1
|
Awada C, Saporito AF, Zelikoff JT, Klein CB. E-Cigarette Exposure Alters Neuroinflammation Gene and Protein Expression in a Murine Model: Insights from Perinatally Exposed Offspring and Post-Birth Mothers. Genes (Basel) 2024; 15:322. [PMID: 38540381 PMCID: PMC10970539 DOI: 10.3390/genes15030322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 06/14/2024] Open
Abstract
The use of E-cigarettes, often considered a safer alternative to traditional smoking, has been associated with high rates of cellular toxicity, genetic alterations, and inflammation. Neuroinflammatory impacts of cigarette smoking during pregnancy have been associated with increased risks of adverse childhood health outcomes; however, it is still relatively unknown if the same propensity is conferred on offspring by maternal vaping during gestation. Results from our previous mouse inhalation studies suggest such a connection. In this earlier study, pregnant C57BL/6 mice were exposed daily to inhaled E-cig aerosols (i.e., propylene glycol and vegetable glycerin, [PG/VG]), with or without nicotine (16 mg/mL) by whole-body inhalation throughout gestation (3 h/d; 5 d/week; total ~3-week) and continuing postnatally from post-natal day (PND) 4-21. As neuroinflammation is involved in the dysregulation of glucose homeostasis and weight gain, this study aimed to explore genes associated with these pathways in 1-mo.-old offspring (equivalent in humans to 12-18 years of age). Results in the offspring demonstrated a significant increase in glucose metabolism protein levels in both treatment groups compared to filtered air controls. Gene expression analysis in the hypothalamus of 1 mo. old offspring exposed perinatally to E-cig aerosols, with and without nicotine, revealed significantly increased gene expression changes in multiple genes associated with neuroinflammation. In a second proof-of-principal parallel study employing the same experimental design, we shifted our focus to the hippocampus of the postpartum mothers. We targeted the mRNA levels of several neurotrophic factors (NTFs) indicative of neuroinflammation. While there were suggestive changes in mRNA expression in this study, levels failed to reach statistical significance. These studies highlight the need for ongoing research on E-cig-induced alterations in neuroinflammatory pathways.
Collapse
Affiliation(s)
- Christina Awada
- Division of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (A.F.S.); (J.T.Z.); (C.B.K.)
| | | | | | | |
Collapse
|
2
|
Wang Z, Shi W, Wu T, Peng T, Wang X, Liu S, Yang Z, Wang J, Li PL, Tian R, Hong Y, Yang H, Bai L, Hu Y, Cheng X, Li H, Zhang XJ, She ZG. A high-throughput drug screening identifies luteolin as a therapeutic candidate for pathological cardiac hypertrophy and heart failure. Front Cardiovasc Med 2023; 10:1130635. [PMID: 36998980 PMCID: PMC10043402 DOI: 10.3389/fcvm.2023.1130635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
BackgroundPathological cardiac hypertrophy is commonly resulted from sustained pressure overload and/or metabolic disorder and eventually leads to heart failure, lacking specific drugs in clinic. Here, we aimed to identify promising anti-hypertrophic drug(s) for heart failure and related metabolic disorders by using a luciferase reporter-based high-throughput screening.MethodsA screen of the FDA-approved compounds based on luciferase reporter was performed, with identified luteolin as a promising anti-hypertrophic drug. We systematically examined the therapeutic efficacy of luteolin on cardiac hypertrophy and heart failure in vitro and in vivo models. Transcriptome examination was performed to probe the molecular mechanisms of luteolin.ResultsAmong 2,570 compounds in the library, luteolin emerged as the most robust candidate against cardiomyocyte hypertrophy. Luteolin dose-dependently blocked phenylephrine-induced cardiomyocyte hypertrophy and showed extensive cardioprotective roles in cardiomyocytes as evidenced by transcriptomics. More importantly, gastric administration of luteolin effectively ameliorated pathological cardiac hypertrophy, fibrosis, metabolic disorder, and heart failure in mice. Cross analysis of large-scale transcriptomics and drug-target interacting investigations indicated that peroxisome proliferator activated receptor γ (PPARγ) was the direct target of luteolin in the setting of pathological cardiac hypertrophy and metabolic disorders. Luteolin can directly interact with PPARγ to inhibit its ubiquitination and subsequent proteasomal degradation. Furthermore, PPARγ inhibitor and PPARγ knockdown both prevented the protective effect of luteolin against phenylephrine-induced cardiomyocyte hypertrophy in vitro.ConclusionOur data clearly supported that luteolin is a promising therapeutic compound for pathological cardiac hypertrophy and heart failure by directly targeting ubiquitin-proteasomal degradation of PPARγ and the related metabolic homeostasis.
Collapse
Affiliation(s)
- Zhenya Wang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Wei Shi
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Taibo Wu
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Tian Peng
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xiaoming Wang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Shuaiyang Liu
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Zifeng Yang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Jia Wang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Peng-Long Li
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Ruifeng Tian
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Ying Hong
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Hailong Yang
- Gannan Innovation and Translational Medicine Research Institute, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Lan Bai
- Gannan Innovation and Translational Medicine Research Institute, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yufeng Hu
- Gannan Innovation and Translational Medicine Research Institute, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Xu Cheng
- Gannan Innovation and Translational Medicine Research Institute, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Gannan Innovation and Translational Medicine Research Institute, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Correspondence: Hongliang Li Xiao-Jing Zhang Zhi-Gang She
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Correspondence: Hongliang Li Xiao-Jing Zhang Zhi-Gang She
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Correspondence: Hongliang Li Xiao-Jing Zhang Zhi-Gang She
| |
Collapse
|
3
|
Yu Y, Xue B, Irfan NM, Beltz T, Weiss RM, Johnson AK, Felder RB, Wei SG. Reducing brain TACE activity improves neuroinflammation and cardiac function in heart failure rats. Front Physiol 2022; 13:1052304. [PMID: 36439267 PMCID: PMC9682140 DOI: 10.3389/fphys.2022.1052304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Tumor necrosis factor (TNF)-α converting enzyme (TACE) is a key metalloprotease mediating ectodomain shedding of a variety of inflammatory mediators, substrates, and growth factors. We previously reported that TACE-mediated production of TNF-α in the hypothalamic paraventricular nucleus (PVN) contributes to sympathetic excitation in heart failure (HF). Here, we sought to determine whether central interventions in TACE activity attenuate neuroinflammation and improve cardiac function in heart failure. Myocardial infarction-induced HF or sham-operated (SHAM) rats were treated with bilateral paraventricular nucleus microinjection of a TACE siRNA or a 4-week intracerebroventricular (ICV) infusion of the TACE inhibitor TAPI-0. Compared with SHAM rats, scrambled siRNA-treated HF rats had higher TACE levels in the PVN along with increased mRNA levels of TNF-α, TNF-α receptor 1 and cyclooxygenase-2. The protein levels of TNF-α in cerebrospinal fluid and phosphorylated (p-) NF-κB p65 and extracellular signal-regulated protein kinase (ERK)1/2 in the PVN were also elevated in HF rats treated with scrambled siRNA. The expression of these inflammatory mediators and signaling molecules in the PVN of HF rats were significantly attenuated by TACE siRNA. Interestingly, the mRNA level of TNF-α receptor 2 in the PVN was increased in HF treated with TACE siRNA. Moreover, sympathetic excitation, left ventricular end-diastolic pressure, pulmonary congestion, and cardiac hypertrophy and fibrosis were reduced by PVN microinjection of TACE siRNA. A 4-week treatment with intracerebroventricular TAPI-0 had similar effects to ameliorate these variables in HF rats. These data indicate that interventions suppressing TACE activity in the brain mitigate neuroinflammation, sympathetic activation and cardiac dysfunction in HF rats.
Collapse
Affiliation(s)
- Yang Yu
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - Baojian Xue
- Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
| | - Nafis Md Irfan
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - Terry Beltz
- Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
| | - Robert M Weiss
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, United States
| | - Alan Kim Johnson
- Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Robert B Felder
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Shun-Guang Wei
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- VA Medical Center, Iowa City, IA, United States
| |
Collapse
|
4
|
Tao Y, Gao C, Qian D, Cao D, Han L, Yang L. Regulatory mechanism of fibrosis-related genes in patients with heart failure. Front Genet 2022; 13:1032572. [DOI: 10.3389/fgene.2022.1032572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Heart failure (HF) is a complex clinical syndrome characterized by the inability to match cardiac output with metabolic needs. Research on regulatory mechanism of fibrosis-related genes in patients with HF is very limited. In order to understand the mechanism of fibrosis in the development and progression of HF, fibrosis -related hub genes in HF are screened and verified.Methods: RNA sequencing data was obtained from the Gene Expression Omnibus (GEO) cohorts to identify differentially expressed genes (DEGs). Thereafter, fibrosis-related genes were obtained from the GSEA database and that associated with HF were screened out. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis was carried out to analyze the biological function of fibrosis-related DEGs. The protein-protein interaction (PPI) network of hub genes was constructed via the STRING database. Moreover, the diagnostic value of hub genes for HF was confirmed using ROC curves and expression analysis. Finally, quantitative real time PCR was used to detect the expression levels of mRNAs.Results: A total of 3, 469 DEGs were identified closely related to HF, and 1, 187 fibrosis-related DEGs were obtained and analyzed for GO and KEGG enrichment. The enrichment results of fibrosis-related DEGs were consistent with that of DEGs. A total of 10 hub genes (PPARG, KRAS, JUN, IL10, TLR4, STAT3, CXCL8, CCL2, IL6, IL1β) were selected via the PPI network. Receiver operating characteristic curve analysis was estimated in the test cohort, and 6 genes (PPARG, KRAS, JUN, IL10, TLR4, STAT3) with AUC more than 0.7 were identified as diagnosis genes. Moreover, miRNA-mRNA and TF-mRNA regulatory networks were constructed. Finally, quantitative real time PCR revealed these 6 genes may be used as the potential diagnostic biomarkers of HF.Conclusion: In this study, 10 fibrosis-related hub genes in the HF were identified and 6 of them were demonstrated as potential diagnostic biomarkers for HF.
Collapse
|
5
|
Roy RK, Ferreira-Neto HC, Felder RB, Stern JE. Angiotensin II inhibits the A-type K + current of hypothalamic paraventricular nucleus neurons in rats with heart failure: role of MAPK-ERK1/2 signaling. Am J Physiol Regul Integr Comp Physiol 2022; 322:R526-R534. [PMID: 35319903 PMCID: PMC9076419 DOI: 10.1152/ajpregu.00308.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
Angiotensin II (ANG II)-mediated sympathohumoral activation constitutes a pathophysiological mechanism in heart failure (HF). Although the hypothalamic paraventricular nucleus (PVN) is a major site mediating ANG II effects in HF, the precise mechanisms by which ANG II influences sympathohumoral outflow from the PVN remain unknown. ANG II activates the ubiquitous intracellular MAPK signaling cascades, and recent studies revealed a key role for ERK1/2 MAPK signaling in ANG II-mediated sympathoexcitation in HF rats. Importantly, ERK1/2 was reported to inhibit the transient outward potassium current (IA) in hippocampal neurons. Given that IA is a critical determinant of the PVN neuronal excitability, and that downregulation of IA in the brain has been reported in cardiovascular disease states, including HF, we investigated here whether ANG II modulates IA in PVN neurons via the MAPK-ERK pathway, and, whether these effects are altered in HF rats. Patch-clamp recordings from identified magnocellular neurosecretory neurons (MNNs) and presympathetic (PS) PVN neurons revealed that ANG II inhibited IA in both PVN neuronal types, both in sham and HF rats. Importantly, ANG II effects were blocked by inhibiting MAPK-ERK signaling as well as by inhibiting epidermal growth factor receptor (EGFR), a gateway to MAPK-ERK signaling. Although no differences in basal IA magnitude were found between sham and HF rats under normal conditions, MAPK-ERK blockade resulted in significantly larger IA in both PVN neuronal types in HF rats. Taken together, our studies show that ANG II-induced ERK1/2 activity inhibits IA, an effect expected to increase the excitability of presympathetic and neuroendocrine PVN neurons, contributing in turn to the neurohumoral overactivity that promotes progression of the HF syndrome.
Collapse
Affiliation(s)
- Ranjan K Roy
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | | | - Robert B Felder
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Javier E Stern
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
6
|
Yu Y, Chen E, Weiss RM, Felder RB, Wei SG. Transforming Growth Factor-α Acts in Hypothalamic Paraventricular Nucleus to Upregulate ERK1/2 Signaling and Expression of Sympathoexcitatory Mediators in Heart Failure Rats. Neuroscience 2022; 483:13-23. [PMID: 34968668 PMCID: PMC8837700 DOI: 10.1016/j.neuroscience.2021.12.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023]
Abstract
Activation of epidermal growth factor receptor (EGFR) tyrosine kinase is associated with increased extracellular signal-regulated kinase (ERK) 1/2 signaling in the hypothalamic paraventricular nucleus (PVN), which contributes to the sympathetic excitation in heart failure (HF). Transforming growth factor (TGF)-α is a major endogenous ligand for EGFR. The present study sought to determine whether TGF-α increases in the PVN in HF and promotes the activation of EGFR to increase ERK1/2 activity. Male rats received bilateral PVN microinjections of an EGFR siRNA or a scrambled siRNA followed by an intracerebroventricular (ICV) injection of TGF-α or vehicle one week later. In rats pretreated with the scrambled siRNA, ICV TGF-α increased phosphorylated (p-) EGFR and upregulated the expression of p-ERK1/2 and mRNA levels of proinflammatory cytokines (PICs) and renin-angiotensin system (RAS) components in the PVN, when compared with the untreated age-matched control rats. These responses to ICV TGF-α were significantly attenuated in rats pretreated with the EGFR siRNA. Furthermore, bilateral PVN microinjection of a TGF-α siRNA in HF rats significantly decreased the elevated levels of TGF-α, p-EGFR, p-ERK1/2 and the mRNA expression of PICs and RAS components in the PVN, compared with the HF rats treated with a scrambled siRNA. The TGF-α siRNA-treated HF rats also exhibited lower plasma norepinephrine levels and improved peripheral manifestations of HF. These data suggest that TGF-α expression is upregulated in the PVN in HF and induces the activation of EGFR-mediated ERK1/2 signaling to augment the inflammation and RAS activity that drives sympathetic excitation in HF.
Collapse
Affiliation(s)
- Yang Yu
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Ethan Chen
- Northwestern University, Evanston, IL, United States
| | - Robert M Weiss
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, United States; Abboud Cardiovascular Research Center, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Robert B Felder
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, United States; Abboud Cardiovascular Research Center, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, United States; Iowa Neuroscience Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, United States; Veterans Affairs Medical Center, Iowa City, IA 52242, United States
| | - Shun-Guang Wei
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, United States; Abboud Cardiovascular Research Center, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, United States; Iowa Neuroscience Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, United States; Veterans Affairs Medical Center, Iowa City, IA 52242, United States.
| |
Collapse
|
7
|
Fang S, Livergood MC, Nakagawa P, Wu J, Sigmund CD. Role of the Peroxisome Proliferator Activated Receptors in Hypertension. Circ Res 2021; 128:1021-1039. [PMID: 33793338 DOI: 10.1161/circresaha.120.318062] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors represent a large family of ligand-activated transcription factors which sense the physiological environment and make long-term adaptations by mediating changes in gene expression. In this review, we will first discuss the fundamental mechanisms by which nuclear receptors mediate their transcriptional responses. We will focus on the PPAR (peroxisome proliferator-activated receptor) family of adopted orphan receptors paying special attention to PPARγ, the isoform with the most compelling evidence as an important regulator of arterial blood pressure. We will review genetic data showing that rare mutations in PPARγ cause severe hypertension and clinical trial data which show that PPARγ activators have beneficial effects on blood pressure. We will detail the tissue- and cell-specific molecular mechanisms by which PPARs in the brain, kidney, vasculature, and immune system modulate blood pressure and related phenotypes, such as endothelial function. Finally, we will discuss the role of placental PPARs in preeclampsia, a life threatening form of hypertension during pregnancy. We will close with a viewpoint on future research directions and implications for developing novel therapies.
Collapse
Affiliation(s)
- Shi Fang
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee.,Department of Neuroscience and Pharmacology, University of Iowa (S.F.)
| | - M Christine Livergood
- Department of Obstetrics and Gynecology (M.C.L.), Medical College of Wisconsin, Milwaukee
| | - Pablo Nakagawa
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee
| | - Jing Wu
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee
| | - Curt D Sigmund
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
8
|
Yu Y, Wei SG, Weiss RM, Felder RB. Silencing Epidermal Growth Factor Receptor in Hypothalamic Paraventricular Nucleus Reduces Extracellular Signal-regulated Kinase 1 and 2 Signaling and Sympathetic Excitation in Heart Failure Rats. Neuroscience 2021; 463:227-237. [PMID: 33540053 DOI: 10.1016/j.neuroscience.2021.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/29/2022]
Abstract
Activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling in cardiovascular regulatory regions of the brain contributes to sympathetic excitation in myocardial infarction (MI)-induced heart failure (HF) by increasing brain renin-angiotensin system (RAS) activity, neuroinflammation, and endoplasmic reticulum (ER) stress. The mechanisms eliciting brain ERK1/2 signaling in HF are still poorly understood. We tested the involvement of the epidermal growth factor receptor (EGFR) which, upon activation, stimulates ERK1/2 activity. Adult male Sprague-Dawley rats received bilateral microinjections of a lentiviral vector encoding a small interfering RNA (siRNA) for EGFR, or a scrambled siRNA, into the hypothalamic paraventricular nucleus (PVN), a recognized source of sympathetic overactivity in HF. One week later, coronary artery ligation was performed to induce HF. Four weeks later, the EGFR siRNA-treated HF rats, compared with the scrambled siRNA-treated HF rats, had lower mRNA and protein levels of EGFR, lower levels of phosphorylated (p-) EGFR and p-ERK1/2 and lower mRNA levels of the inflammatory mediators TNF-α, IL-1β and cyclooxygenase-2, the RAS components angiotensin-converting enzyme and angiotensin II type 1a receptor and the ER stress markers BIP and ATF4 in the PVN. They also had lower plasma and urinary norepinephrine levels and improved peripheral manifestations of HF. Additional studies revealed that p-EGFR was increased in the PVN of HF rats, compared with sham-operated control rats. These results suggest that activation of EGFR in the PVN triggers ERK1/2 signaling, along with ER stress, neuroinflammation and RAS activity, in MI-induced HF. Brain EGFR may be a novel target for therapeutic intervention in MI-induced HF.
Collapse
Affiliation(s)
- Yang Yu
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Shun-Guang Wei
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert M Weiss
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert B Felder
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA, USA; VA Medical Center, Iowa City, IA, USA.
| |
Collapse
|
9
|
Song Y, Qi Z, Zhang Y, Wei J, Liao X, Li R, Dong C, Zhu L, Yang Z, Cai Z. Effects of exposure to ambient fine particulate matter on the heart of diet-induced obesity mouse model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139304. [PMID: 32438171 DOI: 10.1016/j.scitotenv.2020.139304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Exposure to fine particulate matter (PM2.5) is associated with decreased cardiac function, especially in high risk populations such as obese ones. In this study, impacts of PM2.5 exposure on cardiac function were investigated by using the diet-induced obesity mice model. Mice were fed with normal diet or high-fat diet (HFD) for four weeks and then exposed to phosphate-buffered solution or Taiyuan winter PM2.5 (0.25 mg/kg body/day) through intratracheal instillation for another four weeks. Among physiological indices recorded, heart rate and blood pressure were increased after PM2.5 exposure in the heart of the obese mice. Metabolomics and lipidomics were applied to explore molecular alterations in response to the co-treatment of PM2.5 and HFD. Our results demonstrated both direct impacts on cardiac function and indirect effects resulted from the injury of other organs. Inflammation of lung and hypothalamus may be responsible for the elevation of phenylalanine metabolism in serum and its downstream products: epinephrine and norepinephrine, the catecholamines involves in regulating cardiac system. In intracardiac system, the co-treatment led to imbalance of energy metabolism, in addition to oxidative stress and inflammation. In contrast to the upregulation of glucose and fatty acids uptake and CoA synthesis, levels of ATP, acetyl-CoA and the intermediates in glycolysis pathway decreased in the heart. The results indicated that energy metabolism disorder was possibly one of the important contributing factors to the more severe adverse effects of the combined treatment of HFD and PM2.5.
Collapse
Affiliation(s)
- Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zenghua Qi
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Juntong Wei
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Liao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
10
|
Wang HW, Ahmad M, Jadayel R, Najjar F, Lagace D, Leenen FHH. Inhibition of inflammation by minocycline improves heart failure and depression-like behaviour in rats after myocardial infarction. PLoS One 2019; 14:e0217437. [PMID: 31233508 PMCID: PMC6590948 DOI: 10.1371/journal.pone.0217437] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/10/2019] [Indexed: 11/29/2022] Open
Abstract
RATIONALE Patients with heart failure have an increased incidence of depression. Central and peripheral inflammation play a major role in the pathophysiology of both heart failure and depression. AIM Minocycline is an antibiotic that inhibits microglia activation and release of pro-inflammatory cytokines. We assessed effects of minocycline on extent of heart failure and depression at 2 and 8 weeks post myocardial infarction. METHODS/RESULTS Male Wistar rats were randomly divided into 3 groups: (i) sham + vehicle; (ii) MI + vehicle; and (iii) MI + minocycline with n/group of 8, 9 and 9 at 2 weeks, and 10, 16, 8 at weeks, respectively. Oral minocycline (50 mg/kg/day) or vehicle started 2 days before surgery. Depression-like behaviour was assessed with sucrose preference and forced swim tests, and cardiac function with echo and hemodynamics. After myocardial infarction, microglia activation and plasma/brain pro-inflammatory cytokines increased, which were mostly prevented by minocycline. At 8 weeks, cardiac dysfunction was attenuated by minocycline: infarct size (MI + Vehicle 29±1, MI + Min 23±1%), ejection fraction (Sham 80±1, MI + Vehicle 48±2, MI + Min 58±2%) and end diastolic pressure (Sham 3.2±0.3, MI + Vehicle 18.2±1.1, MI + Min 8.5±0.9 mm Hg). Depression-like behaviour was significantly improved by minocycline in sucrose preference test (% Sucrose Intake: Sham 96±1, MI + Vehicle 78±2, MI + Min 87±2) and forced swim test (% Immobile: Sham 40±4, MI + Vehicle 61±3, MI + Min 37±6). CONCLUSION Rats post myocardial infarction develop systemic inflammation, heart failure and depression-like behaviour that are all attenuated by minocycline. Targeting (neuro) inflammation may represent new therapeutic strategy for patients with heart failure and depression.
Collapse
Affiliation(s)
- Hong-Wei Wang
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Monir Ahmad
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Rami Jadayel
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Fatimah Najjar
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Diane Lagace
- Neuroscience Research Program, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Frans H. H. Leenen
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Yu Y, Wei SG, Weiss RM, Felder RB. Sex differences in the central and peripheral manifestations of ischemia-induced heart failure in rats. Am J Physiol Heart Circ Physiol 2019; 316:H70-H79. [PMID: 30289294 PMCID: PMC6383354 DOI: 10.1152/ajpheart.00499.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 11/22/2022]
Abstract
Sex differences in the presentation, outcome, and responses to treatment of systolic heart failure (HF) have been reported. In the present study, we examined the effect of sex on central neural mechanisms contributing to neurohumoral excitation and its peripheral manifestations in rats with HF. Male and female Sprague-Dawley rats underwent coronary artery ligation (CL) to induce HF. Age-matched rats served as controls. Ischemic zone and left ventricular function were similar 24 h and 4 wk after CL. Female rats with HF had a lower mortality rate and less hemodynamic compromise, pulmonary congestion, and right ventricular remodeling 4 wk after CL. Plasma angiotensin II (ANG II), arginine vasopressin (AVP), and norepinephrine levels were increased in HF rats in both sexes, but AVP and norepinephrine levels increased less in female rats. In the hypothalamic paraventricular nucleus, a key cardiovascular-related nucleus contributing to neurohumoral excitation in HF, mRNA levels for the proinflammatory cytokines tumor necrosis factor-α and interleukin-1β as well as cyclooxygenase-2 and the ANG II type 1a receptor were increased in HF rats of both sexes, but less so in female rats. Angiotensin-converting enzyme 2 protein levels increased in female HF rats but decreased in male HF rats. mRNA levels of AVP were lower in female rats in both control and HF groups compared with the respective male groups. Activation of extracellular signal-regulated protein kinases 1 and 2 increased similarly in both sexes in HF. The results suggest that female HF rats have less central neural excitation and less associated hemodynamic compromise than male HF rats with the same degree of initial ischemic cardiac injury. NEW & NOTEWORTHY Sex differences in the presentation and responses to treatment of heart failure (HF) are widely recognized, but the underlying mechanisms are poorly understood. The present study describes sex differences in the central nervous system mechanisms that drive neurohumoral excitation in ischemia-induced HF. Female rats had a less intense central neurochemical response to HF and experienced less hemodynamic compromise. Sex hormones may contribute to these differences in the central and peripheral adaptations to HF.
Collapse
Affiliation(s)
- Yang Yu
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Shun-Guang Wei
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Robert M Weiss
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Robert B Felder
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa
- Research Service, Veterans Affairs Medical Center , Iowa City, Iowa
| |
Collapse
|
12
|
The potential role of PPARγ in obesity-induced adipose tissue inflammation. Int J Cardiol 2018; 266:220. [DOI: 10.1016/j.ijcard.2017.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/06/2017] [Indexed: 01/10/2023]
|
13
|
Su Y, Shen X, Chen J, Isales CM, Zhao J, Shi XM. Differentially expressed genes in PPARγ-deficient MSCs. Mol Cell Endocrinol 2018; 471:97-104. [PMID: 28774780 PMCID: PMC5792374 DOI: 10.1016/j.mce.2017.07.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 12/28/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of adipogenesis. It is also a central player in energy metabolism, inflammation and immunity. As an important nuclear transcription factor, PPARγ can regulate the expression and function of genes or biological processes directly or indirectly via association with other factors and thus modulate their activities. To better understand the impact of PPARγ on the global gene expression profile, we evaluated the bioinformatic data, which revealed the changes that occurred in genes and their pathways in the absence of PPARγ. In brief, we performed RNA deep sequencing (RNA-Seq) analysis using RNA samples isolated from multipotent mesenchymal stromal cells (MSCs) of PPARγ knockout and wild type control mice. The RNA-Seq data sets were then subjected to bioinformatic analyses from various angles to better reveal the breadth of PPARγ function in different biological processes. Our results reveal novel genes and networks modulated by PPARγ and provides new insights into our understanding of the physiologic and pathophysiologic role this nuclear receptor plays in health and disease.
Collapse
Affiliation(s)
- Yun Su
- Department of Neuroscience & Regenerative Medicine, USA
| | - Xiaona Shen
- Department of Mathematics, Logistical Engineering University, Chongqing, China
| | - Jie Chen
- Department of Biostatistics and Epidemiology, Augusta University, Augusta, GA, USA
| | - Carlos M Isales
- Department of Neuroscience & Regenerative Medicine, USA; Orthopaedic Surgery, Augusta University, Augusta, GA, USA
| | - Jing Zhao
- Department of Mathematics, Logistical Engineering University, Chongqing, China.
| | - Xing-Ming Shi
- Department of Neuroscience & Regenerative Medicine, USA; Orthopaedic Surgery, Augusta University, Augusta, GA, USA.
| |
Collapse
|
14
|
Interplay between the renin-angiotensin system, the canonical WNT/β-catenin pathway and PPARγ in hypertension. Curr Hypertens Rep 2018; 20:62. [PMID: 29884931 DOI: 10.1007/s11906-018-0860-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Heterogeneous causes can determinate hypertension. RECENT FINDINGS The renin-angiotensin system (RAS) has a major role in the pathophysiology of blood pressure. Angiotensin II and aldosterone are overexpressed during hypertension and lead to hypertension development and its cardiovascular complications. In several tissues, the overactivation of the canonical WNT/β-catenin pathway leads to inactivation of peroxisome proliferator-activated receptor gamma (PPARγ), while PPARγ stimulation induces a decrease of the canonical WNT/β-catenin pathway. In hypertension, the WNT/β-catenin pathway is upregulated, whereas PPARγ is decreased. The WNT/β-catenin pathway and RAS regulate positively each other during hypertension, whereas PPARγ agonists can decrease the expression of both the WNT/β-catenin pathway and RAS. We focus this review on the hypothesis of an opposite interplay between PPARγ and both the canonical WNT/β-catenin pathway and RAS in regulating the molecular mechanism underlying hypertension. The interactions between PPARγ and the canonical WNT/β-catenin pathway through the regulation of the renin-angiotensin system in hypertension may be an interesting way to better understand the actions and the effects of PPARγ agonists as antihypertensive drugs.
Collapse
|
15
|
Yu Y, Wei SG, Weiss RM, Felder RB. Angiotensin II Type 1a Receptors in the Subfornical Organ Modulate Neuroinflammation in the Hypothalamic Paraventricular Nucleus in Heart Failure Rats. Neuroscience 2018; 381:46-58. [PMID: 29684507 DOI: 10.1016/j.neuroscience.2018.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 11/30/2022]
Abstract
Inflammation in the hypothalamic paraventricular nucleus (PVN) contributes to neurohumoral excitation and its adverse consequences in systolic heart failure (HF). The stimuli that trigger inflammation in the PVN in HF are not well understood. Angiotensin II (AngII) has pro-inflammatory effects, and circulating levels of AngII increase in HF. The subfornical organ (SFO), a circumventricular structure that lacks an effective blood-brain barrier and senses circulating AngII, contains PVN-projecting neurons. We hypothesized that activation of AngII type 1a receptors (AT1aR) in the SFO induces neuroinflammation downstream in the PVN. Male rats received SFO microinjections of an adeno-associated virus carrying shRNA for AT1aR, a scrambled shRNA, or vehicle. One week later, some rats were euthanized to confirm the transfection potential and knockdown efficiency of the shRNA. Others underwent coronary artery ligation to induce HF or a sham coronary artery ligation (Sham). Four weeks later, HF rats that received the scrambled shRNA had increased mRNA in SFO and PVN for AT1aR, inflammatory mediators and indicators of neuronal and glial activation, increased plasma levels of AngII, tumor necrosis factor-α, norepinephrine and arginine vasopressin, and impaired cardiac function, compared with Sham rats that received scrambled shRNA. The central abnormalities were ameliorated in HF rats that received AT1aR shRNA, as were plasma norepinephrine and vasopressin. Sham rats that received AT1aR shRNA had reduced SFO AT1aR mRNA but no other changes compared with Sham rats that received scrambled shRNA. The results suggest that activation of AT1aR in the SFO upregulates the neuroinflammation in the PVN that contributes to neurohumoral excitation in HF.
Collapse
Affiliation(s)
- Yang Yu
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, USA.
| | - Shun-Guang Wei
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, USA.
| | - Robert M Weiss
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, USA.
| | - Robert B Felder
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, USA; Research Service, Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA, USA.
| |
Collapse
|
16
|
Wu Y, Ruan Y, Shen L, Gong Q. Protective effects of PPAR-γ against pregnancy-induced hypertension by differential ETR expression in rat models. J Cell Biochem 2017; 119:3118-3128. [PMID: 29058764 DOI: 10.1002/jcb.26454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/03/2017] [Indexed: 01/12/2023]
Abstract
This study aims to investigate the effects of PPAR-γ on rats with pregnancy-induced hypertension (PIH) by regulating endothelin receptor (ETR). A total of 60 pregnant Wistar rats were selected, and 50 rats were used to establish endotoxin induced PIH rat models. Rats were equally assigned into PIH-NS, PIH-5 mg/kg RM, PIH-10 mg/kg RM, PIH-100 mg/kg ETR, and PIH-200 mg/kg ETR groups, and the rest 10 rats were assigned to a the control group. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting were used for determining mRNA and protein expressions of PPAR-γ and ETA R, respectively. Protein expression of ET-1 was detected by immunohistochemistry. Results show that On the 22nd day of pregnancy, compared with the PIH-NS group, SBP decreased in other groups, and platelet concentration increased most significantly in the PIH-10 mg/kg RM and PIH-200 mg/kg ETR groups. Compared with the control, PIH-10 mg/kg RM and PIH-200 mg/kg ETR groups, the increase in the expression of ET-1 and ETA R was most significant in the PIH-NS group. Compared with the control and PIH-10 mg/kg RM groups, expression of PPAR-γ was lower in the PIH-NS, PIH-5 mg/kg RM, PIH-100 mg/kg ETR, and PIH-200 mg/kg ETR groups. Compared with the PIH-NS, PIH-100 mg/kg ETR and PIH-200 mg/kg ETR groups, PPAR-γ expression was significantly higher in the PIH-5 mg/kg RM group (all P < 0.05). Based on our findings, we conclude that PPAR-γ activation inhibits ETR expression and reduces the effect of ET-1 on vascular contraction thereby delaying PIH progression.
Collapse
Affiliation(s)
- Ying Wu
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, P.R. China
| | - Yan Ruan
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, P.R. China
| | - Lin Shen
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, P.R. China
| | - Qing Gong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong Province, P.R. China
| |
Collapse
|
17
|
Wei SG, Yu Y, Felder RB. Blood-borne interleukin-1β acts on the subfornical organ to upregulate the sympathoexcitatory milieu of the hypothalamic paraventricular nucleus. Am J Physiol Regul Integr Comp Physiol 2017; 314:R447-R458. [PMID: 29167166 DOI: 10.1152/ajpregu.00211.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We previously reported that microinjection of the proinflammatory cytokine interleukin-1β (IL-1β) into the subfornical organ (SFO) elicits a pressor response accompanied by increases in inflammation and renin-angiotensin system (RAS) activity in the SFO and hypothalamic paraventricular nucleus (PVN). The present study sought to determine whether blood-borne IL-1β induces similar neurochemical changes in the SFO and PVN and, if so, whether increased inflammation and RAS activity at the SFO level orchestrate the sympathoexcitatory response to circulating IL-1β. In urethane-anesthetized male Sprague-Dawley rats, intravenous injection of IL-1β (500 ng) increased blood pressure, heart rate, renal sympathetic nerve activity, and mRNA for angiotensin-converting enzyme, angiotensin II type 1a receptor, cyclooxygenase-2, tumor necrosis factor-α, and IL-1β, as well as the tumor necrosis factor-α p55 receptor and the IL-1 receptor, in the SFO and PVN. Pretreatment with SFO microinjections of the angiotensin II type 1a receptor blocker losartan (1 µg), the angiotensin-converting enzyme inhibitor captopril (1 µg), or the cyclooxygenase-2 inhibitor NS-398 (2 µg) attenuated expression of these excitatory mediators in the SFO and downstream in the PVN and the IL-1β-induced pressor responses. An SFO lesion minimized the IL-1β-induced expression of inflammatory and RAS components as well as c-Fos, an indicator of neuronal excitation, in the PVN. These studies demonstrate that circulating IL-1β, which increases in cardiovascular disorders such as hypertension and heart failure, acts on the SFO to increase inflammation and RAS activity in the SFO and PVN and that intervening in these neurochemical processes in the SFO can significantly reduce the sympathetic response.
Collapse
Affiliation(s)
- Shun-Guang Wei
- Department of Internal Medicine, University of Iowa Carver College of Medicine , Iowa City, Iowa
| | - Yang Yu
- Department of Internal Medicine, University of Iowa Carver College of Medicine , Iowa City, Iowa
| | - Robert B Felder
- Department of Internal Medicine, University of Iowa Carver College of Medicine , Iowa City, Iowa.,Veterans Affairs Medical Center , Iowa City, Iowa
| |
Collapse
|
18
|
Meng C, Guo Z, Li D, Li H, He J, Wen D, Luo B. Preventive effect of hesperidin modulates inflammatory responses and antioxidant status following acute myocardial infarction through the expression of PPAR‑γ and Bcl‑2 in model mice. Mol Med Rep 2017; 17:1261-1268. [PMID: 29115547 DOI: 10.3892/mmr.2017.7981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 07/13/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- Chunying Meng
- Department of Thoracic and Cardiovascular Surgery, Jinan University 2nd Clinical Medicine College, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Zeheng Guo
- Futian District Maternal and Child Health Hospital of Shenzhen, Shenzhen, Guangdong 518045, P.R. China
| | - Dagang Li
- Department of Thoracic and Cardiovascular Surgery, Jinan University 2nd Clinical Medicine College, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Hanwei Li
- Department of Thoracic and Cardiovascular Surgery, Jinan University 2nd Clinical Medicine College, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Jianbin He
- Department of Thoracic and Cardiovascular Surgery, Jinan University 2nd Clinical Medicine College, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Dingguo Wen
- Department of Thoracic and Cardiovascular Surgery, Jinan University 2nd Clinical Medicine College, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Bin Luo
- Department of Thoracic and Cardiovascular Surgery, Jinan University 2nd Clinical Medicine College, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
19
|
Abushouk AI, El-Husseny MWA, Bahbah EI, Elmaraezy A, Ali AA, Ashraf A, Abdel-Daim MM. Peroxisome proliferator-activated receptors as therapeutic targets for heart failure. Biomed Pharmacother 2017; 95:692-700. [PMID: 28886529 DOI: 10.1016/j.biopha.2017.08.083] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/05/2017] [Accepted: 08/23/2017] [Indexed: 01/06/2023] Open
Abstract
Heart failure (HF) is a common clinical syndrome that affects more than 23 million individuals worldwide. Despite the marked advances in its management, the mortality rates in HF patients have remained unacceptably high. Peroxisome proliferator-activated receptors (PPARs) are nuclear transcription regulators, involved in the regulation of fatty acid and glucose metabolism. PPAR agonists are currently used for the treatment of type II diabetes mellitus and hyperlipidemia; however, their role as therapeutic agents for HF remains under investigation. Preclinical studies have shown that pharmacological modulation of PPARs can upregulate the expression of fatty acid oxidation genes in cardiomyocytes. Moreover, PPAR agonists were proven able to improve ventricular contractility and reduce cardiac remodelling in animal models through their anti-inflammatory, anti-oxidant, anti-fibrotic, and anti-apoptotic activities. Whether these effects can be replicated in humans is yet to be proven. This article reviews the interactions of PPARs with the pathophysiological mechanisms of HF and how the pharmacological modulation of these receptors can be of benefit for HF patients.
Collapse
Affiliation(s)
| | | | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Ahmed Elmaraezy
- NovaMed Medical Research Association, Cairo, Egypt; Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Aya Ashraf Ali
- Faculty of Medicine, Minia University, Minia, Egypt; Minia Medical Research Society, Minia University, Minia, Egypt
| | - Asmaa Ashraf
- Faculty of Medicine, Minia University, Minia, Egypt; Minia Medical Research Society, Minia University, Minia, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt; Department of Ophthalmology and Micro-Technology, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
20
|
Yu Y, Wei SG, Weiss RM, Felder RB. TNF-α receptor 1 knockdown in the subfornical organ ameliorates sympathetic excitation and cardiac hemodynamics in heart failure rats. Am J Physiol Heart Circ Physiol 2017; 313:H744-H756. [PMID: 28710070 DOI: 10.1152/ajpheart.00280.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/21/2017] [Accepted: 07/08/2017] [Indexed: 02/07/2023]
Abstract
In systolic heart failure (HF), circulating proinflammatory cytokines upregulate inflammation and renin-angiotensin system (RAS) activity in cardiovascular regions of the brain, contributing to sympathetic excitation and cardiac dysfunction. Important among these is the subfornical organ (SFO), a forebrain circumventricular organ that lacks an effective blood-brain barrier and senses circulating humors. We hypothesized that the tumor necrosis factor-α (TNF-α) receptor 1 (TNFR1) in the SFO contributes to sympathetic excitation and cardiac dysfunction in HF rats. Rats received SFO microinjections of a TNFR1 shRNA or a scrambled shRNA lentiviral vector carrying green fluorescent protein, or vehicle. One week later, some rats were euthanized to confirm the accuracy of the SFO microinjections and the transfection potential of the lentiviral vector. Other rats underwent coronary artery ligation (CL) to induce HF or a sham operation. Four weeks after CL, vehicle- and scrambled shRNA-treated HF rats had significant increases in TNFR1 mRNA and protein, NF-κB activity, and mRNA for inflammatory mediators, RAS components and c-Fos protein in the SFO and downstream in the hypothalamic paraventricular nucleus, along with increased plasma norepinephrine levels and impaired cardiac function, compared with vehicle-treated sham-operated rats. In HF rats treated with TNFR1 shRNA, TNFR1 was reduced in the SFO but not paraventricular nucleus, and the central and peripheral manifestations of HF were ameliorated. In sham-operated rats treated with TNFR1 shRNA, TNFR1 expression was also reduced in the SFO but there were no other effects. These results suggest a key role for TNFR1 in the SFO in the pathophysiology of systolic HF.NEW & NOTEWORTHY Activation of TNF-α receptor 1 in the subfornical organ (SFO) contributes to sympathetic excitation in heart failure rats by increasing inflammation and renin-angiotensin system activity in the SFO and downstream in the hypothalamic paraventricular nucleus. Cytokine receptors in the SFO may be a target for central intervention in cardiovascular conditions characterized by peripheral inflammation.
Collapse
Affiliation(s)
- Yang Yu
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Shun-Guang Wei
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Robert M Weiss
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Robert B Felder
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and .,Research Service, Veterans Affairs Medical Center, Iowa City, Iowa
| |
Collapse
|
21
|
Pomegranate extract decreases oxidative stress and alleviates mitochondrial impairment by activating AMPK-Nrf2 in hypothalamic paraventricular nucleus of spontaneously hypertensive rats. Sci Rep 2016; 6:34246. [PMID: 27713551 PMCID: PMC5054377 DOI: 10.1038/srep34246] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/05/2016] [Indexed: 01/07/2023] Open
Abstract
High blood pressure, or “hypertension,” is associated with high levels of oxidative stress in the paraventricular nucleus of the hypothalamus. While pomegranate extract is a known antioxidant that is thought to have antihypertensive effects, the mechanism whereby pomegranate extract lowers blood pressure and the tissue that mediates its antihypertensive effects are currently unknown. We have used a spontaneously hypertensive rat model to investigate the antihypertensive properties of pomegranate extract. We found that chronic treatment of hypertensive rats with pomegranate extract significantly reduced blood pressure and cardiac hypertrophy. Furthermore, pomegranate extract reduced oxidative stress, increased the antioxidant defense system, and decreased inflammation in the paraventricular nucleus of hypertensive rats. We determined that pomegranate extract reduced mitochondrial superoxide anion levels and increased mitochondrial function in the paraventricular nucleus of hypertensive rats by promoting mitochondrial biogenesis and improving mitochondrial dynamics and clearance. We went on to identify the AMPK-nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) pathway as a mechanism whereby pomegranate extract reduces oxidative stress in the paraventricular nucleus to relieve hypertension. Our findings demonstrate that pomegranate extract alleviates hypertension by reducing oxidative stress and improving mitochondrial function in the paraventricular nucleus, and reveal multiple novel targets for therapeutic treatment of hypertension.
Collapse
|
22
|
Goltsman I, Khoury EE, Winaver J, Abassi Z. Does Thiazolidinedione therapy exacerbate fluid retention in congestive heart failure? Pharmacol Ther 2016; 168:75-97. [PMID: 27598860 DOI: 10.1016/j.pharmthera.2016.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ever-growing global burden of congestive heart failure (CHF) and type 2 diabetes mellitus (T2DM) as well as their co-existence necessitate that anti-diabetic pharmacotherapy will modulate the cardiovascular risk inherent to T2DM while complying with the accompanying restrictions imposed by CHF. The thiazolidinedione (TZD) family of peroxisome proliferator-activated receptor γ (PPARγ) agonists initially provided a promising therapeutic option in T2DM owing to anti-diabetic efficacy combined with pleiotropic beneficial cardiovascular effects. However, the utility of TZDs in T2DM has declined in the past decade, largely due to concomitant adverse effects of fluid retention and edema formation attributed to salt-retaining effects of PPARγ activation on the nephron. Presumably, the latter effects are potentially deleterious in the context of pre-existing fluid retention in CHF. However, despite a considerable body of evidence on mechanisms responsible for TZD-induced fluid retention suggesting that this class of drugs is rightfully prohibited from use in CHF patients, there is a paucity of experimental and clinical studies that investigate the effects of TZDs on salt and water homeostasis in the CHF setting. In an attempt to elucidate whether TZDs actually exacerbate the pre-existing fluid retention in CHF, our review summarizes the pathophysiology of fluid retention in CHF. Moreover, we thoroughly review the available data on TZD-induced fluid retention and proposed mechanisms in animals and patients. Finally, we will present recent studies challenging the common notion that TZDs worsen renal salt and water retention in CHF.
Collapse
Affiliation(s)
- Ilia Goltsman
- Department of Physiology, Biophysics and Systems Biology, The Bruce Rappaport, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Emad E Khoury
- Department of Physiology, Biophysics and Systems Biology, The Bruce Rappaport, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Joseph Winaver
- Department of Physiology, Biophysics and Systems Biology, The Bruce Rappaport, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Zaid Abassi
- Department of Physiology, Biophysics and Systems Biology, The Bruce Rappaport, Rappaport Faculty of Medicine, Technion, Haifa, Israel; Department of Laboratory Medicine, Rambam Human Health Care Campus, Haifa, Israel.
| |
Collapse
|
23
|
Yu Y, Wei SG, Zhang ZH, Weiss RM, Felder RB. ERK1/2 MAPK signaling in hypothalamic paraventricular nucleus contributes to sympathetic excitation in rats with heart failure after myocardial infarction. Am J Physiol Heart Circ Physiol 2016; 310:H732-9. [PMID: 26801309 DOI: 10.1152/ajpheart.00703.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/11/2016] [Indexed: 02/03/2023]
Abstract
Brain MAPK signaling pathways are activated in heart failure (HF) induced by myocardial infarction and contribute to augmented sympathetic nerve activity. We tested whether decreasing ERK1/2 (also known as p44/42 MAPK) signaling in the hypothalamic paraventricular nucleus (PVN), a forebrain source of presympathetic neurons, would reduce the upregulation of sympathoexcitatory mediators in the PVN and augmented sympathetic nerve activity in rats with HF. Sprague-Dawley rats underwent left anterior descending coronary artery ligation to induce HF, with left ventricular dysfunction confirmed by echocardiography. One week after coronary artery ligation or sham operation, small interfering (si)RNAs targeting ERK1/2 or a nontargeting control siRNA was microinjected bilaterally into the PVN. Experiments were conducted 5-7 days later. Confocal images revealed reduced phosphorylated ERK1/2 immunofluorescence in the PVN of HF rats treated with ERK1/2 siRNAs compared with HF rats treated with control siRNA. Western blot analysis confirmed significant reductions in both total and phosphorylated ERK1/2 in the PVN of HF rats treated with ERK1/2 siRNAs along with reduced expression of renin-angiotensin system components and inflammatory mediators. HF rats treated with ERK1/2 siRNAs also had reduced PVN neuronal excitation (fewer Fos-related antigen-like-immunoreactive neurons), lower plasma norepinephrine levels, and improved peripheral manifestations of HF compared with HF rats treated with control siRNAs. These results demonstrate that ERK1/2 signaling in the PVN plays a pivotal role in mediating sympathetic drive in HF induced by myocardial infarction and may be a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Yang Yu
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Shun-Guang Wei
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Zhi-Hua Zhang
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Robert M Weiss
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Robert B Felder
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
24
|
Cauley E, Wang X, Dyavanapalli J, Sun K, Garrott K, Kuzmiak-Glancy S, Kay MW, Mendelowitz D. Neurotransmission to parasympathetic cardiac vagal neurons in the brain stem is altered with left ventricular hypertrophy-induced heart failure. Am J Physiol Heart Circ Physiol 2015; 309:H1281-7. [PMID: 26371169 DOI: 10.1152/ajpheart.00445.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/03/2015] [Indexed: 01/23/2023]
Abstract
Hypertension, cardiac hypertrophy, and heart failure (HF) are widespread and debilitating cardiovascular diseases that affect nearly 23 million people worldwide. A distinctive hallmark of these cardiovascular diseases is autonomic imbalance, with increased sympathetic activity and decreased parasympathetic vagal tone. Recent device-based approaches, such as implantable vagal stimulators that stimulate a multitude of visceral sensory and motor fibers in the vagus nerve, are being evaluated as new therapeutic approaches for these and other diseases. However, little is known about how parasympathetic activity to the heart is altered with these diseases, and this lack of knowledge is an obstacle in the goal of devising selective interventions that can target and selectively restore parasympathetic activity to the heart. To identify the changes that occur within the brain stem to diminish the parasympathetic cardiac activity, left ventricular hypertrophy was elicited in rats by aortic pressure overload using a transaortic constriction approach. Cardiac vagal neurons (CVNs) in the brain stem that generate parasympathetic activity to the heart were identified with a retrograde tracer and studied using patch-clamp electrophysiological recordings in vitro. Animals with left cardiac hypertrophy had diminished excitation of CVNs, which was mediated both by an augmented frequency of spontaneous inhibitory GABAergic neurotransmission (with no alteration of inhibitory glycinergic activity) as well as a diminished amplitude and frequency of excitatory neurotransmission to CVNs. Opportunities to alter these network pathways and neurotransmitter receptors provide future targets of intervention in the goal to restore parasympathetic activity and autonomic balance to the heart in cardiac hypertrophy and other cardiovascular diseases.
Collapse
Affiliation(s)
- Edmund Cauley
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia; and
| | - Xin Wang
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia; and
| | - Jhansi Dyavanapalli
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia; and
| | - Ke Sun
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia; and
| | - Kara Garrott
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Sarah Kuzmiak-Glancy
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - David Mendelowitz
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia; and
| |
Collapse
|
25
|
Central nervous system circuits modified in heart failure: pathophysiology and therapeutic implications. Heart Fail Rev 2015; 19:759-79. [PMID: 24573960 DOI: 10.1007/s10741-014-9427-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pathophysiology of heart failure (HF) is characterized by an abnormal activation of neurohumoral systems, including the sympathetic nervous and the renin-angiotensin-aldosterone systems, which have long-term deleterious effects on the disease progression. Perpetuation of this neurohumoral activation is partially dependent of central nervous system (CNS) pathways, mainly involving the paraventricular nucleus of the hypothalamus and some regions of the brainstem. Modifications in these integrative CNS circuits result in the attenuation of sympathoinhibitory and exacerbation of sympathoexcitatory pathways. In addition to the regulation of sympathetic outflow, these central pathways coordinate a complex network of agents with an established pathophysiological relevance in HF such as angiotensin, aldosterone, and proinflammatory cytokines. Central pathways could be potential targets in HF therapy since the current mainstay of HF pharmacotherapy aims primarily at antagonizing the peripheral mechanisms. Thus, in the present review, we describe the role of CNS pathways in HF pathophysiology and as potential novel therapeutic targets.
Collapse
|
26
|
Yu Y, Xue BJ, Wei SG, Zhang ZH, Beltz TG, Guo F, Johnson AK, Felder RB. Activation of central PPAR-γ attenuates angiotensin II-induced hypertension. Hypertension 2015; 66:403-11. [PMID: 26101342 DOI: 10.1161/hypertensionaha.115.05726] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/20/2015] [Indexed: 01/17/2023]
Abstract
Inflammation and renin-angiotensin system activity in the brain contribute to hypertension through effects on fluid intake, vasopressin release, and sympathetic nerve activity. We recently reported that activation of brain peroxisome proliferator-activated receptor (PPAR)-γ in heart failure rats reduced inflammation and renin-angiotensin system activity in the hypothalamic paraventricular nucleus and ameliorated the peripheral manifestations of heart failure. We hypothesized that the activation of brain PPAR-γ might have beneficial effects in angiotensin II-induced hypertension. Sprague-Dawley rats received a 2-week subcutaneous infusion of angiotensin II (120 ng/kg per minute) combined with a continuous intracerebroventricular infusion of vehicle, the PPAR-γ agonist pioglitazone (3 nmol/h) or the PPAR-γ antagonist GW9662 (7 nmol/h). Angiotensin II+vehicle rats had increased mean blood pressure, increased sympathetic drive as indicated by the mean blood pressure response to ganglionic blockade, and increased water consumption. PPAR-γ mRNA in subfornical organ and hypothalamic paraventricular nucleus was unchanged, but PPAR-γ DNA-binding activity was reduced. mRNA for interleukin-1β, tumor necrosis factor-α, cyclooxygenase-2, and angiotensin II type 1 receptor was augmented in both nuclei, and hypothalamic paraventricular nucleus neuronal activity was increased. The plasma vasopressin response to a 6-hour water restriction also increased. These responses to angiotensin II were exacerbated by GW9662 and ameliorated by pioglitazone, which increased PPAR-γ mRNA and PPAR-γ DNA-binding activity in subfornical organ and hypothalamic paraventricular nucleus. Pioglitazone and GW9662 had no effects on control rats. The results suggest that activating brain PPAR-γ to reduce central inflammation and brain renin-angiotensin system activity may be a useful adjunct in the treatment of angiotensin II-dependent hypertension.
Collapse
Affiliation(s)
- Yang Yu
- From the Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine (Y.Y., S.-G.W., Z.-H.Z., R.B.F.) and Department of Psychological and Brain Sciences (B.-.J.X., T.G.B., F.G., A.K.J.), University of Iowa, Iowa City; and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Bao-Jian Xue
- From the Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine (Y.Y., S.-G.W., Z.-H.Z., R.B.F.) and Department of Psychological and Brain Sciences (B.-.J.X., T.G.B., F.G., A.K.J.), University of Iowa, Iowa City; and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Shun-Guang Wei
- From the Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine (Y.Y., S.-G.W., Z.-H.Z., R.B.F.) and Department of Psychological and Brain Sciences (B.-.J.X., T.G.B., F.G., A.K.J.), University of Iowa, Iowa City; and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Zhi-Hua Zhang
- From the Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine (Y.Y., S.-G.W., Z.-H.Z., R.B.F.) and Department of Psychological and Brain Sciences (B.-.J.X., T.G.B., F.G., A.K.J.), University of Iowa, Iowa City; and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Terry G Beltz
- From the Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine (Y.Y., S.-G.W., Z.-H.Z., R.B.F.) and Department of Psychological and Brain Sciences (B.-.J.X., T.G.B., F.G., A.K.J.), University of Iowa, Iowa City; and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Fang Guo
- From the Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine (Y.Y., S.-G.W., Z.-H.Z., R.B.F.) and Department of Psychological and Brain Sciences (B.-.J.X., T.G.B., F.G., A.K.J.), University of Iowa, Iowa City; and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Alan Kim Johnson
- From the Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine (Y.Y., S.-G.W., Z.-H.Z., R.B.F.) and Department of Psychological and Brain Sciences (B.-.J.X., T.G.B., F.G., A.K.J.), University of Iowa, Iowa City; and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Robert B Felder
- From the Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine (Y.Y., S.-G.W., Z.-H.Z., R.B.F.) and Department of Psychological and Brain Sciences (B.-.J.X., T.G.B., F.G., A.K.J.), University of Iowa, Iowa City; and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.).
| |
Collapse
|
27
|
Structure-based virtual screening and discovery of New PPARδ/γ dual agonist and PPARδ and γ agonists. PLoS One 2015; 10:e0118790. [PMID: 25767888 PMCID: PMC4358979 DOI: 10.1371/journal.pone.0118790] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 12/16/2014] [Indexed: 12/13/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are involved in the control of carbohydrate and lipid metabolism and are considered important targets to treat diabetes mellitus and metabolic syndrome. The available PPAR ligands have several side effects leading to health risks justifying the search for new bioactive ligands to activate the PPAR subtypes, in special PPARδ, the less studied PPAR isoform. Here, we used a structure-based virtual screening protocol in order to find out new PPAR ligands. From a lead-like subset of purchasable compounds, we identified 5 compounds with potential PPAR affinity and, from preliminary in vitro assays, 4 of them showed promising biological activity. Therefore, from our in silico and in vitro protocols, new PPAR ligands are potential candidates to treat metabolic diseases.
Collapse
|
28
|
Lecarpentier Y, Claes V, Duthoit G, Hébert JL. Circadian rhythms, Wnt/beta-catenin pathway and PPAR alpha/gamma profiles in diseases with primary or secondary cardiac dysfunction. Front Physiol 2014; 5:429. [PMID: 25414671 PMCID: PMC4220097 DOI: 10.3389/fphys.2014.00429] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/15/2014] [Indexed: 12/13/2022] Open
Abstract
Circadian clock mechanisms are far-from-equilibrium dissipative structures. Peroxisome proliferator-activated receptors (PPAR alpha, beta/delta, and gamma) play a key role in metabolic regulatory processes, particularly in heart muscle. Links between circadian rhythms (CRs) and PPARs have been established. Mammalian CRs involve at least two critical transcription factors, CLOCK and BMAL1 (Gekakis et al., 1998; Hogenesch et al., 1998). PPAR gamma plays a major role in both glucose and lipid metabolisms and presents circadian properties which coordinate the interplay between metabolism and CRs. PPAR gamma is a major component of the vascular clock. Vascular PPAR gamma is a peripheral regulator of cardiovascular rhythms controlling circadian variations in blood pressure and heart rate through BMAL1. We focused our review on diseases with abnormalities of CRs and with primary or secondary cardiac dysfunction. Moreover, these diseases presented changes in the Wnt/beta-catenin pathway and PPARs, according to two opposed profiles. Profile 1 was defined as follows: inactivation of the Wnt/beta-catenin pathway with increased expression of PPAR gamma. Profile 2 was defined as follows: activation of the Wnt/beta-catenin pathway with decreased expression of PPAR gamma. A typical profile 1 disease is arrhythmogenic right ventricular cardiomyopathy, a genetic cardiac disease which presents mutations of the desmosomal proteins and is mainly characterized by fatty acid accumulation in adult cardiomyocytes mainly in the right ventricle. The link between PPAR gamma dysfunction and desmosomal genetic mutations occurs via inactivation of the Wnt/beta-catenin pathway presenting oscillatory properties. A typical profile 2 disease is type 2 diabetes, with activation of the Wnt/beta-catenin pathway and decreased expression of PPAR gamma. CRs abnormalities are present in numerous pathologies such as cardiovascular diseases, sympathetic/parasympathetic dysfunction, hypertension, diabetes, neurodegenerative diseases, cancer which are often closely inter-related.
Collapse
Affiliation(s)
- Yves Lecarpentier
- Centre de Recherche Clinique, Centre Hospitalier Régional de Meaux Meaux, France
| | - Victor Claes
- Department of Pharmaceutical Sciences, University of Antwerp Wilrijk, Belgium
| | - Guillaume Duthoit
- Institut de Cardiologie, Hôpital de la Pitié-Salpêtière Paris, France
| | - Jean-Louis Hébert
- Institut de Cardiologie, Hôpital de la Pitié-Salpêtière Paris, France
| |
Collapse
|
29
|
Liu Q, Wang T, Yu H, Liu B, Jia R. Interaction between interleukin-1 beta and angiotensin II receptor 1 in hypothalamic paraventricular nucleus contributes to progression of heart failure. J Interferon Cytokine Res 2014; 34:870-5. [PMID: 24955935 DOI: 10.1089/jir.2013.0159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The central mechanisms by which interleukin-1 beta (IL-1β) and angiotension II receptor 1 (AT1-R) contribute to sympathoexcitation in heart failure (HF) are unclear. In this study, we determined whether an interaction between IL-1β and AT1-R in the paraventricular nucleus (PVN) contributes to progression of HF. Rats were implanted with bilateral PVN cannulae and subjected to coronary artery ligation or sham surgery (Sham). Subsequently, animals were treated for 4 weeks through PVN infusion with either vehicle, losartan (LOS, 200 μg/day), IL-1β (IL, 1 μg/day), or IL-1β along with LOS (LOS+IL). HF rats had higher levels of corticotropin-releasing hormone (CRH), norepinephrine (NE), and glutamate (Glu); lower levels of gamma-aminobutyric acid (GABA); and more positive fra-like activity in PVN when compared with Sham rats. HF rats also had higher levels of NE, epinephrine (EPI), and IL-1β in plasma. PVN infusion of LOS attenuated the decreases in GABA and the increases in CRH, NE, and Glu in the PVN of HF rats. IL-1β could further increase the expression of CRH, NE, Glu, EPI, and IL-1β and decrease GABA expression. Treatment with IL-1β along with LOS could eliminate the effects of IL-1β. These findings suggest that an interaction between AT1-R and IL-1β in the PVN contributes to progression in HF.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Cardiology, Medical School, Tai Shan Medical College, The Fourth People's Hospital of Jinan , Jinan, P.R. China
| | | | | | | | | |
Collapse
|
30
|
Huang BS, Chen A, Ahmad M, Wang HW, Leenen FHH. Mineralocorticoid and AT1 receptors in the paraventricular nucleus contribute to sympathetic hyperactivity and cardiac dysfunction in rats post myocardial infarct. J Physiol 2014; 592:3273-86. [PMID: 24951624 DOI: 10.1113/jphysiol.2014.276584] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Intracerebroventricular infusion of a mineralocorticoid receptor (MR) or angiotensin II type 1 receptor (AT1R) blocker in rats attenuates sympathetic hyperactivity and progressive left ventricular (LV) dysfunction post myocardial infarction (MI). The present study examined whether knockdown of MRs or AT1Rs specifically in the paraventricular nucleus (PVN) contributes to these effects, and compared cardiac effects with those of systemic treatment with the β1-adrenergic receptor blocker metoprolol. The PVN of rats was infused with adeno-associated virus carrying small interfering RNA against either MR (AAV-MR-siRNA) or AT1R (AAV-AT1R-siRNA), or as control scrambled siRNA. At 4 weeks post MI, AT1R but not MR expression was increased in the PVN, excitatory renal sympathetic nerve activity and pressor responses to air stress were enhanced, and arterial baroreflex function was impaired; LV end-diastolic pressure (LVEDP) was increased and LV peak systolic pressure (LVPSP), ejection fraction (EF) and dP/dtmax decreased. AAV-MR-siRNA and AAV-AT1R-siRNA both normalized AT1R expression in the PVN, similarly ameliorated sympathetic and pressor responses to air stress, largely prevented baroreflex desensitization, and improved LVEDP, EF and dP/dtmax as well as cardiac interstitial (but not perivascular) fibrosis. In a second set of rats, metoprolol at 70 or 250 mg kg(-1) day(-1) in the drinking water for 4 weeks post MI did not improve LV function except for a decrease in LVEDP at the lower dose. These results suggest that in rats MR-dependent upregulation of AT1Rs in the PVN contributes to sympathetic hyperactivity, and LV dysfunction and remodelling post MI. In rats, normalizing MR-AT1R signalling in the PVN is a more effective strategy to improve LV dysfunction post MI than systemic β1 blockade.
Collapse
Affiliation(s)
- Bing S Huang
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Canada
| | - Aidong Chen
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Canada
| | - Monir Ahmad
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Canada
| | - Hong-Wei Wang
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Canada
| | - Frans H H Leenen
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
31
|
Abbas S, Raza ST, Chandra A, Singh L, Rizvi S, Eba A, Ahmed F, Mahdi F. Polymorphism of FABP2 and PPARG2 genes in risk prediction of cataract among North Indian population. Meta Gene 2014; 2:307-13. [PMID: 25606413 PMCID: PMC4287883 DOI: 10.1016/j.mgene.2014.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/03/2014] [Accepted: 02/18/2014] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Cataract is the leading cause of bilateral blindness in India. It has been reported that cataract is responsible for 50-80% of the bilaterally blind in the country. Cataract formation is a natural part of the ageing process. At present, adequate data are not available regarding the FABP2 and PPARG2 gene polymorphisms and their susceptibility with cataract cases in the North Indian population. Thus, the present study was carried out to investigate the association of FABP2 and PPARG2 gene polymorphisms with cataract cases and controls. MATERIALS AND METHODS This study includes 130 cataract cases and 118 controls. FABP2 and PPARG2 gene polymorphisms in cases and controls were evaluated by PCR-RFLP. RESULTS Frequencies of Ala54Ala, Ala54Thr and Thr54Thr genotypes in FABP2 gene in cataract cases and controls were 50.76%, 39.23%, 10% and 25.42%, 61.86%, 12.71% respectively. The PPARG2 gene CC, CG, GG genotype frequencies were 11.53%, 87.69% and 0.76% in cases and 21.18%, 39.83% and 38.98% in healthy controls respectively. Significant differences were observed in the frequencies of FABP2 Ala54Ala, Ala54Thr genotype (p < 0.05) and PPARG2 CC, CG, GG genotype (p < 0.05) between cases and controls. CONCLUSION The findings of this study suggest that FABP2 and PPARG2 gene polymorphisms can be an informative marker for early identification of population at risk of cataract. The potential role of FABP2 and PPARG2 gene polymorphisms as a marker of susceptibility to cataract needs further studies in a larger number of patients.
Collapse
Affiliation(s)
- Shania Abbas
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Lucknow 226003, India
| | - Syed Tasleem Raza
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Lucknow 226003, India
| | - Anu Chandra
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Lucknow 226003, India
| | - Luxmi Singh
- Department of Ophthalmology, Era's Lucknow Medical College and Hospital, Lucknow 226003, India
| | - Saliha Rizvi
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Lucknow 226003, India
| | - Ale Eba
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Lucknow 226003, India
| | - Faisal Ahmed
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Lucknow 226003, India
| | - Farzana Mahdi
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Lucknow 226003, India
| |
Collapse
|
32
|
Ying Z, Xu X, Bai Y, Zhong J, Chen M, Liang Y, Zhao J, Liu D, Morishita M, Sun Q, Spino C, Brook RD, Harkema JR, Rajagopalan S. Long-term exposure to concentrated ambient PM2.5 increases mouse blood pressure through abnormal activation of the sympathetic nervous system: a role for hypothalamic inflammation. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:79-86. [PMID: 24240275 PMCID: PMC3888575 DOI: 10.1289/ehp.1307151] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 11/13/2013] [Indexed: 05/02/2023]
Abstract
BACKGROUND Exposure to particulate matter≤2.5 μm in diameter (PM2.5) increases blood pressure (BP) in humans and animal models. Abnormal activation of the sympathetic nervous system may have a role in the acute BP response to PM2.5 exposure. The mechanisms responsible for sympathetic nervous system activation and its role in chronic sustenance of hypertension in response to PM2.5 exposure are currently unknown. OBJECTIVES We investigated whether central nervous system inflammation may be implicated in chronic PM2.5 exposure-induced increases in BP and sympathetic nervous system activation. METHODS C57BL/6J mice were exposed to concentrated ambient PM2.5 (CAPs) for 6 months, and we analyzed BP using radioactive telemetric transmitters. We assessed sympathetic tone by measuring low-frequency BP variability (LF-BPV) and urinary norepinephrine excretion. We also tested the effects of acute pharmacologic inhibitors of the sympathetic nervous system and parasympathetic nervous system. RESULTS Long-term CAPs exposure significantly increased basal BP, paralleled by increases in LF-BPV and urinary norepinephrine excretion. The increased basal BP was attenuated by the centrally acting α2a agonist guanfacine, suggesting a role of increased sympathetic tone in CAPs exposure-induced hypertension. The increase in sympathetic tone was accompanied by an inflammatory response in the arcuate nucleus of the hypothalamus, evidenced by increased expression of pro-inflammatory genes and inhibitor kappaB kinase (IKK)/nuclear factor-kappaB (NF-κB) pathway activation. CONCLUSION Long-term CAPs exposure increases BP through sympathetic nervous system activation, which may involve hypothalamic inflammation.
Collapse
Affiliation(s)
- Zhekang Ying
- Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Uchiyama M, Shimizu A, Masuda Y, Nagasaka S, Fukuda Y, Takahashi H. An ophthalmic solution of a peroxisome proliferator-activated receptor gamma agonist prevents corneal inflammation in a rat alkali burn model. Mol Vis 2013; 19:2135-50. [PMID: 24194635 PMCID: PMC3816991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 10/29/2013] [Indexed: 12/02/2022] Open
Abstract
PURPOSE We clarified the effects of an ophthalmic solution of a peroxisome proliferator-activated receptor gamma (PPARγ) agonist on corneal inflammation and wound healing after alkali burn injury in rats. METHODS After alkali exposure, either an ophthalmic solution with 0.1% pioglitazone hydrochloride (the PPARγ group) or vehicle (the vehicle group) was topically applied to the cornea until day 14. Histological, immunohistochemical, and real-time reverse transcription polymerase chain reaction analysis were performed. RESULTS After alkali injury, PPARγ expression increased, with the infiltration of many inflammatory cells. The infiltration of neutrophils and macrophages started from the corneal limbus within 6 h, and developed in the corneal center by day 7, with associated neovascularization. The accumulation of α-smooth muscle actin-positive myofibroblasts and the deposition of type III collagen were noted on day 14. The histological changes were suppressed significantly by treatment with the ophthalmic solution of the PPARγ agonist. In addition, the number of infiltrating M2 macrophages in the cornea was increased by PPARγ agonist treatment. In real-time reverse transcription polymerase chain reaction analysis, the messenger ribonucleic acid expression levels of interleukin-1β (IL-1β), IL-6, IL-8, monocyte chemoattractant protein-1, tumor necrosis factor-α, transforming growth factor beta 1, and vascular endothelial growth factor-A were decreased in the PPARγ group compared to the vehicle group in the early periods of corneal inflammation. CONCLUSIONS The ophthalmic solution of the PPARγ agonist inhibited inflammation, decreased the fibrotic reaction, and prevented neovascularization in the cornea from the early phase after alkali burn injury. The ophthalmic solution of the PPARγ agonist may provide a new treatment strategy with useful clinical applications for corneal inflammation and wound healing.
Collapse
Affiliation(s)
- Masaaki Uchiyama
- Department of Ophthalmology, Nippon Medical School, Tokyo, Japan,Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Yukinari Masuda
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Shinya Nagasaka
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Yuh Fukuda
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | | |
Collapse
|
34
|
Ogawa K, Hirooka Y, Kishi T, Ide T, Sunagawa K. Partially silencing brain toll-like receptor 4 prevents in part left ventricular remodeling with sympathoinhibition in rats with myocardial infarction-induced heart failure. PLoS One 2013; 8:e69053. [PMID: 23874864 PMCID: PMC3706428 DOI: 10.1371/journal.pone.0069053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 06/04/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Left ventricular (LV) remodeling and activation of sympathetic nervous system (SNS) are cardinal features of heart failure. We previously demonstrated that enhanced central sympathetic outflow is associated with brain toll-like receptor 4 (TLR4) probably mediated by brain angiotensin II type 1 receptor in mice with myocardial infarction (MI)-induced heart failure. The purpose of the present study was to examine whether silencing brain TLR4 could prevent LV remodeling with sympathoinhibition in MI-induced heart failure. METHODOLOGY/PRINCIPAL FINDINGS MI-induced heart failure model rats were created by ligation of left coronary artery. The expression level of TLR4 in brainstem was significantly higher in MI-induced heart failure treated with intracerebroventricular (ICV) injection of hGAPDH-SiRNA than in sham. TLR4 in brainstem was significantly lower in MI-induced heart failure treated with ICV injection of TLR4-SiRNA than in that treated with ICV injection of hGAPDH-SiRNA. Lung weight, urinary norepinephrine excretion, and LV end-diastolic pressure were significantly lower and LV dimension was significantly smaller in MI-induced heart failure treated with TLR4-SiRNA than in that treated with hGAPDH-SiRNA for 2 weeks. CONCLUSIONS Partially silencing brain TLR4 by ICV injection of TLR4-SiRNA for 2 weeks could in part prevent LV remodeling with sympathoinhibition in rats with MI-induced heart failure. Brain TLR4 has a potential to be a target of the treatment for MI-induced heart failure.
Collapse
Affiliation(s)
- Kiyohiro Ogawa
- Departments of Cardiovascular Medicine, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Yoshitaka Hirooka
- Advanced Cardiovascular Regulation and Therapeutics, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
- * E-mail:
| | - Takuya Kishi
- Advanced Therapeutics for Cardiovascular Diseases, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Tomomi Ide
- Departments of Cardiovascular Medicine, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Kenji Sunagawa
- Departments of Cardiovascular Medicine, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| |
Collapse
|
35
|
Zhao N, Yu H, Yu H, Sun M, Zhang Y, Xu M, Gao W. MiRNA-711-SP1-collagen-I pathway is involved in the anti-fibrotic effect of pioglitazone in myocardial infarction. SCIENCE CHINA-LIFE SCIENCES 2013; 56:431-9. [PMID: 23633075 DOI: 10.1007/s11427-013-4477-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/03/2013] [Indexed: 12/17/2022]
Abstract
Although microRNAs (miRNAs) have been intensively studied in cardiac fibrosis, their roles in drug-mediated anti-fibrotic therapy are still unknown. Previously, Pioglitazone attenuated cardiac fibrosis and increased miR-711 experimentally. We aimed to explore the role and mechanism of miR-711 in pioglitazone-treated myocardial infarction in rats. Our results showed that pioglitazone significantly reduced collagen-I levels and increased miR-711 expression in myocardial infarction heart. Pioglitazone increased the expression of miR-711 in cardiac fibroblasts, and overexpression of miR-711 suppressed collagen-I levels in angiotensin II (Ang II)-treated or untreated cells. Transfection with antagomir-711 correspondingly abolished the pioglitazone-induced reduction in collagen-I levels. Bioinformatics analysis identified SP1, which directly promotes collagen-I synthesis, as the putative target of miR-711. This was confirmed by luciferase assay and western blot analysis. Additionally, increased SP1 expression was attenuated by pioglitazone in myocardial infarction heart. Furthermore, transfection of antagomir-711 attenuated pioglitazone-reduced SP1 expression in cardiac fibroblasts with or without Ang II stimulation. We conclude that pioglitazone up-regulated miR-711 to reduce collagen-I levels in rats with myocardial infarction. The miR-711-SP1-collagen-I pathway may be involved in the anti-fibrotic effects of pioglitazone. Our findings may provide new strategies for miRNA-based anti-fibrotic drug research.
Collapse
Affiliation(s)
- Na Zhao
- Department of Cardiology, Peking University Third Hospital and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Central mechanisms of abnormal sympathoexcitation in chronic heart failure. Cardiol Res Pract 2012; 2012:847172. [PMID: 22919539 PMCID: PMC3420224 DOI: 10.1155/2012/847172] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/24/2012] [Indexed: 12/14/2022] Open
Abstract
It has been recognized that the sympathetic nervous system is abnormally activated in chronic heart failure, and leads to further worsening chronic heart failure. In the treatment of chronic heart failure many clinical studies have already suggested that the inhibition of the abnormal sympathetic hyperactivity by beta blockers is beneficial. It has been classically considered that abnormal sympathetic hyperactivity in chronic heart failure is caused by the enhancement of excitatory inputs including changes in peripheral baroreceptor and chemoreceptor reflexes and chemical mediators that control sympathetic outflow. Recently, the abnormalities in the central regulation of sympathetic nerve activity mediated by brain renin angiotensin system-oxidative stress axis and/or proinflammatory cytokines have been focused. Central renin angiotensin system, proinflammatory cytokines, and the interaction between them have been determined as the target of the sympathoinhibitory treatment in experimental animal models with chronic heart failure. In conclusion, we must recognize that chronic heart failure is a syndrome with an abnormal sympathoexcitation, which is caused by the abnormalities in the central regulation of sympathetic nerve activity.
Collapse
|