1
|
Kitamoto T, Ruike Y, Koide H, Inoue K, Maezawa Y, Omura M, Nakai K, Tsurutani Y, Saito J, Kuwa K, Yokote K, Nishikawa T. Shifting paradigms in primary aldosteronism: reconsideration of screening strategy via integrating pathophysiological insights. Front Endocrinol (Lausanne) 2025; 15:1372683. [PMID: 39877848 PMCID: PMC11772158 DOI: 10.3389/fendo.2024.1372683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Several decades have passed since the description of the first patient with primary aldosteronism (PA). PA was initially classified in two main forms: aldosterone-producing adenoma (APA) and idiopathic hyperaldosteronism (IHA). However, the pathogenesis of PA has now been shown to be far more complex. For this reason, the traditional classification needs to be updated. Given the recent advancements in our understanding of PA pathogenesis, we should reevaluate how frequent PA cases are, beginning with the reconstruction of the screening strategy. Recent studies consistently indicated that PA has been identified in 22% of patients with resistant hypertension and 11% even in normotensives. The frequency is influenced by the screening strategy and should be based on understanding the pathogenesis of PA. Progress has been made to promote our understanding of the pathogenesis of PA by the findings of aldosterone driver mutations, which have been found in normotensives and hypertensives. In addition, much clinical evidence has been accumulated to indicate that there is a spectrum in PA pathogenesis. In this review, we will summarize the recent progress in aldosterone measurement methods based on LC-MS/MS and the current screening strategy. Then, we will discuss the progress of our understanding of PA, focusing on aldosterone driver mutations and the natural history of PA. Finally, we will discuss the optimal strategy to improve screening rate and case detection.
Collapse
Affiliation(s)
- Takumi Kitamoto
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Yutaro Ruike
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Hisashi Koide
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Kosuke Inoue
- Department of Social Epidemiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiro Maezawa
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Masao Omura
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, Japan
| | - Kazuki Nakai
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, Japan
| | - Yuya Tsurutani
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, Japan
| | - Jun Saito
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, Japan
| | - Katsuhiko Kuwa
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Koutaro Yokote
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Tetsuo Nishikawa
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, Japan
| |
Collapse
|
2
|
Lin NT, Chen TY, Wu XM, Chang YY, Tsai CH, Liao CW, Lai TS, Chang CC, Lee BC, Lu CC, Chueh JSC, Wu VC, Hung CS, Chen ZW, Lin YH. The relationship between tissue inhibitor of metalloproteinases-1 and KCNJ5 mutation in aldosterone-producing adenoma patients. Hypertens Res 2024:10.1038/s41440-024-02030-w. [PMID: 39690251 DOI: 10.1038/s41440-024-02030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 12/19/2024]
Abstract
KCNJ5 somatic mutations in aldosterone-producing adenoma (APA) are linked to higher left ventricular mass index (LVMI) and worse diastolic function. We previously identified an association between plasma tissue inhibitor of metalloproteinases-1 (TIMP-1) and an aldosterone-induced increase in LVMI and diastolic dysfunction. This study aimed to investigate the association between the presence of KCNJ5 somatic mutation and plasma TIMP-1 in APA patients. We enrolled 60 APA patients undergoing adrenalectomy, including 30 with KCNJ5 mutations (KCNJ5(+)) and 30 without (KCNJ5(-)). Clinical characteristics, echocardiographic data (including LVMI, inappropriately excessive LVMI (ieLVMI), and diastolic function) and plasma TIMP-1 levels were measured before surgery and 1 year postoperatively. The results showed that the KCNJ5(+) group had higher plasma TIMP-1 levels (P = 0.004) compared to the KCNJ5(-) group. The correlation between the KCNJ5 mutations and TIMP-1 levels remained significant after multiple regression analysis. To detect KCNJ5 mutations, receiver operating characteristic curve analysis showed TIMP-1 had the best area under the curve (AUC) value among various clinical parameters (AUC = 0.682, 95% confidence interval = 0.549-0.796, P = 0.008). Post-adrenalectomy, only the KCNJ5(+) group showed significant decrease in LVMI (P = 0.001) and log-transformed TIMP-1 levels (P = 0.035). Changes in ieLVMI before and after surgery were consistently correlated with changes in TIMP-1 levels in multivariable regression analysis. In conclusion, KCNJ5 somatic mutations in APA are associated with higher plasma TIMP-1 levels. In addition, TIMP-1 is an effective biomarker for detecting the presence of KCNJ5 mutations in APA patients.
Collapse
Affiliation(s)
- No-Ting Lin
- Department of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, ROC
| | - Tsung-Yan Chen
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan, ROC
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Xue-Ming Wu
- Department of Internal Medicine, Taoyuan General Hospital, Taoyuan, Taiwan, ROC
| | - Yi-Yao Chang
- Department of Cardiovascular Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan City, Taiwan, ROC
| | - Cheng-Hsuan Tsai
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, ROC
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Che-Wei Liao
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, ROC
- Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan, ROC
| | - Tai-Shuan Lai
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Chin-Chen Chang
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Bo-Ching Lee
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Ching-Chu Lu
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Jeff Shih-Chieh Chueh
- Department of Urology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Vin-Cent Wu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Chi-Sheng Hung
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Zheng-Wei Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, ROC.
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC.
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan, ROC.
| | - Yen-Hung Lin
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| |
Collapse
|
3
|
Tsoy UA, Sokolnikova PS, Kravchuk EN, Ryazanov PA, Kozyreva AA, Fomicheva YV, Aramisova LS, Karonova TL, Kostareva AA, Grineva E. A Comprehensive Target Panel Allows to Extend the Genetic Spectrum of Neuroendocrine Tumors. Neuroendocrinology 2024:1-21. [PMID: 39536727 DOI: 10.1159/000542223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/17/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Neuroendocrine tumors (NETs) frequently have a genetic basis, and the range of genes implicated in NET development continues to expand. Application of targeted gene panels (TGPs) in next-generation sequencing is a central strategy for elucidating novel variants associated with NET development. METHODS In this study, we conducted comprehensive molecular genetic analyses using TGP on a cohort of 93 patients diagnosed with various NETs subtypes, mainly accompanied by various endocrine syndromes: insulinoma (n = 26), pheochromocytoma and paraganglioma (PPGL) (n = 38), parathyroid adenoma (n = 18, including three with insulinoma), and NETs of other locations (n = 14). The TGP encompassed genes linked to diverse NETs and other hereditary endocrine disorders, with subsequent variant classification according to the American College of Medical Genetics and Genomics guidelines. RESULTS Among the identified variants, 20 were found in genes previously linked to specific tumor types, and 10 were found in genes with a limited likelihood and unclear molecular mecanisms of association with observed NETs. Remarkably, 13 variants were discovered in genes not previously associated with the NETs observed in our patients. These genes, such as ABCC8, KCNJ11, KLF11, HABP2, and APC, were implicated in insulinoma; ZNRF3, GNAS, and KCNJ5 were linked with PPGL; parathyroid adenomas were related to variants in SDHB and TP53; while NETs of other locations displayed variants in APC and ABCC8. CONCLUSION Our study demonstrates that utilizing broad TGP in examining patients with various functioning NETs facilitates the identification of new germinal variants in genes that may contribute to the diseases. The verification of revealed findings requires research in vaster sample.
Collapse
Affiliation(s)
- Uliana A Tsoy
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Polina S Sokolnikova
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Ekaterina N Kravchuk
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Pavel A Ryazanov
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Alexandra A Kozyreva
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Yulia V Fomicheva
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Liana S Aramisova
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Tatiana L Karonova
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Anna A Kostareva
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
- Department of Women's and Children's Health, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Elena Grineva
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| |
Collapse
|
4
|
Ma Y, Tang X, Ge Q, Xu J, Gao P, Wang J, Zhu L. Chronological outcomes of renal function after adrenalectomy in patients with primary aldosteronism across age groups. Front Endocrinol (Lausanne) 2024; 15:1467742. [PMID: 39574955 PMCID: PMC11578701 DOI: 10.3389/fendo.2024.1467742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024] Open
Abstract
Background Patients with primary aldosteronism present with renal function decline after unilateral adrenalectomies. Our study aimed to assess the evolution of renal function after adrenalectomy in patients with primary aldosteronism across different age groups and to identify risk factors for postoperative renal function deterioration. Methods We included 210 patients with primary aldosteronism categorized into three age groups: <40, 40-60, and ≥60 years old. We followed up the patients for 1 month, 1 year, and 5 years after adrenalectomy to assess outcomes. Multivariate analyses were performed to identify predictors of renal function deterioration, and a univariate logistic regression analysis was used to assess the relationship between KCNJ5 mutation status and the decline in renal function. Results Patients aged <40 years had a shorter duration of hypertension, higher preoperative diastolic blood pressure, and higher preoperative estimated glomerular filtration rate (eGFR) than did those in the other age groups. This group also exhibited the highest rate of complete clinical success, although there were no significant differences in complete biochemical success among age groups. Renal function declined in all three groups after adrenalectomy. However, changes in blood pressure and eGFR in the short- or long-term after adrenalectomy showed no significant differences among the three groups. Hypertension duration, preoperative systolic blood pressure (SBP), and plasma aldosterone concentration (PAC) were predictors of postoperative renal function deterioration. KCNJ5 wild-type status was significantly correlated with the occurrence of chronic kidney disease after adrenalectomy. Conclusions Unilateral adrenalectomy demonstrates favorable biochemical and clinical outcomes in patients with primary aldosteronism, irrespective of age. Long-term eGFR decline is similar among the different age groups. KCNJ5 mutation exhibits a protective effect against the risk of chronic kidney disease after unilateral adrenalectomy.
Collapse
Affiliation(s)
- Yu Ma
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai, China
- Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Tang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai, China
- Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Ge
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai, China
- Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianzhong Xu
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai, China
- Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pingjin Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai, China
- Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiguang Wang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai, China
- Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Limin Zhu
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai, China
- Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
van Rooyen D, Bandulik S, Coon G, Laukemper M, Kumar-Sinha C, Udager AM, Lee C, Wachtel H, Cohen DL, Luther JM, Giordano T, Turcu A, Warth R, Rainey WE, Rege J. Somatic Mutations in MCOLN3 in Aldosterone-Producing Adenomas cause Primary Aldosteronism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.20.619295. [PMID: 39484451 PMCID: PMC11526969 DOI: 10.1101/2024.10.20.619295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Primary aldosteronism is characterized by renin-independent hyperaldosteronism that originates from aldosterone-producing lesions in the adrenal glands. Under physiological conditions, aldosterone synthase ( CYP11B2 ) expression is confined to the adrenal zona glomerulosa where it catalyzes the final reaction yielding aldosterone. The regulation of CYP11B2 transcription depends on the control of cellular membrane potential and cytosolic calcium activity. In primary aldosteronism, aldosterone-producing adenomas (APAs) are characterized by disrupted regulation of CYP11B2 expression resulting in autonomous biosynthesis of aldosterone. These lesions often harbor aldosterone-driver somatic mutations in genes encoding ion transporters/channels/pumps that increase cytosolic calcium activity causing increased CYP11B2 expression and aldosterone biosynthesis. We investigated APAs devoid of known somatic mutations and detected a missense mutation and a deletion-insertion variant in MCOLN3 which encodes for mucolipin-3 (TRPML3) - a highly conserved inwardly-rectifying, cation-permeable channel. These MCOLN3 mutations were identified in three APAs derived from male patients with primary aldosteronism: p. Y391D and p.N411_V412delinsI. Both mutations are located near the ion pore and selectivity filter of TRPML3. This is the first report of disease-causing MCOLN3 mutations in humans. Functional studies suggest MCOLN3 Y391D might directly or indirectly via membrane depolarization alter calcium influx of transfected adrenocortical cells, resulting in increased CYP11B2 transcription and aldosterone production. This study implicates mutated MCOLN3 as a driver of aldosterone excess in primary aldosteronism. Significance Statement Primary aldosteronism is a common but under-diagnosed endocrine disease that contributes to global hypertension burden and cardiovascular mortality and morbidity. Hyperaldosteronism in primary aldosteronism is mainly caused by adrenal lesions harboring somatic mutations that disrupt intracellular calcium levels and consequently aldosterone synthase expression and aldosterone production. Majority of these mutations have been identified in genes encoding ion transporters/channels/pumps. Herein, we report the first disease-causing somatic mutations in human MCOLN3 in aldosterone-producing adenomas (APAs) devoid of known mutations. In vitro investigations showed the MCOLN3 variant (p.Y391D) caused an influx of cytosolic calcium in adrenocortical cells and the subsequent increase in aldosterone synthase and aldosterone biosynthesis.
Collapse
|
6
|
Caroccia B, Lenzini L, Ceolotto G, Gioco F, Benetti A, Giannella A, Ajjour H, Galuppini F, Pennelli G, Seccia TM, Gomez-Sanchez C, Rossi GP. Double CYP11B1/CYP11B2 Immunohistochemistry and Detection of KCNJ5 Mutations in Primary Aldosteronism. J Clin Endocrinol Metab 2024; 109:2433-2443. [PMID: 38888173 DOI: 10.1210/clinem/dgae411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
CONTEXT The search for somatic mutations in adrenals resected from patients with primary aldosteronism (PA) is performed by Sanger sequencing, often implemented with immunohistochemistry (IHC)-guidance focused on aldosterone-producing (CYP11B2-positive) areas. OBJECTIVE To investigate the impact of double IHC for CYP11B1 and CYP11B2 on Sanger and next-generation sequencing (NGS). METHODS We investigated 127 consecutive adrenal aldosterone-producing adenomas from consenting surgically cured PA patients using double IHC for CYP11B1 and CYP11B2, by Sanger sequencing and NGS. RESULTS Double IHC for CYP11B2 and CYP11B1 revealed 3 distinct patterns: CYP11B2-positive adenoma (pattern 1), mixed CYP11B1/CYP11B2-positive adenoma (pattern 2), and adrenals with multiple small CYP11B2-positive nodules (pattern 3). Sanger sequencing allowed detection of KCNJ5 mutations in 44% of the adrenals; NGS revealed such mutations in 10% of those negative at Sanger and additional mutations in 61% of the cases. Importantly the rate of KCNJ5 mutations differed across patterns: 17.8% in pattern 1, 71.4% in pattern 2, and 10.7% in pattern 3 (χ2 = 22.492, P < .001). CONCLUSION NGS allowed detection of mutations in many adrenals that tested negative at Sanger sequencing. Moreover, the different distribution of KCNJ5 mutations across IHC patterns indicates that IHC-guided sequencing protocols selecting CYP11B2-positive areas could furnish results that might not be representative of the entire mutational status of the excised adrenal, which is important at a time when KCNJ5 mutations are suggested to drive management of patients with aldosterone-producing adenomas.
Collapse
Affiliation(s)
- Brasilina Caroccia
- Specialized Center of Excellence for Hypertension of the European Society of Hypertension and Emergency Medicine Unit, Department of Medicine-DIMED, University of Padua, Padua 35126, Italy
- Department of Women's and Children's Health-SBD, University of Padua, Padua 35122, Italy
| | - Livia Lenzini
- Specialized Center of Excellence for Hypertension of the European Society of Hypertension and Emergency Medicine Unit, Department of Medicine-DIMED, University of Padua, Padua 35126, Italy
| | - Giulio Ceolotto
- Specialized Center of Excellence for Hypertension of the European Society of Hypertension and Emergency Medicine Unit, Department of Medicine-DIMED, University of Padua, Padua 35126, Italy
| | - Francesca Gioco
- Specialized Center of Excellence for Hypertension of the European Society of Hypertension and Emergency Medicine Unit, Department of Medicine-DIMED, University of Padua, Padua 35126, Italy
| | - Andrea Benetti
- Division of Thrombotic and Hemorrhagic Diseases, Department of Medicine-DIMED, University of Padua, Padua 35122, Italy
| | - Alessandra Giannella
- Division of Thrombotic and Hemorrhagic Diseases, Department of Medicine-DIMED, University of Padua, Padua 35122, Italy
| | - Hala Ajjour
- Specialized Center of Excellence for Hypertension of the European Society of Hypertension and Emergency Medicine Unit, Department of Medicine-DIMED, University of Padua, Padua 35126, Italy
| | - Francesca Galuppini
- Department of Medicine, Surgical Pathology Unit, University of Padua, Padua 35122, Italy
| | - Gianmaria Pennelli
- Department of Medicine, Surgical Pathology Unit, University of Padua, Padua 35122, Italy
| | - Teresa Maria Seccia
- Specialized Center of Excellence for Hypertension of the European Society of Hypertension and Emergency Medicine Unit, Department of Medicine-DIMED, University of Padua, Padua 35126, Italy
| | - Celso Gomez-Sanchez
- G.V. (Sonny) Montgomery VA Medical Center and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Gian Paolo Rossi
- Specialized Center of Excellence for Hypertension of the European Society of Hypertension and Emergency Medicine Unit, Department of Medicine-DIMED, University of Padua, Padua 35126, Italy
| |
Collapse
|
7
|
Ahn CH, Lee YB, Kim JH, Oh YL, Kim JH, Jung KC. Correlation of Histopathologic Subtypes of Primary Aldosteronism with Clinical Phenotypes and Postsurgical Outcomes. J Clin Endocrinol Metab 2024; 109:e1582-e1592. [PMID: 38127970 DOI: 10.1210/clinem/dgad747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/28/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
CONTEXT Clinical implications of unilateral primary aldosteronism (PA) histopathology remain to be determined in various ethnic populations. OBJECTIVE We examined the histopathology of unilateral PA using CYP11B2 immunostaining in relation to clinical phenotypes and postsurgical outcomes. METHODS Patients consecutively operated for unilateral PA from 2010 to 2020 at 3 tertiary hospitals in South Korea were retrospectively enrolled. Adrenals with solitary aldosterone-producing adenomas and/or dominant aldosterone-producing nodules were classified as the classical and the others as the nonclassical groups. The classical group was subdivided into mixed or solitary group according to whether other aldosterone-producing lesions coexist or not. RESULTS Of the 240 cases, 124 were solitary, 86 mixed, and 30 nonclassical. Baseline serum potassium concentration was lower in the solitary group than the mixed or nonclassical group. Plasma aldosterone concentration after saline loading was the highest in the solitary group (median 31.65 ng/dL), followed by the mixed group (median 25.40 ng/dL), and the lowest in the nonclassical group (median 14.20 ng/dL). Solitary and mixed groups showed higher lateralization indices and lower contralateral indices than the nonclassical group. The contralateral index was lower in the solitary group than the mixed group. At 6 to 12 months after adrenalectomy, fewer antihypertensive medications were required for the solitary and mixed groups than the nonclassical group. CONCLUSION The solitary group, followed by the mixed group, was associated with more severe hyperaldosteronism and more suppressed aldosterone production from the contralateral side than the nonclassical group. Histopathologic phenotypes were related to the clinical manifestations and may suggest postoperative prognosis.
Collapse
Affiliation(s)
- Chang Ho Ahn
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620, Republic of Korea
| | - You-Bin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Young Lyun Oh
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Jung Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Kyeong Cheon Jung
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| |
Collapse
|
8
|
Kato H, Kitamoto T, Kimura S, Sunouchi T, Hoshino Y, Hidaka N, Tsurutani Y, Ito N, Makita N, Nishikawa T, Nangaku M, Inoue K. Cardiovascular Outcomes of KCNJ5 Mutated Aldosterone-Producing Adenoma: A Systematic Review. Endocr Pract 2024; 30:670-678. [PMID: 38657793 DOI: 10.1016/j.eprac.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND While clinical features of KCNJ5-mutated aldosterone-producing adenoma (APA) have been reported, evidence of its clinical outcomes is lacking. We aimed to synthesize available literature about the associations between KCNJ5 mutation with cardiovascular and metabolic outcomes among patients with APA. METHODS In this systematic review of observational studies, MEDLINE and Embase were searched through August 2022. Two independent authors screened the search results and extracted data from eligible observational studies investigating cardiovascular or metabolic outcomes between KCNJ5-mutated APAs and KCNJ5-non-mutated APAs. Risk of Bias In Non-randomized Studies of Interventions was used to assess the quality of the included studies. RESULTS A total of 573 titles/abstracts were screened and after the expert opinion of the literature, full text was read in 20 titles/abstracts, of which 12 studies were included. Across 3 studies comparing the baseline or change in the cardiac function between KCNJ5-mutated APAs and KCNJ5-non-mutated APAs, all studies reported the association between impaired cardiac functions and KCNJ5 mutation status. Among 6 studies evaluating the cure of hypertension after surgery, all studies showed that KCNJ5 mutation was significantly associated with the cure of hypertension. In quality assessment, 7 studies were at serious risk of bias, while the remaining studies were at moderate risk of bias. CONCLUSIONS This systematic review provided evidence of the significant association between KCNJ5 mutation and unfavorable cardiovascular outcomes in patients with primary aldosteronism. Further research is needed to improve the quality of evidence on this topic and elucidate the underlying mechanisms of the potential burden of KCNJ5 mutation.
Collapse
Affiliation(s)
- Hajime Kato
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan.
| | - Takumi Kitamoto
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Soichiro Kimura
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Takashi Sunouchi
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshitomo Hoshino
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Naoko Hidaka
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Yuya Tsurutani
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, Japan
| | - Nobuaki Ito
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Noriko Makita
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Tetsuo Nishikawa
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Kosuke Inoue
- Department of Social Epidemiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Hakubi Center, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Nguyen H, Glaaser IW, Slesinger PA. Direct modulation of G protein-gated inwardly rectifying potassium (GIRK) channels. Front Physiol 2024; 15:1386645. [PMID: 38903913 PMCID: PMC11187414 DOI: 10.3389/fphys.2024.1386645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/08/2024] [Indexed: 06/22/2024] Open
Abstract
Ion channels play a pivotal role in regulating cellular excitability and signal transduction processes. Among the various ion channels, G-protein-coupled inwardly rectifying potassium (GIRK) channels serve as key mediators of neurotransmission and cellular responses to extracellular signals. GIRK channels are members of the larger family of inwardly-rectifying potassium (Kir) channels. Typically, GIRK channels are activated via the direct binding of G-protein βγ subunits upon the activation of G-protein-coupled receptors (GPCRs). GIRK channel activation requires the presence of the lipid signaling molecule, phosphatidylinositol 4,5-bisphosphate (PIP2). GIRK channels are also modulated by endogenous proteins and other molecules, including RGS proteins, cholesterol, and SNX27 as well as exogenous compounds, such as alcohol. In the last decade or so, several groups have developed novel drugs and small molecules, such as ML297, GAT1508 and GiGA1, that activate GIRK channels in a G-protein independent manner. Here, we aim to provide a comprehensive overview focusing on the direct modulation of GIRK channels by G-proteins, PIP2, cholesterol, and novel modulatory compounds. These studies offer valuable insights into the underlying molecular mechanisms of channel function, and have potential implications for both basic research and therapeutic development.
Collapse
Affiliation(s)
| | | | - Paul A. Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
10
|
Charoensri S, Bashaw L, Dehmlow C, Ellies T, Wyckoff J, Turcu AF. Evaluation of a Best-Practice Advisory for Primary Aldosteronism Screening. JAMA Intern Med 2024; 184:174-182. [PMID: 38190155 PMCID: PMC10775078 DOI: 10.1001/jamainternmed.2023.7389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024]
Abstract
Importance Primary aldosteronism (PA) is a common cause of secondary hypertension and an independent risk factor for cardiovascular morbidity and mortality. Fewer than 2% to 4% of patients at risk are evaluated for PA. Objective To develop and evaluate an electronic health record best-practice advisory (BPA) that assists with PA screening. Design, Setting, and Participants This prospective quality improvement study was conducted at academic center outpatient clinics. Data analysis was performed between February and June 2023 and included adults with hypertension and at least 1 of the following: 4 or more current antihypertensive medications; hypokalemia; age younger than 35 years; or adrenal nodule(s). Patients previously tested for PA were excluded. Exposure A noninterruptive BPA was developed to trigger for PA screening candidates seen in outpatient setting by clinicians who treat hypertension. The BPA included an order set for PA screening and a link to results interpretation guidance. Main Outcomes and Measures (1) The number of PA screening candidates identified by the BPA between October 1, 2021, and December 31, 2022; (2) the rates of PA screening; and (3) the BPA use patterns, stratified by physician specialty were assessed. Results Over 15 months, the BPA identified 14 603 unique candidates (mean [SD] age, 65.5 [16.9] years; 7300 women [49.9%]; 371 [2.5%] Asian, 2383 [16.3%] Black, and 11 225 [76.9%] White individuals) for PA screening, including 7028 (48.1%) with treatment-resistant hypertension, 6351 (43.5%) with hypokalemia, 1537 (10.5%) younger than 35 years, and 445 (3.1%) with adrenal nodule(s). In total, 2040 patients (14.0%) received orders for PA screening. Of these, 1439 patients (70.5%) completed the recommended screening within the system, and 250 (17.4%) had positive screening results. Most screening orders were placed by internists (40.0%) and family medicine physicians (28.1%). Family practitioners (80.3%) and internists (68.9%) placed most orders via the embedded order set, while specialists placed most orders (83.0%-95.4%) outside the BPA. Patients who received screening were younger and included more women and Black patients than those not screened. The likelihood of screening was higher among patients with obesity and dyslipidemia and lower in those with chronic kidney disease and established cardiovascular complications. Conclusions and Relevance The study results suggest that noninterruptive BPAs are potentially promising PA screening-assistance tools, particularly among primary care physicians. Combined with artificial intelligence algorithms that optimize the detection yield, refined BPAs may contribute to personalized hypertension care.
Collapse
Affiliation(s)
- Suranut Charoensri
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Linda Bashaw
- Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Cheryl Dehmlow
- Health Information and Technology Systems, University of Michigan, Ann Arbor
| | - Tammy Ellies
- Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Jennifer Wyckoff
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Adina F. Turcu
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor
| |
Collapse
|
11
|
Kitamoto T, Idé T, Tezuka Y, Wada N, Shibayama Y, Tsurutani Y, Takiguchi T, Inoue K, Suematsu S, Omata K, Ono Y, Morimoto R, Yamazaki Y, Saito J, Sasano H, Satoh F, Nishikawa T. Identifying primary aldosteronism patients who require adrenal venous sampling: a multi-center study. Sci Rep 2023; 13:21722. [PMID: 38081870 PMCID: PMC10713522 DOI: 10.1038/s41598-023-47967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Adrenal venous sampling (AVS) is crucial for subtyping primary aldosteronism (PA) to explore the possibility of curing hypertension. Because AVS availability is limited, efforts have been made to develop strategies to bypass it. However, it has so far proven unsuccessful in applying clinical practice, partly due to heterogeneity and missing values of the cohorts. For this purpose, we retrospectively assessed 210 PA cases from three institutions where segment-selective AVS, which is more accurate and sensitive for detecting PA cases with surgical indications, was available. A machine learning-based classification model featuring a new cross-center domain adaptation capability was developed. The model identified 102 patients with PA who benefited from surgery in the present cohort. A new data imputation technique was used to address cross-center heterogeneity, making a common prediction model applicable across multiple cohorts. Logistic regression demonstrated higher accuracy than Random Forest and Deep Learning [(0.89, 0.86) vs. (0.84, 0.84), (0.82, 0.84) for surgical or medical indications in terms of f-score]. A derived integrated flowchart revealed that 35.2% of PA cases required AVS with 94.1% accuracy. The present model enabled us to reduce the burden of AVS on patients who would benefit the most.
Collapse
Affiliation(s)
- Takumi Kitamoto
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, 2220036, Japan.
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, 2608670, Japan.
| | - Tsuyoshi Idé
- IBM Research, T. J. Watson Research Center, Yorktown Heights, NY, 10598, USA
| | - Yuta Tezuka
- Department of Diabetes, Metabolism, and Endocrinology, Tohoku University Hospital, Sendai, 9808574, Japan
- Division of Nephrology, Rheumatology, and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, 9808574, Japan
| | - Norio Wada
- Department of Diabetes and Endocrinology, Sapporo City General Hospital, Sapporo, 0608604, Japan
| | - Yui Shibayama
- Department of Diabetes and Endocrinology, Sapporo City General Hospital, Sapporo, 0608604, Japan
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 0608648, Japan
| | - Yuya Tsurutani
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, 2220036, Japan
| | - Tomoko Takiguchi
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, 2220036, Japan
| | - Kosuke Inoue
- Department of Social Epidemiology, Graduate School of Medicine, Kyoto University, Kyoto, 6048135, Japan
| | - Sachiko Suematsu
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, 2220036, Japan
| | - Kei Omata
- Department of Diabetes, Metabolism, and Endocrinology, Tohoku University Hospital, Sendai, 9808574, Japan
- Division of Nephrology, Rheumatology, and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, 9808574, Japan
| | - Yoshikiyo Ono
- Department of Diabetes, Metabolism, and Endocrinology, Tohoku University Hospital, Sendai, 9808574, Japan
- Division of Nephrology, Rheumatology, and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, 9808574, Japan
| | - Ryo Morimoto
- Division of Nephrology, Rheumatology, and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, 9808574, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Jun Saito
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, 2220036, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Fumitoshi Satoh
- Division of Nephrology, Rheumatology, and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, 9808574, Japan
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Tetsuo Nishikawa
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, 2220036, Japan
| |
Collapse
|
12
|
Hanxiao Y, Boyun Y, Minyue J, Xiaoxiao S. Identification of a novel competing endogenous RNA network and candidate drugs associated with ferroptosis in aldosterone-producing adenomas. Aging (Albany NY) 2023; 15:9193-9216. [PMID: 37709486 PMCID: PMC10522391 DOI: 10.18632/aging.205028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Aldosterone-producing adenoma (APA), characterized by unilaterally excessive aldosterone production, is a common cause of primary aldosteronism. Ferroptosis, a recently raised iron-dependent mode of programmed cell death, has been involved in the development and therapy of various diseases. This study obtained datasets of the mRNA and lncRNA expression profiles for APA and adjacent adrenal gland (AAG) from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and lncRNAs (DE lncRNAs) associated with ferroptosis were identified. Enrichment analyses indicated 89 ferroptosis-related DEGs were primarily enriched in ROS related processes and ferroptosis. Two physical cores, and one combined core were identified in the protein-protein interaction (PPI). DEGs and clinical traits were used in conjunction to screen eight hub genes from two hub modules and 89 DEGs. A competitive endogenous RNA (ceRNA) network was constructed via co-express analysis. Thereafter, molecular docking was used to identify potential targets. Two active compounds, QL-X-138 and MK-1775, bound to AURKA and DUOX1, respectively, with the lowest binding energies. Molecular dynamics simulation verified the stability of the two complexes. In summary, our studies identified eight hub genes and a novel ceRNA regulatory network associated with ferroptosis, wherein QL-X-138 and MK-1775 were considered to be potential drugs for treating APA.
Collapse
Affiliation(s)
- Yu Hanxiao
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Boyun
- Department of Allergy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Minyue
- Department of Ultrasound, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Song Xiaoxiao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Fernandes-Rosa FL, Boulkroun S, Fedlaoui B, Hureaux M, Travers-Allard S, Drossart T, Favier J, Zennaro MC. New advances in endocrine hypertension: from genes to biomarkers. Kidney Int 2023; 103:485-500. [PMID: 36646167 DOI: 10.1016/j.kint.2022.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023]
Abstract
Hypertension (HT) is a major cardiovascular risk factor that affects 10% to 40% of the general population in an age-dependent manner. Detection of secondary forms of HT is particularly important because it allows the targeted management of the underlying disease. Among hypertensive patients, the prevalence of endocrine HT reaches up to 10%. Adrenal diseases are the most frequent cause of endocrine HT and are associated with excess production of mineralocorticoids (mainly primary aldosteronism), glucocorticoids (Cushing syndrome), and catecholamines (pheochromocytoma). In addition, a few rare diseases directly affecting the action of mineralocorticoids and glucocorticoids in the kidney also lead to endocrine HT. Over the past years, genomic and genetic studies have allowed improving our knowledge on the molecular mechanisms of endocrine HT. Those discoveries have opened new opportunities to transfer knowledge to clinical practice for better diagnosis and specific treatment of affected subjects. In this review, we describe the physiology of adrenal hormone biosynthesis and action, the clinical and biochemical characteristics of different forms of endocrine HT, and their underlying genetic defects. We discuss the impact of these discoveries on diagnosis and management of patients, as well as new perspectives related to the use of new biomarkers for improved patient care.
Collapse
Affiliation(s)
| | | | | | - Marguerite Hureaux
- Université Paris Cité, PARCC, Inserm, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
| | - Simon Travers-Allard
- Université Paris Cité, PARCC, Inserm, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
| | - Tom Drossart
- Université Paris Cité, PARCC, Inserm, Paris, France; Université de Paris Cité, PARCC, Inserm, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| | - Judith Favier
- Université Paris Cité, PARCC, Inserm, Paris, France; Université de Paris Cité, PARCC, Inserm, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| | - Maria-Christina Zennaro
- Université Paris Cité, PARCC, Inserm, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France.
| |
Collapse
|
14
|
Wu X, Senanayake R, Goodchild E, Bashari WA, Salsbury J, Cabrera CP, Argentesi G, O’Toole SM, Matson M, Koo B, Parvanta L, Hilliard N, Kosmoliaptsis V, Marker A, Berney DM, Tan W, Foo R, Mein CA, Wozniak E, Savage E, Sahdev A, Bird N, Laycock K, Boros I, Hader S, Warnes V, Gillett D, Dawnay A, Adeyeye E, Prete A, Taylor AE, Arlt W, Bhuva AN, Aigbirhio F, Manisty C, McIntosh A, McConnachie A, Cruickshank JK, Cheow H, Gurnell M, Drake WM, Brown MJ. [ 11C]metomidate PET-CT versus adrenal vein sampling for diagnosing surgically curable primary aldosteronism: a prospective, within-patient trial. Nat Med 2023; 29:190-202. [PMID: 36646800 PMCID: PMC9873572 DOI: 10.1038/s41591-022-02114-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 10/31/2022] [Indexed: 01/18/2023]
Abstract
Primary aldosteronism (PA) due to a unilateral aldosterone-producing adenoma is a common cause of hypertension. This can be cured, or greatly improved, by adrenal surgery. However, the invasive nature of the standard pre-surgical investigation contributes to fewer than 1% of patients with PA being offered the chance of a cure. The primary objective of our prospective study of 143 patients with PA ( NCT02945904 ) was to compare the accuracy of a non-invasive test, [11C]metomidate positron emission tomography computed tomography (MTO) scanning, with adrenal vein sampling (AVS) in predicting the biochemical remission of PA and the resolution of hypertension after surgery. A total of 128 patients reached 6- to 9-month follow-up, with 78 (61%) treated surgically and 50 (39%) managed medically. Of the 78 patients receiving surgery, 77 achieved one or more PA surgical outcome criterion for success. The accuracies of MTO at predicting biochemical and clinical success following adrenalectomy were, respectively, 72.7 and 65.4%. For AVS, the accuracies were 63.6 and 61.5%. MTO was not significantly superior, but the differences of 9.1% (95% confidence interval = -6.5 to 24.1%) and 3.8% (95% confidence interval = -11.9 to 9.4) lay within the pre-specified -17% margin for non-inferiority (P = 0.00055 and P = 0.0077, respectively). Of 24 serious adverse events, none was considered related to either investigation and 22 were fully resolved. MTO enables non-invasive diagnosis of unilateral PA.
Collapse
Affiliation(s)
- Xilin Wu
- grid.4868.20000 0001 2171 1133Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom ,grid.4868.20000 0001 2171 1133NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom ,grid.139534.90000 0001 0372 5777Department of Endocrinology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Russell Senanayake
- grid.5335.00000000121885934Metabolic Research Laboratories, Wellcome–MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom ,grid.24029.3d0000 0004 0383 8386NIHR Cambridge Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom ,grid.24029.3d0000 0004 0383 8386Department of Diabetes and Endocrinology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Emily Goodchild
- grid.4868.20000 0001 2171 1133Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom ,grid.4868.20000 0001 2171 1133NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom ,grid.139534.90000 0001 0372 5777Department of Endocrinology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Waiel A. Bashari
- grid.5335.00000000121885934Metabolic Research Laboratories, Wellcome–MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom ,grid.24029.3d0000 0004 0383 8386NIHR Cambridge Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom ,grid.24029.3d0000 0004 0383 8386Department of Diabetes and Endocrinology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Jackie Salsbury
- grid.4868.20000 0001 2171 1133Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom ,grid.4868.20000 0001 2171 1133NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Claudia P. Cabrera
- grid.4868.20000 0001 2171 1133Centre for Translational Bioinformatics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Giulia Argentesi
- grid.4868.20000 0001 2171 1133Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom ,grid.4868.20000 0001 2171 1133NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom ,grid.139534.90000 0001 0372 5777Department of Endocrinology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Samuel M. O’Toole
- grid.4868.20000 0001 2171 1133Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom ,grid.4868.20000 0001 2171 1133NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom ,grid.139534.90000 0001 0372 5777Department of Endocrinology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom ,grid.416126.60000 0004 0641 6031Department of Endocrinology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Matthew Matson
- grid.139534.90000 0001 0372 5777Department of Radiology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Brendan Koo
- grid.24029.3d0000 0004 0383 8386Department of Radiology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Laila Parvanta
- grid.139534.90000 0001 0372 5777Department of Endocrinology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Nick Hilliard
- grid.24029.3d0000 0004 0383 8386Department of Radiology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Vasilis Kosmoliaptsis
- grid.24029.3d0000 0004 0383 8386Department of Surgery, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Alison Marker
- grid.24029.3d0000 0004 0383 8386Department of Histopathology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Daniel M. Berney
- grid.139534.90000 0001 0372 5777Department of Histopathology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Wilson Tan
- grid.4280.e0000 0001 2180 6431Cardiovascular Research Institute, National University of Singapore, Singapore, Singapore
| | - Roger Foo
- grid.4280.e0000 0001 2180 6431Cardiovascular Research Institute, National University of Singapore, Singapore, Singapore
| | - Charles A. Mein
- grid.4868.20000 0001 2171 1133Barts and the London Genome Centre, School of Medicine and Dentistry, Blizard Institute, London, United Kingdom
| | - Eva Wozniak
- grid.4868.20000 0001 2171 1133Barts and the London Genome Centre, School of Medicine and Dentistry, Blizard Institute, London, United Kingdom
| | - Emmanuel Savage
- grid.4868.20000 0001 2171 1133Barts and the London Genome Centre, School of Medicine and Dentistry, Blizard Institute, London, United Kingdom
| | - Anju Sahdev
- grid.139534.90000 0001 0372 5777Department of Radiology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Nicholas Bird
- grid.24029.3d0000 0004 0383 8386Department of Radiology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Kate Laycock
- grid.4868.20000 0001 2171 1133Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom ,grid.4868.20000 0001 2171 1133NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom ,grid.139534.90000 0001 0372 5777Department of Endocrinology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Istvan Boros
- grid.5335.00000000121885934Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Stefan Hader
- grid.5335.00000000121885934Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Victoria Warnes
- grid.24029.3d0000 0004 0383 8386Department of Nuclear Medicine, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Daniel Gillett
- grid.24029.3d0000 0004 0383 8386Department of Nuclear Medicine, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Anne Dawnay
- grid.139534.90000 0001 0372 5777Department of Clinical Biochemistry, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Elizabeth Adeyeye
- grid.420545.20000 0004 0489 3985Department of Cardiovascular Medicine/Diabetes, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Alessandro Prete
- grid.6572.60000 0004 1936 7486Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Angela E. Taylor
- grid.6572.60000 0004 1936 7486Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Wiebke Arlt
- grid.6572.60000 0004 1936 7486Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom ,grid.412563.70000 0004 0376 6589NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Anish N. Bhuva
- grid.139534.90000 0001 0372 5777Department of Cardiology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Franklin Aigbirhio
- grid.5335.00000000121885934Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Charlotte Manisty
- grid.139534.90000 0001 0372 5777Department of Cardiology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Alasdair McIntosh
- grid.8756.c0000 0001 2193 314XRobertson Centre for Biostatistics, University of Glasgow, Glasgow, United Kingdom
| | - Alexander McConnachie
- grid.8756.c0000 0001 2193 314XRobertson Centre for Biostatistics, University of Glasgow, Glasgow, United Kingdom
| | - J. Kennedy Cruickshank
- grid.420545.20000 0004 0489 3985Department of Cardiovascular Medicine/Diabetes, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom ,grid.13097.3c0000 0001 2322 6764School of Life Course/Nutritional Sciences, King’s College London, London, United Kingdom
| | - Heok Cheow
- grid.24029.3d0000 0004 0383 8386Department of Radiology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Mark Gurnell
- grid.5335.00000000121885934Metabolic Research Laboratories, Wellcome–MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom ,grid.24029.3d0000 0004 0383 8386NIHR Cambridge Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom ,grid.24029.3d0000 0004 0383 8386Department of Diabetes and Endocrinology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - William M. Drake
- grid.4868.20000 0001 2171 1133NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom ,grid.139534.90000 0001 0372 5777Department of Endocrinology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Morris J. Brown
- grid.4868.20000 0001 2171 1133Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom ,grid.4868.20000 0001 2171 1133NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom ,grid.139534.90000 0001 0372 5777Department of Endocrinology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
15
|
Moore EC, Ioannou L, Ruseckaite R, Serpell J, Ahern S. Hereditary Endocrine Tumor Registries. J Endocr Soc 2022; 7:bvac194. [PMID: 36632485 PMCID: PMC9825730 DOI: 10.1210/jendso/bvac194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Indexed: 12/24/2022] Open
Abstract
Context Endocrine neoplasia syndromes are phenotypically complex, and there is a misconception that they are universally rare. Genetic alterations are increasingly recognized; however, true prevalence is unknown. The purpose of a clinical registry is to monitor the quality of health care delivered to a specified group of patients through the collection, analysis, and reporting of relevant health-related information. This leads to improved clinical practice, decision-making, patient satisfaction, and outcome. Objective This review aims to identify, compare, and contrast active registries worldwide that capture data relevant to hereditary endocrine tumors (HETs). Methods Clinical registries were identified using a systematic approach from publications (Ovid MEDLINE, EMBASE) peer consultation, clinical trials, and web searches. Inclusion criteria were hereditary endocrine tumors, clinical registries, and English language. Exclusion criteria were institutional audits, absence of clinical data, or inactivity. Details surrounding general characteristics, funding, data fields, collection periods, and entry methods were collated. Results Fifteen registries specific for HET were shortlisted with 136 affiliated peer-reviewed manuscripts. Conclusion There are few clinical registries specific to HET. Most of these are European, and the data collected are highly variable. Further research into their effectiveness is warranted. We note the absence of an Australian registry for all HET, which would provide potential health and economic gains. This review presents a unique opportunity to harmonize registry data for HET locally and further afield.
Collapse
Affiliation(s)
- Edwina C Moore
- Correspondence: Edwina C. Moore, MBBS (HONS), BMedSci, Peninsula Private Hospital, 525 McClelland Dr, Ste 16, Langwarrin, VIC, 3199, Australia.
| | - Liane Ioannou
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria 3800, Australia
| | - Rasa Ruseckaite
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria 3800, Australia
| | - Jonathan Serpell
- Department of Breast, Endocrine and General Surgery, Alfred Health, Monash University, Melbourne, Victoria 3800, Australia
| | - Susannah Ahern
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
16
|
Parisien-La Salle S, Corbeil G, El-Haffaf Z, Duranceau C, Latour M, Karakiewicz PI, Lacroix A, Bourdeau I. Genetic Dissection of Primary Aldosteronism in a Patient With MEN1 and Ipsilateral Adrenocortical Carcinoma and Adenoma. J Clin Endocrinol Metab 2022; 108:26-32. [PMID: 36179244 DOI: 10.1210/clinem/dgac564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/23/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Adrenal tumors are found in up to 40% of patients with multiple endocrine neoplasia type 1 (MEN1). However, adrenocortical carcinomas (ACC) and primary aldosteronism (PA) are rare in MEN1. CASE A 48-year-old woman known to have primary hyperparathyroidism and hypertension with hypokalemia was referred for a right complex 8-cm adrenal mass with a 38.1 SUVmax uptake on 18F-FDG PET/CT. PA was confirmed by saline suppression test (aldosterone 1948 pmol/L-1675 pmol/L; normal range [N]: <165 post saline infusion) and suppressed renin levels (<5 ng/L; N: 5-20). Catecholamines, androgens, 24-hour urinary cortisol, and pituitary panel were normal. A right open adrenalectomy revealed a concomitant 4-cm oncocytic ACC and a 2.3-cm adrenocortical adenoma. Immunohistochemistry showed high expression of aldosterone synthase protein in the adenoma but not in the ACC, supporting excess aldosterone production by the adenoma. GENETIC ANALYSIS After genetic counseling, the patient underwent genetic analysis of leucocyte and tumoral DNA. Sequencing of MEN1 revealed a heterozygous germline pathogenic variant in MEN1 (c.1556delC, p.Pro519Leufs*40). The wild-type MEN1 allele was lost in the tumoral DNA of both the resected adenoma and carcinoma. Sequencing analysis of driver genes in PA revealed a somatic pathogenic variant in exon 2 of the KCNJ5 gene (c.451G>A, p.Gly151Arg) only in the aldosteronoma. CONCLUSION To our knowledge, we describe the first case of adrenal collision tumors in a patient carrying a germline pathogenic variant of the MEN1 gene associated with MEN1 loss of heterozygosity in both oncocytic ACC and adenoma and a somatic KCNJ5 pathogenic variant leading to aldosterone-producing adenoma. This case gives new insights on adrenal tumorigenesis in MEN1 patients.
Collapse
Affiliation(s)
- Stéfanie Parisien-La Salle
- Division of Endocrinology, Department of Medicine, Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, QC, H2X 0C1, Canada
| | - Gilles Corbeil
- Division of Endocrinology, Department of Medicine, Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, QC, H2X 0C1, Canada
| | - Zaki El-Haffaf
- Division of Genetics, Department of Medicine, Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, QC, H2X 0C1, Canada
| | - Caroline Duranceau
- Division of Endocrinology, Department of Medicine, Chicoutimi Hospital, Université du Québec à Chicoutimi, Chicoutimi, QC, H2X 0C1, Canada
| | - Mathieu Latour
- Department of Pathology and Cellular Biology, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, QC, H2X 0C1, Canada
| | - Pierre I Karakiewicz
- Division of Urology, Department of Surgery, Centre Hospitalier de l'Université de Montréal, Montréal, QC, H2X 0C1, Canada
| | - André Lacroix
- Division of Endocrinology, Department of Medicine, Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, QC, H2X 0C1, Canada
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine, Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, QC, H2X 0C1, Canada
| |
Collapse
|
17
|
Abstract
Primary aldosteronism is a common cause of hypertension and is a risk factor for cardiovascular and renal morbidity and mortality, via mechanisms mediated by both hypertension and direct insults to target organs. Despite its high prevalence and associated complications, primary aldosteronism remains largely under-recognized, with less than 2% of people in at-risk populations ever tested. Fundamental progress made over the past decade has transformed our understanding of the pathogenesis of primary aldosteronism and of its clinical phenotypes. The dichotomous paradigm of primary aldosteronism diagnosis and subtyping is being redefined into a multidimensional spectrum of disease, which spans subclinical stages to florid primary aldosteronism, and from single-focal or multifocal to diffuse aldosterone-producing areas, which can affect one or both adrenal glands. This Review discusses how redefining the primary aldosteronism syndrome as a multidimensional spectrum will affect the approach to the diagnosis and subtyping of primary aldosteronism.
Collapse
Affiliation(s)
- Adina F Turcu
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA.
| | - Jun Yang
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Anand Vaidya
- Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Le Floch E, Cosentino T, Larsen CK, Beuschlein F, Reincke M, Amar L, Rossi GP, De Sousa K, Baron S, Chantalat S, Saintpierre B, Lenzini L, Frouin A, Giscos-Douriez I, Ferey M, Abdellatif AB, Meatchi T, Empana JP, Jouven X, Gieger C, Waldenberger M, Peters A, Cusi D, Salvi E, Meneton P, Touvier M, Deschasaux M, Druesne-Pecollo N, Boulkroun S, Fernandes-Rosa FL, Deleuze JF, Jeunemaitre X, Zennaro MC. Identification of risk loci for primary aldosteronism in genome-wide association studies. Nat Commun 2022; 13:5198. [PMID: 36057693 PMCID: PMC9440917 DOI: 10.1038/s41467-022-32896-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
Primary aldosteronism affects up to 10% of hypertensive patients and is responsible for treatment resistance and increased cardiovascular risk. Here we perform a genome-wide association study in a discovery cohort of 562 cases and 950 controls and identify three main loci on chromosomes 1, 13 and X; associations on chromosome 1 and 13 are replicated in a second cohort and confirmed by a meta-analysis involving 1162 cases and 3296 controls. The association on chromosome 13 is specific to men and stronger in bilateral adrenal hyperplasia than aldosterone producing adenoma. Candidate genes located within the two loci, CASZ1 and RXFP2, are expressed in human and mouse adrenals in different cell clusters. Their overexpression in adrenocortical cells suppresses mineralocorticoid output under basal and stimulated conditions, without affecting cortisol biosynthesis. Our study identifies the first risk loci for primary aldosteronism and highlights new mechanisms for the development of aldosterone excess.
Collapse
Affiliation(s)
- Edith Le Floch
- Centre National de Recherche en Génomique Humaine, Institut de biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | | | - Casper K Larsen
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, 80336, Munich, Germany
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich (USZ) und Universität Zürich (UZH), Zürich, Switzerland
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, 80336, Munich, Germany
| | - Laurence Amar
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Unité Hypertension artérielle, Paris, France
| | - Gian-Paolo Rossi
- DMCS 'G. Patrassi' University of Padova Medical School, University Hospital, 35126, Padova, Italy
| | - Kelly De Sousa
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Stéphanie Baron
- Université Paris Cité, F-75006, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
| | - Sophie Chantalat
- Centre National de Recherche en Génomique Humaine, Institut de biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Benjamin Saintpierre
- Université Paris Cité, Institut Cochin, Genom'IC platform, INSERM, CNRS, 75014, Paris, France
| | - Livia Lenzini
- DMCS 'G. Patrassi' University of Padova Medical School, University Hospital, 35126, Padova, Italy
| | - Arthur Frouin
- Centre National de Recherche en Génomique Humaine, Institut de biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | | | - Matthis Ferey
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | | | - Tchao Meatchi
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service d'Anatomie Pathologique, Paris, France
| | | | - Xavier Jouven
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Cardiologie, Paris, France
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Research Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- German Research Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Daniele Cusi
- Institute of Biomedical Technologies National Research Council of Italy, Milan, Italy
- Bio4Dreams-Business Nursery for Life Sciences, Milan, Italy
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan, Italy
| | - Pierre Meneton
- UMR_1142, INSERM, Sorbonne Université, Université Paris 13, Paris, France
| | - Mathilde Touvier
- Sorbonne Paris Nord University, INSERM U1153, INRAe U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - Université Paris Cité (CRESS), 93017, Bobigny, France
| | - Mélanie Deschasaux
- Sorbonne Paris Nord University, INSERM U1153, INRAe U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - Université Paris Cité (CRESS), 93017, Bobigny, France
| | - Nathalie Druesne-Pecollo
- Sorbonne Paris Nord University, INSERM U1153, INRAe U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - Université Paris Cité (CRESS), 93017, Bobigny, France
| | | | | | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Institut de biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Xavier Jeunemaitre
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
| | - Maria-Christina Zennaro
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France.
| |
Collapse
|
19
|
Pitsava G, Faucz FR, Stratakis CA, Hannah-Shmouni F. Update on the Genetics of Primary Aldosteronism and Aldosterone-Producing Adenomas. Curr Cardiol Rep 2022; 24:1189-1195. [PMID: 35841527 PMCID: PMC9667367 DOI: 10.1007/s11886-022-01735-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF THE REVIEW Primary aldosteronism (PA) is the leading cause of secondary hypertension, accounting for over 10% of patients with high blood pressure. It is characterized by autonomous production of aldosterone from the adrenal glands leading to low-renin levels. The two most common forms arise from bilateral adrenocortical hyperplasia (BAH) and aldosterone-producing adenoma (APA). We discuss recent discoveries in the genetics of PA. RECENT FINDINGS Most APAs harbor variants in the KCNJ5, CACNA1D, ATP1A1, ATP2B3, and CTNNB1 genes. With the exception of β-catenin (CTNNB1), all other causative genes encode ion channels; pathogenic variants found in PA lead to altered ion transportation, cell membrane depolarization, and consequently aldosterone overproduction. Some of these genes are found mutated in the germline state (CYP11B2, CLCN2, KCNJ5, CACNA1H, and CACNA1D), leading then to familial hyperaldosteronism, and often BAH rather than single APAs. Several genetic defects in the germline or somatic state have been identified in PA. Understanding how these molecular abnormalities lead to excess aldosterone contributes significantly to the elucidation of the pathophysiology of low-renin hypertension. It may also lead to new and more effective therapies for this disease acting at the molecular level.
Collapse
Affiliation(s)
- Georgia Pitsava
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Section On Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Fabio R Faucz
- Section On Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Constantine A Stratakis
- Section On Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- ELPEN Pharmaceuticals, Pikermi, Athens, Greece
- Human Genetics & Precision Medicine, IMBB, FORTH, Heraklion, Greece
| | - Fady Hannah-Shmouni
- Section On Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
20
|
Wu L, Xie J, Qi Y, Su T, Jiang L, Zhou W, Jiang Y, Zhang C, Zhong X, Cao Y, Wang W. Mutational landscape of non-functional adrenocortical adenomas. Endocr Relat Cancer 2022; 29:521-532. [PMID: 35731037 DOI: 10.1530/erc-21-0410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022]
Abstract
Adrenal incidentalomas are the most frequent human neoplasms. Recent genomic investigations on functional adrenocortical tumors have demonstrated that somatic mutations in PRKACA and KCNJ5 responsible for the development of adrenocortical adenomas (ACAs) are associated with hypercortisolism and aldosteronism, respectively. Several studies have identified CTNNB1 mutations in ACAs and have been mostly involved in the tumorigenesis of non-functional ACA (NFACA). However, integrated genomic characterization of NFACAs is lacking. In the current study, we utilized pan-genomic methods to comprehensively analyze 60 NFACA samples. A total of 1264 somatic mutations in coding regions among the 60 samples were identified, with a median of 15 non-silent mutations per tumor. Twenty-two NFACAs (36.67%) had genetic alterations in CTNNB1. We also identified several somatic mutations in genes of the cAMP/PKA pathway and KCNJ5. Histone modification genes (KMT2A, KMT2C, and KMT2D) were altered in 10% of cases. Germline mutations of MEN1 and RET were also found. Finally, by comparison of our transcriptome data with those available in the TCGA, we illustrated the molecular characterization of NFACA. We revealed the genetic profiling and molecular landscape of NFACA. Wnt/β-catenin pathway activation as shown ssby nuclear and/or cytoplasmic β-catenin accumulation is frequent, occurring in about one-third of ACA cases. cytochrome P450 enzymes could be markers to reveal the functional status of adrenocortical tumors. These observations strongly suggest the involvement of the Wnt/β-catenin pathway in benign adrenal tumorigenesis and possibly in the regulation of steroid secretion.
Collapse
Affiliation(s)
- Luming Wu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yan Qi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tingwei Su
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Lei Jiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Weiwei Zhou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yiran Jiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Cui Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xu Zhong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yanan Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
21
|
Nanba K, Baker JE, Blinder AR, Bick NR, Liu CJ, Lim JS, Wachtel H, Cohen DL, Williams TA, Reincke M, Lyden ML, Bancos I, Young WF, Else T, Giordano TJ, Udager AM, Rainey WE. Histopathology and Genetic Causes of Primary Aldosteronism in Young Adults. J Clin Endocrinol Metab 2022; 107:2473-2482. [PMID: 35779252 PMCID: PMC9761569 DOI: 10.1210/clinem/dgac408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Due to its rare incidence, molecular features of primary aldosteronism (PA) in young adults are largely unknown. Recently developed targeted mutational analysis identified aldosterone-driver somatic mutations in aldosterone-producing lesions, including aldosterone-producing adenomas (APAs), aldosterone-producing nodules (APNs), and aldosterone-producing micronodules, formerly known as aldosterone-producing cell clusters. OBJECTIVE To investigate histologic and genetic characteristics of lateralized PA in young adults. METHODS Formalin-fixed, paraffin-embedded adrenal tissue sections from 74 young patients with lateralized PA (<35 years old) were used for this study. Immunohistochemistry (IHC) for aldosterone synthase (CYP11B2) was performed to define the histopathologic diagnosis. Somatic mutations in aldosterone-producing lesions were further determined by CYP11B2 IHC-guided DNA sequencing. RESULTS Based on the CYP11B2 IHC results, histopathologic classification was made as follows: 48 APAs, 20 APNs, 2 multiple aldosterone-producing nodules (MAPN), 1 double APN, 1 APA with MAPN, and 2 nonfunctioning adenomas (NFAs). Of 45 APAs with successful sequencing, 43 (96%) had somatic mutations, with KCNJ5 mutations being the most common genetic cause of young-onset APA (35/45, 78%). Of 18 APNs with successful sequencing, all of them harbored somatic mutations, with CACNA1D mutations being the most frequent genetic alteration in young-onset APN (8/18, 44%). Multiple CYP11B2-expressing lesions in patients with MAPN showed several aldosterone-driver mutations. No somatic mutations were identified in NFAs. CONCLUSION APA is the most common histologic feature of lateralized PA in young adults. Somatic KCNJ5 mutations are common in APAs, whereas CACNA1D mutations are often seen in APNs in this young PA population.
Collapse
Affiliation(s)
- Kazutaka Nanba
- Correspondence: Kazutaka Nanba, MD, Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, 1-1, Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan.
| | - Jessica E Baker
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amy R Blinder
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nolan R Bick
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chia-Jen Liu
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jung Soo Lim
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Heather Wachtel
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Debbie L Cohen
- Division of Renal, Electrolyte and Hypertension, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, München, 80336, Germany
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, 10126, Italy
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, München, 80336, Germany
| | - Melanie L Lyden
- Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Irina Bancos
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, 55905, USA
| | - William F Young
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tobias Else
- Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Thomas J Giordano
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Aaron M Udager
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - William E Rainey
- Correspondence: William E. Rainey, PhD, Department of Molecular and Integrative Physiology, University of Michigan, 2558 MSRB II, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA.
| |
Collapse
|
22
|
Clinical Translationality of KCNJ5 Mutation in Aldosterone Producing Adenoma. Int J Mol Sci 2022; 23:ijms23169042. [PMID: 36012306 PMCID: PMC9409469 DOI: 10.3390/ijms23169042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Hypertension due to primary aldosteronism poses a risk of severe cardiovascular complications compared to essential hypertension. The discovery of the KCNJ5 somatic mutation in aldosteroene producing adenoma (APA) in 2011 and the development of specific CYP11B2 antibodies in 2012 have greatly advanced our understanding of the pathophysiology of primary aldosteronism. In particular, the presence of CYP11B2-positive aldosterone-producing micronodules (APMs) in the adrenal glands of normotensive individuals and the presence of renin-independent aldosterone excess in normotensive subjects demonstrated the continuum of the pathogenesis of PA. Furthermore, among the aldosterone driver mutations which incur excessive aldosterone secretion, KCNJ5 was a major somatic mutation in APA, while CACNA1D is a leading somatic mutation in APMs and idiopathic hyperaldosteronism (IHA), suggesting a distinctive pathogenesis between APA and IHA. Although the functional detail of APMs has not been still uncovered, its impact on the pathogenesis of PA is gradually being revealed. In this review, we summarize the integrated findings regarding APA, APM or diffuse hyperplasia defined by novel CYP11B2, and aldosterone driver mutations. Following this, we discuss the clinical implications of KCNJ5 mutations to support better cardiovascular outcomes of primary aldosteronism.
Collapse
|
23
|
Nanao Y, Oki K, Kobuke K, Itcho K, Baba R, Kodama T, Otagaki Y, Okada A, Yoshii Y, Nagano G, Ohno H, Arihiro K, Gomez-Sanchez CE, Hattori N, Yoneda M. Hypomethylation associated vitamin D receptor expression in ATP1A1 mutant aldosterone-producing adenoma. Mol Cell Endocrinol 2022; 548:111613. [PMID: 35257799 PMCID: PMC9082579 DOI: 10.1016/j.mce.2022.111613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022]
Abstract
DNA methylation alteration is tissue-specific and play a pivotal role in regulating gene transcription during cell proliferation and survival. We aimed to detect genes regulated by DNA methylation, and then investigated whether the gene influenced cell proliferation or survival in adrenal cells. DNA methylation and qPCR analyses were performed in nonfunctioning adrenocortical adenoma (NFA, n = 12) and aldosterone-producing adenoma (APA, n = 35) samples. The VDR gene promoter was markedly hypomethylated in APA with ATP1A1 mutation, and the promoter methylation levels showed a significant inverse association with the transcripts in APA. ATP1A1 mutation led to VDR transcription in HAC15 cells, and VDR suppression abrogated ATP1A1 mutation-mediated cell proliferation in HAC15 cells. We demonstrated that APA with ATP1A1 mutation showed entire hypomethylation in the VDR promoter and abundant VDR mRNA and protein expression. VDR suppression abrogated ATP1A1 mutation-mediated cell proliferation in HAC15 cells. Abundant VDR expression would be essential for ATP1A1 mutation-mediated cell proliferation.
Collapse
Affiliation(s)
- Yuta Nanao
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenji Oki
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Kazuhiro Kobuke
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kiyotaka Itcho
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryuta Baba
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takaya Kodama
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yu Otagaki
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akira Okada
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoko Yoshii
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Gaku Nagano
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Haruya Ohno
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Celso E Gomez-Sanchez
- Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center and University of Mississippi Medical Center, Jackson, MS, USA
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masayasu Yoneda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
24
|
Xie J, Zhang C, Wang X, Jiang Y, Wu L, Ye L, Wang X, Xie W, Xu H, Wang W. Exploration of KCNJ5 Somatic Mutation and CYP11B1/CYP11B2 Staining in Multiple Nodules in Primary Aldosteronism. Front Med (Lausanne) 2022; 9:823065. [PMID: 35492351 PMCID: PMC9039053 DOI: 10.3389/fmed.2022.823065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Unilateral primary aldosteronism (PA) includes aldosterone-producing adenoma (APA), unilateral adrenal hyperplasia, and unilateral multiple nodules. The correlation of multiple nodules, especially genotypic and pathological characteristics, remains unknown. KCNJ5 mutation accounts for 60-80% of unilateral PA, so we aimed to explore the correlation of KCNJ5 somatic mutation and CYP11B1/CYP11B2 staining in multiple nodules in unilateral PA. Design and Methods A total of 56 microdissected nodules from 24 patients with unilateral PA were included. We assessed somatic KCNJ5 mutations, immunohistochemistry for aldosterone synthase (CYP11B2)/cortisol synthase (CYP11B1), and histological cellular composition of nodules together with adjacent adrenal cortical statements. Results KCNJ5 mutations were identified in 17 (17/56, 30.4%) nodules from 11 adrenals (11/24, 45.8%). All KCNJ5-mutant nodules were positive for CYP11B2 staining, 6 cases (6/11) had only one KCNJ5-mutant nodular, and the other 5 cases (5/11) had more than one KCNJ5-mutant nodules. Three cases (3/11) had different KCNJ5 mutations in individual nodules. Compared with KCNJ5-positive adrenals, the cortices adjacent to the nodules in KCNJ5-negative adrenals showed significant proliferation (p = 0.004). CYP11B2/CYP11B1 expression patterns revealed great heterogeneity in intensity and range both in KCNJ5-mutant nodules and KCNJ5-WT ones. Conclusion There is great heterogeneity among nodules from patients with unilateral PA. Countable nodules could be considered as multiple APAs, featuring somatic KCNJ5 mutation, positive CYP11B2 staining, and lack of adjacent cortical proliferation in unilateral multiple nodules.
Collapse
Affiliation(s)
- Jing Xie
- Department of Pathology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui Zhang
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Clinical Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiran Jiang
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luming Wu
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Ye
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Wang
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen Xie
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haimin Xu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Abstract
Primary aldosteronism, the most common secondary form of hypertension, is thought to be present in ≈5% to 10% of hypertensive adults. However, recent studies indicate that its prevalence may be at least 3-fold higher based on the identification of renin-independent (autonomous) aldosterone production that is not suppressible with dietary sodium loading in a large fraction of adults with primary hypertension. Currently, the screening rate for primary aldosteronism in adults with primary hypertension is <1%. This review summarizes current thinking about primary aldosteronism from the standpoint of 3 key questions: Where are we now? Where to from here? So how do we get there?
Collapse
Affiliation(s)
- John W. Funder
- Hudson Institute of Medical Research, Monash University, Clayton, Victoria, Australia. Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville
| | - Robert M. Carey
- Hudson Institute of Medical Research, Monash University, Clayton, Victoria, Australia. Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville
| |
Collapse
|
26
|
Tseng CS, Peng KY, Wang SM, Tsai YC, Huang KH, Lin WC, Hu YH, Wu VC, Chueh JS. A Novel Somatic Mutation of CACNA1H p.V1937M in Unilateral Primary Hyperaldosteronism. Front Endocrinol (Lausanne) 2022; 13:816476. [PMID: 35757409 PMCID: PMC9218183 DOI: 10.3389/fendo.2022.816476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Somatic mutations for excess aldosterone production have been frequently identified as important roles in the pathogenesis of unilateral primary hyperaldosteronism (uPA). Although CACNA1H mutation represents a minor etiology in primary aldosteronism, it plays a significant role in causing uPAs in sporadic cases. OBJECTIVE To identify novel somatic CACNA1H mutation in patients with uPA and investigate the pathophysiological, immunohistological, and clinical characteristics of the variant. METHODS We applied a customized and targeted gene panel next-generation sequencing approach to detect mutations from the uPA cohort in Taiwan Primary Aldosteronism Investigation study group. Information from pre-diagnostic to postoperative data was collected, including past history, medications, blood pressure readings, biochemical data, and image studies. The functional role of the variant was confirmed by in vitro studies, demonstrating aldosterone production in variant-transfected human adrenal cell lines. RESULTS We identified a novel somatic CACNA1H mutation c.5809G>A (p.Val1937Met) in a uPA case. The CACNA1H gene encodes the pore-forming alpha-1H subunit of the voltage-dependent T-type calcium channel Cav3.2. This somatic CACNA1H p.V1937M variant showed excellent clinical and biochemical outcomes after ipsilateral adrenalectomy. The functional effect of somatic CACNA1H p.V1937M variant results in increased CYP11B2 expression and aldosterone biosynthesis in HAC15 cells. A distinct heterogeneous foamy pattern of CYP11B2 and CYP17A1 expression was identified in immunohistological staining, supporting the pathological evidence of aldosterone synthesis. CONCLUSIONS The somatic mutation of CACNA1H p.V1937M might be a pathogenic driver in aldosterone overproduction. This study provides new insight into the molecular mechanism and disease outcomes of uPA.
Collapse
Affiliation(s)
- Chi-Shin Tseng
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Urology, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Kang-Yung Peng
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuo-Meng Wang
- Department of Urology, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Yao-Chou Tsai
- Division of Urology, Department of Surgery, Taipei Tzuchi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan
| | - Kuo-How Huang
- Department of Urology, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Wei-Chou Lin
- Department of Pathology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ya-Hui Hu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Tzu Chi Hospital, The Buddhist Medical Foundation, Taipei, Taiwan
| | - Vin-Cent Wu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jeff S. Chueh
- Department of Urology, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
- *Correspondence: Jeff S. Chueh,
| |
Collapse
|
27
|
Lee BC, Kang VJW, Pan CT, Huang JZ, Lin YL, Chang YY, Tsai CH, Chou CH, Chen ZW, Liao CW, Chiu YW, Wu VC, Hung CS, Chang CC, Lin YH. KCNJ5 Somatic Mutation Is Associated With Higher Aortic Wall Thickness and Less Calcification in Patients With Aldosterone-Producing Adenoma. Front Endocrinol (Lausanne) 2022; 13:830130. [PMID: 35311227 PMCID: PMC8924484 DOI: 10.3389/fendo.2022.830130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/07/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Primary aldosteronism (PA) is the most common type of secondary hypertension, and it is associated with a higher rate of cardiovascular complications. KCNJ5 somatic mutations have recently been identified in aldosterone-producing adenoma (APA), however their influence on vascular remodeling and injury is still unclear. The aim of this study was to investigate the association between KCNJ5 somatic mutation status and vascular status. METHODS We enrolled 179 APA patients who had undergone adrenalectomy from a prospectively maintained database, of whom 99 had KCNJ5 somatic mutations. Preoperative clinical, biochemical and imaging data of abdominal CT, including abdominal aortic calcification (AAC) score, aortic diameter and wall thickness at levels of superior (SMA) and inferior (IMA) mesenteric arteries were analyzed. RESULTS After propensity score matching for age, sex, body mass index, triglycerides and low-density lipoprotein, there were 48 patients in each KCNJ5 (+) and KCNJ5 (-) group. Mutation carriers had a lower AAC score (217.3 ± 562.2 vs. 605.6 ± 1359.1, P=0.018), higher aortic wall thickness (SMA level: 2.2 ± 0.6 mm vs. 1.8 ± 0.6 mm, P=0.006; IMA level: 2.4 ± 0.6 mm vs. 1.8 ± 0.7 mm, P<0.001) than non-carriers. In multivariate analysis, KCNJ5 mutations were independently associated with AAC score (P=0.014) and aortic wall thickness (SMA level: P<0.001; IMA level: P=0.004). After adrenalectomy, mutation carriers had less aortic wall thickness progression than non-carriers (Δthickness SMA: -0.1 ± 0.8 mm vs. 0.9 ± 0.6 mm, P=0.024; IMA: -0.1 ± 0.6 mm vs. 0.8 ± 0.7 mm, P=0.04). CONCLUSION KCNJ5 mutation carriers had less calcification burden of the aorta, thickened aortic wall, and less wall thickness progression than non-carriers.
Collapse
Affiliation(s)
- Bo-Ching Lee
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Departments of Medical Imaging, National Taiwan University Hospital Yun-lin Branch, Douliu, Taiwan
| | - Victor Jing-Wei Kang
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Ting Pan
- Departments of Internal Medicine, National Taiwan University Hospital Yun-lin Branch, Douliu, Taiwan
| | - Jia-Zheng Huang
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Li Lin
- Department of Business Administration and Graduate School of Service Management, Chihlee University of Technology, New Taipei City, Taiwan
| | - Yi-Yao Chang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Cardiovascular Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Cheng-Hsuan Tsai
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Hung Chou
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Zheng-Wei Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Departments of Internal Medicine, National Taiwan University Hospital Yun-lin Branch, Douliu, Taiwan
| | - Che-Wei Liao
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, HsinChu, Taiwan
| | - Yu-Wei Chiu
- Department of Cardiovascular Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan City, Taiwan
| | - Vin-Cent Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Sheng Hung
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Chin-Chen Chang
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
- *Correspondence: Chin-Chen Chang,
| | - Yen-Hung Lin
- Department of Business Administration and Graduate School of Service Management, Chihlee University of Technology, New Taipei City, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
28
|
Chen IS, Eldstrom J, Fedida D, Kubo Y. A novel ion conducting route besides the central pore in an inherited mutant of G-protein-gated inwardly rectifying K + channel. J Physiol 2021; 600:603-622. [PMID: 34881429 DOI: 10.1113/jp282430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/25/2021] [Indexed: 01/21/2023] Open
Abstract
G-protein-gated inwardly rectifying K+ (GIRK; Kir3.x) channels play important physiological roles in various organs. Some of the disease-associated mutations of GIRK channels are known to induce loss of K+ selectivity but their structural changes remain unclear. In this study, we investigated the mechanisms underlying the abnormal ion selectivity of inherited GIRK mutants. By the two-electrode voltage-clamp analysis of GIRK mutants heterologously expressed in Xenopus oocytes, we observed that Kir3.2 G156S permeates Li+ better than Rb+ , while T154del or L173R of Kir3.2 and T158A of Kir3.4 permeate Rb+ better than Li+ , suggesting a unique conformational change in the G156S mutant. Applications of blockers of the selectivity filter (SF) pathway, Ba2+ or Tertiapin-Q (TPN-Q), remarkably increased the Li+ -selectivity of Kir3.2 G156S but did not alter those of the other mutants. In single-channel recordings of Kir3.2 G156S expressed in mouse fibroblasts, two types of events were observed, one attributable to a TPN-Q-sensitive K+ current and the second a TPN-Q-resistant Li+ current. The results show that a novel Li+ -permeable and blocker-resistant pathway exists in G156S in addition to the SF pathway. Mutations in the pore helix, S148F and T151A also induced high Li+ permeation. Our results demonstrate that the mechanism underlying the loss of K+ selectivity of Kir3.2 G156S involves formation of a novel ion permeation pathway besides the SF pathway, which allows permeation of various species of cations. KEY POINTS: G-protein-gated inwardly rectifying K+ (GIRK; Kir3.x) channels play important roles in controlling excitation of cells in various organs, such as the brain and the heart. Some of the disease-associated mutations of GIRK channels are known to induce loss of K+ selectivity but their structural changes remain unclear. In this study, we investigated the mechanisms underlying the abnormal ion selectivity of inherited mutants of Kir3.2 and Kir3.4. Here we show that a novel Na+ , Li+ -permeable and blocker-resistant pathway exists in an inherited mutant, Kir3.2 G156S, in addition to the conventional ion conducting pathway formed by the selectivity filter (SF). Our results demonstrate that the mechanism underlying the loss of K+ selectivity of Kir3.2 G156S involves formation of a novel ion permeation pathway besides the SF pathway, which allows permeation of various species of cations.
Collapse
Affiliation(s)
- I-Shan Chen
- Division of Biophysics and Neurobiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan.,Department of Pharmacology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| |
Collapse
|
29
|
Transcriptomics, Epigenetics, and Metabolomics of Primary Aldosteronism. Cancers (Basel) 2021; 13:cancers13215582. [PMID: 34771744 PMCID: PMC8583505 DOI: 10.3390/cancers13215582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/17/2021] [Accepted: 11/05/2021] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Primary aldosteronism (PA) is the most common cause of endocrine hypertension, mainly caused by aldosterone-producing adenomas or hyperplasia; understanding its pathophysiological background is important in order to provide ameliorative treatment strategies. Over the past several years, significant progress has been documented in this field, in particular in the clarification of the genetic and molecular mechanisms responsible for the pathogenesis of aldosterone-producing adenomas (APAs). METHODS Systematic searches of the PubMed and Cochrane databases were performed for all human studies applying transcriptomic, epigenetic or metabolomic analyses to PA subjects. Studies involving serial analysis of gene expression and microarray, epigenetic studies with methylome analyses and micro-RNA expression profiles, and metabolomic studies focused on improving understanding of the regulation of autonomous aldosterone production in PA were all included. RESULTS In this review we summarize the main findings in this area and analyze the interplay between primary aldosteronism and several signaling pathways with differential regulation of the RNA and protein expression of several factors involved in, among others, steroidogenesis, calcium signaling, and nuclear, membrane and G-coupled protein receptors. Distinct transcriptomic and metabolomic patterns are also presented herein, depending on the mutational status of APAs. In particular, two partially opposite transcriptional and steroidogenic profiles appear to distinguish APAs carrying a KCNJ5 mutation from all other APAs, which carry different mutations. CONCLUSIONS These findings can substantially contribute to the development of personalized treatment in patients with PA.
Collapse
|
30
|
KCNJ5 Somatic Mutations in Aldosterone-Producing Adenoma Are Associated with a Greater Recovery of Arterial Stiffness. Cancers (Basel) 2021; 13:cancers13174313. [PMID: 34503121 PMCID: PMC8431463 DOI: 10.3390/cancers13174313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/22/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Primary aldosteronism (PA) is the most common form of secondary hypertension and induces various cardiovascular injuries. Aldosterone-producing adenoma (APA) is one of the major forms of PA. The occurrence of APA is closely correlated with somatic mutations, including KCNJ5. We described here the impact of KCNJ5 somatic mutations on arterial stiffness excluding the influence of age, sex, and blood pressure status. We found KCNJ5 mutation carriers had similar arterial stiffness before surgery, but greater improvement of arterial stiffness after adrenalectomy compared with non-carriers. Hence, APA patients with KCNJ5 mutations had a greater improvement in arterial stiffness after adrenalectomy than those without mutations. Abstract Primary aldosteronism is the most common form of secondary hypertension and induces various cardiovascular injuries. In aldosterone-producing adenoma (APA), the impact of KCNJ5 somatic mutations on arterial stiffness excluding the influence of confounding factors is uncertain. We enrolled 213 APA patients who were scheduled to undergo adrenalectomy. KCNJ5 gene sequencing of APA was performed. After propensity score matching (PSM) for age, sex, body mass index, blood pressure, number of hypertensive medications, and hypertension duration, there were 66 patients in each group with and without KCNJ5 mutations. The mutation carriers had a higher aldosterone level and lower log transformed brachial–ankle pulse wave velocity (baPWV) than the non-carriers before PSM, but no difference in log baPWV after PSM. One year after adrenalectomy, the mutation carriers had greater decreases in log plasma aldosterone concentration, log aldosterone–renin activity ratio, and log baPWV than the non-carriers after PSM. Only the mutation carriers had a significant decrease in log baPWV after surgery both before and after PSM. KCNJ5 mutations were not correlated with baseline baPWV after PSM but were significantly correlated with ∆baPWV after surgery both before and after PSM. Conclusively, APA patients with KCNJ5 mutations had a greater regression in arterial stiffness after adrenalectomy than those without mutations.
Collapse
|
31
|
The Sexually Dimorphic Adrenal Cortex: Implications for Adrenal Disease. Int J Mol Sci 2021; 22:ijms22094889. [PMID: 34063067 PMCID: PMC8124132 DOI: 10.3390/ijms22094889] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Many adrenocortical diseases are more prevalent in women than in men, but the reasons underlying this sex bias are still unknown. Recent studies involving gonadectomy and sex hormone replacement experiments in mice have shed some light onto the molecular basis of sexual dimorphism in the adrenal cortex. Indeed, it has been shown that gonadal hormones influence many aspects of adrenal physiology, ranging from stem cell-dependent tissue turnover to steroidogenesis and X-zone dynamics. This article reviews current knowledge on adrenal cortex sexual dimorphism and the potential mechanisms underlying sex hormone influence of adrenal homeostasis. Both topics are expected to contribute to personalized and novel therapeutic approaches in the future.
Collapse
|
32
|
Primary aldosteronism. Trends Cardiovasc Med 2021; 32:228-233. [PMID: 33775861 DOI: 10.1016/j.tcm.2021.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 12/15/2022]
Abstract
In 1955 Dr Jerome Conn first documented primary aldosteronism (PA). Since then, screening, diagnosis and treatment have developed, in the process both refining and complicating management. Currently, screening requires 4-6 weeks of lead-up, including major changes in antihypertensive therapy, followed by a blood draw for plasma aldosterone concentration (PAC) and plasma renin activity (PRA) or concentration (PRC). Screening is considered indicative of PA on the basis of the PAC and the aldosterone to renin ratio (ARR). This is then followed by one or more of 6 confirmatory/exclusion tests. Three things have changed. First is now incontrovertible evidence that a single spot PAC is a deeply flawed index of true aldosterone status, so that many referred patients with PA fall at the first hurdle. A valid index of aldosterone status is an integrated value, measured as urinary aldosterone excretion (UEA) over 24 h. On the basis of the UEA, the prevalence of PA appears to be 3-5 times higher than the currently accepted figure of 5-10% of hypertensives. The second is the recognition that inadequately treated PA has a cardiovascular risk profile ~threefold that of matched essential hypertensives. Third is the realization that <1% of hypertensives are ever screened for PA, who are thus in double jeopardy for the risks of untreated PA on top of those for hypertension per se. Taken together, this a major if occult public health issue; if it is to be addressed, radical changes in management are needed. Some are in screening, which needs to be simply done on all newly-presenting hypertensives; others are major simplifications of screening in established hypertension. The front-line actors need to be Internists/Primary Care Providers; the costs will be significant, but much less than those of increased morbidity/premature mortality in unrecognized PA. Possible suggestions as to how best to address this constitute the final chapter of this article.
Collapse
|
33
|
Kamilaris CDC, Stratakis CA, Hannah-Shmouni F. Molecular Genetic and Genomic Alterations in Cushing's Syndrome and Primary Aldosteronism. Front Endocrinol (Lausanne) 2021; 12:632543. [PMID: 33776926 PMCID: PMC7994620 DOI: 10.3389/fendo.2021.632543] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
The genetic alterations that cause the development of glucocorticoid and/or mineralocorticoid producing benign adrenocortical tumors and hyperplasias have largely been elucidated over the past two decades through advances in genomics. In benign aldosterone-producing adrenocortical tumors and hyperplasias, alteration of intracellular calcium signaling has been found to be significant in aldosterone hypersecretion, with causative defects including those in KCNJ5, ATP1A1, ATP2B3, CACNA1D, CACNA1H, and CLCN2. In benign cortisol-producing adrenocortical tumors and hyperplasias abnormal cyclic adenosine monophosphate-protein kinase A signaling has been found to play a central role in tumorigenesis, with pathogenic variants in GNAS, PRKAR1A, PRKACA, PRKACB, PDE11A, and PDE8B being implicated. The role of this signaling pathway in the development of Cushing's syndrome and adrenocortical tumors was initially discovered through the study of the underlying genetic defects causing the rare multiple endocrine neoplasia syndromes McCune-Albright syndrome and Carney complex with subsequent identification of defects in genes affecting the cyclic adenosine monophosphate-protein kinase A pathway in sporadic tumors. Additionally, germline pathogenic variants in ARMC5, a putative tumor suppressor, were found to be a cause of cortisol-producing primary bilateral macronodular adrenal hyperplasia. This review describes the genetic causes of benign cortisol- and aldosterone-producing adrenocortical tumors.
Collapse
Affiliation(s)
| | | | - Fady Hannah-Shmouni
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
34
|
Unravelling the Genetic Basis of Primary Aldosteronism. Nutrients 2021; 13:nu13030875. [PMID: 33800142 PMCID: PMC7999899 DOI: 10.3390/nu13030875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Primary aldosteronism (PA), a condition characterized by autonomous aldosterone hypersecretion, constitutes the most common cause of secondary hypertension. Over the last decade, major breakthroughs have been made in the field of genetics underpinning PA. The advent and wide application of Next Generation Sequencing (NGS) technology led to the identification of several somatic and germline mutations associated with sporadic and familial forms of PA. Somatic mutations in ion-channel genes that participate in aldosterone biosynthesis, including KCNJ5, CACNA1D, ATP1A1, and ATP2B3, have been implicated in the development of aldosterone-producing adenomas (APAs). On the other hand, germline variants in CLCN2, KCNJ5, CACNA1H, and CACNA1D genes have been implicated in the pathogenesis of the familial forms of PA, FH-II, FH-III, and F-IV, as well as PA associated with seizures and neurological abnormalities. However, recent studies have shown that the prevalence of PA is higher than previously thought, indicating the need for an improvement of our diagnostic tools. Further research is required to recognize mild forms of PA and to investigate the underlying molecular mechanisms.
Collapse
|
35
|
Zhang C, Wu L, Jiang L, Su T, Zhou W, Zhong X, Xie J, Sun F, Zhu Y, Jiang Y, Wang W. KCNJ5 Mutation Contributes to Complete Clinical Success in Aldosterone-Producing Adenoma: A Study From a Single Center. Endocr Pract 2021; 27:736-742. [PMID: 33678553 DOI: 10.1016/j.eprac.2021.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The KCNJ5 mutation is the most frequent mutation in aldosterone-producing adenoma (APA). We aimed to illustrate the relationship between KCNJ5 and prognosis after adrenalectomy as a guide for further treatment. METHODS Our study included 458 patients with APA. Tumor tissues were screened for somatic mutations in KCNJ5 hot-spot regions. We performed a retrospective analysis to identify correlations between KCNJ5 and clinical outcomes in 334 patients with adrenal venous sampling lateralization. RESULTS Somatic KCNJ5 mutations were identified in 324 of 458 patients with APA (70.7%). Compared with the KCNJ5-wild type patients, patients with KCNJ5 mutations were younger, had a higher proportion of women, and had shorter durations of hypertension, lower body mass indexes (BMIs), and lower systolic blood pressure values (P < .05). During follow-up, among the 334 patients with APA with adrenal venous sampling lateralization, 320 (95.8%) presented complete biochemical success and 187 (56.0%) presented complete clinical success. One hundred eighty-seven patients with primary aldosteronism who achieved complete clinical success presented the following characteristics: age <40 years (78.7%), BMI <24 kg/m2 (71.0%), hypertension duration <5 years (78.4%), females (66.9%), and KCNJ5 mutation (65.5%). A multivariate logistic regression analysis identified BMI, hypertension duration, and KCNJ5 mutation as independent predictors of complete clinical success. CONCLUSION The prevalence of KCNJ5 mutations was 70.7%. KCNJ5 mutation is a protective factor of complete clinical success, while BMI and hypertension duration were risk factors of incomplete clinical success.
Collapse
Affiliation(s)
- Cui Zhang
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Luming Wu
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Lei Jiang
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Tingwei Su
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Weiwei Zhou
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Xu Zhong
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Fukang Sun
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yu Zhu
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yiran Jiang
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China.
| | - Weiqing Wang
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China; Laboratory for Endocrine & Metabolic Diseases of Institute of Health Science, Shanghai Jiaotong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, P. R. China.
| |
Collapse
|
36
|
Pauzi FA, Azizan EA. Functional Characteristic and Significance of Aldosterone-Producing Cell Clusters in Primary Aldosteronism and Age-Related Hypertension. Front Endocrinol (Lausanne) 2021; 12:631848. [PMID: 33763031 PMCID: PMC7982842 DOI: 10.3389/fendo.2021.631848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/01/2021] [Indexed: 12/02/2022] Open
Abstract
Primary aldosteronism (PA) is one of the most frequent curable forms of secondary hypertension. It can be caused by the overproduction of aldosterone in one or both adrenal glands. The most common subtypes of PA are unilateral aldosterone over-production due to aldosterone-producing adenomas (APA) or bilateral aldosterone over-production due to bilateral hyperaldosteronism (BHA). Utilizing the immunohistochemical (IHC) detection of aldosterone synthase (CYP11B2) has allowed the identification of aldosterone-producing cell clusters (APCCs) with unique focal localization positive for CYP11B2 expression in the subcapsular portion of the human adult adrenal cortex. The presence of CYP11B2 supports that synthesis of aldosterone can occur in these cell clusters and therefore might contribute to hyperaldosteronism. However, the significance of the steroidogenic properties of APCCs especially in regards to PA remains unclear. Herein, we review the available evidence on the presence of APCCs in normal adrenals and adrenal tissues adjacent to APAs, their aldosterone-stimulating somatic gene mutations, and their accumulation during the ageing process; raising the possibility that APCCs may play a role in the development of PA and age-related hypertension.
Collapse
|
37
|
Sherlock M, Scarsbrook A, Abbas A, Fraser S, Limumpornpetch P, Dineen R, Stewart PM. Adrenal Incidentaloma. Endocr Rev 2020; 41:bnaa008. [PMID: 32266384 PMCID: PMC7431180 DOI: 10.1210/endrev/bnaa008] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
Abstract
An adrenal incidentaloma is now established as a common endocrine diagnosis that requires a multidisciplinary approach for effective management. The majority of patients can be reassured and discharged, but a personalized approach based upon image analysis, endocrine workup, and clinical symptoms and signs are required in every case. Adrenocortical carcinoma remains a real concern but is restricted to <2% of all cases. Functional adrenal incidentaloma lesions are commoner (but still probably <10% of total) and the greatest challenge remains the diagnosis and optimum management of autonomous cortisol secretion. Modern-day surgery has improved outcomes and novel radiological and urinary biomarkers will improve early detection and patient stratification in future years to come.
Collapse
Affiliation(s)
- Mark Sherlock
- Department of Endocrinology, Beaumont Hospital, Dublin, Ireland
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Andrew Scarsbrook
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, St James University Hospital, Leeds, UK
| | - Afroze Abbas
- Department of Endocrinology, Leeds Teaching Hospitals NHS Trust, St James University Hospital, Leeds, UK
| | - Sheila Fraser
- Department of Endocrine Surgery, Leeds Teaching Hospitals NHS Trust, St James University Hospital, Leeds, UK
| | - Padiporn Limumpornpetch
- Faculty of Medicine & Health, University of Leeds, Worsley Building, Clarendon Way, Leeds, UK
| | - Rosemary Dineen
- Department of Endocrinology, Beaumont Hospital, Dublin, Ireland
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul M Stewart
- Faculty of Medicine & Health, University of Leeds, Worsley Building, Clarendon Way, Leeds, UK
| |
Collapse
|
38
|
Chang YY, Tsai CH, Peng SY, Chen ZW, Chang CC, Lee BC, Liao CW, Pan CT, Chen YL, Lin LC, Chang YR, Peng KY, Chou CH, Wu VC, Hung CS, Lin YH. KCNJ5 Somatic Mutations in Aldosterone-Producing Adenoma Are Associated With a Worse Baseline Status and Better Recovery of Left Ventricular Remodeling and Diastolic Function. Hypertension 2020; 77:114-125. [PMID: 33249859 DOI: 10.1161/hypertensionaha.120.15679] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Primary aldosteronism is the most common secondary endocrine form of hypertension and causes many cardiovascular injuries. KCNJ5 somatic mutations have recently been identified in aldosterone-producing adenoma. However, their impacts on left ventricular remodeling precluding the interference of age, sex, and blood pressure are still uncertain. We enrolled 184 aldosterone-producing adenoma patients who received adrenalectomy. Clinical, biochemical, and echocardiographic data were analyzed preoperatively and 1 year postoperatively. KCNJ5 gene sequencing of aldosterone-producing adenoma was performed. After propensity score matching for age, sex, body mass index, blood pressure, hypertension duration, and number of hypertensive medications, there were 60 patients in each group with and without KCNJ5 mutations. The mutation carriers had higher left ventricular mass index (LVMI) and inappropriately excessive LVMI (ieLVMI) and lower e' than the noncarriers. After adrenalectomy, the mutation carriers had greater decreases in LVMI and ieLVMI than the noncarriers. In addition, only mutation carriers had a significant decrease in E/e' after surgery. In multivariate analysis, baseline LVMI correlated with KCNJ5 mutations, the number of hypertensive medications, and systolic blood pressure. Baseline ieLVMI correlated with KCNJ5 mutations and the number of hypertensive medications. The regression of both LVMI and ieLVMI after surgery was mainly correlated with KCNJ5 mutations and changes in systolic blood pressure. Aldosterone-producing adenoma patients with KCNJ5 mutations had higher LVMI and ieLVMI and a greater regression of LVMI and ieLVMI after adrenalectomy than those without mutations. The patients with KCNJ5 mutations also benefited from adrenalectomy with regard to left ventricular diastolic function, whereas noncarriers did not.
Collapse
Affiliation(s)
- Yi-Yao Chang
- From the National Taiwan University College of Medicine, Graduate Institute of Clinical Medicine, Taipei (Y.-Y.C.).,Cardiology Division of Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan (Y.-Y.C.).,Division of Cardiology, Department of Internal Medicine (Y.-Y.C., C.-H.T., S.-Y.P., Y.-L.C., L.-C.L., Y.-R.C., K.-Y.P., C.-S.H., Y.-H.L.).,Center of General Education, Chihlee University of Technology, New Taipei City, Taiwan (Y.-Y.C.)
| | - Cheng-Hsuan Tsai
- Division of Cardiology, Department of Internal Medicine (Y.-Y.C., C.-H.T., S.-Y.P., Y.-L.C., L.-C.L., Y.-R.C., K.-Y.P., C.-S.H., Y.-H.L.).,Department of Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei.,Department of Internal Medicine, National Taiwan University Hospital, JinShan Branch (C.-H.T.)
| | - Shih-Yuan Peng
- Division of Cardiology, Department of Internal Medicine (Y.-Y.C., C.-H.T., S.-Y.P., Y.-L.C., L.-C.L., Y.-R.C., K.-Y.P., C.-S.H., Y.-H.L.)
| | - Zheng-Wei Chen
- Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin Branch (Z.-W.C., C.-T.P.)
| | - Chin-Chen Chang
- Department of Medical Imaging (C.-C.C., B.-C.L.), National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei
| | - Bo-Ching Lee
- Department of Medical Imaging (C.-C.C., B.-C.L.), National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei
| | - Che-Wei Liao
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch (C.-W.L.)
| | - Chien-Ting Pan
- Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin Branch (Z.-W.C., C.-T.P.)
| | - Ya-Li Chen
- Division of Cardiology, Department of Internal Medicine (Y.-Y.C., C.-H.T., S.-Y.P., Y.-L.C., L.-C.L., Y.-R.C., K.-Y.P., C.-S.H., Y.-H.L.)
| | - Lung-Chun Lin
- Division of Cardiology, Department of Internal Medicine (Y.-Y.C., C.-H.T., S.-Y.P., Y.-L.C., L.-C.L., Y.-R.C., K.-Y.P., C.-S.H., Y.-H.L.).,Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan. (L.-C.L., Y.-R.C., C.-S.H., Y.-H.L.)
| | - Yi-Ru Chang
- Division of Cardiology, Department of Internal Medicine (Y.-Y.C., C.-H.T., S.-Y.P., Y.-L.C., L.-C.L., Y.-R.C., K.-Y.P., C.-S.H., Y.-H.L.).,Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan. (L.-C.L., Y.-R.C., C.-S.H., Y.-H.L.)
| | - Kang-Yung Peng
- Division of Cardiology, Department of Internal Medicine (Y.-Y.C., C.-H.T., S.-Y.P., Y.-L.C., L.-C.L., Y.-R.C., K.-Y.P., C.-S.H., Y.-H.L.)
| | - Chia-Hung Chou
- Division of Cardiology, Department of Internal Medicine (Y.-Y.C., C.-H.T., S.-Y.P., Y.-L.C., L.-C.L., Y.-R.C., K.-Y.P., C.-S.H., Y.-H.L.)
| | - Vin-Cent Wu
- Division of Nephrology, Department of Internal Medicine (V.-C.W.), National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei
| | - Chi-Sheng Hung
- Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan. (L.-C.L., Y.-R.C., C.-S.H., Y.-H.L.)
| | - Yen-Hung Lin
- Division of Cardiology, Department of Internal Medicine (Y.-Y.C., C.-H.T., S.-Y.P., Y.-L.C., L.-C.L., Y.-R.C., K.-Y.P., C.-S.H., Y.-H.L.).,Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan. (L.-C.L., Y.-R.C., C.-S.H., Y.-H.L.)
| | | |
Collapse
|
39
|
Barrett PQ, Guagliardo NA, Bayliss DA. Ion Channel Function and Electrical Excitability in the Zona Glomerulosa: A Network Perspective on Aldosterone Regulation. Annu Rev Physiol 2020; 83:451-475. [PMID: 33176563 DOI: 10.1146/annurev-physiol-030220-113038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aldosterone excess is a pathogenic factor in many hypertensive disorders. The discovery of numerous somatic and germline mutations in ion channels in primary hyperaldosteronism underscores the importance of plasma membrane conductances in determining the activation state of zona glomerulosa (zG) cells. Electrophysiological recordings describe an electrically quiescent behavior for dispersed zG cells. Yet, emerging data indicate that in native rosette structures in situ, zG cells are electrically excitable, generating slow periodic voltage spikes and coordinated bursts of Ca2+ oscillations. We revisit data to understand how a multitude of conductances may underlie voltage/Ca2+ oscillations, recognizing that zG layer self-renewal and cell heterogeneity may complicate this task. We review recent data to understand rosette architecture and apply maxims derived from computational network modeling to understand rosette function. The challenge going forward is to uncover how the rosette orchestrates the behavior of a functional network of conditional oscillators to control zG layer performance and aldosterone secretion.
Collapse
Affiliation(s)
- Paula Q Barrett
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA; , ,
| | - Nick A Guagliardo
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA; , ,
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA; , ,
| |
Collapse
|
40
|
Nanba K, Yamazaki Y, Bick N, Onodera K, Tezuka Y, Omata K, Ono Y, Blinder AR, Tomlins SA, Rainey WE, Satoh F, Sasano H. Prevalence of Somatic Mutations in Aldosterone-Producing Adenomas in Japanese Patients. J Clin Endocrinol Metab 2020; 105:5897223. [PMID: 32844168 PMCID: PMC7947976 DOI: 10.1210/clinem/dgaa595] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/24/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Results of previous studies demonstrated clear racial differences in the prevalence of somatic mutations among patients with aldosterone-producing adenoma (APA). For instance, those in East Asian countries have a high prevalence of somatic mutations in KCNJ5, whereas somatic mutations in other aldosterone-driving genes are rare. OBJECTIVES To determine somatic mutation prevalence in Japanese APA patients using an aldosterone synthase (CYP11B2) immunohistochemistry (IHC)-guided sequencing approach. METHOD Patients with a unilateral form of primary aldosteronism who underwent adrenalectomy at the Tohoku University Hospital were studied. Based on CYP11B2 immunolocalization of resected adrenals, genomic DNA was isolated from the relevant positive area of 10% formalin-fixed, paraffin-embedded tissue of the APAs. Somatic mutations in aldosterone-driving genes were studied in APAs by direct Sanger sequencing and targeted next-generation sequencing. RESULTS CYP11B2 IHC-guided sequencing determined APA-related somatic mutations in 102 out of 106 APAs (96%). Somatic KCNJ5 mutation was the most frequent genetic alteration (73%) in this cohort of Japanese patients. Somatic mutations in other aldosterone-driving genes were also identified: CACNA1D (14%), ATP1A1 (5%), ATP2B3 (4%), and CACNA1H (1%), including 2 previously unreported mutations. KCNJ5 mutations were more often detected in APAs from female patients compared with those from male patients [95% (36/38) vs 60% (41/68); P < 0.0001]. CONCLUSION IHC-guided sequencing defined somatic mutations in over 95% of Japanese APAs. While the dominance of KCNJ5 mutations in this particular cohort was confirmed, a significantly higher KCNJ5 prevalence was detected in female patients. This study provides a better understanding of genetic spectrum of Japanese APA patients.
Collapse
Affiliation(s)
- Kazutaka Nanba
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nolan Bick
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Kei Onodera
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuta Tezuka
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Omata
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshikiyo Ono
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Amy R Blinder
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Scott A Tomlins
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | - William E Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Fumitoshi Satoh
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Correspondence and Reprint Requests: Hironobu Sasano, MD, PhD, Department of Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan. E-mail:
| |
Collapse
|
41
|
Lattanzio MR, Weir MR. Hyperaldosteronism: How Current Concepts Are Transforming the Diagnostic and Therapeutic Paradigm. KIDNEY360 2020; 1:1148-1156. [PMID: 35368778 PMCID: PMC8815485 DOI: 10.34067/kid.0000922020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/16/2020] [Indexed: 06/14/2023]
Abstract
Nearly seven decades have elapsed since the clinical and biochemical features of primary hyperaldosteronism (PA) were described by Conn. PA is now widely recognized as the most common form of secondary hypertension. PA has a strong correlation with cardiovascular disease and failure to recognize and/or properly diagnose this condition has profound health consequences. With proper identification and management, PA has the potential to be surgically cured in a proportion of affected individuals. The diagnostic pursuit for PA is not a simplistic endeavor, particularly because an enhanced understanding of the disease process is continually redefining the diagnostic and treatment algorithm. These new concepts have emerged in all areas of this clinical condition, including identification, diagnosis, and treatment. Here, we review the recent advances in this field and summarize the effect these advances have on both diagnostic and therapeutic modalities.
Collapse
Affiliation(s)
- Michael R. Lattanzio
- Division of Nephrology, Department of Medicine, The Chester County Hospital/University of Pennsylvania Health System, Philadelphia, Pennsylvania
| | - Matthew R. Weir
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
42
|
Abstract
Primary aldosteronism is the most common form of secondary hypertension with a prevalence of 5-10% in hypertensive patients. Aldosterone-producing adenoma (APA) is a subtype of primary aldosteronism, and somatic mutations in KCNJ5, ATP1A1, ATP2B3, CACNA1D, CLCN2, or CTNNB1 were identified and recognized to drive aldosterone production and/or contribute to tumorigenesis in APA. Mutations of KCNJ5, ATP1A1, ATP2B3, CACNA1D, and CLCN2 are known to activate calcium signaling, and its activation potentiate CYP11B2 (aldosterone synthesis) transcription in adrenal cells. Transcriptome analyses combined with bioinformatics using APA samples were conductive for each gene mutation mediated pivotal pathway, gene ontology, and clustering. Several important intracellular molecules in increase aldosterone production were detected by transcriptome analysis, and additional functional analyses demonstrated intracellular molecular mechanisms of aldosterone production which focused on calcium signal, CYP11B2 transcription and translation. Furthermore, DNA methylation analysis revealed that promoter region of CYP11B2 was entirely hypomethylated, but that of other steroidogenic enzymes were not in APA. Integration of transcriptome and DNA methylome analysis clarified some DNA methylation associated gene expression, and the transcripts have a role for aldosterone production. In this article, we reviewed the intracellular molecular mechanisms of aldosterone production in APA, and discussed future challenges for basic studies leading to clinical practice.
Collapse
Affiliation(s)
- Kenji Oki
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Celso E. Gomez-Sanchez
- Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
43
|
Wannachalee T, Caoili E, Nanba K, Nanba A, Rainey WE, Shields JJ, Turcu AF. The Concordance Between Imaging and Adrenal Vein Sampling Varies With Aldosterone-Driver Somatic Mutation. J Clin Endocrinol Metab 2020; 105:5876917. [PMID: 32717082 PMCID: PMC7437239 DOI: 10.1210/clinem/dgaa482] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/20/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Correct subtyping of primary aldosteronism (PA) is critical for guiding clinical management. Adrenal imaging is less accurate than adrenal vein sampling (AVS); nonetheless, AVS is invasive, technically challenging, and scarcely available. OBJECTIVE To identify predictors of concordance between cross-sectional imaging and lateralized AVS in patients with PA that could help circumvent AVS in a subset of patients. METHODS We retrospectively studied all patients with PA who underwent AVS in a tertiary referral center from 2009 to 2019. AVS was performed before and after cosyntropin stimulation. Patients with lateralized AVS in at least one condition were included. Aldosterone synthase-guided next-generation sequencing was performed on available adrenal tissue. Logistic regression was implemented to identify predictors of imaging-AVS lateralization concordance. RESULTS A total of 234 patients (62% men), age 20 to 79 years, 73% white, 23% black, and 2% Asian were included. AVS lateralization was found: 1) both pre- and post-cosyntropin (Uni/Uni) in 138 patients; 2) only at baseline (Uni/Bi) in 39 patients; 3) only after cosyntropin stimulation (Bi/Uni) in 29 patients. Catheterization partially failed in 28 patients. AVS-imaging agreement was higher in patients with KCNJ5 versus other aldosterone-driver somatic mutations (90.3% versus 64.6%; P < 0.001); in Asian and white versus black Americans (75%, 70%, and 36%, respectively); in younger patients; and those with left adrenal nodules and contralateral suppression. Conversely, AVS-imaging agreement was lowest in Uni/Bi patients (38% vs. 69% in Uni/Uni, and 62% in Bi/Uni; P = 0.007). CONCLUSIONS While AVS-imaging agreement is higher in young white and Asian patients, who have KCNJ5-mutated aldosterone producing adenomas, no predictor confers absolute imaging accuracy.
Collapse
Affiliation(s)
- Taweesak Wannachalee
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan
- Division of Endocrinology and Metabolism, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Elaine Caoili
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Kazutaka Nanba
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Aya Nanba
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - William E Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - James J Shields
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Adina F Turcu
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan
- Correspondence: Adina F. Turcu, MD, MS, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, 1150 W Medical Center Drive, MSRB II, 5570B, Ann Arbor, MI, 48109. E-mail:
| |
Collapse
|
44
|
Peng KY, Liao HW, Chan CK, Lin WC, Yang SY, Tsai YC, Huang KH, Lin YH, Chueh JS, Wu VC. Presence of Subclinical Hypercortisolism in Clinical Aldosterone-Producing Adenomas Predicts Lower Clinical Success. Hypertension 2020; 76:1537-1544. [PMID: 32921192 DOI: 10.1161/hypertensionaha.120.15328] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The clinical characteristics and outcomes in patients with clinical aldosterone-producing adenomas harboring KCNJ5 mutations with or without subclinical hypercortisolism remain unclear. This prospective study is aimed at determining factors associated with subclinical hypercortisolism in patients with clinical aldosterone-producing adenomas. Totally, 82 patients were recruited from November 2016 to March 2018 and underwent unilateral laparoscopic adrenalectomy with at least a 12-month follow-up postoperatively. Standard subclinical hypercortisolism (defined as cortisol >1.8 μg/dL after 1 mg dexamethasone suppression test [DST]) was detected in 22 (26.8%) of the 82 patients. Intriguingly, a generalized additive model identified the clinical aldosterone-producing adenoma patients with 1 mg DST>1.5 μg/dL had significantly larger tumors (P=0.02) than those with 1 mg DST<1.5 μg/dL. Multivariable logistic regression showed that the presence of KCNJ5 mutations (odds ratio, 0.22, P=0.010) and body mass index (odds ratio, 0.87, P=0.046) were negatively associated with 1 mg DST>1.5 μg/dL, whereas tumor size was positively associated with it (odds ratio, 2.85, P=0.014). Immunohistochemistry revealed a higher degree of immunoreactivity for CYP11B1 in adenomas with wild-type KCNJ5 (P=0.018), whereas CYP11B2 was more commonly detected in adenomas with KCNJ5 mutation (P=0.007). Patients with wild-type KCNJ5 and 1 mg DST>1.5 μg/dL exhibited the lowest complete clinical success rate (36.8%) after adrenalectomy. In conclusion, subclinical hypercortisolism is common in clinical aldosterone-producing adenoma patients without KCNJ5 mutation or with a relatively larger adrenal tumor. The presence of serum cortisol levels >1.5 μg/dL after 1 mg DST may be linked to a lower clinical complete success rate.
Collapse
Affiliation(s)
- Kang-Yung Peng
- From the Departments of Internal Medicine (K.-Y.P., S.-Y.Y., Y.-H.L., V.-C.W.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei
| | | | - Chieh-Kai Chan
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu County (C.-K.C.)
| | - Wei-Chou Lin
- Department of Pathology (W.-C.L.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei
| | - Shao-Yu Yang
- From the Departments of Internal Medicine (K.-Y.P., S.-Y.Y., Y.-H.L., V.-C.W.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei
| | - Yao-Chou Tsai
- Department of Urology, Taipei Medical University Hospital, Taipei Medical University, Taiwan (Y.-C.T.)
| | - Kuo-How Huang
- Department of Urology (K.-H.H.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei
| | - Yen-Hung Lin
- From the Departments of Internal Medicine (K.-Y.P., S.-Y.Y., Y.-H.L., V.-C.W.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei
| | - Jeff S Chueh
- Glickman Urological and Kidney Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, OH (J.S.C.)
| | - Vin-Cent Wu
- From the Departments of Internal Medicine (K.-Y.P., S.-Y.Y., Y.-H.L., V.-C.W.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei
| |
Collapse
|
45
|
Guo Z, Nanba K, Udager A, McWhinney BC, Ungerer JPJ, Wolley M, Thuzar M, Gordon RD, Rainey WE, Stowasser M. Biochemical, Histopathological, and Genetic Characterization of Posture-Responsive and Unresponsive APAs. J Clin Endocrinol Metab 2020; 105:5855173. [PMID: 32516371 PMCID: PMC7426003 DOI: 10.1210/clinem/dgaa367] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/05/2020] [Indexed: 01/27/2023]
Abstract
CONTEXT AND OBJECTIVE Posture-responsive and posture-unresponsive aldosterone-producing adenomas (APAs) account for approximately 40% and 60% of APAs, respectively. Somatic gene mutations have been recently reported to exist in approximately 90% of APAs. This study was designed to characterize the biochemical, histopathologic, and genetic properties of these 2 types of APA. METHODS Plasma levels of aldosterone and hybrid steroids (18-oxocortisol and 18-hydroxycortisol) were measured by liquid chromatography-tandem mass spectrometry. Immunohistochemistry for CYP11B2 (aldosterone synthase) and CYP17A1 (17α-hydroxylase) and deoxyribonucleic acid sequencing (Sanger and next-generation sequencing) were performed on APA tissue collected from 23 posture-unresponsive and 17 posture-responsive APA patients. RESULTS Patients with posture-unresponsive APA displayed higher (P < 0.01) levels of hybrid steroids, recumbent aldosterone and cortisol, larger (P < 0.01) zona fasciculata (ZF)-like tumors with higher (P < 0.01) expression of CYP17A1 (but not of CYP11B2) than patients with posture-responsive APA (most of which were not ZF-like). Of 40 studied APAs, 37 (92.5%) were found to harbor aldosterone-driving somatic mutations (KCNJ5 = 14 [35.0%], CACNA1D = 13 [32.5%], ATP1A1 = 8 [20.0%], and ATP2B3 = 2 [5.0%]), including 5 previously unreported mutations (3 in CACNA1D and 2 in ATP1A1). Notably, 64.7% (11/17) of posture-responsive APAs carried CACNA1D mutations, whereas 56.5% (13/23) of posture-unresponsive APAs harbored KCNJ5 mutations. CONCLUSIONS The elevated production of hybrid steroids by posture-unresponsive APAs may relate to their ZF-like tumor cell composition, resulting in expression of CYP17A1 (in addition to somatic gene mutation-driven CYP11B2 expression), thereby allowing production of cortisol, which acts as the substrate for CYP11B2-generated hybrid steroids.
Collapse
Affiliation(s)
- Zeng Guo
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| | - Kazutaka Nanba
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, US
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Aaron Udager
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, US
- Michigan Center for Translational Pathology, Ann Arbor, MI, US
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, US
| | - Brett C McWhinney
- Department of Chemical Pathology, Pathology Queensland, Queensland Health, Brisbane, Australia
| | - Jacobus P J Ungerer
- Department of Chemical Pathology, Pathology Queensland, Queensland Health, Brisbane, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Martin Wolley
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| | - Moe Thuzar
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
- Department of Endocrinology, Princess Alexandra Hospital, Brisbane, Australia
| | - Richard D Gordon
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| | - William E Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, US
- Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, US
| | - Michael Stowasser
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
- Correspondence and Reprint Requests: Professor Michael Stowasser (MBBS, FRACP, PhD), Hypertension Unit, Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, Brisbane, Queensland, 4102, Australia. E-mail:
| |
Collapse
|
46
|
Aldosterone-Mediated Sodium Retention Is Reflected by the Serum Sodium to Urinary Sodium to (Serum Potassium) 2 to Urinary Potassium (SUSPPUP) Index. Diagnostics (Basel) 2020; 10:diagnostics10080545. [PMID: 32751768 PMCID: PMC7460433 DOI: 10.3390/diagnostics10080545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 11/16/2022] Open
Abstract
The serum sodium to urinary sodium ratio divided by the (serum potassium)2 to urinary potassium ratio (SUSPPUP formula) reflects aldosterone action. We here prospectively investigated into the usefulness of the SUSPPUP ratio as a diagnostic tool in primary hyperaldosteronism. Parallel measurements of serum and urinary sodium and potassium concentrations (given in mmol/L) in the fasting state were done in 225 patients. Of them, 69 were diagnosed with primary aldosteronism (PA), 102 with essential hypertension (EH), 26 with adrenal insufficiency (AI) and 28 did not suffer from the above-mentioned disorders and were assigned to the reference group (REF). The result of the SUSPPUP formula was highest in the PA group (7.4, 4.2–12.3 L/mmol), followed by EH (3.2, 2.3–4.3 L/mmol), PA after surgery (3.9, 3.0–6.0 L/mmol), REF (3.4 ± 1.4 L/mmol) and AI (2.9 +/− 1.2 L/mmol). The best sensitivity in distinguishing PA from EH was reached by multiplication of the aldosterone to renin-ratio (ARR) with the SUSPPUP formula (92.7% at a cut off > 110 L/mmol), highest specificity was reached by the SUSPPUP determinations (87.2%). The integration of the SUSPPUP ratio into the ARR helps to improve the diagnosis of hyperaldosteronism substantially.
Collapse
|
47
|
Fernandes-Rosa FL, Boulkroun S, Zennaro MC. Genetic and Genomic Mechanisms of Primary Aldosteronism. Trends Mol Med 2020; 26:819-832. [PMID: 32563556 DOI: 10.1016/j.molmed.2020.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Aldosterone-producing adenoma (APA) and bilateral adrenal hyperplasia are the main cause of primary aldosteronism (PA), the most frequent form of secondary hypertension. Mutations in ion channels and ATPases have been identified in APA and inherited forms of PA, highlighting the central role of calcium signaling in PA development. Different somatic mutations are also found in aldosterone-producing cell clusters in adrenal glands from healthy individuals and from patients with unilateral and bilateral PA, suggesting additional pathogenic mechanisms. Recent mouse models have also contributed to a better understanding of PA. Application of genetic screening in familial PA, development of surrogate biomarkers for somatic mutations in APA, and use of targeted treatment directed at mutated proteins may allow improved management of patients.
Collapse
Affiliation(s)
| | | | - Maria-Christina Zennaro
- Inserm, PARCC, Université de Paris, F-75015 Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France.
| |
Collapse
|
48
|
Abstract
Adrenal venous sampling is the standard of care for identifying patients with unilateral primary aldosteronism, which is often caused by an aldosterone producing adenoma and can be cured with surgery. The numerous limitations of adrenal venous sampling, including its high cost, scarce availability, technical challenges, and lack of standardized protocols, have driven efforts to develop alternative, non-invasive tools for the diagnosis of aldosterone producing adenomas. Seminal discoveries regarding the pathogenesis of aldosterone producing adenomas made over the past decade have leveraged hypotheses-driven research of steroid phenotypes characteristic of various aldosterone producing adenomas. In parallel, the expanding availability of mass spectrometry has enabled the simultaneous quantitation of many steroids in single assays from small volume biosamples. Steroid profiling has contributed to our evolving understanding about the pathophysiology of primary aldosteronism and its subtypes. Herein, we review the current state of knowledge regarding the application of multi-steroid panels in assisting with primary aldosteronism subtyping.
Collapse
Affiliation(s)
- Taweesak Wannachalee
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Division of Endocrinology and Metabolism, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Adina F Turcu
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
49
|
Abstract
The past nine years have seen major advances in establishing the etiology of unilateral primary aldosteronism, and very possibly that of bilateral hyperaldosteronism, in response to somatic mutations in aldosterone synthase expressing cells. Though there have been important advances in the management of primary aldosteronism, in small but convincing studies, they represent minor changes to current guidelines. What has been totally absent is consideration of the public health issue that primary aldosterone represents, and the public policy issues that would be involved in addressing the disorder. In his introduction to PiPA 6, Martin Reincke calculated that only one in a thousand patients in Germany with primary aldosteronism were treated appropriately, an astounding figure for any disease in the 21st century. Towards remedying this totally unacceptable public health issue, the author proposes a radical simplification and streamlining of screening for primary aldosteronism, and the management of most patients by general practitioners. The second bottle-neck in current management is that of mandatory adrenal venous sampling for all but 1-2% of patients, a costly procedure requiring rare expertise. Ideally, it should be reserved - on the basis of likelihood, enhanced imaging, or peripheral steroid profiles - for a small minority of patients with clear evidence for unilateral disease. Only when costs are minimized and roadblocks removed will primary aldosteronism be properly treated as the public health issue that it is.
Collapse
Affiliation(s)
- John Watson Funder
- Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| |
Collapse
|
50
|
Rossi GP. Primary Aldosteronism: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 74:2799-2811. [PMID: 31779795 DOI: 10.1016/j.jacc.2019.09.057] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/13/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022]
Abstract
Primary aldosteronism (PA) is a common, but frequently overlooked, cause of arterial hypertension and excess cardiovascular events, particularly atrial fibrillation. As timely diagnosis and treatment can provide a cure of hyperaldosteronism and hypertension, even when the latter is resistant to drug treatment, strategies to screen patients for PA early with a simplified diagnostic algorithm are justified. They can be particularly beneficial in some subgroups of hypertensive patients, as those who are at highest cardiovascular risk. However, identification of the surgically curable cases of PA and achievement of optimal results require subtyping with adrenal vein sampling, which, as it is technically challenging and currently performed only in tertiary referral centers, represents the bottleneck in the work-up of PA. Measures aimed at improving the clinical use of adrenal vein sampling and at developing alternative techniques for subtyping, alongside recommendations for drug treatment, including new development in the field, and for follow-up are discussed.
Collapse
Affiliation(s)
- Gian Paolo Rossi
- Hypertension Unit, Department of Medicine, DIMED, University of Padova, Padova, Italy.
| |
Collapse
|