1
|
Yang ZJ, Zhang WF, Jin QQ, Wu ZR, Du YY, Shi H, Qu ZS, Han XJ, Jiang LP. Lactate Contributes to Remote Ischemic Preconditioning-Mediated Protection Against Myocardial Ischemia Reperfusion Injury by Facilitating Autophagy via the AMP-Activated Protein Kinase-Mammalian Target of Rapamycin-Transcription Factor EB-Connexin 43 Axis. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1857-1878. [PMID: 39069170 DOI: 10.1016/j.ajpath.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/06/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Remote ischemic preconditioning (RIPC) exerts a protective role on myocardial ischemia/reperfusion (I/R) injury by the release of various humoral factors. Lactate is a common metabolite in ischemic tissues. Nevertheless, little is known about the role lactate plays in myocardial I/R injury and its underlying mechanism. This investigation revealed that RIPC elevated the level of lactate in blood and myocardium. Furthermore, AZD3965, a selective monocarboxylate transporter 1 inhibitor, and 2-deoxy-d-glucose, a glycolysis inhibitor, mitigated the effects of RIPC-induced elevated lactate in the myocardium and prevented RIPC against myocardial I/R injury. In an in vitro hypoxia/reoxygenation model, lactate markedly mitigated hypoxia/reoxygenation-induced cell damage in H9c2 cells. Further studies suggested that lactate contributed to RIPC, rescuing I/R-induced autophagy deficiency by promoting transcription factor EB (TFEB) translocation to the nucleus through activating the AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) pathway without influencing the phosphatidylinositol 3-kinase-Akt pathway, thus reducing cardiomyocyte damage. Interestingly, lactate up-regulated the mRNA and protein expression of connexin 43 (CX43) by facilitating the binding of TFEB to CX43 promoter in the myocardium. Functionally, silencing of TFEB attenuated the protective effect of lactate on cell damage, which was reversed by overexpression of CX43. Further mechanistic studies suggested that lactate facilitated CX43-regulated autophagy via the AMPK-mTOR-TFEB signaling pathway. Collectively, this research demonstrates that RIPC protects against myocardial I/R injury through lactate-mediated myocardial autophagy via the AMPK-mTOR-TFEB-CX43 axis.
Collapse
Affiliation(s)
- Zhang-Jian Yang
- Jiangxi Provincial Key Laboratory of Drug Targets and Drug Screening, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Pharmacy, 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wei-Fang Zhang
- Department of Pharmacy, 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qing-Qing Jin
- Jiangxi Provincial Key Laboratory of Drug Targets and Drug Screening, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhi-Rong Wu
- Jiangxi Provincial Key Laboratory of Drug Targets and Drug Screening, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yun-Yan Du
- Jiangxi Provincial Key Laboratory of Drug Targets and Drug Screening, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hao Shi
- Jiangxi Provincial Key Laboratory of Drug Targets and Drug Screening, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhen-Sheng Qu
- Jiangxi Provincial Key Laboratory of Drug Targets and Drug Screening, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China.
| | - Li-Ping Jiang
- Jiangxi Provincial Key Laboratory of Drug Targets and Drug Screening, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Zhang T, Zhu Y, Wang X, Chong D, Wang H, Bu D, Zhao M, Fang L, Li C. The characterization of protein lactylation in relation to cardiac metabolic reprogramming in neonatal mouse hearts. J Genet Genomics 2024; 51:735-748. [PMID: 38479452 DOI: 10.1016/j.jgg.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 04/23/2024]
Abstract
In mammals, the neonatal heart can regenerate upon injury within a short time after birth, while adults lose this ability. Metabolic reprogramming has been demonstrated to be critical for cardiomyocyte proliferation in the neonatal heart. Here, we reveal that cardiac metabolic reprogramming could be regulated by altering global protein lactylation. By performing 4D label-free proteomics and lysine lactylation (Kla) omics analyses in mouse hearts at postnatal days 1, 5, and 7, 2297 Kla sites from 980 proteins are identified, among which 1262 Kla sites from 409 proteins are quantified. Functional clustering analysis reveals that the proteins with altered Kla sites are mainly involved in metabolic processes. The expression and Kla levels of proteins in glycolysis show a positive correlation while a negative correlation in fatty acid oxidation. Furthermore, we verify the Kla levels of several differentially modified proteins, including ACAT1, ACADL, ACADVL, PFKM, PKM, and NPM1. Overall, our study reports a comprehensive Kla map in the neonatal mouse heart, which will help to understand the regulatory network of metabolic reprogramming and cardiac regeneration.
Collapse
Affiliation(s)
- Tongyu Zhang
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, National Resource Center for Mutant Mice, Nanjing, Jiangsu 210093, China
| | - Yingxi Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaochen Wang
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, National Resource Center for Mutant Mice, Nanjing, Jiangsu 210093, China
| | - Danyang Chong
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, National Resource Center for Mutant Mice, Nanjing, Jiangsu 210093, China; State Key Laboratory of Reproductive Medicine and Offspring Health, China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Haiquan Wang
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, National Resource Center for Mutant Mice, Nanjing, Jiangsu 210093, China
| | - Dandan Bu
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, National Resource Center for Mutant Mice, Nanjing, Jiangsu 210093, China
| | - Mengfei Zhao
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, National Resource Center for Mutant Mice, Nanjing, Jiangsu 210093, China
| | - Lei Fang
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, National Resource Center for Mutant Mice, Nanjing, Jiangsu 210093, China.
| | - Chaojun Li
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, National Resource Center for Mutant Mice, Nanjing, Jiangsu 210093, China; State Key Laboratory of Reproductive Medicine and Offspring Health, China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
3
|
Xu L, Yang M, Wei A, Wei Z, Qin Y, Wang K, Li B, Chen K, Liu C, Li C, Wang T. Aerobic exercise-induced HIF-1α upregulation in heart failure: exploring potential impacts on MCT1 and MPC1 regulation. Mol Med 2024; 30:83. [PMID: 38867145 PMCID: PMC11167843 DOI: 10.1186/s10020-024-00854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The terminal stage of ischemic heart disease develops into heart failure (HF), which is characterized by hypoxia and metabolic disturbances in cardiomyocytes. The hypoxic failing heart triggers hypoxia-inducible factor-1α (HIF-1α) actions in the cells sensitized to hypoxia and induces metabolic adaptation by accumulating HIF-1α. Furthermore, soluble monocarboxylic acid transporter protein 1 (MCT1) and mitochondrial pyruvate carrier 1 (MPC1), as key nodes of metabolic adaptation, affect metabolic homeostasis in the failing rat heart. Aerobic exercise training has been reported to retard the progression of HF due to enhancing HIF-1α levels as well as MCT1 expressions, whereas the effects of exercise on MCT1 and MPC1 in HF (hypoxia) remain elusive. This research aimed to investigate the action of exercise associated with MCT1 and MPC1 on HF under hypoxia. METHODS The experimental rat models are composed of four study groups: sham stented (SHAM), HF sedentary (HF), HF short-term exercise trained (HF-E1), HF long-term exercise trained (HF-E2). HF was initiated via left anterior descending coronary artery ligation, the effects of exercise on the progression of HF were analyzed by ventricular ultrasound (ejection fraction, fractional shortening) and histological staining. The regulatory effects of HIF-1α on cell growth, MCT1 and MPC1 protein expression in hypoxic H9c2 cells were evaluated by HIF-1α activatort/inhibitor treatment and plasmid transfection. RESULTS Our results indicate the presence of severe pathological remodelling (as evidenced by deep myocardial fibrosis, increased infarct size and abnormal hypertrophy of the myocardium, etc.) and reduced cardiac function in the failing hearts of rats in the HF group compared to the SHAM group. Treadmill exercise training ameliorated myocardial infarction (MI)-induced cardiac pathological remodelling and enhanced cardiac function in HF exercise group rats, and significantly increased the expression of HIF-1α (p < 0.05), MCT1 (p < 0.01) and MPC1 (p < 0.05) proteins compared to HF group rats. Moreover, pharmacological inhibition of HIF-1α in hypoxic H9c2 cells dramatically downregulated MCT1 and MPC1 protein expression. This phenomenon is consistent with knockdown of HIF-1α at the gene level. CONCLUSION The findings propose that long-term aerobic exercise training, as a non- pharmacological treatment, is efficient enough to debilitate the disease process, improve the pathological phenotype, and reinstate cardiac function in HF rats. This benefit is most likely due to activation of myocardial HIF-1α and upregulation of MCT1 and MPC1.
Collapse
Affiliation(s)
- Longfei Xu
- Military Medical Sciences Academy, Tianjin, 300050, China
| | - Miaomiao Yang
- Military Medical Sciences Academy, Tianjin, 300050, China
| | - Aili Wei
- Military Medical Sciences Academy, Tianjin, 300050, China
| | - Zilin Wei
- Military Medical Sciences Academy, Tianjin, 300050, China
| | - Yingkai Qin
- Military Medical Sciences Academy, Tianjin, 300050, China
| | - Kun Wang
- Military Medical Sciences Academy, Tianjin, 300050, China
| | - Bin Li
- No. 950 Hospital of the Chinese People's Liberation Army, Yecheng, 844999, China
| | - Kang Chen
- Military Medical Sciences Academy, Tianjin, 300050, China
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
| | - Chen Liu
- Military Medical Sciences Academy, Tianjin, 300050, China
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
| | - Chao Li
- Military Medical Sciences Academy, Tianjin, 300050, China.
| | - Tianhui Wang
- Military Medical Sciences Academy, Tianjin, 300050, China.
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China.
| |
Collapse
|
4
|
Thorp EB, Karlstaedt A. Intersection of Immunology and Metabolism in Myocardial Disease. Circ Res 2024; 134:1824-1840. [PMID: 38843291 DOI: 10.1161/circresaha.124.323660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/15/2024] [Indexed: 06/12/2024]
Abstract
Immunometabolism is an emerging field at the intersection of immunology and metabolism. Immune cell activation plays a critical role in the pathogenesis of cardiovascular diseases and is integral for regeneration during cardiac injury. We currently possess a limited understanding of the processes governing metabolic interactions between immune cells and cardiomyocytes. The impact of this intercellular crosstalk can manifest as alterations to the steady state flux of metabolites and impact cardiac contractile function. Although much of our knowledge is derived from acute inflammatory response, recent work emphasizes heterogeneity and flexibility in metabolism between cardiomyocytes and immune cells during pathological states, including ischemic, cardiometabolic, and cancer-associated disease. Metabolic adaptation is crucial because it influences immune cell activation, cytokine release, and potential therapeutic vulnerabilities. This review describes current concepts about immunometabolic regulation in the heart, focusing on intercellular crosstalk and intrinsic factors driving cellular regulation. We discuss experimental approaches to measure the cardio-immunologic crosstalk, which are necessary to uncover unknown mechanisms underlying the immune and cardiac interface. Deeper insight into these axes holds promise for therapeutic strategies that optimize cardioimmunology crosstalk for cardiac health.
Collapse
Affiliation(s)
- Edward B Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL (E.B.T.)
| | - Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA (A.K.)
| |
Collapse
|
5
|
Schulman-Geltzer EB, Fulghum KL, Singhal RA, Hill BG, Collins HE. Cardiac mitochondrial metabolism during pregnancy and the postpartum period. Am J Physiol Heart Circ Physiol 2024; 326:H1324-H1335. [PMID: 38551485 DOI: 10.1152/ajpheart.00127.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
The goal of the present study was to characterize changes in mitochondrial respiration in the maternal heart during pregnancy and after birth. Timed pregnancy studies were performed in 12-wk-old female FVB/NJ mice, and cardiac mitochondria were isolated from the following groups of mice: nonpregnant (NP), midpregnancy (MP), late pregnancy (LP), and 1-wk postbirth (PB). Similar to our previous studies, we observed increased heart size during all stages of pregnancy (e.g., MP and LP) and postbirth (e.g., PB) compared with NP mice. Differential cardiac gene and protein expression analyses revealed changes in several mitochondrial transcripts at LP and PB, including several mitochondrial complex subunits and members of the Slc family, important for mitochondrial substrate transport. Respirometry revealed that pyruvate- and glutamate-supported state 3 respiration was significantly higher in PB vs. LP mitochondria, with respiratory control ratio (RCR) values higher in PB mitochondria. In addition, we found that PB mitochondria respired more avidly when given 3-hydroxybutyrate (3-OHB) than mitochondria from NP, MP, and LP hearts, with no differences in RCR. These increases in respiration in PB hearts occurred independent of changes in mitochondrial yield but were associated with higher abundance of 3-hydroxybutyrate dehydrogenase 1. Collectively, these findings suggest that, after birth, maternal cardiac mitochondria have an increased capacity to use 3-OHB, pyruvate, and glutamate as energy sources; however, increases in mitochondrial efficiency in the postpartum heart appear limited to carbohydrate and amino acid metabolism.NEW & NOTEWORTHY Few studies have detailed the physiological adaptations that occur in the maternal heart. We and others have shown that pregnancy-induced cardiac growth is associated with significant changes in cardiac metabolism. Here, we examined mitochondrial respiration and substrate preference in isolated mitochondria from the maternal heart. We show that following birth, cardiac mitochondria are "primed" to respire on carbohydrate, amino acid, and ketone bodies. However, heightened respiratory efficiency is observed only with carbohydrate and amino acid sources. These results suggest that significant changes in mitochondrial respiration occur in the maternal heart in the postpartum period.
Collapse
Affiliation(s)
- Emily B Schulman-Geltzer
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic ScienceChristina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky, United States
| | - Kyle L Fulghum
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic ScienceChristina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky, United States
| | - Richa A Singhal
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic ScienceChristina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky, United States
| | - Bradford G Hill
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic ScienceChristina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky, United States
| | - Helen E Collins
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic ScienceChristina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky, United States
| |
Collapse
|
6
|
Hørsdal OK, Moeslund N, Berg-Hansen K, Nielsen R, Møller N, Eiskjær H, Wiggers H, Gopalasingam N. Lactate infusion elevates cardiac output through increased heart rate and decreased vascular resistance: a randomised, blinded, crossover trial in a healthy porcine model. J Transl Med 2024; 22:285. [PMID: 38493167 PMCID: PMC10943846 DOI: 10.1186/s12967-024-05064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Lactate is traditionally recognized as a by-product of anaerobic metabolism. However, lactate is a preferred oxidative substrate for stressed myocardium. Exogenous lactate infusion increases cardiac output (CO). The exact mechanism underlying this mechanism has yet to be elucidated. The aim of this study was to investigate the cardiovascular mechanisms underlying the acute haemodynamic effects of exogenous lactate infusion in an experimental model of human-sized pigs. METHODS In this randomised, blinded crossover study in eight 60-kg-pigs, the pigs received infusions with one molar sodium lactate and a control infusion of tonicity matched hypertonic saline in random order. We measured CO and pulmonary pressures using a pulmonary artery catheter. A pressure-volume admittance catheter in the left ventricle was used to measure contractility, afterload, preload and work-related parameters. RESULTS Lactate infusion increased circulating lactate levels by 9.9 mmol/L (95% confidence interval (CI) 9.1 to 11.0) and CO by 2.0 L/min (95% CI 1.2 to 2.7). Afterload decreased as arterial elastance fell by -1.0 mmHg/ml (95% CI -2.0 to -0.1) and systemic vascular resistance decreased by -548 dynes/s/cm5 (95% CI -261 to -835). Mixed venous saturation increased by 11 percentage points (95% CI 6 to 16), whereas ejection fraction increased by 16.0 percentage points (95% CI 1.1 to 32.0) and heart rate by 21 bpm (95% CI 8 to 33). No significant changes in contractility nor preload were observed. CONCLUSION Lactate infusion increased cardiac output by increasing heart rate and lowering afterload. No differences were observed in left ventricular contractility or preload. Lactate holds potential as a treatment in situations with lowered CO and should be investigated in future clinical studies.
Collapse
Affiliation(s)
- Oskar Kjærgaard Hørsdal
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Moeslund
- Department of Heart, Lung, and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Kristoffer Berg-Hansen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Roni Nielsen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Møller
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Metabolism, Aarhus University Hospital, Aarhus, Denmark
| | - Hans Eiskjær
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Henrik Wiggers
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nigopan Gopalasingam
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Cardiology, Gødstrup Hospital, Herning, Denmark.
| |
Collapse
|
7
|
Pagano M, Corallo F, D’Aleo P, Duca A, Bramanti P, Bramanti A, Cappadona I. A Set of Possible Markers for Monitoring Heart Failure and Cognitive Impairment Associated: A Review of Literature from the Past 5 Years. Biomolecules 2024; 14:185. [PMID: 38397422 PMCID: PMC10886491 DOI: 10.3390/biom14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Heart failure is an epidemiologically relevant disease because of the aging population and widespread lifestyles that promote it. In addition to the acute event, it is possible for the disease to become chronic with periodic flare-ups. It is essential to study pathology from a diagnostic and prognostic point of view and to identify parameters for effective monitoring. In addition, heart failure is associated with multiple comorbidities, including cognitive impairment, which is monitored clinically but not through specific biomarkers in these patients. The purpose of this review is to gather the most recent scientific evidence on a few possible biomarkers previously identified for monitoring heart failure and associated cognitive impairment. METHODS We surveyed studies inherent to a set of previously identified markers, evaluating English-language articles from the past five years conducted in adult heart failure patient populations. We used the databases PubMed, Web of Sciences, and Cochrane Library for search studies, and we considered articles published in journals with an impact factor greater than five in the publication year. RESULTS Among the biomarkers evaluated, a concordant indication for serial measurements for heart failure monitoring emerged only for interleukin-6. For the other markers, there is still little evidence available, which is interesting but sometimes conflicting. Interesting studies have also emerged for biomarkers of cognitive decline assessed in patients with heart failure, confirming the hypotheses of the increasingly studied heart-brain correlation. CONCLUSION Certainly, further studies in large populations are needed to identify effective biomarkers for monitoring heart failure and associated cognitive impairment.
Collapse
Affiliation(s)
- Maria Pagano
- IRCCS Centro Neurolesi Bonino-Pulejo, Via Palermo, S.S. 113, C.da Casazza, 98124 Messina, Italy; (M.P.); (P.D.); (A.D.); (P.B.); (I.C.)
| | - Francesco Corallo
- IRCCS Centro Neurolesi Bonino-Pulejo, Via Palermo, S.S. 113, C.da Casazza, 98124 Messina, Italy; (M.P.); (P.D.); (A.D.); (P.B.); (I.C.)
| | - Piercataldo D’Aleo
- IRCCS Centro Neurolesi Bonino-Pulejo, Via Palermo, S.S. 113, C.da Casazza, 98124 Messina, Italy; (M.P.); (P.D.); (A.D.); (P.B.); (I.C.)
| | - Antonio Duca
- IRCCS Centro Neurolesi Bonino-Pulejo, Via Palermo, S.S. 113, C.da Casazza, 98124 Messina, Italy; (M.P.); (P.D.); (A.D.); (P.B.); (I.C.)
| | - Placido Bramanti
- IRCCS Centro Neurolesi Bonino-Pulejo, Via Palermo, S.S. 113, C.da Casazza, 98124 Messina, Italy; (M.P.); (P.D.); (A.D.); (P.B.); (I.C.)
- Faculty of Psychology, Università degli Studi eCampus, Via Isimbardi 10, 22060 Novedrate, Italy
| | - Alessia Bramanti
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy;
| | - Irene Cappadona
- IRCCS Centro Neurolesi Bonino-Pulejo, Via Palermo, S.S. 113, C.da Casazza, 98124 Messina, Italy; (M.P.); (P.D.); (A.D.); (P.B.); (I.C.)
| |
Collapse
|
8
|
Ouyang J, Wang H, Huang J. The role of lactate in cardiovascular diseases. Cell Commun Signal 2023; 21:317. [PMID: 37924124 PMCID: PMC10623854 DOI: 10.1186/s12964-023-01350-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/06/2023] [Indexed: 11/06/2023] Open
Abstract
Cardiovascular diseases pose a major threat worldwide. Common cardiovascular diseases include acute myocardial infarction (AMI), heart failure, atrial fibrillation (AF) and atherosclerosis. Glycolysis process often has changed during these cardiovascular diseases. Lactate, the end-product of glycolysis, has been overlooked in the past but has gradually been identified to play major biological functions in recent years. Similarly, the role of lactate in cardiovascular disease is gradually being recognized. Targeting lactate production, regulating lactate transport, and modulating circulating lactate levels may serve as potential strategies for the treatment of cardiovascular diseases in the future. The purpose of this review is to integrate relevant clinical and basic research on the role of lactate in the pathophysiological process of cardiovascular disease in recent years to clarify the important role of lactate in cardiovascular disease and to guide further studies exploring the role of lactate in cardiovascular and other diseases. Video Abstract.
Collapse
Affiliation(s)
- Jun Ouyang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hui Wang
- School of Pharmacy, Guangxi Medical University, Nanning, China.
| | - Jiangnan Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
9
|
Packer M. SGLT2 inhibitors: role in protective reprogramming of cardiac nutrient transport and metabolism. Nat Rev Cardiol 2023; 20:443-462. [PMID: 36609604 DOI: 10.1038/s41569-022-00824-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/09/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce heart failure events by direct action on the failing heart that is independent of changes in renal tubular function. In the failing heart, nutrient transport into cardiomyocytes is increased, but nutrient utilization is impaired, leading to deficient ATP production and the cytosolic accumulation of deleterious glucose and lipid by-products. These by-products trigger downregulation of cytoprotective nutrient-deprivation pathways, thereby promoting cellular stress and undermining cellular survival. SGLT2 inhibitors restore cellular homeostasis through three complementary mechanisms: they might bind directly to nutrient-deprivation and nutrient-surplus sensors to promote their cytoprotective actions; they can increase the synthesis of ATP by promoting mitochondrial health (mediated by increasing autophagic flux) and potentially by alleviating the cytosolic deficiency in ferrous iron; and they might directly inhibit glucose transporter type 1, thereby diminishing the cytosolic accumulation of toxic metabolic by-products and promoting the oxidation of long-chain fatty acids. The increase in autophagic flux mediated by SGLT2 inhibitors also promotes the clearance of harmful glucose and lipid by-products and the disposal of dysfunctional mitochondria, allowing for mitochondrial renewal through mitochondrial biogenesis. This Review describes the orchestrated interplay between nutrient transport and metabolism and nutrient-deprivation and nutrient-surplus signalling, to explain how SGLT2 inhibitors reverse the profound nutrient, metabolic and cellular abnormalities observed in heart failure, thereby restoring the myocardium to a healthy molecular and cellular phenotype.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX, USA.
- Imperial College London, London, UK.
| |
Collapse
|
10
|
Wu P, Zhu T, Huang Y, Fang Z, Luo F. Current understanding of the contribution of lactate to the cardiovascular system and its therapeutic relevance. Front Endocrinol (Lausanne) 2023; 14:1205442. [PMID: 37396168 PMCID: PMC10309561 DOI: 10.3389/fendo.2023.1205442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Research during the past decades has yielded numerous insights into the presence and function of lactate in the body. Lactate is primarily produced via glycolysis and plays special roles in the regulation of tissues and organs, particularly in the cardiovascular system. In addition to being a net consumer of lactate, the heart is also the organ in the body with the greatest lactate consumption. Furthermore, lactate maintains cardiovascular homeostasis through energy supply and signal regulation under physiological conditions. Lactate also affects the occurrence, development, and prognosis of various cardiovascular diseases. We will highlight how lactate regulates the cardiovascular system under physiological and pathological conditions based on evidence from recent studies. We aim to provide a better understanding of the relationship between lactate and cardiovascular health and provide new ideas for preventing and treating cardiovascular diseases. Additionally, we will summarize current developments in treatments targeting lactate metabolism, transport, and signaling, including their role in cardiovascular diseases.
Collapse
Affiliation(s)
- Panyun Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Tengteng Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiyuan Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenfei Fang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Fei Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Hatami H, Sajedi A, Mir SM, Memar MY. Importance of lactate dehydrogenase (LDH) and monocarboxylate transporters (MCTs) in cancer cells. Health Sci Rep 2023; 6:e996. [PMID: 36570342 PMCID: PMC9768844 DOI: 10.1002/hsr2.996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background In most regions, cancer ranks the second most frequent cause of death following cardiovascular disorders. Aim In this article, we review the various aspects of glycolysis with a focus on types of MCTs and the importance of lactate in cancer cells. Results and Discussion Metabolic changes are one of the first and most important alterations in cancer cells. Cancer cells use different pathways to survive, energy generation, growth, and proliferation compared to normal cells. The increase in glycolysis, which produces substances such as lactate and pyruvate, has an important role in metastases and invasion of cancer cells. Two important cellular proteins that play a role in the production and transport of lactate include lactate dehydrogenase and monocarboxylate transporters (MCTs). These molecules by their various isoforms and different tissue distribution help to escape the immune system and expansion of cancer cells under different conditions.
Collapse
Affiliation(s)
- Hamed Hatami
- Department of Immunology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Atefe Sajedi
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
| | - Seyed Mostafa Mir
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Clinical Biochemistry, Faculty of MedicineGolestan University of Medical SciencesGorganIran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
12
|
Prag HA, Aksentijevic D, Dannhorn A, Giles AV, Mulvey JF, Sauchanka O, Du L, Bates G, Reinhold J, Kula-Alwar D, Xu Z, Pellerin L, Goodwin RJA, Murphy MP, Krieg T. Ischemia-Selective Cardioprotection by Malonate for Ischemia/Reperfusion Injury. Circ Res 2022; 131:528-541. [PMID: 35959683 PMCID: PMC9426742 DOI: 10.1161/circresaha.121.320717] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Inhibiting SDH (succinate dehydrogenase), with the competitive inhibitor malonate, has shown promise in ameliorating ischemia/reperfusion injury. However, key for translation to the clinic is understanding the mechanism of malonate entry into cells to enable inhibition of SDH, its mitochondrial target, as malonate itself poorly permeates cellular membranes. The possibility of malonate selectively entering the at-risk heart tissue on reperfusion, however, remains unexplored. METHODS C57BL/6J mice, C2C12 and H9c2 myoblasts, and HeLa cells were used to elucidate the mechanism of selective malonate uptake into the ischemic heart upon reperfusion. Cells were treated with malonate while varying pH or together with transport inhibitors. Mouse hearts were either perfused ex vivo (Langendorff) or subjected to in vivo left anterior descending coronary artery ligation as models of ischemia/reperfusion injury. Succinate and malonate levels were assessed by liquid chromatography-tandem mass spectrometry LC-MS/MS, in vivo by mass spectrometry imaging, and infarct size by TTC (2,3,5-triphenyl-2H-tetrazolium chloride) staining. RESULTS Malonate was robustly protective against cardiac ischemia/reperfusion injury, but only if administered at reperfusion and not when infused before ischemia. The extent of malonate uptake into the heart was proportional to the duration of ischemia. Malonate entry into cardiomyocytes in vivo and in vitro was dramatically increased at the low pH (≈6.5) associated with ischemia. This increased uptake of malonate was blocked by selective inhibition of MCT1 (monocarboxylate transporter 1). Reperfusion of the ischemic heart region with malonate led to selective SDH inhibition in the at-risk region. Acid-formulation greatly enhances the cardioprotective potency of malonate. CONCLUSIONS Cardioprotection by malonate is dependent on its entry into cardiomyocytes. This is facilitated by the local decrease in pH that occurs during ischemia, leading to its selective uptake upon reperfusion into the at-risk tissue, via MCT1. Thus, malonate's preferential uptake in reperfused tissue means it is an at-risk tissue-selective drug that protects against cardiac ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Hiran A. Prag
- Department of Medicine (H.A.P., A.V.G., J.F.M., O.S., D.K.-A., M.P.M., T.K.), University of Cambridge, United Kingdom.,MRC Mitochondrial Biology Unit (H.A.P., A.V.G., G.B., J.R., M.M.P.), University of Cambridge, United Kingdom
| | - Dunja Aksentijevic
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (D.A.)
| | - Andreas Dannhorn
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom (A.D., R.J.A.G.)
| | - Abigail V. Giles
- Department of Medicine (H.A.P., A.V.G., J.F.M., O.S., D.K.-A., M.P.M., T.K.), University of Cambridge, United Kingdom.,MRC Mitochondrial Biology Unit (H.A.P., A.V.G., G.B., J.R., M.M.P.), University of Cambridge, United Kingdom.,Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, Bethesda, MD (A.V.G.)
| | - John F. Mulvey
- Department of Medicine (H.A.P., A.V.G., J.F.M., O.S., D.K.-A., M.P.M., T.K.), University of Cambridge, United Kingdom
| | - Olga Sauchanka
- Department of Medicine (H.A.P., A.V.G., J.F.M., O.S., D.K.-A., M.P.M., T.K.), University of Cambridge, United Kingdom
| | - Luping Du
- Department of Physiology and Pathophysiology, Tianjin Medical University, China (L.D., Z.X.)
| | - Georgina Bates
- MRC Mitochondrial Biology Unit (H.A.P., A.V.G., G.B., J.R., M.M.P.), University of Cambridge, United Kingdom
| | - Johannes Reinhold
- MRC Mitochondrial Biology Unit (H.A.P., A.V.G., G.B., J.R., M.M.P.), University of Cambridge, United Kingdom.,Faculty of Medicine and Health Sciences, University of East Anglia, Norwich Research Park (J.R.)
| | - Duvaraka Kula-Alwar
- Department of Medicine (H.A.P., A.V.G., J.F.M., O.S., D.K.-A., M.P.M., T.K.), University of Cambridge, United Kingdom
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, Tianjin Medical University, China (L.D., Z.X.)
| | - Luc Pellerin
- Département de Physiologie, Université de Lausanne, Switzerland (L.P.).,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, LabEx TRAIL-IBIO, Université de Bordeaux, France (L.P.).,Inserm U1313, Université et CHU de Poitiers, France (L.P.)
| | - Richard J. A. Goodwin
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom (A.D., R.J.A.G.).,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom (R.J.A.G.)
| | - Michael P. Murphy
- Department of Medicine (H.A.P., A.V.G., J.F.M., O.S., D.K.-A., M.P.M., T.K.), University of Cambridge, United Kingdom.,MRC Mitochondrial Biology Unit (H.A.P., A.V.G., G.B., J.R., M.M.P.), University of Cambridge, United Kingdom
| | - Thomas Krieg
- Department of Medicine (H.A.P., A.V.G., J.F.M., O.S., D.K.-A., M.P.M., T.K.), University of Cambridge, United Kingdom
| |
Collapse
|
13
|
Gruszczyk AV, Casey AM, James AM, Prag HA, Burger N, Bates GR, Hall AR, Allen FM, Krieg T, Saeb-Parsy K, Murphy MP. Mitochondrial metabolism and bioenergetic function in an anoxic isolated adult mouse cardiomyocyte model of in vivo cardiac ischemia-reperfusion injury. Redox Biol 2022; 54:102368. [PMID: 35749842 PMCID: PMC9234472 DOI: 10.1016/j.redox.2022.102368] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 12/20/2022] Open
Abstract
Cell models of cardiac ischemia-reperfusion (IR) injury are essential to facilitate understanding, but current monolayer cell models poorly replicate the in vivo IR injury that occurs within a three-dimensional tissue. Here we show that this is for two reasons: the residual oxygen present in many cellular hypoxia models sustains mitochondrial oxidative phosphorylation; and the loss of lactate from cells into the incubation medium during ischemia enables cells to sustain glycolysis. To overcome these limitations, we incubated isolated adult mouse cardiomyocytes anoxically while inhibiting lactate efflux. These interventions recapitulated key markers of in vivo ischemia, notably the accumulation of succinate and the loss of adenine nucleotides. Upon reoxygenation after anoxia the succinate that had accumulated during anoxia was rapidly oxidized in association with extensive mitochondrial superoxide/hydrogen peroxide production and cell injury, mimicking reperfusion injury. This cell model will enable key aspects of cardiac IR injury to be assessed in vitro.
Collapse
Affiliation(s)
- Anja V Gruszczyk
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK; Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 2QQ, UK; NIHR Biomedical Research Centre and NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge Biomedical Campus, Cambridge, UK
| | - Alva M Casey
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Andrew M James
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Nils Burger
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Georgina R Bates
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Andrew R Hall
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Fay M Allen
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 2QQ, UK; NIHR Biomedical Research Centre and NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge Biomedical Campus, Cambridge, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
14
|
Karlstaedt A, Barrett M, Hu R, Gammons ST, Ky B. Cardio-Oncology: Understanding the Intersections Between Cardiac Metabolism and Cancer Biology. JACC Basic Transl Sci 2021; 6:705-718. [PMID: 34466757 PMCID: PMC8385559 DOI: 10.1016/j.jacbts.2021.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/24/2022]
Abstract
An important priority in the cardiovascular care of oncology patients is to reduce morbidity and mortality, and improve the quality of life in cancer survivors through cross-disciplinary efforts. The rate of survival in cancer patients has improved dramatically over the past decades. Nonetheless, survivors may be more likely to die from cardiovascular disease in the long term, secondary, not only to the potential toxicity of cancer therapeutics, but also to the biology of cancer. In this context, efforts from basic and translational studies are crucial to understanding the molecular mechanisms causal to cardiovascular disease in cancer patients and survivors, and identifying new therapeutic targets that may prevent and treat both diseases. This review aims to highlight our current understanding of the metabolic interaction between cancer and the heart, including potential therapeutic targets. An overview of imaging techniques that can support both research studies and clinical management is also provided. Finally, this review highlights opportunities and challenges that are necessary to advance our understanding of metabolism in the context of cardio-oncology.
Collapse
Key Words
- 99mTc-MIBI, 99mtechnetium-sestamibi
- CVD, cardiovascular disease
- D2-HG, D-2-hydroxyglutarate
- FAO, fatty acid oxidation
- FASN, fatty acid synthase
- GLS, glutaminase
- HF, heart failure
- IDH, isocitrate dehydrogenase
- IGF, insulin-like growth factor
- MCT1, monocarboxylate transporter 1
- MRS, magnetic resonance spectroscopy
- PDH, pyruvate dehydrogenase
- PET, positron emission tomography
- PI3K, insulin-activated phosphoinositide-3-kinase
- PTM, post-translational modification
- SGLT2, sodium glucose co-transporter 2
- TRF, time-restricted feeding
- [18F]FDG, 2-deoxy-2-[fluorine-18]fluoro-D-glucose
- cancer
- cardio-oncology
- heart failure
- metabolism
- oncometabolism
- α-KG, α-ketoglutarate
Collapse
Affiliation(s)
- Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Matthew Barrett
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ray Hu
- Departments of Medicine and Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Seth Thomas Gammons
- Department of Cancer Systems Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Bonnie Ky
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Departments of Medicine and Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Flores-Guerrero JL, Westenbrink BD, Connelly MA, Otvos JD, Groothof D, Shalaurova I, Garcia E, Navis G, de Boer RA, Bakker SJL, Dullaart RPF. Association of beta-hydroxybutyrate with development of heart failure: Sex differences in a Dutch population cohort. Eur J Clin Invest 2021; 51:e13468. [PMID: 33616911 PMCID: PMC8244065 DOI: 10.1111/eci.13468] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/05/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND In the failing heart, energy metabolism is shifted towards increased ketone body oxidation. Nevertheless, the association of beta-hydroxybutyrate (β-OHB) with development of heart failure (HF) remains unclear. We investigated the association between plasma β-OHB and the risk of HF in a prospective population-based cohort. DESIGN Plasma β-OHB concentrations were measured in 6134 participants of the PREVEND study. Risk of incident HF with reduced (HFrEF) or preserved (HFpEF) ejection fraction was estimated using multivariable-adjusted Cox regression models. RESULTS During median follow-up for 8.2 years, 227 subjects were diagnosed with HF (137 with HFrEF; 90 with HFpEF). Cox regression analyses revealed a significant association of higher β-OHB concentrations with incident HF (HR per 1 standard deviation increase, 1.40 (95% CI: 1.21-1.63; P < .001), which was largely attributable to HFrEF. In women, the hazard ratio (HR) for HFrEF per 1 standard deviation increase in β-OHB was 1.73 (95% confidence interval (CI): 1.17-2.56, P = .005) in age, BMI, type 2 diabetes, hypertension, myocardial infarction, smoking, alcohol consumption, total cholesterol, HDL-C, triglycerides, glucose, eGFR and UAE adjusted analysis. In men, in the same fully adjusted analysis, the HR was 1.14 (CI: 0.86-1.53, P = .36) (P < .01 for sex interaction). In N-terminal pro-brain natriuretic peptide (NT-proBNP)-stratified analysis, the age-adjusted association with HF was significant in women with higher NT-proBNP levels (P = .008). CONCLUSIONS This prospective study suggests that high plasma concentrations of β-OHB are associated with an increased risk of HFrEF, particularly in women. The mechanisms responsible for the sex differences of this association warrant further study.
Collapse
Affiliation(s)
- Jose L Flores-Guerrero
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Berend Daan Westenbrink
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Margery A Connelly
- Laboratory Corporation of America Holdings (LabCorp), Morrisville, NC, USA
| | - James D Otvos
- Laboratory Corporation of America Holdings (LabCorp), Morrisville, NC, USA
| | - Dion Groothof
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Irina Shalaurova
- Laboratory Corporation of America Holdings (LabCorp), Morrisville, NC, USA
| | - Erwin Garcia
- Laboratory Corporation of America Holdings (LabCorp), Morrisville, NC, USA
| | - Gerjan Navis
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robin P F Dullaart
- Department of Internal Medicine, Division of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Peper J, Kownatzki-Danger D, Weninger G, Seibertz F, Pronto JRD, Sutanto H, Pacheu-Grau D, Hindmarsh R, Brandenburg S, Kohl T, Hasenfuss G, Gotthardt M, Rog-Zielinska EA, Wollnik B, Rehling P, Urlaub H, Wegener J, Heijman J, Voigt N, Cyganek L, Lenz C, Lehnart SE. Caveolin3 Stabilizes McT1-Mediated Lactate/Proton Transport in Cardiomyocytes. Circ Res 2021; 128:e102-e120. [PMID: 33486968 DOI: 10.1161/circresaha.119.316547] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jonas Peper
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen (J.P., D.K.-D., G.W., S.B., T.K., G.H., J.W., S.E.L.), University Medical Center Göttingen.,Cardiology & Pneumology (J.P., D.K.-D., G.W., R.H., S.B., T.K., G.H., J.W., L.C., S.E.L.), University Medical Center Göttingen
| | - Daniel Kownatzki-Danger
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen (J.P., D.K.-D., G.W., S.B., T.K., G.H., J.W., S.E.L.), University Medical Center Göttingen.,Cardiology & Pneumology (J.P., D.K.-D., G.W., R.H., S.B., T.K., G.H., J.W., L.C., S.E.L.), University Medical Center Göttingen
| | - Gunnar Weninger
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen (J.P., D.K.-D., G.W., S.B., T.K., G.H., J.W., S.E.L.), University Medical Center Göttingen.,Cardiology & Pneumology (J.P., D.K.-D., G.W., R.H., S.B., T.K., G.H., J.W., L.C., S.E.L.), University Medical Center Göttingen
| | - Fitzwilliam Seibertz
- Institute of Pharmacology and Toxicology (F.S., J.R.D.P., N.V.), University Medical Center Göttingen.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen (F.S., S.B., T.K., G.H., J.W., N.V., L.C., S.E.L.)
| | - Julius Ryan D Pronto
- Institute of Pharmacology and Toxicology (F.S., J.R.D.P., N.V.), University Medical Center Göttingen
| | - Henry Sutanto
- Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University (H.S., J.H.)
| | - David Pacheu-Grau
- Cellular Biochemistry, University Medical Center, Georg-August-University (D.P.G., P.R.)
| | - Robin Hindmarsh
- Cardiology & Pneumology (J.P., D.K.-D., G.W., R.H., S.B., T.K., G.H., J.W., L.C., S.E.L.), University Medical Center Göttingen
| | - Sören Brandenburg
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen (J.P., D.K.-D., G.W., S.B., T.K., G.H., J.W., S.E.L.), University Medical Center Göttingen.,Cardiology & Pneumology (J.P., D.K.-D., G.W., R.H., S.B., T.K., G.H., J.W., L.C., S.E.L.), University Medical Center Göttingen.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen (F.S., S.B., T.K., G.H., J.W., N.V., L.C., S.E.L.)
| | - Tobias Kohl
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen (J.P., D.K.-D., G.W., S.B., T.K., G.H., J.W., S.E.L.), University Medical Center Göttingen.,Cardiology & Pneumology (J.P., D.K.-D., G.W., R.H., S.B., T.K., G.H., J.W., L.C., S.E.L.), University Medical Center Göttingen.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen (F.S., S.B., T.K., G.H., J.W., N.V., L.C., S.E.L.)
| | - Gerd Hasenfuss
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen (J.P., D.K.-D., G.W., S.B., T.K., G.H., J.W., S.E.L.), University Medical Center Göttingen.,Cardiology & Pneumology (J.P., D.K.-D., G.W., R.H., S.B., T.K., G.H., J.W., L.C., S.E.L.), University Medical Center Göttingen.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen (F.S., S.B., T.K., G.H., J.W., N.V., L.C., S.E.L.).,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen (G.H., B.W., P.R., N.V., S.E.L.)
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin (M.G.).,Cardiology, Virchow Klinikum, Charité-University Medicine, Berlin (M.G.).,DZHK (German Center for Cardiovascular Research), partner site Berlin (M.G.)
| | - Eva A Rog-Zielinska
- University Heart Center, Faculty of Medicine, University of Freiburg (E.A.R.-Z.)
| | - Bernd Wollnik
- Institute of Human Genetics (B.W.), University Medical Center Göttingen.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen (G.H., B.W., P.R., N.V., S.E.L.)
| | - Peter Rehling
- Cellular Biochemistry, University Medical Center, Georg-August-University (D.P.G., P.R.).,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen (G.H., B.W., P.R., N.V., S.E.L.)
| | - Henning Urlaub
- Bioanalytics, Institute of Clinical Chemistry (H.U., C.L.), University Medical Center Göttingen.,Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen (H.U., C.L.)
| | - Jörg Wegener
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen (J.P., D.K.-D., G.W., S.B., T.K., G.H., J.W., S.E.L.), University Medical Center Göttingen.,Cardiology & Pneumology (J.P., D.K.-D., G.W., R.H., S.B., T.K., G.H., J.W., L.C., S.E.L.), University Medical Center Göttingen.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen (F.S., S.B., T.K., G.H., J.W., N.V., L.C., S.E.L.)
| | - Jordi Heijman
- Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University (H.S., J.H.)
| | - Niels Voigt
- Institute of Pharmacology and Toxicology (F.S., J.R.D.P., N.V.), University Medical Center Göttingen.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen (F.S., S.B., T.K., G.H., J.W., N.V., L.C., S.E.L.).,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen (G.H., B.W., P.R., N.V., S.E.L.)
| | - Lukas Cyganek
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen (F.S., S.B., T.K., G.H., J.W., N.V., L.C., S.E.L.)
| | - Christof Lenz
- Bioanalytics, Institute of Clinical Chemistry (H.U., C.L.), University Medical Center Göttingen.,Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen (H.U., C.L.)
| | - Stephan E Lehnart
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen (J.P., D.K.-D., G.W., S.B., T.K., G.H., J.W., S.E.L.), University Medical Center Göttingen.,Cardiology & Pneumology (J.P., D.K.-D., G.W., R.H., S.B., T.K., G.H., J.W., L.C., S.E.L.), University Medical Center Göttingen.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen (F.S., S.B., T.K., G.H., J.W., N.V., L.C., S.E.L.).,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen (G.H., B.W., P.R., N.V., S.E.L.).,BioMET, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore (S.E.L.)
| |
Collapse
|
17
|
Xie H, Xu G, Gao Y, Yuan Z. hCINAP serves a critical role in hypoxia‑induced cardiomyocyte apoptosis via modulating lactate production and mitochondrial‑mediated apoptosis signaling. Mol Med Rep 2020; 23:109. [PMID: 33300073 PMCID: PMC7723068 DOI: 10.3892/mmr.2020.11748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Acute myocardial infarction (AMI) is a major cause of heart failure and is associated with insufficient myocardial oxygen supply. However, the molecular mechanisms underlying hypoxia‑induced cardiomyocyte apoptosis are not completely understood. In the present study, the role of human coilin interacting nuclear ATPase protein (hCINAP) in cardiomyocytes was investigated. AC16 cells were divided into the following four groups: i) Small interfering (si)RNA‑control (Ctrl); (ii) siRNA‑hCINAP; (iii) empty vector; and (iv) hCINAP‑Flag. Protein expression was assessed using western blotting. MTT and apoptosis assays were conducted to detect cell viability and apoptosis, respectively. CCK8 assays and apoptosis assays were used to detect cell viability and apoptosis, respectively. hCINAP promoter activity was examined by luciferase reporter assay. hCINAP expression was induced in a hypoxia‑inducible factor‑1α‑dependent manner under hypoxic conditions. Compared with the siRNA‑Ctrl group, hCINAP knockdown inhibited apoptosis, whereas compared with the vector group, hCINAP overexpression increased apoptosis under hypoxic conditions. Mechanistically, compared with the siRNA‑Ctrl group, hCINAP knockdown decreased hypoxia‑induced lactate accumulation via regulating lactate dehydrogenase A activity. Moreover, the results indicated that hCINAP was associated with mitochondrial‑mediated apoptosis via Caspase signaling. Collectively, the present study suggested that hCINAP was an important regulator in hypoxia‑induced apoptosis and may serve as a promising therapeutic target for AMI.
Collapse
Affiliation(s)
- Hebing Xie
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Gang Xu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Yuqi Gao
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Zhibin Yuan
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| |
Collapse
|
18
|
Lee SH, Hadipour-Lakmehsari S, Kim DH, Di Paola M, Kuzmanov U, Shah S, Lee JJH, Kislinger T, Sharma P, Oudit GY, Gramolini AO. Bioinformatic analysis of membrane and associated proteins in murine cardiomyocytes and human myocardium. Sci Data 2020; 7:425. [PMID: 33262348 PMCID: PMC7708497 DOI: 10.1038/s41597-020-00762-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
In the current study we examined several proteomic- and RNA-Seq-based datasets of cardiac-enriched, cell-surface and membrane-associated proteins in human fetal and mouse neonatal ventricular cardiomyocytes. By integrating available microarray and tissue expression profiles with MGI phenotypic analysis, we identified 173 membrane-associated proteins that are cardiac-enriched, conserved amongst eukaryotic species, and have not yet been linked to a 'cardiac' Phenotype-Ontology. To highlight the utility of this dataset, we selected several proteins to investigate more carefully, including FAM162A, MCT1, and COX20, to show cardiac enrichment, subcellular distribution and expression patterns in disease. We performed three-dimensional confocal imaging analysis to validate subcellular localization and expression in adult mouse ventricular cardiomyocytes. FAM162A, MCT1, and COX20 were expressed differentially at the transcriptomic and proteomic levels in multiple models of mouse and human heart diseases and may represent potential diagnostic and therapeutic targets for human dilated and ischemic cardiomyopathies. Altogether, we believe this comprehensive cardiomyocyte membrane proteome dataset will prove instrumental to future investigations aimed at characterizing heart disease markers and/or therapeutic targets for heart failure.
Collapse
Affiliation(s)
- Shin-Haw Lee
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, M5G 1M1, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1M8, Canada
| | - Sina Hadipour-Lakmehsari
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, M5G 1M1, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1M8, Canada
| | - Da Hye Kim
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, M5G 1M1, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1M8, Canada
| | - Michelle Di Paola
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, M5G 1M1, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1M8, Canada
| | - Uros Kuzmanov
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, M5G 1M1, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1M8, Canada
| | - Saumya Shah
- Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, Edmonton, Alberta, T6G 2B7, Canada
| | - Joseph Jong-Hwan Lee
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, M5G 1M1, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1M8, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Research Centre, Toronto, Ontario, M5G 1L8, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Parveen Sharma
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1M8, Canada
- Department of Cardiovascular & Metabolic Medicine, University of Liverpool, Liverpool, L69 3GE, UK
| | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, Edmonton, Alberta, T6G 2B7, Canada
| | - Anthony O Gramolini
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, M5G 1M1, Canada.
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1M8, Canada.
| |
Collapse
|
19
|
Lopaschuk GD, Karwi QG, Ho KL, Pherwani S, Ketema EB. Ketone metabolism in the failing heart. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158813. [PMID: 32920139 DOI: 10.1016/j.bbalip.2020.158813] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/26/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022]
Abstract
The high energy demands of the heart are met primarily by the mitochondrial oxidation of fatty acids and glucose. However, in heart failure there is a decrease in cardiac mitochondrial oxidative metabolism and glucose oxidation that can lead to an energy starved heart. Ketone bodies are readily oxidized by the heart, and can provide an additional source of energy for the failing heart. Ketone oxidation is increased in the failing heart, which may be an adaptive response to lessen the severity of heart failure. While ketone have been widely touted as a "thrifty fuel", increasing ketone oxidation in the heart does not increase cardiac efficiency (cardiac work/oxygen consumed), but rather does provide an additional fuel source for the failing heart. Increasing ketone supply to the heart and increasing mitochondrial ketone oxidation increases mitochondrial tricarboxylic acid cycle activity. In support of this, increasing circulating ketone by iv infusion of ketone bodies acutely improves heart function in heart failure patients. Chronically, treatment with sodium glucose co-transporter 2 inhibitors, which decreases the severity of heart failure, also increases ketone body supply to the heart. While ketogenic diets increase circulating ketone levels, minimal benefit on cardiac function in heart failure has been observed, possibly due to the fact that these dietary regimens also markedly increase circulating fatty acids. Recent studies, however, have suggested that administration of ketone ester cocktails may improve cardiac function in heart failure. Combined, emerging data suggests that increasing cardiac ketone oxidation may be a therapeutic strategy to treat heart failure.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| | - Qutuba G Karwi
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Department of Pharmacology, College of Medicine, University of Diyala, Diyala, Iraq
| | - Kim L Ho
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Pherwani
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Ezra B Ketema
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Geraets IME, Glatz JFC, Luiken JJFP, Nabben M. Pivotal role of membrane substrate transporters on the metabolic alterations in the pressure-overloaded heart. Cardiovasc Res 2020; 115:1000-1012. [PMID: 30938418 DOI: 10.1093/cvr/cvz060] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/04/2019] [Accepted: 03/07/2019] [Indexed: 12/16/2022] Open
Abstract
Cardiac pressure overload (PO), such as caused by aortic stenosis and systemic hypertension, commonly results in cardiac hypertrophy and may lead to the development of heart failure. PO-induced heart failure is among the leading causes of death worldwide, but its pathological origin remains poorly understood. Metabolic alterations are proposed to be an important contributor to PO-induced cardiac hypertrophy and failure. While the healthy adult heart mainly uses long-chain fatty acids (FAs) and glucose as substrates for energy metabolism and to a lesser extent alternative substrates, i.e. lactate, ketone bodies, and amino acids (AAs), the pressure-overloaded heart is characterized by a shift in energy metabolism towards a greater reliance on glycolysis and alternative substrates. A key-governing kinetic step of both FA and glucose fluxes is at the level of their substrate-specific membrane transporters. The relative presence of these transporters in the sarcolemma determines the cardiac substrate preference. Whether the cardiac utilization of alternative substrates is also governed by membrane transporters is not yet known. In this review, we discuss current insight into the role of membrane substrate transporters in the metabolic alterations occurring in the pressure-overloaded heart. Given the increasing evidence of a role for alternative substrates in these metabolic alterations, there is an urgent need to disclose the key-governing kinetic steps in their utilization as well. Taken together, membrane substrate transporters emerge as novel targets for metabolic interventions to prevent or treat PO-induced heart failure.
Collapse
Affiliation(s)
- Ilvy M E Geraets
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, MD Maastricht, The Netherlands
| | - Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, MD Maastricht, The Netherlands
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, MD Maastricht, The Netherlands
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, MD Maastricht, The Netherlands
| |
Collapse
|
21
|
Ruiz-Velasco A, Zi M, Hille SS, Azam T, Kaur N, Jiang J, Nguyen B, Sekeres K, Binder P, Collins L, Pu F, Xiao H, Guan K, Frey N, Cartwright EJ, Müller OJ, Wang X, Liu W. Targeting mir128-3p alleviates myocardial insulin resistance and prevents ischemia-induced heart failure. eLife 2020; 9:54298. [PMID: 32223896 PMCID: PMC7124275 DOI: 10.7554/elife.54298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/27/2020] [Indexed: 01/02/2023] Open
Abstract
Myocardial insulin resistance contributes to heart failure in response to pathological stresses, therefore, a therapeutic strategy to maintain cardiac insulin pathways requires further investigation. We demonstrated that insulin receptor substrate 1 (IRS1) was reduced in failing mouse hearts post-myocardial infarction (MI) and failing human hearts. The mice manifesting severe cardiac dysfunction post-MI displayed elevated mir128-3p in the myocardium. Ischemia-upregulated mir128-3p promoted Irs1 degradation. Using rat cardiomyocytes and human-induced pluripotent stem cell-derived cardiomyocytes, we elucidated that mitogen-activated protein kinase 7 (MAPK7, also known as ERK5)-mediated CCAAT/enhancer-binding protein beta (CEBPβ) transcriptionally represses mir128-3p under hypoxia. Therapeutically, functional studies demonstrated gene therapy-delivered cardiac-specific MAPK7 restoration or overexpression of CEBPβ impeded cardiac injury after MI, at least partly due to normalization of mir128-3p. Furthermore, inhibition of mir128-3p preserved Irs1 and ameliorated cardiac dysfunction post-MI. In conclusion, we reveal that targeting mir128-3p mitigates myocardial insulin resistance, thereafter slowing down the progression of heart failure post-ischemia.
Collapse
Affiliation(s)
- Andrea Ruiz-Velasco
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Min Zi
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Susanne S Hille
- Department of Internal Medicine III, University of KielKielGermany,DZHK, German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/LübeckKielGermany
| | - Tayyiba Azam
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Namrita Kaur
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Juwei Jiang
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Binh Nguyen
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Karolina Sekeres
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universitaet DresdenDresdenGermany
| | - Pablo Binder
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Lucy Collins
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Fay Pu
- Edinburgh University Medical SchoolEdinburghUnited Kingdom
| | - Han Xiao
- Institute of Vascular Medicine, Peking UniversityBeijingChina
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universitaet DresdenDresdenGermany
| | - Norbert Frey
- Department of Internal Medicine III, University of KielKielGermany,DZHK, German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/LübeckKielGermany
| | - Elizabeth J Cartwright
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Oliver J Müller
- Department of Internal Medicine III, University of KielKielGermany,DZHK, German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/LübeckKielGermany
| | - Xin Wang
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Wei Liu
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| |
Collapse
|
22
|
Sun Y, Sun J, He Z, Wang G, Wang Y, Zhao D, Wang Z, Luo C, Tian C, Jiang Q. Monocarboxylate Transporter 1 in Brain Diseases and Cancers. Curr Drug Metab 2019; 20:855-866. [DOI: 10.2174/1389200220666191021103018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/21/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022]
Abstract
Background:
Monocarboxylate Transporter 1 (MCT1), an important membrane transport protein, mediates
the translocation of monocarboxylates together with protons across biological membranes. Due to its pathological
significance, MCT1 plays an important role in the progression of some diseases, such as brain diseases and cancers.
Methods:
We summarize the general description of MCT1 and provide a comprehensive understanding of the role of
MCT1 in brain diseases and cancers. Furthermore, this review discusses the opportunities and challenges of MCT1-
targeting drug-delivery systems in the treatment of brain diseases and cancers.
Results:
In the brain, loss of MCT1 function is associated with pathologies of degeneration and injury of the nervous
system. In tumors, MCT1 regulates the activity of signaling pathways and controls the exchange of monocarboxylates
in aerobic glycolysis to affect tumor metabolism, proliferation and invasion. Meanwhile, MCT1 also acts as a
good biomarker for the prediction and diagnosis of cancer progressions.
Conclusion:
MCT1 is an attractive transporter in brain diseases and cancers. Moreover, the development of MCT1-
based small molecule drugs and MCT1 inhibitors in the clinic is promising. This review systematically summarizes
the basic characteristics of MCT1 and its role in brain diseases and cancers, laying the foundation for further research
on MCT1.
Collapse
Affiliation(s)
- Yixin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gang Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yang Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Dongyang Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhenjie Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qikun Jiang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
23
|
Abstract
Inflammatory processes underlie many diseases associated with injury of the heart muscle, including conditions without an obvious inflammatory pathogenic component such as hypertensive and diabetic cardiomyopathy. Persistence of cardiac inflammation can cause irreversible structural and functional deficits. Some are induced by direct damage of the heart muscle by cellular and soluble mediators but also by metabolic adaptations sustained by the inflammatory microenvironment. It is well established that both cardiomyocytes and immune cells undergo metabolic reprogramming in the site of inflammation, which allow them to deal with decreased availability of nutrients and oxygen. However, like in cancer, competition for nutrients and increased production of signalling metabolites such as lactate initiate a metabolic cross-talk between immune cells and cardiomyocytes which, we propose, might tip the balance between resolution of the inflammation versus adverse cardiac remodeling. Here we review our current understanding of the metabolic reprogramming of both heart tissue and immune cells during inflammation, and we discuss potential key mechanisms by which these metabolic responses intersect and influence each other and ultimately define the prognosis of the inflammatory process in the heart.
Collapse
Affiliation(s)
- Federica M Marelli-Berg
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Dunja Aksentijevic
- School of Biological and Chemical Sciences, Queen Mary University of London, G.E. Fogg Building, Mile End Road, London E1 4NS, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| |
Collapse
|
24
|
Gabriel-Costa D. The pathophysiology of myocardial infarction-induced heart failure. ACTA ACUST UNITED AC 2018; 25:277-284. [PMID: 29685587 DOI: 10.1016/j.pathophys.2018.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/06/2018] [Accepted: 04/14/2018] [Indexed: 12/20/2022]
Abstract
Heart failure (HF) is a multifactorial disorder and is usually the end stage of many cardiovascular diseases (CVD). HF presents one of the highest morbidity and mortality indices worldwide and high costs to public health organizations. Myocardial infarction (MI) is the most prevalent CVD in the Western world and leads to HF when its management is inadequate. It has a destructive potential for heart cells and abruptly reduces the cardiac output, a clinical condition known as heart dysfunction that might progress to HF. Many acute and chronic adaptations occur due to MI that progress to HF, e.g., neurohumoral hyperactivity, inflammatory response and cardiac remodeling. Herein, we reviewed in simplistic manner the processes involved in setting of MI until the establishment of HF.
Collapse
Affiliation(s)
- Daniele Gabriel-Costa
- Universidade da Força Aérea, Instituto de Ciências da Atividade Física, Programa de Pós-Graduação em Desempenho Humano Operacional, Rio de Janeiro, RJ, Brasil.
| |
Collapse
|
25
|
Elizondo-Vega R, García-Robles MA. Molecular Characteristics, Regulation, and Function of Monocarboxylate Transporters. ADVANCES IN NEUROBIOLOGY 2017; 16:255-267. [PMID: 28828614 DOI: 10.1007/978-3-319-55769-4_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lactate transporters play an important role in the glutamate recycling. Here their kinetics and tissue distribution with emphasis on the brain are addressed. Recent evidence shows their participation in important brain functions that involve intercellular communication, such as hypothalamic glucose sensing. Furthermore, we describe the regulation of their expression and some animal models that have allowed clarification of their functions.
Collapse
|
26
|
Gao C, Wang F, Wang Z, Zhang J, Yang X. Asiatic acid inhibits lactate-induced cardiomyocyte apoptosis through the regulation of the lactate signaling cascade. Int J Mol Med 2016; 38:1823-1830. [DOI: 10.3892/ijmm.2016.2783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 10/12/2016] [Indexed: 11/05/2022] Open
|
27
|
Pérez-Escuredo J, Van Hée VF, Sboarina M, Falces J, Payen VL, Pellerin L, Sonveaux P. Monocarboxylate transporters in the brain and in cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:2481-97. [PMID: 26993058 PMCID: PMC4990061 DOI: 10.1016/j.bbamcr.2016.03.013] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/01/2016] [Accepted: 03/12/2016] [Indexed: 12/20/2022]
Abstract
Monocarboxylate transporters (MCTs) constitute a family of 14 members among which MCT1-4 facilitate the passive transport of monocarboxylates such as lactate, pyruvate and ketone bodies together with protons across cell membranes. Their anchorage and activity at the plasma membrane requires interaction with chaperon protein such as basigin/CD147 and embigin/gp70. MCT1-4 are expressed in different tissues where they play important roles in physiological and pathological processes. This review focuses on the brain and on cancer. In the brain, MCTs control the delivery of lactate, produced by astrocytes, to neurons, where it is used as an oxidative fuel. Consequently, MCT dysfunctions are associated with pathologies of the central nervous system encompassing neurodegeneration and cognitive defects, epilepsy and metabolic disorders. In tumors, MCTs control the exchange of lactate and other monocarboxylates between glycolytic and oxidative cancer cells, between stromal and cancer cells and between glycolytic cells and endothelial cells. Lactate is not only a metabolic waste for glycolytic cells and a metabolic fuel for oxidative cells, but it also behaves as a signaling agent that promotes angiogenesis and as an immunosuppressive metabolite. Because MCTs gate the activities of lactate, drugs targeting these transporters have been developed that could constitute new anticancer treatments. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Jhudit Pérez-Escuredo
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Vincent F Van Hée
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Martina Sboarina
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Jorge Falces
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Valéry L Payen
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Luc Pellerin
- Laboratory of Neuroenergetics, Department of Physiology, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland.
| | - Pierre Sonveaux
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium.
| |
Collapse
|
28
|
Agaba M, Ishengoma E, Miller WC, McGrath BC, Hudson CN, Bedoya Reina OC, Ratan A, Burhans R, Chikhi R, Medvedev P, Praul CA, Wu-Cavener L, Wood B, Robertson H, Penfold L, Cavener DR. Giraffe genome sequence reveals clues to its unique morphology and physiology. Nat Commun 2016; 7:11519. [PMID: 27187213 PMCID: PMC4873664 DOI: 10.1038/ncomms11519] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/01/2016] [Indexed: 11/12/2022] Open
Abstract
The origins of giraffe's imposing stature and associated cardiovascular adaptations are unknown. Okapi, which lacks these unique features, is giraffe's closest relative and provides a useful comparison, to identify genetic variation underlying giraffe's long neck and cardiovascular system. The genomes of giraffe and okapi were sequenced, and through comparative analyses genes and pathways were identified that exhibit unique genetic changes and likely contribute to giraffe's unique features. Some of these genes are in the HOX, NOTCH and FGF signalling pathways, which regulate both skeletal and cardiovascular development, suggesting that giraffe's stature and cardiovascular adaptations evolved in parallel through changes in a small number of genes. Mitochondrial metabolism and volatile fatty acids transport genes are also evolutionarily diverged in giraffe and may be related to its unusual diet that includes toxic plants. Unexpectedly, substantial evolutionary changes have occurred in giraffe and okapi in double-strand break repair and centrosome functions. Giraffe's unique anatomy and physiology include its stature and associated cardiovascular adaptation. Here, Douglas Cavener and colleagues provide de novo genome assemblies of giraffe and its closest relative okapi and provide comparative analyses to infer insights into evolution and adaptation.
Collapse
Affiliation(s)
- Morris Agaba
- School of Life Sciences and Bioengineering, African Institute of Science and Technology, Arusha 4222, Tanzania.,Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi GPO00100, Kenya.,Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Edson Ishengoma
- School of Life Sciences and Bioengineering, African Institute of Science and Technology, Arusha 4222, Tanzania
| | - Webb C Miller
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Barbara C McGrath
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Chelsea N Hudson
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Oscar C Bedoya Reina
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.,MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Aakrosh Ratan
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Center for Public Health Genomics, Department of Computer Science, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Rico Burhans
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Rayan Chikhi
- Center for Genomics and Bioinformatics, Department of Computer Science and Engineering, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Paul Medvedev
- Center for Genomics and Bioinformatics, Department of Computer Science and Engineering, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Craig A Praul
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Lan Wu-Cavener
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Brendan Wood
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | - Douglas R Cavener
- School of Life Sciences and Bioengineering, African Institute of Science and Technology, Arusha 4222, Tanzania.,Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
29
|
Saraswati S, Guo Y, Atkinson J, Young PP. Prolonged hypoxia induces monocarboxylate transporter-4 expression in mesenchymal stem cells resulting in a secretome that is deleterious to cardiovascular repair. Stem Cells 2016; 33:1333-44. [PMID: 25537659 DOI: 10.1002/stem.1935] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 11/19/2014] [Accepted: 12/04/2014] [Indexed: 01/06/2023]
Abstract
MSCs encounter extended hypoxia in the wound microenvironment yet little is known about their adaptability to this prolonged hypoxic milieu. In this study, we evaluated the cellular and molecular response of MSCs in extended hypoxia (1% O2 ) versus normoxia (20% O2 ) culture. Prolonged hypoxia induced a switch toward anaerobic glycolysis transcriptome and a dramatic increase in the transcript and protein levels of monocarboxylate transporter-4 (MCT4) in MSCs. To clarify the impact of MCT4 upregulation on MSC biology, we generated MSCs which stably overexpressed MCT4 (MCT4-MSCs) at levels similar to wild-type MSCs following prolonged hypoxic culture. Consistent with its role to efflux lactate to maintain intracellular pH, MCT4-MSCs demonstrated reduced intracellular lactate. To explore the in vivo significance of MCT4 upregulation in MSC therapy, mice were injected intramuscularly following MI with control (GFP)-MSCs, MCT4-MSCs, or MSCs in which MCT4 expression was stably silenced (KDMCT4-MSCs). Overexpression of MCT4 worsened cardiac remodeling and cardiac function whereas silencing of MCT4 significantly improved cardiac function. MCT4-overexpressing MSC secretome induced reactive oxygen species-mediated cardiomyocyte but not fibroblast apoptosis in vitro and in vivo; lactate alone recapitulated the effects of the MCT4-MSC secretome. Our findings suggest that lactate extruded by MCT4-overexpressing MSCs preferentially induced cell death in cardiomyocytes but not in fibroblasts, leading ultimately to a decline in cardiac function and increased scar size. A better understanding of stem cells response to prolonged hypoxic stress and the resultant stem cell-myocyte/fibroblast cross-talk is necessary to optimize MSC-based therapy for cardiac regeneration.
Collapse
Affiliation(s)
- Sarika Saraswati
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA; The Department of Veterans Affairs Medical Center, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
30
|
Abstract
The heart is adapted to utilize all classes of substrates to meet the high-energy demand, and it tightly regulates its substrate utilization in response to environmental changes. Although fatty acids are known as the predominant fuel for the adult heart at resting stage, the heart switches its substrate preference toward glucose during stress conditions such as ischemia and pathological hypertrophy. Notably, increasing evidence suggests that the loss of metabolic flexibility associated with increased reliance on glucose utilization contribute to the development of cardiac dysfunction. The changes in glucose metabolism in hypertrophied hearts include altered glucose transport and increased glycolysis. Despite the role of glucose as an energy source, changes in other nonenergy producing pathways related to glucose metabolism, such as hexosamine biosynthetic pathway and pentose phosphate pathway, are also observed in the diseased hearts. This article summarizes the current knowledge regarding the regulation of glucose transporter expression and translocation in the heart during physiological and pathological conditions. It also discusses the signaling mechanisms governing glucose uptake in cardiomyocytes, as well as the changes of cardiac glucose metabolism under disease conditions.
Collapse
Affiliation(s)
- Dan Shao
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
31
|
Gabriel-Costa D, da Cunha TF, Bechara LRG, Fortunato RS, Bozi LHM, Coelho MDA, Barreto-Chaves ML, Brum PC. Lactate up-regulates the expression of lactate oxidation complex-related genes in left ventricular cardiac tissue of rats. PLoS One 2015; 10:e0127843. [PMID: 25996919 PMCID: PMC4440754 DOI: 10.1371/journal.pone.0127843] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 04/20/2015] [Indexed: 11/18/2022] Open
Abstract
Background Besides its role as a fuel source in intermediary metabolism, lactate has been considered a signaling molecule modulating lactate-sensitive genes involved in the regulation of skeletal muscle metabolism. Even though the flux of lactate is significantly high in the heart, its role on regulation of cardiac genes regulating lactate oxidation has not been clarified yet. We tested the hypothesis that lactate would increase cardiac levels of reactive oxygen species and up-regulate the expression of genes related to lactate oxidation complex. Methods/Principal Findings Isolated hearts from male adult Wistar rats were perfused with control, lactate or acetate (20mM) added Krebs-Henseleit solution during 120 min in modified Langendorff apparatus. Reactive oxygen species (O2●-/H2O2) levels, and NADH and NADPH oxidase activities (in enriched microsomal or plasmatic membranes, respectively) were evaluated by fluorimetry while SOD and catalase activities were evaluated by spectrophotometry. mRNA levels of lactate oxidation complex and energetic enzymes MCT1, MCT4, HK, LDH, PDH, CS, PGC1α and COXIV were quantified by real time RT-PCR. Mitochondrial DNA levels were also evaluated. Hemodynamic parameters were acquired during the experiment. The key findings of this work were that lactate elevated cardiac NADH oxidase activity but not NADPH activity. This response was associated with increased cardiac O2●-/H2O2 levels and up-regulation of MCT1, MCT4, LDH and PGC1α with no changes in HK, PDH, CS, COXIV mRNA levels and mitochondrial DNA levels. Lactate increased NRF-2 nuclear expression and SOD activity probably as counter-regulatory responses to increased O2●-/H2O2. Conclusions Our results provide evidence for lactate-induced up-regulation of lactate oxidation complex associated with increased NADH oxidase activity and cardiac O2●-/H2O2 driving to an anti-oxidant response. These results unveil lactate as an important signaling molecule regulating components of the lactate oxidation complex in cardiac muscle.
Collapse
Affiliation(s)
| | | | | | - Rodrigo Soares Fortunato
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Patricia Chakur Brum
- School of physical Education and Sport, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
32
|
Shibayama J, Yuzyuk TN, Cox J, Makaju A, Miller M, Lichter J, Li H, Leavy JD, Franklin S, Zaitsev AV. Metabolic remodeling in moderate synchronous versus dyssynchronous pacing-induced heart failure: integrated metabolomics and proteomics study. PLoS One 2015; 10:e0118974. [PMID: 25790351 PMCID: PMC4366225 DOI: 10.1371/journal.pone.0118974] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/08/2015] [Indexed: 01/08/2023] Open
Abstract
Heart failure (HF) is accompanied by complex alterations in myocardial energy metabolism. Up to 40% of HF patients have dyssynchronous ventricular contraction, which is an independent indicator of mortality. We hypothesized that electromechanical dyssynchrony significantly affects metabolic remodeling in the course of HF. We used a canine model of tachypacing-induced HF. Animals were paced at 200 bpm for 6 weeks either in the right atrium (synchronous HF, SHF) or in the right ventricle (dyssynchronous HF, DHF). We collected biopsies from left ventricular apex and performed comprehensive metabolic pathway analysis using multi-platform metabolomics (GC/MS; MS/MS; HPLC) and LC-MS/MS label-free proteomics. We found important differences in metabolic remodeling between SHF and DHF. As compared to Control, ATP, phosphocreatine (PCr), creatine, and PCr/ATP (prognostic indicator of mortality in HF patients) were all significantly reduced in DHF, but not SHF. In addition, the myocardial levels of carnitine (mitochondrial fatty acid carrier) and fatty acids (12:0, 14:0) were significantly reduced in DHF, but not SHF. Carnitine parmitoyltransferase I, a key regulatory enzyme of fatty acid ß-oxidation, was significantly upregulated in SHF but was not different in DHF, as compared to Control. Both SHF and DHF exhibited a reduction, but to a different degree, in creatine and the intermediates of glycolysis and the TCA cycle. In contrast to this, the enzymes of creatine kinase shuttle were upregulated, and the enzymes of glycolysis and the TCA cycle were predominantly upregulated or unchanged in both SHF and DHF. These data suggest a systemic mismatch between substrate supply and demand in pacing-induced HF. The energy deficit observed in DHF, but not in SHF, may be associated with a critical decrease in fatty acid delivery to the ß-oxidation pipeline, primarily due to a reduction in myocardial carnitine content.
Collapse
Affiliation(s)
- Junko Shibayama
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Tatiana N. Yuzyuk
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- ARUP Laboratories, Salt Lake City, Utah, United States of America
| | - James Cox
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Aman Makaju
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Mickey Miller
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Justin Lichter
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Hui Li
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Jane D. Leavy
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Alexey V. Zaitsev
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
33
|
Bergersen LH. Lactate transport and signaling in the brain: potential therapeutic targets and roles in body-brain interaction. J Cereb Blood Flow Metab 2015; 35:176-85. [PMID: 25425080 PMCID: PMC4426752 DOI: 10.1038/jcbfm.2014.206] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 09/30/2014] [Accepted: 10/24/2014] [Indexed: 12/26/2022]
Abstract
Lactate acts as a 'buffer' between glycolysis and oxidative metabolism. In addition to being exchanged as a fuel by the monocarboxylate transporters (MCTs) between cells and tissues with different glycolytic and oxidative rates, lactate may be a 'volume transmitter' of brain signals. According to some, lactate is a preferred fuel for brain metabolism. Immediately after brain activation, the rate of glycolysis exceeds oxidation, leading to net production of lactate. At physical rest, there is a net efflux of lactate from the brain into the blood stream. But when blood lactate levels rise, such as in physical exercise, there is net influx of lactate from blood to brain, where the lactate is used for energy production and myelin formation. Lactate binds to the lactate receptor GPR81 aka hydroxycarboxylic acid receptor (HCAR1) on brain cells and cerebral blood vessels, and regulates the levels of cAMP. The localization and function of HCAR1 and the three MCTs (MCT1, MCT2, and MCT4) expressed in brain constitute the focus of this review. They are possible targets for new therapeutic drugs and interventions. The author proposes that lactate actions in the brain through MCTs and the lactate receptor underlie part of the favorable effects on the brain resulting from physical exercise.
Collapse
Affiliation(s)
- Linda Hildegard Bergersen
- 1] The Brain and Muscle Energy Group, SN-Lab, Department of Anatomy, Institute of Basic Medical Sciences, Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway [2] Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark [3] Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark [4] The Brain and Muscle Energy Group, Department of Oral Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
34
|
IWANAGA T, KISHIMOTO A. Cellular distributions of monocarboxylate transporters: a review . Biomed Res 2015; 36:279-301. [DOI: 10.2220/biomedres.36.279] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Toshihiko IWANAGA
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University
| | - Ayuko KISHIMOTO
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University
| |
Collapse
|
35
|
Peetz J, Barros LF, San Martín A, Becker HM. Functional interaction between bicarbonate transporters and carbonic anhydrase modulates lactate uptake into mouse cardiomyocytes. Pflugers Arch 2014; 467:1469-1480. [PMID: 25118990 DOI: 10.1007/s00424-014-1594-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 07/30/2014] [Accepted: 08/04/2014] [Indexed: 11/26/2022]
Abstract
Blood-derived lactate is a precious energy substrate for the heart muscle. Lactate is transported into cardiomyocytes via monocarboxylate transporters (MCTs) together with H(+), which couples lactate uptake to cellular pH regulation. In this study, we have investigated how the interplay between different acid/base transporters and carbonic anhydrases (CA), which catalyze the reversible hydration of CO2, modulates the uptake of lactate into isolated mouse cardiomyocytes. Lactate transport was estimated both as lactate-induced acidification and as changes in intracellular lactate levels measured with a newly developed Förster resonance energy transfer (FRET) nanosensor. Recordings of intracellular pH showed an increase in the rate of lactate-induced acidification when CA was inhibited by 6-ethoxy-2-benzothiazolesulfonamide (EZA), while direct measurements of lactate flux demonstrated a decrease in MCT transport activity, when CA was inhibited. The data indicate that catalytic activity of extracellular CA increases lactate uptake and counteracts intracellular lactate-induced acidification. We propose a hypothetical model, in which HCO3 (-), formed from cell-derived CO2 at the outer surface of the cardiomyocyte plasma membrane by membrane-anchored, extracellular CA, is transported into the cell via Na(+)/HCO3 (-) cotransport to counteract intracellular acidification, while the remaining H(+) stabilizes extracellular pH at the surface of the plasma membrane during MCT activity to enhance lactate influx into cardiomyocytes.
Collapse
Affiliation(s)
- Jan Peetz
- Division of Zoology/Membrane Transport, FB Biologie, TU Kaiserslautern, P.O. Box 3049, 67653, Kaiserslautern, Germany
| | | | | | - Holger M Becker
- Division of Zoology/Membrane Transport, FB Biologie, TU Kaiserslautern, P.O. Box 3049, 67653, Kaiserslautern, Germany.
| |
Collapse
|
36
|
Nalos M, Leverve X, Huang S, Weisbrodt L, Parkin R, Seppelt I, Ting I, Mclean A. Half-molar sodium lactate infusion improves cardiac performance in acute heart failure: a pilot randomised controlled clinical trial. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:R48. [PMID: 24666826 PMCID: PMC4057379 DOI: 10.1186/cc13793] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/12/2014] [Indexed: 12/14/2022]
Abstract
Introduction Acute heart failure (AHF) is characterized by inadequate cardiac output (CO), congestive symptoms, poor peripheral perfusion and end-organ dysfunction. Treatment often includes a combination of diuretics, oxygen, positive pressure ventilation, inotropes and vasodilators or vasopressors. Lactate is a marker of illness severity but is also an important metabolic substrate for the myocardium at rest and during stress. We tested the effects of half-molar sodium lactate infusion on cardiac performance in AHF. Methods We conducted a prospective, randomised, controlled, open-label, pilot clinical trial in 40 patients fulfilling two of the following three criteria for AHF: (1) left ventricular ejection fraction <40%, (2) acute pulmonary oedema or respiratory failure of predominantly cardiac origin requiring mechanical ventilation and (3) currently receiving vasopressor and/or inotropic support. Patients in the intervention group received a 3 ml/kg bolus of half-molar sodium lactate over the course of 15 minutes followed by 1 ml/kg/h continuous infusion for 24 hours. The control group received only a 3 ml/kg bolus of Hartmann’s solution without continuous infusion. The primary outcome was CO assessed by transthoracic echocardiography 24 hours after randomisation. Secondary outcomes included a measure of right ventricular systolic function (tricuspid annular plane systolic excursion (TAPSE)), acid-base balance, electrolyte and organ function parameters, along with length of stay and mortality. Results The infusion of half-molar sodium lactate increased (mean ± SD) CO from 4.05 ± 1.37 L/min to 5.49 ± 1.9 L/min (P < 0.01) and TAPSE from 14.7 ± 5.5 mm to 18.3 ± 7 mm (P = 0.02). Plasma sodium and pH increased (136 ± 4 to 146 ± 6 and 7.40 ± 0.06 to 7.53 ± 0.03, respectively; both P < 0.01), but potassium, chloride and phosphate levels decreased. There were no significant differences in the need for vasoactive therapy, respiratory support, renal or liver function tests, duration of ICU and hospital stay or 28- and 90-day mortality. Conclusions Infusion of half-molar sodium lactate improved cardiac performance and led to metabolic alkalosis in AHF patients without any detrimental effects on organ function. Trial registration Clinicaltrials.gov NCT01981655. Registered 13 August 2013.
Collapse
|
37
|
Carmona P, Mateo E, Hornero F, Errando CL, Vázquez A, Llagunes J, De Andrés J. [Hyperlactatemia in surgical ablation of atrial fibrillation and cardiac surgery. Is it a predictive factor of postoperative morbidity?]. ACTA ACUST UNITED AC 2014; 61:311-8. [PMID: 24556510 DOI: 10.1016/j.redar.2014.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 12/26/2013] [Accepted: 01/10/2014] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Increased serum lactate in postoperative cardiac surgery is very common and its pathogenesis is due to multiple factors. The elevation of serum lactate is associated with tissue hypoxia (hyperlactatemia type A) and non-hypoxic (hyperlactatemia type B) metabolic disorders. The aim of the study was to assess the evolution of postoperative lactate in surgical atrial fibrillation ablation during cardiac surgery, and to determine whether lactate levels could be predictors of morbimortality. MATERIAL AND METHODS A case-control study was conducted on 32 patients undergoing surgical atrial fibrillation ablation and cardiac surgery (Maze group) and 32 matched patients (Control group), operated on between 2011 and 2012. An analysis was made of the levels of postoperative lactate, perioperative morbimortality and hospital length of stay. A univariate and multivariate study was performed for a composite endpoint of morbimortality, and prolonged length of stay. RESULTS Lactate levels were significantly higher at 6, 12 and 24h in the Maze group. The univariate analysis showed that being in the Maze group (OR 3.88; 95% CI 1.3-11.1; P=.01) and an elevated lactate at 12h (OR 1.33; 95% CI 1.01-1.7; P=.04) were significant predictors of major complications, mortality, and longer hospital stays. In the multivariate analysis, surgical atrial fibrillation ablation (Maze group) was an independent predictor of major complications (OR 4.13; 95% CI 1.312.9; P=.015) for the morbimortality composite endpoint (OR 3.9; 95% CI 1.3-11.6; P=.01), and prolonged length of stay in the Intensive Care Unit (OR 5.7; 95% CI 2.01-15.7; P=.01). CONCLUSIONS The atrial fibrillation surgical ablation may be a not-yet-described cause of type B hyperlactatemia, with serum peak values being reached between 4-24h after cardiac surgery. The predictive value of this elevation, its correlation with morbimortality, its sensitivity and specificity to discriminate the significant thresholds needs to be defined.
Collapse
Affiliation(s)
- P Carmona
- Servicio de Anestesia, Reanimación y Tratamiento del Dolor, Consorcio Hospital General Universitario, Valencia, España
| | - E Mateo
- Servicio de Anestesia, Reanimación y Tratamiento del Dolor, Consorcio Hospital General Universitario, Valencia, España.
| | - F Hornero
- Servicio de Cirugía cardiaca, Instituto Cardiovascular, Consorcio Hospital General Universitario, Valencia, España
| | - C L Errando
- Servicio de Anestesia, Reanimación y Tratamiento del Dolor, Consorcio Hospital General Universitario, Valencia, España
| | - A Vázquez
- Servicio de Cirugía cardiaca, Hospital Politécnico La Fe, Valencia, España
| | - J Llagunes
- Servicio de Anestesia, Reanimación y Tratamiento del Dolor, Consorcio Hospital General Universitario, Valencia, España
| | - J De Andrés
- Servicio de Anestesia, Reanimación y Tratamiento del Dolor, Consorcio Hospital General Universitario, Valencia, España
| |
Collapse
|
38
|
|
39
|
Xu J, Xu X, Si L, Xue L, Zhang S, Qin J, Wu Y, Shao Y, Chen Y, Wang X. Intracellular lactate signaling cascade in atrial remodeling of mitral valvular patients with atrial fibrillation. J Cardiothorac Surg 2013; 8:34. [PMID: 23452897 PMCID: PMC3599862 DOI: 10.1186/1749-8090-8-34] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 02/27/2013] [Indexed: 12/03/2022] Open
Abstract
Background Atrial remodeling has emerged as the structural basis for the maintenance and recurrence of atrial fibrillation. Lactate signaling cascade was recently linked to some cardiovascular disorders for its regulatory functions to myocardial structural remodeling. It was hypothesized that lactate signaling cascade was involved in the maintenance and recurrence of atrial fibrillation by regulating atrial structural remodeling. Methods Biopsies of right atrial appendage and clinical data were collected from sex- and age-matched 30 persistent atrial fibrillation, 30 paroxysmal atrial fibrillation, 30 sinus rhythm patients undergoing isolated mitral valve surgery and 10 healthy heart donors. Results Atrial fibrillation groups had higher atrial lactate expression and this upregulated expression was positively correlated with regulatory indicators of atrial structural remodeling as reflected by severe oxidative stress injury and mitochondrial control of apoptosis. Conclusions The present findings suggest a potential role for lactate signaling cascade in the maintenance and recurrence of atrial fibrillation and possibly represent new targets for therapeutic intervention in this disorder.
Collapse
Affiliation(s)
- Jing Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Schroeder MA, Lau AZ, Chen AP, Gu Y, Nagendran J, Barry J, Hu X, Dyck JRB, Tyler DJ, Clarke K, Connelly KA, Wright GA, Cunningham CH. Hyperpolarized (13)C magnetic resonance reveals early- and late-onset changes to in vivo pyruvate metabolism in the failing heart. Eur J Heart Fail 2012; 15:130-40. [PMID: 23258802 PMCID: PMC3547367 DOI: 10.1093/eurjhf/hfs192] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aims Impaired energy metabolism has been implicated in the pathogenesis of heart failure. Hyperpolarized 13C magnetic resonance (MR), in which 13C-labelled metabolites are followed using MR imaging (MRI) or spectroscopy (MRS), has enabled non-invasive assessment of pyruvate metabolism. We investigated the hypothesis that if we serially examined a model of heart failure using non-invasive hyperpolarized [13C]pyruvate with MR, the profile of in vivo pyruvate oxidation would change throughout the course of the disease. Methods and results Dilated cardiomyopathy (DCM) was induced in pigs (n = 5) by rapid pacing. Pigs were examined using MR at weekly time points: cine-MRI assessed cardiac structure and function; hyperpolarized [2-13C]pyruvate was administered intravenously, and 13C MRS monitored [13C]glutamate production; 31P MRS assessed cardiac energetics [phosphocreatine (PCr)/ATP]; and hyperpolarized [1-13C]pyruvate was administered for MRI of pyruvate dehydrogenase complex (PDC)-mediated pyruvate oxidation via [13C]bicarbonate production. Early in pacing, the cardiac index decreased by 25%, PCr/ATP decreased by 26%, and [13C]glutamate production decreased by 51%. After clinical features of DCM appeared, end-diastolic volume increased by 40% and [13C]bicarbonate production decreased by 67%. Pyruvate dehydrogenase kinase 4 protein increased by two-fold, and phosphorylated Akt decreased by half. Peroxisome proliferator-activated receptor-α and carnitine palmitoyltransferase-1 gene expression decreased by a half and a third, respectively. Conclusion Despite early changes associated with cardiac energetics and 13C incorporation into the Krebs cycle, pyruvate oxidation was maintained until DCM developed, when the heart's capacity to oxidize both pyruvate and fats was reduced. Hyperpolarized 13C MR may be important to characterize metabolic changes that occur during heart failure progression.
Collapse
Affiliation(s)
- Marie A Schroeder
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Room M326A, Toronto, Ontario M4N 3M5, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Halestrap AP, Wilson MC. The monocarboxylate transporter family--role and regulation. IUBMB Life 2011; 64:109-19. [PMID: 22162139 DOI: 10.1002/iub.572] [Citation(s) in RCA: 509] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 08/08/2011] [Indexed: 11/07/2022]
Abstract
Monocarboxylate transporter (MCT) isoforms 1-4 catalyze the proton-linked transport of monocarboxylates such as L-lactate across the plasma membrane, whereas MCT8 and MCT10 are thyroid hormone and aromatic amino acid transporters, respectively. The importance of MCTs is becoming increasingly evident as their extensive physiological and pathological roles are revealed. MCTs 1-4 play essential metabolic roles in most tissues with their distinct properties, expression profile, and subcellular localization matching the particular metabolic needs of a tissue. Important metabolic roles include energy metabolism in the brain, skeletal muscle, heart, tumor cells, and T-lymphocyte activation, gluconeogenesis in the liver and kidney, spermatogenesis, bowel metabolism of short-chain fatty acids, and drug transport. MCT8 is essential for thyroid hormone transport across the blood-brain barrier. Genetic perturbation of MCT function may be involved in disease states such as pancreatic β-cell malfunction (inappropriate MCT1 expression), chronic fatigue syndromes (impairment of muscle MCT function), and psychomotor retardation (MCT8 mutation). MCT expression can be regulated at both the transcriptional and post-transcriptional levels. Of particular importance is the upregulation of muscle MCT1 expression in response to training and MCT4 expression in response to hypoxia. The latter is mediated by hypoxia inducible factor 1α and often observed in tumor cells that rely almost entirely on glycolysis for their energy provision. The recent discovery of potent and specific MCT1 inhibitors that prevent proliferation of T-lymphocytes confirms that MCTs may be promising pharmacological targets including for cancer chemotherapy.
Collapse
Affiliation(s)
- Andrew P Halestrap
- School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol, UK.
| | | |
Collapse
|
42
|
Thomas C, Bishop DJ, Lambert K, Mercier J, Brooks GA. Effects of acute and chronic exercise on sarcolemmal MCT1 and MCT4 contents in human skeletal muscles: current status. Am J Physiol Regul Integr Comp Physiol 2011; 302:R1-14. [PMID: 22012699 DOI: 10.1152/ajpregu.00250.2011] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Two lactate/proton cotransporter isoforms (monocarboxylate transporters, MCT1 and MCT4) are present in the plasma (sarcolemmal) membranes of skeletal muscle. Both isoforms are symports and are involved in both muscle pH and lactate regulation. Accordingly, sarcolemmal MCT isoform expression may play an important role in exercise performance. Acute exercise alters human MCT content, within the first 24 h from the onset of exercise. The regulation of MCT protein expression is complex after acute exercise, since there is not a simple concordance between changes in mRNA abundance and protein levels. In general, exercise produces greater increases in MCT1 than in MCT4 content. Chronic exercise also affects MCT1 and MCT4 content, regardless of the initial fitness of subjects. On the basis of cross-sectional studies, intensity would appear to be the most important factor regulating exercise-induced changes in MCT content. Regulation of skeletal muscle MCT1 and MCT4 content by a variety of stimuli inducing an elevation of lactate level (exercise, hypoxia, nutrition, metabolic perturbations) has been demonstrated. Dissociation between the regulation of MCT content and lactate transport activity has been reported in a number of studies, and changes in MCT content are more common in response to contractile activity, whereas changes in lactate transport capacity typically occur in response to changes in metabolic pathways. Muscle MCT expression is involved in, but is not the sole determinant of, muscle H(+) and lactate anion exchange during physical activity.
Collapse
Affiliation(s)
- Claire Thomas
- Institut National de la Santé et de la Recherche Médicale, "Physiologie et Médecine expérimentale du coeur et des muscles", Montpellier, France.
| | | | | | | | | |
Collapse
|
43
|
Xu JP, Wang HX, Wang W, Zhang LK, Tang CS. Ghrelin improves disturbed myocardial energy metabolism in rats with heart failure induced by isoproterenol. J Pept Sci 2010; 16:392-402. [PMID: 20572026 DOI: 10.1002/psc.1253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To explore the effects of ghrelin on disturbed myocardial energy metabolism during chronic heart failure (CHF). Rats were subcutaneously injected with isoproterenol (ISO) for 10 days with or without ghrelin for another 10 days. Enzyme immunoassay was to measure ghrelin concentrations. Compared with the control group, ISO-treated rats showed suppressed cardiac function with high ghrelin/GHS-R expressions. These rats also showed the decreases in food consumption and weight. The decreased levels of plasma glucose and myocardial glucogen, but the high lactate in blood and myocardium showed myocardial metabolic disturbance. Compared with the group given ISO alone, the rats with ghrelin (20 and 100 microg/kg/day) improved cardiac dysfunction and increased food intake by 13.5 and 14.2% (both P < 0.01), and rate of weight gain by 95% (P < 0.05) and 1.71-fold (P < 0.01), respectively. The plasma glucose were increased by 49.7 and 50.8% (both P < 0.01), and myocardial glucogen, by 40.5 and 51.7% (both P < 0.01), but blood lactate decreased by 1.56- and 1.96-fold (both P < 0.01), and myocardial lactate by 32.1 and 48.7% (both P < 0.05), respectively. Their MCT1 mRNA and protein expressions increased. The myocardial ghrelin/GHS-R pathway can be upregulated during CHF. The ghrelin can attenuate cardiac dysfunction and energy metabolic disturbance in CHF rats.
Collapse
Affiliation(s)
- Jian-Ping Xu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | | | | | | | | |
Collapse
|
44
|
Increased expression of monocarboxylate transporter 1 after acute ischemia of isolated, perfused mouse hearts. Life Sci 2009; 85:379-85. [DOI: 10.1016/j.lfs.2009.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 04/28/2009] [Accepted: 07/07/2009] [Indexed: 11/18/2022]
|
45
|
HASHIMOTO TAKESHI, BROOKS GEORGEA. Mitochondrial Lactate Oxidation Complex and an Adaptive Role for Lactate Production. Med Sci Sports Exerc 2008; 40:486-94. [PMID: 18379211 DOI: 10.1249/mss.0b013e31815fcb04] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Bergersen LH. Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle. Neuroscience 2007; 145:11-9. [PMID: 17218064 DOI: 10.1016/j.neuroscience.2006.11.062] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 11/08/2006] [Accepted: 11/21/2006] [Indexed: 10/23/2022]
Abstract
Intercellular monocarboxylate transport is important, particularly in tissues with high energy demands, such as brain and muscle. In skeletal muscle, it is well established that glycolytic fast twitch muscle fibers produce lactate, which is transported out of the cell through the monocarboxylate transporter (MCT) 4. Lactate is then taken up and oxidized by the oxidative slow twitch muscle fibers, which express MCT1. In the brain it is still questioned whether lactate produced in astrocytes is taken up and oxidized by neurons upon activation. Several studies have reported that astrocytes express MCT4, whereas neurons express MCT2. By comparing the localizations of MCTs in oxidative and glycolytic compartments I here give support to the idea that there is a lactate shuttle in the brain similar to that in muscle. This conclusion is based on studies in rodents using high resolution immunocytochemical methods at the light and electron microscopical levels.
Collapse
Affiliation(s)
- L H Bergersen
- Centre for Molecular Biology and Neuroscience, and Department of Anatomy, IBM, University of Oslo, Domus Medica, Room 1293, Songsvannsveien 9, POB 1105 Blindern, N-0317 Oslo, Norway.
| |
Collapse
|
47
|
Levy B, Mansart A, Montemont C, Gibot S, Mallie JP, Regnault V, Lecompte T, Lacolley P. Myocardial lactate deprivation is associated with decreased cardiovascular performance, decreased myocardial energetics, and early death in endotoxic shock. Intensive Care Med 2007; 33:495-502. [PMID: 17242933 DOI: 10.1007/s00134-006-0523-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 12/21/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVE We examined whether lactate availability is a limiting factor for heart function during endotoxic shock, and whether lactate deprivation thus induces heart energy depletion, thereby altering cardiovascular performance. The study goals were to determine whether muscle lactate production is linked to beta(2)-stimulation and to ascertain the effects of systemic lactate deprivation on hemodynamics, lactate metabolism, heart energetics, and outcome in a lethal model of rat's endotoxic shock. INTERVENTIONS We modulated the adrenergic pathway in skeletal muscle using microdialysis with ICI-118551, a selective beta(2)-blocker. Muscle lactate formation in endotoxic shock was further inhibited by intravenous infusion of ICI-118551 or dichloroacetate (DCA), an activator of pyruvate dehydrogenase (DCA) and their combination. RESULTS Muscle lactate formation was decreased by ICI-118551. During endotoxic shock both ICI-118151 and DCA decreased circulating and heart lactate concentrations in parallel with a decrease in tissue ATP content. The combination ICI-118551-DCA resulted in early cardiovascular collapse and death. The addition of molar lactate to ICI-1185111 plus DCA blunted the effects of ICI-118551+DCA on hemodynamics. Survival was markedly less with ICI-118551 than with endotoxin alone. CONCLUSION Systemic lactate deprivation is detrimental to myocardial energetics, cardiovascular performance, and outcome.
Collapse
Affiliation(s)
- Bruno Levy
- Coordination Circulation UHP-INSERM, Groupe CHOC, Faculté de Médecine, Université Henri Poincaré Nancy 1, Nancy, France.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Matejovic M, Radermacher P, Fontaine E. Lactate in shock: a high-octane fuel for the heart? Intensive Care Med 2007; 33:406-8. [PMID: 17242932 DOI: 10.1007/s00134-006-0524-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 12/21/2006] [Indexed: 10/23/2022]
|
49
|
Kemi OJ, Arbo I, Høydal MA, Loennechen JP, Wisløff U, Smith GL, Ellingsen Ø. Reduced pH and contractility in failing rat cardiomyocytes. Acta Physiol (Oxf) 2006; 188:185-93. [PMID: 17054658 DOI: 10.1111/j.1748-1716.2006.01621.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIM To determine whether reduced cardiomyocyte contractility in heart failure is associated with reduced intracellular pH (pH(i)). Involvement of the Na(+)/H(+) exchanger and the H(+)/K(+) ATPase were investigated with specific blockers. METHODS Myocardial infarction and subsequent heart failure in Sprague-Dawley rats were induced by chronic occlusion of the left coronary artery. 6 weeks post-ligation, contractility (cell shortening) and pH(i) (BCECF fluorescence) were recorded in freshly dissociated cardiomyocytes during 2-10 Hz electrical stimulation, with or without either Na(+)/H(+) exchanger or H(+)/K(+) ATPase inhibition. RESULTS Elevated end-diastolic and reduced peak systolic pressures confirmed heart failure. Increased heart weights (20-30%; P < or = 0.01) and cardiomyocyte lengths and widths (22-25%; P < or = 0.01) confirmed substantial cardiac hypertrophy. In myocytes isolated from sham operated rats, a positive staircase response occurred with stimulation rates from 2 to 7 Hz; further increases in stimulation rate up to 10 Hz reduced contractility. In contrast, pH(i) fell progressively over the entire stimulation range. In failing myocytes, pH(i) was consistently 0.07 pH units lower and contractility 40% lower (P < or = 0.01) than sham control values; the shape of the contractility staircase remained similar to controls. At all stimulation frequencies, Na(+)/H(+) exchanger inhibition reduced pH(i) by 0.05 pH units (P < or = 0.01) and contractility by 22% (P < or = 0.05) in cardiomyocytes from the heart failure group. A significantly smaller decrease of pH(i) and reduction in contractility was observed after inhibition of Na(+)/H(+) exchanger (10 micro m HOE694) in sham myocytes. H(+)/K(+) ATPase inhibition (100 micro m SCH28080) had no effect on pH(i). CONCLUSION Reduced pH(i) is accompanied by reduced cardiomyocyte contractility in isolated myocytes from post-MI heart failure. The data suggest compensatory Na(+)/H(+) exchanger activation in heart failure, whereas H(+)/K(+) ATPase does not appear to contribute significantly to pH(i) maintenance.
Collapse
Affiliation(s)
- O J Kemi
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | | | |
Collapse
|
50
|
Prins ML, Giza CC. Induction of Monocarboxylate Transporter 2 Expression and Ketone Transport following Traumatic Brain Injury in Juvenile and Adult Rats. Dev Neurosci 2006; 28:447-56. [PMID: 16943667 DOI: 10.1159/000094170] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 03/11/2006] [Indexed: 11/19/2022] Open
Abstract
Based on recent work demonstrating age-dependent ketogenic neuroprotection after traumatic brain injury (TBI), it was hypothesized that the neuroprotection among early post-weaned animals was related to induced cerebral transport of ketones after injury. Regional changes in monocarboxylate transporter 2 (MCT2) were acutely examined with immunohistochemistry after sham surgery or controlled cortical impact injury among postnatal day 35 and adult rats. Both ages showed elevated MCT2 expression in the ipsilateral cerebral vasculature after TBI. Using Western blotting, MCT2 expression was 80-88% greater in microvessels isolated from postnatal day 35 rats at all time points relative to adults. The increased MCT2 expression was temporally correlated with an age-related increase in cerebral uptake of ketones, when ketones were made available after injury.
Collapse
Affiliation(s)
- M L Prins
- Division of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7039, USA.
| | | |
Collapse
|