1
|
Song Y, Jia H, Ma Q, Zhang L, Lai X, Wang Y. The causes of pulmonary hypertension and the benefits of aerobic exercise for pulmonary hypertension from an integrated perspective. Front Physiol 2024; 15:1461519. [PMID: 39483752 PMCID: PMC11525220 DOI: 10.3389/fphys.2024.1461519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/26/2024] [Indexed: 11/03/2024] Open
Abstract
Pulmonary hypertension is a progressive disease of the pulmonary arteries that begins with increased pulmonary artery pressure, driven by progressive remodeling of the small pulmonary arteries, and ultimately leads to right heart failure and death. Vascular remodeling is the main pathological feature of pulmonary hypertension, but treatments for pulmonary hypertension are lacking. Determining the process of vascular proliferation and dysfunction may be a way to decipher the pathogenesis of pulmonary hypertension. In this review, we summarize the important pathways of pulmonary hypertension pathogenesis. We show how these processes are integrated and emphasize the benign role of aerobic exercise, which, as an adjunctive therapy, may be able to modify vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Yinping Song
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Hao Jia
- School of Physical Education, Shaanxi Normal University, Xi’an, China
| | - Qing Ma
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Lulu Zhang
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Xiangyi Lai
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Youhua Wang
- School of Physical Education, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
2
|
Zeng J, Cao J, Yang H, Wang X, Liu T, Chen Z, Shi F, Xu Z, Lin X. Overview of mechanism of electroacupuncture pretreatment for prevention and treatment of cardiovascular and cerebrovascular diseases. CNS Neurosci Ther 2024; 30:e14920. [PMID: 39361504 PMCID: PMC11448663 DOI: 10.1111/cns.14920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 10/05/2024] Open
Abstract
Cardio-cerebrovascular disease (CCVD) is a serious threat to huma strategy to prevent the occurrence and development of disease by giving electroacupuncture intervention before the disease occurs. EAP has been shown in many preclinical studies to relieve ischemic symptoms and improve damage from ischemia-reperfusion, with no comprehensive review of its mechanisms in cardiovascular disease yet. In this paper, we first systematically discussed the meridian and acupoint selection law of EAP for CCVD and focused on the progress of the mechanism of action of EAP for the prevention and treatment of CCVD. As a result, in preclinical studies, AMI and MCAO models are commonly used to simulate ischemic injury in CCVD, while MIRI and CI/RI models are used to simulate reperfusion injury caused by blood flow recovery after focal tissue ischemia. According to the meridian matching rules of EAP for CCVD, PC6 in the pericardial meridian is the most commonly used acupoint in cardiovascular diseases, while GV20 in the Du meridian is the most commonly used acupoint in cerebrovascular diseases. In terms of intervention parameters, EAP intervention generally lasts for 30 min, with acupuncture depths mostly between 1.5 and 5 mm, stimulation intensities mostly at 1 mA, and commonly used frequencies being low frequencies. In terms of molecular mechanisms, the key pathways of EAP in preventing and treating cardiovascular and cerebrovascular diseases are partially similar. EAP can play a protective role in cardiovascular and cerebrovascular diseases by promoting autophagy, regulating Ca2+ overload, and promoting vascular regeneration through anti-inflammatory reactions, antioxidant stress, and anti-apoptosis. Of course, both pathways involved have their corresponding specificities. When using EAP to prevent and treat cardiovascular diseases, it involves the metabolic pathway of glutamate, while when using EAP to prevent and treat cerebrovascular diseases, it involves the homeostasis of the blood-brain barrier and the release of neurotransmitters and nutritional factors. I hope these data can provide experimental basis and reference for the clinical promotion and application of EAP in CCVD treatment.
Collapse
Affiliation(s)
- Jiaming Zeng
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jiaojiao Cao
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Haitao Yang
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xue Wang
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Tingting Liu
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Fangyuan Shi
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| |
Collapse
|
3
|
Li Z, Ma J, Wang X, Zhu L, Gan Y, Dai B. The role of immune cells in the pathogenesis of connective tissue diseases-associated pulmonary arterial hypertension. Front Immunol 2024; 15:1464762. [PMID: 39355239 PMCID: PMC11442293 DOI: 10.3389/fimmu.2024.1464762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024] Open
Abstract
Connective tissue diseases-related pulmonary arterial hypertension (CTD-PAH) is a disease characterized by an elevated pulmonary artery pressure that arises as a complication of connective tissue diseases. The number of patients with CTD-PAH accounts for 25.3% of all PAH patients. The main pathological features of CTD-PAH are thickening of intima, media and adventitia of pulmonary arterioles, increased pulmonary vascular resistance, autoimmune activation and inflammatory reaction. It is worth noting that abnormal immune activation will produce autoantibodies and release cytokines, and abnormal immune cell recruitment will promote inflammatory environment and vascular remodeling. Therefore, almost all forms of connective tissue diseases are related to PAH. In addition to general therapy and targeted drug therapy for PAH, high-dose glucocorticoid combined with immunosuppressant can quickly alleviate and stabilize the basic CTD-PAH disease. Given this, the development of therapeutic approaches targeting immune dysregulation and heightened inflammation is recognized as a promising strategy to prevent or reverse the progression of CTD-PAH. This review explores the potential mechanisms by which immune cells contribute to the development of CTD-PAH and examines the clinical application of immunosuppressive therapies in managing CTD-PAH.
Collapse
Affiliation(s)
- Zhe Li
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Juan Ma
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Xuejing Wang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, China
| | - Liquan Zhu
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Yu Gan
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Baoquan Dai
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| |
Collapse
|
4
|
Tan G, Juan C, Mao Y, Xue G, Fang Z. Inhibition of DLL4/Notch Signaling Pathway Promotes M2 Polarization and Cell Proliferation in Pulmonary Arterial Hypertension. ACS OMEGA 2024; 9:37923-37933. [PMID: 39281910 PMCID: PMC11391436 DOI: 10.1021/acsomega.4c04307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
In this study, we conducted a comprehensive analysis to identify key genes and pathways associated with pulmonary arterial hypertension (PAH) and investigated the role of delta-like ligand 4 (DLL4) in PAH pathogenesis. Through integrated analysis of multiple data sets, we identified 6 candidate differentially expressed genes (DEGs), notably DLL4, which showed the highest distinguishing efficiency between PAH and control samples. Functional and pathway enrichment analyses revealed the involvement of DLL4 in critical biological processes and pathways related to PAH, including notch signaling, immune cell function, and inflammatory responses. Further investigation demonstrated that decreased DLL4 expression correlated with increased M2 macrophage polarization, suggesting a potential role for DLL4 in preventing M2 differentiation. Additionally, the DLL4/Notch1 axis was found to influence the Notch profile and regulate signaling mediators during M2 differentiation. These findings highlight DLL4 as a promising biomarker and therapeutic target for PAH, shedding light on the underlying molecular mechanisms and providing insights for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Guangxing Tan
- Institute of Hypertension, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
- Wuxi Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, Jiangsu 214045, China
| | - Chenxia Juan
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Yan Mao
- Department of Pediatrics, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Gang Xue
- Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou, Jiangsu 225002, China
| | - Zhuyuan Fang
- Institute of Hypertension, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| |
Collapse
|
5
|
Yang C, Liu YH, Zheng HK. Identification of TFRC as a biomarker for pulmonary arterial hypertension based on bioinformatics and experimental verification. Respir Res 2024; 25:296. [PMID: 39097701 PMCID: PMC11298087 DOI: 10.1186/s12931-024-02928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a life-threatening chronic cardiopulmonary disease. However, there is a paucity of studies that reflect the available biomarkers from separate gene expression profiles in PAH. METHODS The GSE131793 and GSE113439 datasets were combined for subsequent analyses, and batch effects were removed. Bioinformatic analysis was then performed to identify differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) and a protein-protein interaction (PPI) network analysis were then used to further filter the hub genes. Functional enrichment analysis of the intersection genes was performed using Gene Ontology (GO), Disease Ontology (DO), Kyoto encyclopedia of genes and genomes (KEGG) and gene set enrichment analysis (GSEA). The expression level and diagnostic value of hub gene expression in pulmonary arterial hypertension (PAH) patients were also analyzed in the validation datasets GSE53408 and GSE22356. In addition, target gene expression was validated in the lungs of a monocrotaline (MCT)-induced pulmonary hypertension (PH) rat model and in the serum of PAH patients. RESULTS A total of 914 differentially expressed genes (DEGs) were identified, with 722 upregulated and 192 downregulated genes. The key module relevant to PAH was selected using WGCNA. By combining the DEGs and the key module of WGCNA, 807 genes were selected. Furthermore, protein-protein interaction (PPI) network analysis identified HSP90AA1, CD8A, HIF1A, CXCL8, EPRS1, POLR2B, TFRC, and PTGS2 as hub genes. The GSE53408 and GSE22356 datasets were used to evaluate the expression of TFRC, which also showed robust diagnostic value. According to GSEA enrichment analysis, PAH-relevant biological functions and pathways were enriched in patients with high TFRC levels. Furthermore, TFRC expression was found to be upregulated in the lung tissues of our experimental PH rat model compared to those of the controls, and the same conclusion was reached in the serum of the PAH patients. CONCLUSIONS According to our bioinformatics analysis, the observed increase of TFRC in the lung tissue of human PAH patients, as indicated by transcriptomic data, is consistent with the alterations observed in PAH patients and rodent models. These data suggest that TFRC may serve as a potential biomarker for PAH.
Collapse
Affiliation(s)
- Chuang Yang
- Department of cardiology, The second hospital of Jilin University, Changchun, China
| | - Yi-Hang Liu
- Department of cardiology, The second hospital of Jilin University, Changchun, China
| | - Hai-Kuo Zheng
- Department of cardiology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Huang W, Zhou H, He Y, Wang A, Wang B, Chen Y, Liu C, Wang H, Xie W, Kong H. A novel PDGFR inhibitor WQ-C-401 prevents pulmonary vascular remodeling in rats with monocrotaline-induced pulmonary arterial hypertension. Exp Cell Res 2024; 441:114154. [PMID: 38996959 DOI: 10.1016/j.yexcr.2024.114154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Platelet-derived growth factor (PDGF) is one of the most important cytokines associated with pulmonary vascular remodeling in pulmonary arterial hypertension (PAH). PDGF receptor (PDGFR) inhibition exerted therapeutic effects on PAH in clinical trials, but serious side effects warrant the withdrawal of existing drugs. In this study, a novel highly selective PDGFR inhibitor WQ-C-401 was developed, and its effects on PDGFR signaling pathway and pulmonary vascular remodeling in PAH were investigated. Cell proliferation assays and Western blot analysis of PDGFRα/β phosphorylation showed that WQ-C-401 inhibited PDGFR-mediated cell proliferation assay and suppressed PDGFR phosphorylation in a concentration-dependent manner. DiscoverX's KinomeScanTM technology confirmed the good kinome selectivity of WQ-C-401 (S score (1) of PDGFR = (0.01)). In monocrotaline (MCT)-induced PAH rats, intragastric administration of WQ-C-401 (25, 50, 100 mg/kg/d) or imatinib (50 mg/kg/d, positive control) significantly decreased right ventricular systolic pressure (RVSP). Histological analysis demonstrated that WQ-C-401 inhibited pulmonary vascular remodeling by reducing muscularization and fibrosis, as well as alleviated right ventricular hypertrophy in MCT-treated rats. In addition, WQ-C-401 suppressed MCT-induced cell hyperproliferation and CD68+ macrophage infiltration around the pulmonary artery. In vitro, WQ-C-401 inhibited PDGF-BB-induced proliferation and migration of human pulmonary arterial smooth muscle cells (PASMCs). Moreover, Western blot analysis showed that WQ-C-401 concertration-dependently inhibited PDGF-BB-induced phosphorylation of ERK1/2 and PDGFRβ Y751, decreased collagen Ⅰ synthesis and increased alpha smooth muscle actin (α-SMA) expression in PASMCs. Collectively, our results suggest that WQ-C-401 is a selective and potent PDGFR inhibitor which could be a promising drug for the therapeutics of PAH by preventing pulmonary vascular remodeling.
Collapse
MESH Headings
- Animals
- Monocrotaline
- Vascular Remodeling/drug effects
- Rats
- Cell Proliferation/drug effects
- Male
- Rats, Sprague-Dawley
- Pulmonary Arterial Hypertension/drug therapy
- Pulmonary Arterial Hypertension/chemically induced
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/pathology
- Humans
- Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors
- Receptors, Platelet-Derived Growth Factor/metabolism
- Phosphorylation/drug effects
- Pulmonary Artery/drug effects
- Pulmonary Artery/pathology
- Pulmonary Artery/metabolism
- Signal Transduction/drug effects
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/prevention & control
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/metabolism
- Protein Kinase Inhibitors/pharmacology
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors
Collapse
Affiliation(s)
- Wen Huang
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, Jiangsu, PR China
| | - Hong Zhou
- Department of Pulmonary & Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, PR China
| | - Yiting He
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, Jiangsu, PR China
| | - Aoli Wang
- Anhui Province Key Laboratory of Medical Physics & Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics & Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China
| | - Yongfei Chen
- Anhui Province Key Laboratory of Medical Physics & Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China
| | - Chenyang Liu
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, Jiangsu, PR China
| | - Hong Wang
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, Jiangsu, PR China
| | - Weiping Xie
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, Jiangsu, PR China.
| | - Hui Kong
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, Jiangsu, PR China.
| |
Collapse
|
7
|
Chen F, He Z, Wang C, Si J, Chen Z, Guo Y. Advances in the study of S100A9 in cardiovascular diseases. Cell Prolif 2024; 57:e13636. [PMID: 38504474 PMCID: PMC11294427 DOI: 10.1111/cpr.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
Cardiovascular disease (CVD) is a group of diseases that primarily affect the heart or blood vessels, with high disability and mortality rates, posing a serious threat to human health. The causative factors, pathogenesis, and characteristics of common CVD differ, but they all involve common pathological processes such as inflammation, oxidative stress, and fibrosis. S100A9 belongs to the S100 family of calcium-binding proteins, which are mainly secreted by myeloid cells and bind to the Toll-like receptor 4 and receptor for advanced glycation end products and is involved in regulating pathological processes such as inflammatory response, fibrosis, vascular calcification, and endothelial barrier function in CVD. The latest research has found that S100A9 is a key biomarker for diagnosing and predicting various CVD. Therefore, this article reviews the latest research progress on the diagnostic and predictive, and therapeutic value of S100A9 in inflammatory-related CVD such as atherosclerosis, myocardial infarction, and arterial aneurysm and summarizes its molecular mechanisms in the progression of CVD, aiming to explore new predictive methods and to identify potential intervention targets for CVD in clinical practice.
Collapse
Affiliation(s)
- Fengling Chen
- Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
- Department of Cardiovascular Medicine, Zhuzhou Hospital Affiliated to Xiangya School of MedicineCentral South UniversityZhuzhouHunanChina
| | - Ziyu He
- Department of Cardiovascular Medicine, Zhuzhou Hospital Affiliated to Xiangya School of MedicineCentral South UniversityZhuzhouHunanChina
| | - Chengming Wang
- Department of Cardiovascular Medicine, Zhuzhou Hospital Affiliated to Xiangya School of MedicineCentral South UniversityZhuzhouHunanChina
| | - Jiajia Si
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Zhu Chen
- Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Yuan Guo
- Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
- Department of Cardiovascular Medicine, Zhuzhou Hospital Affiliated to Xiangya School of MedicineCentral South UniversityZhuzhouHunanChina
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| |
Collapse
|
8
|
He X, Wu Z, Jiang J, Xu W, Yuan A, Liao F, Ding S, Pu J. Urolithin A Protects against Hypoxia-Induced Pulmonary Hypertension by Inhibiting Pulmonary Arterial Smooth Muscle Cell Pyroptosis via AMPK/NF-κB/NLRP3 Signaling. Int J Mol Sci 2024; 25:8246. [PMID: 39125817 PMCID: PMC11311380 DOI: 10.3390/ijms25158246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Recent studies confirmed that pyroptosis is involved in the progression of pulmonary hypertension (PH), which could promote pulmonary artery remodeling. Urolithin A (UA), an intestinal flora metabolite of ellagitannins (ETs) and ellagic acid (EA), has been proven to possess inhibitory effects on pyroptosis under various pathological conditions. However, its role on PH remained undetermined. To investigate the potential of UA in mitigating PH, mice were exposed to hypoxia (10% oxygen, 4 weeks) to induce PH, with or without UA treatment. Moreover, in vitro experiments were carried out to further uncover the underlying mechanisms. The in vivo treatment of UA suppressed the progression of PH via alleviating pulmonary remodeling. Pyroptosis-related genes were markedly upregulated in mice models of PH and reversed after the administration of UA. In accordance with that, UA treatment significantly inhibited hypoxia-induced pulmonary arterial smooth muscle cell (PASMC) pyroptosis via the AMPK/NF-κB/NLRP3 pathway. Our results revealed that UA treatment effectively mitigated PH progression through inhibiting PASMC pyroptosis, which represents an innovative therapeutic approach for PH.
Collapse
Affiliation(s)
- Xinjie He
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (X.H.); (Z.W.); (J.J.); (W.X.); (A.Y.); (F.L.)
| | - Zhinan Wu
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (X.H.); (Z.W.); (J.J.); (W.X.); (A.Y.); (F.L.)
| | - Jinyao Jiang
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (X.H.); (Z.W.); (J.J.); (W.X.); (A.Y.); (F.L.)
| | - Wenyi Xu
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (X.H.); (Z.W.); (J.J.); (W.X.); (A.Y.); (F.L.)
| | - Ancai Yuan
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (X.H.); (Z.W.); (J.J.); (W.X.); (A.Y.); (F.L.)
| | - Fei Liao
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (X.H.); (Z.W.); (J.J.); (W.X.); (A.Y.); (F.L.)
| | - Song Ding
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (X.H.); (Z.W.); (J.J.); (W.X.); (A.Y.); (F.L.)
- Department of Cardiology, Punan Branch of Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (X.H.); (Z.W.); (J.J.); (W.X.); (A.Y.); (F.L.)
| |
Collapse
|
9
|
Wang G, Wang Z. Investigation into the role of H2-Ab1 in vascular remodeling in pulmonary arterial hypertension via Bioinformatics. BMC Pulm Med 2024; 24:342. [PMID: 39010027 PMCID: PMC11251127 DOI: 10.1186/s12890-024-03156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a progressive disease of vascular remodeling characterized by persistent pulmonary arterial pressure elevation, which can lead to right heart failure and premature death. Given the complex pathogenesis and poor prognosis of PAH, the identification and investigation of biomarkers become increasingly critical for advancing further understanding of the disease. METHODS PAH-related datasets, GSE49114, GSE180169 and GSE154959, were downloaded from the publicly available GEO database. By performing WGCNA on the GSE49114 dataset, a total of 906 PAH-related key module genes were screened out. By carrying out differential analysis on the GSE180169 dataset, a total of 576 differentially expressed genes were identified. Additionally, the GSE154959 single-cell sequencing dataset was also subjected to differential analysis, leading to the identification of 34 DEGs within endothelial cells. By taking intersection of the above three groups of DEGs, five PAH-related hub genes were screened out, namely Plvap, Cyp4b1, Foxf1, H2-Ab1, and H2-Eb1, among which H2-Ab1 was selected for subsequent experiments. RESULTS A SuHx mouse model was prepared using the SU5416/hypoxia method, and the successful construction of the model was evaluated through Hematoxylin-Eosin staining, hemodynamic detection, fulton index, and Western Blot (WB). The results of WB and qRT-PCR demonstrated a significant upregulation of H2-Ab1 expression in SuHx mice. Consistent with the results of bioinformatics analysis, a time-dependent increase was observed in H2-Ab1 expression in hypoxia-treated mouse pulmonary artery endothelial cells (PAECs). To investigate whether H2-Ab1 affects the development and progression of PAH, we knocked down H2-Ab1 expression in PAECs, and found that its knockdown inhibited the viability, adhesion, migration, and angiogenesis, while concurrently promoted the apoptosis of PAECs. CONCLUSION H2-Ab1 could regulate the proliferation, apoptosis, adhesion, migration, and angiogenesis of PAECs.
Collapse
Affiliation(s)
- Guowen Wang
- Department of Respiratory Medicine, Affiliated Hospital of Shaoxing University, No. 999 South Zhongxing Road, Shaoxing, Zhejiang, 312000, China
| | - Zhuoyan Wang
- Center for General Practice Medicine, General Practice and Health Management Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
10
|
Liu Z, Fu Q, Yu Q, Ma X, Yang R. Assessing causal associations of blood counts and biochemical indicators with pulmonary arterial hypertension: a Mendelian randomization study and results from national health and nutrition examination survey 2003-2018. Front Endocrinol (Lausanne) 2024; 15:1418835. [PMID: 38952391 PMCID: PMC11215008 DOI: 10.3389/fendo.2024.1418835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Background Blood counts and biochemical markers are among the most common tests performed in hospitals and most readily accepted by patients, and are widely regarded as reliable biomarkers in the literature. The aim of this study was to assess the causal relationship between blood counts, biochemical indicators and pulmonary arterial hypertension (PAH). Methods A two-sample Mendelian randomization (MR) analysis was performed to assess the causal relationship between blood counts and biochemical indicators with PAH. The genome-wide association study (GWAS) for blood counts and biochemical indicators were obtained from the UK Biobank (UKBB), while the GWAS for PAH were sourced from the FinnGen Biobank. Inverse variance weighting (IVW) was used as the primary analysis method, supplemented by three sensitivity analyses to assess the robustness of the results. And we conducted an observational study using data from National Health and Nutrition Examination Survey (NHANES) 2003-2018 to verify the relationship. Results The MR analysis primarily using the IVW method revealed genetic variants of platelet count (OR=2.51, 95% CI 1.56-4.22, P<0.001), platelet crit(OR=1.87, 95% CI1.17-7.65, P=0.022), direct bilirubin (DBIL)(OR=1.71, 95%CI 1.18-2.47,P=0.004), insulin-like growth factor (IGF-1)(OR=0.51, 95% CI 0.27-0.96, P=0.038), Lipoprotein A (Lp(a))(OR=0.66, 95% CI 0.45-0.98, P=0.037) and total bilirubin (TBIL)(OR=0.51, 95% CI 0.27-0.96, P=0.038) were significantly associated with PAH. In NHANES, multivariate logistic regression analyses revealed a significant positive correlation between platelet count and volume and the risk of PAH, and a significant negative correlation between total bilirubin and PAH. Conclusion Our study reveals a causal relationship between blood counts, biochemical indicators and pulmonary arterial hypertension. These findings offer novel insights into the etiology and pathological mechanisms of PAH, and emphasizes the important value of these markers as potential targets for the prevention and treatment of PAH.
Collapse
Affiliation(s)
- Zhekang Liu
- Cardiovascular Medicine Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qingan Fu
- Cardiovascular Medicine Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qingyun Yu
- Cardiovascular Medicine Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaowei Ma
- Cardiovascular Medicine Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Renqiang Yang
- Cardiovascular Medicine Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
11
|
Meng LB, Hu GF, Lv T, Lv C, Liu L, Zhang P. Higher expression of TSR2 aggravating hypertension via the PPAR signaling pathway. Aging (Albany NY) 2024; 16:8980-8997. [PMID: 38814181 PMCID: PMC11164513 DOI: 10.18632/aging.205852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/07/2023] [Indexed: 05/31/2024]
Abstract
Hypertension is a complex disease with unknown causes. Therefore, it's crucial to deeply study its molecular mechanism. The hypertension dataset was obtained from Gene Expression Omnibus data base (GEO), and miRNA regulating central hub genes was screened via weighted gene co-expression network (DEGs) and gene set enrichment (GSEA). Cell experiments validated TSR2's role and the PPAR signaling pathway through western blotting. 500 DEGs were identified for hypertension, mainly enriched in actin cross-linking, insulin signaling, PPAR signaling, and protein localization. Eight hub genes (SEC61G, SRP14, Liy AR, NIP7, SDAD1, POLR1D, DYNLL2, TSR2) were identified. Four hub genes (LYAR, SDAD1, POLR1D, TSR2) exhibited high expression levels in the hypertensive tissue samples, while showing low expression levels in the normal tissue samples. This led us to speculate that they may have relevant regulatory effects on hypertension. When TSR2 was knocked down in the hypertension peripheral blood mononuclear cells (PBMC) model, the critical proteins in the PPAR signaling pathway (FABP, PPAR, PLTP, ME1, SCD1, CYP27, FABP1, OLR1, CPT-1, PGAR, CAP, ADIPO, MMP1, UCP1, ILK, PDK1 UBC AQP7) were downregulated. This also occurred in the hypertension peripheral blood mononuclear cells (PBMC) + TSR2_ OV model. TSR2 is highly expressed in individuals with hypertension and may play a significant role in the development of hypertension through the PPAR signaling pathway. TSR2 could serve as a molecular target for the early diagnosis and precise treatment of hypertension, providing a valuable direction for the mechanism research of this condition.
Collapse
Affiliation(s)
- Ling-Bing Meng
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Gai-Feng Hu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Chaoyang 100029, Beijing, China
| | - Tingting Lv
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Changhua Lv
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Lianfeng Liu
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ping Zhang
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Bruck O, Pandit LM. Pulmonary Hypertension and Hyperglycemia-Not a Sweet Combination. Diagnostics (Basel) 2024; 14:1119. [PMID: 38893645 PMCID: PMC11171670 DOI: 10.3390/diagnostics14111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Hyperglycemia and pulmonary hypertension (PH) share common pathological pathways that lead to vascular dysfunction and resultant cardiovascular complications. These shared pathologic pathways involve endothelial dysfunction, inflammation, oxidative stress, and hormonal imbalances. Individuals with hyperglycemia or pulmonary hypertension also possess shared clinical factors that contribute to increased morbidity from both diseases. This review aims to explore the relationship between PH and hyperglycemia, highlighting the mechanisms underlying their association and discussing the clinical implications. Understanding these common pathologic and clinical factors will enable early detection for those at-risk for complications from both diseases, paving the way for improved research and targeted therapeutics.
Collapse
Affiliation(s)
- Or Bruck
- Section of Pulmonary, Critical Care, Sleep Medicine, Baylor College of Medicine, Houston, TX 77024, USA;
| | - L. M. Pandit
- Section of Pulmonary, Critical Care, Sleep Medicine, Baylor College of Medicine, Houston, TX 77024, USA;
- Michael E. DeBakey Veterans Affairs Medical Center, Center for Translational Research on Inflammatory Diseases (CTRID), Houston, TX 77030, USA
| |
Collapse
|
13
|
Ishibashi T, Inagaki T, Okazawa M, Yamagishi A, Ohta-Ogo K, Asano R, Masaki T, Kotani Y, Ding X, Chikaishi-Kirino T, Maedera N, Shirai M, Hatakeyama K, Kubota Y, Kishimoto T, Nakaoka Y. IL-6/gp130 signaling in CD4 + T cells drives the pathogenesis of pulmonary hypertension. Proc Natl Acad Sci U S A 2024; 121:e2315123121. [PMID: 38602915 PMCID: PMC11032454 DOI: 10.1073/pnas.2315123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/07/2024] [Indexed: 04/13/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by stenosis and occlusions of small pulmonary arteries, leading to elevated pulmonary arterial pressure and right heart failure. Although accumulating evidence shows the importance of interleukin (IL)-6 in the pathogenesis of PAH, the target cells of IL-6 are poorly understood. Using mice harboring the floxed allele of gp130, a subunit of the IL-6 receptor, we found substantial Cre recombination in all hematopoietic cell lineages from the primitive hematopoietic stem cell level in SM22α-Cre mice. We also revealed that a CD4+ cell-specific gp130 deletion ameliorated the phenotype of hypoxia-induced pulmonary hypertension in mice. Disruption of IL-6 signaling via deletion of gp130 in CD4+ T cells inhibited phosphorylation of signal transducer and activator of transcription 3 (STAT3) and suppressed the hypoxia-induced increase in T helper 17 cells. To further examine the role of IL-6/gp130 signaling in more severe PH models, we developed Il6 knockout (KO) rats using the CRISPR/Cas9 system and showed that IL-6 deficiency could improve the pathophysiology in hypoxia-, monocrotaline-, and Sugen5416/hypoxia (SuHx)-induced rat PH models. Phosphorylation of STAT3 in CD4+ cells was also observed around the vascular lesions in the lungs of the SuHx rat model, but not in Il6 KO rats. Blockade of IL-6 signaling had an additive effect on conventional PAH therapeutics, such as endothelin receptor antagonist (macitentan) and soluble guanylyl cyclase stimulator (BAY41-2272). These findings suggest that IL-6/gp130 signaling in CD4+ cells plays a critical role in the pathogenesis of PAH.
Collapse
Affiliation(s)
- Tomohiko Ishibashi
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Tadakatsu Inagaki
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Makoto Okazawa
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Akiko Yamagishi
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Keiko Ohta-Ogo
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Osaka564-8565, Japan
| | - Ryotaro Asano
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka564-8565, Japan
| | - Takeshi Masaki
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Yui Kotani
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Xin Ding
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Tomomi Chikaishi-Kirino
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Noriko Maedera
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Manabu Shirai
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka564-8565, Japan
| | - Kinta Hatakeyama
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Osaka564-8565, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo160-8582, Japan
| | - Tadamitsu Kishimoto
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka565-0871, Japan
| | - Yoshikazu Nakaoka
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka564-8565, Japan
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka565-0871, Japan
- Department of Molecular Imaging in Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka565-0871, Japan
| |
Collapse
|
14
|
Shi TY, Wen XH, Meng J, Lu YW. Effect of IL-17 on pulmonary artery smooth muscle cells and connective tissue disease-associated pulmonary arterial hypertension. Immun Inflamm Dis 2024; 12:e1243. [PMID: 38577988 PMCID: PMC10996375 DOI: 10.1002/iid3.1243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVE To explore the role of interleukin (IL)-17 in connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH) and to investigate its possible mechanism on pulmonary artery smooth muscle cells (PASMCs). METHODS Enzyme-linked immunosorbent assay (ELISA) were used to compare levels of serum IL-17 in patients with CTD-PAH and healthy controls (HCs). After treatment for 3 months, the serum IL-17 levels were tested in CTD-PAH. ELISA and immunohistochemistry were used to compare levels of serum IL-17 and numbers of pulmonary artery IL-17+ cells, respectively, in a rat model of monocrotaline-induced PAH and untreated rats. Proliferation, migration, and inflammatory factors expression of PASMCs were assessed after stimulation with different concentrations of IL-17 for various time periods. Proteins in the mitogen-activated protein kinase (MAPK) pathway were examined by western blot. RESULTS Levels of IL-17 were upregulated in patients with CTD-PAH compared to HCs. After 3 months of treatment, serum IL-17 levels were downregulated with pulmonary artery pressure amelioration. Moreover, serum IL-17 levels and numbers of IL-17+ cells infiltrating lung arterioles were increased in PAH model rats. IL-17 could dose- and time-dependently promote proliferation and migration of PASMCs as well as time-dependently induce IL-6 and intercellular cell adhesion molecule-1 (ICAM-1) expression. The levels of MKK6 increased after IL-17 treatment. Inhibition of MAPK decreased proliferation of PASMCs. CONCLUSION Levels of IL-17 may increase in CTD-PAH, and IL-17 promotes proliferation, migration, and secretion of IL-6 and ICAM in PASMCs, respectively, which likely involves the p-38 MAPK pathway.
Collapse
Affiliation(s)
- Tian-Yan Shi
- Department of Rheumatology and Clinical Immunology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiao-Hong Wen
- Department of Rheumatology and Clinical Immunology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Juan Meng
- Department of Rheumatology and Clinical Immunology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yue-Wu Lu
- Department of Rheumatology and Clinical Immunology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Zuo Y, Li B, Gao M, Xiong R, He R, Li N, Geng Q. Novel insights and new therapeutic potentials for macrophages in pulmonary hypertension. Respir Res 2024; 25:147. [PMID: 38555425 PMCID: PMC10981837 DOI: 10.1186/s12931-024-02772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
Inflammation and immune processes underlie pulmonary hypertension progression. Two main different activated phenotypes of macrophages, classically activated M1 macrophages and alternatively activated M2 macrophages, are both involved in inflammatory processes related to pulmonary hypertension. Recent advances suggest that macrophages coordinate interactions among different proinflammatory and anti-inflammatory mediators, and other cellular components such as smooth muscle cells and fibroblasts. In this review, we summarize the current literature on the role of macrophages in the pathogenesis of pulmonary hypertension, including the origin of pulmonary macrophages and their response to triggers of pulmonary hypertension. We then discuss the interactions among macrophages, cytokines, and vascular adventitial fibroblasts in pulmonary hypertension, as well as the potential therapeutic benefits of macrophages in this disease. Identifying the critical role of macrophages in pulmonary hypertension will contribute to a comprehensive understanding of this pathophysiological abnormality, and may provide new perspectives for pulmonary hypertension management.
Collapse
Affiliation(s)
- Yifan Zuo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Boyang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Minglang Gao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Rui Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
16
|
Chai Y, Gu X, Zhang H, Xu X, Chen L. Phoenixin 20 ameliorates pulmonary arterial hypertension via inhibiting inflammation and oxidative stress. Aging (Albany NY) 2024; 16:5027-5037. [PMID: 38517365 PMCID: PMC11006497 DOI: 10.18632/aging.205468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/15/2023] [Indexed: 03/23/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a severe pathophysiological syndrome resulting in heart failure, which is found to be induced by pulmonary vascular remodeling mediated by oxidative stress (OS) and inflammation. Phoenixin-20 (PNX-20) is a reproductive peptide first discovered in mice with potential suppressive properties against OS and inflammatory response. Our study will explore the possible therapeutic functions of PHN-20 against PAH for future clinical application. Rats were treated with normal saline, PHN-20 (100 ng/g body weight daily), hypoxia, hypoxia+PHN-20 (100 ng/g body weight daily), respectively. A signally elevated RVSP, mPAP, RV/LV + S, and W%, increased secretion of cytokines, enhanced malondialdehyde (MDA) level, repressed superoxide dismutase (SOD) activity, and activated NLRP3 signaling were observed in hypoxia-stimulated rats, which were notably reversed by PHN-20 administration. Pulmonary microvascular endothelial cells (PMECs) were treated with hypoxia with or without PHN-20 (10 and 20 nM). Marked elevation of inflammatory cytokine secretion, increased MDA level, repressed SOD activity, and activated NLRP3 signaling were observed in hypoxia-stimulated PMECs, accompanied by a downregulation of SIRT1. Furthermore, the repressive effect of PHN-20 on the domains-containing protein 3 (NLRP3) pathway in hypoxia-stimulated PMECs was abrogated by sirtuin1 (SIRT1) knockdown. Collectively, PHN-20 alleviated PAH via inhibiting OS and inflammation by mediating the transcriptional function of SIRT1.
Collapse
Affiliation(s)
- Yaqin Chai
- Department of Pulmonary and Critical Care Medicine, Xi’an Chest Hospital, Xi’an 710100, China
| | - Xing Gu
- Department of Pulmonary and Critical Care Medicine, Xi’an Chest Hospital, Xi’an 710100, China
| | - HongJun Zhang
- Department of Pulmonary and Critical Care Medicine, Xi’an Chest Hospital, Xi’an 710100, China
| | - Xinting Xu
- Department of Pulmonary and Critical Care Medicine, Xi’an International Medical Center Hospital, Xi’an 710100, China
| | - Lizhan Chen
- Department of Pulmonary and Critical Care Medicine, Xi’an International Medical Center Hospital, Xi’an 710100, China
| |
Collapse
|
17
|
Yoshinaga M, Takeuchi O. Regulation of inflammatory diseases via the control of mRNA decay. Inflamm Regen 2024; 44:14. [PMID: 38491500 PMCID: PMC10941436 DOI: 10.1186/s41232-024-00326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/02/2024] [Indexed: 03/18/2024] Open
Abstract
Inflammation orchestrates a finely balanced process crucial for microorganism elimination and tissue injury protection. A multitude of immune and non-immune cells, alongside various proinflammatory cytokines and chemokines, collectively regulate this response. Central to this regulation is post-transcriptional control, governing gene expression at the mRNA level. RNA-binding proteins such as tristetraprolin, Roquin, and the Regnase family, along with RNA modifications, intricately dictate the mRNA decay of pivotal mediators and regulators in the inflammatory response. Dysregulated activity of these factors has been implicated in numerous human inflammatory diseases, underscoring the significance of post-transcriptional regulation. The increasing focus on targeting these mechanisms presents a promising therapeutic strategy for inflammatory and autoimmune diseases. This review offers an extensive overview of post-transcriptional regulation mechanisms during inflammatory responses, delving into recent advancements, their implications in human diseases, and the strides made in therapeutic exploitation.
Collapse
Affiliation(s)
- Masanori Yoshinaga
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
18
|
Gao L, Zhang S, Zhao Z, Zhao Q, Yang T, Zeng Q, Zhang Y, Li X, Huang Z, Duan A, Luo Q, Liu Z. Role of the Systemic Inflammatory Response Index in Predicting Disease Severity and Prognosis in Idiopathic Pulmonary Arterial Hypertension. J Inflamm Res 2024; 17:447-460. [PMID: 38282710 PMCID: PMC10812137 DOI: 10.2147/jir.s434720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Mounting evidence indicates a possible connection between the systemic inflammatory response index (SIRI) and the prognosis of heart failure, but its role in idiopathic pulmonary arterial hypertension (IPAH) is not well understood. This study aimed to investigate the relationship between SIRI and variables such as functional ability, echocardiography results, hemodynamic measurements, and long-term outcomes in patients with IPAH. Methods The study included 426 consecutive IPAH patients who underwent right heart catheterization at Fuwai Hospital from January 2013 to December 2020. SIRI was calculated using composite inflammation indicators from routine blood tests. The main outcome measure was clinical deterioration. Spearman correlation coefficients were used to assess associations between SIRI and indicators of IPAH severity. Receiver operating characteristic (ROC) curve analysis was conducted to determine the optimal SIRI threshold and predictive ability. Kaplan-Meier analysis and Cox proportional hazard models were used to examine the relationship between SIRI and clinical deterioration. Results SIRI showed positive associations with indicators such as N-terminal pro-brain natriuretic peptide, right ventricular end-diastolic diameter, pericardial effusion, mean pulmonary arterial pressure, and pulmonary vascular resistance. Conversely, SIRI had inverse relationships with 6-minute walking distance and left ventricular end-diastolic diameter. Kaplan-Meier curves revealed a significantly higher rate of clinical deterioration in individuals with SIRI > 0.741 compared to those with SIRI ≤ 0.741 (P < 0.001). Adjusted Cox analysis showed SIRI remained an independent predictor of clinical worsening (hazard ratio 1.366, 95% confidence interval 1.073-1.738, P = 0.011). ROC analysis demonstrated SIRI provided additional predictive value beyond the risk assessment score of the European Society of Cardiology/European Respiratory Society. Discussion In summary, SIRI could predict the severity and prognosis of IPAH independently. It was associated with various indicators of IPAH severity and was a significant predictor of clinical deterioration. SIRI also offered additional predictive value beyond existing risk assessment scores.
Collapse
Affiliation(s)
- Luyang Gao
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Sicheng Zhang
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Zhihui Zhao
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Qing Zhao
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Tao Yang
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Qixian Zeng
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yi Zhang
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xin Li
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Zhihua Huang
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Anqi Duan
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Qin Luo
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Zhihong Liu
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
19
|
Yoshinaga M, Takeuchi O. RNA Metabolism Governs Immune Function and Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:145-161. [PMID: 38467978 DOI: 10.1007/978-981-99-9781-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Inflammation is a complex process that protects our body from various insults such as infection, injury, and stress. Proper inflammation is beneficial to eliminate the insults and maintain organ homeostasis, however, it can become detrimental if uncontrolled. To tightly regulate inflammation, post-transcriptional mechanisms governing RNA metabolism play a crucial role in monitoring the expression of immune-related genes, such as tumor necrosis factor (TNF) and interleukin-6 (IL-6). These mechanisms involve the coordinated action of various RNA-binding proteins (RBPs), including the Regnase family, Roquin, and RNA methyltransferases, which are responsible for mRNA decay and/or translation regulation. The collaborative efforts of these RBPs are essential in preventing aberrant immune response activation and consequently safeguarding against inflammatory and autoimmune diseases. This review provides an overview of recent advancements in our understanding of post-transcriptional regulation within the immune system and explores the specific roles of individual RBPs in RNA metabolism and regulation.
Collapse
Affiliation(s)
- Masanori Yoshinaga
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
20
|
Qi B, Yang ZJ, Huang N, Zheng WB, Gui C. Exploring the diagnostic and prognostic value of the C-reactive protein/lymphocyte ratio for dilated cardiomyopathy based on a real-world study. Sci Rep 2023; 13:18889. [PMID: 37919409 PMCID: PMC10622584 DOI: 10.1038/s41598-023-46338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
To determine the risk factors for dilated cardiomyopathy (DCM) and construct a risk model for predicting HF in patients with DCM, We enrolled a total of 2122 patients, excluding those who did not meet the requirements. A total of 913 patients were included in the analysis (611 males and 302 females) from October 2012 to May 2020, and data on demographic characteristics, blood biochemical markers, and cardiac ultrasound results were collected. Patients were strictly screened for DCM based on the diagnostic criteria. First, these patients were evaluated using propensity score matching (PSM). Next, unconditional logistic regression was used to assess HF risk. Furthermore, receiver operating characteristic (ROC) curve analysis was conducted to determine diagnostic efficiency, and a nomogram was developed to predict HF. Finally, the Kaplan‒Meier survival curve was plotted. Of the initial 2122 patients, the ejection fraction (EF) in males was worse. We included 913 patients after the final DCM diagnosis. The results showed that the levels of NT-proBNP, WBC, PLT, neutrophils, lymphocytes, eosinophils, and IL-6, C-reactive protein (CRP) and the neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), and CRP/lymphocyte ratio (CLR) were higher in males than in females (P < 0.001-0.009). The nomogram showed that factors such as sex, WBC, neutrophils, PLR, and CLR could predict the risk of worsening cardiac function in patients with DCM before and after PSM (P < 0.05). The ROC curve showed that CLR with an 85.6% area demonstrated higher diagnostic efficacy than the NLR (77.0%) and PLR (76.6%, P < 0.05). Survival analysis showed a higher mortality risk in females with higher CLR levels (P < 0.001-0.009). However, high CLR levels indicated a higher mortality risk (P < 0.001) compared to sex. Male EF is lower in DCM patients. CLR could predict the risk of declined cardiac function in patients with DCM. The mortality in females with higher CLR levels was highest; however, the exact mechanism should be investigated.
Collapse
Affiliation(s)
- Bin Qi
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
- Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention, Nanning, People's Republic of China
- Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, People's Republic of China
| | - Zhi-Jie Yang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
- Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention, Nanning, People's Republic of China
- Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, People's Republic of China
| | - Nan Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
- Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention, Nanning, People's Republic of China
- Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, People's Republic of China
| | - Wen-Bo Zheng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
- Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention, Nanning, People's Republic of China
- Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, People's Republic of China
| | - Chun Gui
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China.
- Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention, Nanning, People's Republic of China.
- Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, People's Republic of China.
| |
Collapse
|
21
|
Shen Y, Gong L, Xu F, Wang S, Liu H, Wang Y, Hu L, Zhu L. Insight into the lncRNA-mRNA Co-Expression Profile and ceRNA Network in Lipopolysaccharide-Induced Acute Lung Injury. Curr Issues Mol Biol 2023; 45:6170-6189. [PMID: 37504305 PMCID: PMC10378513 DOI: 10.3390/cimb45070389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) participate in acute lung injury (ALI). However, their latent biological function and molecular mechanism have not been fully understood. In the present study, the global expression profiles of lncRNAs and mRNAs between the control and lipopolysaccharide (LPS)-stimulated groups of human normal lung epithelial cells (BEAS-2B) were determined using high-throughput sequencing. Overall, a total of 433 lncRNAs and 183 mRNAs were differentially expressed. A lncRNA-mRNA co-expression network was established, and then the top 10 lncRNAs were screened using topological methods. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis results showed that the key lncRNAs targeting mRNAs were mostly enriched in the inflammatory-related biological processes. Gene set variation analysis and Pearson's correlation coefficients confirmed the close correlation for the top 10 lncRNAs with inflammatory responses. A protein-protein interaction network analysis was conducted based on the key lncRNAs targeting mRNAs, where IL-1β, IL-6, and CXCL8 were regarded as the hub genes. A competing endogenous RNA (ceRNA) modulatory network was created with five lncRNAs, thirteen microRNAs, and twelve mRNAs. Finally, real-time quantitative reverse transcription-polymerase chain reaction was employed to verify the expression levels of several key lncRNAs in BEAS-2B cells and human serum samples.
Collapse
Affiliation(s)
- Yue Shen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Linjing Gong
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fan Xu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Sijiao Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hanhan Liu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yali Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lijuan Hu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lei Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Pulmonary and Critical Care Medicine, Huadong Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
22
|
Xu WJ, Wu Q, He WN, Wang S, Zhao YL, Huang JX, Yan XS, Jiang R. Interleukin-6 and pulmonary hypertension: from physiopathology to therapy. Front Immunol 2023; 14:1181987. [PMID: 37449201 PMCID: PMC10337993 DOI: 10.3389/fimmu.2023.1181987] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive, pulmonary vascular disease with high morbidity and mortality. Unfortunately, the pathogenesis of PH is complex and remains unclear. Existing studies have suggested that inflammatory factors are key factors in PH. Interleukin-6 (IL-6) is a multifunctional cytokine that plays a crucial role in the regulation of the immune system. Current studies reveal that IL-6 is elevated in the serum of patients with PH and it is negatively correlated with lung function in those patients. Since IL-6 is one of the most important mediators in the pathogenesis of inflammation in PH, signaling mechanisms targeting IL-6 may become therapeutic targets for this disease. In this review, we detailed the potential role of IL-6 in accelerating PH process and the specific mechanisms and signaling pathways. We also summarized the current drugs targeting these inflammatory pathways to treat PH. We hope that this study will provide a more theoretical basis for targeted treatment in patients with PH in the future.
Collapse
Affiliation(s)
- Wei-Jie Xu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiong Wu
- Department of Pulmonary and Critical Care Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Ni He
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shang Wang
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ya-Lin Zhao
- Department of Respiratory Critical Care Medicine, The First Hospital of Kunming, Kunming, China
| | - Jun-Xia Huang
- Department of Hematology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xue-Shen Yan
- Department of Hematology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Rong Jiang
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
23
|
Hu L, Yu Y, Shen Y, Huang H, Lin D, Wang K, Yu Y, Li K, Cao Y, Wang Q, Sun X, Qiu Z, Wei D, Shen B, Chen J, Fulton D, Ji Y, Wang J, Chen F. Ythdf2 promotes pulmonary hypertension by suppressing Hmox1-dependent anti-inflammatory and antioxidant function in alveolar macrophages. Redox Biol 2023; 61:102638. [PMID: 36801705 PMCID: PMC9975317 DOI: 10.1016/j.redox.2023.102638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Pulmonary hypertension (PH) is a devastating disease characterized by irreversible pulmonary vascular remodeling (PVR) that causes right ventricular failure and death. The early alternative activation of macrophages is a critical event in the development of PVR and PH, but the underlying mechanisms remain elusive. Previously we have shown that N6-methyladenosine (m6A) modifications of RNA contribute to phenotypic switching of pulmonary artery smooth muscle cells and PH. In the current study, we identify Ythdf2, an m6A reader, as an important regulator of pulmonary inflammation and redox regulation in PH. In a mouse model of PH, the protein expression of Ythdf2 was increased in alveolar macrophages (AMs) during the early stages of hypoxia. Mice with a myeloid specific knockout of Ythdf2 (Ythdf2Lyz2 Cre) were protected from PH with attenuated right ventricular hypertrophy and PVR compared to control mice and this was accompanied by decreased macrophage polarization and oxidative stress. In the absence of Ythdf2, heme oxygenase 1 (Hmox1) mRNA and protein expression were significantly elevated in hypoxic AMs. Mechanistically, Ythdf2 promoted the degradation of Hmox1 mRNA in a m6A dependent manner. Furthermore, an inhibitor of Hmox1 promoted macrophage alternative activation, and reversed the protection from PH seen in Ythdf2Lyz2 Cre mice under hypoxic exposure. Together, our data reveal a novel mechanism linking m6A RNA modification with changes in macrophage phenotype, inflammation and oxidative stress in PH, and identify Hmox1 as a downstream target of Ythdf2, suggesting that Ythdf2 may be a therapeutic target in PH.
Collapse
Affiliation(s)
- Li Hu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China; Gusu School, Nanjing Medical University, Suzhou, China
| | - Yanfang Yu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Yueyao Shen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Huijie Huang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Donghai Lin
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Kang Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Youjia Yu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Kai Li
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Yue Cao
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoxuan Sun
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhibing Qiu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dong Wei
- Wuxi Lung Transplantation Center, Wuxi People's Hospital Affiliated with Nanjing Medical University, Wuxi, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jingyu Chen
- Wuxi Lung Transplantation Center, Wuxi People's Hospital Affiliated with Nanjing Medical University, Wuxi, China
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China.
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China; Gusu School, Nanjing Medical University, Suzhou, China; Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
24
|
Innate immune sensing of pathogens and its post-transcriptional regulations by RNA-binding proteins. Arch Pharm Res 2023; 46:65-77. [PMID: 36725818 PMCID: PMC9891759 DOI: 10.1007/s12272-023-01429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023]
Abstract
Innate immunity is one of the most ancient and conserved aspect of the immune system. It is responsible for an anti-infective response and has been intrinsically linked to the generation of inflammation. While the inflammatory response entails signaling to the adaptive immune system, it can be self-perpetuating and over-exaggerated, resulting in deleterious consequences, including cytokine storm, sepsis, and the development of inflammatory and autoimmune diseases. Cytokines are the defining features of the immune system. They are critical to mediation of inflammation and host immune defense, and are tightly regulated at several levels, including transcriptional and post-transcriptional levels. Recently, the role of post-transcriptional regulation in fine-tuning cytokine expression has become more appreciated. This interest has advanced our understanding of how various mechanisms are integrated and regulated to determine the amount of cytokine production in cells during inflammatory responses. Here, we would like to review how innate immunity recognizes and responds to pathogens by pattern-recognition receptors, and the molecular mechanisms regulating inflammatory responses, with a focus on the post-transcriptional regulations of inflammatory mediators by RNA-binding proteins, especially Regnase-1. Finally, we will discuss the regulatory mechanisms of Regnase-1 and highlight therapeutic strategies based on targeting Regnase-1 activity and its turnover as potential treatment options for chronic and autoimmune diseases.
Collapse
|
25
|
Zhong Y, Yu PB. Decoding the Link Between Inflammation and Pulmonary Arterial Hypertension. Circulation 2022; 146:1023-1025. [PMID: 36154621 PMCID: PMC9669927 DOI: 10.1161/circulationaha.122.059949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ying Zhong
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston
| | - Paul B Yu
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston
| |
Collapse
|