1
|
Volk LM, Bruun JE, Trautmann S, Thomas D, Schwalm S, Pfeilschifter J, Zu Heringdorf DM. A role for plasma membrane Ca 2+ ATPases in regulation of cellular Ca 2+ homeostasis by sphingosine kinase-1. Pflugers Arch 2024; 476:1895-1911. [PMID: 39392480 PMCID: PMC11582158 DOI: 10.1007/s00424-024-03027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Sphingosine-1-phosphate (S1P) is a ubiquitous lipid mediator, acting via specific G-protein-coupled receptors (GPCR) and intracellularly. Previous work has shown that deletion of S1P lyase caused a chronic elevation of cytosolic [Ca2+]i and enhanced Ca2+ storage in mouse embryonic fibroblasts. Here, we studied the role of sphingosine kinase (SphK)-1 in Ca2+ signaling, using two independently generated EA.hy926 cell lines with stable knockdown of SphK1 (SphK1-KD1/2). Resting [Ca2+]i and thapsigargin-induced [Ca2+]i increases were reduced in both SphK1-KD1 and -KD2 cells. Agonist-induced [Ca2+]i increases, measured in SphK1-KD1, were blunted. In the absence of extracellular Ca2+, thapsigargin-induced [Ca2+]i increases declined rapidly, indicating enhanced removal of Ca2+ from the cytosol. In agreement, plasma membrane Ca2+ ATPase (PMCA)-1 and -4 and their auxiliary subunit, basigin, were strongly upregulated. Activation of S1P-GPCR by specific agonists or extracellular S1P did not rescue the effects of SphK1 knockdown, indicating that S1P-GPCR were not involved. Lipid measurements indicated that not only S1P but also dihydro-sphingosine, ceramides, and lactosylceramides were markedly depleted in SphK1-KD2 cells. SphK2 and S1P lyase were upregulated, suggesting enhanced flux via the sphingolipid degradation pathway. Finally, histone acetylation was enhanced in SphK1-KD2 cells, and the histone deacetylase inhibitor, vorinostat, induced upregulation of PMCA1 and basigin on mRNA and protein levels in EA.hy926 cells. These data show for the first time a transcriptional regulation of PMCA1 and basigin by S1P metabolism. It is concluded that SphK1 knockdown in EA.hy926 cells caused long-term alterations in cellular Ca2+ homeostasis by upregulating PMCA via increased histone acetylation.
Collapse
Affiliation(s)
- Luisa Michelle Volk
- Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany
| | - Jan-Erik Bruun
- Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany
| | - Sandra Trautmann
- Institut Für Klinische Pharmakologie, Goethe-Universität Frankfurt, Universitätsklinikum, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Dominique Thomas
- Institut Für Klinische Pharmakologie, Goethe-Universität Frankfurt, Universitätsklinikum, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Stephanie Schwalm
- Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Javkhlant A, Toyama K, Abe Y, Spin JM, Mogi M. Lack of ATP2B1 in CD4+ T Cells Causes Colitis. Inflamm Bowel Dis 2024; 30:1852-1864. [PMID: 38507609 DOI: 10.1093/ibd/izae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 03/22/2024]
Abstract
BACKGROUND The ATP2B1 gene encodes for a calcium pump, which plays a role in removing Ca2+ from cells and maintaining intracellular Ca2+ homeostasis. Reduction of the intracellular Ca2+ concentration in CD4+ T cells is thought to reduce the severity of colitis, while elevation of Ca2+ in CD4+ T cells induces T cell hyperactivity. Our aim was to clarify the role of ATP2B1 in CD4+ T cells and in inflammatory bowel disease development. METHODS A murine CD4+ T cell-specific knockout (KO) of ATP2B1 was created using a Cre-loxP system. CD4+ T cells were isolated from thymus, spleen, and blood using fluorescence-activated cell sorting. To quantify messenger RNA levels, quantitative real-time polymerase chain reaction was performed. RESULTS Although the percentages of CD4+ T cells in both KO mouse spleen and blood decreased compared with those of the control samples, both T-bet (a T helper 1 [Th1] activity marker) and GATA3 (a Th2 activity marker) expression levels were further increased in KO mouse blood CD4+ T cells (vs control blood). Diarrhea and colonic wall thickening (with mucosal changes, including crypt distortion) were seen in KO mice but not in control mice. Prior to diarrhea onset, the KO mouse colon length was already noted to be shorter, and the KO mouse stool water and lipid content were higher than that of the control mice. Tumor necrosis factor α and gp91 expressions were increased in KO mouse colon. CONCLUSIONS Lack of ATP2B1 in CD4+ T cells leads to Th1 and Th2 activation, which contributes to colitis via elevation of tumor necrosis factor α and oxidative stress.
Collapse
Affiliation(s)
- Amarsanaa Javkhlant
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Kensuke Toyama
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yasunori Abe
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Joshua M Spin
- VA Palo Alto Health Care System, Institute for Research, Palo Alto, CA, United States
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Masaki Mogi
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
3
|
Kobayashi Y, Yatsu K, Haruna A, Kawano R, Ozawa M, Haze T, Komiya S, Suzuki S, Ohki Y, Fujiwara A, Saka S, Hirawa N, Toya Y, Tamura K. ATP2B1 gene polymorphisms associated with resistant hypertension in the Japanese population. J Clin Hypertens (Greenwich) 2024; 26:355-362. [PMID: 38430457 PMCID: PMC11007809 DOI: 10.1111/jch.14785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 03/03/2024]
Abstract
Single-nucleotide polymorphisms (SNP) of ATP2B1 gene are associated with essential hypertension but their association with resistant hypertension (RHT) remains unexplored. The authors examined the relationship between ATP2B1 SNPs and RHT by genotyping 12 SNPs in ATP2B1 gene of 1124 Japanese individuals with lifestyle-related diseases. Patients with RHT had inadequate blood pressure (BP) control using three antihypertensive drugs or used ≥4 antihypertensive drugs. Patients with controlled hypertension had BP controlled using ≤3 antihypertensive drugs. The association between each SNP and RHT was analyzed by logistic regression. The final cohort had 888 (79.0%) and 43 (3.8%) patients with controlled hypertension and RHT, respectively. Compared with patients homozygous for the minor allele of each SNP in ATP2B1, a significantly higher number of patients carrying the major allele at 10 SNPs exhibited RHT (most significant at rs1401982: 5.8% vs. 0.8%, p = .014; least significant at rs11105378: 5.7% vs. 0.9%, p = .035; most nonsignificant at rs12817819: 5.1% vs. 10%, p = .413). After multivariate adjustment for age, sex, systolic BP, and other confounders, the association remained significant for rs2681472 and rs1401982 (OR: 7.60, p < .05 and OR: 7.62, p = .049, respectively). Additionally, rs2681472 and rs1401982 were in linkage disequilibrium with rs11105378. This study identified two ATP2B1 SNPs associated with RHT in the Japanese population. rs1401982 was most closely associated with RHT, and major allele carriers of rs1401982 required significantly more antihypertensive medications. Analysis of ATP2B1 SNPs in patients with hypertension can help in early prediction of RHT and identification of high-risk patients who are more likely to require more antihypertensive medications.
Collapse
Affiliation(s)
- Yusuke Kobayashi
- Center for Novel and Exploratory Clinical Trials (Y‐NEXT)Yokohama City UniversityYokohamaJapan
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | | | - Aiko Haruna
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Rina Kawano
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Moe Ozawa
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
- Department of Nephrology and HypertensionSaiseikai Yokohamashi Nanbu HospitalYokohamaJapan
| | - Tatsuya Haze
- Center for Novel and Exploratory Clinical Trials (Y‐NEXT)Yokohama City UniversityYokohamaJapan
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Shiro Komiya
- Department of Nephrology and HypertensionSaiseikai Yokohamashi Nanbu HospitalYokohamaJapan
| | - Shota Suzuki
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Yuki Ohki
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Akira Fujiwara
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Sanae Saka
- Department of Nephrology and HypertensionSaiseikai Yokohamashi Nanbu HospitalYokohamaJapan
| | - Nobuhito Hirawa
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Yoshiyuki Toya
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| |
Collapse
|
4
|
Stein AP, Harder J, Holmes HR, Merz CNB, Pepine CJ, Keeley EC. Single Nucleotide Polymorphisms in Coronary Microvascular Dysfunction. J Am Heart Assoc 2024; 13:e032137. [PMID: 38348798 PMCID: PMC11010085 DOI: 10.1161/jaha.123.032137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
Coronary microvascular dysfunction is an underdiagnosed pathologic process that is associated with adverse clinical outcomes. There are data to suggest that coronary microvascular dysfunction, in some cases, may be genetically determined. We present an updated review of single nucleotide polymorphisms in coronary microvascular dysfunction.
Collapse
Affiliation(s)
| | | | | | - C. Noel Bairey Merz
- Barbra Streisand Women’s Heart CenterSmidt Heart Institute, Cedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Carl J. Pepine
- Department of MedicineUniversity of FloridaGainesvilleFLUSA
- Division of Cardiovascular MedicineUniversity of FloridaGainesvilleFLUSA
| | - Ellen C. Keeley
- Department of MedicineUniversity of FloridaGainesvilleFLUSA
- Division of Cardiovascular MedicineUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
5
|
Yap P, Riley LG, Kakadia PM, Bohlander SK, Curran B, Rahimi MJ, Alburaiky S, Hayes I, Oppermann H, Print C, Cooper ST, Le Quesne Stabej P. Biallelic ATP2B1 variants as a likely cause of a novel neurodevelopmental malformation syndrome with primary hypoparathyroidism. Eur J Hum Genet 2024; 32:125-129. [PMID: 37926713 PMCID: PMC10772071 DOI: 10.1038/s41431-023-01484-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/22/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
ATP2B1 encodes plasma membrane calcium-transporting-ATPase1 and plays an essential role in maintaining intracellular calcium homeostasis that regulates diverse signaling pathways. Heterozygous de novo missense and truncating ATP2B1 variants are associated with a neurodevelopmental phenotype of variable expressivity. We describe a proband with distinctive craniofacial gestalt, Pierre-Robin sequence, neurodevelopmental and growth deficit, periventricular heterotopia, brachymesophalangy, cutaneous syndactyly, and persistent hypocalcemia from primary hypoparathyroidism. Proband-parent trio exome sequencing identified compound heterozygous ATP2B1 variants: a maternally inherited splice-site (c.3060+2 T > G) and paternally inherited missense c.2938 G > T; p.(Val980Leu). Reverse-transcription-PCR on the proband's fibroblast-derived mRNA showed aberrantly spliced ATP2B1 transcripts targeted for nonsense-mediated decay. All correctly-spliced ATP2B1 mRNA encoding p.(Val980Leu) functionally causes decreased cellular Ca2+ extrusion. Immunoblotting showed reduced fibroblast ATP2B1. We conclude that biallelic ATP2B1 variants are the likely cause of the proband's phenotype, strengthening the association of ATP2B1 as a neurodevelopmental gene and expanding the phenotypic characterization of a biallelic loss-of-function genotype.
Collapse
Affiliation(s)
- Patrick Yap
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.
- Genetic Health Service New Zealand - Northern hub, Auckland, New Zealand.
| | - Lisa G Riley
- Rare Diseases Functional Genomics, Kids Research, The Children's Hospital at Westmead and The Children's Medical Research Institute, Sydney, NSW, 2145, Australia
- Specialty of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Purvi M Kakadia
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Stefan K Bohlander
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Ben Curran
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Meer Jacob Rahimi
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, 04103, Germany
| | - Salam Alburaiky
- Genetic Health Service New Zealand - Northern hub, Auckland, New Zealand
| | - Ian Hayes
- Genetic Health Service New Zealand - Northern hub, Auckland, New Zealand
| | - Henry Oppermann
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, 04103, Germany
| | - Cristin Print
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Sandra T Cooper
- Specialty of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Sydney, NSW, 2145, Australia
- The Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Polona Le Quesne Stabej
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Oh BC. Phosphoinositides and intracellular calcium signaling: novel insights into phosphoinositides and calcium coupling as negative regulators of cellular signaling. Exp Mol Med 2023; 55:1702-1712. [PMID: 37524877 PMCID: PMC10474053 DOI: 10.1038/s12276-023-01067-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 08/02/2023] Open
Abstract
Intracellular calcium (Ca2+) and phosphoinositides (PIPs) are crucial for regulating cellular activities such as metabolism and cell survival. Cells maintain precise intracellular Ca2+ and PIP levels via the actions of a complex system of Ca2+ channels, transporters, Ca2+ ATPases, and signaling effectors, including specific lipid kinases, phosphatases, and phospholipases. Recent research has shed light on the complex interplay between Ca2+ and PIP signaling, suggesting that elevated intracellular Ca2+ levels negatively regulate PIP signaling by inhibiting the membrane localization of PIP-binding proteins carrying specific domains, such as the pleckstrin homology (PH) and Ca2+-independent C2 domains. This dysregulation is often associated with cancer and metabolic diseases. PIPs recruit various proteins with PH domains to the plasma membrane in response to growth hormones, which activate signaling pathways regulating metabolism, cell survival, and growth. However, abnormal PIP signaling in cancer cells triggers consistent membrane localization and activation of PIP-binding proteins. In the context of obesity, an excessive intracellular Ca2+ level prevents the membrane localization of the PIP-binding proteins AKT, IRS1, and PLCδ via Ca2+-PIPs, contributing to insulin resistance and other metabolic diseases. Furthermore, an excessive intracellular Ca2+ level can cause functional defects in subcellular organelles such as the endoplasmic reticulum (ER), lysosomes, and mitochondria, causing metabolic diseases. This review explores how intracellular Ca2+ overload negatively regulates the membrane localization of PIP-binding proteins.
Collapse
Affiliation(s)
- Byung-Chul Oh
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon College of Medicine, Incheon, 21999, Republic of Korea.
| |
Collapse
|
7
|
Adlam D, Berrandou TE, Georges A, Nelson CP, Giannoulatou E, Henry J, Ma L, Blencowe M, Turley TN, Yang ML, Chopade S, Finan C, Braund PS, Sadeg-Sayoud I, Iismaa SE, Kosel ML, Zhou X, Hamby SE, Cheng J, Liu L, Tarr I, Muller DWM, d'Escamard V, King A, Brunham LR, Baranowska-Clarke AA, Debette S, Amouyel P, Olin JW, Patil S, Hesselson SE, Junday K, Kanoni S, Aragam KG, Butterworth AS, Tweet MS, Gulati R, Combaret N, Kadian-Dodov D, Kalman JM, Fatkin D, Hingorani AD, Saw J, Webb TR, Hayes SN, Yang X, Ganesh SK, Olson TM, Kovacic JC, Graham RM, Samani NJ, Bouatia-Naji N. Genome-wide association meta-analysis of spontaneous coronary artery dissection identifies risk variants and genes related to artery integrity and tissue-mediated coagulation. Nat Genet 2023; 55:964-972. [PMID: 37248441 PMCID: PMC10260398 DOI: 10.1038/s41588-023-01410-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
Spontaneous coronary artery dissection (SCAD) is an understudied cause of myocardial infarction primarily affecting women. It is not known to what extent SCAD is genetically distinct from other cardiovascular diseases, including atherosclerotic coronary artery disease (CAD). Here we present a genome-wide association meta-analysis (1,917 cases and 9,292 controls) identifying 16 risk loci for SCAD. Integrative functional annotations prioritized genes that are likely to be regulated in vascular smooth muscle cells and artery fibroblasts and implicated in extracellular matrix biology. One locus containing the tissue factor gene F3, which is involved in blood coagulation cascade initiation, appears to be specific for SCAD risk. Several associated variants have diametrically opposite associations with CAD, suggesting that shared biological processes contribute to both diseases, but through different mechanisms. We also infer a causal role for high blood pressure in SCAD. Our findings provide novel pathophysiological insights involving arterial integrity and tissue-mediated coagulation in SCAD and set the stage for future specific therapeutics and preventions.
Collapse
Affiliation(s)
- David Adlam
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK.
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK.
| | - Takiy-Eddine Berrandou
- Université Paris Cité, Paris Cardiovascular Research Center, Inserm, Paris, France
- Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Adrien Georges
- Université Paris Cité, Paris Cardiovascular Research Center, Inserm, Paris, France
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Joséphine Henry
- Université Paris Cité, Paris Cardiovascular Research Center, Inserm, Paris, France
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Interdepartmental Program of Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tamiel N Turley
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Min-Lee Yang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sandesh Chopade
- Institute for Cardiovascular Science, University College London, London, UK
- British Heart Foundation Research Accelerator, University College London, London, UK
| | - Chris Finan
- Institute for Cardiovascular Science, University College London, London, UK
- British Heart Foundation Research Accelerator, University College London, London, UK
| | - Peter S Braund
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Ines Sadeg-Sayoud
- Université Paris Cité, Paris Cardiovascular Research Center, Inserm, Paris, France
| | - Siiri E Iismaa
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Matthew L Kosel
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Stephen E Hamby
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jenny Cheng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Interdepartmental Program of Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lu Liu
- Université Paris Cité, Paris Cardiovascular Research Center, Inserm, Paris, France
| | - Ingrid Tarr
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - David W M Muller
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Cardiology Department, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Valentina d'Escamard
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Annette King
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Liam R Brunham
- Centre for Heart Lung Innovation, Departments of Medicine and Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ania A Baranowska-Clarke
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Stéphanie Debette
- Department of Neurology, Bordeaux University Hospital, Inserm, Bordeaux, France
| | - Philippe Amouyel
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, RID-AGE - Labex DISTALZ - Risk Factors and Molecular Determinants of Aging-Related Disease, Lille, France
| | - Jeffrey W Olin
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Snehal Patil
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Stephanie E Hesselson
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Keerat Junday
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Krishna G Aragam
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Marysia S Tweet
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Rajiv Gulati
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nicolas Combaret
- Department of Cardiology, CHU Clermont-Ferrand, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Daniella Kadian-Dodov
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan M Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Cardiology Department, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Aroon D Hingorani
- Institute for Cardiovascular Science, University College London, London, UK
- British Heart Foundation Research Accelerator, University College London, London, UK
| | - Jacqueline Saw
- Vancouver General Hospital, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tom R Webb
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Sharonne N Hayes
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Interdepartmental Program of Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Santhi K Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Timothy M Olson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Cardiology Department, St Vincent's Hospital, Sydney, New South Wales, Australia
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert M Graham
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Cardiology Department, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Nabila Bouatia-Naji
- Université Paris Cité, Paris Cardiovascular Research Center, Inserm, Paris, France.
| |
Collapse
|
8
|
Garimella PS, du Toit C, Le NN, Padmanabhan S. A genomic deep field view of hypertension. Kidney Int 2023; 103:42-52. [PMID: 36377113 DOI: 10.1016/j.kint.2022.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022]
Abstract
Blood pressure is regulated by a complex neurohumoral system including the renin-angiotensin-aldosterone system, natriuretic peptides, endothelial pathways, the sympathetic nervous system, and the immune system. This review charts the evolution of our understanding of the genomic basis of hypertension at increasing resolution over the last 5 decades from monogenic causes to polygenic associations, spanning ∼30 monogenic rare variants and >1500 single nucleotide variants. Unexpected early wins from blood pressure genomics include deepening of our understanding of the complex causation of hypertension; refinement of causal estimates bidirectionally between blood pressure, risk factors, and outcomes through Mendelian randomization; risk stratification using polygenic risk scores; and opportunities for precision medicine and drug repurposing.
Collapse
Affiliation(s)
- Pranav S Garimella
- Division of Nephrology and Hypertension, University of California San Diego, San Diego, California, USA
| | - Clea du Toit
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Nhu Ngoc Le
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Sandosh Padmanabhan
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK.
| |
Collapse
|
9
|
Berrandou TE, Bouatia-Naji N. [Fibromuscular dysplasia as a polygenic disease]. Med Sci (Paris) 2022; 38:870-873. [PMID: 36448890 DOI: 10.1051/medsci/2022134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Takiy-Eddine Berrandou
- Université Paris Cité, Inserm, PARCC, F-75015 Paris, France - Quantitative genetics and genomics (QGG), Aarhus university, Aarhus, Danemark
| | | |
Collapse
|
10
|
The complex genetic basis of fibromuscular dysplasia, a systemic arteriopathy associated with multiple forms of cardiovascular disease. Clin Sci (Lond) 2022; 136:1241-1255. [PMID: 36043395 PMCID: PMC9434409 DOI: 10.1042/cs20210990] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/28/2022] [Accepted: 08/16/2022] [Indexed: 12/03/2022]
Abstract
Artery stenosis is a common cause of hypertension and stroke and can be due to atherosclerosis accumulation in the majority of cases and in a small fraction of patients to arterial fibromuscular dysplasia (FMD). Artery stenosis due to atherosclerosis is widely studied with known risk factors (e.g. increasing age, male gender, and dyslipidemia) to influence its etiology, including genetic factors. However, the causes of noninflammatory and nonatherosclerotic stenosis in FMD are less understood. FMD occurs predominantly in early middle-age women, a fraction of the population where cardiovascular risk is different and understudied. FMD arteriopathies are often diagnosed in the context of hypertension and stroke and co-occur mainly with spontaneous coronary artery dissection, an atypical cause of acute myocardial infarction. In this review, we provide a comprehensive overview of the recent advances in the understanding of molecular origins of FMD. Data were obtained from genetic studies using complementary methodological approaches applied to familial, syndromic, and sporadic forms of this intriguing arteriopathy. Rare variation analyses point toward mechanisms related to impaired prostacyclin signaling and defaults in fibrillar collagens. The study of common variation, mainly through a recent genome-wide association study, describes a shared genetic link with blood pressure, in addition to point at potential risk genes involved in actin cytoskeleton and intracellular calcium homeostasis supporting impaired vascular contraction as a key mechanism. We conclude this review with future strategies and approaches needed to fully understand the genetic and molecular mechanisms related to FMD.
Collapse
|
11
|
Chen B, Li D, Ran B, Zhang P, Wang T. Key miRNAs and Genes in the High-Altitude Adaptation of Tibetan Chickens. Front Vet Sci 2022; 9:911685. [PMID: 35909692 PMCID: PMC9330022 DOI: 10.3389/fvets.2022.911685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Tibetan chickens living at high altitudes show specific physiological adaptations to the extreme environmental conditions. However, the regulated base of how chickens adapt to high-altitude habitats remains largely unknown. In this study, we sequenced 96 transcriptomes (including 48 miRNA and 48 mRNA transcriptomes of heart, liver, lung, and brain) and resequenced 12 whole genomes of Tibetan chickens and Peng'xian yellow chickens. We found that several miRNAs show the locally optimal plastic changes that occurred in miRNAs of chickens, such as miR-10c-5p, miR-144-3p, miR-3536, and miR-499-5p. These miRNAs could have effects on early adaption to the high-altitude environment of chickens. In addition, the genes under selection between Tibetan chickens and Peng'xian yellow chickens were mainly related to oxygen transport and oxidative stress. The I-kappa B kinase/NF-kappa B signaling pathway is widely found for high-altitude adaptation in Tibetan chickens. The candidate differentially expressed miRNAs and selected genes identified in this study may be useful in current breeding efforts to develop improved breeds for the highlands.
Collapse
Affiliation(s)
- Binlong Chen
- College of Animal Science, Xichang University, Xichang, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, China
- *Correspondence: Diyan Li
| | - Bo Ran
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Pu Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu, China
- Tao Wang
| |
Collapse
|
12
|
Wu Y, Wang MH, Yang T, Qin TY, Qin LL, Hu YM, Zhang CF, Sun BJ, Ding L, Wu LL, Liu TH. Mechanisms for Improving Hepatic Glucolipid Metabolism by Cinnamic Acid and Cinnamic Aldehyde: An Insight Provided by Multi-Omics. Front Nutr 2022; 8:794841. [PMID: 35087857 PMCID: PMC8786797 DOI: 10.3389/fnut.2021.794841] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cinnamic acid (AC) and cinnamic aldehyde (AL) are two chemicals enriched in cinnamon and have been previously proved to improve glucolipid metabolism, thus ameliorating metabolic disorders. In this study, we employed transcriptomes and proteomes on AC and AL treated db/db mice in order to explore the underlying mechanisms for their effects. Db/db mice were divided into three groups: the control group, AC group and AL group. Gender- and age-matched wt/wt mice were used as a normal group. After 4 weeks of treatments, mice were sacrificed, and liver tissues were used for further analyses. Functional enrichment of differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. DEPs were further verified by parallel reaction monitoring (PRM). The results suggested that AC and AL share similar mechanisms, and they may improve glucolipid metabolism by improving mitochondrial functions, decreasing serotonin contents and upregulating autophagy mediated lipid clearance. This study provides an insight into the molecular mechanisms of AC and AL on hepatic transcriptomes and proteomes in disrupted metabolic situations and lays a foundation for future experiments.
Collapse
Affiliation(s)
- You Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Health Cultivation of Beijing, Beijing University of Chinese Medicine, Beijing, China
| | - Ming-Hui Wang
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Tao Yang
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Health Cultivation of Beijing, Beijing University of Chinese Medicine, Beijing, China
| | - Tian-Yu Qin
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Ling-Ling Qin
- Department of Science and Technology, Beijing University of Chinese Medicine, Beijing, China
| | - Yao-Mu Hu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Health Cultivation of Beijing, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng-Fei Zhang
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Health Cultivation of Beijing, Beijing University of Chinese Medicine, Beijing, China
| | - Bo-Ju Sun
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Ding
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Health Cultivation of Beijing, Beijing University of Chinese Medicine, Beijing, China
| | - Li-Li Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Health Cultivation of Beijing, Beijing University of Chinese Medicine, Beijing, China
| | - Tong-Hua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Health Cultivation of Beijing, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Wei BL, Yin RX, Liu CX, Deng GX, Guan YZ, Zheng PF. CYP17A1-ATP2B1 SNPs and Gene-Gene and Gene-Environment Interactions on Essential Hypertension. Front Cardiovasc Med 2021; 8:720884. [PMID: 34722659 PMCID: PMC8552967 DOI: 10.3389/fcvm.2021.720884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/09/2021] [Indexed: 01/11/2023] Open
Abstract
Background: The association between the CYP17A1 and ATP2B1 SNPs and essential hypertension (referred to as hypertension) is far from being consistent. In addition to the heterogeneity of hypertension resulting in inconsistent results, gene–gene and gene–environment interactions may play a major role in the pathogenesis of hypertension rather than a single gene or environmental factor. Methods: A case–control study consisting of 1,652 individuals (hypertension, 816; control, 836) was conducted in Maonan ethnic minority of China. Genotyping of the four SNPs was performed by the next-generation sequencing technology. Results: The frequencies of minor alleles and genotypes of four SNPs were different between the two groups (p < 0.001). According to genetic dominance model analysis, three (rs1004467, rs11191548, and rs17249754) SNPs and two haplotypes (CYP17A1 rs1004467G-rs11191548C and ATP2B1 rs1401982G-rs17249754A) were negatively correlated, whereas rs1401982 SNP and the other two haplotypes (CYP17A1 rs1004467A-rs11191548T and ATP2B1 rs1401982A-rs17249754G) were positively associated with hypertension risk (p ≤ 0.002 for all). Two best significant two-locus models were screened out by GMDR software involving SNP–environment (rs11191548 and BMI ≥ 24 kg/m2) and haplotype–environment (CYP17A1 rs1004467G-rs11191548C and BMI ≥ 24 kg/m2) interactions (p ≤ 0.01). The subjects carrying some genotypes increased the hypertension risk. Conclusions: Our outcomes implied that the rs1004467, rs11191548, and rs17249754 SNPs and CYP17A1 rs1004467G-rs11191548C and ATP2B1 rs1401982G-rs17249754A haplotypes have protective effects, whereas the rs1401982 SNP and CYP17A1 rs1004467A-rs11191548T and ATP2B1 rs1401982A-rs17249754G haplotypes showed adverse effect on the prevalence of hypertension. Several SNP–environment interactions were also detected.
Collapse
Affiliation(s)
- Bi-Liu Wei
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Disease Control and Prevention, Nanning, China.,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Chun-Xiao Liu
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Guo-Xiong Deng
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Yao-Zong Guan
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Peng-Fei Zheng
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
Georges A, Yang ML, Berrandou TE, Bakker MK, Dikilitas O, Kiando SR, Ma L, Satterfield BA, Sengupta S, Yu M, Deleuze JF, Dupré D, Hunker KL, Kyryachenko S, Liu L, Sayoud-Sadeg I, Amar L, Brummett CM, Coleman DM, d’Escamard V, de Leeuw P, Fendrikova-Mahlay N, Kadian-Dodov D, Li JZ, Lorthioir A, Pappaccogli M, Prejbisz A, Smigielski W, Stanley JC, Zawistowski M, Zhou X, Zöllner S, Amouyel P, De Buyzere ML, Debette S, Dobrowolski P, Drygas W, Gornik HL, Olin JW, Piwonski J, Rietzschel ER, Ruigrok YM, Vikkula M, Warchol Celinska E, Januszewicz A, Kullo IJ, Azizi M, Jeunemaitre X, Persu A, Kovacic JC, Ganesh SK, Bouatia-Naji N. Genetic investigation of fibromuscular dysplasia identifies risk loci and shared genetics with common cardiovascular diseases. Nat Commun 2021; 12:6031. [PMID: 34654805 PMCID: PMC8521585 DOI: 10.1038/s41467-021-26174-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
Fibromuscular dysplasia (FMD) is an arteriopathy associated with hypertension, stroke and myocardial infarction, affecting mostly women. We report results from the first genome-wide association meta-analysis of six studies including 1556 FMD cases and 7100 controls. We find an estimate of SNP-based heritability compatible with FMD having a polygenic basis, and report four robustly associated loci (PHACTR1, LRP1, ATP2B1, and LIMA1). Transcriptome-wide association analysis in arteries identifies one additional locus (SLC24A3). We characterize open chromatin in arterial primary cells and find that FMD associated variants are located in arterial-specific regulatory elements. Target genes are broadly involved in mechanisms related to actin cytoskeleton and intracellular calcium homeostasis, central to vascular contraction. We find significant genetic overlap between FMD and more common cardiovascular diseases and traits including blood pressure, migraine, intracranial aneurysm, and coronary artery disease.
Collapse
Affiliation(s)
- Adrien Georges
- grid.508487.60000 0004 7885 7602PARCC, INSERM, Université de Paris, F-750015 Paris, France
| | - Min-Lee Yang
- grid.214458.e0000000086837370Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI USA ,grid.214458.e0000000086837370Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI USA
| | - Takiy-Eddine Berrandou
- grid.508487.60000 0004 7885 7602PARCC, INSERM, Université de Paris, F-750015 Paris, France
| | - Mark K. Bakker
- grid.5477.10000000120346234Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Ozan Dikilitas
- grid.66875.3a0000 0004 0459 167XDepartment of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55902 USA
| | - Soto Romuald Kiando
- grid.508487.60000 0004 7885 7602PARCC, INSERM, Université de Paris, F-750015 Paris, France
| | - Lijiang Ma
- grid.59734.3c0000 0001 0670 2351Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Benjamin A. Satterfield
- grid.66875.3a0000 0004 0459 167XDepartment of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55902 USA
| | - Sebanti Sengupta
- grid.214458.e0000000086837370Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI USA
| | - Mengyao Yu
- grid.508487.60000 0004 7885 7602PARCC, INSERM, Université de Paris, F-750015 Paris, France
| | - Jean-François Deleuze
- grid.418135.a0000 0004 0641 3404Centre National de Recherche en Génomique Humaine, Institut de Génomique, CEA and Fondation Jean Dausset-CEPH, Evry, France
| | - Delia Dupré
- grid.508487.60000 0004 7885 7602PARCC, INSERM, Université de Paris, F-750015 Paris, France
| | - Kristina L. Hunker
- grid.214458.e0000000086837370Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI USA ,grid.214458.e0000000086837370Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI USA
| | - Sergiy Kyryachenko
- grid.508487.60000 0004 7885 7602PARCC, INSERM, Université de Paris, F-750015 Paris, France
| | - Lu Liu
- grid.508487.60000 0004 7885 7602PARCC, INSERM, Université de Paris, F-750015 Paris, France
| | - Ines Sayoud-Sadeg
- grid.508487.60000 0004 7885 7602PARCC, INSERM, Université de Paris, F-750015 Paris, France
| | - Laurence Amar
- grid.508487.60000 0004 7885 7602PARCC, INSERM, Université de Paris, F-750015 Paris, France ,grid.414093.b0000 0001 2183 5849Hypertension Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Chad M. Brummett
- grid.214458.e0000000086837370Department of Anesthesiology, Michigan Medicine, University of Michigan, Ann Arbor, MI USA
| | - Dawn M. Coleman
- grid.214458.e0000000086837370Vascular Surgery Section, Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Valentina d’Escamard
- grid.59734.3c0000 0001 0670 2351Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Peter de Leeuw
- grid.412966.e0000 0004 0480 1382Department of Internal Medicine, Division of General Internal Medicine, Section Vascular Medicine, Maastricht University Medical Centre, Maastricht University, Maastricht, the Netherlands ,grid.5012.60000 0001 0481 6099CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht University, Maastricht, the Netherlands
| | - Natalia Fendrikova-Mahlay
- grid.239578.20000 0001 0675 4725Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Daniella Kadian-Dodov
- grid.59734.3c0000 0001 0670 2351Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R, Kravis Center for Cardiovascular Health Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Jun Z. Li
- grid.214458.e0000000086837370Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI USA
| | - Aurélien Lorthioir
- grid.508487.60000 0004 7885 7602PARCC, INSERM, Université de Paris, F-750015 Paris, France ,grid.414093.b0000 0001 2183 5849Hypertension Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Marco Pappaccogli
- grid.7942.80000 0001 2294 713XDivision of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1200 Brussels, Belgium ,grid.7605.40000 0001 2336 6580Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Aleksander Prejbisz
- grid.418887.aDepartment of Hypertension, National Institute of Cardiology, Warsaw, Poland
| | - Witold Smigielski
- grid.10789.370000 0000 9730 2769Department of Demography, University of Lodz, Lodz, Poland
| | - James C. Stanley
- grid.214458.e0000000086837370Vascular Surgery Section, Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Matthew Zawistowski
- grid.214458.e0000000086837370Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI USA
| | - Xiang Zhou
- grid.214458.e0000000086837370Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI USA
| | - Sebastian Zöllner
- grid.214458.e0000000086837370Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI USA
| | | | | | | | - Philippe Amouyel
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Labex DISTALZ - Risk factors and molecular determinants of aging-related disease, F-59000 Lille, France
| | - Marc L. De Buyzere
- grid.5342.00000 0001 2069 7798Department of Cardiovascular Diseases, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Stéphanie Debette
- grid.42399.350000 0004 0593 7118Department of Neurology, Bordeaux University Hospital, Inserm U1219, Bordeaux, France
| | - Piotr Dobrowolski
- grid.418887.aDepartment of Hypertension, National Institute of Cardiology, Warsaw, Poland
| | - Wojciech Drygas
- grid.418887.aDepartment of Epidemiology, Cardiovascular Disease Prevention, and Health Promotion, National Institute of Cardiology, Warsaw, Poland
| | - Heather L. Gornik
- grid.239578.20000 0001 0675 4725Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Jeffrey W. Olin
- grid.59734.3c0000 0001 0670 2351Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R, Kravis Center for Cardiovascular Health Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Jerzy Piwonski
- grid.418887.aDepartment of Epidemiology, Cardiovascular Disease Prevention, and Health Promotion, National Institute of Cardiology, Warsaw, Poland
| | - Ernst R. Rietzschel
- grid.5342.00000 0001 2069 7798Department of Cardiovascular Diseases, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Ynte M. Ruigrok
- grid.66875.3a0000 0004 0459 167XDepartment of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55902 USA
| | - Miikka Vikkula
- grid.7942.80000 0001 2294 713XHuman Molecular Genetics, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Ewa Warchol Celinska
- grid.418887.aDepartment of Hypertension, National Institute of Cardiology, Warsaw, Poland
| | - Andrzej Januszewicz
- grid.418887.aDepartment of Hypertension, National Institute of Cardiology, Warsaw, Poland
| | - Iftikhar J. Kullo
- grid.66875.3a0000 0004 0459 167XDepartment of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55902 USA ,grid.66875.3a0000 0004 0459 167XGonda Vascular Center, Mayo Clinic, Rochester, MN 55902 USA
| | - Michel Azizi
- grid.414093.b0000 0001 2183 5849Hypertension Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015 Paris, France ,grid.512950.aUniversité de Paris, Inserm, Centre d’Investigation Clinique 1418, F-75006 Paris, France
| | | | - Xavier Jeunemaitre
- grid.508487.60000 0004 7885 7602PARCC, INSERM, Université de Paris, F-750015 Paris, France ,grid.414093.b0000 0001 2183 5849Department of Genetics, Assistance-Publiques-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Alexandre Persu
- grid.7942.80000 0001 2294 713XDivision of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1200 Brussels, Belgium ,grid.7942.80000 0001 2294 713XPole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Jason C. Kovacic
- grid.59734.3c0000 0001 0670 2351Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R, Kravis Center for Cardiovascular Health Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.1057.30000 0000 9472 3971Victor Chang Cardiac Research Institute, Darlinghurst, NSW Australia ,grid.1005.40000 0004 4902 0432St. Vincent’s Clinical School, University of New South Wales, Sydney, NSW Australia
| | - Santhi K. Ganesh
- grid.214458.e0000000086837370Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI USA ,grid.214458.e0000000086837370Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI USA
| | - Nabila Bouatia-Naji
- grid.508487.60000 0004 7885 7602PARCC, INSERM, Université de Paris, F-750015 Paris, France
| |
Collapse
|
15
|
Xie M, Yuan S, Zeng Y, Zheng C, Yang Y, Dong Y, He Q. ATP2B1 gene polymorphisms rs2681472 and rs17249754 are associated with susceptibility to hypertension and blood pressure levels: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e25530. [PMID: 33847678 PMCID: PMC8052043 DOI: 10.1097/md.0000000000025530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/23/2021] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE The present study aimed to conduct a systematic review and meta-analysis to evaluate the relationships between ATP2B1 gene polymorphisms with blood pressure (BP) level and susceptibility to hypertension. METHODS PubMed, Web of Science, Embase and China National Knowledge Infrastructure (CNKI) Databases were systematically searched by 2 independent researchers to screen studies on ATP2B1 gene polymorphisms and BP related phenotypes. The records retrieval period was limited from the formation of the database to March 4, 2021. Pooled odds rations (ORs) or β and their 95% confidence intervals (95%CI) were calculated to assess the association between ATP2B1 gene polymorphisms and the risk of hypertension or BP levels. Publication bias and sensitivity analysis were conducted to find potential bias. All the statistical analysis were conducted with Stata version 11.0 software. RESULTS A total of 15 articles were ultimately included in the present study, including 15 polymorphisms of ATP2B1 gene. Nine articles (N = 65,362) reported the polymorphism rs17249754, and 7 articles(N = 91,997) reported rs2681472 (both loci were reported in 1 article). Meta-analysis showed that rs17249754 (G/A) and rs2681472 (A/G) were associated with the susceptibility to hypertension (rs17249754: OR = 1.19, 95%CI: 1.10-1.28; rs2681472: OR = 1.15, 95%CI: 1.12-1.17), and were positively associated with systolic BP (SBP) and diastolic blood pressure (DBP) (rs17249754: SBP, β=1.01, 95%CI: 0.86-1.16, DBP, β=0.48, 95%CI: 0.30-0.66; rs2681472: SBP, β=0.92, 95%CI: 0.77-1.07, DBP, β=0.50, 95%CI: 0.42-0.58) in the additive genetic model. Subgroup analysis stratified by race, population, sample size, and BP measurement method revealed that the association between A allele in rs2681472 polymorphism and risk of hypertension was slightly stronger in European (EUR) populations (OR = 1.16, 95%CI: 1.13-1.20) than in East Asians (OR = 1.14, 95%CI: 1.10-1.17). While in East Asians, relation between rs17249754 with risk of hypertension (OR = 1.19, 95%CI: 1.10-1.28) is stronger than rs2681472 (OR = 1.14, 95%CI: 1.10-1.17). CONCLUSIONS Our study demonstrated that ATP2B1 gene polymorphism rs2681472 and rs17249754 were associated with BP levels and the susceptibility to hypertension.
Collapse
Affiliation(s)
- Ming Xie
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha
| | - Shuqian Yuan
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha
| | - Yuan Zeng
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha
| | - Chanjuan Zheng
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha
| | - Yide Yang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha
- Institute of Child and Adolescent Health, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Quanyuan He
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha
| |
Collapse
|
16
|
Ji LD, Xu ZF, Tang NLS, Xu J. Natural Selection of ATP2B1 Underlies Susceptibility to Essential Hypertension. Front Genet 2021; 12:628516. [PMID: 33777100 PMCID: PMC7990779 DOI: 10.3389/fgene.2021.628516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lin-Dan Ji
- Department of Biochemistry, School of Medicine, Ningbo University, Ningbo, China.,Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Zhi-Feng Xu
- Department of Cardiology, Ningbo No. 7 Hospital, Ningbo, China
| | - Nelson L S Tang
- Department of Chemical Pathology, Faculty of Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,KIZ-CUHK Joint Laboratory of Bio-resources and Molecular Research of Common Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Jin Xu
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China.,Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
17
|
Njegic A, Wilson C, Cartwright EJ. Targeting Ca 2 + Handling Proteins for the Treatment of Heart Failure and Arrhythmias. Front Physiol 2020; 11:1068. [PMID: 33013458 PMCID: PMC7498719 DOI: 10.3389/fphys.2020.01068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
Diseases of the heart, such as heart failure and cardiac arrhythmias, are a growing socio-economic burden. Calcium (Ca2+) dysregulation is key hallmark of the failing myocardium and has long been touted as a potential therapeutic target in the treatment of a variety of cardiovascular diseases (CVD). In the heart, Ca2+ is essential for maintaining normal cardiac function through the generation of the cardiac action potential and its involvement in excitation contraction coupling. As such, the proteins which regulate Ca2+ cycling and signaling play a vital role in maintaining Ca2+ homeostasis. Changes to the expression levels and function of Ca2+-channels, pumps and associated intracellular handling proteins contribute to altered Ca2+ homeostasis in CVD. The remodeling of Ca2+-handling proteins therefore results in impaired Ca2+ cycling, Ca2+ leak from the sarcoplasmic reticulum and reduced Ca2+ clearance, all of which contributes to increased intracellular Ca2+. Currently, approved treatments for targeting Ca2+ handling dysfunction in CVD are focused on Ca2+ channel blockers. However, whilst Ca2+ channel blockers have been successful in the treatment of some arrhythmic disorders, they are not universally prescribed to heart failure patients owing to their ability to depress cardiac function. Despite the progress in CVD treatments, there remains a clear need for novel therapeutic approaches which are able to reverse pathophysiology associated with heart failure and arrhythmias. Given that heart failure and cardiac arrhythmias are closely associated with altered Ca2+ homeostasis, this review will address the molecular changes to proteins associated with both Ca2+-handling and -signaling; their potential as novel therapeutic targets will be discussed in the context of pre-clinical and, where available, clinical data.
Collapse
Affiliation(s)
- Alexandra Njegic
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, United Kingdom.,Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Claire Wilson
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, United Kingdom.,Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
18
|
Kwon YJ, Kim JO, Park JM, Choi JE, Park DH, Song Y, Kim SJ, Lee JW, Hong KW. Identification of Genetic Factors Underlying the Association between Sodium Intake Habits and Hypertension Risk. Nutrients 2020; 12:E2580. [PMID: 32854392 PMCID: PMC7551216 DOI: 10.3390/nu12092580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/16/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022] Open
Abstract
The role of sodium in hypertension remains unresolved. Although genetic factors have a significant impact on high blood pressure, studies comparing genetic susceptibility between people with low and high sodium diets are lacking. We aimed to investigate the genetic variations related to hypertension according to sodium intake habits in a large Korean population-based study. Data for a total of 57,363 participants in the Korean Genome and Epidemiology Study Health Examination were analyzed. Sodium intake was measured by a semi-quantitative food frequency questionnaire. We classified participants according to sodium intake being less than or greater than 2 g/day. We used logistic regression to test single-marker variants for genetic association with a diagnosis of hypertension, adjusting for age, sex, body mass index, exercise, alcohol, smoking, potassium intake, principal components 1, and principal components 2. Significant associations were defined as p < 5 × 10-8. In participants whose sodium intake was greater than 2 g/day, chromosome 6 open reading frame 10 (C6orf10)-human leukocyte antigen (HLA)-DQB1 rs6913309, ring finger protein (RNF)213 rs112735431, glycosylphosphatidylinositol anchored molecule-like (GML)- cytochrome P450 family 11 subfamily B member 1(CYP11B1) rs3819496, myosin light chain 2 (MYL2)-cut like homeobox 2 (CUX2) rs12229654, and jagged1 (JAG1) rs1887320 were significantly associated with hypertension. In participants whose intake was less than 2 g/day, echinoderm microtubule-associated protein-like 6(EML6) rs67617923 was significantly associated with hypertension. Genetic susceptibility associated with hypertension differed according to sodium intake. Identifying gene variants that contribute to the dependence of hypertension on sodium intake status could make possible more individualized nutritional recommendations for preventing cardiovascular diseases.
Collapse
Affiliation(s)
- Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, 363, Dongbaekjukjeon-daero, Giheung-gu, Yongin-si 16995, Korea;
| | - Jung Oh Kim
- Theragen Bio Co., Ltd., Suwon 16229, Korea; (J.O.K.); (J.-E.C.); (D.-H.P.); (S.-J.K.)
| | - Jae-Min Park
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 06273, Korea; (J.-M.P.); (Y.S.)
| | - Ja-Eun Choi
- Theragen Bio Co., Ltd., Suwon 16229, Korea; (J.O.K.); (J.-E.C.); (D.-H.P.); (S.-J.K.)
| | - Da-Hyun Park
- Theragen Bio Co., Ltd., Suwon 16229, Korea; (J.O.K.); (J.-E.C.); (D.-H.P.); (S.-J.K.)
| | - Youhyun Song
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 06273, Korea; (J.-M.P.); (Y.S.)
| | - Seong-Jin Kim
- Theragen Bio Co., Ltd., Suwon 16229, Korea; (J.O.K.); (J.-E.C.); (D.-H.P.); (S.-J.K.)
| | - Ji-Won Lee
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 06273, Korea; (J.-M.P.); (Y.S.)
| | - Kyung-Won Hong
- Theragen Bio Co., Ltd., Suwon 16229, Korea; (J.O.K.); (J.-E.C.); (D.-H.P.); (S.-J.K.)
| |
Collapse
|
19
|
Conserved mammalian modularity of quantitative trait loci revealed human functional orthologs in blood pressure control. PLoS One 2020; 15:e0235756. [PMID: 32702059 PMCID: PMC7377405 DOI: 10.1371/journal.pone.0235756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/23/2020] [Indexed: 11/23/2022] Open
Abstract
Genome-wide association studies (GWAS) have routinely detected human quantitative trait loci (QTLs) for complex traits. Viewing that most GWAS single nucleotide polymorphisms (SNPs) are found in non-coding regions unrelated to the physiology of a polygenic trait of interest, a vital question to answer is whether or not any of these SNPs can functionally alter the phenotype with which it is associated. The study of blood pressure (BP) is a case in point. Conserved mechanisms in controlling BP by modularity is now unifying differing mammalian orders in that understanding mechanisms in rodents is tantamount to revealing the same in humans, while overcoming experimental limitations imposed by human studies. As a proof of principle, we used BP QTLs from Dahl salt-sensitive rats (DSS) as substitutes to capture distinct human functional orthologs. 3 DSS BP QTLs are located into distinct genome regions and correspond to several human GWAS genes. Each of the QTLs independently exerted a major impact on BP in vivo. BP was functionally changed by normotensive alleles from each of these QTLs, and yet, the human GWAS SNPs do not exist in the rat. They cannot be responsible for physiological alterations in BP caused by these QTLs. These SNPs are genome emblems for QTLs nearby, rather than being QTLs per se, since they only emerged during primate evolution after BP-regulating mechanisms have been established. We then identified specific mutated coding domains that are conserved between rodents and humans and that may implicate different steps of a common pathway or separate pathways.
Collapse
|
20
|
Huang Y, Ollikainen M, Muniandy M, Zhang T, van Dongen J, Hao G, van der Most PJ, Pan Y, Pervjakova N, Sun YV, Hui Q, Lahti J, Fraszczyk E, Lu X, Sun D, Richard MA, Willemsen G, Heikkila K, Leach IM, Mononen N, Kähönen M, Hurme MA, Raitakari OT, Drake AJ, Perola M, Nuotio ML, Huang Y, Khulan B, Räikkönen K, Wolffenbuttel BHR, Zhernakova A, Fu J, Zhu H, Dong Y, van Vliet-Ostaptchouk JV, Franke L, Eriksson JG, Fornage M, Milani L, Lehtimäki T, Vaccarino V, Boomsma DI, van der Harst P, de Geus EJC, Salomaa V, Li S, Chen W, Su S, Wilson J, Snieder H, Kaprio J, Wang X. Identification, Heritability, and Relation With Gene Expression of Novel DNA Methylation Loci for Blood Pressure. Hypertension 2020; 76:195-205. [PMID: 32520614 PMCID: PMC7295009 DOI: 10.1161/hypertensionaha.120.14973] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/23/2020] [Indexed: 02/05/2023]
Abstract
We conducted an epigenome-wide association study meta-analysis on blood pressure (BP) in 4820 individuals of European and African ancestry aged 14 to 69. Genome-wide DNA methylation data from peripheral leukocytes were obtained using the Infinium Human Methylation 450k BeadChip. The epigenome-wide association study meta-analysis identified 39 BP-related CpG sites with P<1×10-5. In silico replication in the CHARGE consortium of 17 010 individuals validated 16 of these CpG sites. Out of the 16 CpG sites, 13 showed novel association with BP. Conversely, out of the 126 CpG sites identified as being associated (P<1×10-7) with BP in the CHARGE consortium, 21 were replicated in the current study. Methylation levels of all the 34 CpG sites that were cross-validated by the current study and the CHARGE consortium were heritable and 6 showed association with gene expression. Furthermore, 9 CpG sites also showed association with BP with P<0.05 and consistent direction of the effect in the meta-analysis of the Finnish Twin Cohort (199 twin pairs and 4 singletons; 61% monozygous) and the Netherlands Twin Register (266 twin pairs and 62 singletons; 84% monozygous). Bivariate quantitative genetic modeling of the twin data showed that a majority of the phenotypic correlations between methylation levels of these CpG sites and BP could be explained by shared unique environmental rather than genetic factors, with 100% of the correlations of systolic BP with cg19693031 (TXNIP) and cg00716257 (JDP2) determined by environmental effects acting on both systolic BP and methylation levels.
Collapse
Affiliation(s)
- Yisong Huang
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Miina Ollikainen
- Institute for Molecular Medicine FIMM, HiLIFE, University of Helsinki, PO Box 20 (Tukholmankatu 8), Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, PO Box 20 (Tukholmankatu 8), Helsinki, Finland
| | - Maheswary Muniandy
- Institute for Molecular Medicine FIMM, HiLIFE, University of Helsinki, PO Box 20 (Tukholmankatu 8), Helsinki, Finland
| | - Tao Zhang
- Department of Biostatistics, Shandong University School of Public Health, Jinan, China
| | - Jenny van Dongen
- Department of Biological Psychology, Amsterdam Public Health research institute, Vrije Universiteit Amsterdam, Van der Boechorststraat 7-9, 1081BT, Amsterdam, The Netherlands
| | - Guang Hao
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Peter J. van der Most
- University of Groningen, University Medical Center Groningen, Groningen, Department of Epidemiology, the Netherlands
| | - Yue Pan
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Natalia Pervjakova
- Estonian Genome Center, Institute of Genomics, University of Tartu, 23 Riia Street, 51010, Tartu, Estonia
| | - Yan V. Sun
- Department of Epidemiology, Emory Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Qin Hui
- Department of Epidemiology, Emory Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jari Lahti
- Turku Institute for Advanced Studies, University of Turku, Turku, Finland
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Eliza Fraszczyk
- University of Groningen, University Medical Center Groningen, Groningen, Department of Epidemiology, the Netherlands
| | - Xueling Lu
- University of Groningen, University Medical Center Groningen, Groningen, Department of Epidemiology, the Netherlands
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 515041, Guangdong, China
| | - Dianjianyi Sun
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Melissa A. Richard
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine
| | - Gonneke Willemsen
- Department of Biological Psychology, Amsterdam Public Health research institute, Vrije Universiteit Amsterdam, Van der Boechorststraat 7-9, 1081BT, Amsterdam, The Netherlands
| | - Kauko Heikkila
- Institute for Molecular Medicine FIMM, HiLIFE, University of Helsinki, PO Box 20 (Tukholmankatu 8), Helsinki, Finland
| | - Irene Mateo Leach
- University of Groningen, University Medical Center Groningen, Groningen, Department of Cardiology, the Netherlands
| | - Nina Mononen
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland; Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Finnish Cardiovascular Research Center – Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland; Department of Clinical Physiology, Tampere University Hospital, Tampere 33521
| | - Mikko A. Hurme
- Department of Microbiology and Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland
| | - Olli T. Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20520, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20014, Finland
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK
| | - Markus Perola
- National Institute for Health and Welfare, P.O. Box 30, 00271 Helsinki, Finland
| | - Marja-Liisa Nuotio
- National Institute for Health and Welfare, P.O. Box 30, 00271 Helsinki, Finland
| | - Yunfeng Huang
- Department of Epidemiology, Emory Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Batbayar Khulan
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK
| | - Katri Räikkönen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Bruce HR Wolffenbuttel
- University of Groningen, University Medical Center Groningen, Department of Endocrinology, the Netherlands
| | - Alexandra Zhernakova
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Jingyuan Fu
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- University of Groningen and University Medical Center Groningen, Groningen, Department of Pediatrics, The Netherlands
| | - Haidong Zhu
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yanbin Dong
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jana V. van Vliet-Ostaptchouk
- University of Groningen, University Medical Center Groningen, Groningen, Department of Epidemiology, the Netherlands
- University of Groningen, University Medical Center Groningen, Department of Endocrinology, the Netherlands
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Department of Genetics, Groningen, The Netherlands
| | - Lude Franke
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Johan G Eriksson
- Department of General Practice and Primary health Care, Tukholmankatu 8 B, University of Helsinki, Finland and Helsinki University Hospital, Unit of General Practice, Helsinki, Finland
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, Mc Govern Medical School, University of Texas Health Science Center at Houston
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston
| | - Lili Milani
- Estonian Genome Center, Institute of Genomics, University of Tartu, 23 Riia Street, 51010, Tartu, Estonia
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland; Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland
| | - Viola Vaccarino
- Department of Epidemiology, Emory Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dorret I. Boomsma
- Department of Biological Psychology, Amsterdam Public Health research institute, Vrije Universiteit Amsterdam, Van der Boechorststraat 7-9, 1081BT, Amsterdam, The Netherlands
| | - Pim van der Harst
- University of Groningen, University Medical Center Groningen, Groningen, Department of Cardiology, the Netherlands
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eco J. C. de Geus
- Department of Biological Psychology, Amsterdam Public Health research institute, Vrije Universiteit Amsterdam, Van der Boechorststraat 7-9, 1081BT, Amsterdam, The Netherlands
| | - Veikko Salomaa
- National Institute for Health and Welfare, P.O. Box 30, 00271 Helsinki, Finland
| | - Shengxu Li
- Children’s Minnesota Research Institute, Children’s Hospitals and Clinics of Minnesota, Minneapolis, MN, USA
| | - Wei Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Shaoyong Su
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - James Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216 USA
| | - Harold Snieder
- University of Groningen, University Medical Center Groningen, Groningen, Department of Epidemiology, the Netherlands
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, HiLIFE, University of Helsinki, PO Box 20 (Tukholmankatu 8), Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, PO Box 20 (Tukholmankatu 8), Helsinki, Finland
| | - Xiaoling Wang
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
21
|
Ishigaki K, Akiyama M, Kanai M, Takahashi A, Kawakami E, Sugishita H, Sakaue S, Matoba N, Low SK, Okada Y, Terao C, Amariuta T, Gazal S, Kochi Y, Horikoshi M, Suzuki K, Ito K, Koyama S, Ozaki K, Niida S, Sakata Y, Sakata Y, Kohno T, Shiraishi K, Momozawa Y, Hirata M, Matsuda K, Ikeda M, Iwata N, Ikegawa S, Kou I, Tanaka T, Nakagawa H, Suzuki A, Hirota T, Tamari M, Chayama K, Miki D, Mori M, Nagayama S, Daigo Y, Miki Y, Katagiri T, Ogawa O, Obara W, Ito H, Yoshida T, Imoto I, Takahashi T, Tanikawa C, Suzuki T, Sinozaki N, Minami S, Yamaguchi H, Asai S, Takahashi Y, Yamaji K, Takahashi K, Fujioka T, Takata R, Yanai H, Masumoto A, Koretsune Y, Kutsumi H, Higashiyama M, Murayama S, Minegishi N, Suzuki K, Tanno K, Shimizu A, Yamaji T, Iwasaki M, Sawada N, Uemura H, Tanaka K, Naito M, Sasaki M, Wakai K, Tsugane S, Yamamoto M, Yamamoto K, Murakami Y, Nakamura Y, Raychaudhuri S, Inazawa J, Yamauchi T, Kadowaki T, Kubo M, Kamatani Y. Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases. Nat Genet 2020; 52:669-679. [PMID: 32514122 DOI: 10.1038/s41588-020-0640-3] [Citation(s) in RCA: 303] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022]
Abstract
The overwhelming majority of participants in current genetic studies are of European ancestry. To elucidate disease biology in the East Asian population, we conducted a genome-wide association study (GWAS) with 212,453 Japanese individuals across 42 diseases. We detected 320 independent signals in 276 loci for 27 diseases, with 25 novel loci (P < 9.58 × 10-9). East Asian-specific missense variants were identified as candidate causal variants for three novel loci, and we successfully replicated two of them by analyzing independent Japanese cohorts; p.R220W of ATG16L2 (associated with coronary artery disease) and p.V326A of POT1 (associated with lung cancer). We further investigated enrichment of heritability within 2,868 annotations of genome-wide transcription factor occupancy, and identified 378 significant enrichments across nine diseases (false discovery rate < 0.05) (for example, NKX3-1 for prostate cancer). This large-scale GWAS in a Japanese population provides insights into the etiology of complex diseases and highlights the importance of performing GWAS in non-European populations.
Collapse
Affiliation(s)
- Kazuyoshi Ishigaki
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Center for Data Sciences, Harvard Medical School, Boston, MA, USA.,Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Kanai
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Eiryo Kawakami
- Medical Sciences Innovation Hub Program (MIH), RIKEN, Yokohama, Japan.,Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroki Sugishita
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Saori Sakaue
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nana Matoba
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Genetics and UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Siew-Kee Low
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yukinori Okada
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan.,Laboratory of Statistical Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tiffany Amariuta
- Center for Data Sciences, Harvard Medical School, Boston, MA, USA.,Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.,Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Steven Gazal
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yuta Kochi
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Momoko Horikoshi
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ken Suzuki
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan.,Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Satoshi Koyama
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kouichi Ozaki
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Shumpei Niida
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiko Sakata
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Tohoku, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Makoto Hirata
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Matsuda
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Ikuyo Kou
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Toshihiro Tanaka
- Laboratory for Cardiovascular Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidewaki Nakagawa
- Laboratory for Genome Sequencing Analysis, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomomitsu Hirota
- Laboratory for Respiratory and Allergic Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mayumi Tamari
- Laboratory for Respiratory and Allergic Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Daiki Miki
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masaki Mori
- Department of Surgery and Sciences, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Satoshi Nagayama
- Department of Gastroenterological Surgery, The Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yataro Daigo
- Department of Medical Oncology and Cancer Center, and Center for Advanced Medicine against Cancer, Shiga University of Medical Science, Shiga, Japan.,Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshio Miki
- Department of Genetic Diagnosis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Wataru Obara
- Department of Urology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Hidemi Ito
- Division of Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya, Japan.,Division of Descriptive Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Teruhiko Yoshida
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Issei Imoto
- Division of Molecular Genetics, Aichi Cancer Center Research Institute, Nagoya, Japan.,Risk Assessment Center, Aichi Caner Center Hospital, Nagoya, Japan.,Division of Cancer Genetics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Chizu Tanikawa
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | - Shiro Minami
- Department of Bioregulation, Nippon Medical School, Kawasaki, Japan
| | | | - Satoshi Asai
- Division of Pharmacology, Department of Biomedical Science, Nihon University School of Medicine, Tokyo, Japan.,Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuo Takahashi
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine, Tokyo, Japan
| | - Ken Yamaji
- Department of Internal Medicine and Rheumatology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomoaki Fujioka
- Department of Urology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Ryo Takata
- Department of Urology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Hideki Yanai
- Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | | | | | - Hiromu Kutsumi
- Center for Clinical Research and Advanced Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Masahiko Higashiyama
- Department of General Thoracic Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Shigeo Murayama
- Department of Neurology and Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Naoko Minegishi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kichiya Suzuki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kozo Tanno
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - Atsushi Shimizu
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - Taiki Yamaji
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Norie Sawada
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Hirokazu Uemura
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,College of Nursing Art and Science, University of Hyogo, Akashi, Japan
| | - Keitaro Tanaka
- Department of Preventive Medicine, Saga University Faculty of Medicine, Saga, Japan
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Oral Epidemiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Makoto Sasaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shoichiro Tsugane
- Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Nakamura
- Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Soumya Raychaudhuri
- Center for Data Sciences, Harvard Medical School, Boston, MA, USA. .,Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA. .,Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan. .,Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. .,Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
22
|
Chen S, Zhao H, Yan X, Zhang Z, Hu K, Gao H, Du W, Luo J, Zheng H. 5-Hydroxy-l-tryptophan Promotes the Milk Calcium Level via the miR-99a-3p/ ATP2B1 Axis in Goat Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3277-3285. [PMID: 32054265 DOI: 10.1021/acs.jafc.9b07869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
5-Hydroxy-l-tryptophan (5-HTP) is the primary product that converts l-tryptophan into 5-hydroxytryptamine by a rate-limiting enzyme. Our previous study found that 5-HTP could promote the intracellular calcium level in goat mammary epithelial cells (GMECs). Herein, first, dairy goats were injected with 5-HTP or saline daily from 7 days before delivery, and the calcium level in colostrum of 5-HTP-injected goats was significantly higher than that of saline-injected goats. Moreover, miR-99a-3p expression was significantly increased after 5-HTP treatment from transcriptome sequencing analysis and quantitative real-time polymerase chain reaction. In addition, it was found that ATP2B1 is one of the target genes of miR-99a-3p predicted by bioinformatic methods, which plays a crucial role in the maintenance of intracellular calcium homeostasis of mammary epithelial cells. Next, we confirmed that miR-99a-3p could increase the intracellular calcium level via decreasing ATP2B1 in GMECs. Taken together, we draw the conclusion that 5-HTP promotes the calcium level in colostrum possibly by increasing intracellular calcium of mammary epithelial cells induced by the miR-99a-3p/ATP2B1 axis.
Collapse
Affiliation(s)
- Shunxin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haiying Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoru Yan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhifei Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaizhao Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huijie Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiling Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
23
|
Chen J, Sitsel A, Benoy V, Sepúlveda MR, Vangheluwe P. Primary Active Ca 2+ Transport Systems in Health and Disease. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035113. [PMID: 31501194 DOI: 10.1101/cshperspect.a035113] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium ions (Ca2+) are prominent cell signaling effectors that regulate a wide variety of cellular processes. Among the different players in Ca2+ homeostasis, primary active Ca2+ transporters are responsible for keeping low basal Ca2+ levels in the cytosol while establishing steep Ca2+ gradients across intracellular membranes or the plasma membrane. This review summarizes our current knowledge on the three types of primary active Ca2+-ATPases: the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pumps, the secretory pathway Ca2+- ATPase (SPCA) isoforms, and the plasma membrane Ca2+-ATPase (PMCA) Ca2+-transporters. We first discuss the Ca2+ transport mechanism of SERCA1a, which serves as a reference to describe the Ca2+ transport of other Ca2+ pumps. We further highlight the common and unique features of each isoform and review their structure-function relationship, expression pattern, regulatory mechanisms, and specific physiological roles. Finally, we discuss the increasing genetic and in vivo evidence that links the dysfunction of specific Ca2+-ATPase isoforms to a broad range of human pathologies, and highlight emerging therapeutic strategies that target Ca2+ pumps.
Collapse
Affiliation(s)
- Jialin Chen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Aljona Sitsel
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Veronick Benoy
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - M Rosario Sepúlveda
- Department of Cell Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
24
|
Herat LY, Magno AL, Kiuchi MG, Jackson KL, Carnagarin R, Head GA, Schlaich MP, Matthews VB. The Schlager mouse as a model of altered retinal phenotype. Neural Regen Res 2020; 15:512-518. [PMID: 31571663 PMCID: PMC6921339 DOI: 10.4103/1673-5374.266069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Hypertension is a risk factor for a large number of vision-threatening eye disorders. In this study, we investigated for the first time the retinal neural structure of the hypertensive BPH/2J mouse (Schlager mouse) and compared it to its control counterpart, the normotensive BPN/3J strain. The BPH/2J mouse is a selectively inbred mouse strain that develops chronic hypertension due to elevated sympathetic nervous system activity. When compared to the BPN/3J strain, the hypertensive BPH/2J mice showed a complete loss of outer layers of the neural retina at 21 weeks of age, which was indicative of a severe vision-threatening disease potentially caused by hypertension. To elucidate whether the retinal neural phenotype in the BPH/2J strain was attributed to increased BP, we investigated the neural retina of both BPN/3J and BPH/2J mice at 4 weeks of age. Our preliminary results showed for the first time that the BPH/2J strain develops severe retinal neural damage at a young age. Our findings suggest that the retinal phenotype in the BPH/2J mouse is possibly due to elevated blood pressure and may be contributed by an early onset spontaneous mutation which is yet to be identified or a congenital defect occurring in this strain. Further characterization of the BPH/2J mouse strain is likely to i) elucidate gene defects underlying retinal disease; ii) understand mechanisms leading to neural retinal disease and iii) permit testing of molecules for translational research to interfere with the progression of retinal disease. The animal experiments were performed with the approval of the Royal Perth Hospital Animal Ethics Committee (R535/17-18) on June 1, 2017.
Collapse
Affiliation(s)
- Lakshini Y Herat
- Dobney Hypertension Centre, School of Biomedical Science - Royal Perth Hospital Unit, University of Western Australia, Perth, Australia
| | - Aaron L Magno
- Research Centre, Royal Perth Hospital, Perth, Australia
| | - Márcio G Kiuchi
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit, University of Western Australia, Perth, Australia
| | - Kristy L Jackson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit, University of Western Australia, Perth, Australia
| | - Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit, University of Western Australia; Department of Cardiology and Department of Nephrology, Royal Perth Hospital, Perth, Australia
| | - Vance B Matthews
- Dobney Hypertension Centre, School of Biomedical Science - Royal Perth Hospital Unit, University of Western Australia, Perth, Australia
| |
Collapse
|
25
|
Brown IAM, Diederich L, Good ME, DeLalio LJ, Murphy SA, Cortese-Krott MM, Hall JL, Le TH, Isakson BE. Vascular Smooth Muscle Remodeling in Conductive and Resistance Arteries in Hypertension. Arterioscler Thromb Vasc Biol 2019; 38:1969-1985. [PMID: 30354262 DOI: 10.1161/atvbaha.118.311229] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is a leading cause of death worldwide and accounts for >17.3 million deaths per year, with an estimated increase in incidence to 23.6 million by 2030. 1 Cardiovascular death represents 31% of all global deaths 2 -with stroke, heart attack, and ruptured aneurysms predominantly contributing to these high mortality rates. A key risk factor for cardiovascular disease is hypertension. Although treatment or reduction in hypertension can prevent the onset of cardiovascular events, existing therapies are only partially effective. A key pathological hallmark of hypertension is increased peripheral vascular resistance because of structural and functional changes in large (conductive) and small (resistance) arteries. In this review, we discuss the clinical implications of vascular remodeling, compare the differences between vascular smooth muscle cell remodeling in conductive and resistance arteries, discuss the genetic factors associated with vascular smooth muscle cell function in hypertensive patients, and provide a prospective assessment of current and future research and pharmacological targets for the treatment of hypertension.
Collapse
Affiliation(s)
- Isola A M Brown
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.)
| | - Lukas Diederich
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University, Dusseldorf, Germany (L.D., M.M.C.-K.)
| | - Miranda E Good
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.)
| | - Leon J DeLalio
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.).,Department of Pharmacology (L.J.D.)
| | - Sara A Murphy
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.)
| | - Miriam M Cortese-Krott
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University, Dusseldorf, Germany (L.D., M.M.C.-K.)
| | - Jennifer L Hall
- Lillehei Heart Institute (J.L.H.).,Division of Cardiology, Department of Medicine (J.L.H.), University of Minnesota, Minneapolis.,American Heart Association, Dallas, TX (J.L.H.)
| | - Thu H Le
- Division of Nephrology, Department of Medicine (T.H.L.)
| | - Brant E Isakson
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.).,Department of Molecular Physiology and Biophysics (B.E.I.), University of Virginia School of Medicine, Charlottesville
| |
Collapse
|
26
|
Manosroi W, Williams GH. Genetics of Human Primary Hypertension: Focus on Hormonal Mechanisms. Endocr Rev 2019; 40:825-856. [PMID: 30590482 PMCID: PMC6936319 DOI: 10.1210/er.2018-00071] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023]
Abstract
Increasingly, primary hypertension is being considered a syndrome and not a disease, with the individual causes (diseases) having a common sign-an elevated blood pressure. To determine these causes, genetic tools are increasingly employed. This review identified 62 proposed genes. However, only 21 of them met our inclusion criteria: (i) primary hypertension, (ii) two or more supporting cohorts from different publications or within a single publication or one supporting cohort with a confirmatory genetically modified animal study, and (iii) 600 or more subjects in the primary cohort; when including our exclusion criteria: (i) meta-analyses or reviews, (ii) secondary and monogenic hypertension, (iii) only hypertensive complications, (iv) genes related to blood pressure but not hypertension per se, (v) nonsupporting studies more common than supporting ones, and (vi) studies that did not perform a Bonferroni or similar multiassessment correction. These 21 genes were organized in a four-tiered structure: distant phenotype (hypertension); intermediate phenotype [salt-sensitive (18) or salt-resistant (0)]; subintermediate phenotypes under salt-sensitive hypertension [normal renin (4), low renin (8), and unclassified renin (6)]; and proximate phenotypes (specific genetically driven hypertensive subgroup). Many proximate hypertensive phenotypes had a substantial endocrine component. In conclusion, primary hypertension is a syndrome; many proposed genes are likely to be false positives; and deep phenotyping will be required to determine the utility of genetics in the treatment of hypertension. However, to date, the positive genes are associated with nearly 50% of primary hypertensives, suggesting that in the near term precise, mechanistically driven treatment and prevention strategies for the specific primary hypertension subgroups are feasible.
Collapse
Affiliation(s)
- Worapaka Manosroi
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Division of Endocrinology and Metabolism, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Gordon H Williams
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
27
|
Molecular dissection of box jellyfish venom cytotoxicity highlights an effective venom antidote. Nat Commun 2019; 10:1655. [PMID: 31040274 PMCID: PMC6491561 DOI: 10.1038/s41467-019-09681-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 03/25/2019] [Indexed: 01/11/2023] Open
Abstract
The box jellyfish Chironex fleckeri is extremely venomous, and envenoming causes tissue necrosis, extreme pain and death within minutes after severe exposure. Despite rapid and potent venom action, basic mechanistic insight is lacking. Here we perform molecular dissection of a jellyfish venom-induced cell death pathway by screening for host components required for venom exposure-induced cell death using genome-scale lenti-CRISPR mutagenesis. We identify the peripheral membrane protein ATP2B1, a calcium transporting ATPase, as one host factor required for venom cytotoxicity. Targeting ATP2B1 prevents venom action and confers long lasting protection. Informatics analysis of host genes required for venom cytotoxicity reveal pathways not previously implicated in cell death. We also discover a venom antidote that functions up to 15 minutes after exposure and suppresses tissue necrosis and pain in mice. These results highlight the power of whole genome CRISPR screening to investigate venom mechanisms of action and to rapidly identify new medicines. Box jellyfish venom causes tissue damage, pain, and death through unknown molecular mechanisms. Here, Lau et al. perform a CRISPR screen to identify genes required for venom action and use this information to develop an antidote that blocks venom-induced pain and tissue damage in vivo.
Collapse
|
28
|
Reduced secretion of parathyroid hormone and hypocalcemia in systemic heterozygous ATP2B1-null hypertensive mice. Hypertens Res 2018; 41:699-707. [PMID: 29950683 PMCID: PMC8076045 DOI: 10.1038/s41440-018-0067-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 01/11/2023]
Abstract
The ATP2B1 gene is associated with hypertension. We previously reported that systemic heterozygous ATP2B1-null (ATP2B1+/−) mice exhibited hypertension due to impaired endothelial nitric oxide synthase (eNOS) activity and decreased nitric oxide (NO) production. The ATP2B1 gene encodes plasma membrane calcium ATPase 1 (PMCA1), which has been thought to regulate only intracellular Ca2+ concentration. However, recently, it has been suggested that ATP2B1 works not only at cellular levels, but also throughout the entire body, including in the calcium metabolism, using small intestine-specific ATP2B1 knockout mice. To clarify the roles of ATP2B1 in the entire body and the effects of ATP2B1 on blood pressure, we examined the alterations of calcium related factors in ATP2B1+/− mice. ATP2B1+/− mice exhibited hypocalcemia. The expression of ATP2B1 in the kidney and small intestine decreased, and hypercalciuria was confirmed in ATP2B1+/− mice. The intact-PTH levels were lower, and bone mineral density was increased in these mice. These results suggest that hypocalcemia is mainly a result of inhibited bone resorption without compensation by PTH secretion in the case of ATP2B1 knockout. Moreover, NO production may be affected by reduced PTH secretion, which may cause the increase in vascular contractility in these mice. The ATP2B1 gene is important for not only intra-cellular calcium regulation but also for calcium homeostasis and blood pressure control.
Collapse
|
29
|
Priyadharsini Jayaseelan V, Muthusamy K, Venkatramani S, Arumugam P, Gopalswamy J, Thiagarajan SS. Gender-specific Association of ATP2B1 (rs2681472) Gene Polymorphism with Essential Hypertension in South Indian Population. INT J HUM GENET 2018. [DOI: 10.1080/09723757.2017.1421431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Karthikeyan Muthusamy
- Department of Bioinformatics, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | | | | | - Jayaraman Gopalswamy
- Department of Genetics, Dr. ALM PGIBMS, University of Madras, Taramani, Chennai, Tamil Nadu, India
| | | |
Collapse
|
30
|
Long Y, Chen SW, Gao CL, He XM, Liang GN, Wu J, Jiang CX, Liu X, Wang F, Chen F. ATP2B1 Gene Silencing Increases NO Production Under Basal Conditions Through the Ca 2+/calmodulin/eNOS Signaling Pathway in Endothelial Cells. Hypertens Res 2018; 41:246-252. [PMID: 29416109 DOI: 10.1038/s41440-018-0012-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/19/2017] [Accepted: 07/31/2017] [Indexed: 12/23/2022]
Abstract
Emerging epidemiological and experimental evidence has shown that the ATP2B1 gene is associated with blood pressure control. Impaired eNOS activity and NO production may be among the mechanisms involved. However, little is known about how PMCA1, which is encoded by the ATP2B1 gene, regulates the activity of eNOS and NO production. In the present study, we investigated the role of the ATP2B1 gene in regulating eNOS activity and NO production under basal conditions in HUVECs and explored the mechanisms involved. Silencing ATP2B1 gene expression resulted in higher NO production and eNOS activity under basal conditions in HUVECs. Additionally, ATP2B1 gene silencing resulted in enhanced intracellular calcium concentrations compared to that in the negative siRNA-transfected HUVECs. The enhanced eNOS activity mediated by ATP2B1 gene silencing was Ca2+/calmodulin dependent, as verified by the administration of the calcium chelator BAPTA-AM or the calmodulin-specific antagonist W7. Taken together, silencing ATP2B1 gene expression results in higher NO production and eNOS activity under basal conditions in HUVECs. Furthermore, the enhanced eNOS activity induced by ATP2B1 gene silencing may be mediated via higher levels of intracellular Ca2+, and the effect was confirmed to be dependent on the eNOS-calmodulin interaction.
Collapse
Affiliation(s)
- Yang Long
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.,Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Shao-Wei Chen
- Medical Reproduction Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chen-Lin Gao
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xue-Mei He
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Guan-Nan Liang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jian Wu
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chun-Xia Jiang
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | | | - Fang Wang
- Medical Reproduction Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Feng Chen
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
31
|
Zhu Y, Zhuo J, Li C, Wang Q, Liu X, Ye L. Regulatory network analysis of hypertension and hypotension microarray data from mouse model. Clin Exp Hypertens 2018; 40:631-636. [PMID: 29400567 DOI: 10.1080/10641963.2017.1416120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We aimed to identify the potential genes related to blood pressure regulation and screen target genes for high blood pressure (BPH) and low blood pressure (BPL) treatment. The GSE19817 microarray dataset, which included the aorta, liver, heart, and kidney samples from BPH, BPL, and normotensive mice, was downloaded from the Gene Expression Omnibus. Principal component analysis (PCA) was performed based on the entire expression profile. Differentially expressed genes (DEGs) were screened, followed by pathway enrichment analysis. Finally, gene regulatory networks were constructed based on BPH-related and BPL-related DEGs in the aorta, liver, heart, and kidney samples. As a result, DEGs were screened within their respective tissues due to high heterogeneity of different tissues. Totally, 2,726 BPH-related DEGs and 2,472 BPL-related DEGs were screened, which were mainly enriched in pathways such as immune response. The topology data of gene regulatory networks constructed by DEGs in the heart, kidney, and liver were similar than that in aorta. Finally, among BPH-related DEGs, Sept6 and Pigx were found in the top 10 differentially regulated DEGs by comparing the BPH-related DEGs of the aorta with the DEGs of the other 3 tissues in the regulatory network. Although among the top 10 differentially regulated BPL-related DEGs, no common differentially regulated DEGs were found, Wif1, Urb2, and Gtf2ird1 were found among the top ten DEGs in the three tissues other than the kidney tissue. Sept6 and Pigx might participate in the pathogenesis of BPH, whereas Gtf2ird1, Urb2, and Wif1 might be critical target genes for BPL treatment.
Collapse
Affiliation(s)
- Yanli Zhu
- a Department of Cardiology , Shandong Provincial Hospital affiliated to Shandong University , Jinan City , China
| | - Jingming Zhuo
- a Department of Cardiology , Shandong Provincial Hospital affiliated to Shandong University , Jinan City , China
| | - Chunmei Li
- a Department of Cardiology , Shandong Provincial Hospital affiliated to Shandong University , Jinan City , China
| | - Qian Wang
- a Department of Cardiology , Shandong Provincial Hospital affiliated to Shandong University , Jinan City , China
| | - Xuefei Liu
- a Department of Cardiology , Shandong Provincial Hospital affiliated to Shandong University , Jinan City , China
| | - Lin Ye
- a Department of Cardiology , Shandong Provincial Hospital affiliated to Shandong University , Jinan City , China
| |
Collapse
|
32
|
The PMCA pumps in genetically determined neuronal pathologies. Neurosci Lett 2018; 663:2-11. [DOI: 10.1016/j.neulet.2017.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022]
|
33
|
Azam AB, Azizan EAB. Brief Overview of a Decade of Genome-Wide Association Studies on Primary Hypertension. Int J Endocrinol 2018; 2018:7259704. [PMID: 29666641 PMCID: PMC5831899 DOI: 10.1155/2018/7259704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 12/12/2017] [Indexed: 12/29/2022] Open
Abstract
Primary hypertension is widely believed to be a complex polygenic disorder with the manifestation influenced by the interactions of genomic and environmental factors making identification of susceptibility genes a major challenge. With major advancement in high-throughput genotyping technology, genome-wide association study (GWAS) has become a powerful tool for researchers studying genetically complex diseases. GWASs work through revealing links between DNA sequence variation and a disease or trait with biomedical importance. The human genome is a very long DNA sequence which consists of billions of nucleotides arranged in a unique way. A single base-pair change in the DNA sequence is known as a single nucleotide polymorphism (SNP). With the help of modern genotyping techniques such as chip-based genotyping arrays, thousands of SNPs can be genotyped easily. Large-scale GWASs, in which more than half a million of common SNPs are genotyped and analyzed for disease association in hundreds of thousands of cases and controls, have been broadly successful in identifying SNPs associated with heart diseases, diabetes, autoimmune diseases, and psychiatric disorders. It is however still debatable whether GWAS is the best approach for hypertension. The following is a brief overview on the outcomes of a decade of GWASs on primary hypertension.
Collapse
Affiliation(s)
- Afifah Binti Azam
- Department of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Elena Aisha Binti Azizan
- Department of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
The effects of anti-hypertensive drugs and the mechanism of hypertension in vascular smooth muscle cell-specific ATP2B1 knockout mice. Hypertens Res 2017; 41:80-87. [PMID: 29046519 PMCID: PMC5811637 DOI: 10.1038/hr.2017.92] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/21/2017] [Accepted: 07/27/2017] [Indexed: 01/11/2023]
Abstract
ATP2B1 is a gene associated with hypertension. We reported previously that mice lacking ATP2B1 in vascular smooth muscle cells (VSMC ATP2B1 KO mice) exhibited high blood pressure and increased intracellular calcium concentration. The present study was designed to investigate whether lack of the ATP2B1 gene causes a higher response to calcium channel blockers (CCBs) than to other types of anti-hypertensive drugs. Both VSMC ATP2B1 KO and control mice were administered anti-hypertensive drugs while monitoring blood pressure shifts. We also examined the association of nitric oxide synthase (NOS) activity in those mice to investigate whether another mechanism of hypertension existed. VSMC ATP2B1 KO mice exhibited significantly greater anti-hypertensive effects with a single injection of nicardipine, but the effects of an angiotensin II receptor blocker (ARB), an α-blocker and amlodipine on blood pressure were all similar to control mice. However, long-term treatment with amlodipine, but not an ARB, significantly decreased the blood pressure of KO mice compared with control mice. Both mRNA and protein expression levels of the L-type calcium channel were significantly upregulated in KO VSMCs. There were no alterations in neural NOS protein expression of VSMCs or in urinary NO production between the two groups. VSMC ATP2B1 KO mice had a higher response to CCBs for blood pressure-lowering effects than other anti-hypertensive drugs. These results mean that increased intracellular calcium concentration in VSMCs due to lack of ATP2B1 and subsequent activation of L-type calcium channels mainly affects blood pressure and suggests increased susceptibility to CCBs in this type of hypertension.
Collapse
|
35
|
Little R, Zi M, Hammad SK, Nguyen L, Njegic A, Kurusamy S, Prehar S, Armesilla AL, Neyses L, Austin C, Cartwright EJ. Reduced expression of PMCA1 is associated with increased blood pressure with age which is preceded by remodelling of resistance arteries. Aging Cell 2017; 16:1104-1113. [PMID: 28795531 PMCID: PMC5595685 DOI: 10.1111/acel.12637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2017] [Indexed: 01/11/2023] Open
Abstract
Hypertension is a well‐established risk factor for adverse cardiovascular events, and older age is a risk factor for the development of hypertension. Genomewide association studies have linked ATP2B1, the gene for the plasma membrane calcium ATPase 1 (PMCA1), to blood pressure (BP) and hypertension. Here, we present the effects of reduction in the expression of PMCA1 on BP and small artery structure and function when combined with advancing age. Heterozygous PMCA1 null mice (PMCA1Ht) were generated and conscious BP was measured at 6 to 18 months of age. Passive and active properties of isolated small mesenteric arteries were examined by pressure myography. PMCA1Ht mice exhibited normal BP at 6 and 9 months of age but developed significantly elevated BP when compared to age‐matched wild‐type controls at ≥12 months of age. Decreased lumen diameter, increased wall thickness and increased wall:lumen ratio were observed in small mesenteric arteries from animals 9 months of age and older, indicative of eutrophic remodelling. Increases in mesenteric artery intrinsic tone and global intracellular calcium were evident in animals at both 6 and 18 months of age. Thus, decreased expression of PMCA1 is associated with increased BP when combined with advancing age. Changes in arterial structure precede the elevation of BP. Pathways involving PMCA1 may be a novel target for BP regulation in the elderly.
Collapse
Affiliation(s)
- Robert Little
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
- School of Food Science and Nutrition; The University of Leeds; Leeds LS2 9JT UK
| | - Min Zi
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
| | - Sally K. Hammad
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
- Department of Biochemistry; Faculty of Pharmacy; Zagazig University; Zagazig 44519 Egypt
| | - Loan Nguyen
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
| | - Alexandra Njegic
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
| | - Sathishkumar Kurusamy
- Research Institute in Healthcare Science; School of Pharmacy; University of Wolverhampton; Wolverhampton WV1 1LY UK
| | - Sukhpal Prehar
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
| | - Angel L. Armesilla
- Research Institute in Healthcare Science; School of Pharmacy; University of Wolverhampton; Wolverhampton WV1 1LY UK
| | - Ludwig Neyses
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
- University of Luxembourg; Avenue de l'Universite Esch-sur-Alzette L-4365 Luxembourg
| | - Clare Austin
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
- Faculty of Health and Social Care; Edge Hill University; Lancashire L39 4QP UK
| | - Elizabeth J. Cartwright
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
| |
Collapse
|
36
|
Masukawa D, Koga M, Sezaki A, Nakao Y, Kamikubo Y, Hashimoto T, Okuyama-Oki Y, Aladeokin AC, Nakamura F, Yokoyama U, Wakui H, Ichinose H, Sakurai T, Umemura S, Tamura K, Ishikawa Y, Goshima Y. L-DOPA sensitizes vasomotor tone by modulating the vascular alpha1-adrenergic receptor. JCI Insight 2017; 2:90903. [PMID: 28931752 DOI: 10.1172/jci.insight.90903] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 08/15/2017] [Indexed: 11/17/2022] Open
Abstract
Blood pressure is regulated by extrinsic factors including noradrenaline, the sympathetic neurotransmitter that controls cardiovascular functions through adrenergic receptors. However, the fine-tuning system of noradrenaline signaling is relatively unknown. We here show that l-3,4-dihydroxyphenylalanine (L-DOPA), a precursor of catecholamines, sensitizes the vascular adrenergic receptor alpha1 (ADRA1) through activation of L-DOPA receptor GPR143. In WT mice, intravenous infusion of the ADRA1 agonist phenylephrine induced a transient elevation of blood pressure. This response was attenuated in Gpr143 gene-deficient (Gpr143-/y) mice. Specific knockout of Gpr143 in vascular smooth muscle cells (VSMCs) also showed a similar phenotype, indicating that L-DOPA directly modulates ADRA1 signaling in the VSMCs. L-DOPA at nanomolar concentrations alone produced no effect on the VSMCs, but it enhanced phenylephrine-induced vasoconstriction and intracellular Ca2+ responses. Phenylephrine also augmented the phosphorylation of extracellular signal-regulated kinases in cultured VSMCs from WT but not Gpr143-/y mice. In WT mice, blood pressure increased during the transition from light-rest to dark-active phases. This elevation was not observed in Gpr143-/y mice. Taken together, our findings provide evidence for L-DOPA/GPR143 signaling that exerts precursor control of sympathetic neurotransmission through sensitizing vascular ADRA1.
Collapse
Affiliation(s)
- Daiki Masukawa
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Motokazu Koga
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Anna Sezaki
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuka Nakao
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuji Kamikubo
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tatsuo Hashimoto
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Medical Science and Cardiorenal Medicine, and
| | | | - Aderemi Caleb Aladeokin
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumio Nakamura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Hiroshi Ichinose
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
37
|
Long Y, Xia JY, Chen SW, Gao CL, Liang GN, He XM, Wu J, Jiang CX, Liu X, Huang W, Wan Q, Xu Y. ATP2B1 gene Silencing Increases Insulin Sensitivity through Facilitating Akt Activation via the Ca 2+/calmodulin Signaling Pathway and Ca 2+-associated eNOS Activation in Endothelial Cells. Int J Biol Sci 2017; 13:1203-1212. [PMID: 29104511 PMCID: PMC5666335 DOI: 10.7150/ijbs.19666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/28/2017] [Indexed: 01/11/2023] Open
Abstract
Endothelial cell insulin resistance may be partially responsible for the higher risk of atherosclerosis and cardiovascular disease in populations with insulin resistance and type 2 diabetes mellitus (T2DM). A genome-wide association study revealed a significant association between the ATPase plasma membrane Ca2+ transporting 1 (ATP2B1) gene and T2DM in two community-based cohorts from the Korea Association Resource Project. However, little is known about the implication of the ATP2B1 gene on T2DM. In the present study, we investigated the role of the ATP2B1 gene in endothelial cell insulin sensitivity. ATP2B1 gene silencing resulted in enhanced intracellular calcium concentrations and increased insulin-induced Akt activation compared to that in the negative siRNA-transfected HUVECs (Human Umbilical Vein Endothelial Cells). The elevated insulin sensitivity mediated by ATP2B1 gene silencing was Ca2+/calmodulin-dependent, as verified by administration of the calcium chelator BAPTA-AM or the calmodulin-specific antagonist W7. Moreover, higher levels of phosphorylation of eNOS (Ser1177) were observed in ATP2B1-silenced HUVECs. In addition to BAPTA-AM and W7, L-NAME, an eNOS antagonist, abolished insulin-induced Akt phosphorylation at Ser473 in both si-Neg and si-ATP2B1-transfected endothelial cells. These results indicate that the enhanced insulin sensitivity in ATP2B1-silenced endothelial cells is alternatively dependent on an increase in intracellular Ca2+ and the subsequent activation of the Ca2+/calmodulin/eNOS/Akt signaling pathway. In summary, ATP2B1 gene silencing increased insulin sensitivity in endothelial cells by directly modulating the Ca2+/calmodulin signaling pathway and via the Ca2+/calmodulin/eNOS/Akt signaling pathway alternatively.
Collapse
Affiliation(s)
- Yang Long
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, P R China.,Laboratory of Endocrinology, Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, P R China
| | - Ji-Yi Xia
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, P R China
| | - Shao-Wei Chen
- Medical Reproduction Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, P R China
| | - Chen-Lin Gao
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, P R China
| | - Guan-Nan Liang
- Laboratory of Endocrinology, Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, P R China
| | - Xue-Mei He
- Laboratory of Endocrinology, Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, P R China
| | - Jian Wu
- Laboratory of Endocrinology, Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, P R China
| | - Chun-Xia Jiang
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, P R China
| | - Xin Liu
- Laboratory of Endocrinology, Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, P R China
| | - Wei Huang
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, P R China
| | - Qin Wan
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, P R China
| | - Yong Xu
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, P R China.,Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, P R China
| |
Collapse
|
38
|
Hypertension Susceptibility Loci are Associated with Anthracycline-related Cardiotoxicity in Long-term Childhood Cancer Survivors. Sci Rep 2017; 7:9698. [PMID: 28851949 PMCID: PMC5575079 DOI: 10.1038/s41598-017-09517-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/21/2017] [Indexed: 01/25/2023] Open
Abstract
Anthracycline-based chemotherapy is associated with dose-dependent, irreversible damage to the heart. Childhood cancer survivors with hypertension after anthracycline exposure are at increased risk of cardiotoxicity, leading to the hypothesis that genetic susceptibility loci for hypertension may serve as predictors for development of late cardiotoxicity. Therefore, we determined the association between 12 GWAS-identified hypertension-susceptibility loci and cardiotoxicity in a cohort of long-term childhood cancer survivors (N = 108) who received anthracyclines and were screened for cardiac function via echocardiograms. Hypertension-susceptibility alleles of PLCE1:rs9327264 and ATP2B1:rs17249754 were significantly associated with cardiotoxicity risk conferring a protective effect with a 64% (95% CI: 0.18–0.76, P = 0.0068) and 74% (95% CI: 0.07–0.96, P = 0.040) reduction in risk, respectively. In RNAseq experiments of human induced pluripotent stem cell (iPSC) derived cardiomyocytes treated with doxorubicin, both PLCE1 and ATP2B1 displayed anthracycline-dependent gene expression profiles. In silico functional assessment further supported this relationship - rs9327264 in PLCE1 (P = 0.0080) and ATP2B1 expression (P = 0.0079) were both significantly associated with daunorubicin IC50 values in a panel of lymphoblastoid cell lines. Our findings demonstrate that the hypertension-susceptibility variants in PLCE1 and ATP2B1 confer a protective effect on risk of developing anthracycline-related cardiotoxicity, and functional analyses suggest that these genes are influenced by exposure to anthracyclines.
Collapse
|
39
|
Stafford N, Wilson C, Oceandy D, Neyses L, Cartwright EJ. The Plasma Membrane Calcium ATPases and Their Role as Major New Players in Human Disease. Physiol Rev 2017; 97:1089-1125. [PMID: 28566538 DOI: 10.1152/physrev.00028.2016] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
The Ca2+ extrusion function of the four mammalian isoforms of the plasma membrane calcium ATPases (PMCAs) is well established. There is also ever-increasing detail known of their roles in global and local Ca2+ homeostasis and intracellular Ca2+ signaling in a wide variety of cell types and tissues. It is becoming clear that the spatiotemporal patterns of expression of the PMCAs and the fact that their abundances and relative expression levels vary from cell type to cell type both reflect and impact on their specific functions in these cells. Over recent years it has become increasingly apparent that these genes have potentially significant roles in human health and disease, with PMCAs1-4 being associated with cardiovascular diseases, deafness, autism, ataxia, adenoma, and malarial resistance. This review will bring together evidence of the variety of tissue-specific functions of PMCAs and will highlight the roles these genes play in regulating normal physiological functions and the considerable impact the genes have on human disease.
Collapse
Affiliation(s)
- Nicholas Stafford
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Claire Wilson
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Ludwig Neyses
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
40
|
Wakui H, Sumida K, Fujita M, Ohtomo Y, Ohsawa M, Kobayashi R, Uneda K, Azushima K, Haruhara K, Yatsu K, Hirawa N, Minegishi S, Ishigami T, Umemura S, Tamura K. Enhancement of intrarenal plasma membrane calcium pump isoform 1 expression in chronic angiotensin II-infused mice. Physiol Rep 2017; 5:5/11/e13316. [PMID: 28611155 PMCID: PMC5471448 DOI: 10.14814/phy2.13316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 12/24/2022] Open
Abstract
Plasma membrane calcium pump isoform 1 (PMCA1) is encoded by ATPase plasma membrane Ca2+transporting 1 (ATP2B1), the most likely candidate gene responsible for hypertension. Although PMCA1 is highly expressed in the kidney, little is known about regulation of its renal expression in various pathological conditions in vivo. Our study was designed to elucidate regulation of renal PMCA1 expression in mice. We employed three mouse models for kidney disease. These were the unilateral ureteral obstruction (UUO), the remnant kidney using 5/6 nephrectomy, and chronic angiotensin II administration models. Mice were assessed for systolic blood pressure and renal injury in accordance with the damage induced in the specific model. Kidney PMCA1 mRNA levels were measured in all mice. The UUO model showed renal fibrosis but no changes in blood pressure or renal PMCA1 mRNA expression. Similarly, the 5/6 nephrectomy model exhibited declined renal function without changes in blood pressure or renal PMCA1 mRNA expression. In contrast, chronic angiotensin II administration increased albuminuria and blood pressure as well as significantly increasing renal PMCA1 mRNA and protein expression. These results suggest that renal PMCA1 has a role as one of the molecules involved in angiotensin II-induced hypertension and kidney injury.
Collapse
Affiliation(s)
- Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Koichiro Sumida
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Megumi Fujita
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yuta Ohtomo
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Masato Ohsawa
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Ryu Kobayashi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kazushi Uneda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kotaro Haruhara
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Keisuke Yatsu
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Nobuhito Hirawa
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Shintaro Minegishi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Tomoaki Ishigami
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Satoshi Umemura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
41
|
Brini M, Carafoli E, Calì T. The plasma membrane calcium pumps: focus on the role in (neuro)pathology. Biochem Biophys Res Commun 2017; 483:1116-1124. [DOI: 10.1016/j.bbrc.2016.07.117] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022]
|
42
|
Lee S, Kim SH, Shin C. Interaction according to urinary sodium excretion level on the association between ATP2B1 rs17249754 and incident hypertension: the Korean genome epidemiology study. Clin Exp Hypertens 2016; 38:352-8. [DOI: 10.3109/10641963.2015.1116544] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Sunghee Lee
- Institute of Human Genomic Study, Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Gyeonggi, South Korea
| | - Seong Hwan Kim
- Division of Cardiology, Korea University Ansan Hospital, Ansan, Gyeonggi, South Korea
| | - Chol Shin
- Institute of Human Genomic Study, Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Gyeonggi, South Korea
- Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Gyeonggi, South Korea
| |
Collapse
|
43
|
Little R, Cartwright EJ, Neyses L, Austin C. Plasma membrane calcium ATPases (PMCAs) as potential targets for the treatment of essential hypertension. Pharmacol Ther 2016; 159:23-34. [PMID: 26820758 DOI: 10.1016/j.pharmthera.2016.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The incidence of hypertension, the major modifiable risk factor for cardiovascular disease, is increasing. Thus, there is a pressing need for the development of new and more effective strategies to prevent and treat hypertension. Development of these relies on a continued evolution of our understanding of the mechanisms which control blood pressure (BP). Resistance arteries are important in the regulation of total peripheral resistance and BP; changes in their structure and function are strongly associated with hypertension. Anti-hypertensives which both reduce BP and reverse changes in resistance arterial structure reduce cardiovascular risk more than therapies which reduce BP alone. Hence, identification of novel potential vascular targets which modify BP is important. Hypertension is a multifactorial disorder which may include a genetic component. Genome wide association studies have identified ATP2B1, encoding the calcium pump plasma membrane calcium ATPase 1 (PMCA1), as having a strong association with BP and hypertension. Knockdown or reduced PMCA1 expression in mice has confirmed a physiological role for PMCA1 in BP and resistance arterial regulation. Altered expression or inhibition of PMCA4 has also been shown to modulate these parameters. The mechanisms whereby PMCA1 and 4 can modulate vascular function remain to be fully elucidated but may involve regulation of intracellular calcium homeostasis and/or comprise a structural role. However, clear physiological links between PMCA and BP, coupled with experimental studies directly linking PMCA1 and 4 to changes in BP and arterial function, suggest that they may be important targets for the development of new pharmacological modulators of BP.
Collapse
Affiliation(s)
- Robert Little
- The Institute of Cardiovascular Sciences, The University of Manchester, UK
| | | | - Ludwig Neyses
- The Institute of Cardiovascular Sciences, The University of Manchester, UK
| | - Clare Austin
- Faculty of Health and Social Care, Edge Hill University, UK.
| |
Collapse
|
44
|
Xu J, Qian HX, Hu SP, Liu LY, Zhou M, Feng M, Su J, Ji LD. Gender-Specific Association of ATP2B1 Variants with Susceptibility to Essential Hypertension in the Han Chinese Population. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1910565. [PMID: 26933664 PMCID: PMC4737061 DOI: 10.1155/2016/1910565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/10/2015] [Accepted: 12/20/2015] [Indexed: 12/28/2022]
Abstract
Previous genome-wide association studies (GWASs) found that several ATP2B1 variants are associated with essential hypertension (EHT). But the "genome-wide significant" ATP2B1 SNPs (rs2681472, rs2681492, rs17249754, and rs1105378) are in strong linkage disequilibrium (LD) and are located in the same LD block in Chinese populations. We asked whether there are other SNPs within the ATP2B1 gene associated with susceptibility to EHT in the Han Chinese population. Therefore, we performed a case-control study to investigate the association of seven tagSNPs within the ATP2B1 gene and EHT in the Han Chinese population, and we then analyzed the interaction among different SNPs and nongenetic risk factors for EHT. A total of 902 essential hypertensive cases and 902 normotensive controls were involved in the study. All 7 tagSNPs within the ATP2B1 gene were retrieved from HapMap, and genotyping was performed using the Tm-shift genotyping method. Chi-squared test, logistic regression, and propensity score analysis showed that rs17249754 was associated with EHT, particularly in females. The MDR analysis demonstrated that the interaction of rs2070759, rs17249754, TC, TG, and BMI increased the susceptibility to hypertension. Crossover analysis and stratified analysis indicated that BMI has a major effect on the development of hypertension, while ATP2B1 variants have a minor effect.
Collapse
Affiliation(s)
- Jin Xu
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Hai-xia Qian
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Su-pei Hu
- Department of Research and Teaching, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Li-ya Liu
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Mi Zhou
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Mei Feng
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Jia Su
- Department of Gerontology, Ningbo No. 1 Hospital, Ningbo 315010, China
| | - Lin-dan Ji
- Department of Biochemistry, School of Medicine, Ningbo University, Ningbo 315211, China
| |
Collapse
|
45
|
Multifaceted plasma membrane Ca(2+) pumps: From structure to intracellular Ca(2+) handling and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1351-63. [PMID: 26707182 DOI: 10.1016/j.bbamcr.2015.12.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/25/2015] [Accepted: 12/12/2015] [Indexed: 11/20/2022]
Abstract
Plasma membrane Ca(2+) ATPases (PMCAs) are intimately involved in the control of intracellular Ca(2+) concentration. They reduce Ca(2+) in the cytosol not only by direct ejection, but also by controlling the formation of inositol-1,4,5-trisphosphate and decreasing Ca(2+) release from the endoplasmic reticulum Ca(2+) pool. In mammals four genes (PMCA1-4) are expressed, and alternative RNA splicing generates more than twenty variants. The variants differ in their regulatory characteristics. They localize into highly specialized membrane compartments and respond to the incoming Ca(2+) with distinct temporal resolution. The expression pattern of variants depends on cell type; a change in this pattern can result in perturbed Ca(2+) homeostasis and thus altered cell function. Indeed, PMCAs undergo remarkable changes in their expression pattern during tumorigenesis that might significantly contribute to the unbalanced Ca(2+) homeostasis of cancer cells. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.
Collapse
|
46
|
Tsai TY, Lou SL, Cheng KS, Wong KL, Wang ML, Su TH, Chan P, Leung YM. Repressed Ca2+ clearance in parthenolide-treated murine brain bEND.3 endothelial cells. Eur J Pharmacol 2015; 769:280-6. [DOI: 10.1016/j.ejphar.2015.11.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 11/15/2015] [Accepted: 11/18/2015] [Indexed: 12/19/2022]
|
47
|
Dang D, Rao R. Calcium-ATPases: Gene disorders and dysregulation in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1344-50. [PMID: 26608610 DOI: 10.1016/j.bbamcr.2015.11.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/08/2015] [Accepted: 11/18/2015] [Indexed: 12/14/2022]
Abstract
Ca(2+)-ATPases belonging to the superfamily of P-type pumps play an important role in maintaining low, nanomolar cytoplasmic Ca(2+) levels at rest and priming organellar stores, including the endoplasmic reticulum, Golgi, and secretory vesicles with high levels of Ca(2+) for a wide range of signaling functions. In this review, we introduce the distinct subtypes of Ca(2+)-ATPases and their isoforms and splice variants and provide an overview of their specific cellular roles as they relate to genetic disorders and cancer, with a particular emphasis on recent findings on the secretory pathway Ca(2+)-ATPases (SPCA). Mutations in human ATP2A2, ATP2C1 genes, encoding housekeeping isoforms of the endoplasmic reticulum (SERCA2) and secretory pathway (SPCA1) pumps, respectively, confer autosomal dominant disorders of the skin, whereas mutations in other isoforms underlie various muscular, neurological, or developmental disorders. Emerging evidence points to an important function of dysregulated Ca(2+)-ATPase expression in cancers of the colon, lung, and breast where they may serve as markers of differentiation or novel targets for therapeutic intervention. We review the mechanisms underlying the link between calcium homeostasis and cancer and discuss the potential clinical relevance of these observations. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.
Collapse
Affiliation(s)
- Donna Dang
- Department of Physiology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
48
|
Strehler EE. Plasma membrane calcium ATPases: From generic Ca(2+) sump pumps to versatile systems for fine-tuning cellular Ca(2.). Biochem Biophys Res Commun 2015; 460:26-33. [PMID: 25998731 DOI: 10.1016/j.bbrc.2015.01.121] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/21/2015] [Indexed: 10/23/2022]
Abstract
The plasma membrane calcium ATPases (PMCAs) are ATP-driven primary ion pumps found in all eukaryotic cells. They are the major high-affinity calcium extrusion system for expulsion of Ca(2+) ions from the cytosol and help restore the low resting levels of intracellular [Ca(2+)] following the temporary elevation of Ca(2+) generated during Ca(2+) signaling. Due to their essential role in the maintenance of cellular Ca(2+) homeostasis they were initially thought to be "sump pumps" for Ca(2+) removal needed by all cells to avoid eventual calcium overload. The discovery of multiple PMCA isoforms and alternatively spliced variants cast doubt on this simplistic assumption, and revealed instead that PMCAs are integral components of highly regulated multi-protein complexes fulfilling specific roles in calcium-dependent signaling originating at the plasma membrane. Biochemical, genetic, and physiological studies in gene-manipulated and mutant animals demonstrate the important role played by specific PMCAs in distinct diseases including those affecting the peripheral and central nervous system, cardiovascular disease, and osteoporosis. Human PMCA gene mutations and allelic variants associated with specific disorders continue to be discovered and underline the crucial role of different PMCAs in particular cells, tissues and organs.
Collapse
Affiliation(s)
- Emanuel E Strehler
- Department of Biochemistry and Molecular Biology, Guggenheim 16-11A1, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
49
|
Impaired nitric oxide production and increased blood pressure in systemic heterozygous ATP2B1 null mice. J Hypertens 2015; 32:1415-23; discussion 1423. [PMID: 24805951 DOI: 10.1097/hjh.0000000000000206] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND In the 'Millennium Genome Project', we identified ATP2B1 as a gene responsible for hypertension through single-nucleotide polymorphism analysis. The ATP2B1 gene encodes the plasma membrane calcium ATPase isoform 1, which contributes to the maintenance of intracellular calcium homeostasis by removing calcium ions. METHOD Since ATP2B1 knockout mice are reported to be embryo-lethal, we generated systemic heterozygous ATP2B1 null (ATP2B1(+/-)) mice, and evaluated the implication of ATP2B1 in blood pressure. RESULTS ATP2B1(+/-) mice revealed significantly higher SBP as measured by a radiotelemetric method. Phenylephrine-induced vasoconstriction was significantly increased in vascular rings from ATP2B1(+/-) mice, and the difference in this contraction disappeared in the presence of a nitric oxide synthase (NOS) inhibitor. Vasorelaxation to acetylcholine was significantly attenuated in vascular rings from ATP2B1(+/-) mice. In addition, cultured endothelial cells of ATP2B1(+/-) mice showed that the phosphorylation (Ser-1177) level of endothelial NOS protein was significantly lower, and nitric oxide production in endothelial cells and aorta was lower compared with those in control mice. In contrast, neural NOS expression in vascular smooth muscle cells from ATP2B1(+/-) mice and control mice were not significantly different. CONCLUSION These results suggest that decreased ATP2B1 gene expression is associated with impaired endothelial NOS activity and nitric oxide production, and the ATP2B1 gene plays a crucial role in the regulation of blood pressure.
Collapse
|
50
|
Cabrera CP, Ng FL, Warren HR, Barnes MR, Munroe PB, Caulfield MJ. Exploring hypertension genome-wide association studies findings and impact on pathophysiology, pathways, and pharmacogenetics. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:73-90. [DOI: 10.1002/wsbm.1290] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/25/2014] [Accepted: 01/05/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Claudia P Cabrera
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
- NIHR Barts Cardiovascular Biomedical Research Unit; Queen Mary University of London; London UK
| | - Fu Liang Ng
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
| | - Helen R Warren
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
- NIHR Barts Cardiovascular Biomedical Research Unit; Queen Mary University of London; London UK
| | - Michael R Barnes
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
- NIHR Barts Cardiovascular Biomedical Research Unit; Queen Mary University of London; London UK
| | - Patricia B Munroe
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
- NIHR Barts Cardiovascular Biomedical Research Unit; Queen Mary University of London; London UK
| | - Mark J Caulfield
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
- NIHR Barts Cardiovascular Biomedical Research Unit; Queen Mary University of London; London UK
| |
Collapse
|