1
|
Bottillo I, Giordano C, Ciccone MP, Pignataro MG, Albi F, Parisi G, Formicola D, Grotta S, Ranocchi F, Giuli MV, Checquolo S, Masuelli L, Re F, Majore S, d'Amati G, Grammatico P. Dilated cardiomyopathy due to a novel combination of TTN and BAG3 genetic variants: From acute heart failure to subclinical phenotypes. Cardiovasc Pathol 2024; 73:107675. [PMID: 39059779 DOI: 10.1016/j.carpath.2024.107675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is defined as left ventricular enlargement accompanied by systolic dysfunction not explained by abnormal loading conditions or coronary heart disease. The DCM clinical spectrum is broad, ranging from subclinical to severe presentation with progression to end stage heart failure. To date, different genetic loci have been found to have moderate/definitive evidence for causality in DCM and pathogenic variants in the TTN gene represent the main genetic determinant. Here, we describe a family in which the co-occurrence of two genetic hits, one in the TTN and one in the BAG3 gene, was associated with heterogeneous clinical presentation ranging from subclinical phenotypes to acute cardiogenic shock mimicking fulminant myocarditis. We hypothesize that at least some specific BAG3 genotypes could be related to DCM presenting with acute heart failure and suggest that patients and relatives carrying BAG3 pathogenic variants should be addressed to a tertiary-level heart care center.
Collapse
Affiliation(s)
- Irene Bottillo
- Division of Medical Genetics, Department of Experimental Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy.
| | - Carla Giordano
- Department of Radiology, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy
| | - Maria Pia Ciccone
- Division of Medical Genetics, Department of Experimental Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Maria Gemma Pignataro
- Department of Radiology, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy
| | - Fiammetta Albi
- Cardiology Division, Cardiac Arrhythmia Center and Cardiomyopathies Unit, San Camillo Forlanini Hospital, Rome, Italy
| | - Gabriella Parisi
- Department of Clinical Microbiology and Virology, San Camillo-Forlanini Hospital, Rome, Italy
| | - Daniela Formicola
- Division of Medical Genetics, Department of Experimental Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Simona Grotta
- Division of Medical Genetics, Department of Experimental Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Federico Ranocchi
- Cardiac Surgery and Heart Transplantation Unit, San Camillo Hospital, Rome, Italy
| | - Maria Valeria Giuli
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Saula Checquolo
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Federica Re
- Cardiology Division, Cardiac Arrhythmia Center and Cardiomyopathies Unit, San Camillo Forlanini Hospital, Rome, Italy
| | - Silvia Majore
- Division of Medical Genetics, Department of Experimental Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Giulia d'Amati
- Department of Radiology, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy
| | - Paola Grammatico
- Division of Medical Genetics, Department of Experimental Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| |
Collapse
|
2
|
Huang S, Li J, Li Q, Wang Q, Zhou X, Chen J, Chen X, Bellou A, Zhuang J, Lei L. Cardiomyopathy: pathogenesis and therapeutic interventions. MedComm (Beijing) 2024; 5:e772. [PMID: 39465141 PMCID: PMC11502724 DOI: 10.1002/mco2.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiomyopathy is a group of disease characterized by structural and functional damage to the myocardium. The etiologies of cardiomyopathies are diverse, spanning from genetic mutations impacting fundamental myocardial functions to systemic disorders that result in widespread cardiac damage. Many specific gene mutations cause primary cardiomyopathy. Environmental factors and metabolic disorders may also lead to the occurrence of cardiomyopathy. This review provides an in-depth analysis of the current understanding of the pathogenesis of various cardiomyopathies, highlighting the molecular and cellular mechanisms that contribute to their development and progression. The current therapeutic interventions for cardiomyopathies range from pharmacological interventions to mechanical support and heart transplantation. Gene therapy and cell therapy, propelled by ongoing advancements in overarching strategies and methodologies, has also emerged as a pivotal clinical intervention for a variety of diseases. The increasing number of causal gene of cardiomyopathies have been identified in recent studies. Therefore, gene therapy targeting causal genes holds promise in offering therapeutic advantages to individuals diagnosed with cardiomyopathies. Acting as a more precise approach to gene therapy, they are gradually emerging as a substitute for traditional gene therapy. This article reviews pathogenesis and therapeutic interventions for different cardiomyopathies.
Collapse
Affiliation(s)
- Shitong Huang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Jiaxin Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuying Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuyu Wang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Xianwu Zhou
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jimei Chen
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Xuanhui Chen
- Department of Medical Big Data CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Abdelouahab Bellou
- Department of Emergency Medicine, Institute of Sciences in Emergency MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Emergency MedicineWayne State University School of MedicineDetroitMichiganUSA
| | - Jian Zhuang
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Liming Lei
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| |
Collapse
|
3
|
Jiang T, Zeng Q, Wang J. Unlocking the secrets of Cardiac development and function: the critical role of FHL2. Mol Cell Biochem 2024:10.1007/s11010-024-05142-6. [PMID: 39466483 DOI: 10.1007/s11010-024-05142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
FHL2 (Four-and-a-half LIM domain protein 2) is a crucial factor involved in cardiac morphogenesis, the process by which the heart develops its complex structure. It is expressed in various tissues during embryonic development, including the developing heart, and has been shown to play important roles in cell proliferation, differentiation, and migration. FHL2 interacts with multiple proteins to regulate cardiac development as a coactivator or a corepressor. It is involved in cardiac specification and determination of cell fate, cardiomyocyte growth, cardiac remodeling, myofibrillogenesis, and the regulation of HERG channels. Targeting FHL2 has therapeutic implications as it could improve cardiac function, control arrhythmias, alleviate heart failure, and maintain cardiac integrity in various pathological conditions. The identification of FHL2 as a signature gene in atrial fibrillation suggests its potential as a diagnostic marker and therapeutic target for this common arrhythmia.
Collapse
Affiliation(s)
- Tingting Jiang
- Department of Clinical Laboratory, Hengyang Medical School, the Affiliated Nanhua Hospital, University of South China, Hengyang, 421000, China
| | - Qun Zeng
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, 421000, China
| | - Jing Wang
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, China.
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research On Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, China.
- The First Clinical College, Changsha Medical University, Changsha, 410219, China.
| |
Collapse
|
4
|
Carabetta N, Siracusa C, Leo I, Panuccio G, Strangio A, Sabatino J, Torella D, De Rosa S. Cardiomyopathies: The Role of Non-Coding RNAs. Noncoding RNA 2024; 10:53. [PMID: 39449507 PMCID: PMC11503404 DOI: 10.3390/ncrna10060053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
Cardiomyopathies are the structural and functional disorders of the myocardium. Etiopathogenesis is complex and involves an interplay of genetic, environmental, and lifestyle factors eventually leading to myocardial abnormalities. It is known that non-coding (Nc) RNAs, including micro (mi)-RNAs and long non-coding (lnc) RNAs, play a crucial role in regulating gene expression. Several studies have explored the role of miRNAs in the development of various pathologies, including heart diseases. In this review, we analyzed various patterns of ncRNAs expressed in the most common cardiomyopathies: dilated cardiomyopathy, hypertrophic cardiomyopathy and arrhythmogenic cardiomyopathy. Understanding the role of different ncRNAs implicated in cardiomyopathic processes may contribute to the identification of potential therapeutic targets and novel risk stratification models based on gene expression. The analysis of ncRNAs may also be helpful to unveil the molecular mechanisms subtended to these diseases.
Collapse
Affiliation(s)
- Nicole Carabetta
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.C.); (C.S.)
| | - Chiara Siracusa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.C.); (C.S.)
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Giuseppe Panuccio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, 12200 Berlin, Germany
| | - Antonio Strangio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.C.); (C.S.)
| |
Collapse
|
5
|
Silver E, Argiro A, Murray SS, Korty L, Lin G, Pretorius V, Urey M, Hong KN, Adler ED, Bui QM. Genetic Testing Practices and Pathological Assessments in End Stage Heart Failure Patients Undergoing Heart Transplantation and Left Ventricular Assist Device. J Card Fail 2024:S1071-9164(24)00885-6. [PMID: 39454940 DOI: 10.1016/j.cardfail.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Genetic cardiomyopathies (CM) are increasingly recognized as causes of end-stage heart failure (ESHF). Identification of a genetic etiology in ESHF has important prognostic and family implications. However, genetic testing practices are understudied in ESHF patients. METHODS This single-center, retrospective study included consecutive ESHF patients who underwent heart transplantation (HT) or left ventricular assist device (LVAD) from 2018 to 2023. Data, including genetic testing and pathology reports, were collected from the electronic medical record. Analyses of demographic and clinical characteristics were stratified by genetic testing completion and presence of clinically actionable variant. Logistic regression was performed to evaluate for associations between histology findings and genetic variants. RESULTS A total of 529 adult patients (mean age 57 years) were included in the study and were predominantly male (79%, 422/529) and non-white (61%, 322/529). Genetic testing was performed in 54% (196/360) of patients with either non-ischemic or mixed CM. A clinically actionable result was identified in 36% (70/196) of patients, of which, only 43% (30/70) had a genetic counselor referral. The most common genetic variants were TTN (32%, 24/75), MYBPC3 (13%, 10/75), and TTR (11%, 8/75). Clinically actionable variants were identified in patients with known heart failure precipitators, such as alcohol use. In multivariable analysis, presence of interstitial fibrosis, specifically diffuse, on pathology was significantly associated with a clinically actionable variant (aOR 2.29, 95% CI [1.08-4.86], p = 0.03). CONCLUSION ESHF patients with non-ischemic or mixed CM undergoing advanced therapies had a low uptake of genetic services, including testing and counselors, despite a high burden of genetic disease. Pathology findings, such as interstitial fibrosis, may provide insight into genetic etiology. The underutilization of services suggests a need for implementation strategies to improve uptake.
Collapse
Affiliation(s)
- Elizabeth Silver
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Alessia Argiro
- Cardiomyopathy Unit, University of Florence, Florence, Italy
| | - Sarah S Murray
- Division of Laboratory and Genomic Medicine, Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Lauren Korty
- Division of Genetic Counseling, University of California, San Diego, La Jolla, CA, USA
| | - Grace Lin
- Division of Anatomic Pathology, Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Victor Pretorius
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Marcus Urey
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kimberly N Hong
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Eric D Adler
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Quan M Bui
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Gigli M, Stolfo D, Merlo M, Sinagra G, Taylor MRG, Mestroni L. Pathophysiology of dilated cardiomyopathy: from mechanisms to precision medicine. Nat Rev Cardiol 2024:10.1038/s41569-024-01074-2. [PMID: 39394525 DOI: 10.1038/s41569-024-01074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/13/2024]
Abstract
Dilated cardiomyopathy (DCM) is a complex disease with multiple causes and various pathogenic mechanisms. Despite improvements in the prognosis of patients with DCM in the past decade, this condition remains a leading cause of heart failure and premature death. Conventional treatment for DCM is based on the foundational therapies for heart failure with reduced ejection fraction. However, increasingly, attention is being directed towards individualized treatments and precision medicine. The ability to confirm genetic causality is gradually being complemented by an increased understanding of genotype-phenotype correlations. Non-genetic factors also influence the onset of DCM, and growing evidence links genetic background with concomitant non-genetic triggers or precipitating factors, increasing the extreme complexity of the pathophysiology of DCM. This Review covers the spectrum of pathophysiological mechanisms in DCM, from monogenic causes to the coexistence of genetic abnormalities and triggering environmental factors (the 'two-hit' hypothesis). The roles of common genetic variants in the general population and of gene modifiers in disease onset and progression are also discussed. Finally, areas for future research are highlighted, particularly novel therapies, such as small molecules, RNA and gene therapy, and measures for the prevention of arrhythmic death.
Collapse
Affiliation(s)
- Marta Gigli
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Davide Stolfo
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marco Merlo
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Matthew R G Taylor
- Adult Medical Genetics Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Luisa Mestroni
- Molecular Genetics Program, Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
7
|
Mukhopadhyay S, Dixit P, Khanom N, Sanghera G, McGurk KA. The Genetic Factors Influencing Cardiomyopathies and Heart Failure across the Allele Frequency Spectrum. J Cardiovasc Transl Res 2024; 17:1119-1139. [PMID: 38771459 PMCID: PMC11519107 DOI: 10.1007/s12265-024-10520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Heart failure (HF) remains a major cause of mortality and morbidity worldwide. Understanding the genetic basis of HF allows for the development of disease-modifying therapies, more appropriate risk stratification, and personalised management of patients. The advent of next-generation sequencing has enabled genome-wide association studies; moving beyond rare variants identified in a Mendelian fashion and detecting common DNA variants associated with disease. We summarise the latest GWAS and rare variant data on mixed and refined HF aetiologies, and cardiomyopathies. We describe the recent understanding of the functional impact of titin variants and highlight FHOD3 as a novel cardiomyopathy-associated gene. We describe future directions of research in this field and how genetic data can be leveraged to improve the care of patients with HF.
Collapse
Affiliation(s)
- Srinjay Mukhopadhyay
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
- School of Medicine, Cardiff University, Wales, UK
| | - Prithvi Dixit
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Najiyah Khanom
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Gianluca Sanghera
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Kathryn A McGurk
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK.
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK.
| |
Collapse
|
8
|
Micolonghi C, Perrone F, Fabiani M, Caroselli S, Savio C, Pizzuti A, Germani A, Visco V, Petrucci S, Rubattu S, Piane M. Unveiling the Spectrum of Minor Genes in Cardiomyopathies: A Narrative Review. Int J Mol Sci 2024; 25:9787. [PMID: 39337275 PMCID: PMC11431948 DOI: 10.3390/ijms25189787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Hereditary cardiomyopathies (CMPs), including arrhythmogenic cardiomyopathy (ACM), dilated cardiomyopathy (DCM), and hypertrophic cardiomyopathy (HCM), represent a group of heart disorders that significantly contribute to cardiovascular morbidity and mortality and are often driven by genetic factors. Recent advances in next-generation sequencing (NGS) technology have enabled the identification of rare variants in both well-established and minor genes associated with CMPs. Nowadays, a set of core genes is included in diagnostic panels for ACM, DCM, and HCM. On the other hand, despite their lesser-known status, variants in the minor genes may contribute to disease mechanisms and influence prognosis. This review evaluates the current evidence supporting the involvement of the minor genes in CMPs, considering their potential pathogenicity and clinical significance. A comprehensive analysis of databases, such as ClinGen, ClinVar, and GeneReviews, along with recent literature and diagnostic guidelines provides a thorough overview of the genetic landscape of minor genes in CMPs and offers guidance in clinical practice, evaluating each case individually based on the clinical referral, and insights for future research. Given the increasing knowledge on these less understood genetic factors, future studies are essential to clearly assess their roles, ultimately leading to improved diagnostic precision and therapeutic strategies in hereditary CMPs.
Collapse
Affiliation(s)
- Caterina Micolonghi
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Perrone
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Marco Fabiani
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
- ALTAMEDICA, Human Genetics, 00198 Rome, Italy
| | - Silvia Caroselli
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
- Juno Genetics, Reproductive Genetics, 00188 Rome, Italy
| | | | - Antonio Pizzuti
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
- Medical Genetics Unit, IRCCS Mendel Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Aldo Germani
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Vincenzo Visco
- S. Andrea University Hospital, 00189 Rome, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Simona Petrucci
- S. Andrea University Hospital, 00189 Rome, Italy
- Medical Genetics Unit, IRCCS Mendel Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Speranza Rubattu
- S. Andrea University Hospital, 00189 Rome, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Maria Piane
- S. Andrea University Hospital, 00189 Rome, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
9
|
Rahimzadeh M, Tennstedt S, Aherrahrou Z. Nexilin in cardiomyopathy: unveiling its diverse roles with special focus on endocardial fibroelastosis. Heart Fail Rev 2024; 29:1025-1037. [PMID: 38985384 DOI: 10.1007/s10741-024-10416-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Cardiac disorders exhibit considerable heterogeneity, and understanding their genetic foundations is crucial for their diagnosis and treatment. Recent genetic analyses involving a growing number of participants have uncovered novel mutations within both coding and non-coding regions of DNA, contributing to the onset of cardiac conditions. The NEXN gene, encoding the Nexilin protein, an actin filament-binding protein, is integral to normal cardiac function. Mutations in this gene have been linked to cardiomyopathies, cardiovascular disorders, and sudden deaths. Heterozygous or homozygous variants of the NEXN gene are associated with the development of endocardial fibroelastosis (EFE), a rare cardiac condition characterized by excessive collagen and elastin deposition in the left ventricular endocardium predominantly affecting infants and young children. EFE occurs both primary and secondary to other conditions and often leads to unfavorable prognoses and outcomes. This review explores the role of NEXN genetic variants in cardiovascular disorders, particularly EFE, revealing that functional mutations are not clustered in a specific domain of Nexilin based on the cardiac disorder phenotype. Our review underscores the importance of understanding genetic mutations for the diagnosis and treatment of cardiac conditions.
Collapse
Affiliation(s)
- Mahsa Rahimzadeh
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Stephanie Tennstedt
- Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, 23562, Germany
- University Heart Center Lübeck, Lübeck, 23562, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, 23562, Germany.
- University Heart Center Lübeck, Lübeck, 23562, Germany.
| |
Collapse
|
10
|
Wang K, Wang Y, Wan H, Wang J, Hu L, Huang S, Sheng M, Wu J, Han X, Yu Y, Chen P, Chen F. Actn2 defects accelerates H9c2 hypertrophy via ERK phosphorylation under chronic stress. Genes Genomics 2024; 46:1013-1022. [PMID: 38990270 DOI: 10.1007/s13258-024-01536-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/08/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND In humans, ACTN2 mutations are identified as highly relevant to a range of cardiomyopathies such as DCM and HCM, while their association with sudden cardiac death has been observed in forensic cases. Although ACTN2 has been shown to regulate sarcomere Z-disc organization, a causal relationship between ACTN2 dysregulation and cardiomyopathies under chronic stress has not yet been investigated. OBJECTIVE In this work, we explored the relationship between Actn2 dysregulation and cardiomyopathies under dexamethasone treatment. METHODS Previous cases of ACTN2 mutations were collected and the conservative analysis was carried out by MEGA 11, the possible impact on the stability and function of ACTN2 affected by these mutations was predicted by Polyphen-2. ACTN2 was suppressed by siRNA in H9c2 cells under dexamethasone treatment to mimic the chronic stress in vitro. Then the cardiac hypertrophic molecular biomarkers were elevated, and the potential pathways were explored by transcriptome analysis. RESULTS Actn2 suppression impaired calcium uptake and increased hypertrophy in H9c2 cells under dexamethasone treatment. Concomitantly, hypertrophic molecular biomarkers were also elevated in Actn2-suppressed cells. Further transcriptome analysis and Western blotting data suggested that Actn2 suppression led to the excessive activation of the MAPK pathway and ERK cascade. In vitro pharmaceutical intervention with ERK inhibitors could partially reverse the morphological changes and inhibit the excessive cardiac hypertrophic molecular biomarkers in H9c2 cells. CONCLUSION Our study revealed a functional role of ACTN2 under chronic stress, loss of ACTN2 function accelerated H9c2 hypertrophy through ERK signaling. A commercial drug, Ibudilast, was identified to reverse cell hypertrophy in vitro.
Collapse
Affiliation(s)
- Kang Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Ye Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Hua Wan
- Department of Health Management, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Jie Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Li Hu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Shuainan Huang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mingchen Sheng
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jiayi Wu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Xing Han
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Youjia Yu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Peng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
11
|
Xue S, Jiang H. Exploring the etiology of dilated cardiomyopathy using Mendelian randomization. Front Cardiovasc Med 2024; 11:1364126. [PMID: 39253394 PMCID: PMC11381399 DOI: 10.3389/fcvm.2024.1364126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/25/2024] [Indexed: 09/11/2024] Open
Abstract
Background Observational clinical studies suggest an association between dilated cardiomyopathy (DCM) and various factors including titin, cardiac troponin I (CTnI), desmocollin-2, the perinatal period, alcoholism, Behçet's disease, systemic lupus erythematosus, hyperthyroidism and thyrotoxicosis, hypothyroidism, carnitine metabolic disorder, and renal insufficiency. The causal nature of these associations remains uncertain. This study aims to explore these correlations using the Mendelian randomization (MR) approach. Objective To investigate the etiology of DCM through Mendelian randomization analysis. Methods Data mining was conducted in genome-wide association study databases, focusing on variant target proteins (titin, CTnI, desmocollin-2), the perinatal period, alcoholism, Behçet's disease, systemic lupus erythematosus, hyperthyroidism and thyrotoxicosis, hypothyroidism, carnitine metabolic disorder, and renal insufficiency, with DCM as the outcome. The analysis employed various regression models, namely, the inverse-variance weighted (IVW), MR-Egger, simple mode, weighted median, and weighted mode methods. Results The IVW results showed a correlation between titin protein and DCM, identifying titin as a protective factor [OR = 0.856, 95% CI (0.744-0.985), P = 0.030]. CTnI protein correlated with DCM, marking it as a risk factor [OR = 1.204, 95% CI (1.010-1.436), P = 0.040]. Desmocollin-2 also correlated with DCM and was recognized as a risk factor [OR = 1.309, 95% CI (1.085-1.579), P = 0.005]. However, no causal relationship was found between the perinatal period, alcoholism, Behçet's disease, systemic lupus erythematosus, hyperthyroidism and thyrotoxicosis, hypothyroidism, carnitine metabolic disorder, renal insufficiency, and DCM (P > 0.05). The MR-Egger intercept test indicated no pleiotropy (P > 0.05), affirming the effectiveness of Mendelian randomization in causal inference. Conclusion Titin, CTnI, and desmocollin-2 proteins were identified as independent risk factors for DCM. Contrasting with previous observational studies, no causal relationship was observed between DCM and the perinatal period, alcoholism, Behçet's disease, systemic lupus erythematosus, hyperthyroidism and thyrotoxicosis, hypothyroidism, carnitine metabolic disorder, or renal insufficiency.
Collapse
Affiliation(s)
- SiYang Xue
- Department of Cardiology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - HongJu Jiang
- Department of Cardiology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
12
|
Qi Y, Wei Y, Li L, Ge H, Wang Y, Zeng C, Ma F. Genetic factors in the pathogenesis of cardio-oncology. J Transl Med 2024; 22:739. [PMID: 39103883 DOI: 10.1186/s12967-024-05537-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
In recent years, with advancements in medicine, the survival period of patients with tumours has significantly increased. The adverse effects of tumour treatment on patients, especially cardiac toxicity, have become increasingly prominent. In elderly patients with breast cancer, treatment-related cardiovascular toxicity has surpassed cancer itself as the leading cause of death. Moreover, in recent years, an increasing number of novel antitumour drugs, such as multitargeted agents, antibody‒drug conjugates (ADCs), and immunotherapies, have been applied in clinical practice. The cardiotoxicity induced by these drugs has become more pronounced, leading to a complex and diverse mechanism of cardiac damage. The risks of unintended cardiovascular toxicity are increased by high-dose anthracyclines, immunotherapies, and concurrent radiation, in addition to traditional cardiovascular risk factors such as smoking, hypertension, diabetes, hyperlipidaemia, and obesity. However, these factors do not fully explain why only a subset of individuals experience treatment-related cardiac toxicity, whereas others with similar clinical features do not. Recent studies indicate that genetics play a significant role in susceptibility to the development of cardiovascular toxicity from cancer therapies. These genes are involved in drug metabolism, oxidative damage, cardiac dysfunction, and other processes. Moreover, emerging evidence suggests that epigenetics also plays a role in drug-induced cardiovascular toxicity. We conducted a review focusing on breast cancer as an example to help oncologists and cardiologists better understand the mechanisms and effects of genetic factors on cardiac toxicity. In this review, we specifically address the relationship between genetic alterations and cardiac toxicity, including chemotherapy-related genetic changes, targeted therapy-related genetic changes, and immune therapy-related genetic changes. We also discuss the role of epigenetic factors in cardiac toxicity. We hope that this review will improve the risk stratification of patients and enable therapeutic interventions that mitigate these unintended adverse consequences of life-saving cancer treatments.
Collapse
Affiliation(s)
- Yalong Qi
- Department of Medical Oncology, Cancer Hospital, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing, 100021, China
| | - Yuhan Wei
- Department of Medical Oncology, Cancer Hospital, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing, 100021, China
| | - Lixi Li
- Department of Medical Oncology, Cancer Hospital, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing, 100021, China
| | - Hewei Ge
- Department of Medical Oncology, Cancer Hospital, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing, 100021, China
| | - Yuanyi Wang
- Department of Medical Oncology, Cancer Hospital, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing, 100021, China
| | - Cheng Zeng
- Department of Medical Oncology, Cancer Hospital, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing, 100021, China
| | - Fei Ma
- Department of Medical Oncology, Cancer Hospital, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing, 100021, China.
| |
Collapse
|
13
|
Myers MC, Wang S, Zhong Y, Maruyama S, Bueno C, Bastien A, Fazeli MS, Golchin N. Prevalence of Genetically Associated Dilated Cardiomyopathy: A Systematic Literature Review and Meta-Analysis. Cardiol Res 2024; 15:233-245. [PMID: 39205965 PMCID: PMC11349141 DOI: 10.14740/cr1680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background Dilated cardiomyopathy (DCM) is a leading cause of heart failure and cardiac transplantation globally. Disease-associated genetic variants play a significant role in the development of DCM. Accurately determining the prevalence of genetically associated DCM (genetic DCM) is important for developing targeted prevention strategies. This review synthesized published literature on the global prevalence of genetic DCM across various populations, focusing on two of the most common variants: titin (TTN) and myosin heavy chain 7 (MYH7). Methods MEDLINE® and Embase were searched from database inception to September 19, 2022 for English-language studies reporting the prevalence of genetic DCM within any population. Studies using family history as a proxy for genetic DCM were excluded. Results Of 2,736 abstracts, 57 studies were included. Among the global adult or mixed (mostly adults with few pediatric patients) DCM population, median prevalence was 20.2% (interquartile range (IQR): 16.3-36.0%) for overall genetic DCM, 11.4% (IQR: 8.2-17.8%) for TTN-associated DCM, and 3.2% (IQR: 1.8-5.2%) for MYH7-associated DCM. Global prevalence of overall pediatric genetic DCM within the DCM population was similar (weighted mean: 21.3%). Few studies reported data on the prevalence of genetic DCM within the general population. Conclusions Our study identified variable prevalence estimates of genetic DCM across different populations and geographic locations. The current evidence may underestimate the genetic contributions due to limited screening and detection of potential DCM patients. Epidemiological studies using long-read whole genome sequencing to identify structural variants or non-coding variants are needed, as well as large cohort datasets with genotype-phenotype correlation analyses.
Collapse
Affiliation(s)
| | - Su Wang
- Evidinno Outcomes Research Inc., Vancouver, BC, Canada
| | - Yue Zhong
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | | | | | | | | |
Collapse
|
14
|
Martin TG, Leinwand LA. Hearts apart: sex differences in cardiac remodeling in health and disease. J Clin Invest 2024; 134:e180074. [PMID: 38949027 PMCID: PMC11213513 DOI: 10.1172/jci180074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Biological sex is an important modifier of physiology and influences pathobiology in many diseases. While heart disease is the number one cause of death worldwide in both men and women, sex differences exist at the organ and cellular scales, affecting clinical presentation, diagnosis, and treatment. In this Review, we highlight baseline sex differences in cardiac structure, function, and cellular signaling and discuss the contribution of sex hormones and chromosomes to these characteristics. The heart is a remarkably plastic organ and rapidly responds to physiological and pathological cues by modifying form and function. The nature and extent of cardiac remodeling in response to these stimuli are often dependent on biological sex. We discuss organ- and molecular-level sex differences in adaptive physiological remodeling and pathological cardiac remodeling from pressure and volume overload, ischemia, and genetic heart disease. Finally, we offer a perspective on key future directions for research into cardiac sex differences.
Collapse
Affiliation(s)
- Thomas G. Martin
- Department of Molecular, Cellular, and Developmental Biology and
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Leslie A. Leinwand
- Department of Molecular, Cellular, and Developmental Biology and
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
15
|
Goanta EV, Vacarescu C, Tartea G, Ungureanu A, Militaru S, Muraretu A, Faur-Grigori AA, Petrescu L, Vătăsescu R, Cozma D. Unexpected Genetic Twists in Patients with Cardiac Devices. J Clin Med 2024; 13:3801. [PMID: 38999368 PMCID: PMC11242405 DOI: 10.3390/jcm13133801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Objective: To assess the frequency and types of genetic mutations in patients with arrhythmias who underwent cardiac device implantation. Methods: Retrospective observational study, including 38 patients with different arrhythmias and cardiac arrest as a first cardiac event. Treatment modalities encompass pacemakers, transvenous defibrillators, loop recorders, subcutaneous defibrillators, and cardiac resynchronization therapy. All patients underwent genetic testing, using commercially available panels (106-174 genes). Outcome measures include mortality, arrhythmia recurrence, and device-related complications. Results: Clinical parameters revealed a family history of sudden cardiac death in 19 patients (50%), who were predominantly male (58%) and had a mean age of 44.5 years and a mean left ventricle ejection fraction of 40.3%. Genetic testing identified mutations in various genes, predominantly TMEM43 (11%). In two patients (3%) with arrhythmogenic cardiomyopathy, complete subcutaneous defibrillator extraction with de novo transvenous implantable cardioverter-defibrillator implantation was needed. The absence of multiple associations among severe gene mutations was crucial for cardiac resynchronization therapy response. Mortality in this group was around 3% in titin dilated cardiomyopathy patients. Conclusions: Integration of genetic testing into the decision-making process for patients with electronic devices represents a paradigm shift in personalized medicine. By identifying genetic markers associated with arrhythmia susceptibility, heart failure etiology, and cardiac resynchronization therapy response, clinicians can tailor device choices to optimize patient outcomes.
Collapse
Affiliation(s)
- Emilia-Violeta Goanta
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Cardiology Department, Emergency County Hospital of Craiova, Tabaci Street, Nr. 1, 200642 Craiova, Romania; (G.T.); (A.U.); (A.M.)
| | - Cristina Vacarescu
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.P.); (D.C.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania;
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Georgica Tartea
- Cardiology Department, Emergency County Hospital of Craiova, Tabaci Street, Nr. 1, 200642 Craiova, Romania; (G.T.); (A.U.); (A.M.)
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Adrian Ungureanu
- Cardiology Department, Emergency County Hospital of Craiova, Tabaci Street, Nr. 1, 200642 Craiova, Romania; (G.T.); (A.U.); (A.M.)
| | - Sebastian Militaru
- Department of Cardiology, Craiova University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Alexandra Muraretu
- Cardiology Department, Emergency County Hospital of Craiova, Tabaci Street, Nr. 1, 200642 Craiova, Romania; (G.T.); (A.U.); (A.M.)
| | | | - Lucian Petrescu
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.P.); (D.C.)
| | - Radu Vătăsescu
- Cardiology Department, Clinical Emergency Hospital, 014461 Bucharest, Romania;
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Dragos Cozma
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.P.); (D.C.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania;
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| |
Collapse
|
16
|
Mikšiūnas R, Labeit S, Bironaite D. Class I and II Histone Deacetylase Inhibitors as Therapeutic Modulators of Dilated Cardiac Tissue-Derived Mesenchymal Stem/Stromal Cells. Int J Mol Sci 2024; 25:6758. [PMID: 38928463 PMCID: PMC11203858 DOI: 10.3390/ijms25126758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of dilated cardiomyopathy (DCM) is increasing globally, highlighting the need for innovative therapeutic approaches to prevent its onset. In this study, we examined the energetic and epigenetic distinctions between dilated and non-dilated human myocardium-derived mesenchymal stem/stromal cells (hmMSCs) and assessed the effects of class I and II HDAC inhibitors (HDACi) on these cells and their cardiomyogenic differentiation. Cells were isolated from myocardium biopsies using explant outgrowth methods. Mitochondrial and histone deacetylase activities, ATP levels, cardiac transcription factors, and structural proteins were assessed using flow cytometry, PCR, chemiluminescence, Western blotting, and immunohistochemistry. The data suggest that the tested HDAC inhibitors improved acetylation and enhanced the energetic status of both types of cells, with significant effects observed in dilated myocardium-derived hmMSCs. Additionally, the HDAC inhibitors activated the cardiac transcription factors Nkx2-5, HOPX, GATA4, and Mef2C, and upregulated structural proteins such as cardiac troponin T and alpha cardiac actin at both the protein and gene levels. In conclusion, our findings suggest that HDACi may serve as potential modulators of the energetic status and cardiomyogenic differentiation of human heart hmMSCs. This avenue of exploration could broaden the search for novel therapeutic interventions for dilated cardiomyopathy, ultimately leading to improvements in heart function.
Collapse
Affiliation(s)
- Rokas Mikšiūnas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariškių 5, LT-08406 Vilnius, Lithuania;
| | | | - Daiva Bironaite
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariškių 5, LT-08406 Vilnius, Lithuania;
| |
Collapse
|
17
|
Liu Y, Fan X, Qian K, Wu C, Zhang L, Yuan L, Man Z, Wu S, Li P, Wang X, Li W, Zhang Y, Sun S, Yu C. Deciphering the pathogenic role of rare RAF1 heterozygous missense mutation in the late-presenting DDH. Front Genet 2024; 15:1375736. [PMID: 38952713 PMCID: PMC11215071 DOI: 10.3389/fgene.2024.1375736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/17/2024] [Indexed: 07/03/2024] Open
Abstract
Background Developmental Dysplasia of the Hip (DDH) is a skeletal disorder where late-presenting forms often escape early diagnosis, leading to limb and pain in adults. The genetic basis of DDH is not fully understood despite known genetic predispositions. Methods We employed Whole Genome Sequencing (WGS) to explore the genetic factors in late-presenting DDH in two unrelated families, supported by phenotypic analyses and in vitro validation. Results In both cases, a novel de novo heterozygous missense mutation in RAF1 (c.193A>G [p.Lys65Glu]) was identified. This mutation impacted RAF1 protein structure and function, altering downstream signaling in the Ras/ERK pathway, as demonstrated by bioinformatics, molecular dynamics simulations, and in vitro validations. Conclusion This study contributes to our understanding of the genetic factors involved in DDH by identifying a novel mutation in RAF1. The identification of the RAF1 mutation suggests a possible involvement of the Ras/ERK pathway in the pathogenesis of late-presenting DDH, indicating its potential role in skeletal development.
Collapse
Affiliation(s)
- Yuzhao Liu
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xuesong Fan
- Shandong Mental Health Center, Shandong University, Jinan, China
| | - Kun Qian
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Changshun Wu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Laibo Zhang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lin Yuan
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhentao Man
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuai Wu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ping Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xianquan Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wei Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuanqing Zhang
- Shandong Mental Health Center, Shandong University, Jinan, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chenxi Yu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Digital Health Laboratory, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
18
|
Gray MP, Fatkin D, Ingles J, Robertson EN, Figtree GA. Genetic testing in cardiovascular disease. Med J Aust 2024; 220:428-434. [PMID: 38571440 DOI: 10.5694/mja2.52278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/08/2024] [Indexed: 04/05/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality globally and is responsible for an estimated one-third of deaths as well as significant morbidity and health care utilisation. Technological and bioinformatic advances have facilitated the discovery of pathogenic germline variants for some specific CVDs, including familial hypercholesterolaemia, cardiomyopathies and arrhythmic syndromes. Use of these genetic tests for earlier disease identification is increasing due, in part, to decreasing costs, Medicare rebates, and consumer comfort with genetic testing. However, CVDs that occur more commonly, including coronary artery disease and atrial fibrillation, do not display monogenic inheritance patterns. Genetically, these diseases have generally been associated with many genetic variants each with a small effect size. This complexity can be expressed mathematically as a polygenic risk score. Genetic testing kits that provide polygenic risk scoring are becoming increasingly available directly to private-paying consumers outside the traditional clinical setting. An improved understanding of the evidence of genetics in CVD will offer clinicians new opportunities for individualised risk prediction and preventive therapy.
Collapse
Affiliation(s)
- Michael P Gray
- University of Sydney, Sydney, NSW
- Kolling Institute, Sydney, NSW
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Sydney, NSW
| | - Jodie Ingles
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, NSW
| | | | - Gemma A Figtree
- University of Sydney, Sydney, NSW
- Kolling Institute, Sydney, NSW
- Royal North Shore Hospital, Sydney, NSW
| |
Collapse
|
19
|
Stroik D, Gregorich ZR, Raza F, Ge Y, Guo W. Titin: roles in cardiac function and diseases. Front Physiol 2024; 15:1385821. [PMID: 38660537 PMCID: PMC11040099 DOI: 10.3389/fphys.2024.1385821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
The giant protein titin is an essential component of muscle sarcomeres. A single titin molecule spans half a sarcomere and mediates diverse functions along its length by virtue of its unique domains. The A-band of titin functions as a molecular blueprint that defines the length of the thick filaments, the I-band constitutes a molecular spring that determines cell-based passive stiffness, and various domains, including the Z-disk, I-band, and M-line, serve as scaffolds for stretch-sensing signaling pathways that mediate mechanotransduction. This review aims to discuss recent insights into titin's functional roles and their relationship to cardiac function. The role of titin in heart diseases, such as dilated cardiomyopathy and heart failure with preserved ejection fraction, as well as its potential as a therapeutic target, is also discussed.
Collapse
Affiliation(s)
- Dawson Stroik
- Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Animal and Dairy Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Zachery R. Gregorich
- Department of Animal and Dairy Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Farhan Raza
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Wei Guo
- Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Animal and Dairy Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
20
|
Zhu P, Li J, Yan F, Islam S, Lin X, Xu X. Allelic heterogeneity of TTNtv dilated cardiomyopathy can be modeled in adult zebrafish. JCI Insight 2024; 9:e175501. [PMID: 38412038 PMCID: PMC11128207 DOI: 10.1172/jci.insight.175501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
Allelic heterogeneity (AH) has been noted in truncational TTN-associated (TTNtv-associated) dilated cardiomyopathy (DCM); i.e., mutations affecting A-band-encoding exons are pathogenic, but those affecting Z-disc-encoding exons are likely benign. The lack of an in vivo animal model that recapitulates AH hinders the deciphering of the underlying mechanism. Here, we explored zebrafish as a candidate vertebrate model by phenotyping a collection of zebrafish ttntv alleles. We noted that cardiac function and sarcomere structure were more severely disrupted in ttntv-A than in ttntv-Z homozygous embryos. Consistently, cardiomyopathy-like phenotypes were present in ttntv-A but not ttntv-Z adult heterozygous mutants. The phenotypes observed in ttntv-A alleles were recapitulated in null mutants with the full titin-encoding sequences removed. Defective autophagic flux, largely due to impaired autophagosome-lysosome fusion, was also noted only in ttntv-A but not in ttntv-Z models. Moreover, we found that genetic manipulation of ulk1a restored autophagy flux and rescued cardiac dysfunction in ttntv-A animals. Together, our findings presented adult zebrafish as an in vivo animal model for studying AH in TTNtv DCM, demonstrated TTN loss of function is sufficient to trigger ttntv DCM in zebrafish, and uncovered ulk1a as a potential therapeutic target gene for TTNtv DCM.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jiarong Li
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiovascular Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Feixiang Yan
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Shahidul Islam
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
21
|
Scheel PJ, Cartella I, Murray B, Gilotra NA, Ammirati E. Role of genetics in inflammatory cardiomyopathy. Int J Cardiol 2024; 400:131777. [PMID: 38218248 DOI: 10.1016/j.ijcard.2024.131777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Traditional cardiomyopathy paradigms segregate inflammatory etiologies from those caused by genetic variants. An identified or presumed trigger is implicated in acute myocarditis or chronic inflammatory cardiomyopathy but growing evidence suggests a significant proportion of patients have an underlying cardiomyopathy-associated genetic variant often even when a clear inflammatory trigger is identified. Recognizing a possible genetic contribution to inflammatory cardiomyopathy may have major downstream implications for both the patient and family. The presenting features of myocarditis (i.e. chest pain, arrhythmia, and/or heart failure) may provide insight into diagnostic considerations. One example is isolated cardiac sarcoidosis, a distinct inflammatory cardiomyopathy that carries diagnostic challenges and clinical overlap; genetic testing has increasingly reclassified cases of isolated cardiac sarcoidosis as genetic cardiomyopathy, notably altering management. On the other side, inflammatory presentations of genetic cardiomyopathies are likewise underappreciated and a growing area of investigation. Inflammation plays an important role in the pathogenesis of several familial cardiomyopathies, especially arrhythmogenic phenotypes. Given these clinical scenarios, and the implications on clinical decision making such as initiation of immunosuppression, sudden cardiac death prevention, and family screening, it is important to recognize when genetics may be playing a role.
Collapse
Affiliation(s)
- Paul J Scheel
- Division of Cardiology, Department of Medicine, Johns Hopkins University, USA.
| | - Iside Cartella
- De Gasperis Cardio Center, Transplant Center, Niguarda Hospital, Milano, Italy; Department of Health Sciences, University of Milano-Bicocca, Monza, Italy
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins University, USA
| | - Nisha A Gilotra
- Division of Cardiology, Department of Medicine, Johns Hopkins University, USA
| | - Enrico Ammirati
- De Gasperis Cardio Center, Transplant Center, Niguarda Hospital, Milano, Italy; Department of Health Sciences, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
22
|
Jolfayi AG, Kohansal E, Ghasemi S, Naderi N, Hesami M, MozafaryBazargany M, Moghadam MH, Fazelifar AF, Maleki M, Kalayinia S. Exploring TTN variants as genetic insights into cardiomyopathy pathogenesis and potential emerging clues to molecular mechanisms in cardiomyopathies. Sci Rep 2024; 14:5313. [PMID: 38438525 PMCID: PMC10912352 DOI: 10.1038/s41598-024-56154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/01/2024] [Indexed: 03/06/2024] Open
Abstract
The giant protein titin (TTN) is a sarcomeric protein that forms the myofibrillar backbone for the components of the contractile machinery which plays a crucial role in muscle disorders and cardiomyopathies. Diagnosing TTN pathogenic variants has important implications for patient management and genetic counseling. Genetic testing for TTN variants can help identify individuals at risk for developing cardiomyopathies, allowing for early intervention and personalized treatment strategies. Furthermore, identifying TTN variants can inform prognosis and guide therapeutic decisions. Deciphering the intricate genotype-phenotype correlations between TTN variants and their pathologic traits in cardiomyopathies is imperative for gene-based diagnosis, risk assessment, and personalized clinical management. With the increasing use of next-generation sequencing (NGS), a high number of variants in the TTN gene have been detected in patients with cardiomyopathies. However, not all TTN variants detected in cardiomyopathy cohorts can be assumed to be disease-causing. The interpretation of TTN variants remains challenging due to high background population variation. This narrative review aimed to comprehensively summarize current evidence on TTN variants identified in published cardiomyopathy studies and determine which specific variants are likely pathogenic contributors to cardiomyopathy development.
Collapse
Affiliation(s)
- Amir Ghaffari Jolfayi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Erfan Kohansal
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Serwa Ghasemi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hesami
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Hosseini Moghadam
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Farjam Fazelifar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Weston TGR, Rees M, Gautel M, Fraternali F. Walking with giants: The challenges of variant impact assessment in the giant sarcomeric protein titin. WIREs Mech Dis 2024; 16:e1638. [PMID: 38155593 DOI: 10.1002/wsbm.1638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Titin, the so-called "third filament" of the sarcomere, represents a difficult challenge for the determination of damaging genetic variants. A single titin molecule extends across half the length of a sarcomere in striated muscle, fulfilling a variety of vital structural and signaling roles, and has been linked to an equally varied range of myopathies, resulting in a significant burden on individuals and healthcare systems alike. While the consequences of truncating variants of titin are well-documented, the ramifications of the missense variants prevalent in the general population are less so. We here present a compendium of titin missense variants-those that result in a single amino-acid substitution in coding regions-reported to be pathogenic and discuss these in light of the nature of titin and the variant position within the sarcomere and their domain, the structural, pathological, and biophysical characteristics that define them, and the methods used for characterization. Finally, we discuss the current knowledge and integration of the multiple fields that have contributed to our understanding of titin-related pathology and offer suggestions as to how these concurrent methodologies may aid the further development in our understanding of titin and hopefully extend to other, less well-studied giant proteins. This article is categorized under: Cardiovascular Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Timir G R Weston
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Martin Rees
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Mathias Gautel
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Franca Fraternali
- Institute of Structural and Molecular Biology, University College London, London, UK
| |
Collapse
|
24
|
Gao Y, Peng L, Zhao C. MYH7 in cardiomyopathy and skeletal muscle myopathy. Mol Cell Biochem 2024; 479:393-417. [PMID: 37079208 DOI: 10.1007/s11010-023-04735-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 04/21/2023]
Abstract
Myosin heavy chain gene 7 (MYH7), a sarcomeric gene encoding the myosin heavy chain (myosin-7), has attracted considerable interest as a result of its fundamental functions in cardiac and skeletal muscle contraction and numerous nucleotide variations of MYH7 are closely related to cardiomyopathy and skeletal muscle myopathy. These disorders display significantly inter- and intra-familial variability, sometimes developing complex phenotypes, including both cardiomyopathy and skeletal myopathy. Here, we review the current understanding on MYH7 with the aim to better clarify how mutations in MYH7 affect the structure and physiologic function of sarcomere, thus resulting in cardiomyopathy and skeletal muscle myopathy. Importantly, the latest advances on diagnosis, research models in vivo and in vitro and therapy for precise clinical application have made great progress and have epoch-making significance. All the great advance is discussed here.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Lu Peng
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Cuifen Zhao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
25
|
Gregorich ZR, Yanghai Z, Kamp TJ, Granzier H, Guo W. Mechanisms of RBM20 Cardiomyopathy: Insights From Model Systems. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004355. [PMID: 38288598 PMCID: PMC10923161 DOI: 10.1161/circgen.123.004355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
RBM20 (RNA-binding motif protein 20) is a vertebrate- and muscle-specific RNA-binding protein that belongs to the serine-arginine-rich family of splicing factors. The RBM20 gene was first identified as a dilated cardiomyopathy-linked gene over a decade ago. Early studies in Rbm20 knockout rodents implicated disrupted splicing of RBM20 target genes as a causative mechanism. Clinical studies show that pathogenic variants in RBM20 are linked to aggressive dilated cardiomyopathy with early onset heart failure and high mortality. Subsequent studies employing pathogenic variant knock-in animal models revealed that variants in a specific portion of the arginine-serine-rich domain in RBM20 not only disrupt splicing but also hinder nucleocytoplasmic transport and lead to the formation of RBM20 biomolecular condensates in the sarcoplasm. Conversely, mice harboring a disease-associated variant in the RRM (RNA recognition motif) do not show evidence of adverse remodeling or exhibit sudden death despite disrupted splicing of RBM20 target genes. Thus, whether disrupted splicing, biomolecular condensates, or both contribute to dilated cardiomyopathy is under debate. Beyond this, additional questions remain, such as whether there is sexual dimorphism in the presentation of RBM20 cardiomyopathy. What are the clinical features of RBM20 cardiomyopathy and why do some individuals develop more severe disease than others? In this review, we summarize the reported observations and discuss potential mechanisms of RBM20 cardiomyopathy derived from studies employing in vivo animal models and in vitro human-induced pluripotent stem cell-derived cardiomyocytes. Potential therapeutic strategies to treat RBM20 cardiomyopathy are also discussed.
Collapse
Affiliation(s)
- Zachery R. Gregorich
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI
| | - Zhang Yanghai
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI
| | - Timothy J. Kamp
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin-Madison, Madison, WI
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Wei Guo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
26
|
Hermida A, Ader F, Millat G, Jedraszak G, Maury P, Cador R, Catalan PA, Clerici G, Combes N, De Groote P, Dupin-Deguine D, Eschalier R, Faivre L, Garcia P, Guillon B, Janin A, Kugener B, Lackmy M, Laredo M, Le Guillou X, Lesaffre F, Lucron H, Milhem A, Nadeau G, Nguyen K, Palmyre A, Perdreau E, Picard F, Rebotier N, Richard P, Rooryck C, Seitz J, Verloes A, Vernier A, Winum P, Yabeta GAD, Bouchot O, Chevalier P, Charron P, Gandjbakhch E. NEXN Gene in Cardiomyopathies and Sudden Cardiac Deaths: Prevalence, Phenotypic Expression, and Prognosis. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004285. [PMID: 38059363 DOI: 10.1161/circgen.123.004285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/05/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Few clinical data are available on NEXN mutation carriers, and the gene's involvement in cardiomyopathies or sudden death has not been fully established. Our objectives were to assess the prevalence of putative pathogenic variants in NEXN and to describe the phenotype and prognosis of patients carrying the variants. METHODS DNA samples from consecutive patients with cardiomyopathy or sudden cardiac death/sudden infant death syndrome/idiopathic ventricular fibrillation were sequenced with a custom panel of genes. Index cases carrying at least one putative pathogenic variant in the NEXN gene were selected. RESULTS Of the 9516 index patients sequenced, 31 were carriers of a putative pathogenic variant in NEXN only, including 2 with double variants and 29 with a single variant. Of the 29 unrelated probands with a single variant (16 males; median age at diagnosis, 32.0 [26.0-49.0] years), 21 presented with dilated cardiomyopathy (prevalence, 0.33%), and 3 presented with hypertrophic cardiomyopathy (prevalence, 0.14%). Three patients had idiopathic ventricular fibrillation, and there were 2 cases of sudden infant death syndrome (prevalence, 0.46%). For patients with dilated cardiomyopathy, the median left ventricle ejection fraction was 37.5% (26.25-50.0) at diagnosis and improved with treatment in 13 (61.9%). Over a median follow-up period of 6.0 years, we recorded 3 severe arrhythmic events and 2 severe hemodynamic events. CONCLUSIONS Putative pathogenic NEXN variants were mainly associated with dilated cardiomyopathy; in these individuals, the prognosis appeared to be relatively good. However, severe and early onset phenotypes were also observed-especially in patients with double NEXN variants. We also detected NEXN variants in patients with hypertrophic cardiomyopathy and sudden infant death syndrome/idiopathic ventricular fibrillation, although a causal link could not be established.
Collapse
Affiliation(s)
- Alexis Hermida
- Cardiology, Arrhythmia, and Cardiac Stimulation Service (A.H.), Amiens-Picardie University Hospital
- EA4666 HEMATIM, University of Picardie-Jules Verne, Amiens (A.H., G.J.)
- Institute of Cardiology and ICAN Institute for Cardiometabolism and Nutrition (A.H., M. Laredo, P. Charron, E.G.)
- Department of Genetics, Department of Cardiology, and Referral center for hereditary cardiac diseases, APHP, Pitié-Salpêtrière Hospital (A.H., P. Charron, E.G.)
| | - Flavie Ader
- Unité Pédagogique de Biochimie, Département des Sciences Biologiques et Médicales, UFR de Pharmacie-Faculté de Santé, Université Paris Cité (F.A.)
- Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire et Cellulaire, DMU Biogem, Service de Biochimie Métabolique, AP-HP-Sorbonne Université, Pitié-Salpêtrière -Charles Foix (F.A., P.R.)
- Sorbonne Université, INSERM 1166, Paris (F.A., M. Laredo, P.R., P. Charron, E.G.)
| | - Gilles Millat
- Service de Génétique Moléculaire, Hospices Civils de Lyon (G.M., A.J.)
| | - Guillaume Jedraszak
- Molecular Genetics Laboratory (G.J.), Amiens-Picardie University Hospital
- EA4666 HEMATIM, University of Picardie-Jules Verne, Amiens (A.H., G.J.)
| | | | - Romain Cador
- Service de Cardiologie, Hôpital Saint Joseph, Paris (R.C.)
| | | | - Gaël Clerici
- Service de Cardiologie, Centre hospitalier universitaire, Saint Pierre, La Réunion (G.C.)
| | - Nicolas Combes
- Service de Cardiologie, Clinique Pasteur, Toulouse (N.C.)
| | - Pascal De Groote
- France CHU Lille, Service de Cardiologie & Inserm U1167, Institut Pasteur de Lille (P.D.G.)
| | | | | | | | - Patricia Garcia
- Unité Mort Inattendue du Nourrisson, Hôpital de la Conception, APHM, Marseille (P.G.)
| | | | - Alexandre Janin
- Service de Génétique Moléculaire, Hospices Civils de Lyon (G.M., A.J.)
| | | | - Marylin Lackmy
- Unité de Génétique Clinique, CHU de Guadeloupe, Pointe à Pitre (M. Lackmy)
| | - Mikael Laredo
- Institute of Cardiology and ICAN Institute for Cardiometabolism and Nutrition (A.H., M. Laredo, P. Charron, E.G.)
- Sorbonne Université, INSERM 1166, Paris (F.A., M. Laredo, P.R., P. Charron, E.G.)
| | | | | | - Hugues Lucron
- Service de Cardiologie pédiatrique, CHU Martinique, Fort-de-France (H.L.)
| | | | - Gwenaël Nadeau
- Service de génétique clinique CH Métropole Savoie, Chambéry (G.N.)
| | | | - Aurélien Palmyre
- APHP, Ambroise Paré Hospital, Department of Genetics and Referral center for cardiac hereditary cardiac diseases, Boulogne-Billancourt (A.P., P. Charron)
| | - Elodie Perdreau
- Département médico chirurgical de cardiologie pédiatrique (E.P.), Hôpital Louis Pradel, HCL, Lyon
| | - François Picard
- Service de Cardiologie, Hôpital Cardiologique Haut Leveque, Bordeaux (F.P.)
| | | | - Pascale Richard
- Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire et Cellulaire, DMU Biogem, Service de Biochimie Métabolique, AP-HP-Sorbonne Université, Pitié-Salpêtrière -Charles Foix (F.A., P.R.)
- Sorbonne Université, INSERM 1166, Paris (F.A., M. Laredo, P.R., P. Charron, E.G.)
| | | | - Julien Seitz
- Service de Cardiologie, Hôpital Saint Joseph, Marseille (J.S.)
| | - Alain Verloes
- Departement de génétique, Hôpital Robert Debré, APHP (A. Verloes)
| | | | | | - Grace-A-Dieu Yabeta
- Service de Cardiologie, CH Ouest Guyane, Saint-Laurent-du-Maroni (G.-A.-D.Y.)
| | - Océane Bouchot
- Service de Cardiologie, CH Annecy Genevois, Annecy, France (O.B.)
| | | | - Philippe Charron
- Institute of Cardiology and ICAN Institute for Cardiometabolism and Nutrition (A.H., M. Laredo, P. Charron, E.G.)
- Department of Genetics, Department of Cardiology, and Referral center for hereditary cardiac diseases, APHP, Pitié-Salpêtrière Hospital (A.H., P. Charron, E.G.)
- Sorbonne Université, INSERM 1166, Paris (F.A., M. Laredo, P.R., P. Charron, E.G.)
- APHP, Ambroise Paré Hospital, Department of Genetics and Referral center for cardiac hereditary cardiac diseases, Boulogne-Billancourt (A.P., P. Charron)
| | - Estelle Gandjbakhch
- Institute of Cardiology and ICAN Institute for Cardiometabolism and Nutrition (A.H., M. Laredo, P. Charron, E.G.)
- Department of Genetics, Department of Cardiology, and Referral center for hereditary cardiac diseases, APHP, Pitié-Salpêtrière Hospital (A.H., P. Charron, E.G.)
- Sorbonne Université, INSERM 1166, Paris (F.A., M. Laredo, P.R., P. Charron, E.G.)
| |
Collapse
|
27
|
Keil L, Berisha F, Ritter S, Skibowski J, Subramanian H, Nikolaev VO, Kubisch C, Woitschach R, Fabritz L, Twerenbold R, Blankenberg S, Weidemann S, Zeller T, Kirchhof P, Reichart D, Magnussen C. Multimodal characterization of dilated cardiomyopathy: Geno- And Phenotyping of PrImary Cardiomyopathy (GrAPHIC). ESC Heart Fail 2024; 11:541-549. [PMID: 37964758 PMCID: PMC10804161 DOI: 10.1002/ehf2.14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/23/2023] [Accepted: 09/15/2023] [Indexed: 11/16/2023] Open
Abstract
AIMS Cardiomyopathies (CMPs) are a heterogeneous group of diseases that are defined by structural and functional abnormalities of the cardiac muscle. Dilated cardiomyopathy (DCM), the most common CMP, is defined by left ventricular dilation and impaired contractility and represents a common cause of heart failure. Different phenotypes result from various underlying genetic and acquired causes with variable effects on disease development and progression, prognosis, and response to medical treatment. Current treatment algorithms do not consider these different aetiologies, due to lack of insights into treatable drivers of cardiac failure in patients with DCM. Our study aims to precisely phenotype and genotype the various subtypes of DCM and hereby lay the foundation for individualized therapy. METHODS AND RESULTS The Geno- And Phenotyping of PrImary Cardiomyopathy (GrAPHIC) is a currently ongoing prospective observational monocentric cohort study that recruits patients with DCM after exclusion of other causes such as coronary artery disease, valvular dysfunction, myocarditis, exposure to toxins, and peripartum CMP. Patients are enrolled at our heart failure outpatient clinic or during hospitalization at the University Hospital Hamburg. Clinical parameters, multimodal imaging and functional assessment, cardiac biopsies, and blood samples are obtained to enable an integrated genomic, functional, and biomarker analysis. CONCLUSIONS The GrAPHIC will contribute to a better understanding of the heterogeneous nature of primary CMPs focusing on DCM and provide improved prognostic approaches and more individualized therapies.
Collapse
Affiliation(s)
- Laura Keil
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Filip Berisha
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
- Institute of Experimental Cardiovascular ResearchUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Stella Ritter
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Johanna Skibowski
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Hariharan Subramanian
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
- Institute of Experimental Cardiovascular ResearchUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Viacheslav O. Nikolaev
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
- Institute of Experimental Cardiovascular ResearchUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Christian Kubisch
- Institute of Human GeneticsUniversity Hospital Hamburg‐EppendorfHamburgGermany
| | - Rixa Woitschach
- Institute of Human GeneticsUniversity Hospital Hamburg‐EppendorfHamburgGermany
| | - Larissa Fabritz
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
- University Centre of Cardiovascular Science, UKE HamburgHamburgGermany
| | - Raphael Twerenbold
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
- University Centre of Cardiovascular Science, UKE HamburgHamburgGermany
| | - Stefan Blankenberg
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
| | - Sören Weidemann
- Department of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Tanja Zeller
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
- University Centre of Cardiovascular Science, UKE HamburgHamburgGermany
| | - Paulus Kirchhof
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
| | - Daniel Reichart
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
| | - Christina Magnussen
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
| |
Collapse
|
28
|
Houweling AC, Lekanne Deprez RH, Wilde AAM. Human Genetics of Cardiomyopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:977-990. [PMID: 38884765 DOI: 10.1007/978-3-031-44087-8_63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The identification of a disease-causing variant in a patient diagnosed with cardiomyopathy allows for presymptomatic testing in at risk relatives. Carriers of a pathogenic variant can subsequently be screened at intervals by a cardiologist to assess the risk for potentially life-threatening arrhythmias which can be life-saving. In addition, gene-specific recommendations for risk stratification and disease specific pharmacological options for therapy are beginning to emerge. The large variability in disease penetrance, symptoms, and prognosis, and in some families even in cardiomyopathy subtype, makes genetic counseling both of great importance and complicated.
Collapse
Affiliation(s)
- Arjan C Houweling
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| | - Ronald H Lekanne Deprez
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Arthur A M Wilde
- Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Martin TG, Pak H, Gerhard GS, Merali S, Merali C, Lemster B, Dubey P, McTiernan CF, Bristow MR, Feldman AM, Kirk JA. Dysregulated Autophagy and Sarcomere Dysfunction in Patients With Heart Failure With Co-Occurrence of P63A and P380S BAG3 Variants. J Am Heart Assoc 2023; 12:e029938. [PMID: 38108245 PMCID: PMC10863766 DOI: 10.1161/jaha.123.029938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Mutations to the co-chaperone protein BAG3 (B-cell lymphoma-2-associated athanogene-3) are a leading cause of dilated cardiomyopathy (DCM). These mutations often impact the C-terminal BAG domain (residues 420-499), which regulates heat shock protein 70-dependent protein turnover via autophagy. While mutations in other regions are less common, previous studies in patients with DCM found that co-occurrence of 2 BAG3 variants (P63A, P380S) led to worse prognosis. However, the underlying mechanism for dysfunction is not fully understood. METHODS AND RESULTS In this study, we used proteomics, Western blots, and myofilament functional assays on left ventricular tissue from patients with nonfailing, DCM, and DCM with BAG363/380 to determine how these mutations impact protein quality control and cardiomyocyte contractile function. We found dysregulated autophagy and increased protein ubiquitination in patients with BAG363/380 compared with nonfailing and DCM, suggesting impaired protein turnover. Expression and myofilament localization of BAG3-binding proteins were also uniquely altered in the BAG3,63/380 including abolished localization of the small heat shock protein CRYAB (alpha-crystallin B chain) to the sarcomere. To determine whether these variants impacted sarcomere function, we used cardiomyocyte force-calcium assays and found reduced maximal calcium-activated force in DCM and BAG363/380. Interestingly, myofilament calcium sensitivity was increased in DCM but not with BAG363/380, which was not explained by differences in troponin I phosphorylation. CONCLUSIONS Together, our data support that the disease-enhancing mechanism for BAG3 variants outside of the BAG domain is through disrupted protein turnover leading to compromised sarcomere function. These findings suggest a shared mechanism of disease among pathogenic BAG3 variants, regardless of location.
Collapse
Affiliation(s)
- Thomas G. Martin
- Department of Cell and Molecular PhysiologyLoyola University Chicago Stritch School of MedicineMaywoodIL
| | - Hana Pak
- Department of Cell and Molecular PhysiologyLoyola University Chicago Stritch School of MedicineMaywoodIL
| | - Glenn S. Gerhard
- Department of Medical Genetics and Molecular BiochemistryLewis Katz School of Medicine of Temple UniversityPhiladelphiaPA
| | - Salim Merali
- Temple University School of PharmacyPhiladelphiaPA
| | | | - Bonnie Lemster
- The Heart and Vascular Institute, The University of Pittsburgh School of MedicinePittsburghPA
| | - Praveen Dubey
- Department of Biomedical EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Charles F. McTiernan
- The Heart and Vascular Institute, The University of Pittsburgh School of MedicinePittsburghPA
| | | | - Arthur M. Feldman
- Department of Medicine, Division of CardiologyThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| | - Jonathan A. Kirk
- Department of Cell and Molecular PhysiologyLoyola University Chicago Stritch School of MedicineMaywoodIL
| |
Collapse
|
30
|
Walsh R. The Trouble with Trabeculation: How Genetics Can Help to Unravel a Complex and Controversial Phenotype. J Cardiovasc Transl Res 2023; 16:1310-1324. [PMID: 38019448 DOI: 10.1007/s12265-023-10459-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023]
Abstract
Excessive trabeculation of the cardiac left ventricular wall is a complex phenotypic substrate associated with various physiological and pathological processes. There has been considerable conjecture as to whether hypertrabeculation contributes to disease and whether left ventricular non-compaction (LVNC) cardiomyopathy is a distinct pathology. Building on recent insights into the genetic basis of LVNC cardiomyopathy, in particular three meta-analysis studies exploring genotype-phenotype associations using different methodologies, this review examines how genetic research can advance our understanding of trabeculation. Three groups of genes implicated in LVNC are described-those associated with other cardiomyopathies, other cardiac/syndromic conditions and putatively with isolated LVNC cardiomyopathy-demonstrating how these findings can inform the underlying pathologies in LVNC patients and aid differential diagnosis and management in clinical practice despite the limited utility suggested for LVNC genetic testing in recent guidelines. The outstanding questions and future research priorities for exploring the genetics of hypertrabeculation are discussed.
Collapse
Affiliation(s)
- Roddy Walsh
- Department of Experimental Cardiology, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
31
|
Akinrinade O, Lesurf R, Lougheed J, Mondal T, Smythe J, Altamirano-Diaz L, Oechslin E, Mital S. Age and Sex Differences in the Genetics of Cardiomyopathy. J Cardiovasc Transl Res 2023; 16:1287-1302. [PMID: 37477868 PMCID: PMC10721711 DOI: 10.1007/s12265-023-10411-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
Cardiomyopathy has variable penetrance. We analyzed age and sex-related genetic differences in 1,397 cardiomyopathy patients (Ontario, UK) with whole genome sequencing. Pediatric cases (n = 471) harbored more deleterious protein-coding variants in Tier 1 cardiomyopathy genes compared to adults (n = 926) (34.6% vs 25.9% respectively, p = 0.0015), with variant enrichment in constrained coding regions. Pediatric patients had a higher burden of sarcomere and lower burden of channelopathy gene variants compared to adults. Specifically, pediatric patients had more MYH7 and MYL3 variants in hypertrophic cardiomyopathy, and fewer TTN truncating variants in dilated cardiomyopathy. MYH7 variants clustered in the myosin head and neck domains in children. OBSCN was a top mutated gene in adults, enriched for protein-truncating variants. In dilated cardiomyopathy, female patients had a higher burden of z-disc gene variants compared to males. Genetic differences may explain age and sex-related variability in cardiomyopathy penetrance. Genotype-guided predictions of age of onset can inform pre-test genetic counseling. Pediatric cardiomyopathy patients were more likely to be genotype-positive than adults with a higher burden of variants in MYH7, MYL3, TNNT2, VCL. Adults had a higher burden of OBSCN and TTN variants. Females with dilated cardiomyopathy (DCM) had a higher burden of z-disc gene variants compared to males.
Collapse
Affiliation(s)
- Oyediran Akinrinade
- Genetics and Genome Biology Program, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- St. George's University School of Medicine, St. George's, West Indies, Grenada
| | - Robert Lesurf
- Genetics and Genome Biology Program, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Jane Lougheed
- Division of Cardiology, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Tapas Mondal
- Division of Cardiology, Department of Pediatrics, McMaster Children's Hospital, Hamilton, ON, Canada
| | - John Smythe
- Division of Cardiology, Department of Pediatrics, Kingston General Hospital, Kingston, ON, Canada
| | - Luis Altamirano-Diaz
- Division of Cardiology, Department of Pediatrics, London Health Sciences Centre, London, ON, Canada
| | - Erwin Oechslin
- Division of Cardiology, Toronto Adult Congenital Heart Disease Program at Peter Munk Cardiac Centre, Department of Medicine, University Health Network, and University of Toronto, Toronto, ON, Canada
| | - Seema Mital
- Genetics and Genome Biology Program, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Ted Rogers Centre for Heart Research, Toronto, ON, Canada.
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
32
|
Ababio Y, Kelly SP, Angeli FS, Berghout J, Huang K, Liu K, Burns S, Senerchia C, Moccia R, Brooks GC. Prevalence and Clinical Burden of Idiopathic Dilated Cardiomyopathy in the United States. AMERICAN JOURNAL OF MEDICINE OPEN 2023; 10:100038. [PMID: 39035243 PMCID: PMC11256252 DOI: 10.1016/j.ajmo.2023.100038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/20/2023] [Accepted: 02/19/2023] [Indexed: 07/23/2024]
Abstract
Background Dilated cardiomyopathy (DCM) contributes significantly to heart failure prevalence, yet supporting epidemiologic data is sparse. This study sought to estimate the period prevalence of DCM and the proportion of idiopathic DCM in the United States using a large, diverse electronic health records (EHR) database. Methods This retrospective, observational study included 56,812,806 deidentified patients in Optum EHR with visits between 2017 and 2019. Suspected DCM cases were identified using ICD-10 coding. Deidentified clinical notes from 1000 randomly selected cases were manually reviewed to determine the diagnosis of DCM and estimate the proportion of idiopathic DCM. The period prevalence and clinical burden of DCM and idiopathic DCM were estimated. Results Manual clinical review demonstrated that our definition had a positive predictive value of 92.5% for DCM, with 46.3% estimated as the idiopathic DCM proportion. The estimated period prevalence of DCM between 2017 and 2019 was 118.33 per 100,000. Prevalence increased for adults ≥65 years of age, males, and African Americans. Extrapolation to the 2019 US population led to an overall estimated burden of roughly 388,350 patients. Adjusting for the proportion of cases with idiopathic DCM yielded an idiopathic DCM prevalence of 59.23 per 100,000 and a burden of 194,385 patients. Evidence of clinical genetic testing in this population was scarce, with less than 0.43% of DCM cases reporting a testing code. Conclusions This study establishes a conservative period prevalence for DCM and idiopathic DCM and demonstrates very low molecular genetic testing for DCM. These findings suggest that the clinical burden of genetic DCM may be underestimated.
Collapse
|
33
|
Wang S, Zhang Z, He J, Liu J, Guo X, Chu H, Xu H, Wang Y. Comprehensive review on gene mutations contributing to dilated cardiomyopathy. Front Cardiovasc Med 2023; 10:1296389. [PMID: 38107262 PMCID: PMC10722203 DOI: 10.3389/fcvm.2023.1296389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is one of the most common primary myocardial diseases. However, to this day, it remains an enigmatic cardiovascular disease (CVD) characterized by ventricular dilatation, which leads to myocardial contractile dysfunction. It is the most common cause of chronic congestive heart failure and the most frequent indication for heart transplantation in young individuals. Genetics and various other factors play significant roles in the progression of dilated cardiomyopathy, and variants in more than 50 genes have been associated with the disease. However, the etiology of a large number of cases remains elusive. Numerous studies have been conducted on the genetic causes of dilated cardiomyopathy. These genetic studies suggest that mutations in genes for fibronectin, cytoskeletal proteins, and myosin in cardiomyocytes play a key role in the development of DCM. In this review, we provide a comprehensive description of the genetic basis, mechanisms, and research advances in genes that have been strongly associated with DCM based on evidence-based medicine. We also emphasize the important role of gene sequencing in therapy for potential early diagnosis and improved clinical management of DCM.
Collapse
Affiliation(s)
- Shipeng Wang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhiyu Zhang
- Department of Cardiovascular Medicine, The Second People's Hospital of Yibin, Yibin, China
| | - Jiahuan He
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Junqian Liu
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xia Guo
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Haoxuan Chu
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Hanchi Xu
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yushi Wang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
34
|
Franco A, Li J, Kelly DP, Hershberger RE, Marian AJ, Lewis RM, Song M, Dang X, Schmidt AD, Mathyer ME, Edwards JR, Strong CDG, Dorn GW. A human mitofusin 2 mutation can cause mitophagic cardiomyopathy. eLife 2023; 12:e84235. [PMID: 37910431 PMCID: PMC10619978 DOI: 10.7554/elife.84235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Cardiac muscle has the highest mitochondrial density of any human tissue, but mitochondrial dysfunction is not a recognized cause of isolated cardiomyopathy. Here, we determined that the rare mitofusin (MFN) 2 R400Q mutation is 15-20× over-represented in clinical cardiomyopathy, whereas this specific mutation is not reported as a cause of MFN2 mutant-induced peripheral neuropathy, Charcot-Marie-Tooth disease type 2A (CMT2A). Accordingly, we interrogated the enzymatic, biophysical, and functional characteristics of MFN2 Q400 versus wild-type and CMT2A-causing MFN2 mutants. All MFN2 mutants had impaired mitochondrial fusion, the canonical MFN2 function. Compared to MFN2 T105M that lacked catalytic GTPase activity and exhibited normal activation-induced changes in conformation, MFN2 R400Q and M376A had normal GTPase activity with impaired conformational shifting. MFN2 R400Q did not suppress mitochondrial motility, provoke mitochondrial depolarization, or dominantly suppress mitochondrial respiration like MFN2 T105M. By contrast to MFN2 T105M and M376A, MFN2 R400Q was uniquely defective in recruiting Parkin to mitochondria. CRISPR editing of the R400Q mutation into the mouse Mfn2 gene induced perinatal cardiomyopathy with no other organ involvement; knock-in of Mfn2 T105M or M376V did not affect the heart. RNA sequencing and metabolomics of cardiomyopathic Mfn2 Q/Q400 hearts revealed signature abnormalities recapitulating experimental mitophagic cardiomyopathy. Indeed, cultured cardiomyoblasts and in vivo cardiomyocytes expressing MFN2 Q400 had mitophagy defects with increased sensitivity to doxorubicin. MFN2 R400Q is the first known natural mitophagy-defective MFN2 mutant. Its unique profile of dysfunction evokes mitophagic cardiomyopathy, suggesting a mechanism for enrichment in clinical cardiomyopathy.
Collapse
Affiliation(s)
- Antonietta Franco
- Department of Internal Medicine, Pharmacogenomics, Washington University School of MedicineSt LouisUnited States
| | - Jiajia Li
- Department of Internal Medicine, Pharmacogenomics, Washington University School of MedicineSt LouisUnited States
| | - Daniel P Kelly
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Ray E Hershberger
- Department of Internal Medicine, Divisions of Human Genetics and Cardiovascular Medicine, Ohio State UniversityColumbusUnited States
| | - Ali J Marian
- Center for Cardiovascular Genetic Research, University of Texas Health Science Center at HoustonHoustonUnited States
| | - Renate M Lewis
- Department of Neurology, Washington University School of MedicineSt. LouisUnited States
| | - Moshi Song
- Department of Internal Medicine, Pharmacogenomics, Washington University School of MedicineSt LouisUnited States
| | - Xiawei Dang
- Department of Internal Medicine, Pharmacogenomics, Washington University School of MedicineSt LouisUnited States
| | - Alina D Schmidt
- Department of Internal Medicine (Dermatology), Washington University School of MedicineSt. LouisUnited States
| | - Mary E Mathyer
- Department of Internal Medicine (Dermatology), Washington University School of MedicineSt. LouisUnited States
| | - John R Edwards
- Department of Internal Medicine, Pharmacogenomics, Washington University School of MedicineSt LouisUnited States
| | - Cristina de Guzman Strong
- Department of Internal Medicine (Dermatology), Washington University School of MedicineSt. LouisUnited States
| | - Gerald W Dorn
- Department of Internal Medicine, Pharmacogenomics, Washington University School of MedicineSt LouisUnited States
| |
Collapse
|
35
|
Votýpka P, Krebsová A, Norambuena-Poustková P, Peldová P, Pohlová Kučerová Š, Kulvajtová M, Dohnalová P, Bílek M, Stufka V, Rücklová K, Grossová I, Wünschová H, Tavačová T, Hašková J, Segeťová M, Štoček J, Gřegořová A, Zoubková V, Petřková J, Dobiáš M, Makuša M, Blanková A, Vajtr D, Řehulka H, Šubrt I, Pilin A, Tomášek P, Janoušek J, Kautzner J, Macek M. Post-mortem genetic testing in sudden cardiac death and genetic screening of relatives at risk: lessons learned from a Czech pilot multidisciplinary study. Int J Legal Med 2023; 137:1787-1801. [PMID: 37178278 PMCID: PMC10567875 DOI: 10.1007/s00414-023-03007-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Sudden cardiac death (SCD) might have an inherited cardiac condition background. Genetic testing supports post-mortem diagnosis and screening of relatives at risk. Our aim is to determine the feasibility of a Czech national collaboration group and to establish the clinical importance of molecular autopsy and family screening. From 2016 to 2021, we have evaluated 100 unrelated SCD cases (71.0% males, age: 33.3 (12.8) years). Genetic testing was performed by next-generation sequencing utilizing a panel of 100 genes related to inherited cardiac/aortic conditions and/or whole exome sequencing. According to autopsy, cases were divided into cardiomyopathies, sudden arrhythmic death syndrome, sudden unexplained death syndrome, and sudden aortic death. We identified pathogenic/likely pathogenic variants following ACMG/AMP recommendations in 22/100 (22.0%) of cases. Since poor DNA quality, we have performed indirect DNA testing in affected relatives or in healthy parents reaching a diagnostic genetic yield of 11/24 (45.8%) and 1/10 (10.0%), respectively. Cardiological and genetic screening disclose 83/301 (27.6%) relatives at risk of SCD. Genetic testing in affected relatives as starting material leads to a high diagnostic yield offering a valuable alternative when suitable material is not available. This is the first multidisciplinary/multicenter molecular autopsy study in the Czech Republic which supports the establishment of this type of diagnostic tests. A central coordinator and proper communication among centers are crucial for the success of a collaboration at a national level.
Collapse
Affiliation(s)
- Pavel Votýpka
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, V Úvalu 84, 150 06, Prague 5, Czech Republic.
| | - Alice Krebsová
- Department of Cardiology, Center for Inherited Cardiovascular Diseases, IKEM, Vídeňská, 1958/9, 140 21, Prague 4, Czech Republic.
| | - Patricia Norambuena-Poustková
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, V Úvalu 84, 150 06, Prague 5, Czech Republic
| | - Petra Peldová
- Department of Cardiology, Center for Inherited Cardiovascular Diseases, IKEM, Vídeňská, 1958/9, 140 21, Prague 4, Czech Republic
| | - Štěpánka Pohlová Kučerová
- Department of Forensic Medicine, Faculty of Medicine in Hradec Králové, Charles University and University Hospital Hradec Králové, Prague, Czech Republic
| | - Markéta Kulvajtová
- Institute for Forensic Medicine, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petra Dohnalová
- Department of Forensic Medicine, Faculty of Medicine, University Hospital Bulovka, Charles University, 2nd, Prague, Czech Republic
| | - Matěj Bílek
- Department of Forensic Medicine, Faculty of Medicine, University Hospital Bulovka, Charles University, 2nd, Prague, Czech Republic
- Institute of Forensic Medicine and Toxicology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Stufka
- Institute of Forensic Medicine and Toxicology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristina Rücklová
- Paediatric Department, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Iva Grossová
- Forensic Department of Military University Hospital, Prague, Czech Republic
| | - Hanka Wünschová
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, V Úvalu 84, 150 06, Prague 5, Czech Republic
| | - Terezia Tavačová
- Faculty of Medicine, Children's Heart Centre, Charles University and Motol University Hospital, 2nd, Prague, Czech Republic
| | - Jana Hašková
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, V Úvalu 84, 150 06, Prague 5, Czech Republic
| | - Markéta Segeťová
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, V Úvalu 84, 150 06, Prague 5, Czech Republic
| | - Jakub Štoček
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, V Úvalu 84, 150 06, Prague 5, Czech Republic
| | - Andrea Gřegořová
- Department of Biology and Medical Genetics, University Hospital Ostrava, Ostrava, Czech Republic
| | - Veronika Zoubková
- Department of Cardiology, Center for Inherited Cardiovascular Diseases, IKEM, Vídeňská, 1958/9, 140 21, Prague 4, Czech Republic
| | - Jana Petřková
- 1st Department of Internal Medicine - Cardiology and Laboratory of Cardiogenomics, University Hospital Olomouc and Palacky University, Olomouc, Czech Republic
- Institute of Medical Genetics, University Hospital Olomouc and Palacky University, Olomouc, Czech Republic
- Institute of Pathological Physiology, University Hospital Olomouc and Palacky University, Olomouc, Czech Republic
| | - Martin Dobiáš
- Institute of Forensic Science and Medical Law, University Hospital Olomouc and Palacký University, Olomouc, Czech Republic
| | - Michal Makuša
- Forensic Department, Hospital České Budějovice, České Budějovice, Czech Republic
| | - Alžběta Blanková
- Department of Forensic Medicine and Toxicology, Liberec Regional Hospital, Liberec, Czech Republic
| | - David Vajtr
- Department of Forensic Medicine and Toxicology, Liberec Regional Hospital, Liberec, Czech Republic
| | - Hynek Řehulka
- Institute of Forensic Medicine, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Ivan Šubrt
- Department of Medical Genetics, University Hospital Pilsen, Pilsen, Czech Republic
| | - Alexander Pilin
- Institute of Forensic Medicine and Toxicology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Tomášek
- Department of Forensic Medicine, Faculty of Medicine, University Hospital Bulovka, Charles University, 2nd, Prague, Czech Republic
| | - Jan Janoušek
- Faculty of Medicine, Children's Heart Centre, Charles University and Motol University Hospital, 2nd, Prague, Czech Republic
| | - Josef Kautzner
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, V Úvalu 84, 150 06, Prague 5, Czech Republic
| | - Milan Macek
- Department of Cardiology, Center for Inherited Cardiovascular Diseases, IKEM, Vídeňská, 1958/9, 140 21, Prague 4, Czech Republic
| |
Collapse
|
36
|
Kim Y, Gunnarsdóttir OB, Viveiros A, Reichart D, Quiat D, Willcox JAL, Zhang H, Chen H, Curran JJ, Kim DH, Urschel S, McDonough B, Gorham J, DePalma SR, Seidman JG, Seidman CE, Oudit GY. Genetic Contribution to End-Stage Cardiomyopathy Requiring Heart Transplantation. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:452-461. [PMID: 37767697 DOI: 10.1161/circgen.123.004062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Many cardiovascular disorders propel the development of advanced heart failure that necessitates cardiac transplantation. When treatable causes are excluded, studies to define causes are often abandoned, resulting in a diagnosis of end-stage idiopathic cardiomyopathy. We studied whether DNA sequence analyses could identify unrecognized causes of end-stage nonischemic cardiomyopathy requiring heart transplantation and whether the prevalence of genetic causes differed from ambulatory cardiomyopathy cases. METHODS We performed whole exome and genome sequencing of 122 explanted hearts from 101 adult and 21 pediatric patients with idiopathic cardiomyopathy from a single center. Data were analyzed for pathogenic/likely pathogenic variants in nuclear and mitochondrial genomes and assessed for nonhuman microbial sequences. The frequency of damaging genetic variants was compared among cardiomyopathy cohorts with different clinical severity. RESULTS Fifty-four samples (44.3%) had pathogenic/likely pathogenic cardiomyopathy gene variants. The frequency of pathogenic variants was similar in pediatric (42.9%) and adult (43.6%) samples, but the distribution of mutated genes differed (P=8.30×10-4). The prevalence of causal genetic variants was significantly higher in end-stage than in previously reported ambulatory adult dilated cardiomyopathy cases (P<0.001). Among remaining samples with unexplained causes, no damaging mitochondrial variants were identified, but 28 samples contained parvovirus genome sequences, including 2 samples with 6- to 9-fold higher levels than the overall mean levels in other samples. CONCLUSIONS Pathogenic variants and viral myocarditis were identified in 45.9% of patients with unexplained end-stage cardiomyopathy. Damaging gene variants are significantly more frequent among transplant compared with patients with ambulatory cardiomyopathy. Genetic analyses can help define cause of end-stage cardiomyopathy to guide management and risk stratification of patients and family members.
Collapse
Affiliation(s)
- Yuri Kim
- Division of Cardiovascular Medicine, Brigham and Women's Hospital (Y.K., B.M., C.E.S.)
- Department of Genetics, Harvard Medical School, Boston, MA (Y.K., O.B.G., D.R., D.Q., J.A.L.W., J.J.C., J.G., S.R.D., J.G.S., C.E.S.)
| | - Oddný Brattberg Gunnarsdóttir
- Department of Genetics, Harvard Medical School, Boston, MA (Y.K., O.B.G., D.R., D.Q., J.A.L.W., J.J.C., J.G., S.R.D., J.G.S., C.E.S.)
| | - Anissa Viveiros
- Department of Medicine (A.V., H.Z., H.C., D.H.K., G.Y.O.), University of Alberta
- Mazankowski Alberta Heart Institute, Edmonton, Canada (A.V., H.Z., H.C., D.H.K., G.Y.O.)
| | - Daniel Reichart
- Department of Genetics, Harvard Medical School, Boston, MA (Y.K., O.B.G., D.R., D.Q., J.A.L.W., J.J.C., J.G., S.R.D., J.G.S., C.E.S.)
- Department of Medicine I, University Hospital, Ludwig Maximilian University of Munich, Germany (D.R.)
| | - Daniel Quiat
- Department of Genetics, Harvard Medical School, Boston, MA (Y.K., O.B.G., D.R., D.Q., J.A.L.W., J.J.C., J.G., S.R.D., J.G.S., C.E.S.)
- Department of Cardiology, Boston Children's Hospital, MA (D.Q.)
| | - Jon A L Willcox
- Department of Genetics, Harvard Medical School, Boston, MA (Y.K., O.B.G., D.R., D.Q., J.A.L.W., J.J.C., J.G., S.R.D., J.G.S., C.E.S.)
| | - Hao Zhang
- Department of Medicine (A.V., H.Z., H.C., D.H.K., G.Y.O.), University of Alberta
- Mazankowski Alberta Heart Institute, Edmonton, Canada (A.V., H.Z., H.C., D.H.K., G.Y.O.)
| | - Huachen Chen
- Department of Medicine (A.V., H.Z., H.C., D.H.K., G.Y.O.), University of Alberta
- Mazankowski Alberta Heart Institute, Edmonton, Canada (A.V., H.Z., H.C., D.H.K., G.Y.O.)
| | - Justin J Curran
- Department of Genetics, Harvard Medical School, Boston, MA (Y.K., O.B.G., D.R., D.Q., J.A.L.W., J.J.C., J.G., S.R.D., J.G.S., C.E.S.)
| | - Daniel H Kim
- Department of Medicine (A.V., H.Z., H.C., D.H.K., G.Y.O.), University of Alberta
- Mazankowski Alberta Heart Institute, Edmonton, Canada (A.V., H.Z., H.C., D.H.K., G.Y.O.)
| | - Simon Urschel
- Department of Pediatrics (S.U.), University of Alberta
- Stollery Children's Hospital, Edmonton, Alberta, Canada (S.U.)
| | - Barbara McDonough
- Division of Cardiovascular Medicine, Brigham and Women's Hospital (Y.K., B.M., C.E.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (B.M., S.R.D., C.E.S.)
| | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston, MA (Y.K., O.B.G., D.R., D.Q., J.A.L.W., J.J.C., J.G., S.R.D., J.G.S., C.E.S.)
| | - Steven R DePalma
- Department of Genetics, Harvard Medical School, Boston, MA (Y.K., O.B.G., D.R., D.Q., J.A.L.W., J.J.C., J.G., S.R.D., J.G.S., C.E.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (B.M., S.R.D., C.E.S.)
| | - Jonathan G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA (Y.K., O.B.G., D.R., D.Q., J.A.L.W., J.J.C., J.G., S.R.D., J.G.S., C.E.S.)
| | - Christine E Seidman
- Division of Cardiovascular Medicine, Brigham and Women's Hospital (Y.K., B.M., C.E.S.)
- Department of Genetics, Harvard Medical School, Boston, MA (Y.K., O.B.G., D.R., D.Q., J.A.L.W., J.J.C., J.G., S.R.D., J.G.S., C.E.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (B.M., S.R.D., C.E.S.)
| | - Gavin Y Oudit
- Department of Medicine (A.V., H.Z., H.C., D.H.K., G.Y.O.), University of Alberta
- Mazankowski Alberta Heart Institute, Edmonton, Canada (A.V., H.Z., H.C., D.H.K., G.Y.O.)
| |
Collapse
|
37
|
Wong J, Peters S, Marwick TH. Phenotyping heart failure by genetics and associated conditions. Eur Heart J Cardiovasc Imaging 2023; 24:1293-1301. [PMID: 37279791 DOI: 10.1093/ehjci/jead125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Heart failure is a highly heterogeneous disease, and genetic testing may allow phenotypic distinctions that are incremental to those obtainable from imaging. Advances in genetic testing have allowed for the identification of deleterious variants in patients with specific heart failure phenotypes (dilated cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, and hypertrophic cardiomyopathy), and many of these have specific treatment implications. The diagnostic yield of genetic testing in heart failure is modest, and many rare variants are associated with incomplete penetrance and variable expressivity. Environmental factors and co-morbidities have a large role in the heterogeneity of the heart failure phenotype. Future endeavours should concentrate on the cumulative impact of genetic polymorphisms in the development of heart failure.
Collapse
Affiliation(s)
- Joshua Wong
- Baker Heart and Diabetes Institute and Department of Cardiometabolic Health, University of Melbourne, PO Box 6492, Melbourne, VIC 3004, Australia
| | - Stacey Peters
- Baker Heart and Diabetes Institute and Department of Cardiometabolic Health, University of Melbourne, PO Box 6492, Melbourne, VIC 3004, Australia
| | - Thomas H Marwick
- Baker Heart and Diabetes Institute and Department of Cardiometabolic Health, University of Melbourne, PO Box 6492, Melbourne, VIC 3004, Australia
| |
Collapse
|
38
|
Heliö K, Cicerchia M, Hathaway J, Tommiska J, Huusko J, Saarinen I, Koskinen L, Muona M, Kytölä V, Djupsjöbacka J, Gentile M, Salmenperä P, Alastalo TP, Steinberg C, Heliö T, Paananen J, Myllykangas S, Koskenvuo J. Diagnostic yield of genetic testing in a multinational heterogeneous cohort of 2088 DCM patients. Front Cardiovasc Med 2023; 10:1254272. [PMID: 37795486 PMCID: PMC10546047 DOI: 10.3389/fcvm.2023.1254272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023] Open
Abstract
Background Familial dilated cardiomyopathy (DCM) causes heart failure and may lead to heart transplantation. DCM is typically a monogenic disorder with autosomal dominant inheritance. Currently disease-causing variants have been reported in over 60 genes that encode proteins in sarcomeres, nuclear lamina, desmosomes, cytoskeleton, and mitochondria. Over half of the patients undergoing comprehensive genetic testing are left without a molecular diagnosis even when patient selection follows strict DCM criteria. Methods and results This study was a retrospective review of patients referred for genetic testing at Blueprint Genetics due to suspected inherited DCM. Next generation sequencing panels included 23-316 genes associated with cardiomyopathies and other monogenic cardiac diseases. Variants were considered diagnostic if classified as pathogenic (P) or likely pathogenic (LP). Of the 2,088 patients 514 (24.6%) obtained a molecular diagnosis; 534 LP/P variants were observed across 45 genes, 2.7% (14/514) had two diagnostic variants in dominant genes. Nine copy number variants were identified: two multigene and seven intragenic. Diagnostic variants were observed most often in TTN (45.3%), DSP (6.7%), LMNA (6.7%), and MYH7 (5.2%). Clinical characteristics independently associated with molecular diagnosis were: a lower age at diagnosis, family history of DCM, paroxysmal atrial fibrillation, absence of left bundle branch block, and the presence of an implantable cardioverter-defibrillator. Conclusions Panel testing provides good diagnostic yield in patients with clinically suspected DCM. Causative variants were identified in 45 genes. In minority, two diagnostic variants were observed in dominant genes. Our results support the use of genetic panels in clinical settings in DCM patients with suspected genetic etiology.
Collapse
Affiliation(s)
- Krista Heliö
- Heart and Lung Center, ERN GUARD-Heart Center, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | - Julie Hathaway
- Blueprint Genetics, A Quest Diagnostics Company, Seattle, USA
| | | | - Johanna Huusko
- Blueprint Genetics, A Quest Diagnostics Company, Espoo, Finland
| | - Inka Saarinen
- Blueprint Genetics, A Quest Diagnostics Company, Espoo, Finland
| | - Lotta Koskinen
- Blueprint Genetics, A Quest Diagnostics Company, Espoo, Finland
| | - Mikko Muona
- Blueprint Genetics, A Quest Diagnostics Company, Espoo, Finland
| | - Ville Kytölä
- Blueprint Genetics, A Quest Diagnostics Company, Espoo, Finland
| | | | | | | | | | | | - Tiina Heliö
- Heart and Lung Center, ERN GUARD-Heart Center, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Jussi Paananen
- Blueprint Genetics, A Quest Diagnostics Company, Espoo, Finland
| | | | - Juha Koskenvuo
- Blueprint Genetics, A Quest Diagnostics Company, Espoo, Finland
| |
Collapse
|
39
|
Heymans S, Lakdawala NK, Tschöpe C, Klingel K. Dilated cardiomyopathy: causes, mechanisms, and current and future treatment approaches. Lancet 2023; 402:998-1011. [PMID: 37716772 DOI: 10.1016/s0140-6736(23)01241-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 09/18/2023]
Abstract
Dilated cardiomyopathy is conventionally defined as the presence of left ventricular or biventricular dilatation or systolic dysfunction in the absence of abnormal loading conditions (eg, primary valve disease) or significant coronary artery disease sufficient to cause ventricular remodelling. This definition has been recognised as overly restrictive, as left ventricular hypokinesis without dilation could be the initial presentation of dilated cardiomyopathy. The causes of dilated cardiomyopathy comprise genetic (primary dilated cardiomyopathy) or acquired factors (secondary dilated cardiomyopathy). Acquired factors include infections, toxins, cancer treatment, endocrinopathies, pregnancy, tachyarrhythmias, and immune-mediated diseases. 5-15% of patients with acquired dilated cardiomyopathy harbour a likely pathogenic or pathogenic gene variant (ie, gene mutation). Therefore, the diagnostic tests and therapeutic approach should always consider both genetic and acquired factors. This Seminar will focus on the current multidimensional diagnostic and therapeutic approach and discuss the underlying pathophysiology that could drive future treatments aiming to repair or replace the existing gene mutation, or target the specific inflammatory, metabolic, or pro-fibrotic drivers of genetic or acquired dilated cardiomyopathy.
Collapse
Affiliation(s)
- Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht, University of Maastricht & Maastricht University Medical Centre, Maastricht, Netherlands; Department of Cardiovascular Sciences, Centre for Vascular and Molecular Biology, KU Leuven, Leuven, Belgium
| | - Neal K Lakdawala
- Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carsten Tschöpe
- Department of Cardiology, Angiology, and Intensive Medicine (CVK), German Heart Center of the Charité (DHZC), Charité Universitätsmedizin, Berlin, Germany; Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
40
|
Bui QM, Ding J, Hong KN, Adler EA. The Genetic Evaluation of Dilated Cardiomyopathy. STRUCTURAL HEART : THE JOURNAL OF THE HEART TEAM 2023; 7:100200. [PMID: 37745678 PMCID: PMC10512006 DOI: 10.1016/j.shj.2023.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/07/2023] [Accepted: 04/19/2023] [Indexed: 09/26/2023]
Abstract
Dilated cardiomyopathy (DCM) is a common cause of heart failure and is the primary indication for heart transplantation. A genetic etiology can be found in 20-35% of patients with DCM, especially in those with a family history of cardiomyopathy or sudden cardiac death at an early age. With advancements in genome sequencing, the understanding of genotype-phenotype relationships in DCM has expanded with over 60 genes implicated in the disease. Subsequently, these findings have increased adoption of genetic testing in the management of DCM, which has allowed for improved risk stratification and identification of at risk family members. In this review, we discuss the genetic evaluation of DCM with a focus on practical genetic testing considerations, genotype-phenotype associations, and insights into upcoming personalized therapies.
Collapse
Affiliation(s)
- Quan M. Bui
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jeffrey Ding
- University of California San Diego School of Medicine, La Jolla, California, USA
| | - Kimberly N. Hong
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Eric A. Adler
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
41
|
Chen T, Xuan X, Ni J, Jiang S. Selection of key genes for dilated cardiomyopathy based on machine learning algorithms and assessment of diagnostic accuracy. J Thorac Dis 2023; 15:4445-4455. [PMID: 37691671 PMCID: PMC10482651 DOI: 10.21037/jtd-23-1086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Background The mechanisms of the occurrence and progression of dilated cardiomyopathy are still unclear and further exploration is needed. The upgrading of programming languages and the improvement of biological databases have created conditions for us to explore the structural and functional information of biological molecules at the nucleic acid and protein levels, screen key pathogenic genes, and elucidate pathogenic mechanisms. This study aimed to screen key pathogenic genes using machine learning algorithms and explore the correlation between key genes and immune microenvironment through transcriptome sequencing data sets of myocardial samples from patients with dilated cardiomyopathy, providing new ideas for elucidating the pathogenesis of the disease. Methods The transcriptome sequencing data sets of heart tissue from patients with dilated cardiomyopathy were downloaded from the Gene Expression Omnibus (GEO) database (GSE29819 and GSE21610). Differentially expressed genes (DEGs) were screened between pathological and normal tissues. The key genes were screened using least absolute shrinkage and selection operator (LASSO) regression analysis and random forest tree algorithms. The diagnostic efficiency of the key genes for the disease was evaluated using the receiver operating characteristic (ROC) curve. Results Compared with the normal heart tissue (control group) samples, there were 213 DEGs in the heart tissue samples of patients with dilated cardiomyopathy (treat group), including 101 upregulated and 102 downregulated genes. CCL5 and CTGF were highly expressed in the treat group compared to the control group. The ROC curve showed that the areas under the curve (AUCs) of CCL5 and CTGF were 0.821 and 0.902, respectively (P<0.05). In the treat group samples, CCL5 was positively correlated with the infiltration content of most immune cell subtypes. Conclusions CCL5 and CTGF are key disease-causing genes in dilated cardiomyopathy and have good diagnostic efficiency for the disease. CCL5 and CTGF may be related to immune cell enrichment and myocardial fibrosis, respectively.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Cardiovascular Medicine, Hangzhou First People’s Hospital, Affiliated to Zhejiang University School of Medicine, Hangzhou, China
| | - Xiulin Xuan
- Department of Cardiovascular Medicine, Hangzhou First People’s Hospital, Affiliated to Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajia Ni
- Department of Cardiovascular Medicine, Hangzhou First People’s Hospital, Affiliated to Zhejiang University School of Medicine, Hangzhou, China
| | - Shuyin Jiang
- Department of Gastroenterology, Hangzhou First People’s Hospital, Affiliated to Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
42
|
Barat A, Chen CW, Patel-Murray N, McMurray JJV, Packer M, Solomon SD, Desai AS, Rouleau JL, Zile MR, Attari Z, Zhang C, Xu H, Hartman N, Hon C, Healey M, Chutkow W, O'Donnell CJ, Jacob J, Lefkowitz M, Mendelson MM, Wandel S, Yates D, Gimpelewicz C. Clinical characteristics of heart failure with reduced ejection fraction patients with rare pathogenic variants in dilated cardiomyopathy-associated genes: A subgroup analysis of the PARADIGM-HF trial. Eur J Heart Fail 2023; 25:1256-1266. [PMID: 37191081 DOI: 10.1002/ejhf.2886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023] Open
Abstract
AIMS To evaluate the prevalence of pathogenic variants in genes associated with dilated cardiomyopathy (DCM) in a clinical trial population with heart failure and reduced ejection fraction (HFrEF) and describe the baseline characteristics by variant carrier status. METHODS AND RESULTS This was a post hoc analysis of the Phase 3 PARADIGM-HF trial. Forty-four genes, divided into three tiers, based on definitive, moderate or limited evidence of association with DCM, were assessed for rare predicted loss-of-function (pLoF) variants, which were prioritized using ClinVar annotations, measures of gene transcriptional output and evolutionary constraint, and pLoF confidence predictions. Prevalence was reported for pLoF variant carriers based on DCM-associated gene tiers. Clinical features were compared between carriers and non-carriers. Of the 1412 HFrEF participants with whole-exome sequence data, 68 (4.8%) had at least one pLoF variant in the 8 tier-1 genes (definitive/strong association with DCM), with Titin being most commonly affected. The prevalence increased to 7.5% when considering all 44 genes. Among patients with idiopathic aetiology, 10.0% (23/229) had tier-1 variants only and 12.6% (29/229) had tier-1, -2 or -3 variants. Compared to non-carriers, tier-1 carriers were younger (4 years; adjusted p-value [padj ] = 4 × 10-3 ), leaner (27.8 kg/m2 vs. 29.4 kg/m2 ; padj = 3.2 × 10-3 ), had lower ejection fraction (27.3% vs. 29.8%; padj = 5.8 × 10-3 ), and less likely to have ischaemic aetiology (37.3% vs. 67.4%; padj = 4 × 10-4 ). CONCLUSION Deleterious pLoF variants in genes with definitive/strong association with DCM were identified in ∼5% of HFrEF patients from a PARADIGM-HF trial subset, who were younger, had lower ejection fraction and were less likely to have had an ischaemic aetiology.
Collapse
Affiliation(s)
- Ana Barat
- Novartis Ireland Ltd, Dublin, Ireland
| | - Chien-Wei Chen
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | - John J V McMurray
- University of Glasgow, BHF Cardiovascular Research Centre, Glasgow, UK
| | - Milton Packer
- Baylor University Medical Center, Baylor Heart and Vascular Institute, Dallas, TX, USA
| | - Scott D Solomon
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Akshay S Desai
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Jean L Rouleau
- Institut de Cardiologie de Montréal, Université de Montréal, Montreal, Quebec, Canada
| | - Michael R Zile
- Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC, USA
| | - Zenab Attari
- Global Development Operations, Novartis, Hyderabad, India
| | - Cong Zhang
- Novartis Institutes for Biomedical Research, Shanghai, China
| | - Huilei Xu
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - Claudia Hon
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Margaret Healey
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - William Chutkow
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - Jaison Jacob
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | | | | | - Denise Yates
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | |
Collapse
|
43
|
Gotthardt M, Badillo-Lisakowski V, Parikh VN, Ashley E, Furtado M, Carmo-Fonseca M, Schudy S, Meder B, Grosch M, Steinmetz L, Crocini C, Leinwand L. Cardiac splicing as a diagnostic and therapeutic target. Nat Rev Cardiol 2023; 20:517-530. [PMID: 36653465 DOI: 10.1038/s41569-022-00828-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/19/2023]
Abstract
Despite advances in therapeutics for heart failure and arrhythmias, a substantial proportion of patients with cardiomyopathy do not respond to interventions, indicating a need to identify novel modifiable myocardial pathobiology. Human genetic variation associated with severe forms of cardiomyopathy and arrhythmias has highlighted the crucial role of alternative splicing in myocardial health and disease, given that it determines which mature RNA transcripts drive the mechanical, structural, signalling and metabolic properties of the heart. In this Review, we discuss how the analysis of cardiac isoform expression has been facilitated by technical advances in multiomics and long-read and single-cell sequencing technologies. The resulting insights into the regulation of alternative splicing - including the identification of cardiac splice regulators as therapeutic targets and the development of a translational pipeline to evaluate splice modulators in human engineered heart tissue, animal models and clinical trials - provide a basis for improved diagnosis and therapy. Finally, we consider how the medical and scientific communities can benefit from facilitated acquisition and interpretation of splicing data towards improved clinical decision-making and patient care.
Collapse
Affiliation(s)
- Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research Partner Site Berlin), Berlin, Germany.
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Victor Badillo-Lisakowski
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research Partner Site Berlin), Berlin, Germany
| | - Victoria Nicole Parikh
- Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Euan Ashley
- Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Palo Alto, CA, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Marta Furtado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sarah Schudy
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research Partner Site Heidelberg-Mannheim), Heidelberg, Germany
| | - Markus Grosch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Lars Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Claudia Crocini
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Leslie Leinwand
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| |
Collapse
|
44
|
Kornienko J, Rodríguez-Martínez M, Fenzl K, Hinze F, Schraivogel D, Grosch M, Tunaj B, Lindenhofer D, Schraft L, Kueblbeck M, Smith E, Mao C, Brown E, Owens A, Saguner AM, Meder B, Parikh V, Gotthardt M, Steinmetz LM. Mislocalization of pathogenic RBM20 variants in dilated cardiomyopathy is caused by loss-of-interaction with Transportin-3. Nat Commun 2023; 14:4312. [PMID: 37463913 DOI: 10.1038/s41467-023-39965-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
Severe forms of dilated cardiomyopathy (DCM) are associated with point mutations in the alternative splicing regulator RBM20 that are frequently located in the arginine/serine-rich domain (RS-domain). Such mutations can cause defective splicing and cytoplasmic mislocalization, which leads to the formation of detrimental cytoplasmic granules. Successful development of personalized therapies requires identifying the direct mechanisms of pathogenic RBM20 variants. Here, we decipher the molecular mechanism of RBM20 mislocalization and its specific role in DCM pathogenesis. We demonstrate that mislocalized RBM20 RS-domain variants retain their splice regulatory activity, which reveals that aberrant cellular localization is the main driver of their pathological phenotype. A genome-wide CRISPR knockout screen combined with image-enabled cell sorting identified Transportin-3 (TNPO3) as the main nuclear importer of RBM20. We show that the direct RBM20-TNPO3 interaction involves the RS-domain, and is disrupted by pathogenic variants. Relocalization of pathogenic RBM20 variants to the nucleus restores alternative splicing and dissolves cytoplasmic granules in cell culture and animal models. These findings provide proof-of-principle for developing therapeutic strategies to restore RBM20's nuclear localization in RBM20-DCM patients.
Collapse
Affiliation(s)
- Julia Kornienko
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | | | - Kai Fenzl
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Florian Hinze
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Schraivogel
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Markus Grosch
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Brigit Tunaj
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Dominik Lindenhofer
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Laura Schraft
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Moritz Kueblbeck
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Eric Smith
- University of Michigan, Ann Arbor, MI, USA
| | - Chad Mao
- Children's Healthcare of Atlanta & Emory University, Atlanta, GA, USA
| | | | - Anjali Owens
- University of Pennsylvania, Philadelphia, PA, USA
| | - Ardan M Saguner
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Benjamin Meder
- Cardiogenetics Center Heidelberg, Department of Cardiology, Angiology and Pulmology, University Hospital Heidelberg, Heidelberg, Germany
| | - Victoria Parikh
- Stanford Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Gotthardt
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Genome Technology Center, Palo Alto, CA, USA.
| |
Collapse
|
45
|
Wang J, Tomar D, Martin TG, Dubey S, Dubey PK, Song J, Landesberg G, McCormick MG, Myers VD, Merali S, Merali C, Lemster B, McTiernan CF, Khalili K, Madesh M, Cheung JY, Kirk JA, Feldman AM. Bag3 Regulates Mitochondrial Function and the Inflammasome Through Canonical and Noncanonical Pathways in the Heart. JACC Basic Transl Sci 2023; 8:820-839. [PMID: 37547075 PMCID: PMC10401293 DOI: 10.1016/j.jacbts.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/14/2022] [Accepted: 12/29/2022] [Indexed: 08/08/2023]
Abstract
B-cell lymphoma 2-associated athanogene-3 (Bag3) is expressed in all animal species, with Bag3 levels being most prominent in the heart, the skeletal muscle, the central nervous system, and in many cancers. Preclinical studies of Bag3 biology have focused on animals that have developed compromised cardiac function; however, the present studies were performed to identify the pathways perturbed in the heart even before the occurrence of clinical signs of dilatation and failure of the heart. These studies show that hearts carrying variants that knockout one allele of BAG3 have significant alterations in multiple cellular pathways including apoptosis, autophagy, mitochondrial homeostasis, and the inflammasome.
Collapse
Affiliation(s)
- JuFang Wang
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Dhadendra Tomar
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Thomas G. Martin
- Department of Cell and Molecular Physiology, Loyola University Strich School of Medicine, Maywood, Illinois, USA
| | - Shubham Dubey
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Praveen K. Dubey
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Jianliang Song
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Gavin Landesberg
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Michael G. McCormick
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | | | - Salim Merali
- Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA
| | - Carmen Merali
- Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA
| | - Bonnie Lemster
- Department of Medicine, Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Charles F. McTiernan
- Department of Medicine, Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kamel Khalili
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Muniswamy Madesh
- Department of Medicine, Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Joseph Y. Cheung
- Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan A. Kirk
- Department of Cell and Molecular Physiology, Loyola University Strich School of Medicine, Maywood, Illinois, USA
| | - Arthur M. Feldman
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
46
|
Stroeks SLVM, Hellebrekers D, Claes GRF, Krapels IPC, Henkens MHTM, Sikking M, Vanhoutte EK, Helderman-van den Enden A, Brunner HG, van den Wijngaard A, Verdonschot JAJ. Diagnostic and prognostic relevance of using large gene panels in the genetic testing of patients with dilated cardiomyopathy. Eur J Hum Genet 2023; 31:776-783. [PMID: 37198425 PMCID: PMC10325988 DOI: 10.1038/s41431-023-01384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/24/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
It was previously suggested that increasing the number of genes on diagnostic gene panels could increase the genetic yield in patient with dilated cardiomyopathy (DCM). We explored the diagnostic and prognostic relevance of testing DCM patients with an expanded gene panel. The current study included 225 consecutive DCM patients who had no genetic diagnosis after a 48-gene cardiomyopathy-panel. These were then evaluated using an expanded gene panel of 299 cardiac-associated genes. A likely pathogenic/pathogenic (P/LP) variant was detected in 13 patients. Five variants were reclassifications of variants found in genes which were already detected using the 48 gene panel. Only one of the other eight variants could explain the phenotype of the patient (KCNJ2). The panel detected 186 VUSs in 127 patients (of which 6 also had a P/LP variant). The presence of a VUS was significantly associated with the combined end-point of mortality, heart failure hospitalization, heart transplantation or life-threatening arrhythmias(HR, 2.04 [95% CI, 1.15 to 3.65]; p = 0.02). The association of a VUS with prognosis remained when we only included VUSs in robust DCM-associated genes (high suspicious VUSs), but disappeared when we only included VUSs in non-robust DCM-associated genes (low suspicious VUSs), highlighting the importance of weighing of VUSs. Overall, the use of large gene panels for genetic testing in DCM does not increase the diagnostic yield, although a VUS in a robust DCM-associated gene is associated with an adverse prognosis. Altogether, current diagnostic gene panels should be limited to the robust DCM-associated genes.
Collapse
Affiliation(s)
- Sophie L V M Stroeks
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, (ERN GUARD-Heart), Amsterdam, The Netherlands
| | - Debby Hellebrekers
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, (ERN GUARD-Heart), Amsterdam, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Godelieve R F Claes
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, (ERN GUARD-Heart), Amsterdam, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ingrid P C Krapels
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, (ERN GUARD-Heart), Amsterdam, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Michiel H T M Henkens
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
- Netherlands Heart Institute (NLHI), Utrecht, The Netherlands
| | - Maurits Sikking
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, (ERN GUARD-Heart), Amsterdam, The Netherlands
| | - Els K Vanhoutte
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, (ERN GUARD-Heart), Amsterdam, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Apollonia Helderman-van den Enden
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, (ERN GUARD-Heart), Amsterdam, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Han G Brunner
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, (ERN GUARD-Heart), Amsterdam, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
- GROW Institute for Developmental Biology and Cancer, Maastricht University, Maastricht, The Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arthur van den Wijngaard
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, (ERN GUARD-Heart), Amsterdam, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Job A J Verdonschot
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, (ERN GUARD-Heart), Amsterdam, The Netherlands.
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
47
|
Koslow M, Mondaca-Ruff D, Xu X. Transcriptome studies of inherited dilated cardiomyopathies. Mamm Genome 2023; 34:312-322. [PMID: 36749382 PMCID: PMC10426000 DOI: 10.1007/s00335-023-09978-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
Dilated cardiomyopathy (DCM) is a group of heart muscle diseases that often lead to heart failure, with more than 50 causative genes have being linked to DCM. The heterogenous nature of the inherited DCMs suggest the need of precision medicine. Consistent with this emerging concept, transcriptome studies in human patients with DCM indicated distinct molecular signature for DCMs of different genetic etiology. To facilitate this line of research, we reviewed the status of transcriptome studies of inherited DCMs by focusing on three predominant DCM causative genes, TTN, LMNA, and BAG3. Besides studies in human patients, we summarized transcriptomic analysis of these inherited DCMs in a variety of model systems ranging from iPSCs to rodents and zebrafish. We concluded that the RNA-seq technology is a powerful genomic tool that has already led to the discovery of new modifying genes, signaling pathways, and related therapeutic avenues. We also pointed out that both temporal (different pathological stages) and spatial (different cell types) information need to be considered for future transcriptome studies. While an important bottle neck is the low throughput in experimentally testing differentially expressed genes, new technologies in efficient animal models such as zebrafish starts to be developed. It is anticipated that the RNA-seq technology will continue to uncover both unique and common pathological events, aiding the development of precision medicine for inherited DCMs.
Collapse
Affiliation(s)
- Matthew Koslow
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - David Mondaca-Ruff
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
48
|
Heshmatzad K, Naderi N, Maleki M, Abbasi S, Ghasemi S, Ashrafi N, Fazelifar AF, Mahdavi M, Kalayinia S. Role of non-coding variants in cardiovascular disease. J Cell Mol Med 2023; 27:1621-1636. [PMID: 37183561 PMCID: PMC10273088 DOI: 10.1111/jcmm.17762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/29/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
Cardiovascular diseases (CVDs) constitute one of the significant causes of death worldwide. Different pathological states are linked to CVDs, which despite interventions and treatments, still have poor prognoses. The genetic component, as a beneficial tool in the risk stratification of CVD development, plays a role in the pathogenesis of this group of diseases. The emergence of genome-wide association studies (GWAS) have led to the identification of non-coding parts associated with cardiovascular traits and disorders. Variants located in functional non-coding regions, including promoters/enhancers, introns, miRNAs and 5'/3' UTRs, account for 90% of all identified single-nucleotide polymorphisms associated with CVDs. Here, for the first time, we conducted a comprehensive review on the reported non-coding variants for different CVDs, including hypercholesterolemia, cardiomyopathies, congenital heart diseases, thoracic aortic aneurysms/dissections and coronary artery diseases. Additionally, we present the most commonly reported genes involved in each CVD. In total, 1469 non-coding variants constitute most reports on familial hypercholesterolemia, hypertrophic cardiomyopathy and dilated cardiomyopathy. The application and identification of non-coding variants are beneficial for the genetic diagnosis and better therapeutic management of CVDs.
Collapse
Affiliation(s)
- Katayoun Heshmatzad
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Majid Maleki
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Shiva Abbasi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Serwa Ghasemi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Nooshin Ashrafi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Amir Farjam Fazelifar
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Mohammad Mahdavi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
49
|
Barefield DY, Alvarez-Arce A, Araujo KN. Mechanisms of Sarcomere Protein Mutation-Induced Cardiomyopathies. Curr Cardiol Rep 2023; 25:473-484. [PMID: 37060436 PMCID: PMC11141690 DOI: 10.1007/s11886-023-01876-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE OF REVIEW The pace of identifying cardiomyopathy-associated mutations and advances in our understanding of sarcomere function that underlies many cardiomyopathies has been remarkable. Here, we aim to synthesize how these advances have led to the promising new treatments that are being developed to treat cardiomyopathies. RECENT FINDINGS The genomics era has identified and validated many genetic causes of hypertrophic and dilated cardiomyopathies. Recent advances in our mechanistic understanding of sarcomere pathophysiology include high-resolution molecular models of sarcomere components and the identification of the myosin super-relaxed state. The advances in our understanding of sarcomere function have yielded several therapeutic agents that are now in development and clinical use to correct contractile dysfunction-mediated cardiomyopathy. New genes linked to cardiomyopathy include targets with limited clinical evidence and require additional investigation. Large portions of cardiomyopathy with family history remain genetically undiagnosed and may be due to polygenic disease.
Collapse
Affiliation(s)
- David Y Barefield
- Department of Cell and Molecular Physiology, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA.
| | - Alejandro Alvarez-Arce
- Department of Cell and Molecular Physiology, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA
| | - Kelly N Araujo
- Department of Cell and Molecular Physiology, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA
| |
Collapse
|
50
|
Furrow E, Tate N, Minor K, Martinson S, Larrabee S, Anttila M, Sleeper M, Henthorn P. An ABCC9 Missense Variant Is Associated with Sudden Cardiac Death and Dilated Cardiomyopathy in Juvenile Dogs. Genes (Basel) 2023; 14:genes14050988. [PMID: 37239348 DOI: 10.3390/genes14050988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Sudden cardiac death in the young (SCDY) is a devastating event that often has an underlying genetic basis. Manchester Terrier dogs offer a naturally occurring model of SCDY, with sudden death of puppies as the manifestation of an inherited dilated cardiomyopathy (DCM). We performed a genome-wide association study for SCDY/DCM in Manchester Terrier dogs and identified a susceptibility locus harboring the cardiac ATP-sensitive potassium channel gene ABCC9. Sanger sequencing revealed an ABCC9 p.R1186Q variant present in a homozygous state in all SCDY/DCM-affected dogs (n = 26). None of the controls genotyped (n = 398) were homozygous for the variant, but 69 were heterozygous carriers, consistent with autosomal recessive inheritance with complete penetrance (p = 4 × 10-42 for the association of homozygosity for ABCC9 p.R1186Q with SCDY/DCM). This variant exists at low frequency in human populations (rs776973456) with clinical significance previously deemed uncertain. The results of this study further the evidence that ABCC9 is a susceptibility gene for SCDY/DCM and highlight the potential application of dog models to predict the clinical significance of human variants.
Collapse
Affiliation(s)
- Eva Furrow
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55455, USA
| | - Nicole Tate
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55455, USA
| | - Katie Minor
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55455, USA
| | - Shannon Martinson
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE CIA 4P3, Canada
| | - Shannon Larrabee
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55455, USA
| | | | - Meg Sleeper
- College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Paula Henthorn
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|