1
|
Barnett SN, Cujba AM, Yang L, Maceiras AR, Li S, Kedlian VR, Pett JP, Polanski K, Miranda AMA, Xu C, Cranley J, Kanemaru K, Lee M, Mach L, Perera S, Tudor C, Joseph PD, Pritchard S, Toscano-Rivalta R, Tuong ZK, Bolt L, Petryszak R, Prete M, Cakir B, Huseynov A, Sarropoulos I, Chowdhury RA, Elmentaite R, Madissoon E, Oliver AJ, Campos L, Brazovskaja A, Gomes T, Treutlein B, Kim CN, Nowakowski TJ, Meyer KB, Randi AM, Noseda M, Teichmann SA. An organotypic atlas of human vascular cells. Nat Med 2024; 30:3468-3481. [PMID: 39566559 PMCID: PMC11645277 DOI: 10.1038/s41591-024-03376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 10/25/2024] [Indexed: 11/22/2024]
Abstract
The human vascular system, comprising endothelial cells (ECs) and mural cells, covers a vast surface area in the body, providing a critical interface between blood and tissue environments. Functional differences exist across specific vascular beds, but their molecular determinants across tissues remain largely unknown. In this study, we integrated single-cell transcriptomics data from 19 human organs and tissues and defined 42 vascular cell states from approximately 67,000 cells (62 donors), including angiotypic transitional signatures along the arterial endothelial axis from large to small caliber vessels. We also characterized organotypic populations, including splenic littoral and blood-brain barrier ECs, thus clarifying the molecular profiles of these important cell states. Interrogating endothelial-mural cell molecular crosstalk revealed angiotypic and organotypic communication pathways related to Notch, Wnt, retinoic acid, prostaglandin and cell adhesion signaling. Transcription factor network analysis revealed differential regulation of downstream target genes in tissue-specific modules, such as those of FOXF1 across multiple lung vascular subpopulations. Additionally, we make mechanistic inferences of vascular drug targets within different vascular beds. This open-access resource enhances our understanding of angiodiversity and organotypic molecular signatures in human vascular cells, and has therapeutic implications for vascular diseases across tissues.
Collapse
Affiliation(s)
- Sam N Barnett
- National Heart and Lung Institute, Imperial College London, London, UK
- British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK
| | - Ana-Maria Cujba
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Lu Yang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Ana Raquel Maceiras
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Shuang Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Veronika R Kedlian
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - J Patrick Pett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Chuan Xu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - James Cranley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kazumasa Kanemaru
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Michael Lee
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Lukas Mach
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Shani Perera
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Catherine Tudor
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | | | | | - Zewen K Tuong
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Batuhan Cakir
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Alik Huseynov
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Ioannis Sarropoulos
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Rasheda A Chowdhury
- National Heart and Lung Institute, Imperial College London, London, UK
- British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK
| | - Rasa Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Ensocell Therapeutics, BioData Innovation Centre, Wellcome Genome Campus, Cambridge, UK
| | - Elo Madissoon
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Lia Campos
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Tomás Gomes
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Barbara Treutlein
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Chang N Kim
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Anna M Randi
- National Heart and Lung Institute, Imperial College London, London, UK
- British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, UK.
- British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK.
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Nguyen LP, Song W, Yang Y, Tran AP, Weston TA, Jung H, Tu Y, Kim PH, Kim JR, Xie K, Yu RG, Scheithauer J, Presnell AM, Ploug M, Birrane G, Arnold H, Koltowska K, Mäe MA, Betsholtz C, He L, Goodwin JL, Beigneux AP, Fong LG, Young SG. Distinct strategies for intravascular triglyceride metabolism in hearts of mammals and lower vertebrate species. JCI Insight 2024; 9:e184940. [PMID: 39435661 PMCID: PMC11529983 DOI: 10.1172/jci.insight.184940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024] Open
Abstract
Lipoprotein lipase (LPL) and multiple regulators of LPL activity (e.g., APOC2 and ANGPTL4) are present in all vertebrates, but GPIHBP1-the endothelial cell (EC) protein that captures LPL within the subendothelial spaces and transports it to its site of action in the capillary lumen-is present in mammals but in not chickens or other lower vertebrates. In mammals, GPIHBP1 deficiency causes severe hypertriglyceridemia, but chickens maintain low triglyceride levels despite the absence of GPIHBP1. To understand intravascular lipolysis in lower vertebrates, we examined LPL expression in mouse and chicken hearts. In both species, LPL was abundant on capillaries, but the distribution of Lpl transcripts was strikingly different. In mouse hearts, Lpl transcripts were extremely abundant in cardiomyocytes but were barely detectable in capillary ECs. In chicken hearts, Lpl transcripts were absent in cardiomyocytes but abundant in capillary ECs. In zebrafish hearts, lpl transcripts were also in capillary ECs but not cardiomyocytes. In both mouse and chicken hearts, LPL was present, as judged by immunogold electron microscopy, in the glycocalyx of capillary ECs. Thus, mammals produce LPL in cardiomyocytes and rely on GPIHBP1 to transport the LPL into capillaries, whereas lower vertebrates produce LPL directly in capillary ECs, rendering an LPL transporter unnecessary.
Collapse
Affiliation(s)
| | | | - Ye Yang
- Department of Medicine and
- Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | - Michael Ploug
- Finsen Laboratory, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Finsen Laboratory, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Hannah Arnold
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Katarzyna Koltowska
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Beijer Gene and Neuro Laboratory, Uppsala University, Uppsala, Sweden
| | - Maarja A. Mäe
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine-Huddinge, Karolinska Institute Campus Flemingsberg, Huddinge, Sweden
| | - Liqun He
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Jeffrey L. Goodwin
- Division of Laboratory Animal Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | | | | | - Stephen G. Young
- Department of Medicine and
- Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
3
|
Arulsamy K, Xia B, Chen H, Zhang L, Chen K. Machine Learning Uncovers Vascular Endothelial Cell Identity Genes by Expression Regulation Features in Single Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609808. [PMID: 39253493 PMCID: PMC11383289 DOI: 10.1101/2024.08.27.609808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Deciphering cell identity genes is pivotal to understanding cell differentiation, development, and many diseases involving cell identity dysregulation. Here, we introduce SCIG, a machine-learning method to uncover cell identity genes in single cells. In alignment with recent reports that cell identity genes are regulated with unique epigenetic signatures, we found cell identity genes exhibit distinctive genetic sequence signatures, e.g., unique enrichment patterns of cis-regulatory elements. Using these genetic sequence signatures, along with gene expression information from single-cell RNA-seq data, enables SCIG to uncover the identity genes of a cell without a need for comparison to other cells. Cell identity gene score defined by SCIG surpassed expression value in network analysis to uncover master transcription factors regulating cell identity. Applying SCIG to the human endothelial cell atlas revealed that the tissue microenvironment is a critical supplement to master transcription factors for cell identity refinement. SCIG is publicly available at https://github.com/kaifuchenlab/SCIG , offering a valuable tool for advancing cell differentiation, development, and regenerative medicine research.
Collapse
|
4
|
Ren L, Xia J, Huang C, Bai Y, Yao J, Li D, Yan B. Single-cell transcriptomic analysis reveals the antiangiogenic role of Mgarp in diabetic retinopathy. BMJ Open Diabetes Res Care 2024; 12:e004189. [PMID: 39013633 PMCID: PMC11268071 DOI: 10.1136/bmjdrc-2024-004189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
INTRODUCTION Diabetic retinopathy (DR) is a common vascular complication of diabetes mellitus and a leading cause of vision loss worldwide. Endothelial cell (EC) heterogeneity has been observed in the pathogenesis of DR. Elucidating the underlying mechanisms governing EC heterogeneity may provide novel insights into EC-specific therapies for DR. RESEARCH DESIGN AND METHODS We used the single-cell data from the Gene Expression Omnibus database to explore EC heterogeneity between diabetic retinas and non-diabetic retinas and identify the potential genes involved in DR. CCK-8 assays, EdU assays, transwell assays, and tube formation assays were conducted to determine the role of the identified gene in angiogenic effects. RESULTS Our analysis identified three distinct EC subpopulations in retinas and revealed that Mitochondria-localized glutamic acid-rich protein (Mgarp) gene is potentially involved in the pathogenesis of DR. Silencing of Mgarp significantly suppressed the proliferation, migration, and tube formation capacities in retinal endothelial cells. CONCLUSIONS This study not only offers new insights into transcriptomic heterogeneity and pathological alteration of retinal ECs but also holds the promise to pave the way for antiangiogenic therapy by targeting EC-specific gene.
Collapse
Affiliation(s)
- Ling Ren
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiao Xia
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chang Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yun Bai
- College of Information Science, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Jin Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Dan Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, People's Republic of China
| | - Biao Yan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Deng L, Pollmeier L, Bednarz R, Cao C, Laurette P, Wirth L, Mamazhakypov A, Bode C, Hein L, Gilsbach R, Lother A. Atlas of cardiac endothelial cell enhancer elements linking the mineralocorticoid receptor to pathological gene expression. SCIENCE ADVANCES 2024; 10:eadj5101. [PMID: 38446896 PMCID: PMC10917356 DOI: 10.1126/sciadv.adj5101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
Endothelial cells play crucial roles in physiology and are increasingly recognized as therapeutic targets in cardiovascular disease. Here, we analyzed the regulatory landscape of cardiac endothelial cells by assessing chromatin accessibility, histone modifications, and 3D chromatin organization and confirmed the functional relevance of enhancer-promoter interactions by CRISPRi-mediated enhancer silencing. We used this dataset to explore mechanisms of transcriptional regulation in cardiovascular disease and compared six different experimental models of heart failure, hypertension, or diabetes. Enhancers that regulate gene expression in diseased endothelial cells were enriched with binding sites for a distinct set of transcription factors, including the mineralocorticoid receptor (MR), a known drug target in heart failure and hypertension. For proof of concept, we applied endothelial cell-specific MR deletion in mice to confirm MR-dependent gene expression and predicted direct MR target genes. Overall, we have compiled here a comprehensive atlas of cardiac endothelial cell enhancer elements that provides insight into the role of transcription factors in cardiovascular disease.
Collapse
Affiliation(s)
- Lisa Deng
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Cardiovascular Research Track, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Luisa Pollmeier
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rebecca Bednarz
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Center of Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Can Cao
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Center of Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Patrick Laurette
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Center of Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Luisa Wirth
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Argen Mamazhakypov
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christine Bode
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Ralf Gilsbach
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Center of Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Interdisciplinary Medical Intensive Care, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Jurado MR, Tombor LS, Arsalan M, Holubec T, Emrich F, Walther T, Abplanalp W, Fischer A, Zeiher AM, Schulz MH, Dimmeler S, John D. Improved integration of single-cell transcriptome data demonstrates common and unique signatures of heart failure in mice and humans. Gigascience 2024; 13:giae011. [PMID: 38573186 PMCID: PMC10993718 DOI: 10.1093/gigascience/giae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/17/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Cardiovascular research heavily relies on mouse (Mus musculus) models to study disease mechanisms and to test novel biomarkers and medications. Yet, applying these results to patients remains a major challenge and often results in noneffective drugs. Therefore, it is an open challenge of translational science to develop models with high similarities and predictive value. This requires a comparison of disease models in mice with diseased tissue derived from humans. RESULTS To compare the transcriptional signatures at single-cell resolution, we implemented an integration pipeline called OrthoIntegrate, which uniquely assigns orthologs and therewith merges single-cell RNA sequencing (scRNA-seq) RNA of different species. The pipeline has been designed to be as easy to use and is fully integrable in the standard Seurat workflow.We applied OrthoIntegrate on scRNA-seq from cardiac tissue of heart failure patients with reduced ejection fraction (HFrEF) and scRNA-seq from the mice after chronic infarction, which is a commonly used mouse model to mimic HFrEF. We discovered shared and distinct regulatory pathways between human HFrEF patients and the corresponding mouse model. Overall, 54% of genes were commonly regulated, including major changes in cardiomyocyte energy metabolism. However, several regulatory pathways (e.g., angiogenesis) were specifically regulated in humans. CONCLUSIONS The demonstration of unique pathways occurring in humans indicates limitations on the comparability between mice models and human HFrEF and shows that results from the mice model should be validated carefully. OrthoIntegrate is publicly accessible (https://github.com/MarianoRuzJurado/OrthoIntegrate) and can be used to integrate other large datasets to provide a general comparison of models with patient data.
Collapse
Affiliation(s)
- Mariano Ruz Jurado
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Lukas S Tombor
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), 60590 Frankfurt am Main, Germany
| | - Mani Arsalan
- Department of Cardiovascular Surgery, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - Tomas Holubec
- Department of Cardiovascular Surgery, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - Fabian Emrich
- Department of Cardiovascular Surgery, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - Thomas Walther
- German Centre for Cardiovascular Research (DZHK), 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Department of Cardiovascular Surgery, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - Wesley Abplanalp
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ariane Fischer
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Andreas M Zeiher
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Marcel H Schulz
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - David John
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
7
|
Ritterhoff J, Tian R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges. Nat Rev Cardiol 2023; 20:812-829. [PMID: 37237146 DOI: 10.1038/s41569-023-00887-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Cardiac metabolism is vital for heart function. Given that cardiac contraction requires a continuous supply of ATP in large quantities, the role of fuel metabolism in the heart has been mostly considered from the perspective of energy production. However, the consequence of metabolic remodelling in the failing heart is not limited to a compromised energy supply. The rewired metabolic network generates metabolites that can directly regulate signalling cascades, protein function, gene transcription and epigenetic modifications, thereby affecting the overall stress response of the heart. In addition, metabolic changes in both cardiomyocytes and non-cardiomyocytes contribute to the development of cardiac pathologies. In this Review, we first summarize how energy metabolism is altered in cardiac hypertrophy and heart failure of different aetiologies, followed by a discussion of emerging concepts in cardiac metabolic remodelling, that is, the non-energy-generating function of metabolism. We highlight challenges and open questions in these areas and finish with a brief perspective on how mechanistic research can be translated into therapies for heart failure.
Collapse
Affiliation(s)
- Julia Ritterhoff
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany.
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
8
|
Lother A, Kohl P. The heterocellular heart: identities, interactions, and implications for cardiology. Basic Res Cardiol 2023; 118:30. [PMID: 37495826 PMCID: PMC10371928 DOI: 10.1007/s00395-023-01000-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
The heterocellular nature of the heart has been receiving increasing attention in recent years. In addition to cardiomyocytes as the prototypical cell type of the heart, non-myocytes such as endothelial cells, fibroblasts, or immune cells are coming more into focus. The rise of single-cell sequencing technologies enables identification of ever more subtle differences and has reignited the question of what defines a cell's identity. Here we provide an overview of the major cardiac cell types, describe their roles in homeostasis, and outline recent findings on non-canonical functions that may be of relevance for cardiology. We highlight modes of biochemical and biophysical interactions between different cardiac cell types and discuss the potential implications of the heterocellular nature of the heart for basic research and therapeutic interventions.
Collapse
Affiliation(s)
- Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
- Interdisciplinary Medical Intensive Care, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany.
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University Heart Center, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Peche VS, Pietka TA, Jacome-Sosa M, Samovski D, Palacios H, Chatterjee-Basu G, Dudley AC, Beatty W, Meyer GA, Goldberg IJ, Abumrad NA. Endothelial cell CD36 regulates membrane ceramide formation, exosome fatty acid transfer and circulating fatty acid levels. Nat Commun 2023; 14:4029. [PMID: 37419919 PMCID: PMC10329018 DOI: 10.1038/s41467-023-39752-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
Endothelial cell (EC) CD36 controls tissue fatty acid (FA) uptake. Here we examine how ECs transfer FAs. FA interaction with apical membrane CD36 induces Src phosphorylation of caveolin-1 tyrosine-14 (Cav-1Y14) and ceramide generation in caveolae. Ensuing fission of caveolae yields vesicles containing FAs, CD36 and ceramide that are secreted basolaterally as small (80-100 nm) exosome-like extracellular vesicles (sEVs). We visualize in transwells EC transfer of FAs in sEVs to underlying myotubes. In mice with EC-expression of the exosome marker emeraldGFP-CD63, muscle fibers accumulate circulating FAs in emGFP-labeled puncta. The FA-sEV pathway is mapped through its suppression by CD36 depletion, blocking actin-remodeling, Src inhibition, Cav-1Y14 mutation, and neutral sphingomyelinase 2 inhibition. Suppression of sEV formation in mice reduces muscle FA uptake, raises circulating FAs, which remain in blood vessels, and lowers glucose, mimicking prominent Cd36-/- mice phenotypes. The findings show that FA uptake influences membrane ceramide, endocytosis, and EC communication with parenchymal cells.
Collapse
Affiliation(s)
- V S Peche
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - T A Pietka
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - M Jacome-Sosa
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - D Samovski
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - H Palacios
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - G Chatterjee-Basu
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - A C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - W Beatty
- Department of Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - G A Meyer
- Departments of Physical Therapy, Neurology and Orthopedic Surgery, Washington University School of Medicine, St. Louis, 63110, USA
| | - I J Goldberg
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - N A Abumrad
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
10
|
Floy ME, Shabnam F, Givens SE, Patil VA, Ding Y, Li G, Roy S, Raval AN, Schmuck EG, Masters KS, Ogle BM, Palecek SP. Identifying molecular and functional similarities and differences between human primary cardiac valve interstitial cells and ventricular fibroblasts. Front Bioeng Biotechnol 2023; 11:1102487. [PMID: 37051268 PMCID: PMC10083504 DOI: 10.3389/fbioe.2023.1102487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction: Fibroblasts are mesenchymal cells that predominantly produce and maintain the extracellular matrix (ECM) and are critical mediators of injury response. In the heart, valve interstitial cells (VICs) are a population of fibroblasts responsible for maintaining the structure and function of heart valves. These cells are regionally distinct from myocardial fibroblasts, including left ventricular cardiac fibroblasts (LVCFBs), which are located in the myocardium in close vicinity to cardiomyocytes. Here, we hypothesize these subpopulations of fibroblasts are transcriptionally and functionally distinct. Methods: To compare these fibroblast subtypes, we collected patient-matched samples of human primary VICs and LVCFBs and performed bulk RNA sequencing, extracellular matrix profiling, and functional contraction and calcification assays. Results: Here, we identified combined expression of SUSD2 on a protein-level, and MEOX2, EBF2 and RHOU at a transcript-level to be differentially expressed in VICs compared to LVCFBs and demonstrated that expression of these genes can be used to distinguish between the two subpopulations. We found both VICs and LVCFBs expressed similar activation and contraction potential in vitro, but VICs showed an increase in ALP activity when activated and higher expression in matricellular proteins, including cartilage oligomeric protein and alpha 2-Heremans-Schmid glycoprotein, both of which are reported to be linked to calcification, compared to LVCFBs. Conclusion: These comparative transcriptomic, proteomic, and functional studies shed novel insight into the similarities and differences between valve interstitial cells and left ventricular cardiac fibroblasts and will aid in understanding region-specific cardiac pathologies, distinguishing between primary subpopulations of fibroblasts, and generating region-specific stem-cell derived cardiac fibroblasts.
Collapse
Affiliation(s)
- Martha E. Floy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Fathima Shabnam
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Sophie E. Givens
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Vaidehi A. Patil
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Yunfeng Ding
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Grace Li
- Department of Chemical Engineering, University of Florida, Gainesville, FL, United States
| | - Sushmita Roy
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Amish N. Raval
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Eric G. Schmuck
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Kristyn S. Masters
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Brenda M. Ogle
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Sean P. Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
11
|
Wakabayashi T, Naito H. Cellular heterogeneity and stem cells of vascular endothelial cells in blood vessel formation and homeostasis: Insights from single-cell RNA sequencing. Front Cell Dev Biol 2023; 11:1146399. [PMID: 37025170 PMCID: PMC10070846 DOI: 10.3389/fcell.2023.1146399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Vascular endothelial cells (ECs) that constitute the inner surface of blood vessels are essential for new vessel formation and organ homeostasis. ECs display remarkable phenotypic heterogeneity across different organs and the vascular tree during angiogenesis and homeostasis. Recent advances in single cell RNA sequencing (scRNA-seq) technologies have allowed a new understanding of EC heterogeneity in both mice and humans. In particular, scRNA-seq has identified new molecular signatures for arterial, venous and capillary ECs in different organs, as well as previously unrecognized specialized EC subtypes, such as the aerocytes localized in the alveolar capillaries of the lung. scRNA-seq has also revealed the gene expression profiles of specialized tissue-resident EC subtypes that are capable of clonal expansion and contribute to adult angiogenesis, a process of new vessel formation from the pre-existing vasculature. These specialized tissue-resident ECs have been identified in various different mouse tissues, including aortic endothelium, liver, heart, lung, skin, skeletal muscle, retina, choroid, and brain. Transcription factors and signaling pathways have also been identified in the specialized tissue-resident ECs that control angiogenesis. Furthermore, scRNA-seq has also documented responses of ECs in diseases such as cancer, age-related macular degeneration, Alzheimer's disease, atherosclerosis, and myocardial infarction. These new findings revealed by scRNA-seq have the potential to provide new therapeutic targets for different diseases associated with blood vessels. In this article, we summarize recent advances in the understanding of the vascular endothelial cell heterogeneity and endothelial stem cells associated with angiogenesis and homeostasis in mice and humans, and we discuss future prospects for the application of scRNA-seq technology.
Collapse
Affiliation(s)
- Taku Wakabayashi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Taku Wakabayashi, ; Hisamichi Naito,
| | - Hisamichi Naito
- Department of Vascular Physiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
- *Correspondence: Taku Wakabayashi, ; Hisamichi Naito,
| |
Collapse
|
12
|
Bondareva O, Rodríguez-Aguilera JR, Oliveira F, Liao L, Rose A, Gupta A, Singh K, Geier F, Schuster J, Boeckel JN, Buescher JM, Kohli S, Klöting N, Isermann B, Blüher M, Sheikh BN. Single-cell profiling of vascular endothelial cells reveals progressive organ-specific vulnerabilities during obesity. Nat Metab 2022; 4:1591-1610. [PMID: 36400935 PMCID: PMC9684070 DOI: 10.1038/s42255-022-00674-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 09/30/2022] [Indexed: 11/20/2022]
Abstract
Obesity promotes diverse pathologies, including atherosclerosis and dementia, which frequently involve vascular defects and endothelial cell (EC) dysfunction. Each organ has distinct EC subtypes, but whether ECs are differentially affected by obesity is unknown. Here we use single-cell RNA sequencing to analyze transcriptomes of ~375,000 ECs from seven organs in male mice at progressive stages of obesity to identify organ-specific vulnerabilities. We find that obesity deregulates gene expression networks, including lipid handling, metabolic pathways and AP1 transcription factor and inflammatory signaling, in an organ- and EC-subtype-specific manner. The transcriptomic aberrations worsen with sustained obesity and are only partially mitigated by dietary intervention and weight loss. For example, dietary intervention substantially attenuates dysregulation of liver, but not kidney, EC transcriptomes. Through integration with human genome-wide association study data, we further identify a subset of vascular disease risk genes that are induced by obesity. Our work catalogs the impact of obesity on the endothelium, constitutes a useful resource and reveals leads for investigation as potential therapeutic targets.
Collapse
Affiliation(s)
- Olga Bondareva
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Jesús Rafael Rodríguez-Aguilera
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Fabiana Oliveira
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Longsheng Liao
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Alina Rose
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Anubhuti Gupta
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Kunal Singh
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Florian Geier
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
| | - Jenny Schuster
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
| | - Jes-Niels Boeckel
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, University of Leipzig, Leipzig, Germany
| | - Joerg M Buescher
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig, Leipzig, Germany
| | - Bilal N Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany.
- Medical Faculty, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
13
|
McCloskey MC, Zhang VZ, Ahmad SD, Walker S, Romanick SS, Awad HA, McGrath JL. Sourcing cells for in vitro models of human vascular barriers of inflammation. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:979768. [PMID: 36483299 PMCID: PMC9724237 DOI: 10.3389/fmedt.2022.979768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/29/2022] [Indexed: 07/20/2023] Open
Abstract
The vascular system plays a critical role in the progression and resolution of inflammation. The contributions of the vascular endothelium to these processes, however, vary with tissue and disease state. Recently, tissue chip models have emerged as promising tools to understand human disease and for the development of personalized medicine approaches. Inclusion of a vascular component within these platforms is critical for properly evaluating most diseases, but many models to date use "generic" endothelial cells, which can preclude the identification of biomedically meaningful pathways and mechanisms. As the knowledge of vascular heterogeneity and immune cell trafficking throughout the body advances, tissue chip models should also advance to incorporate tissue-specific cells where possible. Here, we discuss the known heterogeneity of leukocyte trafficking in vascular beds of some commonly modeled tissues. We comment on the availability of different tissue-specific cell sources for endothelial cells and pericytes, with a focus on stem cell sources for the full realization of personalized medicine. We discuss sources available for the immune cells needed to model inflammatory processes and the findings of tissue chip models that have used the cells to studying transmigration.
Collapse
Affiliation(s)
- Molly C. McCloskey
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Victor Z. Zhang
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - S. Danial Ahmad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Samuel Walker
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Samantha S. Romanick
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Hani A. Awad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| |
Collapse
|
14
|
Cell landscape of larval and adult Xenopus laevis at single-cell resolution. Nat Commun 2022; 13:4306. [PMID: 35879314 PMCID: PMC9314398 DOI: 10.1038/s41467-022-31949-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
The rapid development of high-throughput single-cell RNA sequencing technology offers a good opportunity to dissect cell heterogeneity of animals. A large number of organism-wide single-cell atlases have been constructed for vertebrates such as Homo sapiens, Macaca fascicularis, Mus musculus and Danio rerio. However, an intermediate taxon that links mammals to vertebrates of more ancient origin is still lacking. Here, we construct the first Xenopus cell landscape to date, including larval and adult organs. Common cell lineage-specific transcription factors have been identified in vertebrates, including fish, amphibians and mammals. The comparison of larval and adult erythrocytes identifies stage-specific hemoglobin subtypes, as well as a common type of cluster containing both larval and adult hemoglobin, mainly at NF59. In addition, cell lineages originating from all three layers exhibits both antigen processing and presentation during metamorphosis, indicating a common regulatory mechanism during metamorphosis. Overall, our study provides a large-scale resource for research on Xenopus metamorphosis and adult organs.
Collapse
|
15
|
Kim B, Arany Z. Endothelial Lipid Metabolism. Cold Spring Harb Perspect Med 2022; 12:a041162. [PMID: 35074792 PMCID: PMC9310950 DOI: 10.1101/cshperspect.a041162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Endothelial cells (ECs) line all vessels of all vertebrates and are fundamental to organismal metabolism. ECs rely on their metabolism both to transport nutrients in and out of underlying parenchyma, and to support their own cellular activities, including angiogenesis. ECs primarily consume glucose, and much is known of how ECs transport and consume glucose and other carbohydrates. In contrast, how lipids are transported, and the role of lipids in normal EC function, has garnered less attention. We review here recent developments on the role of lipids in endothelial metabolism, with a focus on lipid uptake and transport in quiescent endothelium, and the use of lipid pathways during angiogenesis.
Collapse
Affiliation(s)
- Boa Kim
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zolt Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
16
|
Kokotović T, Lenartowicz EM, Langeslag M, Ciotu CI, Fell CW, Scaramuzza A, Fischer MJM, Kress M, Penninger JM, Nagy V. Transcription factor mesenchyme homeobox protein 2 (MEOX2) modulates nociceptor function. FEBS J 2022; 289:3457-3476. [PMID: 35029322 PMCID: PMC9306780 DOI: 10.1111/febs.16347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022]
Abstract
Mesenchyme homeobox protein 2 (MEOX2) is a transcription factor involved in mesoderm differentiation, including development of bones, muscles, vasculature and dermatomes. We have previously identified dysregulation of MEOX2 in fibroblasts from Congenital Insensitivity to Pain patients, and confirmed that btn, the Drosophila homologue of MEOX2, plays a role in nocifensive responses to noxious heat stimuli. To determine the importance of MEOX2 in the mammalian peripheral nervous system, we used a Meox2 heterozygous (Meox2+/−) mouse model to characterise its function in the sensory nervous system, and more specifically, in nociception. MEOX2 is expressed in the mouse dorsal root ganglia (DRG) and spinal cord, and localises in the nuclei of a subset of sensory neurons. Functional studies of the mouse model, including behavioural, cellular and electrophysiological analyses, showed altered nociception encompassing impaired action potential initiation upon depolarisation. Mechanistically, we noted decreased expression of Scn9a and Scn11a genes encoding Nav1.7 and Nav1.9 voltage‐gated sodium channels respectively, that are crucial in subthreshold amplification and action potential initiation in nociceptors. Further transcriptomic analyses of Meox2+/− DRG revealed downregulation of a specific subset of genes including those previously associated with pain perception, such as PENK and NPY. Based on these observations, we propose a novel role of MEOX2 in primary afferent nociceptor neurons for the maintenance of a transcriptional programme required for proper perception of acute and inflammatory noxious stimuli.
Collapse
Affiliation(s)
- Tomislav Kokotović
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases Vienna Austria
- CeMM‐Research Center for Molecular Medicine of the Austrian Academy of Sciences Vienna Austria
- Department of Neurology Medical University of Vienna Austria
| | | | - Michiel Langeslag
- Department of Physiology and Medical Physics Institute of Physiology Medical University of Innsbruck Austria
- Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI) University of Innsbruck Austria
- Department of Pharmacology Medical University of Innsbruck Austria
| | - Cosmin I. Ciotu
- Institute of Physiology Medical University of Vienna Austria
| | - Christopher W. Fell
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases Vienna Austria
- CeMM‐Research Center for Molecular Medicine of the Austrian Academy of Sciences Vienna Austria
- Department of Neurology Medical University of Vienna Austria
| | - Angelica Scaramuzza
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases Vienna Austria
| | | | - Michaela Kress
- Department of Physiology and Medical Physics Institute of Physiology Medical University of Innsbruck Austria
| | - Josef M. Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences VBC – Vienna BioCenter Campus Vienna Austria
- Department of Medical Genetics Life Science Institute University of British Columbia Vancouver Canada
| | - Vanja Nagy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases Vienna Austria
- CeMM‐Research Center for Molecular Medicine of the Austrian Academy of Sciences Vienna Austria
- Department of Neurology Medical University of Vienna Austria
| |
Collapse
|
17
|
Glinton KE, Ma W, Lantz C, Grigoryeva LS, DeBerge M, Liu X, Febbraio M, Kahn M, Oliver G, Thorp EB. Macrophage-produced VEGFC is induced by efferocytosis to ameliorate cardiac injury and inflammation. J Clin Invest 2022; 132:e140685. [PMID: 35271504 PMCID: PMC9057589 DOI: 10.1172/jci140685] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Clearance of dying cells by efferocytosis is necessary for cardiac repair after myocardial infarction (MI). Recent reports have suggested a protective role for vascular endothelial growth factor C (VEGFC) during acute cardiac lymphangiogenesis after MI. Here, we report that defective efferocytosis by macrophages after experimental MI led to a reduction in cardiac lymphangiogenesis and Vegfc expression. Cell-intrinsic evidence for efferocytic induction of Vegfc was revealed after adding apoptotic cells to cultured primary macrophages, which subsequently triggered Vegfc transcription and VEGFC secretion. Similarly, cardiac macrophages elevated Vegfc expression levels after MI, and mice deficient for myeloid Vegfc exhibited impaired ventricular contractility, adverse tissue remodeling, and reduced lymphangiogenesis. These results were observed in mouse models of permanent coronary occlusion and clinically relevant ischemia and reperfusion. Interestingly, myeloid Vegfc deficiency also led to increases in acute infarct size, prior to the amplitude of the acute cardiac lymphangiogenesis response. RNA-Seq and cardiac flow cytometry revealed that myeloid Vegfc deficiency was also characterized by a defective inflammatory response, and macrophage-produced VEGFC was directly effective at suppressing proinflammatory macrophage activation. Taken together, our findings indicate that cardiac macrophages promote healing through the promotion of myocardial lymphangiogenesis and the suppression of inflammatory cytokines.
Collapse
Affiliation(s)
- Kristofor E. Glinton
- Department of Pathology
- Feinberg Cardiovascular and Renal Research Institute, and
| | - Wanshu Ma
- Feinberg Cardiovascular and Renal Research Institute, and
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Connor Lantz
- Department of Pathology
- Feinberg Cardiovascular and Renal Research Institute, and
| | - Lubov S. Grigoryeva
- Department of Pathology
- Feinberg Cardiovascular and Renal Research Institute, and
| | - Matthew DeBerge
- Department of Pathology
- Feinberg Cardiovascular and Renal Research Institute, and
| | - Xiaolei Liu
- Feinberg Cardiovascular and Renal Research Institute, and
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Maria Febbraio
- Department of Dentistry and Dental Hygiene, University of Alberta, Edmonton, Alberta, Canada
| | - Mark Kahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guillermo Oliver
- Feinberg Cardiovascular and Renal Research Institute, and
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Edward B. Thorp
- Department of Pathology
- Feinberg Cardiovascular and Renal Research Institute, and
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- The Heart Center at Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| |
Collapse
|
18
|
Williams MAC, Mair DB, Lee W, Lee E, Kim DH. Engineering Three-Dimensional Vascularized Cardiac Tissues. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:336-350. [PMID: 33559514 PMCID: PMC9063162 DOI: 10.1089/ten.teb.2020.0343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/08/2021] [Indexed: 12/23/2022]
Abstract
Heart disease is one of the largest burdens to human health worldwide and has very limited therapeutic options. Engineered three-dimensional (3D) vascularized cardiac tissues have shown promise in rescuing cardiac function in diseased hearts and may serve as a whole organ replacement in the future. One of the major obstacles in reconstructing these thick myocardial tissues to a clinically applicable scale is the integration of functional vascular networks capable of providing oxygen and nutrients throughout whole engineered constructs. Without perfusion of oxygen and nutrient flow throughout the entire engineered tissue not only is tissue viability compromised, but also overall tissue functionality is lost. There are many supporting technologies and approaches that have been developed to create vascular networks such as 3D bioprinting, co-culturing hydrogels, and incorporation of soluble angiogenic factors. In this state-of-the-art review, we discuss some of the most current engineered vascular cardiac tissues reported in the literature and future directions in the field. Impact statement The field of cardiac tissue engineering is rapidly evolving and is now closer than ever to having engineered tissue models capable of predicting preclinical responses to therapeutics, modeling diseases, and being used as a means of rescuing cardiac function following injuries to the native myocardium. However, a major obstacle of engineering thick cardiac tissue remains to be the integration of functional vasculature. In this review, we highlight seminal and recently published works that have influenced and pushed the field of cardiac tissue engineering toward achieving vascularized functional tissues.
Collapse
Affiliation(s)
| | - Devin B. Mair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Wonjae Lee
- Department of Neurosurgery, Stanford School of Medicine, Stanford, California, USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Abstract
Obesity has reached epidemic proportions and is a major contributor to insulin resistance (IR) and type 2 diabetes (T2D). Importantly, IR and T2D substantially increase the risk of cardiovascular (CV) disease. Although there are successful approaches to maintain glycemic control, there continue to be increased CV morbidity and mortality associated with metabolic disease. Therefore, there is an urgent need to understand the cellular and molecular processes that underlie cardiometabolic changes that occur during obesity so that optimal medical therapies can be designed to attenuate or prevent the sequelae of this disease. The vascular endothelium is in constant contact with the circulating milieu; thus, it is not surprising that obesity-driven elevations in lipids, glucose, and proinflammatory mediators induce endothelial dysfunction, vascular inflammation, and vascular remodeling in all segments of the vasculature. As cardiometabolic disease progresses, so do pathological changes in the entire vascular network, which can feed forward to exacerbate disease progression. Recent cellular and molecular data have implicated the vasculature as an initiating and instigating factor in the development of several cardiometabolic diseases. This Review discusses these findings in the context of atherosclerosis, IR and T2D, and heart failure with preserved ejection fraction. In addition, novel strategies to therapeutically target the vasculature to lessen cardiometabolic disease burden are introduced.
Collapse
|
20
|
Gifre-Renom L, Daems M, Luttun A, Jones EAV. Organ-Specific Endothelial Cell Differentiation and Impact of Microenvironmental Cues on Endothelial Heterogeneity. Int J Mol Sci 2022; 23:ijms23031477. [PMID: 35163400 PMCID: PMC8836165 DOI: 10.3390/ijms23031477] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Endothelial cells throughout the body are heterogeneous, and this is tightly linked to the specific functions of organs and tissues. Heterogeneity is already determined from development onwards and ranges from arterial/venous specification to microvascular fate determination in organ-specific differentiation. Acknowledging the different phenotypes of endothelial cells and the implications of this diversity is key for the development of more specialized tissue engineering and vascular repair approaches. However, although novel technologies in transcriptomics and proteomics are facilitating the unraveling of vascular bed-specific endothelial cell signatures, still much research is based on the use of insufficiently specialized endothelial cells. Endothelial cells are not only heterogeneous, but their specialized phenotypes are also dynamic and adapt to changes in their microenvironment. During the last decades, strong collaborations between molecular biology, mechanobiology, and computational disciplines have led to a better understanding of how endothelial cells are modulated by their mechanical and biochemical contexts. Yet, because of the use of insufficiently specialized endothelial cells, there is still a huge lack of knowledge in how tissue-specific biomechanical factors determine organ-specific phenotypes. With this review, we want to put the focus on how organ-specific endothelial cell signatures are determined from development onwards and conditioned by their microenvironments during adulthood. We discuss the latest research performed on endothelial cells, pointing out the important implications of mimicking tissue-specific biomechanical cues in culture.
Collapse
Affiliation(s)
- Laia Gifre-Renom
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
| | - Margo Daems
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
| | - Aernout Luttun
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
| | - Elizabeth A. V. Jones
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence:
| |
Collapse
|
21
|
Iso T, Kurabayashi M. Cardiac Metabolism and Contractile Function in Mice with Reduced Trans-Endothelial Fatty Acid Transport. Metabolites 2021; 11:metabo11120889. [PMID: 34940647 PMCID: PMC8706312 DOI: 10.3390/metabo11120889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 01/15/2023] Open
Abstract
The heart is a metabolic omnivore that combusts a considerable amount of energy substrates, mainly long-chain fatty acids (FAs) and others such as glucose, lactate, ketone bodies, and amino acids. There is emerging evidence that muscle-type continuous capillaries comprise the rate-limiting barrier that regulates FA uptake into cardiomyocytes. The transport of FAs across the capillary endothelium is composed of three major steps-the lipolysis of triglyceride on the luminal side of the endothelium, FA uptake by the plasma membrane, and intracellular FA transport by cytosolic proteins. In the heart, impaired trans-endothelial FA (TEFA) transport causes reduced FA uptake, with a compensatory increase in glucose use. In most cases, mice with reduced FA uptake exhibit preserved cardiac function under unstressed conditions. When the workload is increased, however, the total energy supply relative to its demand (estimated with pool size in the tricarboxylic acid (TCA) cycle) is significantly diminished, resulting in contractile dysfunction. The supplementation of alternative fuels, such as medium-chain FAs and ketone bodies, at least partially restores contractile dysfunction, indicating that energy insufficiency due to reduced FA supply is the predominant cause of cardiac dysfunction. Based on recent in vivo findings, this review provides the following information related to TEFA transport: (1) the mechanisms of FA uptake by the heart, including TEFA transport; (2) the molecular mechanisms underlying the induction of genes associated with TEFA transport; (3) in vivo cardiac metabolism and contractile function in mice with reduced TEFA transport under unstressed conditions; and (4) in vivo contractile dysfunction in mice with reduced TEFA transport under diseased conditions, including an increased afterload and streptozotocin-induced diabetes.
Collapse
Affiliation(s)
- Tatsuya Iso
- Department of Medical Technology and Clinical Engineering, Faculty of Medical Technology and Clinical Engineering, Gunma University of Health and Welfare, 191-1 Kawamagari-Machi, Maebashi 371-0823, Gunma, Japan
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
- Correspondence:
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
| |
Collapse
|
22
|
Ren B, Ramchandran R, Yang X. Editorial: Molecular Mechanisms and Signaling in Endothelial Cell Biology and Vascular Heterogeneity. Front Cell Dev Biol 2021; 9:821100. [PMID: 34977049 PMCID: PMC8718799 DOI: 10.3389/fcell.2021.821100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- Bin Ren
- Department of Surgery, O’Neal Comprehensive Cancer Center, and Comprehensive Cardiovascular Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Bin Ren,
| | - Ramani Ramchandran
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Xiaofeng Yang
- Department of Cardiovascular Sciences, Centers for Cardiovascular Research and Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
23
|
Ward Z, Schmeier S, Saddic L, Sigurdsson MI, Cameron VA, Pearson J, Miller A, Morley-Bunker A, Gorham J, Seidman JG, Moravec CS, Sweet WE, Aranki SF, Body S, Muehlschlegel JD, Pilbrow AP. Novel and Annotated Long Noncoding RNAs Associated with Ischemia in the Human Heart. Int J Mol Sci 2021; 22:ijms222111324. [PMID: 34768754 PMCID: PMC8583240 DOI: 10.3390/ijms222111324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have been implicated in the pathogenesis of cardiovascular diseases. We aimed to identify novel lncRNAs associated with the early response to ischemia in the heart. METHODS AND RESULTS RNA sequencing data gathered from 81 paired left ventricle samples from patients undergoing cardiopulmonary bypass was collected before and after a period of ischemia. Novel lncRNAs were validated with Oxford Nanopore Technologies long-read sequencing. Gene modules associated with an early ischemic response were identified and the subcellular location of selected lncRNAs was determined with RNAscope. A total of 2446 mRNAs, 270 annotated lncRNAs and one novel lncRNA differed in response to ischemia (adjusted p < 0.001, absolute fold change >1.2). The novel lncRNA belonged to a gene module of highly correlated genes that also included 39 annotated lncRNAs. This module associated with ischemia (Pearson correlation coefficient = -0.69, p = 1 × 10-23) and activation of cell death pathways (p < 6 × 10-9). A further nine novel cardiac lncRNAs were identified, of which, one overlapped five cis-eQTL eSNPs for the gene RWD Domain-Containing Sumoylation Enhancer (RWDD3) and was itself correlated with RWDD3 expression (Pearson correlation coefficient -0.2, p = 0.002). CONCLUSION We have identified 10 novel lncRNAs, one of which was associated with myocardial ischemia and may have potential as a novel therapeutic target or early marker for myocardial dysfunction.
Collapse
Affiliation(s)
- Zoe Ward
- Christchurch Heart Institute, University of Otago, Christchurch 8011, New Zealand; (V.A.C.); (A.P.P.)
- Correspondence: ; Tel.: +64-3-364-0543
| | - Sebastian Schmeier
- School of Natural and Computational Sciences, Massey University, Auckland 0745, New Zealand;
| | - Louis Saddic
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Martin I. Sigurdsson
- Department of Anesthesiology and Critical Care Medicine, Landspitali—The National University Hospital of Iceland, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland;
| | - Vicky A. Cameron
- Christchurch Heart Institute, University of Otago, Christchurch 8011, New Zealand; (V.A.C.); (A.P.P.)
| | - John Pearson
- Biostatistics and Computational Biology Unit, University of Otago, Christchurch 8011, New Zealand;
| | - Allison Miller
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand; (A.M.); (A.M.-B.)
| | - Arthur Morley-Bunker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand; (A.M.); (A.M.-B.)
| | - Josh Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; (J.G.); (J.G.S.)
| | - Jonathan G. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; (J.G.); (J.G.S.)
| | - Christine S. Moravec
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH 44122, USA; (C.S.M.); (W.E.S.)
| | - Wendy E. Sweet
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH 44122, USA; (C.S.M.); (W.E.S.)
| | - Sary F. Aranki
- Department of Surgery, Division of Cardiac Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.F.A.); (J.D.M.)
| | - Simon Body
- Department of Anesthesiology, Boston University School of Medicine, Boston, MA 02115, USA;
| | - Jochen D. Muehlschlegel
- Department of Surgery, Division of Cardiac Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.F.A.); (J.D.M.)
| | - Anna P. Pilbrow
- Christchurch Heart Institute, University of Otago, Christchurch 8011, New Zealand; (V.A.C.); (A.P.P.)
| |
Collapse
|
24
|
Helle E, Ampuja M, Dainis A, Antola L, Temmes E, Tolvanen E, Mervaala E, Kivelä R. HiPS-Endothelial Cells Acquire Cardiac Endothelial Phenotype in Co-culture With hiPS-Cardiomyocytes. Front Cell Dev Biol 2021; 9:715093. [PMID: 34422835 PMCID: PMC8378235 DOI: 10.3389/fcell.2021.715093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/14/2021] [Indexed: 01/05/2023] Open
Abstract
Cell-cell interactions are crucial for organ development and function. In the heart, endothelial cells engage in bidirectional communication with cardiomyocytes regulating cardiac development and growth. We aimed to elucidate the organotypic development of cardiac endothelial cells and cardiomyocyte and endothelial cell crosstalk using human induced pluripotent stem cells (hiPSC). Single-cell RNA sequencing was performed with hiPSC-derived cardiomyocytes (hiPS-CMs) and endothelial cells (hiPS-ECs) in mono- and co-culture. The presence of hiPS-CMs led to increased expression of transcripts related to vascular development and maturation, cardiac development, as well as cardiac endothelial cell and endocardium-specific genes in hiPS-ECs. Interestingly, co-culture induced the expression of cardiomyocyte myofibrillar genes and MYL7 and MYL4 protein expression was detected in hiPS-ECs. Major regulators of BMP- and Notch-signaling pathways were induced in both cell types in co-culture. These results reflect the findings from animal studies and extend them to human endothelial cells, demonstrating the importance of EC-CM interactions during development.
Collapse
Affiliation(s)
- Emmi Helle
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Minna Ampuja
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alexandra Dainis
- Department of Genetics, Stanford University, Stanford, CA, United States
| | - Laura Antola
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Elina Temmes
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Samaria Health Centre, Espoo, Finland
| | - Erik Tolvanen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eero Mervaala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riikka Kivelä
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Wihuri Research Institute, Helsinki, Finland
| |
Collapse
|
25
|
Kim JH, Kim DH, Lim YH, Shin CH, Lee YA, Kim BN, Kim JI, Hong YC. Childhood Obesity-Related Mechanisms: MicroRNome and Transcriptome Changes in a Nested Case-Control Study. Biomedicines 2021; 9:biomedicines9080878. [PMID: 34440082 PMCID: PMC8389653 DOI: 10.3390/biomedicines9080878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/20/2022] Open
Abstract
Childhood obesity could contribute to adulthood obesity, leading to adverse health outcomes in adults. However, the mechanisms for how obesity is developed are still unclear. To determine the epigenome-wide and genome-wide expression changes related with childhood obesity, we compared microRNome and transcriptome levels as well as leptin protein levels in whole bloods of 12 obese and 24 normal children aged 6 years. miR-328-3p, miR-1301-3p, miR-4685-3p, and miR-6803-3p were negatively associated with all obesity indicators. The four miRNAs were also associated with 3948 mRNAs, and separate 475 mRNAs (185 among 3948 mRNAs) were associated with all obesity indicators. The 2533 mRNAs (64.2%) among the 3948 mRNAs and 286 mRNAs (60.2%) among the 475 mRNAs were confirmed as targets of the four miRNAs in public databases through miRWalk 2.0. Leptin protein was associated with miR-6803-3p negatively and all obesity indicators positively. Using DAVID bioinformatics resources 6.8, top three pathways for obesity-related gene set were metabolic pathways, pathways in cancer, and PI3K-Akt signaling pathway. The top three obesity-related disease classes were metabolic, cardiovascular, and chemdependency. Our results support that childhood obesity could be developed through miRNAs-related epigenetic mechanism and, further, these obesity-related epigenetic changes could control the pathways related with the development of various diseases.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea;
- Correspondence: (J.H.K.); (Y.-C.H.)
| | - Da Hae Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea;
| | - Youn-Hee Lim
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul 03080, Korea;
- Environmental Health Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (C.H.S.); (Y.A.L.)
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (C.H.S.); (Y.A.L.)
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul 03080, Korea;
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul 04763, Korea;
| | - Yun-Chul Hong
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul 03080, Korea;
- Environmental Health Center, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence: (J.H.K.); (Y.-C.H.)
| |
Collapse
|
26
|
Emechebe U, Nelson JW, Alkayed NJ, Kaul S, Adey AC, Barnes AP. Age-dependent transcriptional alterations in cardiac endothelial cells. Physiol Genomics 2021; 53:295-308. [PMID: 34097533 PMCID: PMC8321782 DOI: 10.1152/physiolgenomics.00037.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023] Open
Abstract
Aging is a significant risk factor for cardiovascular disease. Despite the fact that endothelial cells play critical roles in cardiovascular function and disease, the molecular impact of aging on this cell population in many organ systems remains unknown. In this study, we sought to determine age-associated transcriptional alterations in cardiac endothelial cells. Highly enriched populations of endothelial cells (ECs) isolated from the heart, brain, and kidney of young (3 mo) and aged (24 mo) C57/BL6 mice were profiled for RNA expression via bulk RNA sequencing. Approximately 700 cardiac endothelial transcripts significantly differ by age. Gene set enrichment analysis indicated similar patterns for cellular pathway perturbations. Receptor-ligand comparisons indicated parallel alterations in age-affected circulating factors and cardiac endothelial-expressed receptors. Gene and pathway enrichment analyses show that age-related transcriptional response of cardiac endothelial cells is distinct from that of endothelial cells derived from the brain or kidney vascular bed. Furthermore, single-cell analysis identified nine distinct EC subtypes and shows that the Apelin Receptor-enriched subtype is reduced with age in mouse heart. Finally, we identify age-dysregulated genes in specific aged cardiac endothelial subtypes.
Collapse
Affiliation(s)
- Uchenna Emechebe
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Jonathan W Nelson
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Nabil J Alkayed
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
| | - Sanjiv Kaul
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Andrew C Adey
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
- Cancer Early Detection Advanced Research Institute, Oregon Health and Science University, Portland, Oregon
| | - Anthony P Barnes
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
27
|
Zhang X, Fan J, Li H, Chen C, Wang Y. CD36 Signaling in Diabetic Cardiomyopathy. Aging Dis 2021; 12:826-840. [PMID: 34094645 PMCID: PMC8139204 DOI: 10.14336/ad.2020.1217] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
Cluster of differentiation 36 (CD36), also referred to as scavenger receptor B2, has been shown to serve multiple functions in lipid metabolism, inflammatory signaling, oxidative stress, and energy reprogramming. As a scavenger receptor, CD36 interacts with various ligands, such as oxidized low-density lipoprotein (oxLDL), thrombospondin 1 (TSP-1), and fatty acid (FA), thereby activating specific downstream signaling pathways. Cardiac CD36 is mostly expressed on the surface of cardiomyocytes and endothelial cells. The pathophysiological process of diabetic cardiomyopathy (DCM) encompasses diverse metabolic abnormalities, such as enhanced transfer of cardiac myocyte sarcolemmal FA, increased levels of advanced glycation end-products, elevation in oxidative stress, impaired insulin signaling cascade, disturbance in calcium handling, and microvascular rarefaction which are closely related to CD36 signaling. This review presents a summary of the CD36 signaling pathway that acts mainly as a long-chain FA transporter in cardiac myocytes and functions as a receptor to bind to numerous ligands in endothelial cells. Finally, we summarize the recent basic research and clinical findings regarding CD36 signaling in DCM, suggesting a promising strategy to treat this condition.
Collapse
Affiliation(s)
- Xudong Zhang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Fan
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Goldberg IJ, Cabodevilla AG, Samovski D, Cifarelli V, Basu D, Abumrad NA. Lipolytic enzymes and free fatty acids at the endothelial interface. Atherosclerosis 2021; 329:1-8. [PMID: 34130222 DOI: 10.1016/j.atherosclerosis.2021.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 01/17/2023]
Abstract
Lipids released from circulating lipoproteins by intravascular action of lipoprotein lipase (LpL) reach parenchymal cells in tissues with a non-fenestrated endothelium by transfer through or around endothelial cells. The actions of LpL are controlled at multiple sites, its synthesis and release by myocytes and adipocytes, its transit and association with the endothelial cell luminal surface, and finally its activation and inhibition by a number of proteins and by its product non-esterified fatty acids. Multiple pathways mediate endothelial transit of lipids into muscle and adipose tissues. These include movement of fatty acids via the endothelial cell fatty acid transporter CD36 and movement of whole or partially LpL-hydrolyzed lipoproteins via other apical endothelial cell receptors such as SR-B1and Alk1. Lipids also likely change the barrier function of the endothelium and operation of the paracellular pathway around endothelial cells. This review summarizes in vitro and in vivo support for the key role of endothelial cells in delivery of lipids and highlights incompletely understood processes that are the focus of active investigation.
Collapse
Affiliation(s)
- Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Ainara G Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Dmitri Samovski
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO, USA
| | - Vincenza Cifarelli
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO, USA
| | - Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Nada A Abumrad
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
29
|
Marín-Sedeño E, de Morentin XM, Pérez-Pomares JM, Gómez-Cabrero D, Ruiz-Villalba A. Understanding the Adult Mammalian Heart at Single-Cell RNA-Seq Resolution. Front Cell Dev Biol 2021; 9:645276. [PMID: 34055776 PMCID: PMC8149764 DOI: 10.3389/fcell.2021.645276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
During the last decade, extensive efforts have been made to comprehend cardiac cell genetic and functional diversity. Such knowledge allows for the definition of the cardiac cellular interactome as a reasonable strategy to increase our understanding of the normal and pathologic heart. Previous experimental approaches including cell lineage tracing, flow cytometry, and bulk RNA-Seq have often tackled the analysis of cardiac cell diversity as based on the assumption that cell types can be identified by the expression of a single gene. More recently, however, the emergence of single-cell RNA-Seq technology has led us to explore the diversity of individual cells, enabling the cardiovascular research community to redefine cardiac cell subpopulations and identify relevant ones, and even novel cell types, through their cell-specific transcriptomic signatures in an unbiased manner. These findings are changing our understanding of cell composition and in consequence the identification of potential therapeutic targets for different cardiac diseases. In this review, we provide an overview of the continuously changing cardiac cellular landscape, traveling from the pre-single-cell RNA-Seq times to the single cell-RNA-Seq revolution, and discuss the utilities and limitations of this technology.
Collapse
Affiliation(s)
- Ernesto Marín-Sedeño
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| | - Xabier Martínez de Morentin
- Traslational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra, Pamplona, Spain
| | - Jose M. Pérez-Pomares
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| | - David Gómez-Cabrero
- Traslational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra, Pamplona, Spain
- Centre of Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Adrián Ruiz-Villalba
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
30
|
de Haan W, Dheedene W, Apelt K, Décombas-Deschamps S, Vinckier S, Verhulst S, Conidi A, Deffieux T, Staring MW, Vandervoort P, Caluwé E, Lox M, Mannaerts I, Takagi T, Jaekers J, Berx G, Haigh J, Topal B, Zwijsen A, Higashi Y, van Grunsven LA, van IJcken WFJ, Mulugeta E, Tanter M, Lebrin FPG, Huylebroeck D, Luttun A. Endothelial Zeb2 preserves the hepatic angioarchitecture and protects against liver fibrosis. Cardiovasc Res 2021; 118:1262-1275. [PMID: 33909875 PMCID: PMC8953454 DOI: 10.1093/cvr/cvab148] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Aims Hepatic capillaries are lined with specialized liver sinusoidal endothelial cells (LSECs) which support macromolecule passage to hepatocytes and prevent fibrosis by keeping hepatic stellate cells (HSCs) quiescent. LSEC specialization is co-determined by transcription factors. The zinc-finger E-box-binding homeobox (Zeb)2 transcription factor is enriched in LSECs. Here, we aimed to elucidate the endothelium-specific role of Zeb2 during maintenance of the liver and in liver fibrosis. Methods and results To study the role of Zeb2 in liver endothelium we generated EC-specific Zeb2 knock-out (ECKO) mice. Sequencing of liver EC RNA revealed that deficiency of Zeb2 results in prominent expression changes in angiogenesis-related genes. Accordingly, the vascular area was expanded and the presence of pillars inside ECKO liver vessels indicated that this was likely due to increased intussusceptive angiogenesis. LSEC marker expression was not profoundly affected and fenestrations were preserved upon Zeb2 deficiency. However, an increase in continuous EC markers suggested that Zeb2-deficient LSECs are more prone to dedifferentiation, a process called ‘capillarization’. Changes in the endothelial expression of ligands that may be involved in HSC quiescence together with significant changes in the expression profile of HSCs showed that Zeb2 regulates LSEC–HSC communication and HSC activation. Accordingly, upon exposure to the hepatotoxin carbon tetrachloride (CCl4), livers of ECKO mice showed increased capillarization, HSC activation, and fibrosis compared to livers from wild-type littermates. The vascular maintenance and anti-fibrotic role of endothelial Zeb2 was confirmed in mice with EC-specific overexpression of Zeb2, as the latter resulted in reduced vascularity and attenuated CCl4-induced liver fibrosis. Conclusion Endothelial Zeb2 preserves liver angioarchitecture and protects against liver fibrosis. Zeb2 and Zeb2-dependent genes in liver ECs may be exploited to design novel therapeutic strategies to attenuate hepatic fibrosis.
Collapse
Affiliation(s)
- Willeke de Haan
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Wouter Dheedene
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Katerina Apelt
- Department of Internal Medicine (Nephrology), Einthoven Laboratory for Experimental Vascular Medicine. Leiden University Medical Center, . Leiden, The Netherlands
| | - Sofiane Décombas-Deschamps
- Physics for Medicine Paris, Inserm, CNRS, ESPCI Paris, Paris Sciences et Lettres University, Paris, France
| | - Stefan Vinckier
- Department of Oncology, Laboratory of Angiogenesis and Vascular Metabolism, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
| | - Stefaan Verhulst
- Liver Cell Biology research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Thomas Deffieux
- Physics for Medicine Paris, Inserm, CNRS, ESPCI Paris, Paris Sciences et Lettres University, Paris, France
| | - Michael W Staring
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Petra Vandervoort
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Ellen Caluwé
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Marleen Lox
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Inge Mannaerts
- Liver Cell Biology research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tsuyoshi Takagi
- Department of Disease Model, Institute of Developmental Research, Aichi Developmental Disability Center, Aichi, Japan
| | | | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jody Haigh
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, Manitoba, Canada
| | - Baki Topal
- Abdominal Surgery, UZ Leuven, Leuven, Belgium
| | - An Zwijsen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Yujiro Higashi
- Department of Disease Model, Institute of Developmental Research, Aichi Developmental Disability Center, Aichi, Japan
| | - Leo A van Grunsven
- Liver Cell Biology research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wilfred F J van IJcken
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Center for Biomics-Genomics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Eskeatnaf Mulugeta
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm, CNRS, ESPCI Paris, Paris Sciences et Lettres University, Paris, France
| | - Franck P G Lebrin
- Department of Internal Medicine (Nephrology), Einthoven Laboratory for Experimental Vascular Medicine. Leiden University Medical Center, . Leiden, The Netherlands.,Physics for Medicine Paris, Inserm, CNRS, ESPCI Paris, Paris Sciences et Lettres University, Paris, France
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Aernout Luttun
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Browne S, Gill EL, Schultheiss P, Goswami I, Healy KE. Stem cell-based vascularization of microphysiological systems. Stem Cell Reports 2021; 16:2058-2075. [PMID: 33836144 PMCID: PMC8452487 DOI: 10.1016/j.stemcr.2021.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
Microphysiological systems (MPSs) (i.e., tissue or organ chips) exploit microfluidics and 3D cell culture to mimic tissue and organ-level physiology. The advent of human induced pluripotent stem cell (hiPSC) technology has accelerated the use of MPSs to study human disease in a range of organ systems. However, in the reduction of system complexity, the intricacies of vasculature are an often-overlooked aspect of MPS design. The growing library of pluripotent stem cell-derived endothelial cell and perivascular cell protocols have great potential to improve the physiological relevance of vasculature within MPS, specifically for in vitro disease modeling. Three strategic categories of vascular MPS are outlined: self-assembled, interface focused, and 3D biofabricated. This review discusses key features and development of the native vasculature, linking that to how hiPSC-derived vascular cells have been generated, the state of the art in vascular MPSs, and opportunities arising from interdisciplinary thinking.
Collapse
Affiliation(s)
- Shane Browne
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA
| | - Elisabeth L Gill
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA
| | - Paula Schultheiss
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA
| | - Ishan Goswami
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA; Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Kevin E Healy
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA; Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
32
|
Development of a novel prognostic signature for predicting the overall survival of bladder cancer patients. Biosci Rep 2021; 40:224923. [PMID: 32441304 PMCID: PMC7286875 DOI: 10.1042/bsr20194432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Bladder cancer is one of the most common malignancies. So far, no effective biomarker for bladder cancer prognosis has been identified. Aberrant DNA methylation is frequently observed in the bladder cancer and holds considerable promise as a biomarker for predicting the overall survival (OS) of patients. Materials and methods: We downloaded the DNA methylation and transcriptome data for bladder cancer from The Cancer Genome Atlas (TCGA), a public database, screened hypo-methylated and up-regulated genes, similarly, hyper-methylation with low expression genes, then retrieved the relevant methylation sites. Cox regression analysis was used to identify a nine-methylation site signature of a training group. Predictive ability was validated in a test group by receiver operating characteristic (ROC) analysis. Results: We identified nine bladder cancer-specific methylation sites as potential prognostic biomarkers and established a risk score system based on the methylation site signature to evaluate the OS. The performance of the signature was accurate, with area under curve was 0.73 in the training group and 0.71 in the test group. Taking clinical features into consideration, we constructed a nomogram consisting of the nine-methylation site signature and patients’ clinical variables, and found that the signature was an independent risk factor. Conclusions: Overall, the significant nine methylation sites could be novel prediction biomarkers, which could aid in treatment and also predict the overall survival likelihoods of bladder cancer patients.
Collapse
|
33
|
Trans-endothelial trafficking of metabolic substrates and its importance in cardio-metabolic disease. Biochem Soc Trans 2021; 49:507-517. [PMID: 33616631 DOI: 10.1042/bst20200991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022]
Abstract
The endothelium acts as a gatekeeper, controlling the movement of biomolecules between the circulation and underlying tissues. Although conditions of metabolic stress are traditionally considered as causes of endothelial dysfunction, a principal driver of cardiovascular disease, accumulating evidence suggests that endothelial cells are also active players in maintaining local metabolic homeostasis, in part, through regulating the supply of metabolic substrates, including lipids and glucose, to energy-demanding organs. Therefore, endothelial dysfunction, in terms of altered trans-endothelial trafficking of these substrates, may in fact be an early contributor towards the establishment of metabolic dysfunction and subsequent cardiovascular disease. Understanding the molecular mechanisms that underpin substrate trafficking through the endothelium represents an important area within the vascular and metabolism fields that may offer an opportunity for identifying novel therapeutic targets. This mini-review summarises the emerging mechanisms regulating the trafficking of lipids and glucose through the endothelial barrier and how this may impact on the development of cardio-metabolic disease.
Collapse
|
34
|
Abumrad NA, Cabodevilla AG, Samovski D, Pietka T, Basu D, Goldberg IJ. Endothelial Cell Receptors in Tissue Lipid Uptake and Metabolism. Circ Res 2021; 128:433-450. [PMID: 33539224 DOI: 10.1161/circresaha.120.318003] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lipid uptake and metabolism are central to the function of organs such as heart, skeletal muscle, and adipose tissue. Although most heart energy derives from fatty acids (FAs), excess lipid accumulation can cause cardiomyopathy. Similarly, high delivery of cholesterol can initiate coronary artery atherosclerosis. Hearts and arteries-unlike liver and adrenals-have nonfenestrated capillaries and lipid accumulation in both health and disease requires lipid movement from the circulation across the endothelial barrier. This review summarizes recent in vitro and in vivo findings on the importance of endothelial cell receptors and uptake pathways in regulating FAs and cholesterol uptake in normal physiology and cardiovascular disease. We highlight clinical and experimental data on the roles of ECs in lipid supply to tissues, heart, and arterial wall in particular, and how this affects organ metabolism and function. Models of FA uptake into ECs suggest that receptor-mediated uptake predominates at low FA concentrations, such as during fasting, whereas FA uptake during lipolysis of chylomicrons may involve paracellular movement. Similarly, in the setting of an intact arterial endothelial layer, recent and historic data support a role for receptor-mediated processes in the movement of lipoproteins into the subarterial space. We conclude with thoughts on the need to better understand endothelial lipid transfer for fuller comprehension of the pathophysiology of hyperlipidemia, and lipotoxic diseases such as some forms of cardiomyopathy and atherosclerosis.
Collapse
Affiliation(s)
- Nada A Abumrad
- Division of Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Saint Louis, MO (N.A.A., D.S., T.P.)
| | - Ainara G Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine (A.G.C., D.B., I.J.G.)
| | - Dmitri Samovski
- Division of Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Saint Louis, MO (N.A.A., D.S., T.P.)
| | - Terri Pietka
- Division of Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Saint Louis, MO (N.A.A., D.S., T.P.)
| | - Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine (A.G.C., D.B., I.J.G.)
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine (A.G.C., D.B., I.J.G.)
| |
Collapse
|
35
|
Gunawardana H, Romero T, Yao N, Heidt S, Mulder A, Elashoff DA, Valenzuela NM. Tissue-specific endothelial cell heterogeneity contributes to unequal inflammatory responses. Sci Rep 2021; 11:1949. [PMID: 33479269 PMCID: PMC7820348 DOI: 10.1038/s41598-020-80102-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/16/2020] [Indexed: 12/30/2022] Open
Abstract
Endothelial cells (EC) coordinate vascular homeostasis and inflammation. In organ transplantation, EC are a direct alloimmune target. We posited that tissue specific heterogeneity of vascular EC may partly underlie the disparate organ-specific alloimmune risk. We examined the vascular endothelial response to inflammation across six primary endothelial beds from four major transplanted organs: the heart, lung, kidney and liver. First, we reanalyzed a public dataset of cardiac allograft rejection and found that endothelial inflammatory response genes were elevated in human cardiac allograft biopsies undergoing rejection compared with stable grafts. Next, the inducible inflammatory phenotypes of EC from heart, lung, kidney, and liver were characterized in vitro, focused on expression of adhesion molecules and chemokines, and recruitment of allogeneic peripheral blood mononuclear immune cells. Large vessel cardiac EC most highly upregulated VCAM-1, particularly compared with hepatic EC, supported greater leukocyte adhesion and had distinct chemokine profiles after stimulation with cytokines and complement. Differentially expressed gene candidates that are known regulators of cytokine signaling and inflammatory programming were verified in publicly available datasets of organ-specific endothelial transcriptomes. In summary, differential baseline expression of immune regulating genes may contribute to differential vascular inflammatory responses depending on organ.
Collapse
Affiliation(s)
- Hasitha Gunawardana
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, 1000 Veteran Avenue, Room 1-520, Los Angeles, CA, 90095, USA
| | - Tahmineh Romero
- Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ning Yao
- Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sebastiaan Heidt
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Arend Mulder
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - David A Elashoff
- Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, 1000 Veteran Avenue, Room 1-520, Los Angeles, CA, 90095, USA.
| |
Collapse
|
36
|
Trenson S, Hermans H, Craps S, Pokreisz P, de Zeeuw P, Van Wauwe J, Gillijns H, Veltman D, Wei F, Caluwé E, Gijsbers R, Baatsen P, Staessen JA, Ghesquiere B, Carmeliet P, Rega F, Meuris B, Meyns B, Oosterlinck W, Duchenne J, Goetschalckx K, Voigt JU, Herregods MC, Herijgers P, Luttun A, Janssens S. Cardiac Microvascular Endothelial Cells in Pressure Overload-Induced Heart Disease. Circ Heart Fail 2021; 14:e006979. [PMID: 33464950 DOI: 10.1161/circheartfailure.120.006979] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Chronic pressure overload predisposes to heart failure, but the pathogenic role of microvascular endothelial cells (MiVEC) remains unknown. We characterized transcriptional, metabolic, and functional adaptation of cardiac MiVEC to pressure overload in mice and patients with aortic stenosis (AS). METHODS In Tie2-Gfp mice subjected to transverse aortic constriction or sham surgery, we performed RNA sequencing of isolated cardiac Gfp+-MiVEC and validated the signature in freshly isolated MiVEC from left ventricle outflow tract and right atrium of patients with AS. We next compared their angiogenic and metabolic profiles and finally correlated molecular and pathological signatures with clinical phenotypes of 42 patients with AS (50% women). RESULTS In mice, transverse aortic constriction induced progressive systolic dysfunction, fibrosis, and reduced microvascular density. After 10 weeks, 25 genes predominantly involved in matrix-regulation were >2-fold upregulated in isolated MiVEC. Increased transcript levels of Cartilage Intermediate Layer Protein (Cilp), Thrombospondin-4, Adamtsl-2, and Collagen1a1 were confirmed by quantitative reverse transcription polymerase chain reaction and recapitulated in left ventricle outflow tract-derived MiVEC of AS (P<0.05 versus right atrium-MiVEC). Fatty acid oxidation increased >2-fold in left ventricle outflow tract-MiVEC, proline content by 130% (median, IQR, 58%-474%; P=0.008) and procollagen secretion by 85% (mean [95% CI, 16%-154%]; P<0.05 versus right atrium-MiVEC for all). The altered transcriptome in left ventricle outflow tract-MiVEC was associated with impaired 2-dimensional-vascular network formation and 3-dimensional-spheroid sprouting (P<0.05 versus right atrium-MiVEC), profibrotic ultrastructural changes, and impaired diastolic left ventricle function, capillary density and functional status, especially in female AS. CONCLUSIONS Pressure overload induces major transcriptional and metabolic adaptations in cardiac MiVEC resulting in excess interstitial fibrosis and impaired angiogenesis. Molecular rewiring of MiVEC is worse in women, compromises functional status, and identifies novel targets for intervention.
Collapse
Affiliation(s)
- Sander Trenson
- Department of Cardiovascular Sciences (S.T., H.H., S.C., P.P., J.V.W., H.G., D.V., F.W., E.C., J.A.S., F.R., B. Meuris, B. Meyns, W.O., J.D., K.G., J.-U.V., M.-C.H., P.H., A.L., S.J.), KU Leuven, Belgium
| | - Hadewich Hermans
- Department of Cardiovascular Sciences (S.T., H.H., S.C., P.P., J.V.W., H.G., D.V., F.W., E.C., J.A.S., F.R., B. Meuris, B. Meyns, W.O., J.D., K.G., J.-U.V., M.-C.H., P.H., A.L., S.J.), KU Leuven, Belgium
| | - Sander Craps
- Department of Cardiovascular Sciences (S.T., H.H., S.C., P.P., J.V.W., H.G., D.V., F.W., E.C., J.A.S., F.R., B. Meuris, B. Meyns, W.O., J.D., K.G., J.-U.V., M.-C.H., P.H., A.L., S.J.), KU Leuven, Belgium
| | - Peter Pokreisz
- Department of Cardiovascular Sciences (S.T., H.H., S.C., P.P., J.V.W., H.G., D.V., F.W., E.C., J.A.S., F.R., B. Meuris, B. Meyns, W.O., J.D., K.G., J.-U.V., M.-C.H., P.H., A.L., S.J.), KU Leuven, Belgium
| | - Pauline de Zeeuw
- Department of Oncology, Laboratory of Angiogenesis and Vascular Metabolism (P.d.Z., P.C.), KU Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium (P.d.Z., P.C.)
| | - Jore Van Wauwe
- Department of Cardiovascular Sciences (S.T., H.H., S.C., P.P., J.V.W., H.G., D.V., F.W., E.C., J.A.S., F.R., B. Meuris, B. Meyns, W.O., J.D., K.G., J.-U.V., M.-C.H., P.H., A.L., S.J.), KU Leuven, Belgium
| | - Hilde Gillijns
- Department of Cardiovascular Sciences (S.T., H.H., S.C., P.P., J.V.W., H.G., D.V., F.W., E.C., J.A.S., F.R., B. Meuris, B. Meyns, W.O., J.D., K.G., J.-U.V., M.-C.H., P.H., A.L., S.J.), KU Leuven, Belgium
| | - Denise Veltman
- Department of Cardiovascular Sciences (S.T., H.H., S.C., P.P., J.V.W., H.G., D.V., F.W., E.C., J.A.S., F.R., B. Meuris, B. Meyns, W.O., J.D., K.G., J.-U.V., M.-C.H., P.H., A.L., S.J.), KU Leuven, Belgium
| | - Fangfei Wei
- Department of Cardiovascular Sciences (S.T., H.H., S.C., P.P., J.V.W., H.G., D.V., F.W., E.C., J.A.S., F.R., B. Meuris, B. Meyns, W.O., J.D., K.G., J.-U.V., M.-C.H., P.H., A.L., S.J.), KU Leuven, Belgium
| | - Ellen Caluwé
- Department of Cardiovascular Sciences (S.T., H.H., S.C., P.P., J.V.W., H.G., D.V., F.W., E.C., J.A.S., F.R., B. Meuris, B. Meyns, W.O., J.D., K.G., J.-U.V., M.-C.H., P.H., A.L., S.J.), KU Leuven, Belgium
| | - Rik Gijsbers
- Department of Pharmacological and Pharmaceutical Sciences, Laboratory for Viral Vector Technology and Gene therapy and Leuven Viral Vector Core (R.G.), KU Leuven, Belgium
| | - Pieter Baatsen
- VIB-University of Leuven Center for Brain and Disease Research, Leuven, Belgium (P.B.)
| | - Jan A Staessen
- Department of Cardiovascular Sciences (S.T., H.H., S.C., P.P., J.V.W., H.G., D.V., F.W., E.C., J.A.S., F.R., B. Meuris, B. Meyns, W.O., J.D., K.G., J.-U.V., M.-C.H., P.H., A.L., S.J.), KU Leuven, Belgium
| | - Bart Ghesquiere
- Metabolomics Expertise Center, Center for Cancer biology, VIB, Leuven, Belgium (B.G.)
| | - Peter Carmeliet
- Department of Oncology, Laboratory of Angiogenesis and Vascular Metabolism (P.d.Z., P.C.), KU Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium (P.d.Z., P.C.)
| | - Filip Rega
- Department of Cardiovascular Sciences (S.T., H.H., S.C., P.P., J.V.W., H.G., D.V., F.W., E.C., J.A.S., F.R., B. Meuris, B. Meyns, W.O., J.D., K.G., J.-U.V., M.-C.H., P.H., A.L., S.J.), KU Leuven, Belgium
| | - Bart Meuris
- Department of Cardiovascular Sciences (S.T., H.H., S.C., P.P., J.V.W., H.G., D.V., F.W., E.C., J.A.S., F.R., B. Meuris, B. Meyns, W.O., J.D., K.G., J.-U.V., M.-C.H., P.H., A.L., S.J.), KU Leuven, Belgium
| | - Bart Meyns
- Department of Cardiovascular Sciences (S.T., H.H., S.C., P.P., J.V.W., H.G., D.V., F.W., E.C., J.A.S., F.R., B. Meuris, B. Meyns, W.O., J.D., K.G., J.-U.V., M.-C.H., P.H., A.L., S.J.), KU Leuven, Belgium
| | - Wouter Oosterlinck
- Department of Cardiovascular Sciences (S.T., H.H., S.C., P.P., J.V.W., H.G., D.V., F.W., E.C., J.A.S., F.R., B. Meuris, B. Meyns, W.O., J.D., K.G., J.-U.V., M.-C.H., P.H., A.L., S.J.), KU Leuven, Belgium
| | - Jürgen Duchenne
- Department of Cardiovascular Sciences (S.T., H.H., S.C., P.P., J.V.W., H.G., D.V., F.W., E.C., J.A.S., F.R., B. Meuris, B. Meyns, W.O., J.D., K.G., J.-U.V., M.-C.H., P.H., A.L., S.J.), KU Leuven, Belgium
| | - Kaatje Goetschalckx
- Department of Cardiovascular Sciences (S.T., H.H., S.C., P.P., J.V.W., H.G., D.V., F.W., E.C., J.A.S., F.R., B. Meuris, B. Meyns, W.O., J.D., K.G., J.-U.V., M.-C.H., P.H., A.L., S.J.), KU Leuven, Belgium
| | - Jens-Uwe Voigt
- Department of Cardiovascular Sciences (S.T., H.H., S.C., P.P., J.V.W., H.G., D.V., F.W., E.C., J.A.S., F.R., B. Meuris, B. Meyns, W.O., J.D., K.G., J.-U.V., M.-C.H., P.H., A.L., S.J.), KU Leuven, Belgium
| | - Marie-Christine Herregods
- Department of Cardiovascular Sciences (S.T., H.H., S.C., P.P., J.V.W., H.G., D.V., F.W., E.C., J.A.S., F.R., B. Meuris, B. Meyns, W.O., J.D., K.G., J.-U.V., M.-C.H., P.H., A.L., S.J.), KU Leuven, Belgium
| | - Paul Herijgers
- Department of Cardiovascular Sciences (S.T., H.H., S.C., P.P., J.V.W., H.G., D.V., F.W., E.C., J.A.S., F.R., B. Meuris, B. Meyns, W.O., J.D., K.G., J.-U.V., M.-C.H., P.H., A.L., S.J.), KU Leuven, Belgium
| | - Aernout Luttun
- Department of Cardiovascular Sciences (S.T., H.H., S.C., P.P., J.V.W., H.G., D.V., F.W., E.C., J.A.S., F.R., B. Meuris, B. Meyns, W.O., J.D., K.G., J.-U.V., M.-C.H., P.H., A.L., S.J.), KU Leuven, Belgium
| | - Stefan Janssens
- Department of Cardiovascular Sciences (S.T., H.H., S.C., P.P., J.V.W., H.G., D.V., F.W., E.C., J.A.S., F.R., B. Meuris, B. Meyns, W.O., J.D., K.G., J.-U.V., M.-C.H., P.H., A.L., S.J.), KU Leuven, Belgium
| |
Collapse
|
37
|
Yucel N, Axsom J, Yang Y, Li L, Rhoades JH, Arany Z. Cardiac endothelial cells maintain open chromatin and expression of cardiomyocyte myofibrillar genes. eLife 2020; 9:e55730. [PMID: 33315013 PMCID: PMC7758065 DOI: 10.7554/elife.55730] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 12/13/2020] [Indexed: 12/28/2022] Open
Abstract
Endothelial cells (ECs) are widely heterogenous depending on tissue and vascular localization. Jambusaria et al. recently demonstrated that ECs in various tissues surprisingly possess mRNA signatures of their underlying parenchyma. The mechanism underlying this observation remains unexplained, and could include mRNA contamination during cell isolation, in vivo mRNA paracrine transfer from parenchymal cells to ECs, or cell-autonomous expression of these mRNAs in ECs. Here, we use a combination of bulk RNASeq, single-cell RNASeq datasets, in situ mRNA hybridization, and most importantly ATAC-Seq of FACS-isolated nuclei, to show that cardiac ECs actively express cardiomyocyte myofibril (CMF) genes and have open chromatin at CMF gene promoters. These open chromatin sites are enriched for sites targeted by cardiac transcription factors, and closed upon expansion of ECs in culture. Together, these data demonstrate unambiguously that the expression of CMF genes in ECs is cell-autonomous, and not simply a result of technical contamination or paracrine transfers of mRNAs, and indicate that local cues in the heart in vivo unexpectedly maintain fully open chromatin in ECs at genes previously thought limited to cardiomyocytes.
Collapse
Affiliation(s)
- Nora Yucel
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jessie Axsom
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yifan Yang
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Li Li
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Joshua H Rhoades
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Zoltan Arany
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
38
|
Hasan SS, Fischer A. The Endothelium: An Active Regulator of Lipid and Glucose Homeostasis. Trends Cell Biol 2020; 31:37-49. [PMID: 33129632 DOI: 10.1016/j.tcb.2020.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
The vascular endothelium serves as a dynamic barrier that separates blood from interstitia. Endothelial cells (ECs) respond rapidly to changes in the circulation and actively regulate vessel tone, permeability, and platelet functions. ECs also secrete angiocrine factors that dictate the function of adjacent parenchymal cells in an organ-specific manner. Endothelial dysfunction is considered as a hallmark of metabolic diseases. However, there is emerging evidence that ECs modulate the transfer of nutrients and hormones to parenchymal cells in response to alterations in metabolic profile. As such, a causal role for ECs in systemic metabolic dysregulation can be envisaged. This review summarizes recent progress in the understanding of regulated fatty acid, glucose, and insulin transport across the endothelium and discusses its pathophysiological implications.
Collapse
Affiliation(s)
- Sana S Hasan
- Division of Vascular Signaling and Cancer (A270), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Andreas Fischer
- Division of Vascular Signaling and Cancer (A270), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, 69120 Heidelberg, Germany; European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| |
Collapse
|
39
|
Abstract
All organisms growing beyond the oxygen diffusion limit critically depend on a functional vasculature for survival. Yet blood vessels are far more than passive, uniform conduits for oxygen and nutrient supply. A remarkable organotypic heterogeneity is brought about by tissue-specific differentiated endothelial cells (lining the blood vessels' lumen) and allows blood vessels to deal with organ-specific demands for homeostasis. On the flip side, when blood vessels go awry, they promote life-threatening diseases characterized by endothelial cells inappropriately adopting an angiogenic state (eg, tumor vascularization) or becoming dysfunctional (eg, diabetic microvasculopathies), calling respectively for antiangiogenic therapies and proangiogenic/vascular regenerative strategies. In solid tumors, despite initial enthusiasm, growth factor-based (mostly anti-VEGF [vascular endothelial growth factor]) antiangiogenic therapies do not sufficiently live up to the expectations in terms of efficiency and patient survival, in part, due to intrinsic and acquired therapy resistance. Tumors cunningly deploy alternative growth factors than the ones targeted by the antiangiogenic therapies to reinstigate angiogenesis or revert to other ways of securing blood flow, independently of the targeted growth factors. In trying to alleviate tissue ischemia and to repair dysfunctional or damaged endothelium, local in-tissue administration of (genes encoding) proangiogenic factors or endothelial (stem) cells harnessing regenerative potential have been explored. Notwithstanding evaluation in clinical trials, these approaches are often hampered by dosing issues and limited half-life or local retention of the administered agents. Here, without intending to provide an all-encompassing historical overview, we focus on some recent advances in understanding endothelial cell behavior in health and disease and identify novel molecular players and concepts that could eventually be considered for therapeutic targeting.
Collapse
Affiliation(s)
- Guy Eelen
- From the Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Belgium (G.E., L.T., P.C.)
| | - Lucas Treps
- From the Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Belgium (G.E., L.T., P.C.)
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China (X.L., P.C.)
| | - Peter Carmeliet
- From the Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Belgium (G.E., L.T., P.C.).,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China (X.L., P.C.)
| |
Collapse
|
40
|
Faulkner A, Lynam E, Purcell R, Jones C, Lopez C, Board M, Wagner KD, Wagner N, Carr C, Wheeler-Jones C. Context-dependent regulation of endothelial cell metabolism: differential effects of the PPARβ/δ agonist GW0742 and VEGF-A. Sci Rep 2020; 10:7849. [PMID: 32398728 PMCID: PMC7217938 DOI: 10.1038/s41598-020-63900-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/07/2020] [Indexed: 12/30/2022] Open
Abstract
Peroxisome proliferator activated receptor β/δ (PPARβ/δ) has pro-angiogenic functions, but whether PPARβ/δ modulates endothelial cell metabolism to support the dynamic phenotype remains to be established. This study characterised the metabolic response of HUVEC to the PPARβ/δ agonist, GW0742, and compared these effects with those induced by VEGF-A. In HUVEC monolayers, flux analysis revealed that VEGF-A promoted glycolysis at the expense of fatty acid oxidation (FAO), whereas GW0742 reduced both glycolysis and FAO. Only VEGF-A stimulated HUVEC migration and proliferation whereas both GW0742 and VEGF-A promoted tubulogenesis. Studies using inhibitors of PPARβ/δ or sirtuin-1 showed that the tubulogenic effect of GW0742, but not VEGF-A, was PPARβ/δ- and sirtuin-1-dependent. HUVEC were reliant on glycolysis and FAO, and inhibition of either pathway disrupted cell growth and proliferation. VEGF-A was a potent inducer of glycolysis in tubulogenic HUVEC, while FAO was maintained. In contrast, GW0742-induced tubulogenesis was associated with enhanced FAO and a modest increase in glycolysis. These novel data reveal a context-dependent regulation of endothelial metabolism by GW0742, where metabolic activity is reduced in monolayers but enhanced during tubulogenesis. These findings expand our understanding of PPARβ/δ in the endothelium and support the targeting of PPARβ/δ in regulating EC behaviour and boosting tissue maintenance and repair.
Collapse
Affiliation(s)
- Ashton Faulkner
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK.,Experimental Cardiovascular Medicine, Bristol Medical School, University of Bristol, Bristol, UK
| | - Eleanor Lynam
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Robert Purcell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Coleen Jones
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Colleen Lopez
- Department of Physiology Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Mary Board
- Department of Physiology Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Kay-Dietrich Wagner
- Université Côte d'Azur, Institute of Biology Valrose, Nice (iBV), CNRS UMR7277, INSERM U1091, Nice, France
| | - Nicole Wagner
- Université Côte d'Azur, Institute of Biology Valrose, Nice (iBV), CNRS UMR7277, INSERM U1091, Nice, France
| | - Carolyn Carr
- Department of Physiology Anatomy & Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|
41
|
de Haan W, Øie C, Benkheil M, Dheedene W, Vinckier S, Coppiello G, Aranguren XL, Beerens M, Jaekers J, Topal B, Verfaillie C, Smedsrød B, Luttun A. Unraveling the transcriptional determinants of liver sinusoidal endothelial cell specialization. Am J Physiol Gastrointest Liver Physiol 2020; 318:G803-G815. [PMID: 32116021 PMCID: PMC7191457 DOI: 10.1152/ajpgi.00215.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Liver sinusoidal endothelial cells (LSECs) are the first liver cells to encounter waste macromolecules, pathogens, and toxins in blood. LSECs are highly specialized to mediate the clearance of these substances via endocytic scavenger receptors and are equipped with fenestrae that mediate the passage of macromolecules toward hepatocytes. Although some transcription factors (TFs) are known to play a role in LSEC specialization, information about the specialized LSEC signature and its transcriptional determinants remains incomplete.Based on a comparison of liver, heart, and brain endothelial cells (ECs), we established a 30-gene LSEC signature comprising both established and newly identified markers, including 7 genes encoding TFs. To evaluate the LSEC TF regulatory network, we artificially increased the expression of the 7 LSEC-specific TFs in human umbilical vein ECs. Although Zinc finger E-box-binding protein 2, homeobox B5, Cut-like homolog 2, and transcription factor EC (TCFEC) had limited contributions, musculoaponeurotic fibrosarcoma (C-MAF), GATA binding protein 4 (GATA4), and MEIS homeobox 2 (MEIS2) emerged as stronger inducers of LSEC marker expression. Furthermore, a combination of C-MAF, GATA4, and MEIS2 showed a synergistic effect on the increase of LSEC signature genes, including liver/lymph node-specific ICAM-3 grabbing non-integrin (L-SIGN) (or C-type lectin domain family member M (CLEC4M)), mannose receptor C-Type 1 (MRC1), legumain (LGMN), G protein-coupled receptor 182 (GPR182), Plexin C1 (PLXNC1), and solute carrier organic anion transporter family member 2A1 (SLCO2A1). Accordingly, L-SIGN, MRC1, pro-LGMN, GPR182, PLXNC1, and SLCO2A1 protein levels were elevated by this combined overexpression. Although receptor-mediated endocytosis was not significantly induced by the triple TF combination, it enhanced binding to E2, the hepatitis C virus host-binding protein. We conclude that C-MAF, GATA4, and MEIS2 are important transcriptional regulators of the unique LSEC fingerprint and LSEC interaction with viruses. Additional factors are however required to fully recapitulate the molecular, morphological, and functional LSEC fingerprint.NEW & NOTEWORTHY Liver sinusoidal endothelial cells (LSECs) are the first liver cells to encounter waste macromolecules, pathogens, and toxins in the blood and are highly specialized. Although some transcription factors are known to play a role in LSEC specialization, information about the specialized LSEC signature and its transcriptional determinants remains incomplete. Here, we show that Musculoaponeurotic Fibrosarcoma (C-MAF), GATA binding protein 4 (GATA4), and Meis homeobox 2 (MEIS2) are important transcriptional regulators of the unique LSEC signature and that they affect the interaction of LSECs with viruses.
Collapse
Affiliation(s)
- Willeke de Haan
- 1Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Cristina Øie
- 2Vascular Biology Research Group, Department of Medical Biology, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
| | | | - Wouter Dheedene
- 1Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Stefan Vinckier
- 4Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium,5Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Giulia Coppiello
- 1Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Xabier López Aranguren
- 1Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Manu Beerens
- 1Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Joris Jaekers
- 6Abdominal Surgery, Universitair Ziekenhuis Leuven, Leuven, Belgiuincreased the expression of the 7 LSEC-specificm
| | - Baki Topal
- 6Abdominal Surgery, Universitair Ziekenhuis Leuven, Leuven, Belgiuincreased the expression of the 7 LSEC-specificm
| | - Catherine Verfaillie
- 7Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Bård Smedsrød
- 2Vascular Biology Research Group, Department of Medical Biology, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
| | - Aernout Luttun
- 1Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
42
|
Identification of a combination of transcription factors that synergistically increases endothelial cell barrier resistance. Sci Rep 2020; 10:3886. [PMID: 32127614 PMCID: PMC7054428 DOI: 10.1038/s41598-020-60688-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/12/2020] [Indexed: 12/15/2022] Open
Abstract
Endothelial cells (ECs) display remarkable plasticity during development before becoming quiescent and functionally mature. EC maturation is directed by several known transcription factors (TFs), but the specific set of TFs responsible for promoting high-resistance barriers, such as the blood-brain barrier (BBB), have not yet been fully defined. Using expression mRNA data from published studies on ex vivo ECs from the central nervous system (CNS), we predicted TFs that induce high-resistance barrier properties of ECs as in the BBB. We used our previously established method to generate ECs from human pluripotent stem cells (hPSCs), and then we overexpressed the candidate TFs in hPSC-ECs and measured barrier resistance and integrity using electric cell-substrate impedance sensing, trans-endothelial electrical resistance and FITC-dextran permeability assays. SOX18 and TAL1 were the strongest EC barrier-inducing TFs, upregulating Wnt-related signaling and EC junctional gene expression, respectively, and downregulating EC proliferation-related genes. These TFs were combined with SOX7 and ETS1 that together effectively induced EC barrier resistance, decreased paracellular transport and increased protein expression of tight junctions and induce mRNA expression of several genes involved in the formation of EC barrier and transport. Our data shows identification of a transcriptional network that controls barrier resistance in ECs. Collectively this data may lead to novel approaches for generation of in vitro models of the BBB.
Collapse
|
43
|
Goveia J, Rohlenova K, Taverna F, Treps L, Conradi LC, Pircher A, Geldhof V, de Rooij LPMH, Kalucka J, Sokol L, García-Caballero M, Zheng Y, Qian J, Teuwen LA, Khan S, Boeckx B, Wauters E, Decaluwé H, De Leyn P, Vansteenkiste J, Weynand B, Sagaert X, Verbeken E, Wolthuis A, Topal B, Everaerts W, Bohnenberger H, Emmert A, Panovska D, De Smet F, Staal FJT, Mclaughlin RJ, Impens F, Lagani V, Vinckier S, Mazzone M, Schoonjans L, Dewerchin M, Eelen G, Karakach TK, Yang H, Wang J, Bolund L, Lin L, Thienpont B, Li X, Lambrechts D, Luo Y, Carmeliet P. An Integrated Gene Expression Landscape Profiling Approach to Identify Lung Tumor Endothelial Cell Heterogeneity and Angiogenic Candidates. Cancer Cell 2020; 37:21-36.e13. [PMID: 31935371 DOI: 10.1016/j.ccell.2019.12.001] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/30/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022]
Abstract
Heterogeneity of lung tumor endothelial cell (TEC) phenotypes across patients, species (human/mouse), and models (in vivo/in vitro) remains poorly inventoried at the single-cell level. We single-cell RNA (scRNA)-sequenced 56,771 endothelial cells from human/mouse (peri)-tumoral lung and cultured human lung TECs, and detected 17 known and 16 previously unrecognized phenotypes, including TECs putatively regulating immune surveillance. We resolved the canonical tip TECs into a known migratory tip and a putative basement-membrane remodeling breach phenotype. Tip TEC signatures correlated with patient survival, and tip/breach TECs were most sensitive to vascular endothelial growth factor blockade. Only tip TECs were congruent across species/models and shared conserved markers. Integrated analysis of the scRNA-sequenced data with orthogonal multi-omics and meta-analysis data across different human tumors, validated by functional analysis, identified collagen modification as a candidate angiogenic pathway.
Collapse
Affiliation(s)
- Jermaine Goveia
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Katerina Rohlenova
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Federico Taverna
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Lena-Christin Conradi
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Andreas Pircher
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Vincent Geldhof
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Laura P M H de Rooij
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Liliana Sokol
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Melissa García-Caballero
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, China
| | - Junbin Qian
- Laboratory of Translational Genetics, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Laure-Anne Teuwen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Shawez Khan
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Bram Boeckx
- Laboratory of Translational Genetics, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Els Wauters
- Respiratory Oncology Unit (Respiratory Medicine) and Leuven Lung Cancer Group, University Hospitals Leuven, Leuven 3000, Belgium
| | - Herbert Decaluwé
- Respiratory Oncology Unit (Respiratory Medicine) and Leuven Lung Cancer Group, University Hospitals Leuven, Leuven 3000, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven 3000, Belgium
| | - Paul De Leyn
- Respiratory Oncology Unit (Respiratory Medicine) and Leuven Lung Cancer Group, University Hospitals Leuven, Leuven 3000, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven 3000, Belgium
| | - Johan Vansteenkiste
- Respiratory Oncology Unit (Respiratory Medicine) and Leuven Lung Cancer Group, University Hospitals Leuven, Leuven 3000, Belgium
| | - Birgit Weynand
- Translational Cell & Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven 3000, Belgium
| | - Xavier Sagaert
- Translational Cell & Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven 3000, Belgium
| | - Erik Verbeken
- Translational Cell & Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven 3000, Belgium
| | - Albert Wolthuis
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven 3000, Belgium
| | - Baki Topal
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven 3000, Belgium
| | - Wouter Everaerts
- Laboratory for Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium; Department of Urology, University Hospitals Leuven, Leuven 3000, Belgium
| | | | - Alexander Emmert
- Department of Thoracic and Cardiovascular Surgery, University Medical Center, Göttingen 37075, Germany
| | - Dena Panovska
- Laboratory for Precision Cancer Medicine, Translational Cell & Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven 3000, Belgium
| | - Frederik De Smet
- Laboratory for Precision Cancer Medicine, Translational Cell & Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven 3000, Belgium
| | - Frank J T Staal
- Department of Immunology and Blood Transfusion, Leiden University Medical Center, Leiden 2300 RC, the Netherlands
| | - Rene J Mclaughlin
- Department of Immunology and Blood Transfusion, Leiden University Medical Center, Leiden 2300 RC, the Netherlands
| | - Francis Impens
- VIB Proteomics Core and VIB Center for Medical Biotechnology, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium
| | - Vincenzo Lagani
- Institute of Chemical Biology, Ilia State University, Tbilisi 0162, Georgia; Gnosis Data Analysis PC, Heraklion GR-700 13, Greece
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Tobias K Karakach
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Lars Bolund
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
| | - Bernard Thienpont
- Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, China.
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Yonglun Luo
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China; Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China.
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, China.
| |
Collapse
|
44
|
Reiterer M, Branco CM. Endothelial cells and organ function: applications and implications of understanding unique and reciprocal remodelling. FEBS J 2019; 287:1088-1100. [PMID: 31736207 PMCID: PMC7155104 DOI: 10.1111/febs.15143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/21/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
The microvasculature is a heterogeneous, dynamic and versatile component of the systemic circulation, with a unique ability to locally self-regulate and to respond to organ demand and environmental stimuli. Endothelial cells from different organs display considerable variation, but it is currently unclear to what extent functional properties of organ-specific endothelial cells are intrinsic, acquired and/or reprogrammable. Vascular function is a fundamental pillar of homeostasis, and dysfunction results in systemic consequences for the organism. Additionally, vascular failure can occur downstream of organ disease or environmental stress, often driving an exacerbation of symptoms and pathologies originally independent of the local circulation. The understanding of the molecular mechanisms underlying endothelial physiology and metabolism holds the promise to inform and improve diagnosis, prognosis and treatment options for a myriad of conditions as unrelated as cancer, neurodegeneration or pulmonary hypertension, and likely everything in between, if we consider that also treatments for such conditions are primarily distributed via the bloodstream. However, studying endothelial function has its challenges: the origin, isolation, culture conditions and preconditioning stimuli make this an extremely variable cell type to study and difficult to source. Animal models exist but are neither trivial to generate, nor necessarily adequately translatable to human disease. In this article, we aim to illustrate the breadth of microvascular functions in different environments, highlighting current and pioneering studies that have advanced our insight into the importance of the integrity of this tissue, as well as the limitations posed by its heterogeneity and plasticity.
Collapse
Affiliation(s)
- Moritz Reiterer
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Cristina M Branco
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, UK
| |
Collapse
|
45
|
Jiang F, Mohr F, Ullrich ND, Hecker M, Wagner AH. Endothelial cell modulation of cardiomyocyte gene expression. Exp Cell Res 2019; 383:111565. [PMID: 31442451 DOI: 10.1016/j.yexcr.2019.111565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/13/2019] [Accepted: 08/18/2019] [Indexed: 01/09/2023]
Abstract
The anatomic arrangement of microvascular endothelial cells and cardiomyocytes in vivo enables close interactions among these cells. In our in vitro co-culture system, ANP and BNP expression in the mouse atrial cardiomyocyte cell line HL-1 and subsequent ANP release were significantly upregulated when co-cultured with mouse cardiac microvascular endothelial cells or exposed to endothelial cell-conditioned medium. Endothelin-1 (ET-1) activation of endothelial cells remarkably enhanced their paracrine effect on cardiomyocyte gene expression, suggesting that ET-1 stimulation of endothelial cells affects expression of fetal genes such as ANP and BNP in adult cardiomyocytes through paracrine signalling. Exposure of HL-1 cells and murine induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) to authentic angiopoietin-2 (Ang2) caused a concentration-dependent decrease in ANP expression while ET-1-induced ANP expression was augmented by low but inhibited by high concentrations of Ang2. FK506-mediated inhibition of the calcineurin-NFAT pathway in the HL-1 cells selectively inhibited the stimulatory effect of the conditioned medium derived from ET-1-pre-stimulated endothelial cells on cardiomyocyte fetal gene expression. Combined with previous results indicating a crucial role for ANP and BNP in cardiac homeostasis, our findings provide further evidence that paracrine signalling by cardiac microvascular endothelial cells modulates cardiomyocyte function.
Collapse
Affiliation(s)
- Fan Jiang
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany; Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui Province, China
| | - Franziska Mohr
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Nina D Ullrich
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Andreas H Wagner
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
46
|
Cappelletto A, Zacchigna S. Cardiac revascularization: state of the art and perspectives. VASCULAR BIOLOGY 2019; 1:H47-H51. [PMID: 32923953 PMCID: PMC7439924 DOI: 10.1530/vb-19-0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 01/04/2023]
Abstract
Cardiac ischemia is the leading cause of morbidity and mortality in a worldwide epidemic. The progressive understanding of the mechanisms driving new blood vessel formation has led to numerous attempts to revascularize the ischemic heart in animal models and in humans. Here, we provide an overview of the current state of the art and discuss the major obstacles that have so far limited the clinical success of cardiac revascularization.
Collapse
Affiliation(s)
- Ambra Cappelletto
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
47
|
Iso T, Haruyama H, Sunaga H, Matsui M, Matsui H, Tanaka R, Umbarawan Y, Syamsunarno MRAA, Yokoyama T, Kurabayashi M. Exercise endurance capacity is markedly reduced due to impaired energy homeostasis during prolonged fasting in FABP4/5 deficient mice. BMC PHYSIOLOGY 2019; 19:1. [PMID: 30866899 PMCID: PMC6415495 DOI: 10.1186/s12899-019-0038-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 03/06/2019] [Indexed: 11/25/2022]
Abstract
Background Skeletal muscle prefers carbohydrate use to fatty acid (FA) use as exercise intensity increases. In contrast, skeletal muscle minimizes glucose use and relies more on FA during fasting. In mice deficient for FABP4 and FABP5 (double knockout (DKO) mice), FA utilization by red skeletal muscle and the heart is markedly reduced by the impairment of trans-endothelial FA transport, with an increase in glucose use to compensate for reduced FA uptake even during fasting. We attempted to determine whether prolonged fasting affects exercise performance in DKO mice, where constant glucose utilization occurs. Results A single bout of treadmill exercise was performed in the fed and fasted states. The initial speed was 10 m/min, and gradually increased by 5 m/min every 5 min up to 30 m/min until the mice stopped running. Running distance was significantly reduced by DKO genotype and prior fasting, leading to the shortest distance in fasted DKO mice. Levels of glycogen in skeletal muscle and the liver were nearly depleted in both WT and DKO mice during prolonged fasting prior to exercise. Levels of TG in skeletal muscle were not reduced by exercise in fasted DKO mice, suggesting that intramuscular TG was not utilized during exercise. Hypoglycaemia was accelerated in fasted DKO mice, and this acceleration could be due to constant glucose utilization by red skeletal muscle and the heart where FA uptake is diminished due to defective trans-endothelial FA transport. Taken together, energy supply from serum and storage in skeletal muscle were very low in fasted DKO mice, which could lead to a significant reduction in exercise performance. Conclusions FABP4/5 have crucial roles in nutrient homeostasis during prolonged fasting for maintaining exercise endurance capacity.
Collapse
Affiliation(s)
- Tatsuya Iso
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - Hikari Haruyama
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hiroaki Sunaga
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Miki Matsui
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hiroki Matsui
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Rina Tanaka
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Yogi Umbarawan
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Department of Internal Medicine, Faculty of Medicine Universitas Indonesia, Jl. Salemba Raya no. 6, Jakarta, 10430, Indonesia
| | - Mas Rizky A A Syamsunarno
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Department of Biochemistry and Molecular Biology, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Jatinangor, West Java, 45363, Indonesia
| | - Tomoyuki Yokoyama
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
48
|
Bousseau S, Vergori L, Soleti R, Lenaers G, Martinez MC, Andriantsitohaina R. Glycosylation as new pharmacological strategies for diseases associated with excessive angiogenesis. Pharmacol Ther 2018; 191:92-122. [DOI: 10.1016/j.pharmthera.2018.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/01/2018] [Indexed: 02/07/2023]
|
49
|
Castro PR, Barbosa AS, Pereira JM, Ranfley H, Felipetto M, Gonçalves CAX, Paiva IR, Berg BB, Barcelos LS. Cellular and Molecular Heterogeneity Associated with Vessel Formation Processes. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6740408. [PMID: 30406137 PMCID: PMC6199857 DOI: 10.1155/2018/6740408] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
The microvasculature heterogeneity is a complex subject in vascular biology. The difficulty of building a dynamic and interactive view among the microenvironments, the cellular and molecular heterogeneities, and the basic aspects of the vessel formation processes make the available knowledge largely fragmented. The neovascularisation processes, termed vasculogenesis, angiogenesis, arteriogenesis, and lymphangiogenesis, are important to the formation and proper functioning of organs and tissues both in the embryo and the postnatal period. These processes are intrinsically related to microvascular cells, such as endothelial and mural cells. These cells are able to adjust their activities in response to the metabolic and physiological requirements of the tissues, by displaying a broad plasticity that results in a significant cellular and molecular heterogeneity. In this review, we intend to approach the microvasculature heterogeneity in an integrated view considering the diversity of neovascularisation processes and the cellular and molecular heterogeneity that contribute to microcirculatory homeostasis. For that, we will cover their interactions in the different blood-organ barriers and discuss how they cooperate in an integrated regulatory network that is controlled by specific molecular signatures.
Collapse
Affiliation(s)
- Pollyana Ribeiro Castro
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Alan Sales Barbosa
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Jousie Michel Pereira
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Hedden Ranfley
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Mariane Felipetto
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Carlos Alberto Xavier Gonçalves
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Isabela Ribeiro Paiva
- Department of Pharmacology, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Bárbara Betônico Berg
- Department of Pharmacology, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Luciola Silva Barcelos
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| |
Collapse
|
50
|
Son NH, Basu D, Samovski D, Pietka TA, Peche VS, Willecke F, Fang X, Yu SQ, Scerbo D, Chang HR, Sun F, Bagdasarov S, Drosatos K, Yeh ST, Mullick AE, Shoghi KI, Gumaste N, Kim K, Huggins LA, Lhakhang T, Abumrad NA, Goldberg IJ. Endothelial cell CD36 optimizes tissue fatty acid uptake. J Clin Invest 2018; 128:4329-4342. [PMID: 30047927 PMCID: PMC6159965 DOI: 10.1172/jci99315] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/18/2018] [Indexed: 12/30/2022] Open
Abstract
Movement of circulating fatty acids (FAs) to parenchymal cells requires their transfer across the endothelial cell (EC) barrier. The multiligand receptor cluster of differentiation 36 (CD36) facilitates tissue FA uptake and is expressed in ECs and parenchymal cells such as myocytes and adipocytes. Whether tissue uptake of FAs is dependent on EC or parenchymal cell CD36, or both, is unknown. Using a cell-specific deletion approach, we show that EC, but not parenchymal cell, CD36 deletion increased fasting plasma FAs and postprandial triglycerides. EC-Cd36-KO mice had reduced uptake of radiolabeled long-chain FAs into heart, skeletal muscle, and brown adipose tissue; these uptake studies were replicated using [11C]palmitate PET scans. High-fat diet-fed EC-CD36-deficient mice had improved glucose tolerance and insulin sensitivity. Both EC and cardiomyocyte (CM) deletion of CD36 reduced heart lipid droplet accumulation after fasting, but CM deletion did not affect heart glucose or FA uptake. Expression in the heart of several genes modulating glucose metabolism and insulin action increased with EC-CD36 deletion but decreased with CM deletion. In conclusion, EC CD36 acts as a gatekeeper for parenchymal cell FA uptake, with important downstream effects on glucose utilization and insulin action.
Collapse
Affiliation(s)
- Ni-Huiping Son
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York, USA
| | - Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York, USA
| | - Dmitri Samovski
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Terri A. Pietka
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Vivek S. Peche
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Florian Willecke
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York, USA
| | - Xiang Fang
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York, USA
| | - Shui-Qing Yu
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York, USA
| | - Diego Scerbo
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York, USA
| | - Hye Rim Chang
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York, USA
| | - Fei Sun
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York, USA
| | - Svetlana Bagdasarov
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York, USA
| | - Konstantinos Drosatos
- Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Steve T. Yeh
- Ionis Pharmaceuticals Inc., Carlsbad, California, USA
| | | | - Kooresh I. Shoghi
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Namrata Gumaste
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York, USA
| | - KyeongJin Kim
- Division of Endocrinology, Columbia University Medical Center, New York, New York, USA
| | - Lesley-Ann Huggins
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York, USA
| | - Tenzin Lhakhang
- NYU Genome Technology Center, NYU Langone Medical Center, New York, New York, USA
| | - Nada A. Abumrad
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York, USA
| |
Collapse
|