injury (MS and SI), decrease myocardial infarction area (peak value of hsTNT and FIS), and improve myocardial reperfusion (MBG and STR) and cardiac function (LVEF and NT-proBNP).
Collapse
Affiliation(s)
- Haixia Qin
- Ordos Central Hospital, Ordos Clinical Medical College, Inner Mongolia Medical University, Ordos, China
| | - Siyuan Li
- Ordos Central Hospital, Ordos Clinical Medical College, Inner Mongolia Medical University, Ordos, China
| | - Zhenbing Liu
- Ordos Central Hospital, Ordos Clinical Medical College, Inner Mongolia Medical University, Ordos, China
| |
Collapse
|