1
|
Martin TG, Leinwand LA. Hearts apart: sex differences in cardiac remodeling in health and disease. J Clin Invest 2024; 134:e180074. [PMID: 38949027 PMCID: PMC11213513 DOI: 10.1172/jci180074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Biological sex is an important modifier of physiology and influences pathobiology in many diseases. While heart disease is the number one cause of death worldwide in both men and women, sex differences exist at the organ and cellular scales, affecting clinical presentation, diagnosis, and treatment. In this Review, we highlight baseline sex differences in cardiac structure, function, and cellular signaling and discuss the contribution of sex hormones and chromosomes to these characteristics. The heart is a remarkably plastic organ and rapidly responds to physiological and pathological cues by modifying form and function. The nature and extent of cardiac remodeling in response to these stimuli are often dependent on biological sex. We discuss organ- and molecular-level sex differences in adaptive physiological remodeling and pathological cardiac remodeling from pressure and volume overload, ischemia, and genetic heart disease. Finally, we offer a perspective on key future directions for research into cardiac sex differences.
Collapse
Affiliation(s)
- Thomas G. Martin
- Department of Molecular, Cellular, and Developmental Biology and
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Leslie A. Leinwand
- Department of Molecular, Cellular, and Developmental Biology and
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
2
|
Wu Y, Chen C, Wei FF, Liang W, Dong Y, Liu C, Choy M, Dong B. Associations between long-term averages of metabolic parameters in adulthood and cardiac structure and function in later life. Hypertens Res 2024; 47:496-506. [PMID: 37857766 DOI: 10.1038/s41440-023-01475-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/25/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
The effects of long-term levels of body mass index (BMI), blood pressure (BP), plasma lipids and fasting blood glucose (FBG) on the cardiac structure and function in later life in general population are to evaluate. We included adult participants without heart failure from Framingham Heart Study. The respective averages over a span of 30-36 years of seven parameters were pooled into linear regression models simultaneously to evaluate their associations with subsequent left atrial internal dimension (LAID), left ventricular mass index (LVMi), internal dimension (LVID), ejection fraction (LVEF), global longitudinal strain (GLS) and mitral inflow velocity to early diastolic mitral annular velocity (E/é). In 1838 participants (56.0% female, mean age 66.1 years), per 1-standard deviation (SD) increment of mean BMI correlated with larger LAID and LVID (β 0.05~0.17, standard error [SE] 0.01 for all), greater LVMi (β [SE], 1.49 [0.46]), worse E/é (β [SE], 0.28 [0.05]). Per 1-SD increment of mean systolic BP correlated with greater LVMi (β [SE], 4.70 [0.69]), LVEF (β [SE], 0.73 [0.24]), E/é (β [SE], 0.52 [0.08]), whereas increase of mean diastolic BP correlated with smaller LVMi (β [SE], -1.61 [0.62]), LVEF (β [SE], -0.46 [0.22]), E/é (β [SE], -0.30 [0.07]). Per 1-SD increment of mean high density lipoprotein cholesterol (HDL-c) correlated with smaller LVID (β [SE], -0.03 [0.01]) and better systolic function (LVEF, β [SE], 0.63 [0.19]; GLS, β [SE], -0.20 [0.10]). The variabilities of BMI, BP and HDL-c also correlated with certain cardiac measurements. In long-term, BMI affected the size and mass of heart chambers, systolic and diastolic BP differently influenced left ventricular mass and function, higher HDL-c linked to better systolic function. Clinical trial registration: URL: https://clinicaltrials.gov . Identifier: NCT00005121.
Collapse
Affiliation(s)
- Yuzhong Wu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, P R China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, P R China
| | - Chen Chen
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, P R China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, P R China
| | - Fang-Fei Wei
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, P R China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, P R China
| | - Weihao Liang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, P R China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, P R China
| | - Yugang Dong
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, P R China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, P R China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P R China
| | - Chen Liu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, P R China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, P R China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P R China
| | - Manting Choy
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, P R China.
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, P R China.
| | - Bin Dong
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, P R China.
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, P R China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P R China.
| |
Collapse
|
3
|
Warnock RK, Modi RD, Westerman SB. Sex and Gender Differences in Ventricular Arrhythmias. US CARDIOLOGY REVIEW 2023; 17:e12. [PMID: 39559519 PMCID: PMC11571389 DOI: 10.15420/usc.2022.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/04/2023] [Indexed: 11/20/2024] Open
Abstract
Ventricular arrhythmias, including ventricular tachycardia and VF, commonly occur in patients with underlying cardiomyopathy. Sex differences exist in almost every aspect of ventricular arrhythmia from epidemiology, anatomy, and physiology to management and response to therapy. Some of these may be attributed to variations in etiology, types, and rates of cardiomyopathy as well as biological differences between males and females, but the full explanation for these differences remains incomplete. Additionally, women have been underrepresented in many trials studying therapies for ventricular arrhythmias including ICD placement and ablation; thus, there remains a need for continued research in this population. This review will discuss the differences between the sexes as well as outline opportunities for future research in women with ventricular arrhythmias.
Collapse
Affiliation(s)
| | - Roshan D Modi
- Department of Medicine, Emory University School of Medicine Atlanta, GA
| | - Stacy B Westerman
- Division of Cardiology, Emory University School of Medicine Atlanta, GA
| |
Collapse
|
4
|
Zhazykbayeva S, Hassoun R, Herwig M, Budde H, Kovács Á, Mannherz HG, El-Battrawy I, Tóth A, Schmidt WE, Mügge A, Hamdani N. Oxidative stress and inflammation distinctly drive molecular mechanisms of diastolic dysfunction and remodeling in female and male heart failure with preserved ejection fraction rats. Front Cardiovasc Med 2023; 10:1157398. [PMID: 37363100 PMCID: PMC10285478 DOI: 10.3389/fcvm.2023.1157398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex cardiovascular insufficiency syndrome presenting with an ejection fraction (EF) of greater than 50% along with different proinflammatory and metabolic co-morbidities. Despite previous work provided key insights into our understanding of HFpEF, effective treatments are still limited. In the current study we attempted to unravel the molecular basis of sex-dependent differences in HFpEF pathology. We analyzed left ventricular samples from 1-year-old female and male transgenic (TG) rats homozygous for the rat Ren-2 renin gene (mRen2) characterized with hypertension and diastolic dysfunction and compared it to age-matched female and male wild type rats (WT) served as control. Cardiomyocytes from female and male TG rats exhibited an elevated titin-based stiffness (Fpassive), which was corrected to control level upon treatment with reduced glutathione indicating titin oxidation. This was accompanied with high levels of oxidative stress in TG rats with more prominent effects in female group. In vitro supplementation with heat shock proteins (HSPs) reversed the elevated Fpassive indicating restoration of their cytoprotective function. Furthermore, the TG group exhibited high levels of proinflammatory cytokines with significant alterations in apoptotic and autophagy pathways in both sexes. Distinct alterations in the expression of several proteins between both sexes suggest their differential impact on disease development and necessitate distinct treatment options. Hence, our data suggested that oxidative stress and inflammation distinctly drive diastolic dysfunction and remodeling in female and male rats with HFpEF and that the sex-dependent mechanisms contribute to HF pathology.
Collapse
Affiliation(s)
- Saltanat Zhazykbayeva
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, Bochum, Germany
| | - Roua Hassoun
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, Bochum, Germany
| | - Melissa Herwig
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, Bochum, Germany
| | - Heidi Budde
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, Bochum, Germany
| | - Árpád Kovács
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, Bochum, Germany
| | - Hans Georg Mannherz
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | - Ibrahim El-Battrawy
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology and Angiology, Bergmannsheil University Hospitals, UK RUB, Ruhr University of Bochum, Bochum, Germany
| | - Attila Tóth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Wolfgang E. Schmidt
- Department of Medicine I, St. Josef Hospital, UK RUB, Ruhr-University Bochum, Bochum, Germany
| | - Andreas Mügge
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology and Angiology, Bergmannsheil University Hospitals, UK RUB, Ruhr University of Bochum, Bochum, Germany
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Alharbi H, Hardyman M, Cull J, Markou T, Cooper S, Glennon P, Fuller S, Sugden P, Clerk A. Cardiomyocyte BRAF is a key signalling intermediate in cardiac hypertrophy in mice. Clin Sci (Lond) 2022; 136:1661-1681. [PMID: 36331065 PMCID: PMC9679367 DOI: 10.1042/cs20220607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 04/21/2024]
Abstract
Cardiac hypertrophy is necessary for the heart to accommodate an increase in workload. Physiological, compensated hypertrophy (e.g. with exercise) is reversible and largely due to cardiomyocyte hypertrophy. Pathological hypertrophy (e.g. with hypertension) is associated with additional features including increased fibrosis and can lead to heart failure. RAF kinases (ARAF/BRAF/RAF1) integrate signals into the extracellular signal-regulated kinase 1/2 cascade, a pathway implicated in cardiac hypertrophy, and activation of BRAF in cardiomyocytes promotes compensated hypertrophy. Here, we used mice with tamoxifen-inducible cardiomyocyte-specific BRAF knockout (CM-BRAFKO) to assess the role of BRAF in hypertension-associated cardiac hypertrophy induced by angiotensin II (AngII; 0.8 mg/kg/d, 7 d) and physiological hypertrophy induced by phenylephrine (40 mg/kg/d, 7 d). Cardiac dimensions/functions were measured by echocardiography with histological assessment of cellular changes. AngII promoted cardiomyocyte hypertrophy and increased fibrosis within the myocardium (interstitial) and around the arterioles (perivascular) in male mice; cardiomyocyte hypertrophy and interstitial (but not perivascular) fibrosis were inhibited in mice with CM-BRAFKO. Phenylephrine had a limited effect on fibrosis but promoted cardiomyocyte hypertrophy and increased contractility in male mice; cardiomyocyte hypertrophy was unaffected in mice with CM-BRAFKO, but the increase in contractility was suppressed and fibrosis increased. Phenylephrine induced a modest hypertrophic response in female mice and, in contrast with the males, tamoxifen-induced loss of cardiomyocyte BRAF reduced cardiomyocyte size, had no effect on fibrosis and increased contractility. The data identify BRAF as a key signalling intermediate in both physiological and pathological hypertrophy in male mice, and highlight the need for independent assessment of gene function in females.
Collapse
Affiliation(s)
- Hajed O. Alharbi
- School of Biological Sciences, University of Reading, Reading, U.K
| | | | - Joshua J. Cull
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Thomais Markou
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Susanna T.E. Cooper
- Molecular and Clinical Sciences Institute, St. George’s University of London, London, U.K
| | - Peter E. Glennon
- University Hospitals Coventry and Warwickshire, University Hospital Cardiology Department, Clifford Bridge Road, Coventry, U.K
| | | | - Peter H. Sugden
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Angela Clerk
- School of Biological Sciences, University of Reading, Reading, U.K
| |
Collapse
|
6
|
Sheppard PAS, Puri TA, Galea LAM. Sex Differences and Estradiol Effects in MAPK and Akt Cell Signaling across Subregions of the Hippocampus. Neuroendocrinology 2022; 112:621-635. [PMID: 34407537 DOI: 10.1159/000519072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/16/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Rapid effects of estrogens within the hippocampus of rodents are dependent upon cell-signaling cascades, and activation of these cascades by estrogens varies by sex. Whether these pathways are rapidly activated within the dentate gyrus (DG) and CA1 by estrogens across sex and the anatomical longitudinal axis has been overlooked. METHODS Gonadally intact female and male rats were given either vehicle or physiological systemic low (1.1 µg/kg) or high (37.3 µg/kg) doses of 17β-estradiol 30 min prior to tissue collection. To control for the effects of circulating estrogens, an additional group of female rats was ovariectomized (OVX) and administered 17β-estradiol. Brains were extracted, and tissue punches of the CA1 and DG were taken along the longitudinal hippocampal axis (dorsal and ventral) and analyzed for key mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) cascade phosphoproteins. RESULTS Intact females had higher Akt pathway phosphoproteins (pAkt, pGSK-3β, and pp70S6K) than males in the DG (dorsal and ventral) and lower pERK1/2 in the dorsal DG. Most effects of 17β-estradiol on cell signaling occurred in OVX animals. In OVX animals, 17β-estradiol increased cell signaling of MAPK and Akt phosphoproteins (pERK1/2, pJNK, pAkt, and pGSK-3β) in the CA1 and pERK1/2 and pJNK DG. DISCUSSION/CONCLUSIONS Systemic 17β-estradiol treatment rapidly alters phosphoprotein levels in the hippocampus, dependent on reproductive status, and intact females have greater expression of Akt phosphoproteins than that in intact males in the DG. These findings shed light on underlying mechanisms of sex differences in hippocampal function and response to interventions that affect MAPK or Akt signaling.
Collapse
Affiliation(s)
- Paul A S Sheppard
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tanvi A Puri
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liisa A M Galea
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Goyal A, Agrawal N, Jain A, Gupta JK, Garabadu D. Role of caveolin-eNOS platform and mitochondrial ATP-sensitive potassium channel in abrogated cardioprotective effect of ischemic preconditioning in postmenopausal women. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
| | | | - Ankit Jain
- Dr. Hari Singh Gour Central University, India
| | | | | |
Collapse
|
8
|
Mahesaniya A, Williamson CR, Keyvani Chahi A, Martin CE, Mitro AE, Lu P, New LA, Watson KL, Moorehead RA, Jones N. Sex Differences in Glomerular Protein Expression and Effects of Soy-Based Diet on Podocyte Signaling. Can J Kidney Health Dis 2022; 9:20543581221121636. [PMID: 36199279 PMCID: PMC9528100 DOI: 10.1177/20543581221121636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Kidney disease is a major public health issue arising from loss of glomerular podocyte function, and there are considerable sex differences in its prognosis. Evidence suggests a renoprotective effect of estrogen and soy diet-derived phytoestrogens, although the molecular basis for this is poorly understood. Objective: Here, we aim to assess sex differences in expression of key proteins associated with podocyte survival and determine the effects of dietary soy on glomerular and podocyte signaling. Methods: Male and female FVB mice were fed control, low (1%), and high (20%) doses of isolated soy protein (ISP) in utero and until 100 days of age. Spot urine was collected to measure proteinuria and isolated glomeruli were used to quantify activated and total levels of nephrin, Akt, and ERK1/2. To investigate protective effects of specific soy phytoestrogens, cultured podocytes were treated with or without daidzein and subject to control or high glucose as a model of podocyte injury. Results: Nephrin and Akt were elevated at baseline in glomeruli from females compared to males. Both sexes that were fed 1% and 20% ISP displayed robust increases in total glomerular Akt compared to controls, and these effects were more prominent in females. A similar trend at both doses in both sexes was observed with activated Akt and total nephrin. Notably, males exclusively showed increased phosphorylation of nephrin and extracellular signal-regulated kinase (ERK) at the 1% ISP dose; however, no overt changes in urinary albumin excretion or podocin levels were observed, suggesting that the soy diets did not impair podocyte function. Finally, in cultured male and female podocytes, daidzein treatment suppressed high glucose-induced ERK activation. Conclusions: Together, our findings reveal a putative mechanism to explain the protective influence of sex on kidney disease progression, and they provide further evidence to support a beneficial role for dietary soy in preserving glomerular function.
Collapse
Affiliation(s)
- Afreeda Mahesaniya
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - Casey R. Williamson
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - Ava Keyvani Chahi
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
- Present address: Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Claire E. Martin
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
- Present address: Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Alexander E. Mitro
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - Peihua Lu
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - Laura A. New
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | | | | | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| |
Collapse
|
9
|
Esquer C, Echeagaray O, Firouzi F, Savko C, Shain G, Bose P, Rieder A, Rokaw S, Witon-Paulo A, Gude N, Sussman MA. Fundamentals of vaping-associated pulmonary injury leading to severe respiratory distress. Life Sci Alliance 2021; 5:5/2/e202101246. [PMID: 34810278 PMCID: PMC8616545 DOI: 10.26508/lsa.202101246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022] Open
Abstract
Vaping of flavored liquids has been touted as safe alternative to traditional cigarette smoking with decreased health risks. The popularity of vaping has dramatically increased over the last decade, particularly among teenagers who incorporate vaping into their daily life as a social activity. Despite widespread and increasing adoption of vaping among young adults, there is little information on long-term consequences of vaping and potential health risks. This study demonstrates vaping-induced pulmonary injury using commercial JUUL pens with flavored vape juice using an inhalation exposure murine model. Profound pathological changes to upper airway, lung tissue architecture, and cellular structure are evident within 9 wk of exposure. Marked histologic changes include increased parenchyma tissue density, cellular infiltrates proximal to airway passages, alveolar rarefaction, increased collagen deposition, and bronchial thickening with elastin fiber disruption. Transcriptional reprogramming includes significant changes to gene families coding for xenobiotic response, glycerolipid metabolic processes, and oxidative stress. Cardiac systemic output is moderately but significantly impaired with pulmonary side ventricular chamber enlargement. This vaping-induced pulmonary injury model demonstrates mechanistic underpinnings of vaping-related pathologic injury.
Collapse
Affiliation(s)
- Carolina Esquer
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Oscar Echeagaray
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Fareheh Firouzi
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Clarissa Savko
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Grant Shain
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Pria Bose
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Abigail Rieder
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Sophie Rokaw
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Andrea Witon-Paulo
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Natalie Gude
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Mark A Sussman
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| |
Collapse
|
10
|
Ferreira C, Trindade F, Ferreira R, Neves JS, Leite-Moreira A, Amado F, Santos M, Nogueira-Ferreira R. Sexual dimorphism in cardiac remodeling: the molecular mechanisms ruled by sex hormones in the heart. J Mol Med (Berl) 2021; 100:245-267. [PMID: 34811581 DOI: 10.1007/s00109-021-02169-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/16/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Heart failure (HF) is growing in prevalence, due to an increase in aging and comorbidities. Heart failure with reduced ejection fraction (HFrEF) is more common in men, whereas heart failure with preserved ejection fraction (HFpEF) has a higher prevalence in women. However, the reasons for these epidemiological trends are not clear yet. Since HFpEF affects mostly postmenopausal women, sex hormones should play a pivotal role in HFpEF development. Furthermore, for HFpEF, contrary to HFrEF, effective therapeutic approaches are missing. Interestingly, studies evidenced that some therapies can have better results in women than in HFpEF men, emphasizing the necessity of understanding these observations at a molecular level. Thus, herein, we review the molecular mechanisms of estrogen and androgen actions in the heart in physiological conditions and explain how its dysregulation can lead to disease development. This clarification is essential in the road for an effective personalized management of HF, particularly HFpEF, towards the development of sex-specific therapeutic approaches.
Collapse
Affiliation(s)
- Cláudia Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Fábio Trindade
- Department of Surgery and Physiology, Cardiovascular R&D Center (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - João Sérgio Neves
- Department of Surgery and Physiology, Cardiovascular R&D Center (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Adelino Leite-Moreira
- Department of Surgery and Physiology, Cardiovascular R&D Center (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Cardiothoracic Surgery, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Francisco Amado
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mário Santos
- Department of Cardiology, Hospital Santo António, Centro Hospitalar Universitário do Porto, Porto, Portugal
- UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Rita Nogueira-Ferreira
- Department of Surgery and Physiology, Cardiovascular R&D Center (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal.
- UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
11
|
Dela Justina V, Miguez JSG, Priviero F, Sullivan JC, Giachini FR, Webb RC. Sex Differences in Molecular Mechanisms of Cardiovascular Aging. FRONTIERS IN AGING 2021; 2:725884. [PMID: 35822017 PMCID: PMC9261391 DOI: 10.3389/fragi.2021.725884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is still the leading cause of illness and death in the Western world. Cardiovascular aging is a progressive modification occurring in cardiac and vascular morphology and physiology where increased endothelial dysfunction and arterial stiffness are observed, generally accompanied by increased systolic blood pressure and augmented pulse pressure. The effects of biological sex on cardiovascular pathophysiology have long been known. The incidence of hypertension is higher in men, and it increases in postmenopausal women. Premenopausal women are protected from CVD compared with age-matched men and this protective effect is lost with menopause, suggesting that sex-hormones influence blood pressure regulation. In parallel, the heart progressively remodels over the course of life and the pattern of cardiac remodeling also differs between the sexes. Lower autonomic tone, reduced baroreceptor response, and greater vascular function are observed in premenopausal women than men of similar age. However, postmenopausal women have stiffer arteries than their male counterparts. The biological mechanisms responsible for sex-related differences observed in cardiovascular aging are being unraveled over the last several decades. This review focuses on molecular mechanisms underlying the sex-differences of CVD in aging.
Collapse
Affiliation(s)
- Vanessa Dela Justina
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | | | - Fernanda Priviero
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Jennifer C. Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Fernanda R. Giachini
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - R. Clinton Webb
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
12
|
Aimo A, Panichella G, Barison A, Maffei S, Cameli M, Coiro S, D'Ascenzi F, Di Mario C, Liga R, Marcucci R, Morrone D, Olivotto I, Tritto I, Emdin M. Sex-related differences in ventricular remodeling after myocardial infarction. Int J Cardiol 2021; 339:62-69. [PMID: 34314766 DOI: 10.1016/j.ijcard.2021.07.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/11/2021] [Accepted: 07/15/2021] [Indexed: 11/24/2022]
Abstract
The epidemiology, clinical features and outcome of myocardial infarction (MI) display significant differences between men and women. Prominent sex differences have also been suggested in left ventricular (LV) remodeling after MI. Ventricular remodeling refers to a deterioration of LV geometry and function often leading to heart failure (HF) development and an increased risk of adverse cardiovascular events. Women have a lower propensity to the acquisition of a spherical geometry and LV dysfunction. These differences can be attributed at least partially to a lower frequency of transmural infarction and smaller areas of microvascular obstruction in women, as well as to a less prominent activation of neuroendocrine systems and apoptotic, inflammatory and profibrotic pathways in women. Estrogens might play a role in this difference, which could partially persist even after the menopause because of a persisting intramyocardial synthesis of estrogens in women. Conversely, androgens may exert a detrimental influence. Future studies should better clarify sex differences in the predictors, clinical correlates, prognostic impact and disease mechanisms of remodeling, as well as the existence of sex-specific therapeutic targets. This research effort should hopefully allow to optimize the treatment of MI during the acute and post-acute phase, possibly through different therapeutic strategies in men and women, with the goal of reducing the risk of HF development and improving patient outcome.
Collapse
Affiliation(s)
- Alberto Aimo
- Istituto di Scienze della Vita, Scuola Superiore Sant'Anna, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy.
| | | | - Andrea Barison
- Istituto di Scienze della Vita, Scuola Superiore Sant'Anna, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | - Matteo Cameli
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Italy
| | - Stefano Coiro
- Division of Cardiology, University of Perugia, Italy
| | - Flavio D'Ascenzi
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Italy
| | - Carlo Di Mario
- Structural Interventional Cardiology, Careggi University Hospital, Florence, Italy
| | - Riccardo Liga
- Cardio-Thoracic and Vascular Department, University Hospital, Pisa, Italy
| | - Rossella Marcucci
- Experimental and Clinical Medicine, University of Florence, Atherothrombotic Center, AOU Careggi, Florence, Italy
| | - Doralisa Morrone
- Cardio-Thoracic and Vascular Department, University Hospital, Pisa, Italy
| | - Iacopo Olivotto
- Cardiomiopathy Unit, AOU Careggi, Florence, Italy. Società Italiana di Cardiologia, Sezione Regionale Tosco-Umbra
| | | | - Michele Emdin
- Istituto di Scienze della Vita, Scuola Superiore Sant'Anna, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| |
Collapse
|
13
|
Zhang Y, Bobe G, Miranda CL, Lowry MB, Hsu VL, Lohr CV, Wong CP, Jump DB, Robinson MM, Sharpton TJ, Maier CS, Stevens JF, Gombart AF. Tetrahydroxanthohumol, a xanthohumol derivative, attenuates high-fat diet-induced hepatic steatosis by antagonizing PPARγ. eLife 2021; 10:e66398. [PMID: 34128467 PMCID: PMC8205491 DOI: 10.7554/elife.66398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
We previously reported xanthohumol (XN), and its synthetic derivative tetrahydro-XN (TXN), attenuates high-fat diet (HFD)-induced obesity and metabolic syndrome in C57Bl/6J mice. The objective of the current study was to determine the effect of XN and TXN on lipid accumulation in the liver. Non-supplemented mice were unable to adapt their caloric intake to 60% HFD, resulting in obesity and hepatic steatosis; however, TXN reduced weight gain and decreased hepatic steatosis. Liver transcriptomics indicated that TXN might antagonize lipogenic PPARγ actions in vivo. XN and TXN inhibited rosiglitazone-induced 3T3-L1 cell differentiation concomitant with decreased expression of lipogenesis-related genes. A peroxisome proliferator activated receptor gamma (PPARγ) competitive binding assay showed that XN and TXN bind to PPARγ with an IC50 similar to pioglitazone and 8-10 times stronger than oleate. Molecular docking simulations demonstrated that XN and TXN bind in the PPARγ ligand-binding domain pocket. Our findings are consistent with XN and TXN acting as antagonists of PPARγ.
Collapse
Affiliation(s)
- Yang Zhang
- School of Biological and Population Health Sciences, Nutrition Program, Linus Pauling Institute, Oregon State UniversityCorvallisUnited States
| | - Gerd Bobe
- Department of Animal Sciences, Linus Pauling Institute, Oregon State UniversityCorvallisUnited States
| | - Cristobal L Miranda
- Department of Pharmaceutical Sciences, Linus Pauling Institute, Oregon State UniversityCorvallisUnited States
| | - Malcolm B Lowry
- Department of Microbiology, Oregon State UniversityCorvallisUnited States
| | - Victor L Hsu
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Christiane V Lohr
- Department of Biomedical Science, Carlson College of Veterinary MedicineCorvallisUnited States
| | - Carmen P Wong
- School of Biological and Population Health Sciences, Nutrition Program, Linus Pauling Institute, Oregon State UniversityCorvallisUnited States
| | - Donald B Jump
- School of Biological and Population Health Sciences, Nutrition Program, Linus Pauling Institute, Oregon State UniversityCorvallisUnited States
| | - Matthew M Robinson
- School of Biological and Population Health Sciences, Kinesiology Program, Oregon State UniversityCorvallisUnited States
| | - Thomas J Sharpton
- Department of Microbiology, Department of Statistics, Oregon State UniversityCorvallisUnited States
| | - Claudia S Maier
- Department of Chemistry, Linus Pauling Institute, Oregon State UniversityCorvallisUnited States
| | - Jan F Stevens
- Department of Pharmaceutical Sciences, Linus Pauling Institute, Oregon State UniversityCorvallisUnited States
| | - Adrian F Gombart
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| |
Collapse
|
14
|
Chen YC, Voskoboinik A, Gerche AL, Marwick TH, McMullen JR. Prevention of Pathological Atrial Remodeling and Atrial Fibrillation: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 77:2846-2864. [PMID: 34082914 DOI: 10.1016/j.jacc.2021.04.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/07/2021] [Indexed: 12/29/2022]
Abstract
Atrial enlargement in response to pathological stimuli (e.g., hypertension, mitral valve disease) and physiological stimuli (exercise, pregnancy) can be comparable in magnitude, but the diseased enlarged atria is associated with complications such as atrial fibrillation (AF), whereas physiological atrial enlargement is not. Pathological atrial enlargement and AF is also observed in a small percentage of athletes undergoing extreme/intense endurance sport and pregnant women with preeclampsia. Differences between physiological and pathological atrial enlargement and underlying mechanisms are poorly understood. This review describes human and animal studies characterizing atrial enlargement under physiological and pathological conditions and highlights key knowledge gaps and clinical challenges, including: 1) the limited ability of atria to reverse remodel; and 2) distinguishing physiological and pathological enlargement via imaging/biomarkers. Finally, this review discusses how targeting distinct molecular mechanisms underlying physiological and pathological atrial enlargement could provide new therapeutic and diagnostic strategies for preventing or reversing atrial enlargement and AF.
Collapse
Affiliation(s)
- Yi Ching Chen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Aleksandr Voskoboinik
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Heart Center, Alfred Hospital, Melbourne, Victoria, Australia; Department of Cardiology, Western Health, Melbourne, Victoria, Australia; Monash University, Melbourne, Victoria, Australia
| | - Andre La Gerche
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia; National Centre for Sports Cardiology, St. Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Thomas H Marwick
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Heart Center, Alfred Hospital, Melbourne, Victoria, Australia; Department of Cardiology, Western Health, Melbourne, Victoria, Australia; Monash University, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Monash University, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia.
| |
Collapse
|
15
|
Demerchi SA, King N, McFarlane JR, Moens PDJ. Effect of methionine feeding on oxidative stress, intracellular calcium and contractility in cardiomyocytes isolated from male and female rats. Mol Cell Biochem 2021; 476:2039-2045. [PMID: 33515384 DOI: 10.1007/s11010-020-04011-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/02/2020] [Indexed: 11/29/2022]
Abstract
Homocysteine (Hcy) is a breakdown product of methionine metabolism. The risk of cardiovascular disease (CVD) correlates with an increase in plasma Hcy levels. The aim of this study was to investigate whether 1% methionine supplementation of adult rats altered intracellular reactive oxygen species (ROS) generation, intracellular Ca2+ content, and contractile activity in freshly isolated cardiomyocytes. This was measured under normal conditions and during oxidative stress in freshly isolated cardiomyocytes. Single rat cardiomyocytes from both sexes were isolated by enzymatic and mechanical dispersion techniques. Fluorescence microscopy was used to measure ROS production and intracellular Ca2+ concentration. Cell contraction was measured using a video camera. During exposure to 200 μM, H2O2 female cardiomyocytes produced significantly fewer ROS and had a higher intracellular Ca2+ concentration compared to male cardiomyocytes in control and methionine-fed conditions. The contractility of cardiomyocytes isolated from male rats was insignificantly decreased after methionine feeding compared to control, while the contractility of cardiomyocytes from female rats insignificantly reduced after methionine feeding and acute exposure to oxidative stress. These findings provide evidence that during exposure to 200 μM H2O2, cardiomyocytes from female rats produce less ROS and have higher intracellular Ca2+ levels. There were no significant effects on contractility in cardiomyocytes from either gender and under any of the different conditions.
Collapse
Affiliation(s)
- Shatha A Demerchi
- School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia.,Technical College/Kirkuk, Northern Technical University, Kirkuk, Iraq
| | - Nicola King
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, PL4 8AA, UK.
| | - James R McFarlane
- School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia
| | - Pierre D J Moens
- School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
16
|
Najjar RS, Turner CG, Wong BJ, Feresin RG. Berry-Derived Polyphenols in Cardiovascular Pathologies: Mechanisms of Disease and the Role of Diet and Sex. Nutrients 2021; 13:nu13020387. [PMID: 33513742 PMCID: PMC7911141 DOI: 10.3390/nu13020387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) prevalence, pathogenesis, and manifestation is differentially influenced by biological sex. Berry polyphenols target several signaling pathways pertinent to CVD development, including inflammation, oxidative stress, and cardiac and vascular remodeling, and there are innate differences in these pathways that also vary by sex. There is limited research systematically investigating sex differences in berry polyphenol effects on these pathways, but there are fundamental findings at this time that suggest a sex-specific effect. This review will detail mechanisms within these pathological pathways, how they differ by sex, and how they may be individually targeted by berry polyphenols in a sex-specific manner. Because of the substantial polyphenolic profile of berries, berry consumption represents a promising interventional tool in the treatment and prevention of CVD in both sexes, but the mechanisms in which they function within each sex may vary.
Collapse
Affiliation(s)
- Rami S. Najjar
- Department of Nutrition, Georgia State University, Atlanta, GA 30302, USA;
| | - Casey G. Turner
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA 30302, USA; (C.G.T.); (B.J.W.)
| | - Brett J. Wong
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA 30302, USA; (C.G.T.); (B.J.W.)
| | - Rafaela G. Feresin
- Department of Nutrition, Georgia State University, Atlanta, GA 30302, USA;
- Correspondence:
| |
Collapse
|
17
|
Tahara N, Akiyama R, Wang J, Kawakami H, Bessho Y, Kawakami Y. The FGF-AKT pathway is necessary for cardiomyocyte survival for heart regeneration in zebrafish. Dev Biol 2021; 472:30-37. [PMID: 33444612 DOI: 10.1016/j.ydbio.2020.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/12/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
Zebrafish have a remarkable ability to regenerate the myocardium after injury by proliferation of pre-existing cardiomyocytes. Fibroblast growth factor (FGF) signaling is known to play a critical role in zebrafish heart regeneration through promotion of neovascularization of the regenerating myocardium. Here, we define an additional function of FGF signaling in the zebrafish myocardium after injury. We find that FGF signaling is active in a small fraction of cardiomyocytes before injury, and that the number of FGF signaling-positive cardiomyocytes increases after amputation-induced injury. We show that ERK phosphorylation is prominent in endothelial cells, but not in cardiomyocytes. In contrast, basal levels of phospho-AKT positive cardiomyocytes are detected before injury, and the ratio of phosphorylated AKT-positive cardiomyocytes increases after injury, indicating a role of AKT signaling in cardiomyocytes following injury. Inhibition of FGF signaling reduced the number of phosphorylated AKT-positive cardiomyocytes and increased cardiomyocyte death without injury. Heart injury did not induce cardiomyocyte death; however, heart injury in combination with inhibition of FGF signaling caused significant increase in cardiomyocyte death. Pharmacological inhibition of AKT signaling after heart injury also caused increased cardiomyocyte death. Our data support the idea that FGF-AKT signaling-dependent cardiomyocyte survival is necessary for subsequent heart regeneration.
Collapse
Affiliation(s)
- Naoyuki Tahara
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA; Developmental Biology Center, University of Minnesota, Minneapolis, MN, USA
| | - Ryutaro Akiyama
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA; Developmental Biology Center, University of Minnesota, Minneapolis, MN, USA; Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Justin Wang
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Hiroko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA; Developmental Biology Center, University of Minnesota, Minneapolis, MN, USA
| | - Yasumasa Bessho
- Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA; Developmental Biology Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
18
|
Zhang J, Qu L, Wei J, Jiang S, Xu L, Wang L, Cheng F, Jiang K, Buggs J, Liu R. A new mechanism for the sex differences in angiotensin II-induced hypertension: the role of macula densa NOS1β-mediated tubuloglomerular feedback. Am J Physiol Renal Physiol 2020; 319:F908-F919. [PMID: 33044868 DOI: 10.1152/ajprenal.00312.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Females are protected against the development of angiotensin II (ANG II)-induced hypertension compared with males, but the mechanisms have not been completely elucidated. In the present study, we hypothesized that the effect of ANG II on the macula densa nitric oxide (NO) synthase 1β (NOS1β)-mediated tubuloglomerular feedback (TGF) mechanism is different between males and females, thereby contributing to the sexual dimorphism of ANG II-induced hypertension. We used microperfusion, micropuncture, clearance of FITC-inulin, and radio telemetry to examine the sex differences in the changes of macula densa NOS1β expression and activity, TGF response, natriuresis, and blood pressure (BP) after a 2-wk ANG II infusion in wild-type and macula densa-specific NOS1 knockout mice. In wild-type mice, ANG II induced higher expression of macula densa NOS1β, greater NO generation by the macula densa, and a lower TGF response in vitro and in vivo in females than in males; the increases of glomerular filtration rate, urine flow rate, and Na+ excretion in response to an acute volume expansion were significantly greater and the BP responses to ANG II were significantly less in females than in males. In contrast, these sex differences in the effects of ANG II on TGF, natriuretic response, and BP were largely diminished in knockout mice. In addition, tissue culture of human kidney biopsies (renal cortex) with ANG II resulted in a greater increase in NOS1β expression in females than in males. In conclusion, macula densa NOS1β-mediated TGF is a novel and important mechanism for the sex differences in ANG II-induced hypertension.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Larry Qu
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Shan Jiang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Lan Xu
- College of Public Health, University of South Florida, Tampa, Florida
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Kun Jiang
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jacentha Buggs
- Advanced Organ Disease and Transplantation Institute, Tampa General Hospital, Tampa, Florida
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
19
|
Summerhill VI, Moschetta D, Orekhov AN, Poggio P, Myasoedova VA. Sex-Specific Features of Calcific Aortic Valve Disease. Int J Mol Sci 2020; 21:ijms21165620. [PMID: 32781508 PMCID: PMC7460640 DOI: 10.3390/ijms21165620] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 01/09/2023] Open
Abstract
Calcific aortic valve disease (CAVD) is the most common valvular heart disease in developed countries predominantly affecting the elderly population therefore posing a large economic burden. It is a gradually progressive condition ranging from mild valve calcification and thickening, without the hemodynamic obstruction, to severe calcification impairing leaflet motion, known as aortic stenosis (AS). The progression of CAVD occurs over many years, and it is extremely variable among individuals. It is also associated with an increased risk of coronary events and mortality. The recent insights into the CAVD pathophysiology included an important role of sex. Accumulating evidence suggests that, in patients with CAVD, sex can determine important differences in the relationship between valvular calcification process, fibrosis, and aortic stenosis hemodynamic severity between men and women. Consequently, it has implications on the development of different valvular phenotypes, left ventricular hypertrophy, and cardiovascular outcomes in men and women. Along these lines, taking into account the sex-related differences in diagnosis, prognosis, and treatment outcomes is of profound importance. In this review, the sex-related differences in patients with CAVD, in terms of pathobiology, clinical phenotypes, and outcomes were discussed.
Collapse
Affiliation(s)
- Volha I. Summerhill
- Department of Basic Research, Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia;
- Correspondence:
| | - Donato Moschetta
- Unit for the Study of Aortic, Valvular and Coronary Pathologies, Monzino Cardiology Center IRCCS, 20138 Milan, Italy; (D.M.); (P.P.); (V.A.M.)
- Department of Pharmacological and Biomolecular Sciences, The University of Milan, 20133 Milan, Italy
| | - Alexander N. Orekhov
- Department of Basic Research, Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Paolo Poggio
- Unit for the Study of Aortic, Valvular and Coronary Pathologies, Monzino Cardiology Center IRCCS, 20138 Milan, Italy; (D.M.); (P.P.); (V.A.M.)
| | - Veronika A. Myasoedova
- Unit for the Study of Aortic, Valvular and Coronary Pathologies, Monzino Cardiology Center IRCCS, 20138 Milan, Italy; (D.M.); (P.P.); (V.A.M.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| |
Collapse
|
20
|
Perrino C, Ferdinandy P, Bøtker HE, Brundel BJJM, Collins P, Davidson SM, den Ruijter HM, Engel FB, Gerdts E, Girao H, Gyöngyösi M, Hausenloy DJ, Lecour S, Madonna R, Marber M, Murphy E, Pesce M, Regitz-Zagrosek V, Sluijter JPG, Steffens S, Gollmann-Tepeköylü C, Van Laake LW, Van Linthout S, Schulz R, Ytrehus K. Improving translational research in sex-specific effects of comorbidities and risk factors in ischaemic heart disease and cardioprotection: position paper and recommendations of the ESC Working Group on Cellular Biology of the Heart. Cardiovasc Res 2020; 117:367-385. [PMID: 32484892 DOI: 10.1093/cvr/cvaa155] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/29/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Ischaemic heart disease (IHD) is a complex disorder and a leading cause of death and morbidity in both men and women. Sex, however, affects several aspects of IHD, including pathophysiology, incidence, clinical presentation, diagnosis as well as treatment and outcome. Several diseases or risk factors frequently associated with IHD can modify cellular signalling cascades, thus affecting ischaemia/reperfusion injury as well as responses to cardioprotective interventions. Importantly, the prevalence and impact of risk factors and several comorbidities differ between males and females, and their effects on IHD development and prognosis might differ according to sex. The cellular and molecular mechanisms underlying these differences are still poorly understood, and their identification might have important translational implications in the prediction or prevention of risk of IHD in men and women. Despite this, most experimental studies on IHD are still undertaken in animal models in the absence of risk factors and comorbidities, and assessment of potential sex-specific differences are largely missing. This ESC WG Position Paper will discuss: (i) the importance of sex as a biological variable in cardiovascular research, (ii) major biological mechanisms underlying sex-related differences relevant to IHD risk factors and comorbidities, (iii) prospects and pitfalls of preclinical models to investigate these associations, and finally (iv) will provide recommendations to guide future research. Although gender differences also affect IHD risk in the clinical setting, they will not be discussed in detail here.
Collapse
Affiliation(s)
- Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 80131 Naples, Italy
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary.,Pharmahungary Group, Hajnoczy str. 6., H-6722 Szeged, Hungary
| | - Hans E Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 161, 8200 Aarhus, Denmark
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, Amsterdam, 1108 HV, the Netherlands
| | - Peter Collins
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, South Kensington Campus, London SW7 2AZ, UK.,Royal Brompton Hospital, Sydney St, Chelsea, London SW3 6NP, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, WC1E 6HX London, UK
| | - Hester M den Ruijter
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Muscle Research Center Erlangen (MURCE), Schwabachanlage 12, 91054 Erlangen, Germany
| | - Eva Gerdts
- Department for Clinical Science, University of Bergen, PO Box 7804, 5020 Bergen, Norway
| | - Henrique Girao
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, and Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, 1E Kent Ridge Road, 119228, Singapore.,The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, Chris Barnard Building, University of Cape Town, Private Bag X3 7935 Observatory, Cape Town, South Africa
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Lungarno Antonio Pacinotti 43, 56126 Pisa, Italy.,Department of Internal Medicine, University of Texas Medical School in Houston, 6410 Fannin St #1014, Houston, TX 77030, USA
| | - Michael Marber
- King's College London BHF Centre, The Rayne Institute, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Elizabeth Murphy
- Laboratory of Cardiac Physiology, Cardiovascular Branch, NHLBI, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS Via Parea, 4, I-20138 Milan, Italy
| | - Vera Regitz-Zagrosek
- Berlin Institute of Gender in Medicine, Center for Cardiovascular Research, DZHK, partner site Berlin, Geschäftsstelle Potsdamer Str. 58, 10785 Berlin, Germany.,University of Zürich, Rämistrasse 71, 8006 Zürich, Germany
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands.,Circulatory Health Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention and German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Can Gollmann-Tepeköylü
- Department of Cardiac Surgery, Medical University of Innsbruck, Anichstr.35, A - 6020 Innsbruck, Austria
| | - Linda W Van Laake
- Cardiology and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, 10178 Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, 10178 Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Ludwigstraße 23, 35390 Giessen, Germany
| | - Kirsti Ytrehus
- Department of Medical Biology, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9037 Tromsø, Norway
| |
Collapse
|
21
|
Palau P, Bertomeu-González V, Sanchis J, Soler M, de la Espriella R, Domínguez E, Santas E, Núñez E, Chorro FJ, Miñana G, Bayés-Genís A, Núñez J. Efecto pronóstico diferencial de la diabetes mellitus tipo 2 en mujeres y varones con insuficiencia cardiaca y fracción de eyección conservada. Rev Esp Cardiol 2020. [DOI: 10.1016/j.recesp.2019.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Sabbatini AR, Kararigas G. Estrogen-related mechanisms in sex differences of hypertension and target organ damage. Biol Sex Differ 2020; 11:31. [PMID: 32487164 PMCID: PMC7268741 DOI: 10.1186/s13293-020-00306-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Hypertension (HTN) is a primary risk factor for cardiovascular (CV) events, target organ damage (TOD), premature death and disability worldwide. The pathophysiology of HTN is complex and influenced by many factors including biological sex. Studies show that the prevalence of HTN is higher among adults aged 60 and over, highlighting the increase of HTN after menopause in women. Estrogen (E2) plays an important role in the development of systemic HTN and TOD, exerting several modulatory effects. The influence of E2 leads to alterations in mechanisms regulating the sympathetic nervous system, renin-angiotensin-aldosterone system, body mass, oxidative stress, endothelial function and salt sensitivity; all associated with a crucial inflammatory state and influenced by genetic factors, ultimately resulting in cardiac, vascular and renal damage in HTN. In the present article, we discuss the role of E2 in mechanisms accounting for the development of HTN and TOD in a sex-specific manner. The identification of targets with therapeutic potential would contribute to the development of more efficient treatments according to individual needs.
Collapse
Affiliation(s)
| | - Georgios Kararigas
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| |
Collapse
|
23
|
Pasini E, Comini L, Dioguardi FS, Grossetti F, Olivares A, Zanelli E, Aquilani R, Scalvini S. Hypoalbuminemia as a marker of protein metabolism disarrangement in patients with stable chronic heart failure. Minerva Med 2020; 111:226-238. [PMID: 32166926 DOI: 10.23736/s0026-4806.20.06244-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Despite therapeutic advances, chronic heart failure (CHF)-related mortality and hospitalization is still unacceptably high. Evidence shows that muscular wasting, sarcopenia, cachexia are independent predictors of mortality and morbidity in CHF and are signs of protein metabolism disarrangement (PMD), which involve all body proteins including circulating one. We postulate that circulating human serum albumin (HSA) could be a marker of PMD and catabolic low-grade inflammation (LGI) in CHF patients. METHODS One hundred sixty-six stable CHF patients (73% males), with optimized therapy referred to cardiac rehabilitation, were retrospectively divided into three groups based on their HSA concentration: ≥3.5 g/dL (normal value), 3.2-3.49 g/dL (low value); ≤3.19 g/dL (severe value). Hematochemical analyses (including circulating proteins and inflammatory markers) and body mass composition (by Bioelectrical Impedance Vector Analysis) were collected and compared. Correlations and multivariate regression were performed. RESULTS Despite being overweight (BMI=27 kg/m2), 75% of patients had reduced HSA (<3.5 g/dL) with suspectable sarcopenia, and 35% of all patients had remarkably lower albumin concentrations (<3.19 g/dL). Hypoalbuminemic patients were disable, older, with reduced muscular proteins, bilirubin and hemoglobin, increased extracellular water and LGI (P<0.01). HSA correlated with all of these parameters (all: P<0.01). Age, LGI, BMI, free-fat Mass, and bilirubin were independent predictors of HSA concentration. All these findings were male-dependent. CONCLUSIONS HSA could be considered a simple marker of PMD and LGI in CHF patients. Evaluation of PMD and gender differences should be considered in new CHF clinical trials.
Collapse
Affiliation(s)
- Evasio Pasini
- Cardiac Rehabilitation of the Institute of Lumezzane, Clinical Scientific Institutes Maugeri IRCCS, Brescia, Italy -
| | - Laura Comini
- Clinical Scientific Institutes Maugeri IRCCS, Scientific Direction of the Institute of Lumezzane, Brescia, Italy
| | | | | | - Adriana Olivares
- Clinical Scientific Institutes Maugeri IRCCS, Scientific Direction of the Institute of Lumezzane, Brescia, Italy
| | - Emanuela Zanelli
- Cardiac Rehabilitation of the Institute of Lumezzane, Clinical Scientific Institutes Maugeri IRCCS, Brescia, Italy
| | - Roberto Aquilani
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Simonetta Scalvini
- Cardiac Rehabilitation of the Institute of Lumezzane, Clinical Scientific Institutes Maugeri IRCCS, Brescia, Italy
| |
Collapse
|
24
|
Zhang J, Zhu J, Wei J, Jiang S, Xu L, Qu L, Yang K, Wang L, Buggs J, Cheng F, Tan X, Liu R. New Mechanism for the Sex Differences in Salt-Sensitive Hypertension: The Role of Macula Densa NOS1β-Mediated Tubuloglomerular Feedback. Hypertension 2020; 75:449-457. [PMID: 31865794 PMCID: PMC7015450 DOI: 10.1161/hypertensionaha.119.13822] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Females are relatively resistant to salt-sensitive hypertension than males, but the mechanisms are not completely elucidated. We recently demonstrated a decisive role of macula densa neuronal NOS1β (nitric oxide synthase β)-mediated tubuloglomerular feedback (TGF) in the long-term control of glomerular filtration rate, sodium excretion, and blood pressure. In the present study, we hypothesized that the macula densa NOS1β-mediated TGF mechanism is different between male and female, thereby contributing to the sexual dimorphism of salt-sensitive hypertension. We used microperfusion, micropuncture, clearance of fluorescein isothiocyanate-inulin, and radio telemetry to examine the sex differences in the changes of macula densa NOS1β expression and activity, TGF response, natriuresis, and blood pressure after salt loading in wild-type and macula densa-specific NOS1 knockout mice. In wild-type mice, a high-salt diet induced greater increases in macula densa NOS1β expression and phosphorylation at Ser 1417, greater nitric oxide generation by the macula densa, and more inhibition in TGF response in vitro and in vivo in females than in males. Additionally, the increases of glomerular filtration rate, urine flow rate, and sodium excretion in response to an acute volume expansion were significantly greater in females than in males. The blood pressure responses to angiotensin II plus a high-salt diet were significantly less in females than in males. In contrast, these sex differences in TGF, natriuretic response, and blood pressure were largely diminished in knockout mice. In conclusion, macula densa NOS1β-mediated TGF is a novel and important mechanism for the sex differences in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jinxiu Zhu
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jin Wei
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Shan Jiang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Lan Xu
- College of Public Health, University of South Florida, Tampa, FL
| | - Larry Qu
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Kun Yang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jacentha Buggs
- Advanced Organ Disease & Transplantation Institute, Tampa General Hospital, Tampa, FL
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL
| | - Xuerui Tan
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ruisheng Liu
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
25
|
Cardioprotective Effects of Dietary Phytochemicals on Oxidative Stress in Heart Failure by a Sex-Gender-Oriented Point of View. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2176728. [PMID: 31998434 PMCID: PMC6975222 DOI: 10.1155/2020/2176728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/03/2019] [Accepted: 11/29/2019] [Indexed: 01/18/2023]
Abstract
Dietary phytochemicals are considered an innovative strategy that helps to reduce cardiovascular risk factors. Some phytochemicals have been shown to play a beneficial role in lipid metabolism, to improve endothelial function and to modify oxidative stress pathways in experimental and clinical models of cardiovascular impairment. Importantly, investigation on phytochemical effect on cardiac remodeling appears to be promising. Nowadays, drug therapy and implantation of devices have demonstrated to ameliorate survival. Of interest, sex-gender seems to influence the response to HF canonical therapies. In fact, starting by the evidence of the feminization of world population and the scarce efficacy and safety of the traditional drugs in women, the search of alternative therapeutic tools has become mandatory. The aim of this review is to summarize the possible role of dietary phytochemicals in HF therapy and the evidence of a different sex-gender-oriented response.
Collapse
|
26
|
Lu DY, Ventoulis I, Liu H, Kudchadkar SM, Greenland GV, Yalcin H, Kontari E, Goyal S, Corona-Villalobos CP, Vakrou S, Zimmerman SL, Abraham TP, Abraham MR. Sex-specific cardiac phenotype and clinical outcomes in patients with hypertrophic cardiomyopathy. Am Heart J 2020; 219:58-69. [PMID: 31726421 DOI: 10.1016/j.ahj.2019.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/06/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND It is unknown whether sex-specific differences in mortality observed in HCM are due to older age of women at presentation, or whether women have greater degree of LV myopathy than men. METHODS We retrospectively compared clinical/imaging characteristics and outcomes between women and men in our overall cohort composed of 728 HCM patients, and in an age-matched subgroup comprised of 400 age-matched patients. We examined sex-specific differences in LV myopathy, and dissected the influence of age and sex on outcomes. LV myopathy was assessed by measuring LV mass, LVEF, global peak longitudinal systolic strain (LV-GLS), diastolic function (E/A, E/e'), late gadolinium enhancement (LV-LGE) and myocardial blood flow (MBF) at rest/stress. The primary endpoint was a composite outcome, comprising heart failure (HF), atrial fibrillation (AFib), ventricular tachycardia/fibrillation (VT/VF) and death; individual outcomes were defined as the secondary endpoint. RESULTS Women in the overall cohort were older by 6 years. Women were more symptomatic and more likely to have obstructive HCM. Women had smaller LV cavity size, stroke volume and LV mass, higher indexed maximum wall thickness (IMWT), more hyperdynamic LVEF and higher/similar LV-GLS. Women had similar LV-LGE and E/A, but higher E/e' and rest/stress MBF. Female sex was independently associated with the composite outcome in the overall cohort, and with HF in the overall cohort and age-matched subgroup after adjusting for obstructive HCM, LA diameter, LV-GLS. CONCLUSIONS Our results suggest that sex-specific differences in LV geometry, hyper-contractility and diastolic function, not greater degree of LV myopathy, contribute to a higher, age-independent risk of diastolic HF in women with HCM.
Collapse
|
27
|
Liu Y, Duan C, Liu W, Chen X, Wang Y, Liu X, Yue J, Yang J, Zhou X. Upregulation of let-7f-2-3p by long noncoding RNA NEAT1 inhibits XPO1-mediated HAX-1 nuclear export in both in vitro and in vivo rodent models of doxorubicin-induced cardiotoxicity. Arch Toxicol 2019; 93:3261-3276. [PMID: 31570982 DOI: 10.1007/s00204-019-02586-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022]
Abstract
Clinical application of doxorubicin (Dox) is limited due to its undesirable side effects, especially cardiotoxicity. Several microRNAs (miRNAs) such as microRNA-140-5p and miR-23a aggravate Dox-induced cardiotoxicity. Here we demonstrate that upregulation of miRNA let-7f-2-3p by long noncoding RNA (lncRNA) NEAT1 inhibits exportin-1 (XPO1)-mediated nuclear export of hematopoietic-substrate-1 associated protein X-1 (HAX-1) in Dox-induced cardiotoxicity. Treatment of the H9c2 cells with the Dox (1 μM) for 6 h inhibited HAX-1 nuclear export and decreased XPO1 expression. Overexpression of XPO1 significantly attenuated the Dox-induced leakage of myocardial enzymes (creatine phosphokinase, creatine kinase-MB and lactate dehydrogenase) and cardiomyocyte apoptosis with the increased HAX-1 nuclear export. Differentially expressed miRNAs including let-7f-2-3p were selected from the Dox or vehicle-treated cardiomyocytes. TargetScan and luciferase assay showed that let-7f-2-3p targeted XPO1 3' UTR. Inhibition of let-7f-2-3p reduced Dox-induced cardiotoxicity and apoptosis by inhibiting XPO1-mediated HAX-1 nuclear export, whereas let-7f-2-3p overexpression aggravated these effects. In addition, lncRNA NEAT1 was identified as an endogenous sponge RNA to repress let-7f-2-3p expression. Overexpression of lncRNA NEAT1 abolished the increased let-7f-2-3p expression by Dox, and thereby attenuated cardiotoxicity. The loss function of let-7f-2-3p increased XPO1-mediated HAX-1 nuclear export and reduced myocardial injury in Dox (20 mg/kg)-treated rats. Importantly, let-7f-2-3p inhibition in mice alleviated Dox-induced cardiotoxicity and preserved the antitumor efficacy. Together, let-7f-2-3p regulated by lncRNA NEAT1 aggravates Dox-induced cardiotoxicity through inhibiting XPO1-mediated HAX-1 nuclear export, and may serve as a potential therapeutic target against Dox-induced cardiotoxicity.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/therapeutic use
- Antibiotics, Antineoplastic/toxicity
- Apoptosis/drug effects
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/metabolism
- Cardiotoxicity
- Cell Line
- Doxorubicin/therapeutic use
- Doxorubicin/toxicity
- Heart/drug effects
- Intracellular Signaling Peptides and Proteins/metabolism
- Karyopherins/genetics
- Male
- Mice, Inbred C57BL
- MicroRNAs/genetics
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- RNA, Long Noncoding/genetics
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/genetics
- Up-Regulation
- Exportin 1 Protein
Collapse
Affiliation(s)
- Yanzhuo Liu
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, 430060, China
| | - Chenfan Duan
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, 430060, China
| | - Wen Liu
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xuewei Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Yang Wang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiaoxiao Liu
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jiang Yue
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jing Yang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiaoyang Zhou
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
28
|
Palau P, Bertomeu-González V, Sanchis J, Soler M, de la Espriella R, Domínguez E, Santas E, Núñez E, Chorro FJ, Miñana G, Bayés-Genís A, Núñez J. Differential prognostic impact of type 2 diabetes mellitus in women and men with heart failure with preserved ejection fraction. ACTA ACUST UNITED AC 2019; 73:463-470. [PMID: 31629690 DOI: 10.1016/j.rec.2019.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/06/2019] [Indexed: 01/13/2023]
Abstract
INTRODUCTION AND OBJECTIVES Type 2 diabetes mellitus (DM2) is a common comorbidity in patients with heart failure (HF) with preserved ejection fraction (HFpEF). Previous studies have shown that diabetic women are at higher risk of developing HF than men. However, the long-term prognosis of diabetic HFpEF patients by sex has not been extensively explored. In this study, we aimed to evaluate the differential impact of DM2 on all-cause mortality in men vs women with HFpEF after admission for acute HF. METHODS We prospectively included 1019 consecutive HFpEF patients discharged after admission for acute HF in a single tertiary referral hospital. Multivariate Cox regression analysis was used to evaluate the interaction between sex and DM2 regarding the risk of long-term all-cause mortality. Risk estimates were calculated as hazard ratios (HR). RESULTS The mean age of the cohort was 75.6±9.5 years and 609 (59.8%) were women. The proportion of DM2 was similar between sexes (45.1% vs 49.1, P=.211). At a median (interquartile range) follow-up of 3.6 (1-4-6.8) years, 646 (63.4%) patients died. After adjustment for risk factors, comorbidities, biomarkers, echo parameters and treatment at discharge, multivariate analysis showed a differential prognostic effect of DM2 (P value for interaction=.007). DM2 was associated with a higher risk of all-cause mortality in women (HR, 1.77; 95%CI, 1.41-2.21; P <.001) but not in men (HR, 1.23; 95%CI, 0.94-1.61; P=.127). CONCLUSIONS After an episode of acute HF in HFpEF patients, DM2 confers a higher risk of mortality in women. Further studies evaluating the impact of DM2 in women with HFpEF are warranted.
Collapse
Affiliation(s)
- Patricia Palau
- Servicio de Cardiología, Hospital General de Castellón, Castellón, Spain; Unitat Predepartamental de Medicina, Universitat Jaume I, Castellón, Spain
| | - Vicente Bertomeu-González
- Servicio de Cardiología, Hospital Universitario San Juan de Alicante, Sant Joan d'Alacant, Alicante, Spain; Departamento de Medicina Clínica, Universidad Miguel Hernández, Sant Joan d'Alacant, Alicante, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - Juan Sanchis
- Servicio de Cardiología, Hospital Clínico Universitario, INCLIVA, Valencia, Spain; Departamento de Medicin a, Universitat de València, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Meritxell Soler
- Servicio de Cardiología, Hospital Clínico Universitario, INCLIVA, Valencia, Spain
| | | | - Eloy Domínguez
- Servicio de Cardiología, Hospital General de Castellón, Castellón, Spain; Unitat Predepartamental de Medicina, Universitat Jaume I, Castellón, Spain
| | - Enrique Santas
- Servicio de Cardiología, Hospital Clínico Universitario, INCLIVA, Valencia, Spain
| | - Eduardo Núñez
- Servicio de Cardiología, Hospital Clínico Universitario, INCLIVA, Valencia, Spain
| | - Francisco Javier Chorro
- Servicio de Cardiología, Hospital Clínico Universitario, INCLIVA, Valencia, Spain; Departamento de Medicin a, Universitat de València, Valencia, Spain
| | - Gema Miñana
- Servicio de Cardiología, Hospital Clínico Universitario, INCLIVA, Valencia, Spain
| | - Antoni Bayés-Genís
- Unidad de Insuficiencia Cardiaca, Servicio de Cardiología, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Julio Núñez
- Servicio de Cardiología, Hospital Clínico Universitario, INCLIVA, Valencia, Spain; Departamento de Medicin a, Universitat de València, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
29
|
Bernardo BC, Ooi JYY, Weeks KL, Patterson NL, McMullen JR. Understanding Key Mechanisms of Exercise-Induced Cardiac Protection to Mitigate Disease: Current Knowledge and Emerging Concepts. Physiol Rev 2018; 98:419-475. [PMID: 29351515 DOI: 10.1152/physrev.00043.2016] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The benefits of exercise on the heart are well recognized, and clinical studies have demonstrated that exercise is an intervention that can improve cardiac function in heart failure patients. This has led to significant research into understanding the key mechanisms responsible for exercise-induced cardiac protection. Here, we summarize molecular mechanisms that regulate exercise-induced cardiac myocyte growth and proliferation. We discuss in detail the effects of exercise on other cardiac cells, organelles, and systems that have received less or little attention and require further investigation. This includes cardiac excitation and contraction, mitochondrial adaptations, cellular stress responses to promote survival (heat shock response, ubiquitin-proteasome system, autophagy-lysosomal system, endoplasmic reticulum unfolded protein response, DNA damage response), extracellular matrix, inflammatory response, and organ-to-organ crosstalk. We summarize therapeutic strategies targeting known regulators of exercise-induced protection and the challenges translating findings from bench to bedside. We conclude that technological advancements that allow for in-depth profiling of the genome, transcriptome, proteome and metabolome, combined with animal and human studies, provide new opportunities for comprehensively defining the signaling and regulatory aspects of cell/organelle functions that underpin the protective properties of exercise. This is likely to lead to the identification of novel biomarkers and therapeutic targets for heart disease.
Collapse
Affiliation(s)
- Bianca C Bernardo
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Jenny Y Y Ooi
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Kate L Weeks
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Natalie L Patterson
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| |
Collapse
|
30
|
Hosohata K, Inada A, Oyama S, Furushima D, Yamada H, Iwanaga K. Surveillance of drugs that most frequently induce acute kidney injury: A pharmacovigilance approach. J Clin Pharm Ther 2018; 44:49-53. [DOI: 10.1111/jcpt.12748] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/25/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Keiko Hosohata
- Education and Research Center for Clinical Pharmacy; Osaka University of Pharmaceutical Sciences; Takatsuki Osaka Japan
| | - Ayaka Inada
- Education and Research Center for Clinical Pharmacy; Osaka University of Pharmaceutical Sciences; Takatsuki Osaka Japan
| | - Saki Oyama
- Education and Research Center for Clinical Pharmacy; Osaka University of Pharmaceutical Sciences; Takatsuki Osaka Japan
| | - Daisuke Furushima
- Drug Evaluation & Informatics; University of Shizuoka; Shizuoka Japan
| | - Hiroshi Yamada
- Drug Evaluation & Informatics; University of Shizuoka; Shizuoka Japan
| | - Kazunori Iwanaga
- Education and Research Center for Clinical Pharmacy; Osaka University of Pharmaceutical Sciences; Takatsuki Osaka Japan
| |
Collapse
|
31
|
Wang D, Xu S, Ding W, Zhu C, Deng S, Qiu X, Wang Z. Decreased placental and muscular expression of the fibroblast growth factor 19 in gestational diabetes mellitus. J Diabetes Investig 2018; 10:171-181. [PMID: 29734515 PMCID: PMC6319613 DOI: 10.1111/jdi.12859] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/25/2018] [Accepted: 04/29/2018] [Indexed: 12/14/2022] Open
Abstract
Aims/Introduction Fibroblast growth factor (FGF)19 has been shown to improve glycemic homeostasis and lipid metabolism in animal models. In humans, decreased FGF19 level has been described in diabetes. The present study aimed to investigate the expression of FGF19 in gestational diabetes mellitus (GDM) patients. Materials and Methods Samples for measurement were obtained from 20 women with GDM and 25 healthy controls. The messenger ribonucleic acid (mRNA) and protein expression levels of FGF19, FGF21 and co‐receptor β‐klotho (KLB) in the placenta, rectus muscle and subcutaneous fat tissues were quantified by real‐time quantitative polymerase chain reaction, western blot and immunohistochemistry, respectively. Results Women with GDM had significantly lower mRNA and protein expressions of FGF19 than control women in the placenta (mRNA 0.33 ± 0.05 vs 0.72 ± 0.09; protein 0.34 ± 0.13 vs 0.85 ± 0.20) and rectus muscle (mRNA 0.83 ± 0.11 vs 1.28 ± 0.19; protein 0.78 ± 0.24 vs 1.23 ± 0.39). However, there were no significant differences between GDM women and controls with respect to the expression levels of FGF21 and β‐klotho in the placenta and rectus muscle. There were almost no detectable FGF19 and FGF21 expressions in subcutaneous fat tissue. Furthermore, β‐klotho expression levels were not different between the GDM and control group in subcutaneous fat. Conclusions FGF19 expressions are decreased in the placenta and rectus muscle of women with GDM. This might contribute to the pathophysiology or development of GDM.
Collapse
Affiliation(s)
- Dongyu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuqia Xu
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjing Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Caixia Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Songqing Deng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiwen Qiu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zilian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
32
|
Marotta P, Cianflone E, Aquila I, Vicinanza C, Scalise M, Marino F, Mancuso T, Torella M, Indolfi C, Torella D. Combining cell and gene therapy to advance cardiac regeneration. Expert Opin Biol Ther 2018; 18:409-423. [PMID: 29347847 DOI: 10.1080/14712598.2018.1430762] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The characterization of multipotent endogenous cardiac stem cells (eCSCs) and the breakthroughs of somatic cell reprogramming to boost cardiomyocyte replacement have fostered the prospect of achieving functional heart repair/regeneration. AREAS COVERED Allogeneic CSC therapy through its paracrine stimulation of the endogenous resident reparative/regenerative process produces functional meaningful myocardial regeneration in pre-clinical porcine myocardial infarction models and is currently tested in the first-in-man human trial. The in vivo test of somatic reprogramming and cardioregenerative non-coding RNAs revived the interest in gene therapy for myocardial regeneration. The latter, together with the advent of genome editing, has prompted most recent efforts to produce genetically-modified allogeneic CSCs that secrete cardioregenerative factors to optimize effective myocardial repair. EXPERT OPINION The current war against heart failure epidemics in western countries seeks to find effective treatments to set back the failing hearts prolonging human lifespan. Off-the-shelf allogeneic-genetically-modified CSCs producing regenerative agents are a novel and evolving therapy set to be affordable, safe, effective and available at all times for myocardial regeneration to either prevent or treat heart failure.
Collapse
Affiliation(s)
- Pina Marotta
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Eleonora Cianflone
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Iolanda Aquila
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Carla Vicinanza
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Mariangela Scalise
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Fabiola Marino
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Teresa Mancuso
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Michele Torella
- b Department of Cardiothoracic Sciences , University of Campania "L. Vanvitelli" , Naples , Italy
| | - Ciro Indolfi
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Daniele Torella
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| |
Collapse
|
33
|
Florijn BW, Bijkerk R, van der Veer EP, van Zonneveld AJ. Gender and cardiovascular disease: are sex-biased microRNA networks a driving force behind heart failure with preserved ejection fraction in women? Cardiovasc Res 2017; 114:210-225. [DOI: 10.1093/cvr/cvx223] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/23/2017] [Indexed: 01/08/2023] Open
Abstract
AbstractCardiovascular disease (CVD) is the primary cause of death among men and women worldwide. Nevertheless, our comprehension of how CVD progresses in women and elicits clinical outcomes is lacking, leading CVD to be under-diagnosed and under-treated in women. A clear example of this differential presentation of CVD pathophysiologies in females is the strikingly higher prevalence of heart failure with preserved ejection fraction (HFpEF). Women with a history of pre-eclampsia or those who present with co-morbidities such as obesity, hypertension, and diabetes mellitus are at increased risk of developing HFpEF. Long understood to be a critical CVD risk factor, our understanding of how gender differentially affects the development of CVD has been greatly expanded by extensive genomic and transcriptomic studies. These studies uncovered a pivotal role for differential microRNA (miRNA) expression in response to systemic inflammation, where their co-ordinated expression forms a post-transcriptional regulatory network that instigates microcirculation defects. Importantly, the potential sex-biased expression of the given miRNAs may explain sex-specific cardiovascular pathophysiologies in women, such as HFpEF. Sex-biased miRNAs are regulated by oestrogen (E2) in their transcription and processing or are expressed from loci on the X-chromosome due to incomplete X-chromosome inactivation. Interestingly, while E2-induced miRNAs predominantly appear to serve protective functions, it could be argued that many X-linked miRNAs have been found to challenge microvascular and myocardial integrity. Therefore, menopausal E2 deficiency, resulting in protective miRNA loss, and the augmentation of X-linked miRNA expression, may well contribute to the molecular mechanisms that underlie the female-specific cardiovascular aetiology in HFpEF.
Collapse
Affiliation(s)
- Barend W Florijn
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Roel Bijkerk
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Eric P van der Veer
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Anton Jan van Zonneveld
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| |
Collapse
|
34
|
Cardioprotection by Low-dose of Estrogen and Testosterone at the Physiological Ratio on Ovariectomized Rats During Ischemia/Reperfusion Injury. J Cardiovasc Pharmacol 2017; 70:87-93. [DOI: 10.1097/fjc.0000000000000497] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Boddu R, Fan C, Rangarajan S, Sunil B, Bolisetty S, Curtis LM. Unique sex- and age-dependent effects in protective pathways in acute kidney injury. Am J Physiol Renal Physiol 2017; 313:F740-F755. [PMID: 28679590 PMCID: PMC5625098 DOI: 10.1152/ajprenal.00049.2017] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/06/2017] [Accepted: 06/28/2017] [Indexed: 12/25/2022] Open
Abstract
Sex and age influence susceptibility to acute kidney injury (AKI), with young females exhibiting lowest incidence. In these studies, we investigated mechanisms which may underlie the sex/age-based dissimilarities. Cisplatin (Cp)-induced AKI resulted in morphological evidence of injury in all groups. A minimal rise in plasma creatinine (PCr) was seen in Young Females, whereas in Aged Females, PCr rose precipitously. Relative to Young Males, Aged Males showed significantly, but temporally, comparably elevated PCr. Notably, Aged Females showed significantly greater mortality, whereas Young Females exhibited none. Tissue KIM-1 and plasma NGAL were significantly lower in Young Females than all others. IGFBP7 levels were modestly increased in both Young groups. IGFBP7 levels in Aged Females were significantly elevated at baseline relative to Aged Males, and increased linearly through day 3, when these levels were comparable in both Aged groups. Plasma cytokine levels similarly showed a pattern of protective effects preferentially in Young Females. Expression of the drug transporter MATE2 did not explain the sex/age distinctions. Heme oxygenase-1 (HO-1) levels (~28-kDa species) showed elevation at day 1 in all groups with highest levels seen in Young Males. Exclusively in Young Females, these levels returned to baseline on day 3, suggestive of a more efficient recovery. In aggregate, we demonstrate, for the first time, a distinctive pattern of response to AKI in Young Females relative to males which appears to be significantly altered in aging. These distinctions may offer novel targets to exploit therapeutically in both females and males in the treatment of AKI.
Collapse
Affiliation(s)
- Ravindra Boddu
- Division of Nephrology, Nephrology Research and Training Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Chunlan Fan
- Division of Nephrology, Nephrology Research and Training Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Sunil Rangarajan
- Division of Nephrology, Nephrology Research and Training Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Bhuvana Sunil
- Division of Nephrology, Nephrology Research and Training Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Subhashini Bolisetty
- Division of Nephrology, Nephrology Research and Training Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Lisa M Curtis
- Division of Nephrology, Nephrology Research and Training Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and .,Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
36
|
Bundalo M, Romic S, Tepavcevic S, Stojiljkovic M, Stankovic A, Zivkovic M, Koricanac G. Fructose-rich diet and insulin action in female rat heart: Estradiol friend or foe? Eur J Pharmacol 2017; 811:141-147. [PMID: 28601616 DOI: 10.1016/j.ejphar.2017.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/26/2017] [Accepted: 06/06/2017] [Indexed: 01/01/2023]
Abstract
Increased intake of fructose in humans and laboratory animals is demonstrated to be a risk factor for development of metabolic disorders (insulin resistance, metabolic syndrome, type 2 diabetes) and cardiovascular diseases. On the other hand, estradiol is emphasized as a cardioprotective agent. The main goal of this review is to summarize recent findings on damaging cardiac effects of fructose-rich diet in females, mostly experimental animals, and to evaluate protective capacity of estradiol. Published results of our and other research groups indicate mostly detrimental effects of fructose-rich diet on cardiac insulin signaling molecules, glucose and fatty acid metabolism, nitric oxide production and ion transport, as well as renin-angiotensin system and inflammation. Some of these processes are involved in cardiac insulin signal transmission, others are regulated by insulin or have an influence on insulin action. Administration of estradiol to ovariectomized female rats, exposed to increased intake of fructose, was mostly beneficial to the heart, but sometimes it was ineffective or even detrimental, depending on the particular processes. We believe that these data, carefully translated to human population, could be useful for clinicians dealing with postmenopausal women susceptible to metabolic diseases and hormone replacement therapy.
Collapse
Affiliation(s)
- Maja Bundalo
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Snjezana Romic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Snezana Tepavcevic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Mojca Stojiljkovic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Goran Koricanac
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
37
|
Shao Q, Casin KM, Mackowski N, Murphy E, Steenbergen C, Kohr MJ. Adenosine A1 receptor activation increases myocardial protein S-nitrosothiols and elicits protection from ischemia-reperfusion injury in male and female hearts. PLoS One 2017; 12:e0177315. [PMID: 28493997 PMCID: PMC5426678 DOI: 10.1371/journal.pone.0177315] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/25/2017] [Indexed: 11/18/2022] Open
Abstract
Nitric oxide (NO) plays an important role in cardioprotection, and recent work from our group and others has implicated protein S-nitrosylation (SNO) as a critical component of NO-mediated protection in different models, including ischemic pre- and post-conditioning and sex-dependent cardioprotection. However, studies have yet to examine whether protein SNO levels are similarly increased with pharmacologic preconditioning in male and female hearts, and whether an increase in protein SNO levels, which is protective in male hearts, is sufficient to increase baseline protection in female hearts. Therefore, we pharmacologically preconditioned male and female hearts with the adenosine A1 receptor agonist N6-cyclohexyl adenosine (CHA). CHA administration prior to ischemia significantly improved functional recovery in both male and female hearts compared to baseline in a Langendorff-perfused heart model of ischemia-reperfusion injury (% of preischemic function ± SE: male baseline: 37.5±3.4% vs. male CHA: 55.3±3.2%; female baseline: 61.4±5.7% vs. female CHA: 76.0±6.2%). In a separate set of hearts, we found that CHA increased p-Akt and p-eNOS levels. We also used SNO-resin-assisted capture with LC-MS/MS to identify SNO proteins in male and female hearts, and determined that CHA perfusion induced a modest increase in protein SNO levels in both male (11.4%) and female (12.3%) hearts compared to baseline. These findings support a potential role for protein SNO in a model of pharmacologic preconditioning, and provide evidence to suggest that a modest increase in protein SNO levels is sufficient to protect both male and female hearts from ischemic injury. In addition, a number of the SNO proteins identified with CHA treatment were also observed with other forms of cardioprotective stimuli in prior studies, further supporting a role for protein SNO in cardioprotection.
Collapse
Affiliation(s)
- Qin Shao
- Department of Cardiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kevin M. Casin
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Nathan Mackowski
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Elizabeth Murphy
- Systems Biology Center, National Heart, Lung and Blood Institute, Bethesda, Maryland, United States of America
| | - Charles Steenbergen
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Mark J. Kohr
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
38
|
T-cell involvement in sex differences in blood pressure control. Clin Sci (Lond) 2017; 130:773-83. [PMID: 27128802 DOI: 10.1042/cs20150620] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/04/2016] [Indexed: 01/11/2023]
Abstract
Hypertension affects one-third of adults in the Western world and is the most common independent risk factor for cardiovascular disease, and the leading cause of premature death globally. Despite available therapeutic options, approximately half of the hypertensive population taking medication does not achieve adequate blood pressure (BP) control leaving them at increased risk of chronic kidney disease, renal failure, stroke, congestive heart failure, myocardial infarction, aneurysm and peripheral artery disease. New therapeutic options need to be identified for the treatment of hypertension in order to increase the percentage of individuals with controlled BP. There is a growing basic science literature regarding the role of T-cells in the pathogenesis of hypertension and BP control; however, the majority of this literature has been performed exclusively in males despite the fact that both men and women develop hypertension. This is especially problematic since hypertension is well recognized as having distinct sex differences in the prevalence, absolute BP values and molecular mechanisms contributing to the pathophysiology of the disease. The purpose of this article is to review the available literature regarding sex differences in T-cells in hypertension followed by highlighting the potential pathways that may result in sex-specific effects on T-cell activation and differentiation.
Collapse
|
39
|
Goyal A, Agrawal N. Ischemic preconditioning: Interruption of various disorders. J Saudi Heart Assoc 2017; 29:116-127. [PMID: 28373786 PMCID: PMC5366670 DOI: 10.1016/j.jsha.2016.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/05/2016] [Accepted: 09/04/2016] [Indexed: 02/05/2023] Open
Abstract
Ischemic heart diseases are the leading cause of morbidity and mortality worldwide. Reperfusion of an ischemic heart is necessary to regain the normal functioning of the heart. However, abrupt reperfusion of an ischemic heart elicits a cascade of adverse events that leads to injury of the myocardium, i.e., ischemia-reperfusion injury. An endogenous powerful strategy to protect the ischemic heart is ischemic preconditioning, in which the myocardium is subjected to short periods of sublethal ischemia and reperfusion before the prolonged ischemic insult. However, it should be noted that the cardioprotective effect of preconditioning is attenuated in some pathological conditions. The aim of this article is to review present knowledge on how menopause and some metabolic disorders such as diabetes and hyperlipidemia affect myocardial ischemic preconditioning and the mechanisms involved.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U.P., India
| | - Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U.P., India
| |
Collapse
|
40
|
Regitz-Zagrosek V, Kararigas G. Mechanistic Pathways of Sex Differences in Cardiovascular Disease. Physiol Rev 2017; 97:1-37. [PMID: 27807199 DOI: 10.1152/physrev.00021.2015] [Citation(s) in RCA: 444] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Major differences between men and women exist in epidemiology, manifestation, pathophysiology, treatment, and outcome of cardiovascular diseases (CVD), such as coronary artery disease, pressure overload, hypertension, cardiomyopathy, and heart failure. Corresponding sex differences have been studied in a number of animal models, and mechanistic investigations have been undertaken to analyze the observed sex differences. We summarize the biological mechanisms of sex differences in CVD focusing on three main areas, i.e., genetic mechanisms, epigenetic mechanisms, as well as sex hormones and their receptors. We discuss relevant subtypes of sex hormone receptors, as well as genomic and nongenomic, activational and organizational effects of sex hormones. We describe the interaction of sex hormones with intracellular signaling relevant for cardiovascular cells and the cardiovascular system. Sex, sex hormones, and their receptors may affect a number of cellular processes by their synergistic action on multiple targets. We discuss in detail sex differences in organelle function and in biological processes. We conclude that there is a need for a more detailed understanding of sex differences and their underlying mechanisms, which holds the potential to design new drugs that target sex-specific cardiovascular mechanisms and affect phenotypes. The comparison of both sexes may lead to the identification of protective or maladaptive mechanisms in one sex that could serve as a novel therapeutic target in one sex or in both.
Collapse
Affiliation(s)
- Vera Regitz-Zagrosek
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charite University Hospital, and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Georgios Kararigas
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charite University Hospital, and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
41
|
Signaling Pathways in Cardiac Myocyte Apoptosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9583268. [PMID: 28101515 PMCID: PMC5215135 DOI: 10.1155/2016/9583268] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/20/2016] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases, the number 1 cause of death worldwide, are frequently associated with apoptotic death of cardiac myocytes. Since cardiomyocyte apoptosis is a highly regulated process, pharmacological intervention of apoptosis pathways may represent a promising therapeutic strategy for a number of cardiovascular diseases and disorders including myocardial infarction, ischemia/reperfusion injury, chemotherapy cardiotoxicity, and end-stage heart failure. Despite rapid growth of our knowledge in apoptosis signaling pathways, a clinically applicable treatment targeting this cellular process is currently unavailable. To help identify potential innovative directions for future research, it is necessary to have a full understanding of the apoptotic pathways currently known to be functional in cardiac myocytes. Here, we summarize recent progress in the regulation of cardiomyocyte apoptosis by multiple signaling molecules and pathways, with a focus on the involvement of these pathways in the pathogenesis of heart disease. In addition, we provide an update regarding bench to bedside translation of this knowledge and discuss unanswered questions that need further investigation.
Collapse
|
42
|
Wang B, Zeng H, Wen Z, Chen C, Wang DW. CYP2J2 and its metabolites (epoxyeicosatrienoic acids) attenuate cardiac hypertrophy by activating AMPKα2 and enhancing nuclear translocation of Akt1. Aging Cell 2016; 15:940-52. [PMID: 27416746 PMCID: PMC5013012 DOI: 10.1111/acel.12507] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2016] [Indexed: 12/17/2022] Open
Abstract
Cytochrome P450 epoyxgenase 2J2 and epoxyeicosatrienoic acids (EETs) are known to protect against cardiac hypertrophy and heart failure, which involve the activation of 5′‐AMP‐activated protein kinase (AMPK) and Akt. Although the functional roles of AMPK and Akt are well established, the significance of cross talk between them in the development of cardiac hypertrophy and antihypertrophy of CYP2J2 and EETs remains unclear. We investigated whether CYP2J2 and its metabolites EETs protected against cardiac hypertrophy by activating AMPKα2 and Akt1. Moreover, we tested whether EETs enhanced cross talk between AMPKα2 and phosphorylated Akt1 (p‐Akt1), and stimulated nuclear translocation of p‐Akt1, to exert their antihypertrophic effects. AMPKα2−/− mice that overexpressed CYP2J2 in heart were treated with Ang II for 2 weeks. Interestingly, overexpression of CYP2J2 suppressed cardiac hypertrophy and increased levels of atrial natriuretic peptide (ANP) in the heart tissue and plasma of wild‐type mice but not AMPKα2−/− mice. The CYP2J2 metabolites, 11,12‐EET, activated AMPKα2 to induce nuclear translocation of p‐Akt1 selectively, which increased the production of ANP and therefore inhibited the development of cardiac hypertrophy. Furthermore, by co‐immunoprecipitation analysis, we found that AMPKα2β2γ1 and p‐Akt1 interact through the direct binding of the AMPKγ1 subunit to the Akt1 protein kinase domain. This interaction was enhanced by 11,12‐EET. Our studies reveal a novel mechanism in which CYP2J2 and EETs enhanced Akt1 nuclear translocation through interaction with AMPKα2β2γ1 and protect against cardiac hypertrophy and suggest that overexpression of CYP2J2 might have clinical potential to suppress cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Bei Wang
- Division of Cardiology Department of Internal Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Hesong Zeng
- Division of Cardiology Department of Internal Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Zheng Wen
- Division of Cardiology Department of Internal Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Chen Chen
- Division of Cardiology Department of Internal Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Dao Wen Wang
- Division of Cardiology Department of Internal Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| |
Collapse
|
43
|
Sex-Dependent Effects of Dietary Genistein on Echocardiographic Profile and Cardiac GLUT4 Signaling in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:1796357. [PMID: 27471542 PMCID: PMC4947657 DOI: 10.1155/2016/1796357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/04/2016] [Accepted: 06/13/2016] [Indexed: 01/13/2023]
Abstract
This study aimed to determine whether genistein diet resulted in changes in cardiac function, using echocardiography, and expression of key proteins involved in glucose uptake by the myocardium. Intact male and female C57BL/6J mice (aged 4–6 weeks) were fed either 600 mg genistein/kg diet (600 G) or 0 mg genistein/kg diet (0 G) for 4 weeks. Echocardiography data revealed sex-dependent differences in the absence of genistein: compared to females, hearts from males exhibited increased systolic left ventricle internal dimension (LVIDs), producing a decrease in function, expressed as fractional shortening (FS). Genistein diet also induced echocardiographic changes in function: in female hearts, 600G induced a 1.5-fold (P < 0.05) increase in LVIDs, resulting in a significant decrease in FS and whole heart surface area when compared to controls (fed 0 G). Genistein diet increased cardiac GLUT4 protein expression in both males (1.51-fold, P < 0.05) and females (1.76-fold, P < 0.05). However, no effects on the expression of notable intracellular signaling glucose uptake-regulated proteins were observed. Our data indicate that consumption of genistein diet for 4 weeks induces echocardiographic changes in indices of systolic function in females and has beneficial effects on cardiac GLUT4 protein expression in both males and females.
Collapse
|
44
|
Chen RC, Wang J, Yang L, Sun GB, Sun XB. Protective effects of ginsenoside Re on lipopolysaccharide-induced cardiac dysfunction in mice. Food Funct 2016; 7:2278-87. [DOI: 10.1039/c5fo01357g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ginsenoside Re protected against lipopolysaccharide-induced cardiac dysfunction in miceviaERs and PI3K/AKT mediated NFκB inhibition.
Collapse
Affiliation(s)
- Rong-Chang Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine
- Ministry of Education
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Science
- Peking Union Medical College
| | - Jian Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine
- Ministry of Education
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Science
- Peking Union Medical College
| | - Longpo Yang
- Life Science and Environment Science Research Center
- Harbin University of Commerce
- Heilongjiang 150028
- China
| | - Gui-Bo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine
- Ministry of Education
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Science
- Peking Union Medical College
| | - Xiao-Bo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine
- Ministry of Education
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Science
- Peking Union Medical College
| |
Collapse
|
45
|
Goyal A, Semwal BC, Yadav HN. Abrogated cardioprotective effect of ischemic preconditioning in ovariectomized rat heart. Hum Exp Toxicol 2015; 35:644-53. [PMID: 26264742 DOI: 10.1177/0960327115597980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ischemic heart disease is the leading cause of death in postmenopausal women. The expression of caveolin, a membrane protein and a negative regulator of nitric oxide (NO), increases after menopause. The present study was designed to determine the effect of daidzein (DDZ), a phytoestrogen in attenuated cardioprotective effect of ischemic preconditioning (IPC) in ovariectomized rat heart. METHODS Heart was isolated from ovariectomized rat and mounted on Langendorff's apparatus, subjected to 30 min ischemia and 120 min reperfusion. IPC was mediated by four cycles of 5 min ischemia and 5 min reperfusion. The infarct size was estimated using triphenyltetrazolium chloride stain, and coronary effluent was analyzed for lactate dehydrogenase and creatine kinase MB (CK-MB) release to assess the degree of myocardial injury. The release of NO was estimated indirectly by measuring the release of nitrite in coronary effluent. RESULTS IPC-induced cardioprotection was significantly attenuated in ovariectomized rats as compared to normal rats, which was restored by treatment of DDZ, a caveolin inhibitor (0.2 mg/kg subcutaneously) for 1 week. However, this observed cardioprotection was significantly attenuated by perfusion of l-nitroarginine methyl ester, an endothelial nitric oxide synthase (eNOS) inhibitor (100 µM/L) and glibenclamide, an adenosine triphosphate-sensitive potassium ion channel blocker (10 µM/L) alone or in combination, noted in terms of increase in myocardial infarct size, release of LDH and CK-MB, and also decrease in the release of NO. CONCLUSION Thus, it is suggested that DDZ restores the attenuated cardioprotective effect in ovariectomized rat heart, which may be due to downregulation of caveolin and subsequent increase in the activity of eNOS.
Collapse
Affiliation(s)
- A Goyal
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - B C Semwal
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - H N Yadav
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
46
|
Howden EJ, Perhonen M, Peshock RM, Zhang R, Arbab-Zadeh A, Adams-Huet B, Levine BD. Females have a blunted cardiovascular response to one year of intensive supervised endurance training. J Appl Physiol (1985) 2015; 119:37-46. [PMID: 25930024 DOI: 10.1152/japplphysiol.00092.2015] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/23/2015] [Indexed: 12/22/2022] Open
Abstract
Cross-sectional studies in athletes suggest that endurance training augments cardiovascular structure and function with apparently different phenotypes in athletic males and females. It is unclear whether the longitudinal response to endurance training leads to similar cardiovascular adaptations between sexes. We sought to determine whether males and females demonstrate similar cardiovascular adaptations to 1 yr of endurance training, matched for training volume and intensity. Twelve previously sedentary males (26 ± 7, n = 7) and females (31 ± 6, n = 5) completed 1 yr of progressive endurance training. All participants underwent a battery of tests every 3 mo to determine maximal oxygen uptake (V̇o2max) and left ventricle (LV) function and morphology (cardiac magnetic resonance imaging). Pulmonary artery catheterization was performed before and after 1 yr of training, and pressure-volume and Starling curves were constructed during decreases (lower-body negative pressure) and increases (saline infusion) in cardiac volume. Males progressively increased V̇o2max, LV mass, and mean wall thickness, before reaching a plateau from month 9 to 12 of training. In contrast, despite exactly the same training, the response in females was markedly blunted, with V̇o2max, LV mass, and mean wall thickness plateauing after only 3 mo of training. The response of LV end-diastolic volume was not influenced by sex (males +20% and females +18%). After training Starling curves were shifted upward and left, but the effect was greatest in males (interaction P = 0.06). We demonstrate for the first time clear sex differences in response to 1 yr of matched endurance training, such that the development of ventricular hypertrophy and increase in V̇o2max in females is markedly blunted compared with males.
Collapse
Affiliation(s)
- Erin J Howden
- Institute for Exercise and Environmental Medicine, Dallas, Texas; and University of Texas Southwestern Medical Center, Dallas, Texas
| | - Merja Perhonen
- Institute for Exercise and Environmental Medicine, Dallas, Texas; and
| | | | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Dallas, Texas; and University of Texas Southwestern Medical Center, Dallas, Texas
| | - Armin Arbab-Zadeh
- Institute for Exercise and Environmental Medicine, Dallas, Texas; and
| | | | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Dallas, Texas; and University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
47
|
Kusch A, Schmidt M, Gürgen D, Postpieszala D, Catar R, Hegner B, Davidson MM, Mahmoodzadeh S, Dragun D. 17ß-Estradiol regulates mTORC2 sensitivity to rapamycin in adaptive cardiac remodeling. PLoS One 2015; 10:e0123385. [PMID: 25880554 PMCID: PMC4399939 DOI: 10.1371/journal.pone.0123385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/18/2015] [Indexed: 11/19/2022] Open
Abstract
Adaptive cardiac remodeling is characterized by enhanced signaling of mTORC2 downstream kinase Akt. In females, 17ß-estradiol (E2), as well as Akt contribute essentially to sex-related premenopausal cardioprotection. Pharmacologic mTOR targeting with rapamycin is increasingly used for various clinical indications, yet burdened with clinical heterogeneity in therapy responses. The drug inhibits mTORC1 and less-so mTORC2. In male rodents, rapamycin decreases maladaptive cardiac hypertrophy whereas it leads to detrimental dilative cardiomyopathy in females. We hypothesized that mTOR inhibition could interfere with 17β-estradiol (E2)-mediated sexual dimorphism and adaptive cell growth and tested responses in murine female hearts and cultured female cardiomyocytes. Under physiological in vivo conditions, rapamycin compromised mTORC2 function only in female, but not in male murine hearts. In cultured female cardiomyocytes, rapamycin impaired simultaneously IGF-1 induced activation of both mTOR signaling branches, mTORC1 and mTORC2 only in presence of E2. Use of specific estrogen receptor (ER)α- and ERβ-agonists indicated involvement of both estrogen receptors (ER) in rapamycin effects on mTORC1 and mTORC2. Classical feedback mechanisms common in tumour cells with upregulation of PI3K signaling were not involved. E2 effect on Akt-pS473 downregulation by rapamycin was independent of ERK as shown by sequential mTOR and MEK-inhibition. Furthermore, regulatory mTORC2 complex defining component rictor phosphorylation at Ser1235, known to interfere with Akt-substrate binding to mTORC2, was not altered. Functionally, rapamycin significantly reduced trophic effect of E2 on cell size. In addition, cardiomyocytes with reduced Akt-pS473 under rapamycin treatment displayed decreased SERCA2A mRNA and protein expression suggesting negative functional consequences on cardiomyocyte contractility. Rictor silencing confirmed regulation of SERCA2A expression by mTORC2 in E2-cultured female cardiomyocytes. These data highlight a novel modulatory function of E2 on rapamycin effect on mTORC2 in female cardiomyocytes and regulation of SERCA2A expression by mTORC2. Conceivably, rapamycin abrogates the premenopausal “female advantage”.
Collapse
Affiliation(s)
- Angelika Kusch
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| | - Maria Schmidt
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
| | - Dennis Gürgen
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Postpieszala
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
| | - Rusan Catar
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Björn Hegner
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Merci M. Davidson
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Shokoufeh Mahmoodzadeh
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Duska Dragun
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
48
|
Bal UA, Atar İ, Öktem M, Zeyneloğlu HB, Yıldırır A, Kuşcu E, Müderrisoğlu H. The effect of raloxifene on left ventricular hypertrophy in postmenopausal women: A prospective, randomized, and controlled study. Anatol J Cardiol 2014; 15:480-4. [PMID: 25430415 PMCID: PMC5779141 DOI: 10.5152/akd.2014.5473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE In healthy women, there is a progressive age-related increase in myocardial mass that is not seen in their male counterparts and occurs primarily in postmenopausal women. Raloxifene is a selective estrogen receptor modulator that has estrogenic actions on bone and the cardiovascular system. The aim of this study was to investigate the effect of raloxifene on myocardial hypertrophy in postmenopausal patients. METHODS A total of 22 postmenopausal osteoporotic women were included in this open-label, randomized, prospective, controlled study. Patients were randomized into two groups: 11 of the patients (group 1) were treated with raloxifene 60 mg/day, and the other 11 patients
(group 2) were defined as the control group. Quantitative 2-dimensional and M-mode echocardiographic examination was performed in all patients at the beginning and repeated at the end of the 6-month follow-up period. Left ventricle mass (LVM) and left ventricle mass index (LVMI) were calculated for all patients. RESULTS The mean age of the patients was 57.2±3.9 years, and baseline clinical characteristics and echocardiographic parameters were similar between the two groups. After 6 months of raloxifene treatment, there was no difference in echocardiographic parameters of LVM and LVMI compared with the control group (201.2±25.9 gr vs. 169.7±46.2 gr, p=0.14 and 120.4±25.9 gr/m2 vs. 105.5±26.3 gr/m2, p=0.195, respectively). There was also no significant difference in LVM and LVMI in the within-group analysis of both groups. CONCLUSION Raloxifene therapy does not affect myocardial hypertrophy in postmenopausal women after 6 months of treatment.
Collapse
Affiliation(s)
- Uğur Abbas Bal
- Department of Cardiology, Faculty of Medicine, Başkent University; Ankara-Turkey.
| | | | | | | | | | | | | |
Collapse
|
49
|
Ostadal B, Ostadal P. Sex-based differences in cardiac ischaemic injury and protection: therapeutic implications. Br J Pharmacol 2014; 171:541-54. [PMID: 23750471 DOI: 10.1111/bph.12270] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 05/21/2013] [Accepted: 05/30/2013] [Indexed: 12/22/2022] Open
Abstract
Ischaemic heart disease (IHD) is the most frequent cause of mortality among men and women. Many epidemiological studies have demonstrated that premenopausal women have a reduced risk for IHD compared with their male counterparts. The incidence of IHD in women increases after menopause, suggesting that IHD is related to declining oestrogen levels. Experimental observations have confirmed the results of epidemiological studies investigating sex-specific differences in cardiac tolerance to ischaemia. Female sex appears also to favourably influence cardiac remodelling after ischaemia/reperfusion injury. Furthermore, sex-related differences in ischaemic tolerance of the adult myocardium can be influenced by interventions during the early phases of ontogenetic development. Detailed mechanisms of these sex-related differences remain unknown; however, they involve the genomic and non-genomic effects of sex steroid hormones, particularly the oestrogens, which have been the most extensively studied. Although the protective effects of oestrogen have many potential therapeutic implications, clinical trials have shown that oestrogen replacement in postmenopausal women may actually increase the incidence of IHD. The results of these trials have illustrated the complexity underlying the mechanisms involved in sex-related differences in cardiac tolerance to ischaemia. Sex-related differences in cardiac sensitivity to ischaemia/reperfusion injury may also influence therapeutic strategies in women with acute coronary syndrome. Women undergo coronary intervention less frequently and a lower proportion of women receive evidence-based therapy compared with men. Although our understanding of this important topic has increased in recent years, there is an urgent need for intensive experimental and clinical research to develop female-specific therapeutic strategies. Only then we will be able to offer patients better evidence-based treatment, a better quality of life and lower mortality.
Collapse
Affiliation(s)
- B Ostadal
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | |
Collapse
|
50
|
Ghosh A, Lu G, Su G, McEvoy B, Sadiq O, DiMusto PD, Laser A, Futchko JS, Henke PK, Eliason JL, Upchurch GR. Phosphorylation of AKT and abdominal aortic aneurysm formation. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:148-58. [PMID: 24332015 DOI: 10.1016/j.ajpath.2013.09.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 09/05/2013] [Accepted: 09/10/2013] [Indexed: 12/14/2022]
Abstract
It is hypothesized that differential AKT phosphorylation between sexes is important in abdominal aortic aneurysm (AAA) formation. Male C57BL/6 mice undergoing elastase treatment showed a typical AAA phenotype (80% over baseline, P < 0.001) and significantly increased phosphorylated AKT-308 (p308) and total-AKT (T-AKT) at day 14 compared with female mice. Elastase-treated Raw cells produced increased p308 and significant amounts of matrix metalloproteinase 9 (MMP-9), and these effects were suppressed by LY294002 treatment, a known AKT inhibitor. Male and female rat aortic smooth muscle cells treated with elastase for 1, 6, or 24 hours demonstrated that the p308/T-AKT and AKT-Ser-473/T-AKT ratios peaked at 6 hours and were significantly higher in the elastase-treated cells compared with controls. Similarly, male cells had higher phosphorylated AKT/T-AKT levels than female cells. LY294002 also inhibited elastase-induced p308 formation more in female smooth muscle cells than in males, and the corresponding cell media had less pro-MMP-9. AKT siRNA significantly decreased secretion of pro-MMP-9, as well as pro-MMP-2 and active MMP-2 from elastase-treated male rat aortic smooth muscle cells. IHC of male mice AAA aortas showed increased p308, AKT-Ser-473, and T-AKT compared with female mice. Aortas from male AAA patients had a significantly higher p308/T-AKT ratio than female AAA tissues. These data suggest that AKT phosphorylation is important in the upstream regulation of MMP activity, and that differential phosphorylation may be important in sex differences in AAA.
Collapse
Affiliation(s)
- Abhijit Ghosh
- Section of Vascular Surgery, Department of Surgery, Jobst Vascular Research Laboratories, University of Michigan, Ann Arbor, Michigan
| | - Guanyi Lu
- Division of Vascular and Endovascular Surgery, University of Virginia, Charlottesville, Virginia
| | - Gang Su
- Division of Vascular and Endovascular Surgery, University of Virginia, Charlottesville, Virginia
| | - Brendan McEvoy
- Section of Vascular Surgery, Department of Surgery, Jobst Vascular Research Laboratories, University of Michigan, Ann Arbor, Michigan
| | - Omar Sadiq
- Section of Vascular Surgery, Department of Surgery, Jobst Vascular Research Laboratories, University of Michigan, Ann Arbor, Michigan
| | - Paul D DiMusto
- Section of Vascular Surgery, Department of Surgery, Jobst Vascular Research Laboratories, University of Michigan, Ann Arbor, Michigan
| | - Adriana Laser
- Section of Vascular Surgery, Department of Surgery, Jobst Vascular Research Laboratories, University of Michigan, Ann Arbor, Michigan
| | - John S Futchko
- Section of Vascular Surgery, Department of Surgery, Jobst Vascular Research Laboratories, University of Michigan, Ann Arbor, Michigan
| | - Peter K Henke
- Section of Vascular Surgery, Department of Surgery, Jobst Vascular Research Laboratories, University of Michigan, Ann Arbor, Michigan
| | - Jonathan L Eliason
- Section of Vascular Surgery, Department of Surgery, Jobst Vascular Research Laboratories, University of Michigan, Ann Arbor, Michigan
| | - Gilbert R Upchurch
- Division of Vascular and Endovascular Surgery, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|