1
|
Mazzuca C, Vitiello L, Travaglini S, Maurizi F, Finamore P, Santangelo S, Rigon A, Vadacca M, Angeletti S, Scarlata S. Immunological and homeostatic pathways of alpha -1 antitrypsin: a new therapeutic potential. Front Immunol 2024; 15:1443297. [PMID: 39224588 PMCID: PMC11366583 DOI: 10.3389/fimmu.2024.1443297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
α -1 antitrypsin (A1AT) is a 52 kDa acute-phase glycoprotein belonging to the serine protease inhibitor superfamily (SERPIN). It is primarily synthesized by hepatocytes and to a lesser extent by monocytes, macrophages, intestinal epithelial cells, and bronchial epithelial cells. A1AT is encoded by SERPINA1 locus, also known as PI locus, highly polymorphic with at least 100 allelic variants described and responsible for different A1AT serum levels and function. A1AT inhibits a variety of serine proteinases, but its main target is represented by Neutrophil Elastase (NE). However, recent attention has been directed towards its immune-regulatory and homeostatic activities. A1AT exerts immune-regulatory effects on different cell types involved in innate and adaptive immunity. Additionally, it plays a role in metal and lipid metabolism, contributing to homeostasis. An adequate comprehension of these mechanisms could support the use of A1AT augmentation therapy in many disorders characterized by a chronic immune response. The aim of this review is to provide an up-to-date understanding of the molecular mechanisms and regulatory pathways responsible for immune-regulatory and homeostatic activities of A1AT. This knowledge aims to support the use of A1AT in therapeutic applications. Furthermore, the review summarizes the current state of knowledge regarding the application of A1AT in clinical and laboratory settings human and animal models.
Collapse
Affiliation(s)
- Carmen Mazzuca
- Unit of Internal Medicine and Geriatrics, Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Campus Bio Medico University Hospital- Rome, Rome, Italy
- Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Laura Vitiello
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele University, Rome, Italy
| | - Silvia Travaglini
- Unit of Internal Medicine and Geriatrics, Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Campus Bio Medico University Hospital- Rome, Rome, Italy
| | - Fatima Maurizi
- Unit of Internal Medicine and Geriatrics, Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Campus Bio Medico University Hospital- Rome, Rome, Italy
| | - Panaiotis Finamore
- Unit of Internal Medicine and Geriatrics, Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Campus Bio Medico University Hospital- Rome, Rome, Italy
| | - Simona Santangelo
- Unit of Internal Medicine and Geriatrics, Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Campus Bio Medico University Hospital- Rome, Rome, Italy
| | - Amelia Rigon
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Marta Vadacca
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy
| | - Simone Scarlata
- Unit of Internal Medicine and Geriatrics, Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Campus Bio Medico University Hospital- Rome, Rome, Italy
| |
Collapse
|
2
|
Wu Z, Yuan R, Gu Q, Wu X, Gu L, Ye X, Zhou Y, Huang J, Wang Z, Chen X. Parasitoid Serpins Evolve Novel Functions to Manipulate Host Homeostasis. Mol Biol Evol 2023; 40:msad269. [PMID: 38061001 PMCID: PMC10735303 DOI: 10.1093/molbev/msad269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/31/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Parasitoids introduce various virulence factors when parasitism occurs, and some taxa generate teratocytes to manipulate the host immune system and metabolic homeostasis for the survival and development of their progeny. Host-parasitoid interactions are extremely diverse and complex, yet the evolutionary dynamics are still poorly understood. A category of serpin genes, named CvT-serpins, was discovered to be specifically expressed and secreted by the teratocytes of Cotesia vestalis, an endoparasitoid of the diamondback moth Plutella xylostella. Genomic and phylogenetic analysis indicated that the C. vestalis serpin genes are duplicated and most of them are clustered into 1 monophyletic clade. Intense positive selection was detected at the residues around the P1-P1' cleavage sites of the Cv-serpin reactive center loop domain. Functional analyses revealed that, in addition to the conserved function of melanization inhibition (CvT-serpins 1, 16, 18, and 21), CvT-serpins exhibited novel functions, i.e. bacteriostasis (CvT-serpins 3 and 5) and nutrient metabolism regulation (CvT-serpins 8 and 10). When the host-parasitoid system is challenged with foreign bacteria, CvT-serpins act as an immune regulator to reprogram the host immune system through sustained inhibition of host melanization while simultaneously functioning as immune effectors to compensate for this suppression. In addition, we provided evidence that CvT-serpin8 and 10 participate in the regulation of host trehalose and lipid levels by affecting genes involved in these metabolic pathways. These findings illustrate an exquisite tactic by which parasitoids win out in the parasite-host evolutionary arms race by manipulating host immune and nutrition homeostasis via adaptive gene evolution and neofunctionalization.
Collapse
Affiliation(s)
- Zhiwei Wu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Ruizhong Yuan
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Qijuan Gu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiaotong Wu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Licheng Gu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiqian Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yuenan Zhou
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jianhua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
| | - Zhizhi Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
- The Rural Development Academy, Zhejiang University, Hangzhou, China
| | - Xuexin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Zheng Y, Wu T, Hou X, Yang H, Yang Y, Xiu W, Pan Y, Ma Y, Mahemuti A, Xie X. Serum a-1 antitrypsin as a novel biomarker in chronic heart failure. ESC Heart Fail 2023; 10:2865-2874. [PMID: 37417425 PMCID: PMC10567649 DOI: 10.1002/ehf2.14451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 04/11/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023] Open
Abstract
AIMS Chronic heart failure (CHF) remains a major health issue worldwide. In the present study, we aimed to identify novel circulating biomarkers for CHF using serum proteomics technology and to validate the biomarker in three independent cohorts. METHODS AND RESULTS The isobaric tags for relative and absolute quantitation technology was utilized to identify the potential biomarkers of CHF. The validation was conducted in three independent cohort. Cohort A included 223 patients with ischaemic heart disease (IHD) and 321 patients with ischaemic heart failure (IHF) from the CORFCHD-PCI study. Cohort B recruited 817 patients with IHD and 1139 patients with IHF from the PRACTICE study. Cohort C enrolled 559 non-ischaemic heart disease patients with CHF (n = 316) or without CHF (n = 243). We found the expression of a-1 antitrypsin (AAT) was elevated significantly in patients with CHF compared with that in the patients with stable IHD using statistical and bioinformatics analyses. In a validation study, there was a significant difference between patients with stable IHD and patients with IHF in AAT concentration either in cohort A (1.35 ± 0.40 vs. 1.64 ± 0.56, P < 0.001) or in cohort B (1.37 ± 0.42 vs. 1.70 ± 0.48, P < 0.001). The area under the receiver operating characteristic curve was 0.70 [95% confidence interval (CI): 0.66 to 0.74, P < 0.001] in cohort A and 0.74 (95% CI: 0.72 to 0.76, P < 0.001) in cohort B. Furthermore, AAT was negative correlated with left ventricular ejection fraction (r = -0.261, P < 0.001). After adjusting for confounders using a multivariate logistic regression analysis, AAT remained an independent association with CHF in both cohort A (OR = 3.14, 95% CI: 1.667 to 5.90, P < 0.001) and cohort B (OR = 4.10, 95% CI: 2.97 to 5.65, P < 0.001). This association was also validated in cohort C (OR = 1.86, 95% CI: 1.02 to 3.38, P = 0.043). CONCLUSIONS The present study suggests that serum AAT is a reliable biomarker for CHF in a Chinese population.
Collapse
Affiliation(s)
- Ying‐Ying Zheng
- Department of CardiologyFirst Affiliated Hospital of Xinjiang Medical UniversityNo. 137, Liyushan RoadUrumqi830011XinjiangChina
| | - Ting‐Ting Wu
- Department of CardiologyFirst Affiliated Hospital of Xinjiang Medical UniversityNo. 137, Liyushan RoadUrumqi830011XinjiangChina
| | - Xian‐Geng Hou
- Department of CardiologyFirst Affiliated Hospital of Xinjiang Medical UniversityNo. 137, Liyushan RoadUrumqi830011XinjiangChina
| | - Hai‐Tao Yang
- Department of CardiologyFirst Affiliated Hospital of Xinjiang Medical UniversityNo. 137, Liyushan RoadUrumqi830011XinjiangChina
| | - Yi Yang
- Department of CardiologyFirst Affiliated Hospital of Xinjiang Medical UniversityNo. 137, Liyushan RoadUrumqi830011XinjiangChina
| | - Wen‐Juan Xiu
- Department of CardiologyFirst Affiliated Hospital of Xinjiang Medical UniversityNo. 137, Liyushan RoadUrumqi830011XinjiangChina
| | - Ying Pan
- Department of CardiologyFirst Affiliated Hospital of Xinjiang Medical UniversityNo. 137, Liyushan RoadUrumqi830011XinjiangChina
| | - Yi‐Tong Ma
- Department of CardiologyFirst Affiliated Hospital of Xinjiang Medical UniversityNo. 137, Liyushan RoadUrumqi830011XinjiangChina
| | - Ailiman Mahemuti
- Department of CardiologyFirst Affiliated Hospital of Xinjiang Medical UniversityNo. 137, Liyushan RoadUrumqi830011XinjiangChina
| | - Xiang Xie
- Department of CardiologyFirst Affiliated Hospital of Xinjiang Medical UniversityNo. 137, Liyushan RoadUrumqi830011XinjiangChina
| |
Collapse
|
4
|
Gianazza E, Macchi C, Banfi C, Ruscica M. Proteomics and Lipidomics to unveil the contribution of PCSK9 beyond cholesterol lowering: a narrative review. Front Cardiovasc Med 2023; 10:1191303. [PMID: 37378405 PMCID: PMC10291627 DOI: 10.3389/fcvm.2023.1191303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), one of the key regulators of the low-density lipoprotein receptor (LDLR), can play a direct role in atheroma development. Although advances in the understandings of genetic PCSK9 polymorphisms have enabled to reveal the role of PCSK9 in the complex pathophysiology of cardiovascular diseases (CVDs), increasing lines of evidence support non-cholesterol-related processes mediated by PCSK9. Owing to major improvements in mass spectrometry-based technologies, multimarker proteomic and lipidomic panels hold the promise to identify novel lipids and proteins potentially related to PCSK9. Within this context, this narrative review aims to provide an overview of the most significant proteomics and lipidomics studies related to PCSK9 effects beyond cholesterol lowering. These approaches have enabled to unveil non-common targets of PCSK9, potentially leading to the development of novel statistical models for CVD risk prediction. Finally, in the era of precision medicine, we have reported the impact of PCSK9 on extracellular vesicles (EVs) composition, an effect that could contribute to an increased prothrombotic status in CVD patients. The possibility to modulate EVs release and cargo could help counteract the development and progression of the atherosclerotic process.
Collapse
Affiliation(s)
- Erica Gianazza
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Milan, Italy
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Milan, Italy
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
5
|
Segal L, Lewis EC. The Lipid Ties of α1-antitrypsin: Structural and Functional Aspects. Cell Immunol 2022; 375:104528. [DOI: 10.1016/j.cellimm.2022.104528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 01/01/2023]
|
6
|
Chronic obstructive pulmonary disease and atherosclerosis: common mechanisms and novel therapeutics. Clin Sci (Lond) 2022; 136:405-423. [PMID: 35319068 PMCID: PMC8968302 DOI: 10.1042/cs20210835] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 12/17/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and atherosclerosis are chronic irreversible diseases, that share a number of common causative factors including cigarette smoking. Atherosclerosis drastically impairs blood flow and oxygen availability to tissues, leading to life-threatening outcomes including myocardial infarction (MI) and stroke. Patients with COPD are most likely to die as a result of a cardiovascular event, with 30% of all COPD-related deaths being attributed to cardiovascular disease (CVD). Both atherosclerosis and COPD involve significant local (i.e. lung, vasculature) and systemic inflammation and oxidative stress, of which current pharmacological treatments have limited efficacy, hence the urgency for the development of novel life-saving therapeutics. Currently these diseases must be treated individually, with no therapies available that can effectively reduce the likelihood of comorbid CVD other than cessation of cigarette smoking. In this review, the important mechanisms that drive atherosclerosis and CVD in people with COPD are explained and we propose that modulation of both the oxidative stress and the inflammatory burden will provide a novel therapeutic strategy to treat both the pulmonary and systemic manifestations related to these diseases.
Collapse
|
7
|
A Review of Alpha-1 Antitrypsin Binding Partners for Immune Regulation and Potential Therapeutic Application. Int J Mol Sci 2022; 23:ijms23052441. [PMID: 35269582 PMCID: PMC8910375 DOI: 10.3390/ijms23052441] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Alpha-1 antitrypsin (AAT) is the canonical serine protease inhibitor of neutrophil-derived proteases and can modulate innate immune mechanisms through its anti-inflammatory activities mediated by a broad spectrum of protein, cytokine, and cell surface interactions. AAT contains a reactive methionine residue that is critical for its protease-specific binding capacity, whereby AAT entraps the protease on cleavage of its reactive centre loop, neutralises its activity by key changes in its tertiary structure, and permits removal of the AAT-protease complex from the circulation. Recently, however, the immunomodulatory role of AAT has come increasingly to the fore with several prominent studies focused on lipid or protein-protein interactions that are predominantly mediated through electrostatic, glycan, or hydrophobic potential binding sites. The aim of this review was to investigate the spectrum of AAT molecular interactions, with newer studies supporting a potential therapeutic paradigm for AAT augmentation therapy in disorders in which a chronic immune response is strongly linked.
Collapse
|
8
|
Lior Y, Shtriker E, Kahremany S, Lewis EC, Gruzman A. Development of anti-inflammatory peptidomimetics based on the structure of human alpha1-antitrypsin. Eur J Med Chem 2021; 228:113969. [PMID: 34763945 DOI: 10.1016/j.ejmech.2021.113969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 01/10/2023]
Abstract
Human α1-antitrypsin (hAAT) has two distinguishing functions: anti-protease activity and regulation of the immune system. In the present study we hypothesized that those two protein functions are mediated by different structural domains on the hAAT surface. Indeed, such biologically active immunoregulatory sites (not associated with canonical anti-protease activity) on the surface of hAAT were identified by in silico methods. Several peptides were derived from those immunoregulatory sites. Four peptides exhibited impressive biological effects in pharmacological concentration ranges. Peptidomimetic (14) was developed, based on the structure of the most druggable and active peptide. The compound exhibited a potent anti-inflammatory activity in vitro and in vivo. Such a compound could be used as a basis for developing novel anti-inflammatory drug candidates and as a research tool for better understanding hAAT functions.
Collapse
Affiliation(s)
- Yotam Lior
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Efrat Shtriker
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel; The Skin Research Institute, The Dead Sea and Arava Science Center, 86910, Masada, Israel
| | - Eli C Lewis
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| |
Collapse
|
9
|
Siew WS, Tang YQ, Kong CK, Goh BH, Zacchigna S, Dua K, Chellappan DK, Duangjai A, Saokaew S, Phisalprapa P, Yap WH. Harnessing the Potential of CRISPR/Cas in Atherosclerosis: Disease Modeling and Therapeutic Applications. Int J Mol Sci 2021; 22:8422. [PMID: 34445123 PMCID: PMC8395110 DOI: 10.3390/ijms22168422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022] Open
Abstract
Atherosclerosis represents one of the major causes of death globally. The high mortality rates and limitations of current therapeutic modalities have urged researchers to explore potential alternative therapies. The clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) system is commonly deployed for investigating the genetic aspects of Atherosclerosis. Besides, advances in CRISPR/Cas system has led to extensive options for researchers to study the pathogenesis of this disease. The recent discovery of Cas9 variants, such as dCas9, Cas9n, and xCas9 have been established for various applications, including single base editing, regulation of gene expression, live-cell imaging, epigenetic modification, and genome landscaping. Meanwhile, other Cas proteins, such as Cas12 and Cas13, are gaining popularity for their applications in nucleic acid detection and single-base DNA/RNA modifications. To date, many studies have utilized the CRISPR/Cas9 system to generate disease models of atherosclerosis and identify potential molecular targets that are associated with atherosclerosis. These studies provided proof-of-concept evidence which have established the feasibility of implementing the CRISPR/Cas system in correcting disease-causing alleles. The CRISPR/Cas system holds great potential to be developed as a targeted treatment for patients who are suffering from atherosclerosis. This review highlights the advances in CRISPR/Cas systems and their applications in establishing pathogenetic and therapeutic role of specific genes in atherosclerosis.
Collapse
Affiliation(s)
- Wei Sheng Siew
- School of Biosciences, Taylor’s University, Subang Jaya 47500, Malaysia; (W.S.S.); (Y.Q.T.)
| | - Yin Quan Tang
- School of Biosciences, Taylor’s University, Subang Jaya 47500, Malaysia; (W.S.S.); (Y.Q.T.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences (FHMS), Taylor’s University, Subang Jaya 47500, Malaysia
| | - Chee Kei Kong
- Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Serena Zacchigna
- Centre for Translational Cardiology, Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, Strada di Fiume 447, 34149 Trieste, Italy;
- International Center for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia;
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil 57000, Malaysia;
| | - Acharaporn Duangjai
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (A.D.); (S.S.)
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Surasak Saokaew
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (A.D.); (S.S.)
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence on Herbal Medicine, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Department of Pharmaceutical Care, Division of Pharmacy Practice, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Pochamana Phisalprapa
- Department of Medicine, Division of Ambulatory Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wei Hsum Yap
- School of Biosciences, Taylor’s University, Subang Jaya 47500, Malaysia; (W.S.S.); (Y.Q.T.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences (FHMS), Taylor’s University, Subang Jaya 47500, Malaysia
| |
Collapse
|
10
|
Komiyama M, Ozaki Y, Miyazaki Y, Katanasaka Y, Sunagawa Y, Funamoto M, Shimizu K, Yamakage H, Sato-Asahara N, Yasoda A, Wada H, Morimoto T, Hasegawa K. Neutrophil/lymphocyte ratio is correlated with levels of inflammatory markers and is significantly reduced by smoking cessation. J Int Med Res 2021; 49:3000605211019223. [PMID: 34187206 PMCID: PMC8258763 DOI: 10.1177/03000605211019223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Previous studies have reported that the neutrophil to lymphocyte ratio (NLR) is associated with onset and prognosis of cardiovascular disease (CVD). Smoking is a major risk factor for CVD and smoking cessation significantly reduces CVD risk. However, the effects of smoking cessation on the NLR remain unknown. Among smokers visiting our smoking cessation clinics, we examined changes in the NLR and CVD biomarkers before and after smoking cessation. A total of 389 individuals (301 men and 88 women) were enrolled in the study. The median NLR was significantly reduced after successful smoking cessation (before: 1.8, interquartile range [IQR] 1.5, 2.5; after: 1.7, IQR 1.3, 2.4). In a linear regression model adjusted for sex, percent change in NLR comparing before and after smoking cessation was significantly and positively correlated with percent changes in C-reactive protein (β = 0.260), α1-antitrypsin-low density lipoprotein (β = 0.151, p < 0.05), and serum amyloid A-low density lipoprotein (β = 0.325). Our study demonstrated for the first time that smoking cessation significantly reduces the NLR in tandem with markers of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Maki Komiyama
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yuka Ozaki
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yusuke Miyazaki
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan.,Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yasufumi Katanasaka
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan.,Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yoichi Sunagawa
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan.,Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Masafumi Funamoto
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan.,Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kana Shimizu
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan.,Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hajime Yamakage
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Noriko Sato-Asahara
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Akihiro Yasoda
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Hiromichi Wada
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Tatsuya Morimoto
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan.,Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Koji Hasegawa
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan.,Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
11
|
Lechowicz U, Rudzinski S, Jezela-Stanek A, Janciauskiene S, Chorostowska-Wynimko J. Post-Translational Modifications of Circulating Alpha-1-Antitrypsin Protein. Int J Mol Sci 2020; 21:E9187. [PMID: 33276468 PMCID: PMC7731214 DOI: 10.3390/ijms21239187] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Alpha-1-antitrypsin (AAT), an acute-phase protein encoded by the SERPINA1 gene, is a member of the serine protease inhibitor (SERPIN) superfamily. Its primary function is to protect tissues from enzymes released during inflammation, such as neutrophil elastase and proteinase 3. In addition to its antiprotease activity, AAT interacts with numerous other substances and has various functions, mainly arising from the conformational flexibility of normal variants of AAT. Therefore, AAT has diverse biological functions and plays a role in various pathophysiological processes. This review discusses major molecular forms of AAT, including complex, cleaved, glycosylated, oxidized, and S-nitrosylated forms, in terms of their origin and function.
Collapse
Affiliation(s)
- Urszula Lechowicz
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (U.L.); (S.R.); (A.J.-S.); (S.J.)
| | - Stefan Rudzinski
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (U.L.); (S.R.); (A.J.-S.); (S.J.)
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (U.L.); (S.R.); (A.J.-S.); (S.J.)
| | - Sabina Janciauskiene
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (U.L.); (S.R.); (A.J.-S.); (S.J.)
- Member of the German Center for Lung Research DZL, Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover BREATH, 30625 Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (U.L.); (S.R.); (A.J.-S.); (S.J.)
| |
Collapse
|
12
|
Lu YL, Lee CJ, Lin SY, Hou WC. Reductions of copper ion-mediated low-density lipoprotein (LDL) oxidations of trypsin inhibitors, the sweet potato root major proteins, and LDL binding capacities. BOTANICAL STUDIES 2020; 61:26. [PMID: 32970215 PMCID: PMC7515984 DOI: 10.1186/s40529-020-00303-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The root major proteins of sweet potato trypsin inhibitors (SPTIs) or named sporamin, estimated for 60 to 80% water-soluble proteins, exhibited many biological activities. The human low-density lipoprotein (LDL) showed to form in vivo complex with endogenous oxidized alpha-1-antitrypsin. Little is known concerning the interactions between SPTIs and LDL in vitro. RESULTS The thiobarbituric-acid-reactive-substance (TBARS) assays were used to monitor 0.1 mM Cu2+-mediated low-density lipoprotein (LDL) oxidations during 24-h reactions with or without SPTIs additions. The protein stains in native PAGE gels were used to identify the bindings between native or reduced forms of SPTIs or soybean TIs and LDL, or oxidized LDL (oxLDL). It was found that the SPTIs additions showed to reduce LDL oxidations in the first 6-h and then gradually decreased the capacities of anti-LDL oxidations. The protein stains in native PAGE gels showed more intense LDL bands in the presence of SPTIs, and 0.5-h and 1-h reached the highest one. The SPTIs also bound to the oxLDL, and low pH condition (pH 2.0) might break the interactions revealed by HPLC. The LDL or oxLDL adsorbed onto self-prepared SPTIs-affinity column and some components were eluted by 0.2 M KCl (pH 2.0). The native or reduced SPTIs or soybean TIs showed different binding capacities toward LDL and oxLDL in vitro. CONCLUSION The SPTIs might be useful in developing functional foods as antioxidant and nutrient supplements, and the physiological roles of SPTIs-LDL and SPTIs-oxLDL complex in vivo will investigate further using animal models.
Collapse
Affiliation(s)
- Yeh-Lin Lu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110 Taiwan
| | - Chia-Jung Lee
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shyr-Yi Lin
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chi Hou
- Graduate Institute of Pharmacognosy, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei, 110 Taiwan
| |
Collapse
|
13
|
Hatchwell L, Harney DJ, Cielesh M, Young K, Koay YC, O’Sullivan JF, Larance M. Multi-omics Analysis of the Intermittent Fasting Response in Mice Identifies an Unexpected Role for HNF4α. Cell Rep 2020; 30:3566-3582.e4. [DOI: 10.1016/j.celrep.2020.02.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/24/2020] [Accepted: 02/11/2020] [Indexed: 12/21/2022] Open
|
14
|
O'Brien ME, Fee L, Browne N, Carroll TP, Meleady P, Henry M, McQuillan K, Murphy MP, Logan M, McCarthy C, McElvaney OJ, Reeves EP, McElvaney NG. Activation of complement component 3 is associated with airways disease and pulmonary emphysema in alpha-1 antitrypsin deficiency. Thorax 2020; 75:321-330. [PMID: 31959730 PMCID: PMC7231451 DOI: 10.1136/thoraxjnl-2019-214076] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/22/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Alpha-1 antitrypsin (AAT) deficiency (AATD) is associated with early onset emphysema. The aim of this study was to investigate whether AAT binding to plasma constituents could regulate their activation, and in AATD, exploit this binding event to better understand the condition and uncover novel biomarkers of therapeutic efficacy. METHODS To isolate AAT linker proteins, plasma samples were separated by size exclusion chromatography, followed by co-immunoprecipitation. AAT binding proteins were identified by mass spectrometry. Complement turnover and activation was determined by ELISA measurement of C3, C3a and C3d levels in plasma of healthy controls (n=15), AATD (n=51), non-AATD patients with obstructive airway disease (n=10) and AATD patients post AAT augmentation therapy (n=5). RESULTS Direct binding of complement C3 to AAT was identified in vivo and in vitro. Compared with healthy controls, a breakdown product of C3, C3d, was increased in AATD (0.04 µg/mL vs 1.96 µg/mL, p=0.0002), with a significant correlation between radiographic pulmonary emphysema and plasma levels of C3d (R2=0.37, p=0.001). In vivo, AAT augmentation therapy significantly reduced plasma levels of C3d in comparison to patients not receiving AAT therapy (0.15 µg/mL vs 2.18 µg/mL, respectively, p=0.001). DISCUSSION Results highlight the immune-modulatory impact of AAT on the complement system, involving an important potential role for complement activation in disease pathogenesis in AATD. The association between plasma C3d levels and pulmonary disease severity, that decrease in response to AAT augmentation therapy, supports the exploration of C3d as a candidate biomarker of therapeutic efficacy in AATD.
Collapse
Affiliation(s)
- Michael E O'Brien
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Laura Fee
- Alpha-1 Foundation Ireland, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Niall Browne
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Tomás P Carroll
- Alpha-1 Foundation Ireland, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paula Meleady
- National Institute for Cellular Biology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Michael Henry
- National Institute for Cellular Biology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Karen McQuillan
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Mark P Murphy
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Mark Logan
- Department of Radiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Cormac McCarthy
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Oliver J McElvaney
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Emer P Reeves
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
15
|
Chan SMH, Selemidis S, Bozinovski S, Vlahos R. Pathobiological mechanisms underlying metabolic syndrome (MetS) in chronic obstructive pulmonary disease (COPD): clinical significance and therapeutic strategies. Pharmacol Ther 2019; 198:160-188. [PMID: 30822464 PMCID: PMC7112632 DOI: 10.1016/j.pharmthera.2019.02.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major incurable global health burden and is currently the 4th largest cause of death in the world. Importantly, much of the disease burden and health care utilisation in COPD is associated with the management of its comorbidities (e.g. skeletal muscle wasting, ischemic heart disease, cognitive dysfunction) and infective viral and bacterial acute exacerbations (AECOPD). Current pharmacological treatments for COPD are relatively ineffective and the development of effective therapies has been severely hampered by the lack of understanding of the mechanisms and mediators underlying COPD. Since comorbidities have a tremendous impact on the prognosis and severity of COPD, the 2015 American Thoracic Society/European Respiratory Society (ATS/ERS) Research Statement on COPD urgently called for studies to elucidate the pathobiological mechanisms linking COPD to its comorbidities. It is now emerging that up to 50% of COPD patients have metabolic syndrome (MetS) as a comorbidity. It is currently not clear whether metabolic syndrome is an independent co-existing condition or a direct consequence of the progressive lung pathology in COPD patients. As MetS has important clinical implications on COPD outcomes, identification of disease mechanisms linking COPD to MetS is the key to effective therapy. In this comprehensive review, we discuss the potential mechanisms linking MetS to COPD and hence plausible therapeutic strategies to treat this debilitating comorbidity of COPD.
Collapse
Affiliation(s)
- Stanley M H Chan
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
16
|
Funamoto M, Shimizu K, Sunagawa Y, Katanasaka Y, Miyazaki Y, Kakeya H, Yamakage H, Satoh-Asahara N, Wada H, Hasegawa K, Morimoto T. Effects of Highly Absorbable Curcumin in Patients with Impaired Glucose Tolerance and Non-Insulin-Dependent Diabetes Mellitus. J Diabetes Res 2019; 2019:8208237. [PMID: 31871950 PMCID: PMC6906884 DOI: 10.1155/2019/8208237] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 01/02/2023] Open
Abstract
Oxidative stress is enhanced by various mechanisms. Serum oxidized low-density lipoprotein (LDL) is a useful prognostic marker in diabetic patients with coronary artery disease. To examine the effects of Theracurmin®, a highly absorbable curcumin preparation, on glucose tolerance, adipocytokines, and oxidized LDL, we conducted a double-blind placebo-controlled parallel group randomized trial in patients with impaired glucose tolerance or non-insulin-dependent diabetes mellitus. We randomly divided the patients with impaired glucose tolerance or non-insulin-dependent diabetes mellitus and stable individuals into the placebo group and the Theracurmin® (180 mg daily for 6 months) group. Of the 33 patients analyzed, 18 (14 males and 4 females) were administered placebo and 15 (9 males and 6 females) were administered Theracurmin®. The patient characteristics did not differ between the two groups. The primary endpoint, HbA1c, did not differ significantly between the two groups. However, the level of α1-antitrypsin-low-density lipoprotein (AT-LDL), the oxidized LDL, significantly increased (p = 0.024) in the placebo group from the beginning of the trial up to 6 months, although there was no such change in the Theracurmin® group. The percentage change in BMI from the beginning of the trial up to 6 months tended to be higher in the Theracurmin® group than in the placebo group. Patients in the Theracurmin® group tended to have a larger percentage change in adiponectin and LDL-C than those in the placebo group. Patients in the Theracurmin® group showed a smaller percentage change in AT-LDL than those in the placebo group. This study suggests that the highly absorbable curcumin could potentially inhibit a rise in oxidized LDL in patients with impaired glucose tolerance or non-insulin-dependent diabetes mellitus. This trial is registered with UMIN000007361.
Collapse
Affiliation(s)
- Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Yusuke Miyazaki
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Hajime Yamakage
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Noriko Satoh-Asahara
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Hiromichi Wada
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| |
Collapse
|
17
|
Song S. Alpha-1 Antitrypsin Therapy for Autoimmune Disorders. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2018; 5:289-301. [PMID: 30723786 DOI: 10.15326/jcopdf.5.4.2018.0131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Autoimmune diseases are conditions caused by an over reactive immune system that attacks self-tissues and organs. Although the pathogenesis of autoimmune disease is complex and multi-factorial, inflammation is commonly involved. Therefore, anti-inflammatory therapies hold potential for the treatment of autoimmune diseases. However, long-term control of inflammation is challenging and most of the currently used drugs have side effects. Alpha-1 antitrypsin (AAT) is an anti-inflammatory protein with a well-known safety profile. The therapeutic potential of AAT has been tested in several autoimmune disease models. The first study using a recombinant adeno-associated viral (rAAV) vector showed that AAT gene transfer prevented the development of type 1 diabetes (T1D) in the non-obese diabetic (NOD) mouse model. Subsequent studies showed that treatment with AAT protein prevented and reversed type 1 diabetes. The beneficial effects of AAT treatment have also been observed in other autoimmune disease models such as rheumatoid arthritis and systemic lupus erythematosus. This paper reviews the therapeutic application of AAT and discusses possible mechanisms of action in various autoimmune diseases.
Collapse
Affiliation(s)
- Sihong Song
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville
| |
Collapse
|
18
|
Lior Y, Zaretsky M, Ochayon DE, Lotysh D, Baranovski BM, Schuster R, Guttman O, Aharoni A, Lewis EC. Point Mutation of a Non-Elastase-Binding Site in Human α1-Antitrypsin Alters Its Anti-Inflammatory Properties. Front Immunol 2018; 9:759. [PMID: 29780379 PMCID: PMC5946014 DOI: 10.3389/fimmu.2018.00759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/27/2018] [Indexed: 12/20/2022] Open
Abstract
Introduction Human α1-antitrypsin (hAAT) is a 394-amino acid long anti-inflammatory, neutrophil elastase inhibitor, which binds elastase via a sequence-specific molecular protrusion (reactive center loop, RCL; positions 357-366). hAAT formulations that lack protease inhibition were shown to maintain their anti-inflammatory activities, suggesting that some attributes of the molecule may reside in extra-RCL segments. Here, we compare the protease-inhibitory and anti-inflammatory profiles of an extra-RCL mutation (cys232pro) and two intra-RCL mutations (pro357cys, pro357ala), to naïve [wild-type (WT)] recombinant hAAT, in vitro, and in vivo. Methods His-tag recombinant point-mutated hAAT constructs were expressed in HEK-293F cells. Purified proteins were evaluated for elastase inhibition, and their anti-inflammatory activities were assessed using several cell-types: RAW264.7 cells, mouse bone marrow-derived macrophages, and primary peritoneal macrophages. The pharmacokinetics of the recombinant variants and their effect on LPS-induced peritonitis were determined in vivo. Results Compared to WT and to RCL-mutated hAAT variants, cys232pro exhibited superior anti-inflammatory activities, as well as a longer circulating half-life, despite all three mutated forms of hAAT lacking anti-elastase activity. TNFα expression and its proteolytic membranal shedding were differently affected by the variants; specifically, cys232pro and pro357cys altered supernatant and serum TNFα dynamics without suppressing transcription or shedding. Conclusion Our data suggest that the anti-inflammatory profile of hAAT extends beyond direct RCL regions. Such regions might be relevant for the elaboration of hAAT formulations, as well as hAAT-based drugs, with enhanced anti-inflammatory attributes.
Collapse
Affiliation(s)
- Yotam Lior
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Mariana Zaretsky
- Department of Life Sciences, Ben-Gurion University of the Negev and National Institute for Biotechnology, Be'er Sheva, Israel
| | - David E Ochayon
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Diana Lotysh
- Department of Life Sciences, Ben-Gurion University of the Negev and National Institute for Biotechnology, Be'er Sheva, Israel
| | - Boris M Baranovski
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Ronen Schuster
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Ofer Guttman
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Amir Aharoni
- Department of Life Sciences, Ben-Gurion University of the Negev and National Institute for Biotechnology, Be'er Sheva, Israel
| | - Eli C Lewis
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
19
|
Common coding variant in SERPINA1 increases the risk for large artery stroke. Proc Natl Acad Sci U S A 2017; 114:3613-3618. [PMID: 28265093 DOI: 10.1073/pnas.1616301114] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Large artery atherosclerotic stroke (LAS) shows substantial heritability not explained by previous genome-wide association studies. Here, we explore the role of coding variation in LAS by analyzing variants on the HumanExome BeadChip in a total of 3,127 cases and 9,778 controls from Europe, Australia, and South Asia. We report on a nonsynonymous single-nucleotide variant in serpin family A member 1 (SERPINA1) encoding alpha-1 antitrypsin [AAT; p.V213A; P = 5.99E-9, odds ratio (OR) = 1.22] and confirm histone deacetylase 9 (HDAC9) as a major risk gene for LAS with an association in the 3'-UTR (rs2023938; P = 7.76E-7, OR = 1.28). Using quantitative microscale thermophoresis, we show that M1 (A213) exhibits an almost twofold lower dissociation constant with its primary target human neutrophil elastase (NE) in lipoprotein-containing plasma, but not in lipid-free plasma. Hydrogen/deuterium exchange combined with mass spectrometry further revealed a significant difference in the global flexibility of the two variants. The observed stronger interaction with lipoproteins in plasma and reduced global flexibility of the Val-213 variant most likely improve its local availability and reduce the extent of proteolytic inactivation by other proteases in atherosclerotic plaques. Our results indicate that the interplay between AAT, NE, and lipoprotein particles is modulated by the gate region around position 213 in AAT, far away from the unaltered reactive center loop (357-360). Collectively, our findings point to a functionally relevant balance between lipoproteins, proteases, and AAT in atherosclerosis.
Collapse
|
20
|
Miyazaki Y, Katanasaka Y, Sunagawa Y, Hirano-Sunagawa S, Funamoto M, Morimoto E, Komiyama M, Shimatsu A, Satoh-Asahara N, Yamakage H, Wada H, Hasegawa K, Morimoto T. Effect of statins on atherogenic serum amyloid A and α1-antitrypsin low-density lipoprotein complexes. Int J Cardiol 2016; 225:332-336. [PMID: 27756037 DOI: 10.1016/j.ijcard.2016.09.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/24/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE HMG-CoA reductase inhibitors, also termed statins, are used to reduce the risk of coronary artery disease. Two oxidatively modified low-density lipoprotein (LDL) complexes, serum amyloid A-LDL (SAA-LDL) and α1-antitrypsin-LDL (AT-LDL), serve as atherosclerotic, inflammatory, and cardiovascular risk markers. In this study, we examined the effects of hydrophilic rosuvastatin (RSV) and lipophilic pitavastatin (PTV) on these markers in patients with hypercholesterolemia. METHODS The present study was a sub-analysis of our previous STAT-LVDF study. The subjects were treated with RSV or PTV for 24weeks. Changes in glucose-lipid metabolism, serum levels of SAA-LDL and AT-LDL, and C-reactive protein (CRP) level were assessed. RESULTS In total, 53 patients were analyzed in the present study. RSV and PTV significantly decreased SAA-LDL (RSV: p=0.003, PTV: p=0.012) and AT-LDL levels (RSV: p=0.013, PTV: p=0.037). Changes in SAA-LDL level were significantly and positively correlated with those in CRP in both the RSV (r=0.549, p=0.003) and PTV (r=0.576, p=0.004) groups. Moreover, a positive correlation between changes of SAA-LDL levels and those of HbA1c levels was observed in the PTV group (r=0.442, p=0.030) but not in the RSV group (r=-0.100, p=0.611). CONCLUSIONS Both hydrophilic rosuvastatin and lipophilic pitavastatin reduce serum levels of atherosclerotic and inflammatory markers. These findings also indicate differential effects of RSV and PTV on glucose tolerance.
Collapse
Affiliation(s)
- Yusuke Miyazaki
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan; Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan; Shizuoka General Hospital, Shizuoka, Japan; Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yoichi Sunagawa
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan; Shizuoka General Hospital, Shizuoka, Japan; Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Sae Hirano-Sunagawa
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan; Shizuoka Saiseikai General Hospital, Shizuoka, Japan
| | - Masafumi Funamoto
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan; Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | | | - Maki Komiyama
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Akira Shimatsu
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Noriko Satoh-Asahara
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Hajime Yamakage
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Hiromichi Wada
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Koji Hasegawa
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Tatsuya Morimoto
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan; Shizuoka General Hospital, Shizuoka, Japan; Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan.
| |
Collapse
|
21
|
Aggarwal N, Korenbaum E, Mahadeva R, Immenschuh S, Grau V, Dinarello CA, Welte T, Janciauskiene S. α-Linoleic acid enhances the capacity of α-1 antitrypsin to inhibit lipopolysaccharide induced IL-1β in human blood neutrophils. Mol Med 2016; 22:680-693. [PMID: 27452044 DOI: 10.2119/molmed.2016.00119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/05/2016] [Indexed: 11/06/2022] Open
Abstract
Alpha1-antitrypsin (A1AT, SERPINA1), a major circulating inhibitor of neutrophil elastase (NE) and proteinase-3 (PR3), has been proposed to reduce the processing and release of IL-1β. Since the anti-inflammatory properties of A1AT are influenced by the presence of polyunsaturated fatty acids, we compared effects of fatty acid-free (A1AT-0) and α-linoleic acid bound (A1AT-LA) forms of A1AT on lipopolysaccharide (LPS)-induced synthesis of IL-1β precursor and the release of IL-1β from human blood neutrophils. The presence of A1AT-LA or A1AT-0 significantly reduced LPS induced release of mature IL-1β. However, only A1AT-LA reduced both steady state mRNA levels of IL-1β and the secretion of mature IL-1β. In LPS-stimulated neutrophils, mRNA levels of TLR2/4, NFKBIA, P2RX7, NLRP3, and CASP1 decreased significantly in the presence of A1AT-LA but not A1AT-0. A1AT-0 and A1AT-LA did not inhibit the direct enzymatic activity of caspase-1, but we observed complexes of either form of A1AT with NE and PR3. Consistent with the effect on TLR and IL-1β gene expression, only A1AT-LA inhibited LPS-induced gene expression of NE and PR3. Increased gene expression of PPAR-γ was observed in A1AT-LA treated neutrophils without of LPS stimulation, and the selective PPAR-γ antagonist (GW9662) prevented the reduction in IL-1β by A1AT-LA. We conclude from our data, that the ability of A1AT to reduce TLR and IL-1β gene expression depends on its association with LA. Moreover, the anti-inflammatory properties of A1AT-LA are likely to be mediated by the activation of PPAR-γ.
Collapse
Affiliation(s)
- Nupur Aggarwal
- Department of Respiratory Medicine, German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Elena Korenbaum
- Institute of Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Ravi Mahadeva
- Cambridge NIHR Biomedical Research Centre, Department of Respiratory Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Veronika Grau
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University Giessen, Giessen, Germany
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045.,Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tobias Welte
- Department of Respiratory Medicine, German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| |
Collapse
|
22
|
Funamoto M, Sunagawa Y, Katanasaka Y, Miyazaki Y, Imaizumi A, Kakeya H, Yamakage H, Satoh-Asahara N, Komiyama M, Wada H, Hasegawa K, Morimoto T. Highly absorptive curcumin reduces serum atherosclerotic low-density lipoprotein levels in patients with mild COPD. Int J Chron Obstruct Pulmon Dis 2016; 11:2029-34. [PMID: 27616885 PMCID: PMC5008445 DOI: 10.2147/copd.s104490] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
PURPOSE COPD is mainly caused by tobacco smoking and is associated with a high frequency of coronary artery disease. There is growing recognition that the inflammation in COPD is not only confined to the lungs but also involves the systemic circulation and can impact nonpulmonary organs, including blood vessels. α1-antitrypsin-low-density lipoprotein (AT-LDL) complex is an oxidatively modified LDL that accelerates atherosclerosis. Curcumin, one of the best-investigated natural products, is a powerful antioxidant. However, the effects of curcumin on AT-LDL remain unknown. We hypothesized that Theracurmin(®), a highly absorptive curcumin with improved bioavailability using a drug delivery system, ameliorates the inflammatory status in subjects with mild COPD. PATIENTS AND METHODS This is a randomized, double-blind, parallel-group study. Subjects with stages I-II COPD according to the Japanese Respiratory Society criteria were randomly assigned to receive 90 mg Theracurmin(®) or placebo twice a day for 24 weeks, and changes in inflammatory parameters were evaluated. RESULTS There were no differences between the Theracurmin(®) and placebo groups in terms of age, male/female ratio, or body mass index in 39 evaluable subjects. The percent changes in blood pressure and hemoglobin A1c and LDL-cholesterol, triglyceride, or high-density lipoprotein-cholesterol levels after treatment were similar for the two groups. However, the percent change in the AT-LDL level was significantly (P=0.020) lower in the Theracurmin(®) group compared with the placebo group. CONCLUSION Theracurmin(®) reduced levels of atherosclerotic AT-LDL, which may lead to the prevention of future cardiovascular events in mild COPD subjects.
Collapse
Affiliation(s)
- Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka; Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto
| | - Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka; Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto; Shizuoka General Hospital, Shizuoka
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka; Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto; Shizuoka General Hospital, Shizuoka
| | - Yusuke Miyazaki
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka; Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto
| | | | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hajime Yamakage
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto
| | - Noriko Satoh-Asahara
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto
| | - Maki Komiyama
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto
| | - Hiromichi Wada
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto
| | - Koji Hasegawa
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka; Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto; Shizuoka General Hospital, Shizuoka
| |
Collapse
|
23
|
Well-Known and Less Well-Known Functions of Alpha-1 Antitrypsin. Its Role in Chronic Obstructive Pulmonary Disease and Other Disease Developments. Ann Am Thorac Soc 2016; 13 Suppl 4:S280-8. [DOI: 10.1513/annalsats.201507-468kv] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
24
|
Komiyama M, Shimada S, Wada H, Yamakage H, Satoh-Asahara N, Shimatsu A, Akao M, Morimoto T, Takahashi Y, Hasegawa K. Time-dependent Changes of Atherosclerotic LDL Complexes after Smoking Cessation. J Atheroscler Thromb 2016; 23:1270-1275. [PMID: 27298048 PMCID: PMC5113744 DOI: 10.5551/jat.34280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aim: The α1-antitrypsin – low-density lipoprotein complex (AT-LDL) and serum amyloid A-LDL complex (SAA-LDL) are oxidatively modified LDL complexes that promote atherosclerosis. The serum levels of AT-LDL and SAA-LDL are suggested to be increased by obesity and smoking. We have previously demonstrated that larger weight gain after smoking cessation (SC) perturbs a decrease in the serum level of AT-LDL at 3 months after SC. However, changes of these atherosclerotic makers >3 months after SC are unknown. This study investigated post-SC time-dependent changes in two atherogenic lipoproteins, AT-LDL and SAA-LDL, and in the extent of abdominal obesity. Methods: In 50 outpatients who had continued SC for 1 year, we measured serum AT-LDL and SAA-LDL levels by the enzyme-linked immunosorbent assay before SC, and at 3 months and 1 year after SC. Results: Both body mass index and waist circumstance significantly increased from pre-SC to 3 months after SC and from 3 months after SC to 1 year after SC. Although the serum levels of AT-LDL and SAA-LDL were unchanged from pre-SC to 3 months after SC, these levels decreased significantly from 3 months after SC to 1 year after SC. Conclusions: The extent of abdominal obesity and levels of two atherogenic lipoproteins time-dependently change after SC. Although abdominal obesity progressively worsened after SC, the beneficial effect of non-smoking overcomes the potential vascular risks by cessation-associated obesity at 1 year after SC.
Collapse
Affiliation(s)
- Maki Komiyama
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gordon SM, McKenzie B, Kemeh G, Sampson M, Perl S, Young NS, Fessler MB, Remaley AT. Rosuvastatin Alters the Proteome of High Density Lipoproteins: Generation of alpha-1-antitrypsin Enriched Particles with Anti-inflammatory Properties. Mol Cell Proteomics 2015; 14:3247-57. [PMID: 26483418 PMCID: PMC4762624 DOI: 10.1074/mcp.m115.054031] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/05/2015] [Indexed: 11/06/2022] Open
Abstract
Statins lower plasma cholesterol by as much as 50%, thus reducing future cardiovascular events. However, the physiological effects of statins are diverse and not all are related to low density lipoprotein cholesterol (LDL-C) lowering. We performed a small clinical pilot study to assess the impact of statins on lipoprotein-associated proteins in healthy individuals (n = 10) with normal LDL-C (<130 mg/dL), who were treated with rosuvastatin (20 mg/day) for 28 days. Proteomic analysis of size-exclusion chromatography isolated LDL, large high density lipoprotein (HDL-L), and small HDL (HDL-S) fractions and spectral counting was used to compare relative protein detection before and after statin therapy. Significant protein changes were found in each lipoprotein pool and included both increases and decreases in several proteins involved in lipoprotein metabolism, complement regulation and acute phase response. The most dramatic effect of the rosuvastatin treatment was an increase in α-1-antirypsin (A1AT) spectral counts associated with HDL-L particles. Quantitative measurement by ELISA confirmed an average 5.7-fold increase in HDL-L associated A1AT. Molecular modeling predictions indicated that the hydrophobic reactive center loop of A1AT, the functional domain responsible for its protease inhibitor activity, is likely involved in lipid binding and association with HDL was found to protect A1AT against oxidative inactivation. Cell culture experiments, using J774 macrophages, demonstrated that the association of A1AT with HDL enhances its antiprotease activity, preventing elastase induced production of tumor necrosis factor α. In conclusion, we show that statins can significantly alter the protein composition of both LDL and HDL and our studies reveal a novel functional relationship between A1AT and HDL. The up-regulation of A1AT on HDL enhances its anti-inflammatory functionality, which may contribute to the non-lipid lowering beneficial effects of statins.
Collapse
Affiliation(s)
- Scott M Gordon
- From the ‡Lipoprotein Metabolism Section, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland;
| | - Benjamin McKenzie
- From the ‡Lipoprotein Metabolism Section, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Georgina Kemeh
- From the ‡Lipoprotein Metabolism Section, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Maureen Sampson
- From the ‡Lipoprotein Metabolism Section, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Shira Perl
- §Cell Biology Section, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Neal S Young
- §Cell Biology Section, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael B Fessler
- ¶Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Alan T Remaley
- From the ‡Lipoprotein Metabolism Section, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
26
|
Lockett AD, Petrusca DN, Justice MJ, Poirier C, Serban KA, Rush NI, Kamocka M, Predescu D, Predescu S, Petrache I. Scavenger receptor class B, type I-mediated uptake of A1AT by pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol 2015; 309:L425-34. [PMID: 26092999 DOI: 10.1152/ajplung.00376.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 06/09/2015] [Indexed: 12/13/2022] Open
Abstract
In addition to exerting a potent anti-elastase function, α-1 antitrypsin (A1AT) maintains the structural integrity of the lung by inhibiting endothelial inflammation and apoptosis. A main serpin secreted in circulation by hepatocytes, A1AT requires uptake by the endothelium to achieve vasculoprotective effects. This active uptake mechanism, which is inhibited by cigarette smoking (CS), involves primarily clathrin- but also caveola-mediated endocytosis and may require active binding to a receptor. Because circulating A1AT binds to high-density lipoprotein (HDL), we hypothesized that scavenging receptors are candidates for endothelial uptake of the serpin. Although the low-density lipoprotein (LDL) receptor-related protein 1 (LRP1) internalizes only elastase-bound A1AT, the scavenger receptor B type I (SR-BI), which binds and internalizes HDL and is modulated by CS, may be involved in A1AT uptake. Transmission electron microscopy imaging of colloidal gold-labeled A1AT confirmed A1AT endocytosis in both clathrin-coated vesicles and caveolae in endothelial cells. SR-BI immunoprecipitation identified binding to A1AT at the plasma membrane. Pretreatment of human lung microvascular endothelial cells with SR-B ligands (HDL or LDL), knockdown of SCARB1 expression, or neutralizing SR-BI antibodies significantly reduced A1AT uptake by 30-50%. Scarb1 null mice exhibited decreased A1AT lung content following systemic A1AT administration and reduced lung anti-inflammatory effects of A1AT supplementation during short-term CS exposure. In turn, A1AT supplementation increased lung SR-BI expression and modulated circulating lipoprotein levels in wild-type animals. These studies indicate that SR-BI is an important mediator of A1AT endocytosis in pulmonary endothelium and suggest a cross talk between A1AT and lipoprotein regulation of vascular functions.
Collapse
Affiliation(s)
- Angelia D Lockett
- Division of Pulmonary, Allergy, Critical Care and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana;
| | - Daniela N Petrusca
- Division of Pulmonary, Allergy, Critical Care and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Matthew J Justice
- Division of Pulmonary, Allergy, Critical Care and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Christophe Poirier
- Division of Pulmonary, Allergy, Critical Care and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Karina A Serban
- Division of Pulmonary, Allergy, Critical Care and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Natalia I Rush
- Division of Pulmonary, Allergy, Critical Care and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Malgorzata Kamocka
- Division of Nephrology, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Dan Predescu
- Department of Pharmacology, Rush University, Chicago, Illinois; and
| | - Sanda Predescu
- Department of Pharmacology, Rush University, Chicago, Illinois; and
| | - Irina Petrache
- Division of Pulmonary, Allergy, Critical Care and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana; The Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
27
|
Guttman O, Baranovski BM, Schuster R, Kaner Z, Freixo-Lima GS, Bahar N, Kalay N, Mizrahi MI, Brami I, Ochayon DE, Lewis EC. Acute-phase protein α1-anti-trypsin: diverting injurious innate and adaptive immune responses from non-authentic threats. Clin Exp Immunol 2015; 179:161-72. [PMID: 25351931 DOI: 10.1111/cei.12476] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2014] [Indexed: 12/29/2022] Open
Abstract
One would assume that the anti-inflammatory activity of α1-anti-trypsin (AAT) is the result of inhibiting neutrophil enzymes. However, AAT exhibits tolerogenic activities that are difficult to explain by serine-protease inhibition or by reduced inflammatory parameters. Targets outside the serine-protease family have been identified, supporting the notion that elastase inhibition, the only functional factory release criteria for clinical-grade AAT, is over-emphasized. Non-obvious developments in the understanding of AAT biology disqualify it from being a straightforward anti-inflammatory agent: AAT does not block dendritic cell activities, nor does it promote viral and tumour susceptibilities, stunt B lymphocyte responses or render treated patients susceptible to infections; accordingly, outcomes of elevated AAT do not overlap those attained by immunosuppression. Aside from the acute-phase response, AAT rises during the third trimester of pregnancy and also in advanced age. At the molecular level, AAT docks onto cholesterol-rich lipid-rafts and circulating lipid particles, directly binds interleukin (IL)-8, ADAM metallopeptidase domain 17 (ADAM17) and danger-associated molecular pattern (DAMP) molecules, and its activity is lost to smoke, high glucose levels and bacterial proteases, introducing a novel entity - 'relative AAT deficiency'. Unlike immunosuppression, AAT appears to help the immune system to distinguish between desired responses against authentic threats, and unwanted responses fuelled by a positive feedback loop perpetuated by, and at the expense of, inflamed injured innocent bystander cells. With a remarkable clinical safety record, AAT treatment is currently tested in clinical trials for its potential benefit in a variety of categorically distinct pathologies that share at least one common driving force: cell injury.
Collapse
Affiliation(s)
- O Guttman
- Ben-Gurion University of the Negev, Faculty of Health Sciences, Department of Clinical Biochemistry and Pharmacology, Beer-Sheva, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
The effects of weight gain after smoking cessation on atherogenic α1-antitrypsin-low-density lipoprotein. Heart Vessels 2014; 30:734-9. [PMID: 25086816 PMCID: PMC4648963 DOI: 10.1007/s00380-014-0549-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/27/2014] [Indexed: 01/07/2023]
Abstract
Although cardiovascular risks decrease after quitting smoking, body weight often increases in the early period after smoking cessation. We have previously reported that the serum level of the α1-antitrypsin–low-density lipoprotein complex (AT–LDL)—an oxidatively modified low-density lipoprotein that accelerates atherosclerosis—is high in current smokers, and that the level rapidly decreases after smoking cessation. However, the effects of weight gain after smoking cessation on this cardiovascular marker are unknown. In 183 outpatients (134 males, 49 females) who had successfully quit smoking, serum AT–LDL levels were measured using an enzyme-linked immunosorbent assay. For all persons who had successfully quit smoking, body mass index (BMI) significantly increased 12 weeks after the first examination (p < 0.01). Among patients with a BMI increase smaller than the median, a significant decrease (p < 0.01) in serum AT–LDL values was found, but no significant changes in serum AT–LDL values were found in patients with a BMI increase greater than the median. The findings suggest that the decrease in serum AT–LDL levels after quitting smoking is influenced by weight gain after smoking cessation.
Collapse
|
29
|
Ueno H, Saitoh Y, Mizuta M, Shiiya T, Noma K, Mashiba S, Kojima S, Nakazato M. Fenofibrate ameliorates insulin resistance, hypertension and novel oxidative stress markers in patients with metabolic syndrome. Obes Res Clin Pract 2013; 5:e267-360. [PMID: 24331137 DOI: 10.1016/j.orcp.2011.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 03/23/2011] [Accepted: 03/30/2011] [Indexed: 12/27/2022]
Abstract
SUMMARY OBJECTIVE The benefits of fenofibrate, a peroxisome proliferator-activated receptor α agonist, against cardiovascular risk factors have been established. To clarify the underlying mechanisms of these benefits, we examined the effects of fenofibrate on insulin resistance, hypertension, inflammation, oxidative stress and coagulation markers in patients with metabolic syndrome. METHODS Eleven Japanese patients with metabolic syndrome underwent physical examinations and blood tests before and after treatment with fenofibrate 200 mg daily for 8 weeks. RESULTS Fenofibrate significantly decreased systolic blood pressure, pulse wave velocity, serum insulin, insulin resistance (calculated from the homeostasis model assessment), total cholesterol, triglyceride, remnant-like particles cholesterol, uric acid, D-dimer, fibrinogen, serum amyloid A/low-density lipoprotein (LDL) and apoA1/LDL levels. It also significantly increased levels of high molecular weight adiponectin, thrombomodulin and high-density lipoprotein cholesterol in these patients. Plasminogen activator inhibitor-1, C-reactive protein, fasting plasma glucose and thrombin-antithrombin complex levels did not change. LIMITATION Small sample size. CONCLUSION Short-term fenofibrate administration not only improved lipid profiles, but also ameliorated insulin resistance, hypertension and oxidative stress markers in patients with metabolic syndrome, suggesting that fenofibrate can decrease the risk of arteriosclerosis through various pathways.
Collapse
Affiliation(s)
- Hiroaki Ueno
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200, Kiyotake, Miyazaki 889-1692, Japan.
| | - Yukie Saitoh
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200, Kiyotake, Miyazaki 889-1692, Japan
| | - Masanari Mizuta
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200, Kiyotake, Miyazaki 889-1692, Japan
| | - Tomomi Shiiya
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200, Kiyotake, Miyazaki 889-1692, Japan
| | - Kenji Noma
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200, Kiyotake, Miyazaki 889-1692, Japan
| | | | | | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
30
|
Kitamura Y, Kamimura K, Yoshioka N, Hosotani Y, Tsuchida K, Koremoto M, Minakuchi J. The effect of vitamin E-bonded polysulfone membrane dialyzer on a new oxidative lipid marker. J Artif Organs 2013; 16:206-10. [PMID: 23397123 PMCID: PMC3684714 DOI: 10.1007/s10047-013-0689-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 01/21/2013] [Indexed: 11/04/2022]
Abstract
The use of vitamin E-bonded cellulose membrane dialyzers has been reported to cause a decrease in oxidative lipid marker levels (Nakai et al., Ther Apher Dial 14:505-540, 1; Nakai et al., J Jpn Soc Dial Ther 45:1-47, 2; Mashiba et al., Arterioscler Thromb Vasc Biol 21:1801-1808, 3). However, few studies have identified this effect with vitamin E-bonded polysulfone membranes, and no studies report the same effect on alpha (1) antitrypsin-LDL complex, a new oxidative lipid marker. This prompted us to examine the influence of use of VPS-HA vitamin E-bonded polysulfone high-flux membrane dialyzers on this new oxidative lipid marker. The subjects were 17 patients who had been dialyzed with VPS-HA for 12 months. The subjects' baseline characteristics were as follows. Their average age was 65.6 ± 13.1 years, comprising 8 males and 9 females; hemodialysis vintage was 83.8 ± 85.4 months. Eight had chronic glomerular nephropathy and five had diabetic nephropathy. The primary outcome was defined as alpha (1) antitrypsin-LDL complex level after 12 months, as a post-study using VPS-HA. Secondary outcomes included triglycerides, total cholesterol, HDL cholesterol and LDL cholesterol levels. The data were analyzed pre-study and after 3, 6, 9 and 12 months for alpha (1) antitrypsin-LDL complex, and pre-study and post-study for the other indicators. Twelve months after switching to VPS-HA, alpha (1) antitrypsin-LDL complex, total cholesterol and LDL cholesterol had significantly decreased. Triglycerides and HDL cholesterol had not significantly changed. Hemodialysis therapy with VPS-HA was shown to decrease alpha (1) antitrypsin-LDL complex, an index of oxidative stress, and also to decrease some lipid markers.
Collapse
Affiliation(s)
- Yuki Kitamura
- />Department of Kidney Disease (Dialysis and Kidney Transplantation), Kawashima Hospital, Tokushima, Japan
- />Department of Urology, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555 Japan
| | - Kumi Kamimura
- />Clinical Engineering, Kawashima Hospital, Tokushima, Japan
| | - Noriko Yoshioka
- />Clinical Engineering, Kawashima Hospital, Tokushima, Japan
| | - Yoko Hosotani
- />Clinical Engineering, Kawashima Hospital, Tokushima, Japan
| | - Kenji Tsuchida
- />Department of Kidney Disease (Dialysis and Kidney Transplantation), Kawashima Hospital, Tokushima, Japan
| | - Masahide Koremoto
- />Scientific and Technical Affairs Department, Asahi Kasei Medical Co., Ltd., 1-105 Kanda Jinbocho, Chiyoda-ku, Tokyo, 101-8101 Japan
| | - Jun Minakuchi
- />Department of Kidney Disease (Dialysis and Kidney Transplantation), Kawashima Hospital, Tokushima, Japan
| |
Collapse
|
31
|
Leiva E, Mujica V, Sepúlveda P, Guzmán L, Núñez S, Orrego R, Palomo I, Andrews M, Arredondo MA. High levels of iron status and oxidative stress in patients with metabolic syndrome. Biol Trace Elem Res 2013; 151:1-8. [PMID: 23079936 DOI: 10.1007/s12011-012-9525-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/08/2012] [Indexed: 12/29/2022]
Abstract
Studies concerning oxidative stress (OxE) parameters have increased, mainly because of its important role in cardiovascular diseases and diabetes complications. The main objective of this study was to evaluate iron nutrition status and oxidative stress parameters in subjects that had developed metabolic syndrome (MetS). Subjects from the Research Program of Risk Factors for Cardiovascular Disease (n = 155) were studied (ages ranging from 45 to 65 years old) and classified according to the Adult Treatment Panel III criterion. A blood sample was taken after a 12-h fasting period, and basal glucose, insulin, thiobarbituric acid reactive substances (TBARS), oxidized LDL (oxLDL), heme oxygenase (HO) activity, lipid profile, and iron nutrition status were determined. Eighty-five subjects were classified as MetS, and 70 non-MetS. Individuals with MetS showed higher Fe storage (high levels of ferritin, total body iron and low transferrin receptor), oxLDL, TBARS, and homeostatic model assessment for insulin resistance levels. The MetS group showed high levels of oxidative stress parameters (HO activity, oxLDL, and TBARS). The presence of MetS showed an association with LDL oxidation risk (multiple lineal regression according to sex and age, p < 0.001). High levels of triglycerides (p < 0.001) and waist circumference (p < 0.012) were associated with oxLDL levels, as well as an association between TBARS and oxLDL with ferritin levels. Through logistic regression analyses, the highest quartile of ferritin was associated with a threefold risk of developing MetS compared to the lowest quartile; also, TBARS showed a 21-fold risk for the development of MetS. Finally, elevated levels of oxidative stress parameters such us oxLDL, TBARS, HO, and Fe storage were associated to MetS.
Collapse
Affiliation(s)
- Elba Leiva
- Research Program of Risk Factors for Cardiovascular Disease, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, Talca, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tvarijonaviciute A, Gutiérrez AM, Miller I, Razzazi-Fazeli E, Tecles F, Ceron JJ. A proteomic analysis of serum from dogs before and after a controlled weight-loss program. Domest Anim Endocrinol 2012; 43:271-7. [PMID: 22591953 DOI: 10.1016/j.domaniend.2012.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/07/2012] [Accepted: 04/13/2012] [Indexed: 11/19/2022]
Abstract
The objective of this study was to investigate how weight-loss program would alter the proteome of the serum of Beagle dogs. For this purpose, serum samples from 5 Beagle dogs, before and after weight loss, were analyzed using 2-dimensional electrophoresis. Protein profiles of all samples were obtained, divided into 2 classes (obese and lean), and compared using specific 2-dimensional software, giving a total of 144 spot matches. Statistical analysis revealed 3 spot matches whose expressions were modulated in response to weight loss: 2 protein spots were upregulated and 1 protein spot was downregulated in the obese state in comparison with the lean state of the dogs. Mass spectrometric identification of differentially regulated spots revealed that these protein spots corresponded to retinol-binding protein 4, clusterin precursor, and α-1 antitrypsin, respectively, which could be considered potential markers of obesity and obesity-related disease processes in dogs.
Collapse
Affiliation(s)
- A Tvarijonaviciute
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Espinardo, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Lewis EC. Expanding the clinical indications for α(1)-antitrypsin therapy. Mol Med 2012; 18:957-70. [PMID: 22634722 DOI: 10.2119/molmed.2011.00196] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 05/16/2012] [Indexed: 12/13/2022] Open
Abstract
α(1)-Antitrypsin (AAT) is a 52-kDa circulating serine protease inhibitor. Production of AAT by the liver maintains 0.9-1.75 mg/mL circulating levels. During acute-phase responses, circulating AAT levels increase more than fourfold. In individuals with one of several inherited mutations in AAT, low circulating levels increase the risk for lung, liver and pancreatic destructive diseases, particularly emphysema. These individuals are treated with lifelong weekly infusions of human plasma-derived AAT. An increasing amount of evidence appears to suggest that AAT possesses not only the ability to inhibit serine proteases, such as elastase and proteinase-3 (PR-3), but also to exert antiinflammatory and tissue-protective effects independent of protease inhibition. AAT modifies dendritic cell maturation and promotes T regulatory cell differentiation, induces interleukin (IL)-1 receptor antagonist and IL-10 release, protects various cell types from cell death, inhibits caspases-1 and -3 activity and inhibits IL-1 production and activity. Importantly, unlike classic immunosuppressants, AAT allows undeterred isolated T-lymphocyte responses. On the basis of preclinical and clinical studies, AAT therapy for nondeficient individuals may interfere with disease progression in type 1 and type 2 diabetes, acute myocardial infarction, rheumatoid arthritis, inflammatory bowel disease, cystic fibrosis, transplant rejection, graft versus host disease and multiple sclerosis. AAT also appears to be antibacterial and an inhibitor of viral infections, such as influenza and human immunodeficiency virus (HIV), and is currently evaluated in clinical trials for type 1 diabetes, cystic fibrosis and graft versus host disease. Thus, AAT therapy appears to have advanced from replacement therapy, to a safe and potential treatment for a broad spectrum of inflammatory and immune-mediated diseases.
Collapse
Affiliation(s)
- Eli C Lewis
- Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
34
|
Inouye M, Ripatti S, Kettunen J, Lyytikäinen LP, Oksala N, Laurila PP, Kangas AJ, Soininen P, Savolainen MJ, Viikari J, Kähönen M, Perola M, Salomaa V, Raitakari O, Lehtimäki T, Taskinen MR, Järvelin MR, Ala-Korpela M, Palotie A, de Bakker PIW. Novel Loci for metabolic networks and multi-tissue expression studies reveal genes for atherosclerosis. PLoS Genet 2012; 8:e1002907. [PMID: 22916037 PMCID: PMC3420921 DOI: 10.1371/journal.pgen.1002907] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/01/2012] [Indexed: 12/16/2022] Open
Abstract
Association testing of multiple correlated phenotypes offers better power than univariate analysis of single traits. We analyzed 6,600 individuals from two population-based cohorts with both genome-wide SNP data and serum metabolomic profiles. From the observed correlation structure of 130 metabolites measured by nuclear magnetic resonance, we identified 11 metabolic networks and performed a multivariate genome-wide association analysis. We identified 34 genomic loci at genome-wide significance, of which 7 are novel. In comparison to univariate tests, multivariate association analysis identified nearly twice as many significant associations in total. Multi-tissue gene expression studies identified variants in our top loci, SERPINA1 and AQP9, as eQTLs and showed that SERPINA1 and AQP9 expression in human blood was associated with metabolites from their corresponding metabolic networks. Finally, liver expression of AQP9 was associated with atherosclerotic lesion area in mice, and in human arterial tissue both SERPINA1 and AQP9 were shown to be upregulated (6.3-fold and 4.6-fold, respectively) in atherosclerotic plaques. Our study illustrates the power of multi-phenotype GWAS and highlights candidate genes for atherosclerosis.
Collapse
Affiliation(s)
- Michael Inouye
- Medical Systems Biology, Departments of Pathology and of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wada H, Ura S, Satoh-Asahara N, Kitaoka S, Mashiba S, Akao M, Abe M, Ono K, Morimoto T, Fujita M, Shimatsu A, Takahashi Y, Hasegawa K. α1-Antitrypsin Low-Density-Lipoprotein Serves as a Marker of Smoking-Specific Oxidative Stress. J Atheroscler Thromb 2012; 19:47-58. [DOI: 10.5551/jat.9035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
36
|
Kotani K, Yamada T, Taniguchi N. The association between adiponectin, HDL-cholesterol and α1-antitrypsin-LDL in female subjects without metabolic syndrome. Lipids Health Dis 2010; 9:147. [PMID: 21190590 PMCID: PMC3018436 DOI: 10.1186/1476-511x-9-147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 12/30/2010] [Indexed: 11/10/2022] Open
Abstract
Background Oxidized low-density lipoprotein (LDL) may act as an atheroprotective (anti-atherosclerotic) agent under some conditions. While the α1-antitrypsin (AT)-LDL complex is considered a type of oxidized LDL, its clinical relevance remains unknown. The aim of the present study was to investigate the association between AT-LDL and anti-atherosclerotic variables such as HDL-cholesterol and adiponectin in subjects with and without metabolic syndrome (MetS). Methods In asymptomatic females (n = 194; mean age, 54 years) who were divided into non-MetS (n = 108) and MetS groups (n = 86), the fasting levels of serum AT-LDL, adiponectin and glucose/lipid panels were measured, in addition to body mass index (BMI) and blood pressure. Results The MetS group showed significantly higher BMI, blood pressure, glucose and triglyceride levels as well as significantly lower levels of HDL-cholesterol and adiponectin than the non-MetS group. A multivariate-adjusted analysis revealed that in the non-MetS group, AT-LDL was significantly, independently and positively correlated with adiponectin (β = 0.297, P < 0.05), along with HDL-cholesterol (β = 0.217, P < 0.05). In the MetS group, AT-LDL was significantly, independently and positively correlated with LDL-cholesterol only (β = 0.342, P < 0.05). Conclusions These data suggest that AT-LDL may exert anti-atherosclerotic effects in female subjects without MetS. More studies are required to clarify the clinical roles of AT-LDL in relation to the pathophysiology of MetS.
Collapse
Affiliation(s)
- Kazuhiko Kotani
- Department of Clinical Laboratory Medicine, Jichi Medical University, Tochigi, Japan.
| | | | | |
Collapse
|
37
|
Affiliation(s)
- Ashraf G. Madian
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Fred E. Regnier
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
38
|
Highly purified eicosapentaenoic acid reduces cardio-ankle vascular index in association with decreased serum amyloid A-LDL in metabolic syndrome. Hypertens Res 2009; 32:1004-8. [PMID: 19763135 DOI: 10.1038/hr.2009.145] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A recent clinical trial revealed that highly purified eicosapentaenoic acid (EPA), an n-3 polyunsaturated fatty acid, reduces the incidence of cardiovascular diseases. However, the detailed mechanism underlying the anti-atherogenic effect of EPA is still poorly understood. In this study, we examined the effect of EPA on cardio-ankle vascular index (CAVI), a new index of arterial stiffness that is less influenced by blood pressure (BP), as well as on serum amyloid A-low-density lipoprotein (SAA-LDL), an oxidized LDL (oxLDL), in the metabolic syndrome. Ninety-two obese Japanese subjects with metabolic syndromes were randomly divided into two groups (n=46): the EPA-treated group (1.8 g administered daily for 3 months) and the control group. Measurements were taken to assess the changes in glucose-lipid metabolism, SAA-LDL, C-reactive protein (CRP), leptin, adiponectin and pulse wave velocity (PWV), and CAVI. EPA treatment significantly reduced the levels of immunoreactive insulin, triglycerides, SAA-LDL, CRP, PWV and CAVI and increased the levels of adiponectin relative to the control group for 3 months (P<0.05). Stepwise multivariate linear regression analysis revealed that the only significant determinant for a decrease in CAVI by EPA is a reduction in SAA-LDL (P<0.05). Moreover, the EPA-induced reduction of SAA-LDL was only significantly correlated with a decrease in total cholesterol and an increase in adiponectin (P<0.05). This study is the first demonstration that EPA improves arterial stiffness and is less influenced by BP, possibly through the suppression of SAA-LDL, thereby leading to a reduction in the frequency of cardiovascular disease development in metabolic syndrome.
Collapse
|
39
|
Ogasawara K, Mashiba S, Hashimoto H, Kojima S, Matsuno S, Takeya M, Uchida K, Yajima J. Low-density lipoprotein (LDL), which includes apolipoprotein A-I (apoAI-LDL) as a novel marker of coronary artery disease. Clin Chim Acta 2008; 397:42-7. [DOI: 10.1016/j.cca.2008.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 07/11/2008] [Accepted: 07/14/2008] [Indexed: 10/21/2022]
|
40
|
Kotani K, Satoh N, Kato Y, Araki R, Koyama K, Okajima T, Tanabe M, Oishi M, Yamakage H, Yamada K, Hattori M, Shimatsu A. A novel oxidized low-density lipoprotein marker, serum amyloid A-LDL, is associated with obesity and the metabolic syndrome. Atherosclerosis 2008; 204:526-31. [PMID: 19007930 DOI: 10.1016/j.atherosclerosis.2008.09.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 09/16/2008] [Accepted: 09/17/2008] [Indexed: 11/24/2022]
Abstract
BACKGROUND The putative association between the novel oxidized low-density lipoprotein markers, serum amyloid A-LDL (SAA-LDL) and alpha1-antitrypsin-LDL (AT-LDL), and obesity and the metabolic syndrome (MetS) has not been previously studied. In the present report, we investigated the levels of SAA-LDL and AT-LDL in relation to the components of the MetS. We also assessed the effect of weight reduction therapy on serum SAA-LDL and AT-LDL levels among obese subjects. METHODS The study population included 421 obese Japanese outpatients (185 men and 236 women, mean age: 51.1 years) enrolled in the multicenter Japan Obesity and Metabolic Syndrome Study (JOMS). The novel oxidized low-density lipoprotein markers, serum SAA-LDL and AT-LDL, were measured in all participants. RESULTS Circulating SAA-LDL levels were independently associated with the presence and the number of components of the MetS. SAA-LDL levels were also significantly and independently correlated with high-sensitivity C-reactive protein. Notably, successful weight reduction resulted in a significant decrease in circulating SAA-LDL concentrations. Levels of AT-LDL were not associated with the MetS. CONCLUSIONS We documented, for the first time, that serum SAA-LDL levels correlate positively with the number of components of the MetS and weight reduction. Whether SAA-LDL may be involved in the pathophysiology of MetS and atherosclerosis deserves further investigation.
Collapse
Affiliation(s)
- Kazuhiko Kotani
- Division of Preventive Medicine, Clinical Research Institute for Endocrine Metabolic Diseases, National Hospital Organization Kyoto Medical Center, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Summers FA, Morgan PE, Davies MJ, Hawkins CL. Identification of Plasma Proteins That Are Susceptible to Thiol Oxidation by Hypochlorous Acid and N-Chloramines. Chem Res Toxicol 2008; 21:1832-40. [DOI: 10.1021/tx8001719] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fiona A. Summers
- The Heart Research Institute, 114 Pyrmont Bridge Road, Camperdown, Sydney, NSW 2050, Australia
| | - Philip E. Morgan
- The Heart Research Institute, 114 Pyrmont Bridge Road, Camperdown, Sydney, NSW 2050, Australia
| | - Michael J. Davies
- The Heart Research Institute, 114 Pyrmont Bridge Road, Camperdown, Sydney, NSW 2050, Australia
| | - Clare L. Hawkins
- The Heart Research Institute, 114 Pyrmont Bridge Road, Camperdown, Sydney, NSW 2050, Australia
| |
Collapse
|
42
|
Schmechel DE. Art, alpha-1-antitrypsin polymorphisms and intense creative energy: Blessing or curse? Neurotoxicology 2007; 28:899-914. [PMID: 17659342 DOI: 10.1016/j.neuro.2007.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 05/21/2007] [Accepted: 05/21/2007] [Indexed: 12/30/2022]
Abstract
Persons heterozygous for Z, S and rare alpha-1-antitrypsin (AAT, SERPIN1A) polymorphisms (ca. 9% of population) are often considered 'silent' carriers with increased vulnerability to environmentally modulated liver and lung disease. They may have significantly more anxiety and bipolar spectrum disorders, nutritional compromise, and white matter disease [Schmechel DE, Browndyke J, Ghio A. Strategies for the dissection of genetic-environmental interactions in neurodegenerative disorders. Neurotoxicology 2006;27:637-57]. Given association of art and mood disorders, we examined occupation and artistic vocation from this same series. One thousand five hundred and thirty-seven consecutive persons aged 16-90 years old received comprehensive work-up including testing for AAT 'phenotype' and level, nutritional factors, and inflammatory, iron and copper indices. Occupations were grouped by Bureau of Labor Standards classification and information gathered on artistic activities. Proportion of reactive airway disease, obstructive pulmonary disease, and pre-existing anxiety disorder or bipolar disorder were significantly increased in persons carrying AAT non-M polymorphisms compared to normal MM genotype (respectively, 10, 20, 21, and 33% compared to 8, 12, 11, and 9%; contingency table, pulmonary: chi2 37, p=0.0001; affective disorder: chi2=171, p=0.0001). In persons with artistic avocation (n=189) or occupation (n=57), AAT non-M polymorphisms are significantly increased (respectively, proportions of 44 and 40% compared to background rate of 9%; contingency table, avocation: chi2=172, p=0.0001; occupation: chi2=57, p=0.0007). Artistic ability and 'anxiety/bipolar spectrum' mood disorders may represent phenotypic attributes that had selective advantage during recent human evolution, an 'intensive creative energy' (ICE) behavioral phenotype. Background proportion of ICE of 7% consists of 49 of 1312 persons with AAT MM genotype (4%), and 58 of 225 persons with non-MM genotypes (26%) (contingency table, chi2=222, p=0.0001). Penetrance of ICE increases in genotypes with lower AAT levels: PiMS, 18%; PiMZ, 44%; PiSS and PiZZ, 100% (five cases). At all ages, persons with non-MM genotype had significantly higher proportion of thiamine deficiency (50% in PiMZ), reactive hypoglycemia (20% in PiMZ), and possibly fatty liver (thiamine: chi2=28, p=0.0001; hypoglycemia: chi2=92, p=0.0001). In older persons, PiMZ genotype had significantly increased proportion (46%) of brain MRI T2 white matter abnormalities (chi2=49, p=0.003). Persons with ICE and MM genotype showed increased prevalence of pulmonary disorders and same signature as S and Z carriers and homozygotes (see above). Z polymorphism was associated with delayed age of onset (average 7 years) for persons with toxic environmental or occupational exposures (log rank, p=0.0001) and more stable cognitive change in persons with neurodegenerative illness (p<0.05). At all ages, ICE phenotype and Z polymorphism were associated with altered copper homeostasis with low or absent non-ceruloplasmin bound copper (p<0.05). AAT polymorphisms which affect iron, lipid and copper metabolism may affect early events in nervous system development, function and response to environmental exposures. AAT may also be a 'switch' for copper metabolism and low 'free' copper would be theorized to provide protection for lipid oxidation and favorably affect beta-amyloid and other aggregation, but possibly alter early 'critical' period of CNS development. AAT polymorphisms may define an important and treatable subset of persons presenting with CNS disorders. This new proposed phenotype for AAT transcends classic pattern of strictly liver and lung disease, and should be considered for proper evaluation and management of patients presenting with classic AAT-related disorders, affective disorders, persons with ICE, white matter disease or multisystem disorders of memory.
Collapse
Affiliation(s)
- Donald Everett Schmechel
- Department of Medicine, Duke University Medical Center, Medical Director, The Falls Neurology and Memory Center, 4355 Hickory Boulevard (US 321), Granite Falls, NC 28630, United States.
| |
Collapse
|
43
|
Ueda M, Hayase Y, Mashiba S. Establishment and evaluation of 2 monoclonal antibodies against oxidized apolipoprotein A-I (apoA-I) and its application to determine blood oxidized apoA-I levels. Clin Chim Acta 2007; 378:105-11. [PMID: 17174291 DOI: 10.1016/j.cca.2006.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 10/31/2006] [Accepted: 11/01/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Apolipoprotein A-I (apoA-I) is the major lipoprotein component of high-density lipoprotein(HDL), and plays an important role in reverse cholesterol transport. Its function is known to be influenced by oxidation. METHODS Using H2O2-or chloramine T-oxidized apoA-I as antigen, we prepared 2 kinds of monoclonal antibodies, and established an ELISA system for the measurement of oxidized apoA-I. RESULTS The 2 monoclonal antibodies obtained, 7D3 and 98A7, exhibited different reactivity characteristics. The serum level of oxidized apoA-I was higher in patients with either inflammatory disease or diabetes than in healthy individuals, and suggested a diversity of oxidized apoA-I. CONCLUSION The 2 monoclonal antibodies are useful for the determination of oxidized apoA-I and study of diverse oxidized HDLs.
Collapse
Affiliation(s)
- Masashi Ueda
- Ikagaku Co. Ltd., Furukawacho, 328 Hazukashi Fushimi-ku, Kyoto 612-8486, Japan.
| | | | | |
Collapse
|
44
|
Schmechel DE, Browndyke J, Ghio A. Strategies for dissecting genetic-environmental interactions in neurodegenerative disorders. Neurotoxicology 2006; 27:637-57. [PMID: 16870258 DOI: 10.1016/j.neuro.2006.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 05/18/2006] [Accepted: 05/20/2006] [Indexed: 01/22/2023]
Abstract
Complex genetic and environmental interactions contribute to abnormal aging and neurodegenerative disorders. We present information from a series of 1136 consecutive patients presenting with cognitive disorders and show possible significant contribution of toxic environmental and occupational exposures to pathological aging (21% of patients) and interactions of these exposures with common polymorphisms that affect cell injury and inflammation. Such exposures may lower age of onset to same degree as APOE4/4. Common polymorphisms in apolipoprotein E (APOE), hemochromatosis gene (Hfe) and alpha-1-antitrypsin (AAT) are present in up to 40+% of patients and may partially account for differences in clinical syndrome, age of onset and rate of progression. Strategies for the study of these disorders must also consider the role and treatment of common co-morbid illnesses such as alcohol use, nutritional deficiencies, sleep disorders, and pre-existing affective disorder. APOE, Hfe, and AAT genes are expressed in liver tissue and in macrophages and are involved in the host innate immune response to stress, inflammation and infections. Hfe and AAT are involved in iron metabolism and their polymorphisms may contribute to hepatosteatosis and altered homeostasis of lipids (role of APOE), iron, and trace minerals. Some of these responses may be adaptive. Hfe and AAT modulate the apparent effects of toxic exposures on age of onset and progression rate. C282Y polymorphism paradoxically reverses APOE4/4 effect on age of onset. S and Z AAT polymorphisms may attenuate earlier age of onset in persons with toxic or environmental exposure. AAT S or Z polymorphisms are present in 25% of persons with anxiety disorder and 42% of persons with bipolar disorder compared to 10% of control group without pre-existing affective disorder. Common genetic polymorphisms that affect the response to inflammation and cell injury provide a beginning strategy for dissecting neurodegenerative disorders. The effects of APOE, Hfe, and AAT on glucose, lipid, iron and trace mineral homeostasis may affect normal development and aging of the nervous system in addition to their effects on outcome of toxic environmental and occupational exposures and susceptibility and outcome of neurodegenerative illnesses.
Collapse
Affiliation(s)
- Donald E Schmechel
- Joseph and Kathleen Bryan Alzheimer Disease Research Center, Department of Medicine (Neurology), Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
45
|
Kim CH, Zou Y, Kim DH, Kim ND, Yu BP, Chung HY. Proteomic Analysis of Nitrated and 4-Hydroxy-2-Nonenal-Modified Serum Proteins During Aging. J Gerontol A Biol Sci Med Sci 2006; 61:332-8. [PMID: 16611698 DOI: 10.1093/gerona/61.4.332] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using proteomic techniques, we investigated peroxynitrite (ONOO-) and 4-hydroxy-2-nonenal (HNE) modified serum proteins from young and old Fischer 344 rats. Two-dimensional gel electrophoresis/western blot analysis of nitrotyrosine and HNE-histidine revealed that serum proteins were differentially modified by ONOO- and HNE. Among them, 16 of the modified proteins, identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), are involved in blood coagulation, lipid transport, blood pressure regulation, and protease inhibition. Furthermore, nitration and HNE adduction were found to increase with age, lending support to the oxidative stress hypothesis of aging. Our data showed that proteomic techniques can be valuable tools in the study of protein profiling modifications during aging.
Collapse
Affiliation(s)
- Chul Hong Kim
- Research Institute of Genetic Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735, Korea
| | | | | | | | | | | |
Collapse
|
46
|
Karlsson H, Leanderson P, Tagesson C, Lindahl M. Lipoproteomics II: mapping of proteins in high-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry. Proteomics 2005; 5:1431-45. [PMID: 15761960 DOI: 10.1002/pmic.200401010] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
High-density lipoprotein (HDL) is the most abundant lipoprotein particle in the plasma and a negative risk factor of atherosclerosis. By using a proteomic approach it is possible to obtain detailed information about its protein content and protein modifications that may give new information about the physiological roles of HDL. In this study the two subfractions; HDL(2) and HDL(3), were isolated by two-step discontinuous density-gradient ultracentrifugation and the proteins were separated with two-dimensional gel electrophoresis and identified with peptide mass fingerprinting, using matrix-assisted laser desorption/ionisation time of flight mass spectrometry. Identified proteins in HDL were: the dominating apo A-I as six isoforms, four of them with a glycosylation pattern and one of them with retained propeptide, apolipoprotein (apo) A-II, apo A-IV, apo C-I, apo C-II, apo C-III (two isoforms), apo E (five isoforms), the recently discovered apo M (two isoforms), serum amyloid A (two isoforms) and serum amyloid A-IV (six isoforms). Furthermore, alpha-1-antitrypsin was identified in HDL for the first time. Additionally, salivary alpha-amylase was identified as two isoforms in HDL(2), and apo L and a glycosylated apo A-II were identified in HDL(3). Besides confirming the presence of different apolipoproteins, this study indicates new patterns of glycosylated apo A-I and apo A-II. Furthermore, the study reveals new proteins in HDL; alpha-1-antitrypsin and salivary alpha-amylase. Further investigations about these proteins may give new insight into the functional role of HDL in coronary artery diseases.
Collapse
Affiliation(s)
- Helen Karlsson
- Division of Occupational and Environmental Medicine, Department of Molecular and Clinical Medicine, Linköping University, Linköping, Sweden
| | | | | | | |
Collapse
|
47
|
Ogasawara K, Mashiba S, Wada Y, Sahara M, Uchida K, Aizawa T, Kodama T. A serum amyloid A and LDL complex as a new prognostic marker in stable coronary artery disease. Atherosclerosis 2004; 174:349-56. [PMID: 15136066 DOI: 10.1016/j.atherosclerosis.2004.01.030] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Accepted: 01/07/2004] [Indexed: 12/22/2022]
Abstract
BACKGROUND Although some reports have indicated that acute phase proteins such as C-reactive protein (CRP) and serum amyloid A (SAA) can predict the prognosis in patients with acute coronary syndrome, the value of these markers in patients with stable coronary artery disease (CAD) still remains obscure. Therefore, our aim was to determine the prognostic value of inflammatory markers in patients with stable coronary artery disease. METHODS AND RESULTS We conducted a prospective cohort study in 140 consecutive patients with stable coronary artery disease who had at least one coronary stenosis more than 50% in diameter seen on diagnostic coronary angiography (CAG). We determined serum levels of the SAA/LDL complex as a new marker in addition to CRP and SAA. Serum levels of the SAA/LDL complex were measured by a sandwich enzyme-linked immunosorbent assay (ELISA). End-points were defined as cardiac death, myocardial infarction, cerebral infarction, and coronary revascularization. End-point events occurred in 21 patients (2 death from myocardial infarction, 2 cerebral infarction, and 17 revascularization). Age (year) (OR = 1.14, CI: 1.05-1.25), diabetes mellitus (OR = 3.50, CI: 1.08-11.40), triglyceride (10mg/dl) (OR = 1.12, CI: 1.01-1.23) and SAA/LDL complex (10 microg/ml) (OR = 2.32, CI: 1.05-4.70) were independently related to the events. A reconstitution experiment suggested that the SAA/LDL complex is derived by oxidative interaction between SAA and lipoproteins. CONCLUSIONS The SAA/LDL complex reflects intravascular inflammation directly and can be a new marker more sensitive than CRP or SAA for prediction of prognosis in patients with stable coronary artery disease.
Collapse
Affiliation(s)
- Ken Ogasawara
- The Cardiovascular Institute, Roppongi 7-3-10 Minato-ku, Tokyo 106-0032, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Janciauskiene S, Larsson S, Larsson P, Virtala R, Jansson L, Stevens T. Inhibition of lipopolysaccharide-mediated human monocyte activation, in vitro, by α1-antitrypsin. Biochem Biophys Res Commun 2004; 321:592-600. [PMID: 15358147 DOI: 10.1016/j.bbrc.2004.06.123] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Indexed: 11/24/2022]
Abstract
alpha1-Antitrypsin (AAT) is a major circulating and tissue inhibitor of serine proteinases. As such AAT is thought to play an important role in limiting host tissue injury at sites of inflammation. There is now increasing evidence, however, that AAT may exhibit biological activity independent of its protease inhibitor function. In this study we compared the effects of native (inhibitory) and modified (non-inhibitory), e.g., polymerised and oxidised forms of AAT on LPS-induced human monocyte activation, in vitro. We found that native AAT inhibited LPS-stimulated synthesis and release of TNFalpha and IL-1beta mRNA and protein, respectively, but enhanced the release of the anti-inflammatory cytokine, IL-10. Similarly, polymerised and oxidised forms of AAT inhibited LPS-stimulated IL-1beta and TNFalpha. The effects of AATs were observed whether added prior to or following removal of LPS, suggesting that sequestration of agonist was unlikely to explain their biological effects. Furthermore, studies with neutralising antibodies indicated that generation of IL-10 was unlikely to be the mechanism responsible for the inhibitory effects of AATs. Thus, our data demonstrate for the first time that AAT exhibits anti-inflammatory activity in vitro that is unrelated to inhibition of serine proteases.
Collapse
|