1
|
Witman N, Zhou C, Grote Beverborg N, Sahara M, Chien KR. Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration. Semin Cell Dev Biol 2019; 100:29-51. [PMID: 31862220 DOI: 10.1016/j.semcdb.2019.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022]
Abstract
The mammalian hearts have the least regenerative capabilities among tissues and organs. As such, heart regeneration has been and continues to be the ultimate goal in the treatment against acquired and congenital heart diseases. Uncovering such a long-awaited therapy is still extremely challenging in the current settings. On the other hand, this desperate need for effective heart regeneration has developed various forms of modern biotechnologies in recent years. These involve the transplantation of pluripotent stem cell-derived cardiac progenitors or cardiomyocytes generated in vitro and novel biochemical molecules along with tissue engineering platforms. Such newly generated technologies and approaches have been shown to effectively proliferate cardiomyocytes and promote heart repair in the diseased settings, albeit mainly preclinically. These novel tools and medicines give somehow credence to breaking down the barriers associated with re-building heart muscle. However, in order to maximize efficacy and achieve better clinical outcomes through these cell-based and/or cell-free therapies, it is crucial to understand more deeply the developmental cellular hierarchies/paths and molecular mechanisms in normal or pathological cardiogenesis. Indeed, the morphogenetic process of mammalian cardiac development is highly complex and spatiotemporally regulated by various types of cardiac progenitors and their paracrine mediators. Here we discuss the most recent knowledge and findings in cardiac progenitor cell biology and the major cardiogenic paracrine mediators in the settings of cardiogenesis, congenital heart disease, and heart regeneration.
Collapse
Affiliation(s)
- Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Niels Grote Beverborg
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Surgery, Yale University School of Medicine, CT, USA.
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
2
|
Wang Q, Chen Z, Huang X, Chen L, Chen B, Zhu Y, Cao S, Liao W, Bin J, Kitakaze M, Liao Y. Olmesartan attenuates pressure-overload- or post-infarction-induced cardiac remodeling in mice. Oncotarget 2017; 9:24601-24618. [PMID: 29872491 PMCID: PMC5973849 DOI: 10.18632/oncotarget.23628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 12/11/2017] [Indexed: 01/10/2023] Open
Abstract
Either angiotensin converting enzyme inhibitor (ACEI) or angiotensin receptor 1 blocker (ARB) attenuates cardiac remodeling. However, the overall molecular modulation of the reversing remodeling process in response to the ACEI or ARB treatment is not yet well determined. In this study, we examined whether gene expressions are modulated by ACEI (temocapril), ARB (olmesartan) or both in a murine model with transverse aortic constriction (TAC) and confirm whether periostin is a target gene of olmesartan in mice with myocardial infarction (MI). We detected 109 genes that were significantly up-regulated in TAC mice and a majority of these were down-regulated in response to temocapril, olmesartan or their combination which significantly attenuated cardiac remodeling at one or four weeks. Real-time RT-PCR demonstrated that olmesartan, temocapril or their combination down-regulated the expression of periostin. In MI mice treated with olmesartan for 4 weeks, the left ventricular end-diastolic and systolic dimensions measured with echocardiography were lower, whereas maximum rate of rise and fall rate of LV pressure (±dp/dt max) were greater, and Azan-staining cardiac fibrotic area was smaller. Furthermore, periostin was upregulated in response to MI, whereas olmesartan blocked this upregulation. Post-MI fibrosis was smaller in periostin knockout adult mice than in wildtype mice, while glycogen synthase kinase 3β was increased and cyclin D1 was decreased in periostin knockout mice. These findings indicate that periostin is a target gene of ARB and olmesartan reverses cardiac remodeling at least partially through the downregulation of periostin.
Collapse
Affiliation(s)
- Qiancheng Wang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Cardiology, Jiaozuo People's Hospital of Henan Province, Jiaozuo 454000, China
| | - Zhenhuan Chen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaobo Huang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lin Chen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Baihe Chen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingqi Zhu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shiping Cao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianping Bin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Masafumi Kitakaze
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Cardiovascular Division of the Department of Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka 565-8565, Japan
| | - Yulin Liao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
3
|
Javadi A, Deevi RK, Evergren E, Blondel-Tepaz E, Baillie GS, Scott MGH, Campbell FC. PTEN controls glandular morphogenesis through a juxtamembrane β-Arrestin1/ARHGAP21 scaffolding complex. eLife 2017; 6:e24578. [PMID: 28749339 PMCID: PMC5576923 DOI: 10.7554/elife.24578] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/24/2017] [Indexed: 01/01/2023] Open
Abstract
PTEN controls three-dimensional (3D) glandular morphogenesis by coupling juxtamembrane signaling to mitotic spindle machinery. While molecular mechanisms remain unclear, PTEN interacts through its C2 membrane-binding domain with the scaffold protein β-Arrestin1. Because β-Arrestin1 binds and suppresses the Cdc42 GTPase-activating protein ARHGAP21, we hypothesize that PTEN controls Cdc42 -dependent morphogenic processes through a β-Arrestin1-ARHGAP21 complex. Here, we show that PTEN knockdown (KD) impairs β-Arrestin1 membrane localization, β-Arrestin1-ARHGAP21 interactions, Cdc42 activation, mitotic spindle orientation and 3D glandular morphogenesis. Effects of PTEN deficiency were phenocopied by β-Arrestin1 KD or inhibition of β-Arrestin1-ARHGAP21 interactions. Conversely, silencing of ARHGAP21 enhanced Cdc42 activation and rescued aberrant morphogenic processes of PTEN-deficient cultures. Expression of the PTEN C2 domain mimicked effects of full-length PTEN but a membrane-binding defective mutant of the C2 domain abrogated these properties. Our results show that PTEN controls multicellular assembly through a membrane-associated regulatory protein complex composed of β-Arrestin1, ARHGAP21 and Cdc42.
Collapse
Affiliation(s)
- Arman Javadi
- Centre for Cancer Research and Cell BiologyQueen’s University of BelfastBelfastUnited Kingdom
| | - Ravi K Deevi
- Centre for Cancer Research and Cell BiologyQueen’s University of BelfastBelfastUnited Kingdom
| | - Emma Evergren
- Centre for Cancer Research and Cell BiologyQueen’s University of BelfastBelfastUnited Kingdom
| | - Elodie Blondel-Tepaz
- Inserm, U1016, Institut CochinParisFrance
- CNRS, UMR8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - George S Baillie
- Institute of Cardiovascular and Medical Science, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowScotland
| | - Mark GH Scott
- Inserm, U1016, Institut CochinParisFrance
- CNRS, UMR8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Frederick C Campbell
- Centre for Cancer Research and Cell BiologyQueen’s University of BelfastBelfastUnited Kingdom
| |
Collapse
|
4
|
King CC, Bouic K, Friedmann T. A fractionation method to identify qauntitative changes in protein expression mediated by IGF-1 on the proteome of murine C2C12 myoblasts. Proteome Sci 2009; 7:28. [PMID: 19664293 PMCID: PMC2732595 DOI: 10.1186/1477-5956-7-28] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 08/11/2009] [Indexed: 11/23/2022] Open
Abstract
Although much is known about signal transduction downstream of insulin-like growth factor-1 (IGF-1), relatively little is known about the global changes in protein expression induced by this hormone. In this study, the acute effects of IGF-1 on the proteome of murine C2C12 cells were examined. Cells were treated with IGF-1 for up to 24 hours, lysed, and fractionated into cytosolic, nuclear, and insoluble portions. Proteins from the cytosolic fraction were further separated using a new batch ion-exchange chromatography method to reduce sample complexity, followed by two-dimensional (2D) electrophoresis, and identification of selected proteins by mass spectrometry. PDQuest software was utilized to identify and catalogue temporal changes in protein expression during IGF-1 stimulation. In response to IGF-1 stimulation, expression of 23 proteins increased at least three-fold and expression of 17 proteins decreased at least three-fold compared with control un-stimulated C2C12 cells. Changes in expression of selected proteins from each group, including Rho-GDI, cofillin, RAD50, enolase, IκB kinase b (IκBKb) and Hsp70 were confirmed by Western blotting. Additionally, the position of 136 'landmark' proteins whose expression levels and physicochemical properties did not change appreciably or consistently during IGF-1 treatment were mapped and identified. This characterization of large-scale changes in protein expression in response to growth factor stimulation of C2C12 cells will further help to establish a comprehensive understanding of the networks and pathways involved in the action of IGF-1.
Collapse
Affiliation(s)
- Charles C King
- Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
5
|
Clerk A, Cullingford TE, Fuller SJ, Giraldo A, Markou T, Pikkarainen S, Sugden PH. Signaling pathways mediating cardiac myocyte gene expression in physiological and stress responses. J Cell Physiol 2007; 212:311-22. [PMID: 17450511 DOI: 10.1002/jcp.21094] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The contractile cells in the heart (the cardiac myocytes) are terminally differentiated. In response to pathophysiological stresses, cardiac myocytes undergo hypertrophic growth or apoptosis, responses associated with the development of cardiac pathologies. There has been much effort expended in gaining an understanding of the stimuli which promote these responses, and in identifying the intracellular signaling pathways which are activated and potentially involved. These signaling pathways presumably modulate gene and protein expression to elicit the end-stage response. For the regulation of gene expression, the signal may traverse the cytoplasm to modulate nuclear-localized transcription factors as occurs with the mitogen-activated protein kinase or protein kinase B/Akt cascades. Alternatively, the signal may promote translocation of transcription factors from the cytoplasm to the nucleus as is seen with the calcineurin/NFAT and JAK/STAT systems. We present an overview of the principal signaling pathways implicated in the regulation of gene expression in cardiac myocyte pathophysiology, and summarize the current understanding of these pathways, the transcription factors they regulate and the changes in gene expression associated with the development of cardiac pathologies. Finally, we discuss how intracellular signaling and gene expression may be integrated to elicit the overall change in cellular phenotype.
Collapse
Affiliation(s)
- Angela Clerk
- NHLI Division, Faculty of Medicine, Imperial College London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
6
|
Roncalli J, Smih F, Desmoulin F, Dumonteil N, Harmancey R, Hennig S, Perez L, Pathak A, Galinier M, Massabuau P, Malet-Martino M, Senard JM, Rouet P. NMR and cDNA array analysis prior to heart failure reveals an increase of unsaturated lipids, a glutamine/glutamate ratio decrease and a specific transcriptome adaptation in obese rat heart. J Mol Cell Cardiol 2007; 42:526-39. [PMID: 17222424 DOI: 10.1016/j.yjmcc.2006.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 10/13/2006] [Accepted: 11/08/2006] [Indexed: 01/19/2023]
Abstract
Obesity is a risk factor for heart failure through a set of hemodynamic and hormonal adaptations, but its contribution at the molecular level is not clearly known. Therefore, we investigated the kinetic cardiac transcriptome and metabolome in the Spontaneous Hypertensive Heart Failure (SHHF) rat. The SHHF rat is devoid of leptin signaling when homozygous for a mutation of the leptin receptor (ObR) gene. The ObR-/- SHHF rat is obese at 4 months of age and prone to heart failure after 14 months whereas its lean counterpart ObR-/+ is prone to heart failure after 16 months. We used a set of rat pangenomic high-density macroarrays to monitor left ventricle cardiac transcriptome regulation in 4- and 10-month-old, lean and obese animals. Comparative analysis of left ventricle of 4- and 10-month-old lean rat revealed 222 differentially expressed genes while 4- and 10-month-old obese rats showed 293 differentially expressed genes. (1)H NMR analysis of the metabolome of left ventricular extracts displayed a global decrease of metabolites, except for taurine, and lipid concentration. This may be attributed to gene expression regulation and likely increased extracellular mass. The glutamine to glutamate ratio was significantly lower in the obese group. The relative unsaturation of lipids increased in the obese heart; in particular, omega-3 lipid concentration was higher in the 10-month-old obese heart. Overall, several specific kinetic molecular patterns act as a prelude to heart failure in the leptin signaling deficient SHHF obese rat.
Collapse
Affiliation(s)
- J Roncalli
- Unite de recherches sur les obesités, INSERM UPS U586, Institut Louis-Bugnard, Université Paul-Sabatier, CHU Rangueil, BP 84225, 31432 Toulouse cedex 4, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Neonatal rat ventricular myocytes (NRVMs) cultured in vitro have been used as a model system for easily recreating and studying several cardiac molecular conditions, such as hypertrophy, oxygen deprivation, and gene expression. However, low efficiency of gene transfer has often represented one of the major limitations of this technique. In this chapter we describe in detail how to isolate NRVMs from neonatal rat heart and the optimal conditions for their long-term culture. Different cardiomyocyte transfection methodologies, based on viral or viral/chemical delivery carriers, are also discussed.
Collapse
|
8
|
Mariappan D, Winkler J, Hescheler J, Sachinidis A. Cardiovascular genomics: a current overview of in vivo and in vitro studies. STEM CELL REVIEWS 2006; 2:59-66. [PMID: 17142888 PMCID: PMC7102225 DOI: 10.1007/s12015-006-0010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/02/2022]
Abstract
The cardiovascular system is the first system that is developed in the embryo. The cardiovascular development is a complex process involving the coordination, differentiation, and interaction of distinct cell lineages to form the heart and the diverse array of arteries, veins, and capillaries required to supply oxygen and nutrients to all tissues. Embryonic stem cells have been proposed as an interesting model system to investigate molecular and cellular mechanisms involved in mammalian development. The present review is focused on extrinsic soluble factors, intrinsic transcription factors, receptors, signal transduction pathways, and genes regulating the development of cardiovascular system in vivo and in vitro. Special emphasis has been given to cardiovascular genomics including gene expression studies on the cardiovascular system under developmental and pathophysiological conditions.
Collapse
Affiliation(s)
- Devi Mariappan
- Center of Physiology and Pathophysiology Institute of Neurophysiology, University of Cologne, Robert Koch Strasse 39, Cologne, Germany
| | - Johannes Winkler
- Center of Physiology and Pathophysiology Institute of Neurophysiology, University of Cologne, Robert Koch Strasse 39, Cologne, Germany
| | - Jürgen Hescheler
- Center of Physiology and Pathophysiology Institute of Neurophysiology, University of Cologne, Robert Koch Strasse 39, Cologne, Germany
| | - Agapios Sachinidis
- Center of Physiology and Pathophysiology Institute of Neurophysiology, University of Cologne, Robert Koch Strasse 39, Cologne, Germany
| |
Collapse
|
9
|
Satterthwaite G, Francis SE, Suvarna K, Blakemore S, Ward C, Wallace D, Braddock M, Crossman D. Differential gene expression in coronary arteries from patients presenting with ischemic heart disease: further evidence for the inflammatory basis of atherosclerosis. Am Heart J 2005; 150:488-99. [PMID: 16169330 DOI: 10.1016/j.ahj.2004.10.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Accepted: 10/09/2004] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE The pathogenesis of human coronary artery disease (CAD) is likely to require the transcription of many different genes. We report here the differential gene expression profiling of human CAD using copy DNA (cDNA)/nylon array hybridization techniques. METHODS AND RESULTS Human coronary arteries were obtained at the time of cardiac transplantation. Ten patients were transplanted for ischemic heart disease (IHD) and 5 for dilated cardiomyopathy (DCM). We generated a customized cDNA array containing 9206 clones and after hybridization of patient samples, data reduction, and refinement, identified 515 sequence-verified, differentially expressed clones. These clones represented 361 genes that were differentially expressed at significant levels between IHD and DCM arteries (t test, P < .05). Of these clones, 70% were defined genes of known function and 30% were genes of unknown function. Of the differentially expressed genes, 53.6% were up-regulated and 46.4% were down-regulated. Hierarchical clustering was performed and several distinct functional clusters were identified, including a cluster of genes related to inflammatory mechanisms. Validation by real-time polymerase chain reaction was undertaken with 2 genes known to be up-regulated in atherosclerosis (interleukin 1beta [IL-1beta] and IL-8) and 2 novel genes identified by the array analysis (signal transducer and activator of transcription 6 [STAT6] and IL-1 receptor-associated kinase [IRAK]). Differential expression of IL-1beta, IL-8, and STAT6 were confirmed by this method. Immunohistochemistry of STAT6 demonstrated increased expression in vascular smooth muscle cells of IHD coronary arteries. CONCLUSION These data support the inflammatory basis of human atherosclerotic CAD and identify novel genes in atherosclerosis.
Collapse
Affiliation(s)
- Gemma Satterthwaite
- Division of Clinical Sciences (North), University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Loughran G, Huigsloot M, Kiely PA, Smith LM, Floyd S, Ayllon V, O'Connor R. Gene expression profiles in cells transformed by overexpression of the IGF-I receptor. Oncogene 2005; 24:6185-93. [PMID: 15940254 DOI: 10.1038/sj.onc.1208772] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To identify genes associated with insulin-like growth factor-I receptor (IGF-IR)-mediated cellular transformation, we isolated genes that are differentially expressed in R- cells (derived from the IGF-IR knockout mouse) and R+ cells (R- cells that overexpress the IGF-IR). From these, 45 genes of known function were expressed at higher levels in R+ cells and 22 were expressed at higher levels in R- cells. Differential expression was confirmed by Northern blot analysis of R+ and R- cells. Genes expressed more abundantly in R+ cells are associated with (1) tumour growth and metastasis including, betaigH3, mts1, igfbp5 protease, and mystique; (2) cell division, including cyclin A1 and cdk1; (3) signal transduction, including pkcdeltabp and lmw-ptp; and (4) metabolism including ATPase H+ transporter and ferritin. In MCF-7 cells IGF-I induced expression of two genes, lasp-1 and mystique, which could contribute to metastasis. Lasp-1 expression required activity of the PI3-kinase signalling pathway. Mystique was highly expressed in metastatic but not in androgen-dependent prostate cancer cell lines and Mystique overexpression in MCF-7 cells promoted cell migration and invasion. We conclude that genes identified in this screen may mediate IGF-IR function in cancer progression.
Collapse
Affiliation(s)
- Gary Loughran
- Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, National University of Ireland, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
An intriguing relationship between IGF-I action and cardiac function has been noted for some time, but exactly how IGF-I modulates myocardial function remained obscure. Recent research shed novel insight into potential mechanisms of IGF-I actions in cardiac muscle. New discoveries help elucidate the role of IGF-I signaling in protecting cardiac muscle against injuries, and support potential therapeutic roles for IGF-I in cardiomyopathy. Multiple actions of IGF-I has been described in cardiac muscle cells, including the well-documented anti-apoptosis effect and the newly emerged action on cardiac muscle regeneration. Furthermore, interplay between heat shock protein and IGF-I receptor signaling has been identified and this new paradigm might be involved in the development of diabetic cardiomyopathy. This article reviews recent research findings and outlines potential therapeutic implications of IGF-I in heart failure.
Collapse
Affiliation(s)
- Ole Saetrum Opgaard
- Department of Medicine, Center for Cardiovascular Hormone Research, University of California, Medical Science I, Room C240, Irvine, CA 92697, USA
| | | |
Collapse
|
12
|
Kong SW, Bodyak N, Yue P, Liu Z, Brown J, Izumo S, Kang PM. Genetic expression profiles during physiological and pathological cardiac hypertrophy and heart failure in rats. Physiol Genomics 2005; 21:34-42. [PMID: 15623566 DOI: 10.1152/physiolgenomics.00226.2004] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cardiac hypertrophy is a complex and nonhomogenous response to various stimuli. In this study, we used high-density oligonucleotide microarray to examine gene expression profiles during physiological hypertrophy, pathological hypertrophy, and heart failure in Dahl salt-sensitive rats. There were changes in 404/3,160 and 874/3,160 genes between physiological and pathological hypertrophy and the transition from hypertrophy to heart failure, respectively. There were increases in stress response genes (e.g., heat shock proteins) and inflammation-related genes (e.g., pancreatitis-associated protein and arachidonate 12-lipoxygenase) in pathological processes but not in physiological hypertrophy. Furthermore, atrial natriuretic factor and brain natriuretic protein showed distinctive changes that are very specific to different conditions. In addition, we used a resampling-based gene score-calculating method to define significantly altered gene clusters, based on Gene Ontology classification. It revealed significant alterations in genes involved in the apoptosis pathway during pathological hypertrophy, suggesting that the apoptosis pathway may play a role during the transition to heart failure. In addition, there were significant changes in glucose/insulin signaling, protein biosynthesis, and epidermal growth factor signaling during physiological hypertrophy but not during pathological hypertrophy.
Collapse
Affiliation(s)
- Sek Won Kong
- Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Freimann S, Scheinowitz M, Yekutieli D, Feinberg MS, Eldar M, Kessler-Icekson G. Prior exercise training improves the outcome of acute myocardial infarction in the rat. J Am Coll Cardiol 2005; 45:931-8. [PMID: 15766831 DOI: 10.1016/j.jacc.2004.11.052] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 10/20/2004] [Accepted: 11/11/2004] [Indexed: 11/23/2022]
Abstract
OBJECTIVES The aim of this research was to investigate the structural, functional, and molecular features of the remodeling heart in prior swim-trained infarcted rats. BACKGROUND Physical exercise training is a known protective factor against cardiovascular morbidity and mortality. The structural and molecular aspects underlying this protection in the remodeling heart have not been investigated. METHODS After seven weeks of swimming exercise training, rats underwent surgical ligation of the left coronary artery followed by a four-week sedentary period. Untrained control rats underwent the same surgical protocol. Left ventricular function was assessed by echocardiography four weeks after infarction, and hearts were sampled for histological and molecular analysis. Ribonucleic acid from the surviving left ventricle was analyzed by complementary deoxyribonucleic acid arrays followed by Northern blotting or quantitative reverse transcription polymerase chain reaction of selected messenger ribonucleic acids (mRNAs). RESULTS Scar area was 1.6-fold smaller (p = 0.0002), arteriolar density was 1.7-fold higher (p = 0.0002), and left ventricular shortening fraction was 1.9-fold higher (p = 0.003) in the exercise-trained compared with sedentary hearts. Eleven genes whose expression level varied by at least +/-1.5-fold distinguished the prior exercised rats from their sedentary counterparts. Compared with sedentary, the exercised hearts displayed 9- and 2.4-times lower levels of atrial natriuretic peptide and aldolase mRNA (p = 0.03 and 0.04, respectively), and a 2.7- and 1.9-fold higher abundance of cytochrome c-oxidase and fatty acid binding protein, respectively (p < 0.03, each). CONCLUSIONS Swimming exercise training before acute myocardial infarction reduces scar size, increases arteriole density, and manifests adaptation of stress- and energy-metabolism-related genes that may contribute to the improved heart function observed during remodeling.
Collapse
Affiliation(s)
- Sarit Freimann
- Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | | | |
Collapse
|
14
|
Clerk A, Cullingford TE, Kemp TJ, Kennedy RA, Sugden PH. Regulation of gene and protein expression in cardiac myocyte hypertrophy and apoptosis. ACTA ACUST UNITED AC 2005; 45:94-111. [PMID: 16084574 DOI: 10.1016/j.advenzreg.2005.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Considerable efforts have been expended in elucidating the inter-cellular and intra-cellular signaling pathways which elicit cardiac myocyte hypertrophy or apoptosis, and in identifying the changes which are associated with the end-stage of the response. The challenge now is to link the two. Although some of the signaling effects will be the acute modulation of existing protein function, long-term effects which bring about and maintain the hypertrophic state or which culminate in cell death are mediated at the level of gene and protein expression. With the advances in micro-array technology and genome sequencing, it is now possible to obtain a picture of the global gene expression profile in myocytes or in whole heart which dictates the proteins which could be made. This is not the final picture since additional regulation at the level of translation modulates the relative proportions of each protein that can be made from the transcriptome. Even here, further regulation of protein stability and turnover means that ultimately it is still necessary to examine the proteome to determine what may cause the functional changes in a cell. Thus, in order to gain a full picture of events which regulate the response and gain some insight into possible points of intervention for therapy, it is necessary to examine gene expression, mRNA translation and protein expression in concert.
Collapse
Affiliation(s)
- Angela Clerk
- NHLI Division (Cardiac Medicine Section), Faculty of Medicine, Imperial College London, Flowers Building, Armstrong Road, London SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|
15
|
McMullen JR, Shioi T, Zhang L, Tarnavski O, Sherwood MC, Dorfman AL, Longnus S, Pende M, Martin KA, Blenis J, Thomas G, Izumo S. Deletion of ribosomal S6 kinases does not attenuate pathological, physiological, or insulin-like growth factor 1 receptor-phosphoinositide 3-kinase-induced cardiac hypertrophy. Mol Cell Biol 2004; 24:6231-40. [PMID: 15226426 PMCID: PMC434247 DOI: 10.1128/mcb.24.14.6231-6240.2004] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Ribosomal S6 kinases (S6Ks) have been depicted as critical effectors downstream of growth factor pathways, which play an important role in the regulation of protein synthesis by phosphorylating the ribosomal protein, S6. The goal of this study was to determine whether S6Ks regulate heart size, are critical for the induction of cardiac hypertrophy in response to a pathological or physiological stimulus, and whether S6Ks are critical downstream effectors of the insulin-like growth factor 1 (IGF1)-phosphoinositide 3-kinase (PI3K) pathway. For this purpose, we generated and characterized cardiac-specific S6K1 and S6K2 transgenic mice and subjected S6K1(-/-), S6K2(-/-), and S6K1(-/-) S6K2(-/-) mice to a pathological stress (aortic banding) or a physiological stress (exercise training). To determine the genetic relationship between S6Ks and the IGF1-PI3K pathway, S6K transgenic and knockout mice were crossed with cardiac-specific transgenic mice overexpressing the IGF1 receptor (IGF1R) or PI3K mutants. Here we show that overexpression of S6K1 induced a modest degree of hypertrophy, whereas overexpression of S6K2 resulted in no obvious cardiac phenotype. Unexpectedly, deletion of S6K1 and S6K2 had no impact on the development of pathological, physiological, or IGF1R-PI3K-induced cardiac hypertrophy. These studies suggest that S6Ks alone are not essential for the development of cardiac hypertrophy.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/metabolism
- Aorta/pathology
- Cardiomegaly/metabolism
- Female
- Fetus/physiology
- Gene Expression Regulation, Developmental
- Mice
- Mice, Knockout
- Mice, Transgenic
- Organ Size
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Physical Conditioning, Animal
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Ribosomal Protein S6 Kinases, 90-kDa/genetics
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Signal Transduction/physiology
- Sirolimus/metabolism
- Stress, Mechanical
- Swimming
Collapse
Affiliation(s)
- Julie R McMullen
- Beth Israel Deaconess Medical Center, Cardiovascular Division, 330 Brookline Ave., SL-408, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- M V Podgoreanu
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
17
|
Marín-García J, Goldenthal MJ. Heart mitochondria signaling pathways: appraisal of an emerging field. J Mol Med (Berl) 2004; 82:565-78. [PMID: 15221079 DOI: 10.1007/s00109-004-0567-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 05/18/2004] [Indexed: 12/22/2022]
Abstract
The contribution that mitochondria make to cardiac function extends well beyond their critical bioenergetic role as a supplier of ATP. The organelle plays an integral part in the regulatory and signaling events that occur in response to physiological stresses, including but not limited to myocardial ischemia and reperfusion, hypoxia, oxidative stress, and hormonal and cytokine stimuli. Research on both intact cardiac muscle tissue and cultured cardiomyocytes has just begun to probe the nature and the extent of mitochondrial involvement in interorganelle communication, hypertropic growth, and cell death. This review covers particular aspects of the newly emerging field of mitochondrial medicine offering a critical guide in the assessment of mitochondrial participation at the molecular and biochemical levels in the multiple and interrelated signaling pathways, gauging the effect that mitochondria have as a receiver, integrator, and transmitter of signals on cardiac phenotype. We also discuss future directions that may impact on the treatment of cardiac diseases.
Collapse
Affiliation(s)
- José Marín-García
- Molecular Cardiology and Neuromuscular Institute, 75 Raritan Ave, Highland Park, NJ 08904, USA.
| | | |
Collapse
|
18
|
Florholmen G, Andersson KB, Yndestad A, Austbø B, Henriksen UL, Christensen G. Leukaemia inhibitory factor alters expression of genes involved in rat cardiomyocyte energy metabolism. ACTA ACUST UNITED AC 2004; 180:133-42. [PMID: 14738472 DOI: 10.1046/j.0001-6772.2003.01245.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM Cardiac remodelling is associated with changes in contractile proteins and their performance, alterations in energy production and intracellular calcium homeostasis, as well as changes in extracellular matrix proteins. Some of these processes may be mediated through the gp130 receptor complex. Patients with heart failure have increased cardiac gene expression of leukaemia inhibitory factor (LIF), a cytokine that signals through the gp130 receptor. The aim of this study was to identify alterations in gene expression in LIF-stimulated neonatal cardiomyocytes. METHODS Cardiomyocytes were isolated from 1- to 3-day-old Wistar rats and stimulated for 48 h with LIF. Gene expression was examined by repeated cDNA filter array analysis (n = 5) and key results verified by complementary methods. RESULTS In LIF-stimulated cultures we observed increased cell area and changes in gene expression. The intracellular signal regulators signal transducer and activator of transcription 3, calcium/calmodulin-dependent protein kinase IV, protein kinase Cdelta and the transcription factor ID1 were upregulated. Adenylyl cyclase V was downregulated. LIF also induced altered expression of tissue inhibitor of metalloproteinase-1. Receptor genes for tumour necrosis factor, interleukin-4, neurotensin and somatostatin were upregulated. Finally, LIF reduced the expression of components in the adenosine triphosphate synthase complex, epidermal fatty acid-binding protein and insulin-like growth factor-binding proteins 1 and 6. CONCLUSIONS Array analysis revealed changes in mRNA levels of several genes not previously associated with activation of the gp130/LIF receptor complex. Our findings indicate a role for LIF in regulation of cardiomyocyte energy metabolism.
Collapse
Affiliation(s)
- G Florholmen
- Institute for Experimental Medical Research, Ullevål University Hospital, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
19
|
Sundgren NC, Giraud GD, Schultz JM, Lasarev MR, Stork PJS, Thornburg KL. Extracellular signal-regulated kinase and phosphoinositol-3 kinase mediate IGF-1 induced proliferation of fetal sheep cardiomyocytes. Am J Physiol Regul Integr Comp Physiol 2003; 285:R1481-9. [PMID: 12947030 DOI: 10.1152/ajpregu.00232.2003] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Growth of the fetal heart involves cardiomyocyte enlargement, division, and maturation. Insulin-like growth factor-1 (IGF-1) is implicated in many aspects of growth and is likely to be important in developmental heart growth. IGF-1 stimulates the IGF-1 receptor (IGF1R) and downstream signaling pathways, including extracellular signal-regulated kinase (ERK) and phosphoinositol-3 kinase (PI3K). We hypothesized that IGF-1 stimulates cardiomyocyte proliferation and enlargement through stimulation of the ERK cascade and stimulates cardiomyocyte differentiation through the PI3K cascade. In vivo administration of Long R3 IGF-1 (LR3 IGF-1) did not stimulate cardiomyocyte hypertrophy but led to a decreased percentage of cells that were binucleated in vivo. In culture, LR3 IGF-1 increased myocyte bromodeoxyuridine (BrdU) uptake by three- to five-fold. The blockade of either ERK or PI3K signaling (by UO-126 or LY-294002, respectively) completely abolished BrdU uptake stimulated by LR3 IGF-1. LR3 IGF-1 did not increase footprint area, but as expected, phenylephrine stimulated an increase in binucleated cardiomyocyte size. We conclude that 1) IGF-1 through IGF1R stimulates cardiomyocyte division in vivo; hyperplastic growth is the most likely explanation of IGF-1 stimulated heart growth in vivo; 2) IGF-1 through IGF1R does not stimulate binucleation in vitro or in vivo; 3) IGF-1 through IGF1R does not stimulate hypertrophy either in vivo or in vitro; and 4) IGF-1 through IGF1R requires both ERK and PI3K signaling for proliferation of near-term fetal sheep cardiomyocytes in vitro.
Collapse
Affiliation(s)
- Nathan C Sundgren
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
20
|
McMullen JR, Shioi T, Huang WY, Zhang L, Tarnavski O, Bisping E, Schinke M, Kong S, Sherwood MC, Brown J, Riggi L, Kang PM, Izumo S. The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110alpha) pathway. J Biol Chem 2003; 279:4782-93. [PMID: 14597618 DOI: 10.1074/jbc.m310405200] [Citation(s) in RCA: 298] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Insulin-like growth factor 1 (IGF1) was considered a potential candidate for the treatment of heart failure. However, some animal studies and clinical trials have questioned whether elevating IGF1 chronically is beneficial. Secondary effects of increased serum IGF1 levels on other tissues may explain these unfavorable results. The aim of the current study was to examine the role of IGF1 in cardiac myocytes in the absence of secondary effects, and to elucidate downstream signaling pathways and transcriptional regulatory effects of the IGF1 receptor (IGF1R). Transgenic mice overexpressing IGF1R in the heart displayed cardiac hypertrophy, which was the result of an increase in myocyte size, and there was no evidence of histopathology. IGF1R transgenics also displayed enhanced systolic function at 3 months of age, and this was maintained at 12-16 months of age. The phosphoinositide 3-kinase (PI3K)-Akt-p70S6K1 pathway was significantly activated in hearts from IGF1R transgenics. Cardiac hypertrophy induced by overexpression of IGF1R was completely blocked by a dominant negative PI3K(p110alpha) mutant, suggesting IGF1R promotes compensated cardiac hypertrophy in a PI3K(p110alpha)-dependent manner. This study suggests that targeting the cardiac IGF1R-PI3K(p110alpha) pathway could be a potential therapeutic strategy for the treatment of heart failure.
Collapse
Affiliation(s)
- Julie R McMullen
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lai HC, Liu TJ, Ting CT, Sharma PM, Wang PH. Insulin-like growth factor-1 prevents loss of electrochemical gradient in cardiac muscle mitochondria via activation of PI 3 kinase/Akt pathway. Mol Cell Endocrinol 2003; 205:99-106. [PMID: 12890571 DOI: 10.1016/s0303-7207(03)00200-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Insulin-like growth factor-1 (IGF 1) suppresses myocardial apoptosis and improves myocardial function in experimental models of cardiomyopathy. Apoptosis is triggered by mitochondria dysfunction and subsequent activation of caspases. We had previously shown that IGF 1 inhibited cardiomyocyte apoptosis via suppression of caspase, however, how IGF 1 and its signaling pathway modulates mitochondria function in cardiac muscle is not yet known. In this study we investigated how IGF 1 signaling modulates mitochondria membrane depolarization in the cardiomyocytes treated with doxorubicin. Doxorubicin rapidly induced loss of mitochondria electrochemical gradient and triggered mitochondria depolarization in primary cardiomyocytes, whereas addition of IGF 1 restored mitochondria electrochemical gradient. The effects of IGF 1 was blocked by a chemical inhibitor of PI 3 kinase and a dominant negative Akt, suggesting that IGF 1 signaling to mitochondria involves the PI 3 kinase-Akt pathway. Transducing cardiomyocytes with constitutive active PI 3 kinase partially restored the mitochondria electrochemical gradient in doxorubicin-treated cells. These findings provide direct evidence that IGF 1 modulation of mitochondria function is mediated through activation of PI 3 kinase and Akt. Additional experiments using agonist and antagonist of mitochondria K(ATP) channel suggest that IGF 1 signaling to mitochondria membrane does not directly involve K(ATP) channel. These findings suggest that cytosolic signaling to mitochondria may play a fundamental role in the cardiotoxic actions of doxorubicin and cardioprotective actions of IGF 1.
Collapse
Affiliation(s)
- Hui-Chin Lai
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Med Sci I, Rm C240, University of California, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
22
|
Napoli C, Lerman LO, Sica V, Lerman A, Tajana G, de Nigris F. Microarray analysis: a novel research tool for cardiovascular scientists and physicians. Heart 2003; 89:597-604. [PMID: 12748210 PMCID: PMC1767682 DOI: 10.1136/heart.89.6.597] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/31/2002] [Indexed: 11/04/2022] Open
Abstract
The massive increase in information on the human DNA sequence and the development of new technologies will have a profound impact on the diagnosis and treatment of cardiovascular diseases. The microarray is a micro-hybridisation based assay. The filter, called microchip or chip, is a special kind of membrane in which are spotted several thousands of oligonucleotides of cDNA fragments coding for known genes or expressed sequence tags. The resulting hybridisation signal on the chip is analysed by a fluorescent scanner and processed with a software package utilising the information on the oligonucleotide or cDNA map of the chip to generate a list of relative gene expression. Microarray technology can be used for many different purposes, most prominently to measure differential gene expression, variations in gene sequence (by analysing the genome of mutant phenotypes), or more recently, the entire binding site for transcription factors. Measurements of gene expression have the advantage of providing all available sequence information for any given experimental design and data interpretation in pursuit of biological understanding. This research tool will contribute to radically changing our understanding of cardiovascular diseases.
Collapse
Affiliation(s)
- C Napoli
- Department of Medicine, University of Naples, Italy.
| | | | | | | | | | | |
Collapse
|
23
|
Hwang JJ, Allen PD, Tseng GC, Lam CW, Fananapazir L, Dzau VJ, Liew CC. Microarray gene expression profiles in dilated and hypertrophic cardiomyopathic end-stage heart failure. Physiol Genomics 2002; 10:31-44. [PMID: 12118103 DOI: 10.1152/physiolgenomics.00122.2001] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite similar clinical endpoints, heart failure resulting from dilated cardiomyopathy (DCM) or hypertrophic cardiomyopathy (HCM) appears to develop through different remodeling and molecular pathways. Current understanding of heart failure has been facilitated by microarray technology. We constructed an in-house spotted cDNA microarray using 10,272 unique clones from various cardiovascular cDNA libraries sequenced and annotated in our laboratory. RNA samples were obtained from left ventricular tissues of precardiac transplantation DCM and HCM patients and were hybridized against normal adult heart reference RNA. After filtering, differentially expressed genes were determined using novel analyzing software. We demonstrated that normalization for cDNA microarray data is slide-dependent and nonlinear. The feasibility of this model was validated by quantitative real-time reverse transcription-PCR, and the accuracy rate depended on the fold change and statistical significance level. Our results showed that 192 genes were highly expressed in both DCM and HCM (e.g., atrial natriuretic peptide, CD59, decorin, elongation factor 2, and heat shock protein 90), and 51 genes were downregulated in both conditions (e.g., elastin, sarcoplasmic/endoplasmic reticulum Ca2+-ATPase). We also identified several genes differentially expressed between DCM and HCM (e.g., alphaB-crystallin, antagonizer of myc transcriptional activity, beta-dystrobrevin, calsequestrin, lipocortin, and lumican). Microarray technology provides us with a genomic approach to explore the genetic markers and molecular mechanisms leading to heart failure.
Collapse
Affiliation(s)
- Juey-Jen Hwang
- Cardiovascular Genome Unit, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Li J, Johnson JA. Time-dependent changes in ARE-driven gene expression by use of a noise-filtering process for microarray data. Physiol Genomics 2002; 9:137-44. [PMID: 12045294 DOI: 10.1152/physiolgenomics.00003.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The current study was designed to identify the time-dependent gene expression profiles of antioxidant responsive element (ARE)-driven genes induced by tert-butylhydroquinone (tBHQ). A set of simple noise-filtering methods was introduced to evaluate and minimize the variance of microarray datasets. Gene expression induced by tBHQ (10 microM) in IMR-32 human neuroblastoma cells was analyzed by means of large-scale oligonucleotide microarray. Rank analysis was used to determine the acceptable number of independent samples necessary to eliminate false positives from the dataset. A dramatic reduction in the number of genes passing the rank analysis was achieved by using a 3 x 3 matrix comparison. Reproducibility was evaluated based on the coefficient of variation for average difference change. Completion of these analyses revealed that 101 of the 9,670 genes examined showed dynamic changes with treatment ranging from 4 h to 48 h. Since certain ARE-driven genes have been already identified, gene clustering would presumably group them together based on similar regulation. Self-organizing map grouped the genes induced by tBHQ into 12 (4x3) distinct clusters. Those previously identified ARE-driven genes were shown to group into different clusters. Since all potential ARE-driven genes did not cluster together, we speculate that multiple transcription factors and/or multiple signal transduction pathways contribute to transcriptional activation of the ARE. In conclusion, many novel potential ARE-driven genes were identified in this study. They function in detoxification and antioxidant defense, neuronal proliferation and differentiation, and signal transduction. The noise-filtering process applied to these microarray data, therefore, has proven to be very useful in identification of the time-dependent changes in ARE-drive gene expression.
Collapse
Affiliation(s)
- Jiang Li
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | |
Collapse
|
25
|
Wittwer M, Flück M, Hoppeler H, Müller S, Desplanches D, Billeter R. Prolonged unloading of rat soleus muscle causes distinct adaptations of the gene profile. FASEB J 2002; 16:884-6. [PMID: 11967225 DOI: 10.1096/fj.01-0792fje] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Using commercially available microarray technology, we investigated a series of transcriptional adaptations caused by atrophy of rat m. soleus due to 35 days of hindlimb suspension. We detected 395 out of 1,200 tested transcripts, which reflected 1%-5% of totally expressed genes. From various cellular functional pathways, we detected multiple genes that spanned a 200-fold range of gene expression levels. Statistical analysis combining L1 regression with the sign test based on the conservative Bonferroni correction identified 105 genes that underwent transcriptional adaptations with atrophy. Generally, expressional changes were discrete (<50%) and pointed in the same direction for genes belonging to the same cellular functional units. In particular, a distinct expressional adaptation of genes involved in fiber transformation; that is, metabolism, protein turnover, and cell regulation were noted and matched to corresponding transcriptional changes in nutrient trafficking. Expressional changes of extracellular proteases, and of genes involved in nerve-muscle interaction and excitation-contraction coupling identify previously not recognized adaptations that occur in atrophic m. soleus. Considerations related to technical and statistical aspects of the array approach for profiling the skeletal muscle genome and the impact of observed novel adaptations of the m. soleus transcriptome are put into perspective of the physiological adaptations occurring with muscular atrophy.
Collapse
|
26
|
Ning XH, Chen SH, Xu CS, Li L, Yao LY, Qian K, Krueger JJ, Hyyti OM, Portman MA. Hypothermic protection of the ischemic heart via alterations in apoptotic pathways as assessed by gene array analysis. J Appl Physiol (1985) 2002; 92:2200-7. [PMID: 11960975 DOI: 10.1152/japplphysiol.01035.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypothermia improves resistance to ischemia in the cardioplegia-arrested heart. This adaptive process produces changes in specific signaling pathways for mitochondrial proteins and heat-shock response. To further test for hypothermic modulation of other signaling pathways such as apoptosis, we used various molecular techniques, including cDNA arrays. Isolated rabbit hearts were perfused and exposed to ischemic cardioplegic arrest for 2 h at 34 degrees C [ischemic group (I); n = 13] or at 30 degrees C before and during ischemia [hypothermic group (H); n = 12]. Developed pressure, the maximum first derivative of left ventricular pressure, oxygen consumption, and pressure-rate product (P < 0.05) recovery were superior in H compared with in I during reperfusion. mRNA expression for the mitochondrial proteins, adenine translocase and the beta-subunit of F1-ATPase, was preserved by hypothermia. cDNA arrays revealed that ischemia altered expression of 13 genes. Hypothermia modified this response to ischemia for eight genes, six related to apoptosis. A marked, near fivefold increase in transformation-related protein 53 in I was virtually abrogated in H. Hypothermia also increased expression for the anti-apoptotic Bcl-2 homologue Bcl-x relative to I but decreased expression for the proapoptotic Bcl-2 homologue bak. These data imply that hypothermia modifies signaling pathways for apoptosis and suggest possible mechanisms for hypothermia-induced myocardial protection.
Collapse
Affiliation(s)
- Xue-Han Ning
- Division of Cardiology, Department of Pediatrics, University of Washington, Seattle 98195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Peter M Kang
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|