1
|
Fan JF, Tan X, Wang W, Li JK, Xiao YC, Wang WZ, Wang YK. Janus Kinase 2/Signal Transducer and Activator of Transcription 3/Cyclooxygenase 2 Signaling Pathway Mediates the Effect of Central Angiotensin II on the Elevation of Rostral Ventrolateral Medulla Prostaglandin E 2-Induced Oxidative Stress in Hypertension. J Am Heart Assoc 2025; 14:e036762. [PMID: 39817553 DOI: 10.1161/jaha.124.036762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/27/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND Prostaglandin E2 (PGE2) in the rostral ventrolateral medulla (RVLM) has been recognized as a pivotal pressor substance in hypertension, yet understanding of its effects and origins in the RVLM remains largely elusive. This study aimed to elucidate the pivotal enzymes and molecular mechanisms underlying PGE2 synthesis induced by central Ang II (angiotensin II) and its implications in the heightened oxidative stress and sympathetic outflow in hypertension. METHODS AND RESULTS RVLM microinjections of PGE2 and Tempol were administered in Wistar-Kyoto rats. Intracisternal drug delivery and adeno-associated viral vectors microinjection were used in both Wistar-Kyoto rats and spontaneous hypertensive rats to modulate the function of Ang II, PGE2 receptor 3, and expression of COX2 (cyclooxygenase 2). Microinjection of PGE2 into the RVLM significantly augmented sympathetic activity (25.380±1.566%) and oxidative stress level, whereas intracisternal infusion of a prostaglandin E receptor 3 antagonist attenuated sympathetic activity in both spontaneous hypertensive rats and Ang II-induced hypertensive rats. Furthermore, Ang II treatment upregulated COX2 expression in RVLM neurons (1.000±0.112 versus 1.506±0.370 fold change), with no significant effect on other enzymes involved in PGE2 synthesis. Additionally, inhibition of the JAK2/STAT3 (Janus kinase 2/signal transducer and activator of transcription 3) signaling pathway nullified Ang II-mediated elevation of COX2 expression, as evidenced by phosphorylated STAT3 binding to the COX2 sequence in PC12 cells. CONCLUSIONS Central Ang II induces the accumulation of RVLM PGE2 through the neuronal AT1R (angiotensin type 1 receptor)/JAK2/STAT3/COX2 pathway, thereby promoting oxidative stress, augmenting sympathetic outflow, and contributing to essential hypertension.
Collapse
Affiliation(s)
- Jie-Fu Fan
- Naval Medical Center of PLA Naval Medical University (Second Military Medical University) Shanghai China
| | - Xing Tan
- Naval Medical Center of PLA Naval Medical University (Second Military Medical University) Shanghai China
| | - Wen Wang
- Naval Medical Center of PLA Naval Medical University (Second Military Medical University) Shanghai China
| | - Ji-Kui Li
- Naval Medical Center of PLA Naval Medical University (Second Military Medical University) Shanghai China
| | - Yu-Chen Xiao
- Naval Medical Center of PLA Naval Medical University (Second Military Medical University) Shanghai China
| | - Wei-Zhong Wang
- Naval Medical Center of PLA Naval Medical University (Second Military Medical University) Shanghai China
| | - Yang-Kai Wang
- Naval Medical Center of PLA Naval Medical University (Second Military Medical University) Shanghai China
| |
Collapse
|
2
|
Xu L, Yang Q, Zhou J. Mechanisms of Abnormal Lipid Metabolism in the Pathogenesis of Disease. Int J Mol Sci 2024; 25:8465. [PMID: 39126035 PMCID: PMC11312913 DOI: 10.3390/ijms25158465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Lipid metabolism is a critical component in preserving homeostasis and health, and lipids are significant chemicals involved in energy metabolism in living things. With the growing interest in lipid metabolism in recent years, an increasing number of studies have demonstrated the close relationship between abnormalities in lipid metabolism and the development of numerous human diseases, including cancer, cardiovascular, neurological, and endocrine system diseases. Thus, understanding how aberrant lipid metabolism contributes to the development of related diseases and how it works offers a theoretical foundation for treating and preventing related human diseases as well as new avenues for the targeted treatment of related diseases. Therefore, we discuss the processes of aberrant lipid metabolism in various human diseases in this review, including diseases of the cardiovascular system, neurodegenerative diseases, endocrine system diseases (such as obesity and type 2 diabetes mellitus), and other diseases including cancer.
Collapse
Affiliation(s)
| | | | - Jinghua Zhou
- School of Basic Medicine Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
3
|
Kubota H, Kunisawa K, Wulaer B, Hasegawa M, Kurahashi H, Sakata T, Tezuka H, Kugita M, Nagao S, Nagai T, Furuyashiki T, Narumiya S, Saito K, Nabeshima T, Mouri A. High salt induces cognitive impairment via the interaction of the angiotensin II-AT 1 and prostaglandin E2-EP 1 systems. Br J Pharmacol 2023; 180:2393-2411. [PMID: 37076133 DOI: 10.1111/bph.16093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND AND PURPOSE High salt (HS) intake has been associated with hypertension and cognitive impairment. It is well known that the angiotensin II (Ang II)-AT1 receptor and prostaglandin E2 (PGE2)-EP1 receptor systems are involved in hypertension and neurotoxicity. However, the involvement of these systems in HS-mediated hypertension and emotional and cognitive impairments remains unclear. EXPERIMENTAL APPROACH Mice were loaded with HS solution (2% NaCl drinking water) for 12 weeks, and blood pressure was monitored. Subsequently, effects of HS intake on emotional and cognitive function and tau phosphorylation in the prefrontal cortex (PFC) and hippocampus (HIP) were investigated. The involvement of Ang II-AT1 and PGE2-EP1 systems in HS-induced hypertension and neuronal and behavioural impairments was examined by treatment with losartan, an AT1 receptor blocker (ARB), or EP1 gene knockout. KEY RESULTS We demonstrate that hypertension and impaired social behaviour and object recognition memory following HS intake may be associated with tau hyperphosphorylation, decreased phosphorylation of Ca2+ /calmodulin-dependent protein kinase II (CaMKII), and postsynaptic density protein 95 (PSD95) expression in the PFC and HIP of mice. These changes were blocked by pharmacological treatment with losartan or EP1 receptor gene knockout. CONCLUSIONS AND IMPLICATIONS Our findings suggest that the interaction of Ang II-AT1 receptor and PGE2-EP1 receptor systems could be novel therapeutic targets for hypertension-induced cognitive impairment.
Collapse
Affiliation(s)
- Hisayoshi Kubota
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Toyoake, Aichi, Japan
| | - Kazuo Kunisawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Toyoake, Aichi, Japan
| | - Bolati Wulaer
- Laboratory of Health and Medical Science Innovation (HMSI), Fujita Health University Graduate School of Health Science, Toyoake, Aichi, Japan
| | - Masaya Hasegawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Toyoake, Aichi, Japan
| | - Hitomi Kurahashi
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Toyoake, Aichi, Japan
| | - Takatoshi Sakata
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Toyoake, Aichi, Japan
| | - Hiroyuki Tezuka
- Department of Cellular Function Analysis, Research Promotion and Support Headquarters, Fujita Health University, Toyoake, Aichi, Japan
| | - Masanori Kugita
- Education and Research Facility of Animal Models for Human Diseases, Center for Research Promotion and Support, Fujita Health University, Toyoake, Aichi, Japan
| | - Shizuko Nagao
- Education and Research Facility of Animal Models for Human Diseases, Center for Research Promotion and Support, Fujita Health University, Toyoake, Aichi, Japan
| | - Taku Nagai
- Division of Behavioral Neuropharmacology International Center for Brain Science (ICBS), Fujita Health University, Toyoake, Aichi, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Kuniaki Saito
- Laboratory of Health and Medical Science Innovation (HMSI), Fujita Health University Graduate School of Health Science, Toyoake, Aichi, Japan
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Toyoake, Aichi, Japan
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Aichi, Japan
| | - Toshitaka Nabeshima
- Laboratory of Health and Medical Science Innovation (HMSI), Fujita Health University Graduate School of Health Science, Toyoake, Aichi, Japan
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Aichi, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Toyoake, Aichi, Japan
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Aichi, Japan
| |
Collapse
|
4
|
Hu Y, Xu Q, Li H, Meng Z, Hao M, Ma X, Lin W, Kuang H. Dapagliflozin Reduces Apoptosis of Diabetic Retina and Human Retinal Microvascular Endothelial Cells Through ERK1/2/cPLA2/AA/ROS Pathway Independent of Hypoglycemic. Front Pharmacol 2022; 13:827896. [PMID: 35281932 PMCID: PMC8908030 DOI: 10.3389/fphar.2022.827896] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
Introduction: It is known that the metabolic disorder caused by high glucose is one of pathogenesis in diabetic retinopathy (DR), the leading cause of blindness, due to the main pathological change of apoptosis of endothelial cells (ECs). In previous studies, the potential impact of sodium glucose cotransporter-2 (SGLT-2), whose inhibitors slow the progression of DR, has not been elucidated. The purpose of the presented study was to explore the effect of SGLT-2 inhibitors dapagliflozin (DAPA) on apoptosis of diabetic mice retina and human retinal microvascular endothelial cells (HRMECs), examine the effects of dapagliflozin on HRMECs metabolism, and explore the molecular processes that affect DR. Methods and Results: The eyeballs of male streptozotocin (STZ)-induced diabetic C57BL/6N mice were evaluated. C57BL/6N mice were divided into control group (CON), diabetic untreated group (DM), diabetic dapagliflozin treatment group (DM + DAPA) and diabetic insulin treatment group (DM + INS). Hematoxylin-Eosin (HE) staining was performed to observe the pathological structure of the mice retina, and TUNEL staining to detect apoptosis of mice retinal cells. In vitro, DCFH-DA and western blot (WB) were used to evaluate ROS, Bcl-2, BAX, cleaved-caspase 3 in HRMECs and metabolomics detected the effect of dapagliflozin on the metabolism of HRMECs. And then, we performed correlation analysis and verification functions for significantly different metabolites. In vivo, dapagliflozin reduced the apoptosis of diabetic mice retina independently of hypoglycemic. In vitro, SGLT-2 protein was expressed on HRMECs. Dapagliflozin reduced the level of ROS caused by high glucose, decreased the expression of cleaved-caspase3 and the ratio of BAX/Bcl-2. Metabolomics results showed that dapagliflozin did not affect the intracellular glucose level. Compared with the high glucose group, dapagliflozin reduced the production of arachidonic acid (AA) and inhibited the phosphorylation of ERK1/2, therefore, reducing the phosphorylation of cPLA2, which is a key enzyme for arachidonic acid release. Conclusion: Collectively, results unearthed for the first time that dapagliflozin reduced apoptosis of retina induced by DM whether in vivo or in vitro. Dapagliflozin did not affect the glucose uptake while mitigated intracellular arachidonic acid in HRMECs. Dapagliflozin alleviated HRMECs apoptosis induced by high glucose through ERK/1/2/cPLA2/AA/ROS pathway.
Collapse
Affiliation(s)
- Yuxin Hu
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qian Xu
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongxue Li
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziyu Meng
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Hao
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuefei Ma
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjian Lin
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyu Kuang
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Wang L, Wu Y, Jia Z, Yu J, Huang S. Roles of EP Receptors in the Regulation of Fluid Balance and Blood Pressure. Front Endocrinol (Lausanne) 2022; 13:875425. [PMID: 35813612 PMCID: PMC9262144 DOI: 10.3389/fendo.2022.875425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
Prostaglandin E2 (PGE2) is an important prostanoid expressing throughout the kidney and cardiovascular system. Despite the diverse effects on fluid metabolism and blood pressure, PGE2 is implicated in sustaining volume and hemodynamics homeostasis. PGE2 works through four distinct E-prostanoid (EP) receptors which are G protein-coupled receptors. To date, pharmacological specific antagonists and agonists of all four subtypes of EP receptors and genetic targeting knockout mice for each subtype have helped in uncoupling the diverse functions of PGE2 and discriminating the respective characteristics of each receptor. In this review, we summarized the functions of individual EP receptor subtypes in the renal and blood vessels and the molecular mechanism of PGE2-induced fluid metabolism and blood pressure homeostasis.
Collapse
Affiliation(s)
- Lu Wang
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yiqian Wu
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Yu
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Songming Huang, ; Jing Yu,
| | - Songming Huang
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Songming Huang, ; Jing Yu,
| |
Collapse
|
6
|
Oz M, Lorke DE, Kabbani N. A comprehensive guide to the pharmacologic regulation of angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor. Pharmacol Ther 2021; 221:107750. [PMID: 33275999 PMCID: PMC7854082 DOI: 10.1016/j.pharmthera.2020.107750] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
The recent emergence of coronavirus disease-2019 (COVID-19) as a global pandemic has prompted scientists to address an urgent need for defining mechanisms of disease pathology and treatment. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for COVID-19, employs angiotensin converting enzyme 2 (ACE2) as its primary target for cell surface attachment and likely entry into the host cell. Thus, understanding factors that may regulate the expression and function of ACE2 in the healthy and diseased body is critical for clinical intervention. Over 66% of all adults in the United States are currently using a prescription drug and while earlier findings have focused on possible upregulation of ACE2 expression through the use of renin angiotensin system (RAS) inhibitors, mounting evidence suggests that various other widely administered drugs used in the treatment of hypertension, heart failure, diabetes mellitus, hyperlipidemias, coagulation disorders, and pulmonary disease may also present a varied risk for COVID-19. Specifically, we summarize mechanisms on how heparin, statins, steroids and phytochemicals, besides their established therapeutic effects, may also interfere with SARS-CoV-2 viral entry into cells. We also describe evidence on the effect of several vitamins, phytochemicals, and naturally occurring compounds on ACE2 expression and activity in various tissues and disease models. This comprehensive review aims to provide a timely compendium on the potential impact of commonly prescribed drugs and pharmacologically active compounds on COVID-19 pathology and risk through regulation of ACE2 and RAS signaling.
Collapse
Key Words
- adam17, a disintegrin and metalloprotease 17
- ace, angiotensin i converting enzyme
- ace-inh., angiotensin i converting enzyme inhibitor
- ampk, amp-activated protein kinase
- ang-ii, angiotensin ii
- arb, angiotensin ii type 1-receptor blocker
- ards, acute respiratory distress syndrome
- at1-r, angiotensin ii type 1-receptor
- βarb, β-adrenergic receptor blockers
- bk, bradykinin
- ccb, calcium channel blockers
- ch25h, cholesterol-25-hydroxylase
- copd, chronic obstructive lung disease
- cox, cyclooxygenase
- covid-19, coronavirus disease-2019
- dabk, [des-arg9]-bradykinin
- erk, extracellular signal-regulated kinase
- 25hc, 25-hydroxycholesterol
- hs, heparan sulfate
- hspg, heparan sulfate proteoglycan
- ibd, inflammatory bowel disease
- map, mitogen-activated protein
- mers, middle east respiratory syndrome
- mrb, mineralocorticoid receptor blocker
- nos, nitric oxide synthase
- nsaid, non-steroid anti-inflammatory drug
- ras, renin-angiotensin system
- sars-cov, severe acute respiratory syndrome coronavirus
- sh, spontaneously hypertensive
- s protein, spike protein
- sirt1, sirtuin 1
- t2dm, type 2 diabetes mellitus
- tcm, traditional chinese medicine
- tmprss2, transmembrane protease, serine 2
- tnf, tumor necrosis factor
- ufh, unfractionated heparin
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait.
| | - Dietrich Ernst Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Nadine Kabbani
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
7
|
Suo Z, Liu Y, Li Y, Xu C, Liu Y, Gao M, Dong J. Calcitriol inhibits COX-1 and COX-2 expressions of renal vasculature in hypertension: Reactive oxygen species involved? Clin Exp Hypertens 2021; 43:91-100. [PMID: 32909857 DOI: 10.1080/10641963.2020.1817473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Vitamin D modulates about 3% human gene transcription besides the classical action on calcium/phosphorus homeostasis. The blood pressure-lowing and other protective action on cardiovascular disease have been reported. The present study aims to examine whether COX-1 and COX-2 were implicated in endothelial dysfunction in hypertension and calcitriol, an active form of vitamin D preserved endothelial function through regulating COX expression. Isometric study demonstrated the impaired endothelium-dependent relaxation (EDR) in renal arteries from spontaneously hypertensive rats were reversed by 12 h-calcitriol treatment and COX-1 and COX-2 inhibitors. Combined uses of COX-1 and COX-2 inhibitor induced more improved relaxations. Exaggerated expressions of COX-1 and COX-2 in renal artery from SHR were inhibited by 12 h-administration of calcitriol, NADPH oxidase inhibitor DPI, or reactive oxygen species (ROS) scavenger tempol. Furthermore, in normotensive WKY rats, calcitriol prevents against the blunted EDR in renal arteries by 12 h-Ang II exposure, with similar improvements by COX-1 and COX-2 inhibitors. Accordingly, increased COX-1 and COX-2 expressions by Ang II exposure were corrected by losartan, DPI, or tempol. Studies on human renal artery also revealed the beneficial action of calcitriol is mediated by suppressing COX-1 and COX-2 expressions, dependent on vitamin D receptor (VDR) activation. Taken together, our findings showed that COX-1 and COX-2 are positively involved in the renovascular dysfunction in hypertension and via VDR, calcitriol benefits renovasular function by suppressing COX-1 and COX-2 expressions. Furthermore, ROS is involved in the COX-1 and COX-2 up-regulations of renal arteries, maybe serving as a mediator in the inhibitory action of calcitriol on COX expression.
Collapse
Affiliation(s)
- Zizheng Suo
- School of Basic Medicine, Hebei Medical University , Shijiazhuang, China
| | - Yanzhi Liu
- School of Basic Medicine, Hebei Medical University , Shijiazhuang, China
| | - Yueyi Li
- School of Basic Medicine, Hebei Medical University , Shijiazhuang, China
| | - Cong Xu
- School of Basic Medicine, Hebei Medical University , Shijiazhuang, China
| | - Yuhan Liu
- School of Basic Medicine, Hebei Medical University , Shijiazhuang, China
| | - Mingming Gao
- Laboratory of Lipid Metabolism, Hebei Medical University , Shijiazhuang, China
| | - Jinghui Dong
- Department of Physiology, Hebei Medical University , Shijiazhuang, China
| |
Collapse
|
8
|
Bardsley EN, Paterson DJ. Neurocardiac regulation: from cardiac mechanisms to novel therapeutic approaches. J Physiol 2020; 598:2957-2976. [PMID: 30307615 PMCID: PMC7496613 DOI: 10.1113/jp276962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022] Open
Abstract
Cardiac sympathetic overactivity is a well-established contributor to the progression of neurogenic hypertension and heart failure, yet the underlying pathophysiology remains unclear. Recent studies have highlighted the importance of acutely regulated cyclic nucleotides and their effectors in the control of intracellular calcium and exocytosis. Emerging evidence now suggests that a significant component of sympathetic overactivity and enhanced transmission may arise from impaired cyclic nucleotide signalling, resulting from compromised phosphodiesterase activity, as well as alterations in receptor-coupled G-protein activation. In this review, we address some of the key cellular and molecular pathways that contribute to sympathetic overactivity in hypertension and discuss their potential for therapeutic targeting.
Collapse
Affiliation(s)
- E. N. Bardsley
- Wellcome Trust OXION Initiative in Ion Channels and DiseaseOxfordUK
- Burdon Sanderson Cardiac Science Centre, Department of PhysiologyAnatomy and Genetics, University of OxfordOxfordOX1 3PTUK
| | - D. J. Paterson
- Wellcome Trust OXION Initiative in Ion Channels and DiseaseOxfordUK
- Burdon Sanderson Cardiac Science Centre, Department of PhysiologyAnatomy and Genetics, University of OxfordOxfordOX1 3PTUK
| |
Collapse
|
9
|
Eicosanoids and Oxidative Stress in Diabetic Retinopathy. Antioxidants (Basel) 2020; 9:antiox9060520. [PMID: 32545552 PMCID: PMC7346161 DOI: 10.3390/antiox9060520] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is an important factor to cause the pathogenesis of diabetic retinopathy (DR) because the retina has high vascularization and long-time light exposition. Cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes can convert arachidonic acid (AA) into eicosanoids, which are important lipid mediators to regulate DR development. COX-derived metabolites appear to be significant factors causative to oxidative stress and retinal microvascular dysfunction. Several elegant studies have unraveled the importance of LOX-derived eicosanoids, including LTs and HETEs, to oxidative stress and retinal microvascular dysfunction. The role of CYP eicosanoids in DR is yet to be explored. There is clear evidence that CYP-derived epoxyeicosatrienoic acids (EETs) have detrimental effects on the retina. Our recent study showed that the renin-angiotensin system (RAS) activation augments retinal soluble epoxide hydrolase (sEH), a crucial enzyme degrading EETs. Our findings suggest that EETs blockade can enhance the ability of RAS blockade to prevent or mitigate microvascular damage in DR. This review will focus on the critical information related the function of these eicosanoids in the retina, the interaction between eicosanoids and reactive oxygen species (ROS), and the involvement of eicosanoids in DR. We also identify potential targets for the treatment of DR.
Collapse
|
10
|
Yan X, Jin J, Su X, Yin X, Gao J, Wang X, Zhang S, Bu P, Wang M, Zhang Y, Wang Z, Zhang Q. Intestinal Flora Modulates Blood Pressure by Regulating the Synthesis of Intestinal-Derived Corticosterone in High Salt-Induced Hypertension. Circ Res 2020; 126:839-853. [DOI: 10.1161/circresaha.119.316394] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rationale:
High-salt diet is one of the most important risk factors for hypertension. Intestinal flora has been reported to be associated with high salt–induced hypertension (hSIH). However, the detailed roles of intestinal flora in hSIH pathogenesis have not yet been fully elucidated.
Objective:
To reveal the roles and mechanisms of intestinal flora in hSIH development.
Methods and Results:
The abovementioned issues were investigated using various techniques including 16S rRNA gene sequencing, untargeted metabolomics, selective bacterial culture, and fecal microbiota transplantation. We found that high-salt diet induced hypertension in Wistar rats. The fecal microbiota of healthy rats could dramatically lower blood pressure (BP) of hypertensive rats, whereas the fecal microbiota of hSIH rats had opposite effects. The composition, metabolism, and interrelationship of intestinal flora in hSIH rats were considerably reshaped, including the increased corticosterone level and reduced
Bacteroides
and arachidonic acid levels, which tightly correlated with BP. The serum corticosterone level was also significantly increased in rats with hSIH. Furthermore, the above abnormalities were confirmed in patients with hypertension. The intestinal
Bacteroides fragilis
could inhibit the production of intestinal-derived corticosterone induced by high-salt diet through its metabolite arachidonic acid.
Conclusions:
hSIH could be transferred by fecal microbiota transplantation, indicating the pivotal roles of intestinal flora in hSIH development. High-salt diet reduced the levels of
B fragilis
and arachidonic acid in the intestine, which increased intestinal-derived corticosterone production and corticosterone levels in serum and intestine, thereby promoting BP elevation. This study revealed a novel mechanism different from inflammation/immunity by which intestinal flora regulated BP, namely intestinal flora could modulate BP by affecting steroid hormone levels. These findings enriched the understanding of the function of intestinal flora and its effects on hypertension.
Collapse
Affiliation(s)
- Xuefang Yan
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan (X. Yan, J.J., X. Yin, J.G., X.W., S.Z., P.B., Y.Z., Q.Z.)
| | - Jiajia Jin
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan (X. Yan, J.J., X. Yin, J.G., X.W., S.Z., P.B., Y.Z., Q.Z.)
| | - Xinhuan Su
- Division of Endocrinology and Metabolism (X.S., Z.W.), Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Division of Geriatrics (X.S., Z.W.), Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xianlun Yin
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan (X. Yan, J.J., X. Yin, J.G., X.W., S.Z., P.B., Y.Z., Q.Z.)
| | - Jing Gao
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan (X. Yan, J.J., X. Yin, J.G., X.W., S.Z., P.B., Y.Z., Q.Z.)
| | - Xiaowei Wang
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan (X. Yan, J.J., X. Yin, J.G., X.W., S.Z., P.B., Y.Z., Q.Z.)
| | - Shucui Zhang
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan (X. Yan, J.J., X. Yin, J.G., X.W., S.Z., P.B., Y.Z., Q.Z.)
| | - Peili Bu
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan (X. Yan, J.J., X. Yin, J.G., X.W., S.Z., P.B., Y.Z., Q.Z.)
| | - Mansen Wang
- Medical Data Research Center, Providence Health & Services, Portland, OR (M.W.)
| | - Yun Zhang
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan (X. Yan, J.J., X. Yin, J.G., X.W., S.Z., P.B., Y.Z., Q.Z.)
| | - Zhe Wang
- Division of Endocrinology and Metabolism (X.S., Z.W.), Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Division of Geriatrics (X.S., Z.W.), Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qunye Zhang
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan (X. Yan, J.J., X. Yin, J.G., X.W., S.Z., P.B., Y.Z., Q.Z.)
| |
Collapse
|
11
|
Saleh LS, Vanderheyden C, Frederickson A, Bryant SJ. Prostaglandin E2 and Its Receptor EP2 Modulate Macrophage Activation and Fusion in Vitro. ACS Biomater Sci Eng 2020; 6:2668-2681. [PMID: 33463295 DOI: 10.1021/acsbiomaterials.9b01180] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The foreign body response (FBR) has impaired progress of new implantable medical devices through its hallmark of chronic inflammation and foreign body giant cell (FBGC) formation leading to fibrous encapsulation. Macrophages are known to drive the FBR, but efforts to control macrophage polarization remain challenging. The goal for this study was to investigate whether prostaglandin E2 (PGE2), and specifically its receptors EP2 and/or EP4, attenuate classically activated (i.e., inflammatory) macrophages and macrophage fusion into FBGCs in vitro. Lipopolysaccharide (LPS)-stimulated macrophages exhibited a dose-dependent decrease in gene expression and protein production of tumor necrosis factor alpha (TNF-α) when treated with PGE2. This attenuation was primarily by the EP4 receptor, as the addition of the EP2 antagonist PF 04418948 to PGE2-treated LPS-stimulated cells did not recover TNF-α production while the EP4 antagonist ONO AE3 208 did. However, direct stimulation of EP2 with the agonist butaprost to LPS-stimulated macrophages resulted in a ∼60% decrease in TNF-α secretion after 4 h and corresponded with an increase in gene expression for Cebpb and Il10, suggesting a polarization shift toward alternative activation through EP2 alone. Further, fusion of macrophages into FBGCs induced by interleukin-4 (IL-4) and granulocyte-macrophage colony-stimulating factor (GM-CSF) was inhibited by PGE2 via EP2 signaling and by an EP2 agonist, but not an EP4 agonist. The attenuation by PGE2 was confirmed to be primarily by the EP2 receptor. Mrc1, Dcstamp, and Retlna expressions increased upon IL-4/GM-CSF stimulation, but only Retnla expression with the EP2 agonist returned to levels that were not different from controls. This study identified that PGE2 attenuates classically activated macrophages and macrophage fusion through distinct EP receptors, while targeting EP2 is able to attenuate both. In summary, this study identified EP2 as a potential therapeutic target for reducing the FBR to biomaterials.
Collapse
Affiliation(s)
- Leila S Saleh
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Casey Vanderheyden
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Andrew Frederickson
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Avenue, Boulder, Colorado 80309, United States.,BioFrontiers Institute, University of Colorado, 3415 Colorado Avenue, Boulder, Colorado 80309, United States.,Material Science and Engineering Program, University of Colorado, 3415 Colorado Avenue, Boulder, Colorado 80309, United States
| |
Collapse
|
12
|
Xiao L, Itani HA, do Carmo LS, Carver LS, Breyer RM, Harrison DG. Central EP3 (E Prostanoid 3) Receptors Mediate Salt-Sensitive Hypertension and Immune Activation. Hypertension 2019; 74:1507-1515. [PMID: 31679420 PMCID: PMC7040566 DOI: 10.1161/hypertensionaha.119.13850] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We recently identified a pathway underlying immune activation in hypertension. Proteins oxidatively modified by reactive isoLG (isolevuglandin) accumulate in dendritic cells (DCs). PGE2 (Prostaglandin E2) has been implicated in the inflammation associated with hypertension. We hypothesized that PGE2 via its EP (E prostanoid) 3 receptor contributes to DC activation in hypertension. EP3-/- mice and wild-type littermates were exposed to sequential hypertensive stimuli involving an initial 2-week exposure to the nitric oxide synthase inhibitor Nω-nitro-L-arginine methyl ester hydrochloride in drinking water, followed by a 2-week washout period, and a subsequent 4% high-salt diet for 3 weeks. In wild-type mice, this protocol increased systolic pressure from 123±2 to 148±8 mm Hg (P<0.05). This was associated with marked renal inflammation and a striking accumulation of isoLG adducts in splenic DCs. However, the increases in blood pressure, renal T-cell infiltration, and DC isoLG formation were completely prevented in EP3-/- mice. Similar protective effects were also observed in wild-type mice that received intracerebroventricular injection of a lentiviral vector encoding shRNA targeting the EP3 receptor. Further, in vitro experiments indicated that PGE2 also acts directly on DCs via its EP1 receptors to stimulate intracellular isoLG formation. Together, these findings provide new insight into how EP receptors in both the central nervous system and peripherally on DCs promote inflammation in salt-induced hypertension.
Collapse
Affiliation(s)
- Liang Xiao
- From the Division of Clinical Pharmacology (L.X., L.S.d.C., L.C., D.G.H.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Hana A Itani
- Department of Pharmacology and Toxicology, American University of Beirut, Lebanon (H.A.I.)
| | - Luciana Simao do Carmo
- From the Division of Clinical Pharmacology (L.X., L.S.d.C., L.C., D.G.H.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Lucas S Carver
- From the Division of Clinical Pharmacology (L.X., L.S.d.C., L.C., D.G.H.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Richard M Breyer
- Division of Nephrology and Hypertension (R.M.B.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - David G Harrison
- From the Division of Clinical Pharmacology (L.X., L.S.d.C., L.C., D.G.H.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
13
|
Asirvatham-Jeyaraj N, Jones AD, Burnett R, Fink GD. Brain Prostaglandin D2 Increases Neurogenic Pressor Activity and Mean Arterial Pressure in Angiotensin II-Salt Hypertensive Rats. Hypertension 2019; 74:1499-1506. [PMID: 31587572 DOI: 10.1161/hypertensionaha.119.13175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study tested whether brain L-PGDS (lipocalin-type prostaglandin [PG] D synthase), through prostanoid signaling, might increase neurogenic pressor activity and thereby cause hypertension. Sprague Dawley rats on high-salt diet received either vehicle or Ang II (angiotensin II) infusion. On day 4, the developmental stage of hypertension, brains from different sets of control and Ang II-treated rats were collected for measuring L-PGDS expression, PGD2 levels, and DP1R (type 1 PGD2 receptor) expression. In a different set of 14-day Ang II-salt-treated rats, mini-osmotic pumps were used to infuse either a nonselective COX (cyclooxygenase) inhibitor ketorolac, L-PGDS inhibitor AT56, or DP1R inhibitor BWA868C to test the role of brain COX-PGD2-DP1R signaling in Ang II-salt hypertension. The acute depressor response to ganglion blockade with hexamethonium was used to quantify neurogenic pressor activity. During the developmental stage of Ang II-salt hypertension, L-PGDS expression was higher in cerebrospinal fluid, and PGD2 levels were increased in the choroid plexus, cerebrospinal fluid, and the cardioregulatory brain region rostral ventrolateral medulla. DP1R expression was decreased in rostral ventrolateral medulla. Both brain COX inhibition with ketorolac and L-PGDS inhibition with AT56 lowered mean arterial pressure by altering neurogenic pressor activity compared with vehicle controls. Blockade of DP1R with BWA868C, however, increased the magnitude of Ang II-salt hypertension and significantly increased neurogenic pressor activity. In summary, we establish that the development of Ang II-salt hypertension requires increased COX- and L-PGDS-derived PGD2 production in the brain, making L-PGDS a possible target for treating neurogenic hypertension.
Collapse
Affiliation(s)
- Ninitha Asirvatham-Jeyaraj
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru (N.A.-J.).,Department of Pharmacology and Toxicology (N.A.-J., R.B., G.D.F.), Michigan State University, East Lansing
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology (A.D.J.), Michigan State University, East Lansing.,Department of Chemistry (A.D.J.), Michigan State University, East Lansing
| | - Robert Burnett
- Department of Pharmacology and Toxicology (N.A.-J., R.B., G.D.F.), Michigan State University, East Lansing
| | - Gregory D Fink
- Department of Pharmacology and Toxicology (N.A.-J., R.B., G.D.F.), Michigan State University, East Lansing
| |
Collapse
|
14
|
Estevez AY, Ganesana M, Trentini JF, Olson JE, Li G, Boateng YO, Lipps JM, Yablonski SER, Donnelly WT, Leiter JC, Erlichman JS. Antioxidant Enzyme-Mimetic Activity and Neuroprotective Effects of Cerium Oxide Nanoparticles Stabilized with Various Ratios of Citric Acid and EDTA. Biomolecules 2019; 9:E562. [PMID: 31623336 PMCID: PMC6843313 DOI: 10.3390/biom9100562] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Cerium oxide (CeO2) nanoparticles (CeNPs) are potent antioxidants that are being explored as potential therapies for diseases in which oxidative stress plays an important pathological role. However, both beneficial and toxic effects of CeNPs have been reported, and the method of synthesis as well as physico-chemical, biological, and environmental factors can impact the ultimate biological effects of CeNPs. In the present study, we explored the effect of different ratios of citric acid (CA) and EDTA (CA/EDTA), which are used as stabilizers during synthesis of CeNPs, on the antioxidant enzyme-mimetic and biological activity of the CeNPs. We separated the CeNPs into supernatant and pellet fractions and used commercially available enzymatic assays to measure the catalase-, superoxide dismutase (SOD)-, and oxidase-mimetic activity of each fraction. We tested the effects of these CeNPs in a mouse hippocampal brain slice model of ischemia to induce oxidative stress where the fluorescence indicator SYTOX green was used to assess cell death. Our results demonstrate that CeNPs stabilized with various ratios of CA/EDTA display different enzyme-mimetic activities. CeNPs with intermediate CA/EDTA stabilization ratios demonstrated greater neuroprotection in ischemic mouse brain slices, and the neuroprotective activity resides in the pellet fraction of the CeNPs. The neuroprotective effects of CeNPs stabilized with equal proportions of CA/EDTA (50/50) were also demonstrated in two other models of ischemia/reperfusion in mice and rats. Thus, CeNPs merit further development as a neuroprotective therapy for use in diseases associated with oxidative stress in the nervous system.
Collapse
Affiliation(s)
- Ana Y Estevez
- Biology Department, St. Lawrence University, Canton, NY 13617, USA.
- Psychology Department, St. Lawrence University, Canton, NY 13617, USA.
| | - Mallikarjunarao Ganesana
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| | - John F Trentini
- Department of Emergency Medicine, Wright State University, Boonshoft School of Medicine, Dayton, OH 45435, USA.
| | - James E Olson
- Department of Emergency Medicine, Wright State University, Boonshoft School of Medicine, Dayton, OH 45435, USA.
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Boonshoft School of Medicine, Dayton, OH 45435, USA.
| | - Guangze Li
- Department of Emergency Medicine, Wright State University, Boonshoft School of Medicine, Dayton, OH 45435, USA.
| | - Yvonne O Boateng
- Biology Department, St. Lawrence University, Canton, NY 13617, USA.
| | - Jennifer M Lipps
- Biology Department, St. Lawrence University, Canton, NY 13617, USA.
| | | | - William T Donnelly
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| | - James C Leiter
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| | | |
Collapse
|
15
|
Simpson NJ, Ferguson AV. Tumor necrosis factor-α potentiates the effects of angiotensin II on subfornical organ neurons. Am J Physiol Regul Integr Comp Physiol 2018; 315:R425-R433. [DOI: 10.1152/ajpregu.00044.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Inflammation is thought to play a fundamental role in the pathophysiology of hypertension and heart failure, although the mechanisms for this remain unclear. Proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), influence the subfornical organ (SFO) to modulate sympathetic activity and blood pressure. The pressor effects of TNF-α in the SFO are partially mediated by angiotensin II (ANG II) receptor type 1 (AT1R), and TNF-α is known to potentiate ANG II-induced hypertension. However, the cellular mechanism of the interaction between TNF-α and ANG II/AT1R signaling remains unknown. In the present study, we performed Ca2+ imaging on dissociated SFO neurons in vitro from male Sprague-Dawley rats to determine whether TNF-α modulates ANG II-induced increases in intracellular Ca2+ in SFO neurons. We first established that a proportion of SFO neurons respond to ANG II, an effect that required AT1R signaling and extracellular Ca2+. We then tested the hypothesis that TNF-α may modulate the effects of ANG II on SFO neurons by examining the effects of TNF-α treatment on the ANG II-induced rise in intracellular Ca2+. We discovered that TNF-α potentiated the ANG II-induced rise in intracellular Ca2+, an effect that was dependent on the duration of TNF-α treatment. Finally, we determined that this potentiation of ANG II-induced Ca2+ activity relied on tetrodotoxin-sensitive voltage-gated Na+ (vgNa+) channels. These data suggest that the potentiation of ANG II/AT1R activity by TNF-α in SFO neurons results from the previously demonstrated ability of this cytokine to modulate the activation threshold of vgNa+ currents.
Collapse
Affiliation(s)
- Nick J. Simpson
- Center for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Alastair V. Ferguson
- Center for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
16
|
Song CY, Khan NS, Liao FF, Wang B, Shin JS, Bonventre JV, Malik KU. Brain Cytosolic Phospholipase A2α Mediates Angiotensin II-Induced Hypertension and Reactive Oxygen Species Production in Male Mice. Am J Hypertens 2018; 31:622-629. [PMID: 29342227 PMCID: PMC5905655 DOI: 10.1093/ajh/hpy009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/09/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Recently, we reported that angiotensin II (Ang II)-induced hypertension is mediated by group IV cytosolic phospholipase A2α (cPLA2α) via production of prohypertensive eicosanoids. Since Ang II increases blood pressure (BP) via its action in the subfornical organ (SFO), it led us to investigate the expression and possible contribution of cPLA2α to oxidative stress and development of hypertension in this brain area. METHODS Adenovirus (Ad)-green fluorescence protein (GFP) cPLA2α short hairpin (sh) RNA (Ad-cPLA2α shRNA) and its control Ad-scrambled shRNA (Ad-Scr shRNA) or Ad-enhanced cyan fluorescence protein cPLA2α DNA (Ad-cPLA2α DNA) and its control Ad-GFP DNA were transduced into SFO of cPLA2α+/+ and cPLA2α−/− male mice, respectively. Ang II (700 ng/kg/min) was infused for 14 days in these mice, and BP was measured by tail-cuff and radio telemetry. cPLA2 activity, reactive oxygen species production, and endoplasmic reticulum stress were measured in the SFO. RESULTS Transduction of SFO with Ad-cPLA2α shRNA, but not Ad-Scr shRNA in cPLA2α+/+ mice, minimized expression of cPLA2α, Ang II-induced cPLA2α activity and oxidative stress in the SFO, BP, and cardiac and renal fibrosis. In contrast, Ad-cPLA2α DNA, but not its control Ad-GFP DNA in cPLA2α−/− mice, restored the expression of cPLA2α, and Ang II-induced increase in cPLA2 activity and oxidative stress in the SFO, BP, cardiac, and renal fibrosis. CONCLUSIONS These data suggest that cPLA2α in the SFO is crucial in mediating Ang II-induced hypertension and associated pathogenesis. Therefore, development of selective cPLA2α inhibitors could be useful in treating hypertension and its pathogenesis.
Collapse
Affiliation(s)
- Chi Young Song
- Department of Pharmacology, College of Medicine, University of Tennessee HSC, Memphis, Tennessee, USA
| | - Nayaab S Khan
- Department of Pharmacology, College of Medicine, University of Tennessee HSC, Memphis, Tennessee, USA
| | - Francesca-Fang Liao
- Department of Pharmacology, College of Medicine, University of Tennessee HSC, Memphis, Tennessee, USA
| | - Bin Wang
- Department of Pharmacology, College of Medicine, University of Tennessee HSC, Memphis, Tennessee, USA
| | - Ji Soo Shin
- Department of Pharmacology, College of Medicine, University of Tennessee HSC, Memphis, Tennessee, USA
| | - Joseph V Bonventre
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kafait U Malik
- Department of Pharmacology, College of Medicine, University of Tennessee HSC, Memphis, Tennessee, USA
| |
Collapse
|
17
|
Patel S, Rauf A, Khan H, Abu-Izneid T. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed Pharmacother 2017; 94:317-325. [PMID: 28772209 DOI: 10.1016/j.biopha.2017.07.091] [Citation(s) in RCA: 376] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/10/2017] [Accepted: 07/19/2017] [Indexed: 12/22/2022] Open
Abstract
Renin-angiotensin-aldosterone system (RAAS) is a vital system of human body, as it maintains plasma sodium concentration, arterial blood pressure and extracellular volume. Kidney-secreted renin enzyme acts on its substrate to form angiotensin II, a versatile effector peptide hormone. Every organ is affected by RAAS activation and the resultant hypertension, cell proliferation, inflammation, and fibrosis. The imbalance of renin and angiotensin II can result in an overwhelming number of chronic and acute diseases. RAAS is influenced by other enzymes, hormones, pumps and signaling pathways, hence, this review discusses important facets of this system, its crosstalk with other crucial factors like estrogen, thyroid, cortisol, kallikrein-kinin system, Wnt/β-catenin signaling, and sodium-potassium pump. The nexus of RAAS with the above-discussed systems was scantily explored before. So, this review furnishes a new perspective in comprehension of inflammation diseases. It is followed by the formulation of hypotheses, which can contribute to better management of an array of pathologies plaguing mankind. Manipulation of RAAS, by bending it towards ACE2 expression can regulate endocrine functions, which can be critical for a number of pathological management. Dietary intervention can restore RAAS to normalcy.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego, 92182, USA.
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber Pakhtunkhwa, Pakistan.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Tareq Abu-Izneid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, P.O. Box 42, Saudi Arabia
| |
Collapse
|
18
|
Horwath JA, Hurr C, Butler SD, Guruju M, Cassell MD, Mark AL, Davisson RL, Young CN. Obesity-induced hepatic steatosis is mediated by endoplasmic reticulum stress in the subfornical organ of the brain. JCI Insight 2017; 2:90170. [PMID: 28422749 PMCID: PMC5396512 DOI: 10.1172/jci.insight.90170] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/02/2017] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), characterized by an excess accumulation of hepatic triglycerides, is a growing health epidemic. While ER stress in the liver has been implicated in the development of NAFLD, the role of brain ER stress - which is emerging as a key contributor to a number of chronic diseases including obesity - in NAFLD remains unclear. These studies reveal that chemical induction of ER stress in the brain caused hepatomegaly and hepatic steatosis in mice. Conversely, pharmacological reductions in brain ER stress in diet-induced obese mice rescued NAFLD independent of body weight, food intake, and adiposity. Evaluation of brain regions involved revealed robust activation of ER stress biomarkers and ER ultrastructural abnormalities in the circumventricular subfornical organ (SFO), a nucleus situated outside of the blood-brain-barrier, in response to high-fat diet. Targeted reductions in SFO-ER stress in obese mice via SFO-specific supplementation of the ER chaperone 78-kDa glucose-regulated protein ameliorated hepatomegaly and hepatic steatosis without altering body weight, food intake, adiposity, or obesity-induced hypertension. Overall, these findings indicate a novel role for brain ER stress, notably within the SFO, in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Julie A. Horwath
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, USA
| | - Chansol Hurr
- Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Scott D. Butler
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Mallikarjun Guruju
- Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, USA
| | | | - Allyn L. Mark
- Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, USA
- Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Robin L. Davisson
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, USA
| | - Colin N. Young
- Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
19
|
Experimental Evidences Supporting Training-Induced Benefits in Spontaneously Hypertensive Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:287-306. [DOI: 10.1007/978-981-10-4307-9_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Simonyan H, Hurr C, Young CN. A synthetic luciferin improves in vivo bioluminescence imaging of gene expression in cardiovascular brain regions. Physiol Genomics 2016; 48:762-770. [PMID: 27614203 PMCID: PMC5243229 DOI: 10.1152/physiolgenomics.00055.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022] Open
Abstract
Bioluminescence imaging is an effective tool for in vivo investigation of molecular processes. We have demonstrated the applicability of bioluminescence imaging to spatiotemporally monitor gene expression in cardioregulatory brain nuclei during the development of cardiovascular disease, via incorporation of firefly luciferase into living animals, combined with exogenous d-luciferin substrate administration. Nevertheless, d-luciferin uptake into the brain tissue is low, which decreases the sensitivity of bioluminescence detection, particularly when considering small changes in gene expression in tiny central areas. Here, we tested the hypothesis that a synthetic luciferin, cyclic alkylaminoluciferin (CycLuc1), would be superior to d-luciferin for in vivo bioluminescence imaging in cardiovascular brain regions. Male C57B1/6 mice underwent targeted delivery of an adenovirus encoding the luciferase gene downstream of the CMV promoter to the subfornical organ (SFO) or paraventricular nucleus of hypothalamus (PVN), two crucial cardioregulatory neural regions. While bioluminescent signals could be obtained following d-luciferin injection (150 mg/kg), CycLuc1 administration resulted in a three- to fourfold greater bioluminescent emission from the SFO and PVN, at 10- to 20-fold lower substrate concentrations (7.5-15 mg/kg). This CycLuc1-mediated enhancement in bioluminescent emission was evident early following substrate administration (i.e., 6-10 min) and persisted for up to 1 h. When the exposure time was reduced from 60 s to 1,500 ms, minimal signal in the PVN was detectable with d-luciferin, whereas bioluminescent images could be reliably captured with CycLuc1. These findings demonstrate that bioluminescent imaging with the synthetic luciferin CycLuc1 provides an improved physiological genomics tool to investigate molecular events in discrete cardioregulatory brain nuclei.
Collapse
Affiliation(s)
- Hayk Simonyan
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia
| | - Chansol Hurr
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia
| | - Colin N Young
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia
| |
Collapse
|
21
|
An Update of Microsomal Prostaglandin E Synthase-1 and PGE2 Receptors in Cardiovascular Health and Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5249086. [PMID: 27594972 PMCID: PMC4993943 DOI: 10.1155/2016/5249086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/19/2016] [Accepted: 06/26/2016] [Indexed: 12/16/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs), especially cyclooxygenase-2 (COX-2) selective inhibitors, are among the most widely used drugs to treat pain and inflammation. However, clinical trials have revealed that these inhibitors predisposed patients to a significantly increased cardiovascular risk, consisting of thrombosis, hypertension, myocardial infarction, heart failure, and sudden cardiac death. Thus, microsomal prostaglandin E (PGE) synthase-1 (mPGES-1), the key terminal enzyme involved in the synthesis of inflammatory prostaglandin E2 (PGE2), and the four PGE2 receptors (EP1-4) have gained much attention as alternative targets for the development of novel analgesics. The cardiovascular consequences of targeting mPGES-1 and the PGE2 receptors are substantially studied. Inhibition of mPGES-1 has displayed a relatively innocuous or preferable cardiovascular profile. The modulation of the four EP receptors in cardiovascular system is diversely reported as well. In this review, we highlight the most recent advances from our and other studies on the regulation of PGE2, particularly mPGES-1 and the four PGE2 receptors, in cardiovascular function, with a particular emphasis on blood pressure regulation, atherosclerosis, thrombosis, and myocardial infarction. This might lead to new avenues to improve cardiovascular disease management strategies and to seek optimized anti-inflammatory therapeutic options.
Collapse
|
22
|
Asirvatham-Jeyaraj N, Fink GD. Possible role for brain prostanoid pathways in the development of angiotensin II-salt hypertension in rats. Am J Physiol Regul Integr Comp Physiol 2016; 311:R232-42. [PMID: 27225954 DOI: 10.1152/ajpregu.00535.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/19/2016] [Indexed: 11/22/2022]
Abstract
Prostanoids generated by the cyclooxygenase (COX) pathway appear to contribute to the neurogenic hypertension (HTN) in rats. The first goal of this study was to establish the time frame during which prostanoids participate in ANG II-salt HTN. We induced HTN using ANG II (150 ng·kg(-1)·min(-1) sc) infusion for 14 days in rats on a high-salt (2% NaCl) diet. When ketoprofen pretreatment was combined with treatment during the first 7 days of ANG II infusion, development of HTN and increased neurogenic pressor activity (indexed by the depressor response to ganglion blockade) were significantly attenuated for the entire ANG II infusion period. This suggests that prostanoid generation caused by administration of ANG II and salt leads to an increase in neurogenic pressor activity and blood pressure (BP) via a mechanism that persists without the need for continuing prostanoid input. The second goal of this study was to determine whether prostanoid products specifically in the brain contribute to HTN development. Expression of prostanoid pathway genes was measured in brain regions known to affect neurogenic BP regulation. ANG II-treated rats exhibited changes in gene expression of phospholipase A2 (upregulated in organum vasculosum of the lamina terminalis, paraventricular nucleus, nucleus of the solitary tract, and middle cerebral artery) and lipocalin-type prostaglandin D synthase (upregulated in the organum vasculosum of the lamina terminalis). On the basis of our results, we propose that activation of the brain prostanoid synthesis pathway both upstream and downstream from COX at early stages plays an important role in the development of the neurogenic component of ANG II-salt HTN.
Collapse
Affiliation(s)
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
23
|
Peña Silva RA, Mitchell IJ, Kung DK, Pewe LL, Granja MF, Harty JT, Faraci FM, Heistad DD, Hasan DM. Paradoxical Increase in Mortality and Rupture of Intracranial Aneurysms in Microsomal Prostaglandin E2 Synthase Type 1-Deficient Mice: Attenuation by Aspirin. Neurosurgery 2016; 77:613-20. [PMID: 26134597 DOI: 10.1227/neu.0000000000000883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Inflammation plays an important role in formation and rupture of intracranial aneurysms. Expression of microsomal prostaglandin E2 (PGE2) synthase type 1 (mPGES-1) is increased in the wall of intracranial aneurysms in humans. PGE2, a by-product of mPGES-1, is associated with inflammation and cerebrovascular dysfunction. OBJECTIVE To test the hypothesis that deletion of mPGES-1 decreases the formation and rupture of intracranial aneurysms in a murine model. METHODS Intracranial aneurysms were induced in wild-type and mPGES-1 knockout (mPGES-1 KO) mice by using a combination of deoxycorticosterone acetate-salt-induced hypertension and intracranial injection of elastase in the basal cistern. Prevalence of aneurysms, subarachnoid hemorrhage, and mortality were assessed. We also tested the effects of administration of aspirin (6 mg/kg/d) by gavage and PGE2 (1 mg/kg/d) by subcutaneous infusion. RESULTS Systolic blood pressure and prevalence of aneurysm were similar in wild-type and mPGES-1 KO mice. However, mortality and the prevalence of subarachnoid hemorrhage were markedly increased in mPGES-1 KO mice (P < .05). Bone marrow reconstitution studies suggest that mPGES-1 derived from leukocytes does not appear to increase rupture of intracranial aneurysms. Aspirin, but not PGE2, attenuated the increased mortality in mPGES-1 KO mice (P < .05). CONCLUSION Vascular mPGES-1 plays a protective role in blood vessels and attenuates rupture of cerebral aneurysms. In contrast to effects on abdominal aneurysms, mPGES-1 deficiency is associated with an increase in rupture of cerebral aneurysms and mortality, which are attenuated by low-dose aspirin.
Collapse
Affiliation(s)
- Ricardo A Peña Silva
- *Universidad de los Andes, Bogotá, Colombia; ‡Departments of Internal Medicine, §Neurosurgery, ¶Microbiology, and ‖Pharmacology, University of Iowa, Iowa City, Iowa
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Goswami AR, Dutta G, Ghosh T. Naproxen, a Nonsteroidal Anti-Inflammatory Drug, Can Affect Daily Hypobaric Hypoxia-Induced Alterations of Monoamine Levels in Different Areas of the Brain in Male Rats. High Alt Med Biol 2016; 17:133-40. [PMID: 26894935 DOI: 10.1089/ham.2015.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Goswami, Ananda Raj, Goutam Dutta, and Tusharkanti Ghosh. Naproxen, a nonsteroidal anti-inflammatory drug can affect daily hypobaric hypoxia-induced alterations of monoamine levels in different areas of the brain in male rats. High Alt Med Biol. 17:133-140, 2016.-The oxidative stress (OS)-induced prostaglandin (PG) release, in hypobaric hypoxic (HHc) condition, may be linked with the changes of brain monoamines. The present study intends to explore the changes of monoamines in hypothalamus (H), cerebral cortex (CC), and cerebellum (CB) along with the motor activity in rats after exposing them to simulated hypobaric condition and the role of PGs on the daily hypobaric hypoxia (DHH)-induced alteration of brain monoamines by administering, an inhibitor of PG synthesis, naproxen. The rats were exposed to a decompression chamber at 18,000 ft for 8 hours per day for 6 days after administration of vehicle or naproxen (18 mg/kg body wt.). The monoamine levels (epinephrine, E; norepinephrine, NE; dopamine, DA; and 5-hydroxytryptamine, 5-HT) in CC, CB, and H were assayed by high-performance liquid chromatography (HPLC) with electrochemical detection, and the locomotor behavior was measured by open field test. The NE and DA levels were decreased in CC, CB, and H of the rat brain in HHc condition. The E and 5-HT levels were decreased in CC, but in H and CB, they remained unaltered in HHc condition. These DHH-induced changes of monoamines in brain areas were prevented after administration of naproxen in HHc condition. The locomotor behavior remained unaltered in HHc condition and after administration of naproxen in HHc condition. The DHH-induced changes of monoamines in the brain in HHc condition are probably linked with PGs that may be induced by OS.
Collapse
Affiliation(s)
- Ananda Raj Goswami
- Department of Physiology, University College of Science and Technology, University of Calcutta , Kolkata, India
| | - Goutam Dutta
- Department of Physiology, University College of Science and Technology, University of Calcutta , Kolkata, India
| | - Tusharkanti Ghosh
- Department of Physiology, University College of Science and Technology, University of Calcutta , Kolkata, India
| |
Collapse
|
25
|
Young CN, Davisson RL. Angiotensin-II, the Brain, and Hypertension: An Update. Hypertension 2015; 66:920-6. [PMID: 26324508 DOI: 10.1161/hypertensionaha.115.03624] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Colin N Young
- From the Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, DC (C.N.Y.); Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (R.L.D.); and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY (R.L.D.).
| | - Robin L Davisson
- From the Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, DC (C.N.Y.); Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (R.L.D.); and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY (R.L.D.)
| |
Collapse
|
26
|
Nogo-B regulates endothelial sphingolipid homeostasis to control vascular function and blood pressure. Nat Med 2015; 21:1028-1037. [PMID: 26301690 DOI: 10.1038/nm.3934] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/27/2015] [Indexed: 11/08/2022]
Abstract
Endothelial dysfunction is a critical factor in many cardiovascular diseases, including hypertension. Although lipid signaling has been implicated in endothelial dysfunction and cardiovascular disease, specific molecular mechanisms are poorly understood. Here we report that Nogo-B, a membrane protein of the endoplasmic reticulum, regulates endothelial sphingolipid biosynthesis with direct effects on vascular function and blood pressure. Nogo-B inhibits serine palmitoyltransferase, the rate-limiting enzyme of the de novo sphingolipid biosynthetic pathway, thereby controlling production of endothelial sphingosine 1-phosphate and autocrine, G protein-coupled receptor-dependent signaling by this metabolite. Mice lacking Nogo-B either systemically or specifically in endothelial cells are hypotensive, resistant to angiotensin II-induced hypertension and have preserved endothelial function and nitric oxide release. In mice that lack Nogo-B, pharmacological inhibition of serine palmitoyltransferase with myriocin reinstates endothelial dysfunction and angiotensin II-induced hypertension. Our study identifies Nogo-B as a key inhibitor of local sphingolipid synthesis and shows that autocrine sphingolipid signaling within the endothelium is critical for vascular function and blood pressure homeostasis.
Collapse
|
27
|
Wei SG, Yu Y, Zhang ZH, Felder RB. Proinflammatory cytokines upregulate sympathoexcitatory mechanisms in the subfornical organ of the rat. Hypertension 2015; 65:1126-33. [PMID: 25776070 DOI: 10.1161/hypertensionaha.114.05112] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/17/2015] [Indexed: 11/16/2022]
Abstract
Our previous work indicated that the subfornical organ (SFO) is an important brain sensor of blood-borne proinflammatory cytokines, mediating their central effects on autonomic and cardiovascular function. However, the mechanisms by which SFO mediates the central effects of circulating proinflammatory cytokines remain unclear. We hypothesized that proinflammatory cytokines act within the SFO to upregulate the expression of excitatory and inflammatory mediators that drive sympathetic nerve activity. In urethane-anesthetized Sprague-Dawley rats, direct microinjection of tumor necrosis factor (TNF)-α (25 ng) or interleukin (IL)-1β (25 ng) into SFO increased mean blood pressure, heart rate, and renal sympathetic nerve activity within 15 to 20 minutes, mimicking the response to systemically administered proinflammatory cytokines. Pretreatment of SFO with microinjections of the angiotensin II type-1 receptor blocker losartan (1 μg), angiotensin-converting enzyme inhibitor captopril (1 μg) or cyclooxygenase-2 inhibitor NS-398 (2 μg) attenuated those responses. Four hours after the SFO microinjection of TNF-α (25 ng) or IL-1β (25 ng), mRNA for angiotensin-converting enzyme, angiotensin II type-1 receptor, TNF-α and the p55 TNF-α receptor, IL-1β and the IL-1R receptor, and cyclooxygenase-2 had increased in SFO, and mRNA for angiotensin-converting enzyme, angiotensin II type-1 receptor, and cyclooxygenase-2 had increased downstream in the hypothalamic paraventricular nucleus. Confocal immunofluorescent images revealed that immunoreactivity for the p55 TNF-α receptor and the IL-1 receptor accessory protein, a subunit of the IL-1 receptor, colocalized with angiotensin-converting enzyme, angiotensin II type-1 receptor-like, cyclooxygenase-2, and prostaglandin E2 EP3 receptor immunoreactivity in SFO neurons. These data suggest that proinflammatory cytokines act within the SFO to upregulate the expression of inflammatory and excitatory mediators that drive sympathetic excitation.
Collapse
Affiliation(s)
- Shun-Guang Wei
- From the Department of Internal Medicine, University of Iowa Carver College of Medicine (S.-G.W., Y.Y., Z.-H.Z., R.B.F.) and Veterans Affairs Medical Center (R.B.F.), Iowa City, IA
| | - Yang Yu
- From the Department of Internal Medicine, University of Iowa Carver College of Medicine (S.-G.W., Y.Y., Z.-H.Z., R.B.F.) and Veterans Affairs Medical Center (R.B.F.), Iowa City, IA
| | - Zhi-Hua Zhang
- From the Department of Internal Medicine, University of Iowa Carver College of Medicine (S.-G.W., Y.Y., Z.-H.Z., R.B.F.) and Veterans Affairs Medical Center (R.B.F.), Iowa City, IA
| | - Robert B Felder
- From the Department of Internal Medicine, University of Iowa Carver College of Medicine (S.-G.W., Y.Y., Z.-H.Z., R.B.F.) and Veterans Affairs Medical Center (R.B.F.), Iowa City, IA.
| |
Collapse
|
28
|
Young CN, Li A, Dong FN, Horwath JA, Clark CG, Davisson RL. Endoplasmic reticulum and oxidant stress mediate nuclear factor-κB activation in the subfornical organ during angiotensin II hypertension. Am J Physiol Cell Physiol 2015; 308:C803-12. [PMID: 25980014 DOI: 10.1152/ajpcell.00223.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 03/10/2015] [Indexed: 01/14/2023]
Abstract
Endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) generation in the brain circumventricular subfornical organ (SFO) mediate the central hypertensive actions of Angiotensin II (ANG II). However, the downstream signaling events remain unclear. Here we tested the hypothesis that angiotensin type 1a receptors (AT1aR), ER stress, and ROS induce activation of the transcription factor nuclear factor-κB (NF-κB) during ANG II-dependent hypertension. To spatiotemporally track NF-κB activity in the SFO throughout the development of ANG II-dependent hypertension, we used SFO-targeted adenoviral delivery and longitudinal bioluminescence imaging in mice. During low-dose infusion of ANG II, bioluminescence imaging revealed a prehypertensive surge in NF-κB activity in the SFO at a time point prior to a significant rise in arterial blood pressure. SFO-targeted ablation of AT1aR, inhibition of ER stress, or adenoviral scavenging of ROS in the SFO prevented the ANG II-induced increase in SFO NF-κB. These findings highlight the utility of bioluminescence imaging to longitudinally track transcription factor activation during the development of ANG II-dependent hypertension and reveal an AT1aR-, ER stress-, and ROS-dependent prehypertensive surge in NF-κB activity in the SFO. Furthermore, the increase in NF-κB activity before a rise in arterial blood pressure suggests a causal role for SFO NF-κB in the development of ANG II-dependent hypertension.
Collapse
Affiliation(s)
- Colin N Young
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Anfei Li
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Frederick N Dong
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Julie A Horwath
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Catharine G Clark
- Department of Biomedical Engineering, Cornell University, Ithaca, New York; and
| | - Robin L Davisson
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York; Cell and Developmental Biology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
29
|
Khan NS, Song CY, Jennings BL, Estes AM, Fang XR, Bonventre JV, Malik KU. Cytosolic phospholipase A2α is critical for angiotensin II-induced hypertension and associated cardiovascular pathophysiology. Hypertension 2015; 65:784-92. [PMID: 25667212 DOI: 10.1161/hypertensionaha.114.04803] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiotensin II activates cytosolic phospholipase A(2)α (cPLA2α) and releases arachidonic acid from tissue phospholipids, which mediate or modulate ≥1 cardiovascular effects of angiotensin II and has been implicated in hypertension. Because arachidonic acid release is the rate limiting step in eicosanoid production, cPLA2α might play a central role in the development of angiotensin II-induced hypertension. To test this hypothesis, we investigated the effect of angiotensin II infusion for 13 days by micro-osmotic pumps on systolic blood pressure and associated pathogenesis in wild type (cPLA2α(+/+)) and cPLA2α(-/-) mice. Angiotensin II-induced increase in systolic blood pressure in cPLA2α(+/+) mice was abolished in cPLA2α(-/-) mice; increased systolic blood pressure was also abolished by the arachidonic acid metabolism inhibitor, 5,8,11,14-eicosatetraynoic acid in cPLA2α(+/+) mice. Angiotensin II in cPLA2α(+/+) mice increased cardiac cPLA2 activity and urinary eicosanoid excretion, decreased cardiac output, caused cardiovascular remodeling with endothelial dysfunction, and increased vascular reactivity in cPLA2α(+/+) mice; these changes were diminished in cPLA2α(-/-) mice. Angiotensin II also increased cardiac infiltration of F4/80(+) macrophages and CD3(+) T lymphocytes, cardiovascular oxidative stress, expression of endoplasmic reticulum stress markers p58(IPK), and CHOP in cPLA2α(+/+) but not cPLA2α(-/-) mice. Angiotensin II increased cardiac activity of ERK1/2 and cSrc in cPLA2α(+/+) but not cPLA2α(-/-) mice. These data suggest that angiotensin II-induced hypertension and associated cardiovascular pathophysiological changes are mediated by cPLA2α activation, most likely through the release of arachidonic acid and generation of eicosanoids with predominant prohypertensive effects and activation of ≥1 signaling molecules, including ERK1/2 and cSrc.
Collapse
Affiliation(s)
- Nayaab S Khan
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN (N.S.K., C.Y.S., B.L.J., A.M.E., X.R.F., K.U.M.); and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institute of Medicine, Boston, MA (J.V.B.)
| | - Chi Young Song
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN (N.S.K., C.Y.S., B.L.J., A.M.E., X.R.F., K.U.M.); and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institute of Medicine, Boston, MA (J.V.B.)
| | - Brett L Jennings
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN (N.S.K., C.Y.S., B.L.J., A.M.E., X.R.F., K.U.M.); and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institute of Medicine, Boston, MA (J.V.B.)
| | - Anne M Estes
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN (N.S.K., C.Y.S., B.L.J., A.M.E., X.R.F., K.U.M.); and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institute of Medicine, Boston, MA (J.V.B.)
| | - Xiao R Fang
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN (N.S.K., C.Y.S., B.L.J., A.M.E., X.R.F., K.U.M.); and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institute of Medicine, Boston, MA (J.V.B.)
| | - Joseph V Bonventre
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN (N.S.K., C.Y.S., B.L.J., A.M.E., X.R.F., K.U.M.); and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institute of Medicine, Boston, MA (J.V.B.)
| | - Kafait U Malik
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN (N.S.K., C.Y.S., B.L.J., A.M.E., X.R.F., K.U.M.); and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institute of Medicine, Boston, MA (J.V.B.).
| |
Collapse
|
30
|
Sandberg K, Ji H, Hay M. Sex-specific immune modulation of primary hypertension. Cell Immunol 2014; 294:95-101. [PMID: 25498375 DOI: 10.1016/j.cellimm.2014.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 11/28/2014] [Accepted: 12/01/2014] [Indexed: 01/11/2023]
Abstract
It is well known that the onset of essential hypertension occurs earlier in men than women. Numerous studies have shown sex differences in the vasculature, kidney and sympathetic nervous system contribute to this sex difference in the development of hypertension. The immune system also contributes to the development of hypertension; however, sex differences in immune system modulation of blood pressure (BP) and the development of hypertension has only recently begun to be explored. Here we review findings on the effect of one's sex on the immune system and specifically how these effects impact BP and the development of primary hypertension. We also propose a hypothesis for why mechanisms underlying inflammation-induced hypertension are sex-specific. These studies underscore the value of and need for studying both sexes in the basic science exploration of the pathophysiology of hypertension as well as other diseases.
Collapse
Affiliation(s)
- Kathryn Sandberg
- Department of Medicine and Center for the Study of Sex Differences in Health, Aging and Disease, Suite 232 Bldg D., Georgetown University, Washington D.C. 20057, United States
| | - Hong Ji
- Department of Medicine and Center for the Study of Sex Differences in Health, Aging and Disease, Suite 232 Bldg D., Georgetown University, Washington D.C. 20057, United States
| | - Meredith Hay
- Department of Physiology and the Evelyn F. McKnight Brain Institute, University of Arizona, 1503 N. Campbell Rd, Bldg 201, Room 4103, Tucson, AZ 85724, United States.
| |
Collapse
|
31
|
Sriramula S, Xia H, Xu P, Lazartigues E. Brain-targeted angiotensin-converting enzyme 2 overexpression attenuates neurogenic hypertension by inhibiting cyclooxygenase-mediated inflammation. Hypertension 2014; 65:577-86. [PMID: 25489058 DOI: 10.1161/hypertensionaha.114.04691] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overactivity of the renin-angiotensin system, oxidative stress, and cyclooxygenases (COX) in the brain are implicated in the pathogenesis of hypertension. We previously reported that angiotensin-converting enzyme 2 (ACE2) overexpression in the brain attenuates the development of deoxycorticosterone acetate-salt hypertension, a neurogenic hypertension model with enhanced brain renin-angiotensin system and sympathetic activity. To elucidate the mechanisms involved, we investigated whether oxidative stress, mitogen-activated protein kinase signaling and cyclooxygenase (COX) activation in the brain are modulated by ACE2 in neurogenic hypertension. Deoxycorticosterone acetate-salt hypertension significantly increased expression of Nox-2 (+61±5%), Nox-4 (+50±13%), and nitrotyrosine (+89±32%) and reduced activity of the antioxidant enzymes, catalase (-29±4%) and superoxide dismutase (-31±7%), indicating increased oxidative stress in the brain of nontransgenic mice. This increased oxidative stress was attenuated in transgenic mice overexpressing ACE2 in the brain. Deoxycorticosterone acetate-salt-induced reduction of neuronal nitric oxide synthase expression (-26±7%) and phosphorylated endothelial nitric oxide synthase/total endothelial nitric oxide synthase (-30±3%), and enhanced phosphorylation of protein kinase B and extracellular signal-regulated kinase 1/2 in the paraventricular nucleus, were reversed by ACE2 overexpression. In addition, ACE2 overexpression blunted the hypertension-mediated increase in gene and protein expression of COX-1 and COX-2 in the paraventricular nucleus. Furthermore, gene silencing of either COX-1 or COX-2 in the brain, reduced microglial activation and accompanied neuroinflammation, ultimately attenuating Deoxycorticosterone acetate-salt hypertension. Together, these data provide evidence that brain ACE2 overexpression reduces oxidative stress and COX-mediated neuroinflammation, improves antioxidant and nitric oxide signaling, and thereby attenuates the development of neurogenic hypertension.
Collapse
Affiliation(s)
- Srinivas Sriramula
- Department of Pharmacology and Experimental Therapeutics, Neurosciences and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans
| | - Huijing Xia
- Department of Pharmacology and Experimental Therapeutics, Neurosciences and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans
| | - Ping Xu
- Department of Pharmacology and Experimental Therapeutics, Neurosciences and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics, Neurosciences and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans.
| |
Collapse
|
32
|
Chen A, Huang BS, Wang HW, Ahmad M, Leenen FHH. Knockdown of mineralocorticoid or angiotensin II type 1 receptor gene expression in the paraventricular nucleus prevents angiotensin II hypertension in rats. J Physiol 2014; 592:3523-36. [PMID: 24973408 DOI: 10.1113/jphysiol.2014.275560] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Circulating Ang II activates an aldosterone-mineralocorticoid receptor (MR) - angiotensin II (Ang II) - angiotensin type 1 receptor (AT1R) pathway in the hypothalamus. To obtain insights into the actual neuronal projections involved, adeno-associated virus carrying small interfering RNA against either AT1aR (AAV-AT1aR-siRNA) or MR (AAV-MR-siRNA) were infused into the paraventricular nucleus (PVN) in Wistar rats. Intra-PVN infusion of AAV-AT1aR-siRNA or AAV-MR-siRNA decreased AT1R or MR expression in the PVN but not in the subfornical organ (SFO) or supraoptic nucleus (SON). Subcutaneous infusion of Ang II at 500 ng kg(-1) min(-1) for 2 weeks increased mean arterial pressure by 60-70 mmHg, and increased AT1R and MR expression in the SFO, SON and PVN. Intra-PVN AT1aR-siRNA prevented the Ang II-induced increase in AT1R but not MR expression in the PVN, and MR-siRNA prevented MR but not AT1R expression in the PVN. The increases in AT1R and MR expression in both the SFO and the SON were not changed by the two AAV-siRNAs. Specific knockdown of AT1R or MR in the PVN by AAV-siRNA each prevented most of the Ang II-induced hypertension. Prevention of the subcutaneous Ang II-induced increase in MR but not the increase in AT1R by knockdown of MR and vice versa suggests an independent regulation of MR and AT1R expression in the PVN. Both AT1R and MR activation in the PVN play a critical role in Ang II-induced hypertension in rats.
Collapse
Affiliation(s)
- Aidong Chen
- University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada
| | - Bing S Huang
- University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada
| | - Hong-Wei Wang
- University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada
| | - Monir Ahmad
- University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada
| | - Frans H H Leenen
- University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada
| |
Collapse
|
33
|
Coble JP, Cassell MD, Davis DR, Grobe JL, Sigmund CD. Activation of the renin-angiotensin system, specifically in the subfornical organ is sufficient to induce fluid intake. Am J Physiol Regul Integr Comp Physiol 2014; 307:R376-86. [PMID: 24965793 DOI: 10.1152/ajpregu.00216.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Increased activity of the renin-angiotensin system within the brain elevates fluid intake, blood pressure, and resting metabolic rate. Renin and angiotensinogen are coexpressed within the same cells of the subfornical organ, and the production and action of ANG II through the ANG II type 1 receptor in the subfornical organ (SFO) are necessary for fluid intake due to increased activity of the brain renin-angiotensin system. We generated an inducible model of ANG II production by breeding transgenic mice expressing human renin in neurons controlled by the synapsin promoter with transgenic mice containing a Cre-recombinase-inducible human angiotensinogen construct. Adenoviral delivery of Cre-recombinase causes SFO-selective induction of human angiotensinogen expression. Selective production of ANG II in the SFO results in increased water intake but did not change blood pressure or resting metabolic rate. The increase in water intake was ANG II type 1 receptor-dependent. When given a choice between water and 0.15 M NaCl, these mice increased total fluid and sodium, but not water, because of an increased preference for NaCl. When provided a choice between water and 0.3 M NaCl, the mice exhibited increased fluid, water, and sodium intake, but no change in preference for NaCl. The increase in fluid intake was blocked by an inhibitor of PKC, but not ERK, and was correlated with increased phosphorylated cyclic AMP response element binding protein in the subfornical organ. Thus, increased production and action of ANG II specifically in the subfornical organ are sufficient on their own to mediate an increase in drinking through PKC.
Collapse
Affiliation(s)
- Jeffrey P Coble
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Martin D Cassell
- Department of Anatomy and Cell Biology, Roy J. and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Deborah R Davis
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Justin L Grobe
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Curt D Sigmund
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| |
Collapse
|
34
|
Pollow DP, Uhrlaub J, Romero-Aleshire M, Sandberg K, Nikolich-Zugich J, Brooks HL, Hay M. Sex differences in T-lymphocyte tissue infiltration and development of angiotensin II hypertension. Hypertension 2014; 64:384-390. [PMID: 24890822 DOI: 10.1161/hypertensionaha.114.03581] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There is extensive evidence that activation of the immune system is both necessary and required for the development of angiotensin II (Ang II)-induced hypertension in males. The purpose of this study was to determine whether sex differences exist in the ability of the adaptive immune system to induce Ang II-dependent hypertension and whether central and renal T-cell infiltration during Ang II-induced hypertension is sex dependent. Recombinant activating gene-1 (Rag-1)(-/-) mice, lacking both T and B cells, were used. Male and female Rag-1(-/-) mice received adoptive transfer of male CD3(+) T cells 3 weeks before 14-day Ang II infusion (490 ng/kg per minute). Blood pressure was monitored via tail cuff. In the absence of T cells, systolic blood pressure responses to Ang II were similar between sexes (Δ22.1 mm Hg males versus Δ18 mm : Hg females). After adoptive transfer of male T cells, Ang II significantly increased systolic blood pressure in males (Δ37.7 mm : Hg; P<0.05) when compared with females (Δ13.7 mm : Hg). Flow cytometric analysis of total T cells and CD4(+), CD8(+), and regulatory Foxp3(+)-CD4(+) T-cell subsets identified that renal lymphocyte infiltration was significantly increased in males versus females in both control and Ang II-infused animals (P<0.05). Immunohistochemical staining for CD3(+)-positive T cells in the subfornical organ region of the brain was increased in males when compared with that in females. These results suggest that female Rag-1(-/-) mice are protected from male T-cell-mediated increases in Ang II-induced hypertension when compared with their male counterparts, and this protection may involve sex differences in the magnitude of T-cell infiltration of the kidney and brain.
Collapse
Affiliation(s)
- Dennis P Pollow
- Department of Physiology University of Arizona, Tucson, AZ.,Sarver Heart Center University of Arizona, Tucson, AZ
| | | | | | - Kathryn Sandberg
- Department of Medicine and Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, DC
| | | | - Heddwen L Brooks
- Department of Physiology University of Arizona, Tucson, AZ.,Sarver Heart Center University of Arizona, Tucson, AZ
| | - Meredith Hay
- Department of Physiology University of Arizona, Tucson, AZ.,Sarver Heart Center University of Arizona, Tucson, AZ.,Evelyn McKnight Brain Institute, University of Arizona, Tucson, AZ
| |
Collapse
|
35
|
Eskilsson A, Tachikawa M, Hosoya KI, Blomqvist A. Distribution of microsomal prostaglandin E synthase-1 in the mouse brain. J Comp Neurol 2014; 522:3229-44. [DOI: 10.1002/cne.23593] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Anna Eskilsson
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences; Linköping University; Linköping Sweden
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences; Tohoku University; Sendai Japan
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama Japan
| | - Ken-ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama Japan
| | - Anders Blomqvist
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences; Linköping University; Linköping Sweden
| |
Collapse
|
36
|
Tang M, Zhao L, Chen Y, Wang L, Zhang X. Angiotensin II protects cortical neurons against oxygen-glucose deprivation-induced injury in vitro.. Biomed Rep 2014; 2:112-116. [PMID: 24649080 DOI: 10.3892/br.2013.182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/02/2013] [Indexed: 11/05/2022] Open
Abstract
Ischemic cerebrovascular disease is a common type of cerebrovascular disease and the leading cause of disability and mortality worldwide. Therefore, it is crucial to elucidate its pathogenesis and develop novel therapeutic strategies. This study was performed to investigate whether angiotensin (Ang) II exerts a protective effect against cerebral ischemia/reperfusion (I/R) injury in vitro. The primary cultured neurons were prepared and an I/R model was established by incubation of cortical neurons with Na2S2O4, followed by culture in fresh medium. The protective effect of Ang II and its underlying mechanisms were investigated by morphology observation, MTT assay, flow cytometry analysis and reverse transcription-polymerase chain reaction (RT-PCR). The data demonstrated that Ang II significantly ameliorated the neuronal injury caused by oxygen-glucose deprivation. Furthermore, Ang II increased cell viability through inhibiting cell apoptosis. The RT-PCR results revealed that Ang II was able to reverse the increased bax mRNA and the decreased bcl2 mRNA expression. Of note, the protective activity of Ang II may be attenuated by co-treatment with Ang II type 2 (AT2) receptor blockade (PD123319), but not Ang II type 1 (AT1) receptor blockade (valsartan). These findings suggested that Ang II exerted a protective effect against neuronal injury induced by oxygen-glucose deprivation through decreasing cell apoptosis. Therefore, Ang II may be used as a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Mingtan Tang
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Li Zhao
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Yanqing Chen
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Lixiang Wang
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Xiumei Zhang
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
37
|
Campbell DJ. Do intravenous and subcutaneous angiotensin II increase blood pressure by different mechanisms? Clin Exp Pharmacol Physiol 2014; 40:560-70. [PMID: 23551142 DOI: 10.1111/1440-1681.12085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 01/21/2023]
Abstract
Angiotensin (Ang) II plays a key role in blood pressure regulation. Mechanisms of the pressor effect of chronic intravenous AngII administration include vasoconstriction, stimulation of the sympathetic nervous system and aldosterone production, as well as direct effects on renal excretion of sodium and water. Chronic AngII administration by subcutaneous minipump at doses higher than required to increase blood pressure by the intravenous route has identified additional pressor mechanisms, including the immune system, cytokines and matrix metalloproteinases. However, pressor doses of subcutaneous AngII may exceed the angiotensinogen synthesis rate and produce inflammation, fibrosis and necrosis of skin overlying the minipump. Evidence that chronic subcutaneous and intravenous AngII increase blood pressure by different mechanisms includes the prevention of the pressor effects of subcutaneous, but not intravenous, AngII by angiotensin-converting enzyme inhibition. Furthermore, low doses of subcutaneous AngII reduce blood pressure of female, but not male, rodents and higher doses are less pressor in females than in males, whereas intravenous AngII is equally pressor in males and females. Pressor doses of chronic subcutaneous AngII produce greater weight loss, anorexia and reduced kidney weight and cause greater vascular, cardiac and renal pathology than equally pressor doses of chronic intravenous AngII. The different effects of chronic intravenous and subcutaneous AngII suggest that these two models of hypertension give different information and may differ in their relevance to blood pressure regulation in physiological and pathological states such as hypertension in humans.
Collapse
Affiliation(s)
- Duncan J Campbell
- St Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, St Vincent's Hospital, Melbourne, Vic., Australia.
| |
Collapse
|
38
|
New roles for old pathways? A circuitous relationship between reactive oxygen species and cyclo-oxygenase in hypertension. Clin Sci (Lond) 2013; 126:111-21. [PMID: 24059588 DOI: 10.1042/cs20120651] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Elevated production of prostanoids from the constitutive (COX-1) or inducible (COX-2) cyclo-oxygenases has been involved in the alterations in vascular function, structure and mechanical properties observed in cardiovascular diseases, including hypertension. In addition, it is well known that production of ROS (reactive oxygen species) plays an important role in the impaired contractile and vasodilator responses, vascular remodelling and altered vascular mechanics of hypertension. Of particular interest is the cross-talk between NADPH oxidase and mitochondria, the main ROS sources in hypertension, which may represent a vicious feed-forward cycle of ROS production. In recent years, there is experimental evidence showing a relationship between ROS and COX-derived products. Thus ROS can activate COX and the COX/PG (prostaglandin) synthase pathways can induce ROS production through effects on different ROS generating enzymes. Additionally, recent evidence suggests that the COX-ROS axis might constitute a vicious circle of self-perpetuating vasoactive products that have a pathophysiological role in altered vascular contractile and dilator responses and hypertension development. The present review discusses the current knowledge on the role of oxidative stress and COX-derived prostanoids in the vascular alterations observed in hypertension, highlighting new findings indicating that these two pathways act in concert to induce vascular dysfunction.
Collapse
|
39
|
PTGER1 deletion attenuates renal injury in diabetic mouse models. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1789-1802. [PMID: 24113456 DOI: 10.1016/j.ajpath.2013.08.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/23/2013] [Accepted: 08/22/2013] [Indexed: 01/11/2023]
Abstract
We hypothesized that the EP1 receptor promotes renal damage in diabetic nephropathy. We rendered EP1 (PTGER1, official symbol) knockout mice (EP1(-/-)) diabetic using the streptozotocin and OVE26 models. Albuminuria, mesangial matrix expansion, and glomerular hypertrophy were each blunted in EP1(-/-) streptozotocin and OVE26 cohorts compared with wild-type counterparts. Although diabetes-associated podocyte depletion was unaffected by EP1 deletion, EP1 antagonism with ONO-8711 in cultured podocytes decreased angiotensin II-mediated superoxide generation, suggesting that EP1-associated injury of remaining podocytes in vivo could contribute to filtration barrier dysfunction. Accordingly, EP1 deletion in OVE26 mice prevented nephrin mRNA expression down-regulation and ameliorated glomerular basement membrane thickening and foot process effacement. Moreover, EP1 deletion reduced diabetes-induced expression of fibrotic markers fibronectin and α-actin, whereas EP1 antagonism decreased fibronectin in cultured proximal tubule cells. Similarly, proximal tubule megalin expression was reduced by diabetes but was preserved in EP1(-/-) mice. Finally, the diabetes-associated increase in angiotensin II-mediated constriction of isolated mesenteric arteries was blunted in OVE26EP1(-/-) mice, demonstrating a role for EP1 receptors in the diabetic vasculature. These data suggest that EP1 activation contributes to diabetic nephropathy progression at several locations, including podocytes, proximal tubule, and the vasculature. The EP1 receptor facilitates the actions of angiotensin II, thereby suggesting that targeting of both the renin-angiotensin system and the EP1 receptor could be beneficial in diabetic nephropathy.
Collapse
|
40
|
Asirvatham-Jeyaraj N, King AJ, Northcott CA, Madan S, Fink GD. Cyclooxygenase-1 inhibition attenuates angiotensin II-salt hypertension and neurogenic pressor activity in the rat. Am J Physiol Heart Circ Physiol 2013; 305:H1462-70. [PMID: 24014677 DOI: 10.1152/ajpheart.00245.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cyclooxygenase (COX)-derived prostanoids contribute to angiotensin II (ANG II) hypertension (HTN). However, the specific mechanisms by which prostanoids act are unclear. ANG II-induced HTN is caused partly by increased sympathetic nervous system activity, especially in a setting of high dietary salt intake. This study tested the hypothesis that COX-derived prostanoids cause ANG II-salt sympathoexcitation and HTN. Experiments were conducted in conscious rats. Infusion of ANG II (150 ng·kg(-1)·min(-1) sc) caused a marked HTN in rats on 2% salt diet, but a much smaller increase in blood pressure in rats on 0.4% salt diet. The nonselective COX inhibitor ketoprofen (2 mg/kg sc) given throughout the ANG-II infusion period attenuated HTN development in rats on 2% NaCl diet, but not in rats on 0.4% NaCl diet. The acute depressor response to ganglion blockade was used to assess neurogenic pressor activity in rats on 2% NaCl diet. Ketoprofen-treated rats showed a smaller fall in arterial pressure in response to ganglion blockade during ANG-II infusion than did nontreated controls. In additional experiments, ketoprofen-treated rats exhibited smaller increases in plasma norepinephrine levels and whole body norepinephrine spillover than we previously reported in ANG II-salt HTN. Finally, the effects of the selective COX-1 inhibitor SC560 (10 mg·kg(-1)·day(-1) ip) and the selective COX-2 inhibitor nimesulide (10 mg·kg(-1)·day(-1) ip) were investigated. Treatment with SC560 but not nimesulide significantly reduced blood pressure and the depressor response to ganglion blockade in ANG II-salt HTN rats. The results suggest that COX-1 products are critical for sympathoexcitation and the full development of ANG II-salt HTN in rats.
Collapse
|
41
|
Wang G, Sarkar P, Peterson JR, Anrather J, Pierce JP, Moore JM, Feng J, Zhou P, Milner TA, Pickel VM, Iadecola C, Davisson RL. COX-1-derived PGE2 and PGE2 type 1 receptors are vital for angiotensin II-induced formation of reactive oxygen species and Ca(2+) influx in the subfornical organ. Am J Physiol Heart Circ Physiol 2013; 305:H1451-61. [PMID: 24014678 DOI: 10.1152/ajpheart.00238.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Regulation of blood pressure by angiotensin II (ANG II) is a process that involves the reactive oxygen species (ROS) and calcium. We have shown that ANG-II type 1 receptor (AT1R) and prostaglandin E2 (PGE2) type 1 receptors (EP1R) are required in the subfornical organ (SFO) for ROS-mediated hypertension induced by slow-pressor ANG-II infusion. However, the signaling pathway associated with this process remains unclear. We sought to determine mechanisms underlying the ANG II-induced ROS and calcium influx in mouse SFO cells. Ultrastructural studies showed that cyclooxygenase 1 (COX-1) codistributes with AT1R in the SFO, indicating spatial proximity. Functional studies using SFO cells revealed that ANG II potentiated PGE2 release, an effect dependent on AT1R, phospholipase A2 (PLA2) and COX-1. Furthermore, both ANG II and PGE2 increased ROS formation. While the increase in ROS initiated by ANG II, but not PGE2, required the activation of the AT1R/PLA2/COX-1 pathway, both ANG II and PGE2 were dependent on EP1R and Nox2 as downstream effectors. Finally, ANG II potentiated voltage-gated L-type Ca(2+) currents in SFO neurons via the same signaling pathway required for PGE2 production. Blockade of EP1R and Nox2-derived ROS inhibited ANG II and PGE2-mediated Ca(2+) currents. We propose a mechanism whereby ANG II increases COX-1-derived PGE2 through the AT1R/PLA2 pathway, which promotes ROS production by EP1R/Nox2 signaling in the SFO. ANG II-induced ROS are coupled with Ca(2+) influx in SFO neurons, which may influence SFO-mediated sympathoexcitation. Our findings provide the first evidence of a spatial and functional framework that underlies ANG-II signaling in the SFO and reveal novel targets for antihypertensive therapies.
Collapse
Affiliation(s)
- Gang Wang
- The Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bubb KJ, Wen H, Panayiotou CM, Finsterbusch M, Khan FJ, Chan MV, Priestley JV, Baker MD, Ahluwalia A. Activation of neuronal transient receptor potential vanilloid 1 channel underlies 20-hydroxyeicosatetraenoic acid-induced vasoactivity: role for protein kinase A. Hypertension 2013; 62:426-33. [PMID: 23753406 DOI: 10.1161/hypertensionaha.111.00942] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A rise in intraluminal pressure triggers vasoconstriction in resistance arteries, which is associated with local generation of the vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE). Importantly, dysregulation of 20-HETE synthesis and activity has been implicated in several cardiovascular disease states, including ischemic disease, hypertension, and stroke; however, the exact molecular pathways involved in mediating 20-HETE bioactivity are uncertain. We investigated whether 20-HETE activates the transient receptor potential vanilloid 1 (TRPV1) and thereby regulates vascular function and blood pressure. We demonstrate that 20-HETE causes dose-dependent increases in blood pressure, coronary perfusion pressure (isolated Langendorff), and pressure-induced constriction of resistance arteries (perfusion myography) that is substantially attenuated in TRPV1 knockout mice and by treatment with the neurokinin 1 receptor antagonist RP67580. Furthermore, we show that both channel activation (via patch-clamping of dorsal root ganglion neurons) and vessel constriction are enhanced under inflammatory conditions, and our findings indicate a predominant role for protein kinase A-mediated sensitization of TRPV1 in these phenomena. Finally, we identify a prominence of these pathway in males compared with females, an effect we relate to reduced protein kinase A-induced phosphorylation of TRPV1. 20-HETE-induced activation of TRPV1, in part, mediates pressure-induced myogenic constriction and underlies 20-HETE-induced elevations in blood pressure and coronary resistance. Our findings identify a novel vasoconstrictor 20-HETE/TRPV1 pathway that may offer potential for therapeutic targeting in cardiovascular diseases associated with elevated 20-HETE implicated in dysregulated organ blood flow, such as stroke or hypertension.
Collapse
Affiliation(s)
- Kristen J Bubb
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Sq, London EC1M 6BQ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wang G, Coleman CG, Chan J, Faraco G, Marques-Lopes J, Milner TA, Guruju MR, Anrather J, Davisson RL, Iadecola C, Pickel VM. Angiotensin II slow-pressor hypertension enhances NMDA currents and NOX2-dependent superoxide production in hypothalamic paraventricular neurons. Am J Physiol Regul Integr Comp Physiol 2013; 304:R1096-106. [PMID: 23576605 DOI: 10.1152/ajpregu.00367.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adaptive changes in glutamatergic signaling within the hypothalamic paraventricular nucleus (PVN) may play a role in the neurohumoral dysfunction underlying the hypertension induced by "slow-pressor" ANG II infusion. We hypothesized that these adaptive changes alter production of gp91phox NADPH oxidase (NOX)-derived reactive oxygen species (ROS) or nitric oxide (NO), resulting in enhanced glutamatergic signaling in the PVN. Electron microscopic immunolabeling showed colocalization of NOX2 and N-methyl-D-aspartate receptor (NMDAR) NR1 subunits in PVN dendrites, an effect enhanced (+48%, P < 0.05 vs. saline) in mice receiving ANG II (600 ng·kg⁻¹·min⁻¹ sc). Isolated PVN cells or spinally projecting PVN neurons from ANG II-infused mice had increased levels of ROS at baseline (+40 ± 5% and +57.6 ± 7.7%, P < 0.01 vs. saline) and after NMDA (+24 ± 7% and +17 ± 5.5%, P < 0.01 and P < 0.05 vs. saline). In contrast, ANG II infusion suppressed NO production in PVN cells at baseline (-29.1 ± 5.2%, P < 0.05 vs. saline) and after NMDA (-18.9 ± 2%, P < 0.01 vs. saline), an effect counteracted by NOX inhibition. In whole cell recording of unlabeled and spinally labeled PVN neurons in slices, NMDA induced a larger inward current in ANG II than in saline groups (+79 ± 24% and +82.9 ± 6.6%, P < 0.01 vs. saline), which was reversed by the ROS scavenger MnTBAP and the NO donor S-nitroso-N-acetylpenicillamine (P > 0.05 vs. control). These findings suggest that slow-pressor ANG II increases the association of NR1 with NOX2 in dendrites of PVN neurons, resulting in enhanced NOX-derived ROS and reduced NO during glutamatergic activity. The resulting enhancement of NMDAR activity may contribute to the neurohumoral dysfunction underlying the development of slow-pressor ANG II hypertension.
Collapse
Affiliation(s)
- Gang Wang
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
O'Callaghan EL, Choong YT, Jancovski N, Allen AM. Central angiotensinergic mechanisms associated with hypertension. Auton Neurosci 2013; 175:85-92. [PMID: 23466041 DOI: 10.1016/j.autneu.2013.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 12/20/2022]
Abstract
Following its generation by both systemic and tissue-based renin-angiotensin systems, angiotensin II interacts with specific, G-protein coupled receptors to modulate multiple physiological systems, including the cardiovascular system. Genetic models in which the different components of the renin-angiotensin system have been deleted show large changes in resting blood pressure. Interruption of the generation of angiotensin II, or its interaction with these receptors, decreases blood pressure in hypertensive humans and experimental animal models of hypertension. Whilst the interaction of angiotensin II with the kidney is pivotal in this modulation of blood pressure, an involvement of the system in other tissues is important. Both systemic angiotensins, acting via the blood-brain barrier deficient circumventricular organs, and centrally-generated angiotensin modulate cardiovascular control by regulating fluid and electrolyte ingestion, autonomic activity and neuroendocrine function. This review discusses the pathways in the brain that are involved in this regulation of blood pressure as well as examining the sites in which altered angiotensin function might contribute to the development and maintenance of high blood pressure.
Collapse
Affiliation(s)
- Erin L O'Callaghan
- Department of Physiology, University of Melbourne, Vic., 3010, Australia
| | | | | | | |
Collapse
|
45
|
Neuroimmune communication in hypertension and obesity: a new therapeutic angle? Pharmacol Ther 2013; 138:428-40. [PMID: 23458610 DOI: 10.1016/j.pharmthera.2013.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 02/12/2013] [Indexed: 12/13/2022]
Abstract
Hypertension is an epidemic health concern and a major risk factor for the development of cardiovascular disease. Although there are available treatment strategies for hypertension, numerous hypertensive patients do not have their clinical symptoms under control and it is imperative that new avenues to treat or prevent high blood pressure in these patients are developed. It is well established that increases in sympathetic nervous system (SNS) outflow and enhanced renin-angiotensin system (RAS) activity are common features of hypertension and various pathological conditions that predispose individuals to hypertension. More recently, hypertension has also become recognized as an immune condition and accumulating evidence suggests that interactions between the RAS, SNS and immune systems play a role in blood pressure regulation. This review summarizes what is known about the interconnections between the RAS, SNS and immune systems in the neural regulation of blood pressure. Based on the reviewed studies, a model for RAS/neuroimmune interactions during hypertension is proposed and the therapeutic potential of targeting RAS/neuroimmune interactions in hypertensive patients is discussed. Special emphasis is placed on the applicability of the proposed model to obesity-related hypertension.
Collapse
|
46
|
Yu Y, Xue BJ, Zhang ZH, Wei SG, Beltz TG, Guo F, Johnson AK, Felder RB. Early interference with p44/42 mitogen-activated protein kinase signaling in hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension. Hypertension 2013; 61:842-9. [PMID: 23438934 DOI: 10.1161/hypertensionaha.111.00080] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Blood-borne angiotensin II (ANG II) can upregulate p44/42 mitogen-activated protein kinase (MAPK) signaling and ANG II type-1 receptors in the hypothalamic paraventricular nucleus (PVN), a critical cardiovascular and autonomic center. We tested the hypothesis that brain p44/42 MAPK signaling contributes to the development of ANG II-induced hypertension. The ANG II infusion (120 ng/kg per min, subcutaneously) induced increases in phosphorylated p44/42 MAPK and ANG II type-1 receptors in the PVN after 1 week, before the onset of hypertension, that were sustained as hypertension developed during a 2- or 3-week infusion protocol. Bilateral PVN microinjections of small interfering RNAs for p44/42 MAPK, at the onset of the ANG II infusion or 1 week later, prevented the early increase in p44/42 MAPK activity. The early treatment normalized ANG II type-1 receptor expression in the PVN and attenuated the hypertensive response to the 2-week infusion of ANG II. The later small interfering RNA microinjections had a transient effect on ANG II type-1 receptor expression in PVN and no effect on the hypertensive response to the 3-week infusion of ANG II. The early treatment also normalized the pressure response to ganglionic blockade. The ANG II infusion induced increases in mRNA for proinflammatory cytokines that were not affected by either small interfering RNA treatment. These results suggest that the full expression of ANG II-induced hypertension depends on p44/42 MAPK-mediated effects. A potential role for p44/42 MAPK in modulating the ANG II-induced central inflammatory response might also be considered. MAPK signaling in PVN may be a novel target for early intervention in the progression of ANG II-dependent hypertension.
Collapse
Affiliation(s)
- Yang Yu
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Downey JD, Saleh SA, Bridges TM, Morrison RD, Daniels JS, Lindsley CW, Breyer RM. Development of an in vivo active, dual EP1 and EP3 selective antagonist based on a novel acyl sulfonamide bioisostere. Bioorg Med Chem Lett 2013; 23:37-41. [PMID: 23218714 PMCID: PMC3534858 DOI: 10.1016/j.bmcl.2012.11.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/09/2012] [Accepted: 11/14/2012] [Indexed: 12/28/2022]
Abstract
Recent preclinical studies demonstrate a role for the prostaglandin E(2) (PGE(2)) subtype 1 (EP1) receptor in mediating, at least in part, the pathophysiology of hypertension and diabetes mellitus. A series of amide and N-acylsulfonamide analogs of a previously described picolinic acid-based human EP1 receptor antagonist (7) were prepared. Each analog had improved selectivity at the mouse EP1 receptor over the mouse thromboxane receptor (TP). A subset of analogs gained affinity for the mouse PGE(2) subtype 3 (EP3) receptor, another potential therapeutic target. One analog (17) possessed equal selectivity for EP1 and EP3, displayed a sufficient in vivo residence time in mice, and lacked the potential for acyl glucuronide formation common to compound 7. Treatment of mice with 17 significantly attenuated the vasopressor activity resulting from an acute infusion of EP1 and EP3 receptor agonists. Compound 17 represents a potentially novel therapeutic in the treatment of hypertension and diabetes mellitus.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus/drug therapy
- Half-Life
- Humans
- Hypertension/drug therapy
- Mice
- Microsomes, Liver/metabolism
- Pyridines/chemistry
- Pyridines/pharmacokinetics
- Pyridines/therapeutic use
- Receptors, Prostaglandin E, EP1 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP1 Subtype/metabolism
- Receptors, Prostaglandin E, EP3 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
- Receptors, Thromboxane/antagonists & inhibitors
- Receptors, Thromboxane/metabolism
- Structure-Activity Relationship
- Sulfonamides/chemistry
- Sulfonamides/pharmacokinetics
- Sulfonamides/therapeutic use
Collapse
Affiliation(s)
- Jason D. Downey
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sam A. Saleh
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Thomas M. Bridges
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Ryan D. Morrison
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - J. Scott Daniels
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Craig W. Lindsley
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Richard M. Breyer
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
48
|
Wu KLH, Chan SHH, Chan JYH. Neuroinflammation and oxidative stress in rostral ventrolateral medulla contribute to neurogenic hypertension induced by systemic inflammation. J Neuroinflammation 2012; 9:212. [PMID: 22958438 PMCID: PMC3462714 DOI: 10.1186/1742-2094-9-212] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 08/27/2012] [Indexed: 02/07/2023] Open
Abstract
Background In addition to systemic inflammation, neuroinflammation in the brain, which enhances sympathetic drive, plays a significant role in cardiovascular diseases, including hypertension. Oxidative stress in rostral ventrolateral medulla (RVLM) that augments sympathetic outflow to blood vessels is involved in neural mechanism of hypertension. We investigated whether neuroinflammation and oxidative stress in RVLM contribute to hypertension following chronic systemic inflammation. Methods In normotensive Sprague-Dawley rats, systemic inflammation was induced by infusion of Escherichia coli lipopolysaccharide (LPS) into the peritoneal cavity via an osmotic minipump. Systemic arterial pressure and heart rate were measured under conscious conditions by the non-invasive tail-cuff method. The level of the inflammatory markers in plasma or RVLM was analyzed by ELISA. Protein expression was evaluated by Western blot or immunohistochemistry. Tissue level of superoxide anion (O2·-) in RVLM was determined using the oxidation-sensitive fluorescent probe dihydroethidium. Pharmacological agents were delivered either via infusion into the cisterna magna with an osmotic minipump or microinjection bilaterally into RVLM. Results Intraperitoneal infusion of LPS (1.2 mg/kg/day) for 14 days promoted sustained hypertension and induced a significant increase in plasma level of C-reactive protein, tumor necrosis factor-α (TNF-α), or interleukin-1β (IL-1β). This LPS-induced systemic inflammation was accompanied by activation of microglia, augmentation of IL-1β, IL-6, or TNF-α protein expression, and O2·- production in RVLM, all of which were blunted by intracisternal infusion of a cycloxygenase-2 (COX-2) inhibitor, NS398; an inhibitor of microglial activation, minocycline; or a cytokine synthesis inhibitor, pentoxifylline. Neuroinflammation in RVLM was also associated with a COX-2-dependent downregulation of endothelial nitric oxide synthase and an upregulation of intercellular adhesion molecule-1. Finally, the LPS-promoted long-term pressor response and the reduction in expression of voltage-gated potassium channel, Kv4.3 in RVLM were antagonized by minocycline, NS398, pentoxifylline, or a superoxide dismutase mimetic, tempol, either infused into cisterna magna or microinjected bilaterally into RVLM. The same treatments, on the other hand, were ineffective against LPS-induced systemic inflammation. Conclusion These results suggest that systemic inflammation activates microglia in RVLM to induce COX-2-dependent neuroinflammation that leads to an increase in O2·- production. The resultant oxidative stress in RVLM in turn mediates neurogenic hypertension.
Collapse
Affiliation(s)
- Kay L H Wu
- Center for Translational Research in Biomedical Sciences, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, 83301, Taiwan
| | | | | |
Collapse
|