1
|
Zhu S, Chen Z, Liu C, Duong J, Tran T, Liang Z, Fang X, Ouyang K. The essential role of MED27 in stabilizing the mediator complex for cardiac development and function. Life Sci 2024; 356:123020. [PMID: 39209248 DOI: 10.1016/j.lfs.2024.123020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
AIM Transcriptional regulation of gene expression plays a crucial role in orchestrating complex morphogenetic and molecular events during heart development and function. Mediator complex is an essential multi-subunit protein complex that governs gene expression in eukaryotic cells. Although Mediator subunits (MEDs) work integrally in the complex, individual MED component displays specialized functions. MED27, categorized as an Upper Tail subunit, possesses an as-yet-uncharacterized function. In this study, we aimed to investigate the physiological role of MED27 in cardiomyocytes. MATERIALS AND METHODS we generated a Med27 floxed mouse line, which was further used to generate constitutive (cKO) and inducible (icKO) cardiomyocyte-specific Med27 knockout mouse models. Morphological, histological analysis and cardiac physiological studies were performed in Med27 cKO and icKO mutants. Transcriptional profiles were determined by RNA sequencing (RNAseq) analysis. KEY FUNDINGS Ablation of MED27 in developing mouse cardiomyocytes results in embryonic lethality, while its deletion in adult cardiomyocytes leads to heart failure and mortality. Similar to the ablation of another Upper Tail subunit, MED30 in cardiomyocytes, deletion of MED27 leads to decreased protein levels of most MEDs in cardiomyocytes. Interestingly, overexpression of MED30 fails to restore the protein levels of Mediator subunits in MED27-deficient cardiomyocytes, demonstrating that the role of MED27 in maintaining the integrity and stability of the Mediator complex is independent of MED30. SIGNIFICANCE Our results revealed an essential role of MED27 in cardiac development and function by maintaining the stability of the Mediator core.
Collapse
Affiliation(s)
- Siting Zhu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China; Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Ze'e Chen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China; Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Canzhao Liu
- Department of Medicine, University of California San Diego, La Jolla, California, USA; Department of Cardiovascular Medicine, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Janelle Duong
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Tiana Tran
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Zhengyu Liang
- Department of Systems Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xi Fang
- Department of Medicine, University of California San Diego, La Jolla, California, USA.
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China.
| |
Collapse
|
2
|
Loh YH, Lv J, Goh Y, Sun X, Zhu X, Muheyati M, Luan Y. Remodeling of T-Tubules and Associated Calcium Handling Dysfunction in Heart Failure: Mechanisms and Therapeutic Insights. Can J Cardiol 2024:S0828-282X(24)01035-3. [PMID: 39455023 DOI: 10.1016/j.cjca.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
In cardiomyocytes, transverse tubules (T-tubules) are sarcolemmal invaginations that facilitate excitation-contraction coupling (ECC) and diastolic function. The clinical significance of T-tubules has become evident as their remodeling is recognized as a hallmark feature of heart failure (HF) and a key contributor to disrupted Ca2+ homeostasis, compromised cardiac function, and arrhythmogenesis. Further investigations have revealed that T-tubule remodeling is particularly pronounced in HF with reduced ejection fraction (HFrEF), but not in HF with preserved ejection fraction (HFpEF), implying that T-tubule remodeling may play a crucial pathophysiological role in HFrEF. While research on the functional importance of T-tubules is ongoing due to their complexity, T-tubule remodeling has been found to be reversible. Such finding has triggered a surge in studies aimed at identifying specific therapeutic approaches for HFrEF. This review discusses the functional importance of T-tubules and their microdomains, the pathophysiology of T-tubule remodeling, and the potential mechanisms of current HFrEF therapeutic approaches in reversing T-tubule alterations. We also highlight discrepancies regarding the roles of T-tubule proteins in the recovery process across studies to offer valuable insights for future research.
Collapse
Affiliation(s)
- Yi Hao Loh
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Jingyi Lv
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Yenfang Goh
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Xiangjie Sun
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Xianfeng Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China; Department of Critical Care Medicine, Hangzhou Ninth People's Hospital, China
| | - Muergen Muheyati
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Yi Luan
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China; School of Medicine, Shaoxing University, China.
| |
Collapse
|
3
|
Micolonghi C, Perrone F, Fabiani M, Caroselli S, Savio C, Pizzuti A, Germani A, Visco V, Petrucci S, Rubattu S, Piane M. Unveiling the Spectrum of Minor Genes in Cardiomyopathies: A Narrative Review. Int J Mol Sci 2024; 25:9787. [PMID: 39337275 PMCID: PMC11431948 DOI: 10.3390/ijms25189787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Hereditary cardiomyopathies (CMPs), including arrhythmogenic cardiomyopathy (ACM), dilated cardiomyopathy (DCM), and hypertrophic cardiomyopathy (HCM), represent a group of heart disorders that significantly contribute to cardiovascular morbidity and mortality and are often driven by genetic factors. Recent advances in next-generation sequencing (NGS) technology have enabled the identification of rare variants in both well-established and minor genes associated with CMPs. Nowadays, a set of core genes is included in diagnostic panels for ACM, DCM, and HCM. On the other hand, despite their lesser-known status, variants in the minor genes may contribute to disease mechanisms and influence prognosis. This review evaluates the current evidence supporting the involvement of the minor genes in CMPs, considering their potential pathogenicity and clinical significance. A comprehensive analysis of databases, such as ClinGen, ClinVar, and GeneReviews, along with recent literature and diagnostic guidelines provides a thorough overview of the genetic landscape of minor genes in CMPs and offers guidance in clinical practice, evaluating each case individually based on the clinical referral, and insights for future research. Given the increasing knowledge on these less understood genetic factors, future studies are essential to clearly assess their roles, ultimately leading to improved diagnostic precision and therapeutic strategies in hereditary CMPs.
Collapse
Affiliation(s)
- Caterina Micolonghi
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Perrone
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Marco Fabiani
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
- ALTAMEDICA, Human Genetics, 00198 Rome, Italy
| | - Silvia Caroselli
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
- Juno Genetics, Reproductive Genetics, 00188 Rome, Italy
| | | | - Antonio Pizzuti
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
- Medical Genetics Unit, IRCCS Mendel Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Aldo Germani
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Vincenzo Visco
- S. Andrea University Hospital, 00189 Rome, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Simona Petrucci
- S. Andrea University Hospital, 00189 Rome, Italy
- Medical Genetics Unit, IRCCS Mendel Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Speranza Rubattu
- S. Andrea University Hospital, 00189 Rome, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Maria Piane
- S. Andrea University Hospital, 00189 Rome, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
4
|
Rahimzadeh M, Tennstedt S, Aherrahrou Z. Nexilin in cardiomyopathy: unveiling its diverse roles with special focus on endocardial fibroelastosis. Heart Fail Rev 2024; 29:1025-1037. [PMID: 38985384 DOI: 10.1007/s10741-024-10416-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Cardiac disorders exhibit considerable heterogeneity, and understanding their genetic foundations is crucial for their diagnosis and treatment. Recent genetic analyses involving a growing number of participants have uncovered novel mutations within both coding and non-coding regions of DNA, contributing to the onset of cardiac conditions. The NEXN gene, encoding the Nexilin protein, an actin filament-binding protein, is integral to normal cardiac function. Mutations in this gene have been linked to cardiomyopathies, cardiovascular disorders, and sudden deaths. Heterozygous or homozygous variants of the NEXN gene are associated with the development of endocardial fibroelastosis (EFE), a rare cardiac condition characterized by excessive collagen and elastin deposition in the left ventricular endocardium predominantly affecting infants and young children. EFE occurs both primary and secondary to other conditions and often leads to unfavorable prognoses and outcomes. This review explores the role of NEXN genetic variants in cardiovascular disorders, particularly EFE, revealing that functional mutations are not clustered in a specific domain of Nexilin based on the cardiac disorder phenotype. Our review underscores the importance of understanding genetic mutations for the diagnosis and treatment of cardiac conditions.
Collapse
Affiliation(s)
- Mahsa Rahimzadeh
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Stephanie Tennstedt
- Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, 23562, Germany
- University Heart Center Lübeck, Lübeck, 23562, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, 23562, Germany.
- University Heart Center Lübeck, Lübeck, 23562, Germany.
| |
Collapse
|
5
|
Picciolli I, Ratti A, Rinaldi B, Baban A, Iascone M, Francescato G, Cappelleri A, Magliozzi M, Novelli A, Parlapiano G, Colli AM, Persico N, Carugo S, Mosca F, Bedeschi MF. Biallelic NEXN variants and fetal onset dilated cardiomyopathy: two independent case reports and revision of literature. Ital J Pediatr 2024; 50:156. [PMID: 39183344 PMCID: PMC11346034 DOI: 10.1186/s13052-024-01678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 05/28/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is an etiologically heterogeneous group of diseases of the myocardium. With the rapid evolution in laboratory investigations, genetic background is increasingly determined including many genes with variable penetrance and expressivity. Biallelic NEXN variants are rare in humans and associated with poor prognosis: fetal and perinatal death or severe DCMs in infants. CASE PRESENTATION We describe two male infants with prenatal diagnosis of dilated cardiomyopathy with impaired ventricular contractility. One of the patients showed hydrops and polyhydramnios. Postnatally, a DCM with severely reduced systolic function was confirmed and required medical treatment. In patient 1, Whole Exome Sequencing (WES) revealed a homozygous NEXN variant: c.1156dup (p.Met386fs) while in patient 2 a custom Next Generation Sequencing (NGS) panel revealed the homozygous NEXN variant c.1579_1584delp. (Glu527_Glu528del). These NEXN variants have not been previously described. Unlike the unfavorable prognosis described for biallelic NEXN variants, we observed in both our patients a favorable clinical course over time. CONCLUSION This report might help to broaden the present knowledge regarding NEXN biallelic variants and their clinical expression. It might be worthy to consider the inclusion of the NEXN gene sequencing in the investigation of pediatric patients with DCM.
Collapse
Affiliation(s)
- Irene Picciolli
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Angelo Ratti
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Berardo Rinaldi
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anwar Baban
- Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, Rome, Italy
| | - Maria Iascone
- Molecular Genetics Section, Medical Genetics Laboratory, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Gaia Francescato
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessia Cappelleri
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Monia Magliozzi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, 00165, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, 00165, Italy
| | - Giovanni Parlapiano
- Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, Rome, Italy
| | - Anna Maria Colli
- Department of Cardio-Thoracic-Vascular Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicola Persico
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Fetal Medicine and Surgery Unit, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, Milan, 20122, Italy
- Center for Environmental Health, CRC, University of Milan, Milan, 20122, Italy
| | - Stefano Carugo
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Cardio-Thoracic-Vascular Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Center for Environmental Health, CRC, University of Milan, Milan, 20122, Italy
| | - Fabio Mosca
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | |
Collapse
|
6
|
Guo CT, Jardin BD, Lin JS, Ambroise RL, Wang Z, Yang LZ, Mazumdar N, Lu FJ, Ma Q, Cao YP, Liu CZ, Li KL, Liu XJ, Lan F, Zhao MM, Xiao H, Dong ED, Pu WT, Guo YX. In vivo proximity proteomics uncovers palmdelphin (PALMD) as a Z-disc-associated mitigator of isoproterenol-induced cardiac injury. Acta Pharmacol Sin 2024:10.1038/s41401-024-01348-y. [PMID: 39043970 DOI: 10.1038/s41401-024-01348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
Z-discs are core ultrastructural organizers of cardiomyocytes that modulate many facets of cardiac pathogenesis. Yet a comprehensive proteomic atlas of Z-disc-associated components remain incomplete. Here, we established an adeno-associated virus (AAV)-delivered, cardiomyocyte-specific, proximity-labeling approach to characterize the Z-disc proteome in vivo. We found palmdelphin (PALMD) as a novel Z-disc-associated protein in both adult murine cardiomyocytes and human pluripotent stem cell-derived cardiomyocytes. Germline and cardiomyocyte-specific Palmd knockout mice were grossly normal at baseline but exhibited compromised cardiac hypertrophy and aggravated cardiac injury upon long-term isoproterenol treatment. By contrast, cardiomyocyte-specific PALMD overexpression was sufficient to mitigate isoproterenol-induced cardiac injury. PALMD ablation perturbed the transverse tubule (T-tubule)-sarcoplasmic reticulum (SR) ultrastructures, which formed the Z-disc-associated junctional membrane complex (JMC) essential for calcium handling and cardiac function. These phenotypes were associated with the reduction of nexilin (NEXN), a crucial Z-disc-associated protein that is essential for both Z-disc and JMC structures and functions. PALMD interacted with NEXN and enhanced its protein stability while the Nexn mRNA level was not affected. AAV-based NEXN addback rescued the exacerbated cardiac injury in isoproterenol-treated PALMD-depleted mice. Together, this study discovered PALMD as a potential target for myocardial protection and highlighted in vivo proximity proteomics as a powerful approach to nominate novel players regulating cardiac pathogenesis.
Collapse
Affiliation(s)
- Cong-Ting Guo
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Blake D Jardin
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Jun-Sen Lin
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, 100191, China
| | | | - Ze Wang
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lu-Zi Yang
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Neil Mazumdar
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Fu-Jian Lu
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Qing Ma
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Yang-Po Cao
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Can-Zhao Liu
- Department of Cardiology, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Kai-Long Li
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xu-Jie Liu
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China
| | - Feng Lan
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China
| | - Ming-Ming Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, 100191, China
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, 100191, China
| | - Er-Dan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, 100191, China
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.
| | - Yu-Xuan Guo
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, 100191, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- Beijing Key Laboratory of Cardiovascular Receptors Research; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, 100191, China.
| |
Collapse
|
7
|
Shao Y, Liu C, Liao HK, Zhang R, Yuan B, Yang H, Li R, Zhu S, Fang X, Rodriguez Esteban C, Chen J, Izpisua Belmonte JC. In vivo rescue of genetic dilated cardiomyopathy by systemic delivery of nexilin. Genome Biol 2024; 25:135. [PMID: 38783323 PMCID: PMC11112773 DOI: 10.1186/s13059-024-03283-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is one of the most common causes of heart failure. Multiple identified mutations in nexilin (NEXN) have been suggested to be linked with severe DCM. However, the exact association between multiple mutations of Nexn and DCM remains unclear. Moreover, it is critical for the development of precise and effective therapeutics in treatments of DCM. RESULTS In our study, Nexn global knockout mice and mice carrying human equivalent G645del mutation are studied using functional gene rescue assays. AAV-mediated gene delivery is conducted through systemic intravenous injections at the neonatal stage. Heart tissues are analyzed by immunoblots, and functions are assessed by echocardiography. Here, we identify functional components of Nexilin and demonstrate that exogenous introduction could rescue the cardiac function and extend the lifespan of Nexn knockout mouse models. Similar therapeutic effects are also obtained in G645del mice, providing a promising intervention for future clinical therapeutics. CONCLUSIONS In summary, we demonstrated that a single injection of AAV-Nexn was capable to restore the functions of cardiomyocytes and extended the lifespan of Nexn knockout and G645del mice. Our study represented a long-term gene replacement therapy for DCM that potentially covers all forms of loss-of-function mutations in NEXN.
Collapse
Affiliation(s)
- Yanjiao Shao
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Altos Labs, San Diego, CA, 92121, USA
| | - Canzhao Liu
- Department of Cardiology, Translational Medicine Research Center, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, 510280, China
| | - Hsin-Kai Liao
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Ran Zhang
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Baolei Yuan
- Altos Labs, San Diego, CA, 92121, USA
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Hanyan Yang
- Department of Cardiology, Translational Medicine Research Center, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, 510280, China
| | - Ronghui Li
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Altos Labs, San Diego, CA, 92121, USA
| | - Siting Zhu
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xi Fang
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Concepcion Rodriguez Esteban
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Altos Labs, San Diego, CA, 92121, USA
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
- Altos Labs, San Diego, CA, 92121, USA.
| |
Collapse
|
8
|
Xu C, Zhang G, Wang X, Huang X, Zhang J, Han S, Wang J, Hall DD, Xu R, He F, Chang X, Wang F, Xie W, Wu Z, Song LS, Han P. Ptpn23 Controls Cardiac T-Tubule Patterning by Promoting the Assembly of Dystrophin-Glycoprotein Complex. Circulation 2024; 149:1375-1390. [PMID: 38214189 PMCID: PMC11039371 DOI: 10.1161/circulationaha.123.065767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Cardiac transverse tubules (T-tubules) are anchored to sarcomeric Z-discs by costameres to establish a regular spaced pattern. One of the major components of costameres is the dystrophin-glycoprotein complex (DGC). Nevertheless, how the assembly of the DGC coordinates with the formation and maintenance of T-tubules under physiological and pathological conditions remains unclear. METHODS Given the known role of Ptpn23 (protein tyrosine phosphatase, nonreceptor type 23) in regulating membrane deformation, its expression in patients with dilated cardiomyopathy was determined. Taking advantage of Cre/Loxp, CRISPR/Cas9, and adeno-associated virus 9 (AAV9)-mediated in vivo gene editing, we generated cardiomyocyte-specific Ptpn23 and Actn2 (α-actinin-2, a major component of Z-discs) knockout mice. We also perturbed the DGC by using dystrophin global knockout mice (DmdE4*). MM 4-64 and Di-8-ANEPPS staining, Cav3 immunofluorescence, and transmission electron microscopy were performed to determine T-tubule structure in isolated cells and intact hearts. In addition, the assembly of the DGC with Ptpn23 and dystrophin loss of function was determined by glycerol-gradient fractionation and SDS-PAGE analysis. RESULTS The expression level of Ptpn23 was reduced in failing hearts from dilated cardiomyopathy patients and mice. Genetic deletion of Ptpn23 resulted in disorganized T-tubules with enlarged diameters and progressive dilated cardiomyopathy without affecting sarcomere organization. AAV9-mediated mosaic somatic mutagenesis further indicated a cell-autonomous role of Ptpn23 in regulating T-tubule formation. Genetic and biochemical analyses showed that Ptpn23 was essential for the integrity of costameres, which anchor the T-tubule membrane to Z-discs, through interactions with α-actinin and dystrophin. Deletion of α-actinin altered the subcellular localization of Ptpn23 and DGCs. In addition, genetic inactivation of dystrophin caused similar T-tubule defects to Ptpn23 loss-of-function without affecting Ptpn23 localization at Z-discs. Last, inducible Ptpn23 knockout at 1 month of age showed Ptpn23 is also required for the maintenance of T-tubules in adult cardiomyocytes. CONCLUSIONS Ptpn23 is essential for cardiac T-tubule formation and maintenance along Z-discs. During postnatal heart development, Ptpn23 interacts with sarcomeric α-actinin and coordinates the assembly of the DGC at costameres to sculpt T-tubule spatial patterning and morphology.
Collapse
Affiliation(s)
- Chen Xu
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Ge Zhang
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Xinjian Wang
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Xiaozhi Huang
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Jiayin Zhang
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Shuxian Han
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Jinxi Wang
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Duane D. Hall
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Ruoqing Xu
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Feng He
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Xing Chang
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Fudi Wang
- The Fourth Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjun Xie
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Zhichao Wu
- Department of Thoracic surgery, People’s hospital of Xinjiang Uyghur autonomous Region, Urumqi, Xinjiang, 830000
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120
| | - Long-Sheng Song
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Peidong Han
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Gan P, Wang Z, Bezprozvannaya S, McAnally JR, Tan W, Li H, Bassel-Duby R, Liu N, Olson EN. RBPMS regulates cardiomyocyte contraction and cardiac function through RNA alternative splicing. Cardiovasc Res 2024; 120:56-68. [PMID: 37890031 PMCID: PMC10898938 DOI: 10.1093/cvr/cvad166] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/20/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
AIMS RNA binding proteins play essential roles in mediating RNA splicing and are key post-transcriptional regulators in the heart. Our recent study demonstrated that RBPMS (RNA binding protein with multiple splicing) is crucial for cardiac development through modulating mRNA splicing, but little is known about its functions in the adult heart. In this study, we aim to characterize the post-natal cardiac function of Rbpms and its mechanism of action. METHODS AND RESULTS We generated a cardiac-specific knockout mouse line and found that cardiac-specific loss of Rbpms caused severe cardiomyocyte contractile defects, leading to dilated cardiomyopathy and early lethality in adult mice. We showed by proximity-dependent biotin identification assay and mass spectrometry that RBPMS associates with spliceosome factors and other RNA binding proteins, such as RBM20, that are important in cardiac function. We performed paired-end RNA sequencing and RT-PCR and found that RBPMS regulates mRNA alternative splicing of genes associated with sarcomere structure and function, such as Ttn, Pdlim5, and Nexn, generating new protein isoforms. Using a minigene splicing reporter assay, we determined that RBPMS regulates target gene splicing through recognizing tandem intronic CAC motifs. We also showed that RBPMS knockdown in human induced pluripotent stem cell-derived cardiomyocytes impaired cardiomyocyte contraction. CONCLUSION This study identifies RBPMS as an important regulator of cardiomyocyte contraction and cardiac function by modulating sarcomeric gene alternative splicing.
Collapse
Affiliation(s)
- Peiheng Gan
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Zhaoning Wang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Svetlana Bezprozvannaya
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, USA
| | - John R McAnally
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Wei Tan
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Hui Li
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Ning Liu
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, USA
| |
Collapse
|
10
|
Hall DD, Takeshima H, Song LS. Structure, Function, and Regulation of the Junctophilin Family. Annu Rev Physiol 2024; 86:123-147. [PMID: 37931168 PMCID: PMC10922073 DOI: 10.1146/annurev-physiol-042022-014926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
In both excitable and nonexcitable cells, diverse physiological processes are linked to different calcium microdomains within nanoscale junctions that form between the plasma membrane and endo-sarcoplasmic reticula. It is now appreciated that the junctophilin protein family is responsible for establishing, maintaining, and modulating the structure and function of these junctions. We review foundational findings from more than two decades of research that have uncovered how junctophilin-organized ultrastructural domains regulate evolutionarily conserved biological processes. We discuss what is known about the junctophilin family of proteins. Our goal is to summarize the current knowledge of junctophilin domain structure, function, and regulation and to highlight emerging avenues of research that help our understanding of the transcriptional, translational, and post-translational regulation of this gene family and its roles in health and during disease.
Collapse
Affiliation(s)
- Duane D Hall
- Department of Internal Medicine, Division of Cardiovascular Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; ,
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Long-Sheng Song
- Department of Internal Medicine, Division of Cardiovascular Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; ,
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
11
|
Hermida A, Ader F, Millat G, Jedraszak G, Maury P, Cador R, Catalan PA, Clerici G, Combes N, De Groote P, Dupin-Deguine D, Eschalier R, Faivre L, Garcia P, Guillon B, Janin A, Kugener B, Lackmy M, Laredo M, Le Guillou X, Lesaffre F, Lucron H, Milhem A, Nadeau G, Nguyen K, Palmyre A, Perdreau E, Picard F, Rebotier N, Richard P, Rooryck C, Seitz J, Verloes A, Vernier A, Winum P, Yabeta GAD, Bouchot O, Chevalier P, Charron P, Gandjbakhch E. NEXN Gene in Cardiomyopathies and Sudden Cardiac Deaths: Prevalence, Phenotypic Expression, and Prognosis. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004285. [PMID: 38059363 DOI: 10.1161/circgen.123.004285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/05/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Few clinical data are available on NEXN mutation carriers, and the gene's involvement in cardiomyopathies or sudden death has not been fully established. Our objectives were to assess the prevalence of putative pathogenic variants in NEXN and to describe the phenotype and prognosis of patients carrying the variants. METHODS DNA samples from consecutive patients with cardiomyopathy or sudden cardiac death/sudden infant death syndrome/idiopathic ventricular fibrillation were sequenced with a custom panel of genes. Index cases carrying at least one putative pathogenic variant in the NEXN gene were selected. RESULTS Of the 9516 index patients sequenced, 31 were carriers of a putative pathogenic variant in NEXN only, including 2 with double variants and 29 with a single variant. Of the 29 unrelated probands with a single variant (16 males; median age at diagnosis, 32.0 [26.0-49.0] years), 21 presented with dilated cardiomyopathy (prevalence, 0.33%), and 3 presented with hypertrophic cardiomyopathy (prevalence, 0.14%). Three patients had idiopathic ventricular fibrillation, and there were 2 cases of sudden infant death syndrome (prevalence, 0.46%). For patients with dilated cardiomyopathy, the median left ventricle ejection fraction was 37.5% (26.25-50.0) at diagnosis and improved with treatment in 13 (61.9%). Over a median follow-up period of 6.0 years, we recorded 3 severe arrhythmic events and 2 severe hemodynamic events. CONCLUSIONS Putative pathogenic NEXN variants were mainly associated with dilated cardiomyopathy; in these individuals, the prognosis appeared to be relatively good. However, severe and early onset phenotypes were also observed-especially in patients with double NEXN variants. We also detected NEXN variants in patients with hypertrophic cardiomyopathy and sudden infant death syndrome/idiopathic ventricular fibrillation, although a causal link could not be established.
Collapse
Affiliation(s)
- Alexis Hermida
- Cardiology, Arrhythmia, and Cardiac Stimulation Service (A.H.), Amiens-Picardie University Hospital
- EA4666 HEMATIM, University of Picardie-Jules Verne, Amiens (A.H., G.J.)
- Institute of Cardiology and ICAN Institute for Cardiometabolism and Nutrition (A.H., M. Laredo, P. Charron, E.G.)
- Department of Genetics, Department of Cardiology, and Referral center for hereditary cardiac diseases, APHP, Pitié-Salpêtrière Hospital (A.H., P. Charron, E.G.)
| | - Flavie Ader
- Unité Pédagogique de Biochimie, Département des Sciences Biologiques et Médicales, UFR de Pharmacie-Faculté de Santé, Université Paris Cité (F.A.)
- Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire et Cellulaire, DMU Biogem, Service de Biochimie Métabolique, AP-HP-Sorbonne Université, Pitié-Salpêtrière -Charles Foix (F.A., P.R.)
- Sorbonne Université, INSERM 1166, Paris (F.A., M. Laredo, P.R., P. Charron, E.G.)
| | - Gilles Millat
- Service de Génétique Moléculaire, Hospices Civils de Lyon (G.M., A.J.)
| | - Guillaume Jedraszak
- Molecular Genetics Laboratory (G.J.), Amiens-Picardie University Hospital
- EA4666 HEMATIM, University of Picardie-Jules Verne, Amiens (A.H., G.J.)
| | | | - Romain Cador
- Service de Cardiologie, Hôpital Saint Joseph, Paris (R.C.)
| | | | - Gaël Clerici
- Service de Cardiologie, Centre hospitalier universitaire, Saint Pierre, La Réunion (G.C.)
| | - Nicolas Combes
- Service de Cardiologie, Clinique Pasteur, Toulouse (N.C.)
| | - Pascal De Groote
- France CHU Lille, Service de Cardiologie & Inserm U1167, Institut Pasteur de Lille (P.D.G.)
| | | | | | | | - Patricia Garcia
- Unité Mort Inattendue du Nourrisson, Hôpital de la Conception, APHM, Marseille (P.G.)
| | | | - Alexandre Janin
- Service de Génétique Moléculaire, Hospices Civils de Lyon (G.M., A.J.)
| | | | - Marylin Lackmy
- Unité de Génétique Clinique, CHU de Guadeloupe, Pointe à Pitre (M. Lackmy)
| | - Mikael Laredo
- Institute of Cardiology and ICAN Institute for Cardiometabolism and Nutrition (A.H., M. Laredo, P. Charron, E.G.)
- Sorbonne Université, INSERM 1166, Paris (F.A., M. Laredo, P.R., P. Charron, E.G.)
| | | | | | - Hugues Lucron
- Service de Cardiologie pédiatrique, CHU Martinique, Fort-de-France (H.L.)
| | | | - Gwenaël Nadeau
- Service de génétique clinique CH Métropole Savoie, Chambéry (G.N.)
| | | | - Aurélien Palmyre
- APHP, Ambroise Paré Hospital, Department of Genetics and Referral center for cardiac hereditary cardiac diseases, Boulogne-Billancourt (A.P., P. Charron)
| | - Elodie Perdreau
- Département médico chirurgical de cardiologie pédiatrique (E.P.), Hôpital Louis Pradel, HCL, Lyon
| | - François Picard
- Service de Cardiologie, Hôpital Cardiologique Haut Leveque, Bordeaux (F.P.)
| | | | - Pascale Richard
- Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire et Cellulaire, DMU Biogem, Service de Biochimie Métabolique, AP-HP-Sorbonne Université, Pitié-Salpêtrière -Charles Foix (F.A., P.R.)
- Sorbonne Université, INSERM 1166, Paris (F.A., M. Laredo, P.R., P. Charron, E.G.)
| | | | - Julien Seitz
- Service de Cardiologie, Hôpital Saint Joseph, Marseille (J.S.)
| | - Alain Verloes
- Departement de génétique, Hôpital Robert Debré, APHP (A. Verloes)
| | | | | | - Grace-A-Dieu Yabeta
- Service de Cardiologie, CH Ouest Guyane, Saint-Laurent-du-Maroni (G.-A.-D.Y.)
| | - Océane Bouchot
- Service de Cardiologie, CH Annecy Genevois, Annecy, France (O.B.)
| | | | - Philippe Charron
- Institute of Cardiology and ICAN Institute for Cardiometabolism and Nutrition (A.H., M. Laredo, P. Charron, E.G.)
- Department of Genetics, Department of Cardiology, and Referral center for hereditary cardiac diseases, APHP, Pitié-Salpêtrière Hospital (A.H., P. Charron, E.G.)
- Sorbonne Université, INSERM 1166, Paris (F.A., M. Laredo, P.R., P. Charron, E.G.)
- APHP, Ambroise Paré Hospital, Department of Genetics and Referral center for cardiac hereditary cardiac diseases, Boulogne-Billancourt (A.P., P. Charron)
| | - Estelle Gandjbakhch
- Institute of Cardiology and ICAN Institute for Cardiometabolism and Nutrition (A.H., M. Laredo, P. Charron, E.G.)
- Department of Genetics, Department of Cardiology, and Referral center for hereditary cardiac diseases, APHP, Pitié-Salpêtrière Hospital (A.H., P. Charron, E.G.)
- Sorbonne Université, INSERM 1166, Paris (F.A., M. Laredo, P.R., P. Charron, E.G.)
| |
Collapse
|
12
|
Hofeichner J, Gahr BM, Huber M, Boos A, Rottbauer W, Just S. CRISPR/Cas9-mediated nexilin deficiency interferes with cardiac contractile function in zebrafish in vivo. Sci Rep 2023; 13:22679. [PMID: 38114601 PMCID: PMC10730861 DOI: 10.1038/s41598-023-50065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
Nexilin (NEXN) plays a crucial role in stabilizing the sarcomeric Z-disk of striated muscle fibers and, when mutated, leads to dilated cardiomyopathy in humans. Due to its early neonatal lethality in mice, the detailed impact of the constitutive homozygous NEXN knockout on heart and skeletal muscle morphology and function is insufficiently investigated. Here, we characterized a constitutive homozygous CRISPR/Cas9-mediated nexn knockout zebrafish model. We found that Nexn deficient embryos developed significantly reduced cardiac contractility and under stressed conditions also impaired skeletal muscle organization whereas skeletal muscle function seemed not to be affected. Remarkably, in contrast to nexn morphants, CRISPR/Cas9 nexn-/- knockout embryos showed a milder phenotype without the development of a pronounced pericardial edema or blood congestion. nexn-specific expression analysis as well as whole transcriptome profiling suggest some degree of compensatory mechanisms. Transcripts of numerous essential sarcomeric proteins were massively induced and may mediate a sarcomere stabilizing function in nexn-/- knockout embryos. Our findings demonstrate the successful generation and characterization of a constitutive homozygous nexn knockout line enabling the detailed investigation of the role of nexn on heart and skeletal muscle development and function as well as to assess putative compensatory mechanisms induced by the loss of Nexn.
Collapse
Affiliation(s)
- Janessa Hofeichner
- Molecular Cardiology, Department of Internal Medicine II, Ulm University, Ulm, Germany
| | - Bernd Martin Gahr
- Molecular Cardiology, Department of Internal Medicine II, Ulm University, Ulm, Germany
| | - Magdalena Huber
- Molecular Cardiology, Department of Internal Medicine II, Ulm University, Ulm, Germany
| | - Alena Boos
- Molecular Cardiology, Department of Internal Medicine II, Ulm University, Ulm, Germany
| | | | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, Ulm University, Ulm, Germany.
| |
Collapse
|
13
|
Guo C, Jardin BD, Lin J, Ambroise RL, Wang Z, Yang L, Mazumdar N, Lu F, Ma Q, Cao Y, Liu C, Liu X, Lan F, Zhao M, Xiao H, Dong E, Pu WT, Guo Y. In vivo proximity proteomics uncovers palmdelphin (PALMD) as a Z-line-associated mitigator of isoproterenol-induced cardiac injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570334. [PMID: 38106146 PMCID: PMC10723331 DOI: 10.1101/2023.12.06.570334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Z-lines are core ultrastructural organizers of cardiomyocytes that modulate many facets of cardiac pathogenesis. Yet a comprehensive proteomic atlas of Z-line-associated components remain incomplete. Here, we established an adeno-associated virus (AAV)-delivered, cardiomyocyte-specific, proximity-labeling approach to characterize the Z-line proteome in vivo. We found palmdelphin (PALMD) as a novel Z-line-associated protein in both adult murine cardiomyocytes and human pluripotent stem cell-derived cardiomyocytes. Germline and cardiomyocyte-specific palmd knockout mice were grossly normal at baseline but exhibited compromised cardiac hypertrophy and aggravated cardiac injury upon long-term isoproterenol treatment. By contrast, cardiomyocyte-specific PALMD overexpression was sufficient to mitigate isoproterenol-induced cardiac injury. PALMD ablation perturbed transverse tubules (T-tubules) and their association with sarcoplasmic reticulum, which formed the Z-line-associated junctional membrane complex (JMC) essential for calcium handling and cardiac function. These phenotypes were associated with disrupted localization of T-tubule markers caveolin-3 (CAV3) and junctophilin-2 (JPH2) and the reduction of nexilin (NEXN) protein, a crucial Z-line-associated protein that is essential for both Z-line and JMC structures and functions. PALMD was found to interact with NEXN and enhance its protein stability while the Nexn mRNA level was not affected. Together, this study discovered PALMD as a potential target for myocardial protection and highlighted in vivo proximity proteomics as a powerful approach to nominate novel players regulating cardiac pathogenesis. Highlights In vivo proximity proteomics uncover novel Z-line components that are undetected in in vitro proximity proteomics in cardiomyocytes.PALMD is a novel Z-line-associated protein that is dispensable for baseline cardiomyocyte function in vivo.PALMD mitigates cardiac dysfunction and myocardial injury after repeated isoproterenol insults.PALMD stabilizes NEXN, an essential Z-line-associated regulator of the junctional membrane complex and cardiac systolic function.
Collapse
|
14
|
Dries E, Gilbert G, Roderick HL, Sipido KR. The ryanodine receptor microdomain in cardiomyocytes. Cell Calcium 2023; 114:102769. [PMID: 37390591 DOI: 10.1016/j.ceca.2023.102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
The ryanodine receptor type 2 (RyR) is a key player in Ca2+ handling during excitation-contraction coupling. During each heartbeat, RyR channels are responsible for linking the action potential with the contractile machinery of the cardiomyocyte by releasing Ca2+ from the sarcoplasmic reticulum. RyR function is fine-tuned by associated signalling molecules, arrangement in clusters and subcellular localization. These parameters together define RyR function within microdomains and are subject to disease remodelling. This review describes the latest findings on RyR microdomain organization, the alterations with disease which result in increased subcellular heterogeneity and emergence of microdomains with enhanced arrhythmogenic potential, and presents novel technologies that guide future research to study and target RyR channels within specific microdomains.
Collapse
Affiliation(s)
- Eef Dries
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.
| | - Guillaume Gilbert
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Laboratoire ORPHY EA 4324, Université de Brest, Brest, France
| | - H Llewelyn Roderick
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Karin R Sipido
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Yang H, Song S, Li J, Li Y, Feng J, Sun Q, Qiu X, Chen Z, Bai X, Liu X, Lian H, Liu L, Bai Y, Zhang G, Nie Y. Omentin-1 drives cardiomyocyte cell cycle arrest and metabolic maturation by interacting with BMP7. Cell Mol Life Sci 2023; 80:186. [PMID: 37344704 PMCID: PMC11071824 DOI: 10.1007/s00018-023-04829-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 04/05/2023] [Accepted: 06/04/2023] [Indexed: 06/23/2023]
Abstract
Mammalian cardiomyocytes (CMs) undergo maturation during postnatal heart development to meet the increased demands of growth. Here, we found that omentin-1, an adipokine, facilitates CM cell cycle arrest and metabolic maturation. Deletion of omentin-1 causes mouse heart enlargement and dysfunction in adulthood and CM maturation retardation in juveniles, including delayed cell cycle arrest and reduced fatty acid oxidation. Through RNA sequencing, molecular docking analysis, and proximity ligation assays, we found that omentin-1 regulates CM maturation by interacting directly with bone morphogenetic protein 7 (BMP7). Omentin-1 prevents BMP7 from binding to activin type II receptor B (ActRIIB), subsequently decreasing the downstream pathways mothers against DPP homolog 1 (SMAD1)/Yes-associated protein (YAP) and p38 mitogen-activated protein kinase (p38 MAPK). In addition, omentin-1 is required and sufficient for the maturation of human embryonic stem cell-derived CMs. Together, our findings reveal that omentin-1 is a pro-maturation factor for CMs that is essential for postnatal heart development and cardiac function maintenance.
Collapse
Affiliation(s)
- Huijun Yang
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
- Department of Cardiovascular Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Jiacheng Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Yandong Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Jie Feng
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Quan Sun
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Street, Xiangya Road, Kaifu District, Changsha, 410008, People's Republic of China
| | - Xueting Qiu
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Street, Xiangya Road, Kaifu District, Changsha, 410008, People's Republic of China
| | - Ziwei Chen
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Xue Bai
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Xinchang Liu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Hong Lian
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Lihui Liu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Yongping Bai
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Street, Xiangya Road, Kaifu District, Changsha, 410008, People's Republic of China.
| | - Guogang Zhang
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Street, Xiangya Road, Kaifu District, Changsha, 410008, People's Republic of China.
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China.
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, 450046, China.
| |
Collapse
|
16
|
Kermani F, Mosqueira M, Peters K, Lemma ED, Rapti K, Grimm D, Bastmeyer M, Laugsch M, Hecker M, Ullrich ND. Membrane remodelling triggers maturation of excitation-contraction coupling in 3D-shaped human-induced pluripotent stem cell-derived cardiomyocytes. Basic Res Cardiol 2023; 118:13. [PMID: 36988697 PMCID: PMC10060306 DOI: 10.1007/s00395-023-00984-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
The prospective use of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) for cardiac regenerative medicine strongly depends on the electro-mechanical properties of these cells, especially regarding the Ca2+-dependent excitation-contraction (EC) coupling mechanism. Currently, the immature structural and functional features of hiPSC-CM limit the progression towards clinical applications. Here, we show that a specific microarchitecture is essential for functional maturation of hiPSC-CM. Structural remodelling towards a cuboid cell shape and induction of BIN1, a facilitator of membrane invaginations, lead to transverse (t)-tubule-like structures. This transformation brings two Ca2+ channels critical for EC coupling in close proximity, the L-type Ca2+ channel at the sarcolemma and the ryanodine receptor at the sarcoplasmic reticulum. Consequently, the Ca2+-dependent functional interaction of these channels becomes more efficient, leading to improved spatio-temporal synchronisation of Ca2+ transients and higher EC coupling gain. Thus, functional maturation of hiPSC-cardiomyocytes by optimised cell microarchitecture needs to be considered for future cardiac regenerative approaches.
Collapse
Affiliation(s)
- Fatemeh Kermani
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Matias Mosqueira
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Kyra Peters
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Enrico D Lemma
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Kleopatra Rapti
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Heidelberg University, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Martin Bastmeyer
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Biological information processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Research Bridge (Synthetic Biology), Heidelberg-Karlsruhe Research Partnership (HEiKA), Heidelberg University and Karlsruhe Institute of Technology, Heidelberg, Germany
| | - Magdalena Laugsch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Nina D Ullrich
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
- Research Bridge (Synthetic Biology), Heidelberg-Karlsruhe Research Partnership (HEiKA), Heidelberg University and Karlsruhe Institute of Technology, Heidelberg, Germany.
| |
Collapse
|
17
|
Noureddine M, Gehmlich K. Structural and signaling proteins in the Z-disk and their role in cardiomyopathies. Front Physiol 2023; 14:1143858. [PMID: 36935760 PMCID: PMC10017460 DOI: 10.3389/fphys.2023.1143858] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The sarcomere is the smallest functional unit of muscle contraction. It is delineated by a protein-rich structure known as the Z-disk, alternating with M-bands. The Z-disk anchors the actin-rich thin filaments and plays a crucial role in maintaining the mechanical stability of the cardiac muscle. A multitude of proteins interact with each other at the Z-disk and they regulate the mechanical properties of the thin filaments. Over the past 2 decades, the role of the Z-disk in cardiac muscle contraction has been assessed widely, however, the impact of genetic variants in Z-disk proteins has still not been fully elucidated. This review discusses the various Z-disk proteins (alpha-actinin, filamin C, titin, muscle LIM protein, telethonin, myopalladin, nebulette, and nexilin) and Z-disk-associated proteins (desmin, and obscurin) and their role in cardiac structural stability and intracellular signaling. This review further explores how genetic variants of Z-disk proteins are linked to inherited cardiac conditions termed cardiomyopathies.
Collapse
Affiliation(s)
- Maya Noureddine
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Dixon RE, Trimmer JS. Endoplasmic Reticulum-Plasma Membrane Junctions as Sites of Depolarization-Induced Ca 2+ Signaling in Excitable Cells. Annu Rev Physiol 2023; 85:217-243. [PMID: 36202100 PMCID: PMC9918718 DOI: 10.1146/annurev-physiol-032122-104610] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Membrane contact sites between endoplasmic reticulum (ER) and plasma membrane (PM), or ER-PM junctions, are found in all eukaryotic cells. In excitable cells they play unique roles in organizing diverse forms of Ca2+ signaling as triggered by membrane depolarization. ER-PM junctions underlie crucial physiological processes such as excitation-contraction coupling, smooth muscle contraction and relaxation, and various forms of activity-dependent signaling and plasticity in neurons. In many cases the structure and molecular composition of ER-PM junctions in excitable cells comprise important regulatory feedback loops linking depolarization-induced Ca2+ signaling at these sites to the regulation of membrane potential. Here, we describe recent findings on physiological roles and molecular composition of native ER-PM junctions in excitable cells. We focus on recent studies that provide new insights into canonical forms of depolarization-induced Ca2+ signaling occurring at junctional triads and dyads of striated muscle, as well as the diversity of ER-PM junctions in these cells and in smooth muscle and neurons.
Collapse
Affiliation(s)
- Rose E Dixon
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California, USA;
| | - James S Trimmer
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California, USA;
| |
Collapse
|
19
|
Laura Francés J, Musolino E, Papait R, Pagiatakis C. Non-Coding RNAs in Cell-to-Cell Communication: Exploiting Physiological Mechanisms as Therapeutic Targets in Cardiovascular Pathologies. Int J Mol Sci 2023; 24:ijms24032205. [PMID: 36768528 PMCID: PMC9916956 DOI: 10.3390/ijms24032205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/24/2023] Open
Abstract
Cardiovascular disease, the leading cause of death worldwide, has been characterized at the molecular level by alterations in gene expression that contribute to the etiology of the disease. Such alterations have been shown to play a critical role in the development of atherosclerosis, cardiac remodeling, and age-related heart failure. Although much is now known about the cellular and molecular mechanisms in this context, the role of epigenetics in the onset of cardiovascular disease remains unclear. Epigenetics, a complex network of mechanisms that regulate gene expression independently of changes to the DNA sequence, has been highly implicated in the loss of homeostasis and the aberrant activation of a myriad of cellular pathways. More specifically, non-coding RNAs have been gaining much attention as epigenetic regulators of various pathologies. In this review, we will provide an overview of the ncRNAs involved in cell-to-cell communication in cardiovascular disease, namely atherosclerosis, cardiac remodeling, and cardiac ageing, and the potential use of epigenetic drugs as novel therapeutic targets.
Collapse
Affiliation(s)
| | - Elettra Musolino
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Roberto Papait
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | | |
Collapse
|
20
|
Ahmed RE, Tokuyama T, Anzai T, Chanthra N, Uosaki H. Sarcomere maturation: function acquisition, molecular mechanism, and interplay with other organelles. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210325. [PMID: 36189811 PMCID: PMC9527934 DOI: 10.1098/rstb.2021.0325] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/15/2022] [Indexed: 12/31/2022] Open
Abstract
During postnatal cardiac development, cardiomyocytes mature and turn into adult ones. Hence, all cellular properties, including morphology, structure, physiology and metabolism, are changed. One of the most important aspects is the contractile apparatus, of which the minimum unit is known as a sarcomere. Sarcomere maturation is evident by enhanced sarcomere alignment, ultrastructural organization and myofibrillar isoform switching. Any maturation process failure may result in cardiomyopathy. Sarcomere function is intricately related to other organelles, and the growing evidence suggests reciprocal regulation of sarcomere and mitochondria on their maturation. Herein, we summarize the molecular mechanism that regulates sarcomere maturation and the interplay between sarcomere and other organelles in cardiomyocyte maturation. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
Collapse
Affiliation(s)
- Razan E. Ahmed
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Takeshi Tokuyama
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Tatsuya Anzai
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Nawin Chanthra
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Hideki Uosaki
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
21
|
CDC-like kinase 4 deficiency contributes to pathological cardiac hypertrophy by modulating NEXN phosphorylation. Nat Commun 2022; 13:4433. [PMID: 35907876 PMCID: PMC9338968 DOI: 10.1038/s41467-022-31996-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Kinase-catalyzed phosphorylation plays a crucial role in pathological cardiac hypertrophy. Here, we show that CDC-like kinase 4 (CLK4) is a critical regulator of cardiomyocyte hypertrophy and heart failure. Knockdown of Clk4 leads to pathological cardiomyocyte hypertrophy, while overexpression of Clk4 confers resistance to phenylephrine-induced cardiomyocyte hypertrophy. Cardiac-specific Clk4-knockout mice manifest pathological myocardial hypertrophy with progressive left ventricular systolic dysfunction and heart dilation. Further investigation identifies nexilin (NEXN) as the direct substrate of CLK4, and overexpression of a phosphorylation-mimic mutant of NEXN is sufficient to reverse the hypertrophic growth of cardiomyocytes induced by Clk4 knockdown. Importantly, restoring phosphorylation of NEXN ameliorates myocardial hypertrophy in mice with cardiac-specific Clk4 deletion. We conclude that CLK4 regulates cardiac function through phosphorylation of NEXN, and its deficiency may lead to pathological cardiac hypertrophy. CLK4 is a potential intervention target for the prevention and treatment of heart failure. Phosphorylation catalyzed by kinases is a key event in signaling pathways involved in cardiomyocyte hypertrophy. Here the authors show that the kinase CLK4 ameliorates cardiac hypertrophy by phosphorylating NEXN.
Collapse
|
22
|
Wu T, Liang Z, Zhang Z, Liu C, Zhang L, Gu Y, Peterson KL, Evans SM, Fu XD, Chen J. PRDM16 Is a Compact Myocardium-Enriched Transcription Factor Required to Maintain Compact Myocardial Cardiomyocyte Identity in Left Ventricle. Circulation 2022; 145:586-602. [PMID: 34915728 PMCID: PMC8860879 DOI: 10.1161/circulationaha.121.056666] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/29/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Left ventricular noncompaction cardiomyopathy (LVNC) was discovered half a century ago as a cardiomyopathy with excessive trabeculation and a thin ventricular wall. In the decades since, numerous studies have demonstrated that LVNC primarily has an effect on left ventricles (LVs) and is often associated with LV dilation and dysfunction. However, in part because of the lack of suitable mouse models that faithfully mirror the selective LV vulnerability in patients, mechanisms underlying the susceptibility of LVs to dilation and dysfunction in LVNC remain unknown. Genetic studies have revealed that deletions and mutations in PRDM16 (PR domain-containing 16) cause LVNC, but previous conditional Prdm16 knockout mouse models do not mirror the LVNC phenotype in patients, and the underlying molecular mechanisms by which PRDM16 deficiency causes LVNC are still unclear. METHODS Prdm16 cardiomyocyte-specific knockout (Prdm16cKO) mice were generated and analyzed for cardiac phenotypes. RNA sequencing and chromatin immunoprecipitation deep sequencing were performed to identify direct transcriptional targets of PRDM16 in cardiomyocytes. Single-cell RNA sequencing in combination with spatial transcriptomics was used to determine cardiomyocyte identity at the single-cell level. RESULTS Cardiomyocyte-specific ablation of Prdm16 in mice caused LV-specific dilation and dysfunction, as well as biventricular noncompaction, which fully recapitulated LVNC in patients. PRDM16 functioned mechanistically as a compact myocardium-enriched transcription factor that activated compact myocardial genes while repressing trabecular myocardial genes in LV compact myocardium. Consequently, Prdm16cKO LV compact myocardial cardiomyocytes shifted from their normal transcriptomic identity to a transcriptional signature resembling trabecular myocardial cardiomyocytes or neurons. Chamber-specific transcriptional regulation by PRDM16 was attributable in part to its cooperation with LV-enriched transcription factors Tbx5 and Hand1. CONCLUSIONS These results demonstrate that disruption of proper specification of compact cardiomyocytes may play a key role in the pathogenesis of LVNC. They also shed light on underlying mechanisms of the LV-restricted transcriptional program governing LV chamber growth and maturation, providing a tangible explanation for the susceptibility of LV in a subset of LVNC cardiomyopathies.
Collapse
Affiliation(s)
- Tongbin Wu
- Department of Medicine, University of California San Diego, La Jolla, CA
- These authors contributed equally
| | - Zhengyu Liang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA
- These authors contributed equally
| | - Zengming Zhang
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Canzhao Liu
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Lunfeng Zhang
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Yusu Gu
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Kirk L. Peterson
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Sylvia M. Evans
- Department of Medicine, University of California San Diego, La Jolla, CA
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA
- Institute of Genomic Medicine, University of California San Diego, La Jolla, CA
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, CA
| |
Collapse
|
23
|
Johansson J, Frykholm C, Ericson K, Kazamia K, Lindberg A, Mulaiese N, Falck G, Gustafsson P, Lidéus S, Gudmundsson S, Ameur A, Bondeson M, Wilbe M. Loss of Nexilin function leads to a recessive lethal fetal cardiomyopathy characterized by cardiomegaly and endocardial fibroelastosis. Am J Med Genet A 2022; 188:1676-1687. [PMID: 35166435 PMCID: PMC9306924 DOI: 10.1002/ajmg.a.62685] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/30/2021] [Accepted: 01/22/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Josefin Johansson
- Department of Immunology, Genetics and Pathology Uppsala University, Science for Life Laboratory Uppsala Sweden
| | - Carina Frykholm
- Department of Immunology, Genetics and Pathology Uppsala University, Science for Life Laboratory Uppsala Sweden
| | - Katharina Ericson
- Department of Clinical Pathology Akademiska University Hospital Uppsala Sweden
| | - Kalliopi Kazamia
- Department of Women's and Children's Health Karolinska Institute Stockholm Sweden
- Children's Heart Center Stockholm‐Uppsala Karolinska University Hospital Stockholm Sweden
- Children’s Heart Center Stockholm‐Uppsala Akademiska University Hospital Uppsala Sweden
| | - Amanda Lindberg
- Department of Immunology, Genetics and Pathology Uppsala University, Science for Life Laboratory Uppsala Sweden
| | - Nancy Mulaiese
- Department of Immunology, Genetics and Pathology Uppsala University, Science for Life Laboratory Uppsala Sweden
| | - Geir Falck
- Department of Internal Medicine Bollnäs Hospital Bollnäs Sweden
| | | | - Sarah Lidéus
- Department of Immunology, Genetics and Pathology Uppsala University, Science for Life Laboratory Uppsala Sweden
| | - Sanna Gudmundsson
- Program in Medical and Population Genetics Broad Institute of Massachusetts Institute of Technology and Harvard Cambridge Massachusetts USA
- Division of Genetics and Genomics Boston Children's Hospital Boston Massachusetts USA
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology Uppsala University, Science for Life Laboratory Uppsala Sweden
| | - Marie‐Louise Bondeson
- Department of Immunology, Genetics and Pathology Uppsala University, Science for Life Laboratory Uppsala Sweden
| | - Maria Wilbe
- Department of Immunology, Genetics and Pathology Uppsala University, Science for Life Laboratory Uppsala Sweden
| |
Collapse
|
24
|
Abstract
In mammalian cardiac myocytes, the plasma membrane includes the surface sarcolemma but also a network of membrane invaginations called transverse (t-) tubules. These structures carry the action potential deep into the cell interior, allowing efficient triggering of Ca2+ release and initiation of contraction. Once thought to serve as rather static enablers of excitation-contraction coupling, recent work has provided a newfound appreciation of the plasticity of the t-tubule network's structure and function. Indeed, t-tubules are now understood to support dynamic regulation of the heartbeat across a range of timescales, during all stages of life, in both health and disease. This review article aims to summarize these concepts, with consideration given to emerging t-tubule regulators and their targeting in future therapies.
Collapse
Affiliation(s)
- Katharine M Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom;
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo Norway
| | - Andrew W Trafford
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom;
| |
Collapse
|
25
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
26
|
Nusier M, Shah AK, Dhalla NS. Structure-Function Relationships and Modifications of Cardiac Sarcoplasmic Reticulum Ca2+-Transport. Physiol Res 2022; 70:S443-S470. [DOI: 10.33549/physiolres.934805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sarcoplasmic reticulum (SR) is a specialized tubular network, which not only maintains the intracellular concentration of Ca2+ at a low level but is also known to release and accumulate Ca2+ for the occurrence of cardiac contraction and relaxation, respectively. This subcellular organelle is composed of several phospholipids and different Ca2+-cycling, Ca2+-binding and regulatory proteins, which work in a coordinated manner to determine its function in cardiomyocytes. Some of the major proteins in the cardiac SR membrane include Ca2+-pump ATPase (SERCA2), Ca2+-release protein (ryanodine receptor), calsequestrin (Ca2+-binding protein) and phospholamban (regulatory protein). The phosphorylation of SR Ca2+-cycling proteins by protein kinase A or Ca2+-calmodulin kinase (directly or indirectly) has been demonstrated to augment SR Ca2+-release and Ca2+-uptake activities and promote cardiac contraction and relaxation functions. The activation of phospholipases and proteases as well as changes in different gene expressions under different pathological conditions have been shown to alter the SR composition and produce Ca2+-handling abnormalities in cardiomyocytes for the development of cardiac dysfunction. The post-translational modifications of SR Ca2+ cycling proteins by processes such as oxidation, nitrosylation, glycosylation, lipidation, acetylation, sumoylation, and O GlcNacylation have also been reported to affect the SR Ca2+ release and uptake activities as well as cardiac contractile activity. The SR function in the heart is also influenced in association with changes in cardiac performance by several hormones including thyroid hormones and adiponectin as well as by exercise-training. On the basis of such observations, it is suggested that both Ca2+-cycling and regulatory proteins in the SR membranes are intimately involved in determining the status of cardiac function and are thus excellent targets for drug development for the treatment of heart disease.
Collapse
Affiliation(s)
| | | | - NS Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen, Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6 Canada.
| |
Collapse
|
27
|
Hakui H, Kioka H, Miyashita Y, Nishimura S, Matsuoka K, Kato H, Tsukamoto O, Kuramoto Y, Takuwa A, Takahashi Y, Saito S, Ohta K, Asanuma H, Fu HY, Shinomiya H, Yamada N, Ohtani T, Sawa Y, Kitakaze M, Takashima S, Sakata Y, Asano Y. Loss-of-function mutations in the co-chaperone protein BAG5 cause dilated cardiomyopathy requiring heart transplantation. Sci Transl Med 2022; 14:eabf3274. [PMID: 35044787 DOI: 10.1126/scitranslmed.abf3274] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dilated cardiomyopathy (DCM) is a major cause of heart failure, characterized by ventricular dilatation and systolic dysfunction. Familial DCM is reportedly caused by mutations in more than 50 genes, requiring precise disease stratification based on genetic information. However, the underlying genetic causes of 60 to 80% of familial DCM cases remain unknown. Here, we identified that homozygous truncating mutations in the gene encoding Bcl-2-associated athanogene (BAG) co-chaperone 5 (BAG5) caused inherited DCM in five patients among four unrelated families with complete penetrance. BAG5 acts as a nucleotide exchange factor for heat shock cognate 71 kDa protein (HSC70), promoting adenosine diphosphate release and activating HSC70-mediated protein folding. Bag5 mutant knock-in mice exhibited ventricular dilatation, arrhythmogenicity, and poor prognosis under catecholamine stimulation, recapitulating the human DCM phenotype, and administration of an adeno-associated virus 9 vector carrying the wild-type BAG5 gene could fully ameliorate these DCM phenotypes. Immunocytochemical analysis revealed that BAG5 localized to junctional membrane complexes (JMCs), critical microdomains for calcium handling. Bag5-mutant mouse cardiomyocytes exhibited decreased abundance of functional JMC proteins under catecholamine stimulation, disrupted JMC structure, and calcium handling abnormalities. We also identified heterozygous truncating mutations in three patients with tachycardia-induced cardiomyopathy, a reversible DCM subtype associated with abnormal calcium homeostasis. Our study suggests that loss-of-function mutations in BAG5 can cause DCM, that BAG5 may be a target for genetic testing in cases of DCM, and that gene therapy may potentially be a treatment for this disease.
Collapse
Affiliation(s)
- Hideyuki Hakui
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hidetaka Kioka
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yohei Miyashita
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shunsuke Nishimura
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ken Matsuoka
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biosciences, Suita, Osaka 565-0871, Japan
| | - Hisakazu Kato
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biosciences, Suita, Osaka 565-0871, Japan
| | - Osamu Tsukamoto
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biosciences, Suita, Osaka 565-0871, Japan
| | - Yuki Kuramoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ayako Takuwa
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yusuke Takahashi
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Osaka 564-8565, Japan
| | - Shigeyoshi Saito
- Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.,Department of Biomedical Imaging, National Cerebral and Cardiovascular Center, Suita, Osaka 564-8565, Japan
| | - Kunio Ohta
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiroshi Asanuma
- Department of Internal Medicine, Meiji University of Integrative Medicine, Nantan, Kyoto 629-0392, Japan
| | - Hai Ying Fu
- Department of Clinical Medicine and Development, National Cerebral and Cardiovascular Center, Suita, Osaka 564-8565, Japan
| | - Haruki Shinomiya
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Noriaki Yamada
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tomohito Ohtani
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Masafumi Kitakaze
- Department of Clinical Medicine and Development, National Cerebral and Cardiovascular Center, Suita, Osaka 564-8565, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biosciences, Suita, Osaka 565-0871, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
28
|
Powers JD, Kirkland NJ, Liu C, Razu SS, Fang X, Engler AJ, Chen J, McCulloch AD. Subcellular Remodeling in Filamin C Deficient Mouse Hearts Impairs Myocyte Tension Development during Progression of Dilated Cardiomyopathy. Int J Mol Sci 2022; 23:871. [PMID: 35055055 PMCID: PMC8779483 DOI: 10.3390/ijms23020871] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 01/15/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a life-threatening form of heart disease that is typically characterized by progressive thinning of the ventricular walls, chamber dilation, and systolic dysfunction. Multiple mutations in the gene encoding filamin C (FLNC), an actin-binding cytoskeletal protein in cardiomyocytes, have been found in patients with DCM. However, the mechanisms that lead to contractile impairment and DCM in patients with FLNC variants are poorly understood. To determine how FLNC regulates systolic force transmission and DCM remodeling, we used an inducible, cardiac-specific FLNC-knockout (icKO) model to produce a rapid onset of DCM in adult mice. Loss of FLNC reduced systolic force development in single cardiomyocytes and isolated papillary muscles but did not affect twitch kinetics or calcium transients. Electron and immunofluorescence microscopy showed significant defects in Z-disk alignment in icKO mice and altered myofilament lattice geometry. Moreover, a loss of FLNC induces a softening myocyte cortex and structural adaptations at the subcellular level that contribute to disrupted longitudinal force production during contraction. Spatially explicit computational models showed that these structural defects could be explained by a loss of inter-myofibril elastic coupling at the Z-disk. Our work identifies FLNC as a key regulator of the multiscale ultrastructure of cardiomyocytes and therefore plays an important role in maintaining systolic mechanotransmission pathways, the dysfunction of which may be key in driving progressive DCM.
Collapse
Affiliation(s)
- Joseph D. Powers
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Natalie J. Kirkland
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Canzhao Liu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
| | - Swithin S. Razu
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Xi Fang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
| | - Adam J. Engler
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Ju Chen
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
- Institute for Engineering in Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
29
|
Li XY, Lv XF, Huang CC, Sun L, Ma MM, Liu C, Guan YY. LRRC8A is essential for volume-regulated anion channel in smooth muscle cells contributing to cerebrovascular remodeling during hypertension. Cell Prolif 2021; 54:e13146. [PMID: 34725866 PMCID: PMC8666279 DOI: 10.1111/cpr.13146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/13/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
Objectives Recent studies revealed LRRC8A to be an essential component of volume‐regulated anion channel (VRAC), which regulates cellular volume homeostasis. However, evidence for the contribution of LRRC8A‐dependent VRAC activity in vascular smooth muscle cells (VSMCs) is still lacking, and the relevant functional role of LRRC8A in VSMCs remains unknown. The primary goal of this study was to elucidate the role of LRRC8A in VRAC activity in VSMCs and the functional role of LRRC8A in cerebrovascular remodeling during hypertension. Materials and Methods siRNA‐mediated knockdown and adenovirus‐mediated overexpression of LRRC8A were used to elucidate the electrophysiological properties of LRRC8A in basilar smooth muscle cells (BASMCs). A smooth muscle–specific overexpressing transgenic mouse model was used to investigate the functional role of LRRC8A in cerebrovascular remodeling. Results LRRC8A is essential for volume‐regulated chloride current (ICl, Vol) in BASMCs. Overexpression of LRRC8A induced a voltage‐dependent Cl− current independently of hypotonic stimulation. LRRC8A regulated BASMCs proliferation through activation of WNK1/PI3K‐p85/AKT axis. Smooth muscle‐specific upregulation of LRRC8A aggravated Angiotensin II‐induced cerebrovascular remodeling in mice. Conclusions LRRC8A is an essential component of VRAC and is required for cell volume homeostasis during osmotic challenge in BASMCs. Smooth muscle specific overexpression of LRRC8A increases BASMCs proliferation and substantially aggravates basilar artery remodeling, revealing a potential therapeutic target for vascular remodeling in hypertension.
Collapse
Affiliation(s)
- Xiang-Yu Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, China
| | - Xiao-Fei Lv
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Cheng-Cui Huang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lu Sun
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacy, Division of Life Sciences and Medicine, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Ming-Ming Ma
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Canzhao Liu
- Department of Cardiovascular Medicine, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yong-Yuan Guan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Setterberg IE, Le C, Frisk M, Li J, Louch WE. The Physiology and Pathophysiology of T-Tubules in the Heart. Front Physiol 2021; 12:718404. [PMID: 34566684 PMCID: PMC8458775 DOI: 10.3389/fphys.2021.718404] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
In cardiomyocytes, invaginations of the sarcolemmal membrane called t-tubules are critically important for triggering contraction by excitation-contraction (EC) coupling. These structures form functional junctions with the sarcoplasmic reticulum (SR), and thereby enable close contact between L-type Ca2+ channels (LTCCs) and Ryanodine Receptors (RyRs). This arrangement in turn ensures efficient triggering of Ca2+ release, and contraction. While new data indicate that t-tubules are capable of exhibiting compensatory remodeling, they are also widely reported to be structurally and functionally compromised during disease, resulting in disrupted Ca2+ homeostasis, impaired systolic and/or diastolic function, and arrhythmogenesis. This review summarizes these findings, while highlighting an emerging appreciation of the distinct roles of t-tubules in the pathophysiology of heart failure with reduced and preserved ejection fraction (HFrEF and HFpEF). In this context, we review current understanding of the processes underlying t-tubule growth, maintenance, and degradation, underscoring the involvement of a variety of regulatory proteins, including junctophilin-2 (JPH2), amphiphysin-2 (BIN1), caveolin-3 (Cav3), and newer candidate proteins. Upstream regulation of t-tubule structure/function by cardiac workload and specifically ventricular wall stress is also discussed, alongside perspectives for novel strategies which may therapeutically target these mechanisms.
Collapse
Affiliation(s)
- Ingunn E Setterberg
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Christopher Le
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Glavan D, Gheorman V, Gresita A, Hermann DM, Udristoiu I, Popa-Wagner A. Identification of transcriptome alterations in the prefrontal cortex, hippocampus, amygdala and hippocampus of suicide victims. Sci Rep 2021; 11:18853. [PMID: 34552157 PMCID: PMC8458545 DOI: 10.1038/s41598-021-98210-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/30/2021] [Indexed: 11/09/2022] Open
Abstract
Suicide is one of the leading causes of death globally for all ages, and as such presents a very serious problem for clinicians worldwide. However, the underlying neurobiological pathology remains to a large extent unknown. In order to address this gap, we have carried out a genome-wide investigation of the gene expression in the amygdala, hippocampus, prefrontal cortex and thalamus in post-mortem brain samples obtained from 20 suicide completers and 7 control subjects. By KEGG enrichment analysis indicated we identified novel clusters of downregulated pathways involved in antigen neutralization and autoimmune thyroid disease (amygdala, thalamus), decreased axonal plasticity in the hippocampus. Two upregulated pathways were involved in neuronal death in the hippocampus and olfactory transduction in the thalamus and the prefrontal cortex. Autoimmune thyroid disease pathway was downregulated only in females. Metabolic pathways involved in Notch signaling amino acid metabolism and unsaturated lipid synthesis were thalamus-specific. Suicide-associated changes in the expression of several genes and pseudogenes that point to various functional mechanisms possibly implicated in the pathology of suicide. Two genes (SNORA13 and RNU4-2) involved in RNA processing were common to all brain regions analyzed. Most of the identified gene expression changes were related to region-specific dysregulated manifestation of genetic and epigenetic mechanisms underlying neurodevelopmental disorders (SNORD114-10, SUSd1), motivation, addiction and motor disorders (CHRNA6), long-term depression (RAB3B), stress response, major depression and schizophrenia (GFAP), signal transduction at the neurovascular unit (NEXN) and inhibitory neurotransmission in spatial learning, neural plasticity (CALB2; CLIC6, ENPP1). Some of the differentially expressed genes were brain specific non-coding RNAs involved in the regulation of translation (SNORA13). One, (PARM1) is a potential oncogene and prognostic biomarker for colorectal cancer with no known function in the brain. Disturbed gene expression involved in antigen neutralization, autoimmunity, neural plasticity, stress response, signal transduction at the neurovascular unit, dysregulated nuclear RNA processing and translation and epigenetic imprinting signatures is associated with suicide and point to regulatory non-coding RNAs as potential targets of new drugs development.
Collapse
Affiliation(s)
- Daniela Glavan
- Department of Psychiatry, University of Medicine and Pharmacy, Craiova, Romania
| | - Victor Gheorman
- Department of Psychiatry, University of Medicine and Pharmacy, Craiova, Romania
| | - Andrei Gresita
- Griffith University Menzies Health Institute of Queensland, Gold Coast Campus, Brisbane, QLD, 4000, Australia
| | - Dirk M Hermann
- Chair of Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Ion Udristoiu
- Department of Psychiatry, University of Medicine and Pharmacy, Craiova, Romania.
| | - Aurel Popa-Wagner
- Griffith University Menzies Health Institute of Queensland, Gold Coast Campus, Brisbane, QLD, 4000, Australia. .,Chair of Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University Hospital Essen, University of Duisburg, Essen, Germany.
| |
Collapse
|
32
|
Biquand A, Spinozzi S, Tonino P, Cosette J, Strom J, Elbeck Z, Knöll R, Granzier H, Lostal W, Richard I. Titin M-line insertion sequence 7 is required for proper cardiac function in mice. J Cell Sci 2021; 134:271843. [PMID: 34401916 DOI: 10.1242/jcs.258684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/06/2021] [Indexed: 11/20/2022] Open
Abstract
Titin is a giant sarcomeric protein that is involved in a large number of functions, with a primary role in skeletal and cardiac sarcomere organization and stiffness. The titin gene (TTN) is subject to various alternative splicing events, but in the region that is present at the M-line, the only exon that can be spliced out is Mex5, which encodes for the insertion sequence 7 (is7). Interestingly, in the heart, the majority of titin isoforms are Mex5+, suggesting a cardiac role for is7. Here, we performed comprehensive functional, histological, transcriptomic, microscopic and molecular analyses of a mouse model lacking the Ttn Mex5 exon (ΔMex5), and revealed that the absence of the is7 is causative for dilated cardiomyopathy. ΔMex5 mice showed altered cardiac function accompanied by increased fibrosis and ultrastructural alterations. Abnormal expression of excitation-contraction coupling proteins was also observed. The results reported here confirm the importance of the C-terminal region of titin in cardiac function and are the first to suggest a possible relationship between the is7 and excitation-contraction coupling. Finally, these findings give important insights for the identification of new targets in the treatment of titinopathies.
Collapse
Affiliation(s)
- Ariane Biquand
- Genethon, 91000 Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Simone Spinozzi
- Genethon, 91000 Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Paola Tonino
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | | | - Joshua Strom
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Zaher Elbeck
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Ralph Knöll
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institutet, 141 57 Huddinge, Sweden.,Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - William Lostal
- Genethon, 91000 Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Isabelle Richard
- Genethon, 91000 Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Evry-Courcouronnes, France
| |
Collapse
|
33
|
Tan C, Zhu S, Chen Z, Liu C, Li YE, Zhu M, Zhang Z, Zhang Z, Zhang L, Gu Y, Liang Z, Boyer TG, Ouyang K, Evans SM, Fang X. Mediator complex proximal Tail subunit MED30 is critical for Mediator core stability and cardiomyocyte transcriptional network. PLoS Genet 2021; 17:e1009785. [PMID: 34506481 PMCID: PMC8432849 DOI: 10.1371/journal.pgen.1009785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 01/28/2023] Open
Abstract
Dysregulation of cardiac transcription programs has been identified in patients and families with heart failure, as well as those with morphological and functional forms of congenital heart defects. Mediator is a multi-subunit complex that plays a central role in transcription initiation by integrating regulatory signals from gene-specific transcriptional activators to RNA polymerase II (Pol II). Recently, Mediator subunit 30 (MED30), a metazoan specific Mediator subunit, has been associated with Langer-Giedion syndrome (LGS) Type II and Cornelia de Lange syndrome-4 (CDLS4), characterized by several abnormalities including congenital heart defects. A point mutation in MED30 has been identified in mouse and is associated with mitochondrial cardiomyopathy. Very recent structural analyses of Mediator revealed that MED30 localizes to the proximal Tail, anchoring Head and Tail modules, thus potentially influencing stability of the Mediator core. However, in vivo cellular and physiological roles of MED30 in maintaining Mediator core integrity remain to be tested. Here, we report that deletion of MED30 in embryonic or adult cardiomyocytes caused rapid development of cardiac defects and lethality. Importantly, cardiomyocyte specific ablation of MED30 destabilized Mediator core subunits, while the kinase module was preserved, demonstrating an essential role of MED30 in stability of the overall Mediator complex. RNAseq analyses of constitutive cardiomyocyte specific Med30 knockout (cKO) embryonic hearts and inducible cardiomyocyte specific Med30 knockout (icKO) adult cardiomyocytes further revealed critical transcription networks in cardiomyocytes controlled by Mediator. Taken together, our results demonstrated that MED30 is essential for Mediator stability and transcriptional networks in both developing and adult cardiomyocytes. Our results affirm the key role of proximal Tail modular subunits in maintaining core Mediator stability in vivo.
Collapse
Affiliation(s)
- Changming Tan
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siting Zhu
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zee Chen
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Canzhao Liu
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Yang E. Li
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Mason Zhu
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Zhiyuan Zhang
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiwei Zhang
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lunfeng Zhang
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Yusu Gu
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Zhengyu Liang
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Thomas G. Boyer
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Sylvia M. Evans
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Pharmacology, University of California, San Diego, California, United States of America
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, United States of America
| | - Xi Fang
- Department of Medicine, University of California, San Diego, California, United States of America
| |
Collapse
|
34
|
Zhu S, Chen Z, Zhu M, Shen Y, Leon LJ, Chi L, Spinozzi S, Tan C, Gu Y, Nguyen A, Zhou Y, Feng W, Vaz FM, Wang X, Gustafsson AB, Evans SM, Kunfu O, Fang X. Cardiolipin Remodeling Defects Impair Mitochondrial Architecture and Function in a Murine Model of Barth Syndrome Cardiomyopathy. Circ Heart Fail 2021; 14:e008289. [PMID: 34129362 PMCID: PMC8210459 DOI: 10.1161/circheartfailure.121.008289] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Cardiomyopathy is a major clinical feature in Barth syndrome (BTHS), an X-linked mitochondrial lipid disorder caused by mutations in Tafazzin (TAZ), encoding a mitochondrial acyltransferase required for cardiolipin remodeling. Despite recent description of a mouse model of BTHS cardiomyopathy, an in-depth analysis of specific lipid abnormalities and mitochondrial form and function in an in vivo BTHS cardiomyopathy model is lacking. METHODS We performed in-depth assessment of cardiac function, cardiolipin species profiles, and mitochondrial structure and function in our newly generated Taz cardiomyocyte-specific knockout mice and Cre-negative control mice (n≥3 per group). RESULTS Taz cardiomyocyte-specific knockout mice recapitulate typical features of BTHS and mitochondrial cardiomyopathy. Fewer than 5% of cardiomyocyte-specific knockout mice exhibited lethality before 2 months of age, with significantly enlarged hearts. More than 80% of cardiomyocyte-specific knockout displayed ventricular dilation at 16 weeks of age and survived until 50 weeks of age. Full parameter analysis of cardiac cardiolipin profiles demonstrated lower total cardiolipin concentration, abnormal cardiolipin fatty acyl composition, and elevated monolysocardiolipin to cardiolipin ratios in Taz cardiomyocyte-specific knockout, relative to controls. Mitochondrial contact site and cristae organizing system and F1F0-ATP synthase complexes, required for cristae morphogenesis, were abnormal, resulting in onion-shaped mitochondria. Organization of high molecular weight respiratory chain supercomplexes was also impaired. In keeping with observed mitochondrial abnormalities, seahorse experiments demonstrated impaired mitochondrial respiration capacity. CONCLUSIONS Our mouse model mirrors multiple physiological and biochemical aspects of BTHS cardiomyopathy. Our results give important insights into the underlying cause of BTHS cardiomyopathy and provide a framework for testing therapeutic approaches to BTHS cardiomyopathy, or other mitochondrial-related cardiomyopathies.
Collapse
Affiliation(s)
- Siting Zhu
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Ze’e Chen
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Mason Zhu
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Ying Shen
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Leonardo J Leon
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Liguo Chi
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Simone Spinozzi
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Changming Tan
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yusu Gu
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Anh Nguyen
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Yi Zhou
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA
| | - Wei Feng
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Departments of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC
| | - Xiaohong Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Asa B Gustafsson
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Sylvia M Evans
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Ouyang Kunfu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xi Fang
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
35
|
Marinelli A, Costa A, Dugo C, Cecchetto A, Lanzoni L, Molon G. A unique case of left ventricle apical hypoplasia presenting with a type 1 Brugada ECG pattern and NEXN mutation. Are they related? HeartRhythm Case Rep 2021; 7:273-277. [PMID: 34026514 PMCID: PMC8134760 DOI: 10.1016/j.hrcr.2021.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Alessio Marinelli
- IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella, Italy
| | - Alessandro Costa
- IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella, Italy
| | - Clementina Dugo
- IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella, Italy
| | | | - Laura Lanzoni
- IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella, Italy
| | - Giulio Molon
- IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella, Italy
| |
Collapse
|
36
|
Bruyndonckx L, Vogelzang JL, Bugiani M, Straver B, Kuipers IM, Onland W, Nannenberg EA, Clur SA, van der Crabben SN. Childhood onset nexilin dilated cardiomyopathy: A heterozygous and a homozygous case. Am J Med Genet A 2021; 185:2464-2470. [PMID: 33949776 PMCID: PMC8359989 DOI: 10.1002/ajmg.a.62231] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/03/2021] [Accepted: 04/05/2021] [Indexed: 12/17/2022]
Abstract
Pathogenic heterozygous NEXN variants are associated with progressive dilated cardiomyopathy (DCM) usually presenting around 50 years of age. We describe an asymptomatic boy who had transient DCM at 3 months of age, that resolved by 4 months. Presently, at 11 years of age, he has normal cardiac function with signs of mild DCM on cardiac MRI. Genetic diagnostics revealed a paternally derived, heterozygous 1949_1951del class 4 variant in NEXN. His father had mild DCM with mildly reduced systolic function. The second patient presented with fetal hydrops at 33 weeks gestation requiring emergency caesarian delivery. Postnatally she required ventilation and continuous inotropic support for left ventricle systolic dysfunction. She died after 2 weeks when therapy was withdrawn. Homozygous c.1174C > T,p.(R392*) class 4 variants in the NEXN gene were found via WES. Microscopic investigation showed endomyocardial fibroelastosis. Her parents, both heterozygous carriers, had normal cardiac function and the family history was normal. These patients show a new clinical spectrum of pediatric cardiac disease seen in heterozygous and homozygous NEXN variants, ranging from mild, transient DCM to a severe, fatal neonatal DCM. These patients support the inclusion of the NEXN gene in the investigation of pediatric patients with DCM, even in cases with transient DCM.
Collapse
Affiliation(s)
- Luc Bruyndonckx
- Department of Pediatric Cardiology, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Translational Research in Immunology and Inflammation, University of Antwerp, Antwerp, Belgium
| | - Judith L Vogelzang
- Department of Neonatology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Bart Straver
- Department of Pediatric Cardiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Irene M Kuipers
- Department of Pediatric Cardiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Wes Onland
- Department of Neonatology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Eline A Nannenberg
- Department of Clinical Genetics, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Sally-Ann Clur
- Department of Pediatric Cardiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | | |
Collapse
|
37
|
Li H, Qu Y, Metze P, Sommerfeld F, Just S, Abaei A, Rasche V. Quantification of Biventricular Myocardial Strain Using CMR Feature Tracking: Reproducibility in Small Animals. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8492705. [PMID: 33553431 PMCID: PMC7847329 DOI: 10.1155/2021/8492705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
Myocardial strain is a well-validated parameter for evaluating myocardial contraction. Cardiovascular magnetic resonance myocardial feature tracking (CMR-FT) is a novel method for the quantitative measurements of myocardial strain from routine cine acquisitions. In this study, we investigated the influence of temporal resolution on tracking accuracy of CMR-FT and the intraobserver, interobserver, and interstudy reproducibilities for biventricular strain analysis in mice from self-gated CMR at 11.7 T. 12 constitutive nexilin knockout (Nexn-KO) mice, heterozygous (Het, N = 6) and wild-type (WT, N = 6), were measured with a well-established self-gating sequence twice within two weeks. CMR-FT measures of biventricular global and segmental strain parameters were derived. Interstudy, intraobserver, and interobserver reproducibilities were investigated. For the assessment of the impact of the temporal resolution for the outcome in CMR-FT, highly oversampled semi-4 chamber and midventricular short-axis data were acquired and reconstructed with 10 to 80 phases per cardiac cycle. A generally reduced biventricular myocardial strain was observed in Nexn-KO Het mice. Excellent intraobserver and interobserver reproducibility was achieved in all global strains (ICC range from 0.76 to 0.99), where global right ventricle circumferential strain (RCSSAX) showed an only good interobserver reproducibility (ICC 0.65, 0.11-0.89). For interstudy reproducibility, left ventricle longitudinal strain (LLSLAX) was the most reproducible measure of strain (ICC 0.90, 0.71-0.97). The left ventricle radial strain (LRSSAX) (ICC 0.50, 0.10-0.83) showed fair reproducibility and RCSSAX (ICC 0.36, 0.14-0.74) showed only poor reproducibility. In general, compared with global strains, the segmental strains showed relatively lower reproducibility. A minimal temporal resolution of 20 phases per cardiac cycle appeared sufficient for CMR-FT strain analysis. The analysis of myocardial strain from high-resolution self-gated cine images by CMR-FT provides a highly reproducible method for assessing myocardial contraction in small rodent animals. Especially, global LV longitudinal and circumferential strain revealed excellent reproducibility of intra- and interobserver and interstudy measurements.
Collapse
Affiliation(s)
- Hao Li
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany
| | - Yangyang Qu
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Patrick Metze
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | | | - Steffen Just
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Alireza Abaei
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
38
|
Luca AC, Lozneanu L, Miron IC, Trandafir LM, Cojocaru E, Pădureţ IA, Mihăilă D, Leon-Constantin MM, Chiriac Ş, Iordache AC, Ţarcă E. Endocardial fibroelastosis and dilated cardiomyopathy - the past and future of the interface between histology and genetics. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2020; 61:999-1005. [PMID: 34171049 PMCID: PMC8343576 DOI: 10.47162/rjme.61.4.02] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
Endocardial fibroelastosis (EFE) signifies the pathological process by which collagen and elastin are focally or diffuse deposited in the endocardium of the left ventricle. The new layer causes left ventricular dysfunction sometimes with fulminant progression to heart failure. EFE is a major component in many congenital heart abnormalities but can also occur in the absence of heart malformations, either as a primary process or in response to cardiac injury. The endothelial-mesenchymal transition (EndMT) abnormalities seem to be main pathogenic factor in fibroelastosis development. The "gold standard" for diagnosis of primary EFE (pEFE) is the histological examination. Additionally, genetic studies may help to establish the natural course of the disease and to communicate prophylactic measures to family members of the affected child. Moreover, in the newborn, EFE takes the form of dilated cardiomyopathy (DCM) with unfavorable evolution. The proper management should be established considering negative prognostic factors, involving early transplantation, drug therapy and long-term follow-up.
Collapse
Affiliation(s)
- Alina Costina Luca
- Department of Mother and Child Medicine – Pediatrics, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Ludmila Lozneanu
- Department of Morphofunctional Sciences I – Histology, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Ingrith Crenguţa Miron
- Department of Mother and Child Medicine – Pediatrics, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Laura Mihaela Trandafir
- Department of Mother and Child Medicine – Pediatrics, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Elena Cojocaru
- Department of Morphofunctional Sciences I – Pathology, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Ioana Alexandra Pădureţ
- Department of Mother and Child Medicine – Pediatrics, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Doina Mihăilă
- Laboratory of Pathology, St. Mary Emergency Hospital for Children, Iaşi, Romania
| | | | - Ştefan Chiriac
- First Medical Department – Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Alin Constantin Iordache
- Second Surgery Department – Neurosurgery, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Elena Ţarcă
- Second Surgery Department – Pediatric Surgery, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| |
Collapse
|
39
|
Liu C, Spinozzi S, Feng W, Chen Z, Zhang L, Zhu S, Wu T, Fang X, Ouyang K, Evans SM, Chen J. Homozygous G650del nexilin variant causes cardiomyopathy in mice. JCI Insight 2020; 5:138780. [PMID: 32814711 PMCID: PMC7455123 DOI: 10.1172/jci.insight.138780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/09/2020] [Indexed: 01/28/2023] Open
Abstract
Nexilin (NEXN) was recently identified as a component of the junctional membrane complex required for development and maintenance of cardiac T-tubules. Loss of Nexn in mice leads to a rapidly progressive dilated cardiomyopathy (DCM) and premature death. A 3 bp deletion (1948-1950del) leading to loss of the glycine in position 650 (G650del) is classified as a variant of uncertain significance in humans and may function as an intermediate risk allele. To determine the effect of the G650del variant on cardiac structure and function, we generated a G645del-knockin (G645del is equivalent to human G650del) mouse model. Homozygous G645del mice express about 30% of the Nexn expressed by WT controls and exhibited a progressive DCM characterized by reduced T-tubule formation, with disorganization of the transverse-axial tubular system. On the other hand, heterozygous Nexn global KO mice and genetically engineered mice encoding a truncated Nexn missing the first N-terminal actin-binding domain exhibited normal cardiac function, despite expressing only 50% and 20% of the Nexn, respectively, expressed by WT controls, suggesting that not only quantity but also quality of Nexn is necessary for a proper function. These findings demonstrated that Nexn G645 is crucial for Nexn's function in tubular system organization and normal cardiac function.
Collapse
Affiliation(s)
- Canzhao Liu
- Department of Medicine, UCSD, La Jolla, California, USA
| | | | - Wei Feng
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Ze’e Chen
- Department of Medicine, UCSD, La Jolla, California, USA
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Lunfeng Zhang
- Department of Medicine, UCSD, La Jolla, California, USA
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Siting Zhu
- Department of Medicine, UCSD, La Jolla, California, USA
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Tongbin Wu
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Xi Fang
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Kunfu Ouyang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Sylvia M. Evans
- Department of Medicine, UCSD, La Jolla, California, USA
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Ju Chen
- Department of Medicine, UCSD, La Jolla, California, USA
| |
Collapse
|
40
|
Lu F, Pu WT. The architecture and function of cardiac dyads. Biophys Rev 2020; 12:1007-1017. [PMID: 32661902 PMCID: PMC7429583 DOI: 10.1007/s12551-020-00729-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/03/2020] [Indexed: 12/28/2022] Open
Abstract
Cardiac excitation-contraction (EC) coupling, which links plasma membrane depolarization to activation of cardiomyocyte contraction, occurs at dyads, the nanoscopic microdomains formed by apposition of transverse (T)-tubules and junctional sarcoplasmic reticulum (jSR). In a dyadic junction, EC coupling occurs through Ca2+-induced Ca2+ release. Membrane depolarization opens voltage-gated L-type Ca2+ channels (LTCCs) in the T-tubule. The resulting influx of extracellular Ca2+ into the dyadic cleft opens Ca2+ release channels known as ryanodine receptors (RYRs) in the jSR, leading to the rapid increase in cytosolic Ca2+ that triggers sarcomere contraction. The efficacy of LTCC-RYR communication greatly affects a myriad of downstream intracellular signaling events, and it is controlled by many factors, including T-tubule and jSR structure, spatial distribution of ion channels, and regulatory proteins that closely regulate the activities of channels within dyads. Alterations in dyad architecture and/or channel activity are seen in many types of heart disease. This review will focus on the current knowledge regarding cardiac dyad structure and function, their alterations in heart failure, and new approaches to study the composition and function of dyads.
Collapse
Affiliation(s)
- Fujian Lu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA, 02138, USA.
| |
Collapse
|
41
|
Affiliation(s)
- Jinxi Wang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center (J.W., D.D.H., L.-S.S.), Carver College of Medicine, University of Iowa, Iowa City
| | - Duane D Hall
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center (J.W., D.D.H., L.-S.S.), Carver College of Medicine, University of Iowa, Iowa City
| | - Long-Sheng Song
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center (J.W., D.D.H., L.-S.S.), Carver College of Medicine, University of Iowa, Iowa City.,Fraternal Order of Eagles Diabetes Research Center (L.-S.S.), Carver College of Medicine, University of Iowa, Iowa City.,Department of Veterans Affairs, Iowa City Medical Center, IA (L.-S.S.)
| |
Collapse
|
42
|
Li H, Metze P, Abaei A, Rottbauer W, Just S, Lu Q, Rasche V. Feasibility of real-time cardiac MRI in mice using tiny golden angle radial sparse. NMR IN BIOMEDICINE 2020; 33:e4300. [PMID: 32227427 DOI: 10.1002/nbm.4300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Cardiovascular magnetic resonance imaging has proven valuable for the assessment of structural and functional cardiac abnormalities. Even although it is an established imaging method in small animals, the long acquisition times of gated or self-gated techniques still limit its widespread application. In this study, the application of tiny golden angle radial sparse MRI (tyGRASP) for real-time cardiac imaging was tested in 12 constitutive nexilin (Nexn) knock-out (KO) mice, both heterozygous (Het, N = 6) and wild-type (WT, N = 6), and the resulting functional parameters were compared with a well-established self-gating approach. Real-time images were reconstructed for different temporal resolutions of between 16.8 and 79.8 ms per image. The suggested approach was additionally tested for dobutamine stress and qualitative first-pass perfusion imaging. Measurements were repeated twice within 2 weeks for reproducibility assessment. In direct comparison with the high-quality, self-gated technique, the real-time approach did not show any significant differences in global function parameters for acquisition times below 50 ms (rest) and 31.5 ms (stress). Compared with WT, the end-diastolic volume (EDV) and end-systolic volume (ESV) were markedly higher (P < 0.05) and the ejection fraction (EF) was significantly lower in the Het Nexn-KO mice at rest (P < 0.001). For the stress investigation, a clear decrease of EDV and ESV, and an increase in EF, but maintained stroke volume, could be observed in both groups. Combined with ECG-triggering, tyGRASP provided first-pass perfusion data with a temporal resolution of one image per heartbeat, allowing the quantitative assessment of upslope curves in the blood-pool and myocardium. Excellent inter-study reproducibility was achieved in all the functional parameters. The tyGRASP is a valuable real-time MRI technique for mice, which significantly reduces the scan time in preclinical cardiac functional imaging, providing sufficient image quality for deriving accurate functional parameters, and has the potential to investigate real-time and beat-to-beat changes.
Collapse
Affiliation(s)
- Hao Li
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Patrick Metze
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Alireza Abaei
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany
| | - Wolfgang Rottbauer
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Steffen Just
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Qinghua Lu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Volker Rasche
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
43
|
Spinozzi S, Liu C, Chen Z, Feng W, Zhang L, Ouyang K, Evans SM, Chen J. Nexilin Is Necessary for Maintaining the Transverse-Axial Tubular System in Adult Cardiomyocytes. Circ Heart Fail 2020; 13:e006935. [PMID: 32635769 PMCID: PMC7583668 DOI: 10.1161/circheartfailure.120.006935] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/31/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND NEXN (nexilin) is a protein of the junctional membrane complex required for development of cardiac T-tubules. Global and cardiomyocyte-specific loss of Nexn in mice leads to a rapidly progressive dilated cardiomyopathy and premature death. Therefore, little is known as to the role of NEXN in adult cardiomyocytes. Transverse-axial tubular system remodeling are well-known features in heart failure. Although NEXN is required during development for T-tubule formation, its role, if any, in mature T-tubules remains to be addressed. METHODS Nexn inducible adult cardiomyocyte-specific KO mice were generated. Comprehensive morphological and functional analyses were performed. Heart samples (n>3) were analyzed by molecular, biochemical, and electron microscopy analyses. Isolated single adult cardiomyocytes were analyzed by confocal microscopy, and myocyte shortening/re-lengthening and Ca2+ transient studies were conducted. RESULTS Inducible cardiomyocyte-specific loss of Nexn in adult mice resulted in a dilated cardiomyopathy with reduced cardiac function (13% reduction in percentage fractional shortening; P<0.05). In vivo and in vitro analyses of adult mouse heart samples revealed that NEXN was essential for optimal contraction and calcium handling and was required for maintenance of T-tubule network organization (transverse tubular component in Nexn inducible adult cardiomyocyte-specific KO mice reduced by 40% with respect to controls, P<0.05). CONCLUSIONS Results here reported reveal NEXN to be a pivotal component of adult junctional membrane complexes required for maintenance of transverse-axial tubular architecture. These results demonstrate that NEXN plays an essential role in the adult cardiomyocyte and give further understanding of pathological mechanisms responsible for cardiomyopathy in patients carrying mutations in the NEXN gene.
Collapse
MESH Headings
- Age Factors
- Animals
- Calcium/metabolism
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/physiopathology
- Disease Models, Animal
- Mice
- Mice, Knockout
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Microfilament Proteins/physiology
- Microtubules/metabolism
- Microtubules/physiology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
Collapse
Affiliation(s)
- Simone Spinozzi
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Canzhao Liu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ze’e Chen
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Wei Feng
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Lunfeng Zhang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kunfu Ouyang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Sylvia M. Evans
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
44
|
Poller W, Haas J, Klingel K, Kühnisch J, Gast M, Kaya Z, Escher F, Kayvanpour E, Degener F, Opgen-Rhein B, Berger F, Mochmann HC, Skurk C, Heidecker B, Schultheiss HP, Monserrat L, Meder B, Landmesser U, Klaassen S. Familial Recurrent Myocarditis Triggered by Exercise in Patients With a Truncating Variant of the Desmoplakin Gene. J Am Heart Assoc 2020; 9:e015289. [PMID: 32410525 PMCID: PMC7660888 DOI: 10.1161/jaha.119.015289] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Variants of the desmosomal protein desmoplakin are associated with arrhythmogenic cardiomyopathy, an important cause of ventricular arrhythmias in children and young adults. Disease penetrance of desmoplakin variants is incomplete and variant carriers may display noncardiac, dermatologic phenotypes. We describe a novel cardiac phenotype associated with a truncating desmoplakin variant, likely causing mechanical instability of myocardial desmosomes. Methods and Results In 2 young brothers with recurrent myocarditis triggered by physical exercise, screening of 218 cardiomyopathy‐related genes identified the heterozygous truncating variant p.Arg1458Ter in desmoplakin. Screening for infections yielded no evidence of viral or nonviral infections. Myosin and troponin I autoantibodies were detected at high titers. Immunohistology failed to detect any residual DSP protein in endomyocardial biopsies, and none of the histologic criteria of arrhythmogenic cardiomyopathy were fulfilled. Cardiac magnetic resonance imaging revealed no features associated with right ventricular arrhythmogenic cardiomyopathy, but multifocal subepicardial late gadolinium enhancement was present in the left ventricles of both brothers. Screening of adult cardiomyopathy cohorts for truncating variants identified the rare genetic variants p.Gln307Ter, p.Tyr1391Ter, and p.Tyr1512Ter, suggesting that over subsequent decades critical genetic/exogenous modifiers drive pathogenesis from desmoplakin truncations toward different end points. Conclusions The described novel phenotype of familial recurrent myocarditis associated with a desmoplakin truncation in adolescents likely represents a serendipitously revealed subtype of arrhythmogenic cardiomyopathy. It may be caused by a distinctive adverse effect of the variant desmoplakin upon the mechanical stability of myocardial desmosomes. Variant screening is advisable to allow early detection of patients with similar phenotypes.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department of Cardiology Campus Benjamin Franklin Universitätsmedizin Berlin Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Universitätsmedizin Berlin Germany.,German Center for Cardiovascular Research (DZHK) partner site Berlin Germany
| | - Jan Haas
- German Center for Cardiovascular Research (DZHK) partner site Heidelberg Germany.,Department of Cardiology University Hospital Heidelberg Mannheim Germany
| | - Karin Klingel
- Institute for Pathology and Neuropathology Department of Pathology University Hospital Tübingen Germany
| | - Jirko Kühnisch
- German Center for Cardiovascular Research (DZHK) partner site Berlin Germany.,Experimental and Clinical Research Center (ECRC) Universitätsmedizin Berlin Germany
| | - Martina Gast
- Department of Cardiology Campus Benjamin Franklin Universitätsmedizin Berlin Germany
| | - Ziya Kaya
- German Center for Cardiovascular Research (DZHK) partner site Heidelberg Germany.,Department of Cardiology University Hospital Heidelberg Mannheim Germany
| | - Felicitas Escher
- Department of Cardiology Campus Virchow Klinikum Universitätsmedizin Berlin Germany.,Institute for Clinical Diagnostics and Therapy (IKDT) Berlin Germany
| | - Elham Kayvanpour
- German Center for Cardiovascular Research (DZHK) partner site Heidelberg Germany.,Department of Cardiology University Hospital Heidelberg Mannheim Germany
| | - Franziska Degener
- German Center for Cardiovascular Research (DZHK) partner site Berlin Germany.,German Heart Center (DHZB) Berlin Germany
| | - Bernd Opgen-Rhein
- Department of Pediatric Cardiology Universitätsmedizin Berlin Germany
| | - Felix Berger
- German Center for Cardiovascular Research (DZHK) partner site Berlin Germany.,German Heart Center (DHZB) Berlin Germany.,Department of Pediatric Cardiology Universitätsmedizin Berlin Germany
| | | | - Carsten Skurk
- Department of Cardiology Campus Benjamin Franklin Universitätsmedizin Berlin Germany
| | - Bettina Heidecker
- Department of Cardiology Campus Benjamin Franklin Universitätsmedizin Berlin Germany
| | | | | | - Benjamin Meder
- German Center for Cardiovascular Research (DZHK) partner site Heidelberg Germany.,Department of Cardiology University Hospital Heidelberg Mannheim Germany.,Department of Genetics Stanford University School of Medicine Palo Alto CA
| | - Ulf Landmesser
- Department of Cardiology Campus Benjamin Franklin Universitätsmedizin Berlin Germany.,German Center for Cardiovascular Research (DZHK) partner site Berlin Germany.,Berlin Institute of Health Berlin Germany
| | - Sabine Klaassen
- German Center for Cardiovascular Research (DZHK) partner site Berlin Germany.,Experimental and Clinical Research Center (ECRC) Universitätsmedizin Berlin Germany.,Department of Pediatric Cardiology Universitätsmedizin Berlin Germany
| |
Collapse
|
45
|
Abstract
Maturation is the last phase of heart development that prepares the organ for strong, efficient, and persistent pumping throughout the mammal's lifespan. This process is characterized by structural, gene expression, metabolic, and functional specializations in cardiomyocytes as the heart transits from fetal to adult states. Cardiomyocyte maturation gained increased attention recently due to the maturation defects in pluripotent stem cell-derived cardiomyocyte, its antagonistic effect on myocardial regeneration, and its potential contribution to cardiac disease. Here, we review the major hallmarks of ventricular cardiomyocyte maturation and summarize key regulatory mechanisms that promote and coordinate these cellular events. With advances in the technical platforms used for cardiomyocyte maturation research, we expect significant progress in the future that will deepen our understanding of this process and lead to better maturation of pluripotent stem cell-derived cardiomyocyte and novel therapeutic strategies for heart disease.
Collapse
Affiliation(s)
- Yuxuan Guo
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - William Pu
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
46
|
Feng W, Liu C, Spinozzi S, Wang L, Evans SM, Chen J. Identifying the Cardiac Dyad Proteome In Vivo by a BioID2 Knock-In Strategy. Circulation 2020; 141:940-942. [PMID: 32176542 PMCID: PMC7100982 DOI: 10.1161/circulationaha.119.043434] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Wei Feng
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Canzhao Liu
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Simone Spinozzi
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Li Wang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Sylvia M. Evans
- Department of Medicine, University of California San Diego, La Jolla, CA
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, CA
| |
Collapse
|
47
|
Heat shock protein 60 regulates yolk sac erythropoiesis in mice. Cell Death Dis 2019; 10:766. [PMID: 31601784 PMCID: PMC6786998 DOI: 10.1038/s41419-019-2014-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022]
Abstract
The yolk sac is the first site of blood-cell production during embryonic development in both murine and human. Heat shock proteins (HSPs), including HSP70 and HSP27, have been shown to play regulatory roles during erythropoiesis. However, it remains unknown whether HSP60, a molecular chaperone that resides mainly in mitochondria, could also regulate early erythropoiesis. In this study, we used Tie2-Cre to deactivate the Hspd1 gene in both hematopoietic and vascular endothelial cells, and found that Tie2-Cre+Hspd1f/f (HSP60CKO) mice were embryonic lethal between the embryonic day 10.5 (E10.5) and E11.5, exhibiting growth retardation, anemia, and vascular defects. Of these, anemia was observed first, independently of vascular and growth phenotypes. Reduced numbers of erythrocytes, as well as an increase in cell apoptosis, were found in the HSP60CKO yolk sac as early as E9.0, indicating that deletion of HSP60 led to abnormality in yolk sac erythropoiesis. Deletion of HSP60 was also able to reduce mitochondrial membrane potential and the expression of the voltage-dependent anion channel (VDAC) in yolk sac erythrocytes. Furthermore, cyclosporine A (CsA), which is a well-recognized modulator in regulating the opening of the mitochondrial permeability transition pore (mPTP) by interacting with Cyclophilin D (CypD), could significantly decrease cell apoptosis and partially restore VDAC expression in mutant yolk sac erythrocytes. Taken together, we demonstrated an essential role of HSP60 in regulating yolk sac cell survival partially via a mPTP-dependent mechanism.
Collapse
|