1
|
Drury ER, Wu J, Gigliotti JC, Le TH. Sex differences in blood pressure regulation and hypertension: renal, hemodynamic, and hormonal mechanisms. Physiol Rev 2024; 104:199-251. [PMID: 37477622 PMCID: PMC11281816 DOI: 10.1152/physrev.00041.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/06/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023] Open
Abstract
The teleology of sex differences has been argued since at least as early as Aristotle's controversial Generation of Animals more than 300 years BC, which reflects the sex bias of the time to contemporary readers. Although the question "why are the sexes different" remains a topic of debate in the present day in metaphysics, the recent emphasis on sex comparison in research studies has led to the question "how are the sexes different" being addressed in health science through numerous observational studies in both health and disease susceptibility, including blood pressure regulation and hypertension. These efforts have resulted in better understanding of differences in males and females at the molecular level that partially explain their differences in vascular function and renal sodium handling and hence blood pressure and the consequential cardiovascular and kidney disease risks in hypertension. This review focuses on clinical studies comparing differences between men and women in blood pressure over the life span and response to dietary sodium and highlights experimental models investigating sexual dimorphism in the renin-angiotensin-aldosterone, vascular, sympathetic nervous, and immune systems, endothelin, the major renal sodium transporters/exchangers/channels, and the impact of sex hormones on these systems in blood pressure homeostasis. Understanding the mechanisms governing sex differences in blood pressure regulation could guide novel therapeutic approaches in a sex-specific manner to lower cardiovascular risks in hypertension and advance personalized medicine.
Collapse
Affiliation(s)
- Erika R Drury
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States
| | - Jing Wu
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, United States
| | - Joseph C Gigliotti
- Department of Integrative Physiology and Pharmacology, Liberty University College of Osteopathic Medicine, Lynchburg, Virginia, United States
| | - Thu H Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|
2
|
Allalou A, Peng J, Robinson GA, Marruganti C, D’Aiuto F, Butler G, Jury EC, Ciurtin C. Impact of puberty, sex determinants and chronic inflammation on cardiovascular risk in young people. Front Cardiovasc Med 2023; 10:1191119. [PMID: 37441710 PMCID: PMC10333528 DOI: 10.3389/fcvm.2023.1191119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Worrying trends of increased cardiovascular disease (CVD) risk in children, adolescents and young people in the Modern Era have channelled research and public health strategies to tackle this growing epidemic. However, there are still controversies related to the dynamic of the impact of sex, age and puberty on this risk and on cardiovascular health outcomes later in life. In this comprehensive review of current literature, we examine the relationship between puberty, sex determinants and various traditional CVD-risk factors, as well as subclinical atherosclerosis in young people in general population. In addition, we evaluate the role of chronic inflammation, sex hormone therapy and health-risk behaviours on augmenting traditional CVD-risk factors and health outcomes, ultimately aiming to determine whether tailored management strategies for this age group are justified.
Collapse
Affiliation(s)
- Amal Allalou
- University College London Medical School, University College London, London, United Kingdom
| | - Junjie Peng
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London, United Kingdom
- Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - George A. Robinson
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London, United Kingdom
- Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - Crystal Marruganti
- Eastman Dental Hospital, University College London Hospital, London, United Kingdom
| | - Francesco D’Aiuto
- Eastman Dental Hospital, University College London Hospital, London, United Kingdom
| | - Gary Butler
- Department of Paediatric Endocrinology, University College London Hospital, London, United Kingdom
- Institute of Child Health, University College London, London, United Kingdom
| | - Elizabeth C. Jury
- Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London, United Kingdom
- Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
3
|
Barsha G, Mirabito Colafella KM, Walton SL, Gaspari TA, Spizzo I, Pinar AA, Hilliard Krause LM, Widdop RE, Samuel CS, Denton KM. In Aged Females, the Enhanced Pressor Response to Angiotensin II Is Attenuated By Estrogen Replacement via an Angiotensin Type 2 Receptor-Mediated Mechanism. Hypertension 2021; 78:128-137. [PMID: 33966450 DOI: 10.1161/hypertensionaha.121.17164] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Giannie Barsha
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (G.B., K.M.M.C., S.L.W., T.A.G., I.S., A.A.P., L.M.H.K., R.E.W., C.S.S., K.M.D.), Monash University, Melbourne, Victoria, Australia.,Department of Physiology (G.B., KM.M.C., S.L.W., L.M.H.K., K.M.D.), Monash University, Melbourne, Victoria, Australia
| | - Katrina M Mirabito Colafella
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (G.B., K.M.M.C., S.L.W., T.A.G., I.S., A.A.P., L.M.H.K., R.E.W., C.S.S., K.M.D.), Monash University, Melbourne, Victoria, Australia.,Department of Physiology (G.B., KM.M.C., S.L.W., L.M.H.K., K.M.D.), Monash University, Melbourne, Victoria, Australia
| | - Sarah L Walton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (G.B., K.M.M.C., S.L.W., T.A.G., I.S., A.A.P., L.M.H.K., R.E.W., C.S.S., K.M.D.), Monash University, Melbourne, Victoria, Australia.,Department of Physiology (G.B., KM.M.C., S.L.W., L.M.H.K., K.M.D.), Monash University, Melbourne, Victoria, Australia
| | - Tracey A Gaspari
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (G.B., K.M.M.C., S.L.W., T.A.G., I.S., A.A.P., L.M.H.K., R.E.W., C.S.S., K.M.D.), Monash University, Melbourne, Victoria, Australia.,Department of Pharmacology (T.A.G., I.S., A.A.P., R.E.W., C.S.S.), Monash University, Melbourne, Victoria, Australia
| | - Iresha Spizzo
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (G.B., K.M.M.C., S.L.W., T.A.G., I.S., A.A.P., L.M.H.K., R.E.W., C.S.S., K.M.D.), Monash University, Melbourne, Victoria, Australia.,Department of Pharmacology (T.A.G., I.S., A.A.P., R.E.W., C.S.S.), Monash University, Melbourne, Victoria, Australia
| | - Anita A Pinar
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (G.B., K.M.M.C., S.L.W., T.A.G., I.S., A.A.P., L.M.H.K., R.E.W., C.S.S., K.M.D.), Monash University, Melbourne, Victoria, Australia.,Department of Pharmacology (T.A.G., I.S., A.A.P., R.E.W., C.S.S.), Monash University, Melbourne, Victoria, Australia
| | - Lucinda M Hilliard Krause
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (G.B., K.M.M.C., S.L.W., T.A.G., I.S., A.A.P., L.M.H.K., R.E.W., C.S.S., K.M.D.), Monash University, Melbourne, Victoria, Australia.,Department of Physiology (G.B., KM.M.C., S.L.W., L.M.H.K., K.M.D.), Monash University, Melbourne, Victoria, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (G.B., K.M.M.C., S.L.W., T.A.G., I.S., A.A.P., L.M.H.K., R.E.W., C.S.S., K.M.D.), Monash University, Melbourne, Victoria, Australia.,Department of Pharmacology (T.A.G., I.S., A.A.P., R.E.W., C.S.S.), Monash University, Melbourne, Victoria, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (G.B., K.M.M.C., S.L.W., T.A.G., I.S., A.A.P., L.M.H.K., R.E.W., C.S.S., K.M.D.), Monash University, Melbourne, Victoria, Australia.,Department of Pharmacology (T.A.G., I.S., A.A.P., R.E.W., C.S.S.), Monash University, Melbourne, Victoria, Australia
| | - Kate M Denton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (G.B., K.M.M.C., S.L.W., T.A.G., I.S., A.A.P., L.M.H.K., R.E.W., C.S.S., K.M.D.), Monash University, Melbourne, Victoria, Australia.,Department of Physiology (G.B., KM.M.C., S.L.W., L.M.H.K., K.M.D.), Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Qu M, Feng C, Wang X, Gu Y, Shang X, Zhou Y, Xiong C, Li H. Association of Serum Testosterone and Luteinizing Hormone With Blood Pressure and Risk of Cardiovascular Disease in Middle-Aged and Elderly Men. J Am Heart Assoc 2021; 10:e019559. [PMID: 33739129 PMCID: PMC8174322 DOI: 10.1161/jaha.120.019559] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background The age‐related decline in testosterone levels is thought to be of great importance for male aging and cardiovascular diseases. However, data are controversial on whether abnormal sex hormones are linked to the presence of cardiovascular diseases and it is also uncertain how blood pressure modifies the association between testosterone levels and major cardiovascular diseases. Methods and Results This is a multicenter, population‐based, cross‐sectional study of 6296 men conducted between 2013 and 2016. Basic information and clinical symptoms were obtained by questionnaires. Blood pressure and plasma levels of total testosterone, sex hormone–binding globulin, luteinizing hormone, and free testosterone were determined in men in a multistage random, cluster sampling in 6 provinces of China. There were 5786 Chinese men (mean [SD] age 55.0 [10.1] years) included after exclusion criteria were applied; 37.2% (2150) of them were diagnosed with hypertension. Total testosterone, free testosterone, and sex hormone–binding globulin were inversely associated with the prevalence of hypertension. Age >65 years or body mass index ≥24 negatively impacted the inverse correlation between testosterone levels and hypertension, whereas smoking and family history of hypertension strengthened the correlation. In participants with grade 2 hypertension, total testosterone was positively associated with the presence of stroke, and luteinizing hormone was also positively correlated with cardiovascular and cerebrovascular diseases. Conclusions Lower total testosterone could be a promising risk marker for prevalent hypertension. Both low and high levels of testosterone are associated with greater cardiovascular risk. Primary hypogonadism may be a risk marker for major cardiovascular diseases in men with severe hypertension.
Collapse
Affiliation(s)
- Mengyuan Qu
- Institute of Reproductive Health/Center of Reproductive Medicine Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Chenzhao Feng
- School of Basic Medicine Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Xiaotong Wang
- Institute of Reproductive Health/Center of Reproductive Medicine Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Yiqun Gu
- National Research Institute for Family Planning Beijing China
| | - Xuejun Shang
- Jinling Hospital School of Medicine Nanjing University Nanjing China
| | - Yuanzhong Zhou
- School of Public health Zunyi Medical University Zunyi China
| | | | - Honggang Li
- Institute of Reproductive Health/Center of Reproductive Medicine Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China.,Wuhan Tongji Reproductive Medicine Hospital Wuhan China
| |
Collapse
|
5
|
Monteonofrio L, Florio MC, AlGhatrif M, Lakatta EG, Capogrossi MC. Aging- and gender-related modulation of RAAS: potential implications in COVID-19 disease. VASCULAR BIOLOGY 2020; 3:R1-R14. [PMID: 33537555 PMCID: PMC7849461 DOI: 10.1530/vb-20-0014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a new infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is frequently characterized by a marked inflammatory response with severe pneumonia and respiratory failure associated with multiorgan involvement. Some risk factors predispose patients to develop a more severe infection and to an increased mortality; among them, advanced age and male gender have been identified as major and independent risk factors for COVID-19 poor outcome. The renin-angiotensin-aldosterone system (RAAS) is strictly involved in COVID-19 because angiotensin converting enzyme 2 (ACE2) is the host receptor for SARS-CoV-2 and also converts pro-inflammatory angiotensin (Ang) II into anti-inflammatory Ang(1–7). In this review, we have addressed the effect of aging and gender on RAAS with emphasis on ACE2, pro-inflammatory Ang II/Ang II receptor 1 axis and anti-inflammatory Ang(1–7)/Mas receptor axis.
Collapse
Affiliation(s)
- Laura Monteonofrio
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Maria Cristina Florio
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Majd AlGhatrif
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.,Longitudinal Study Section, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.,Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Maurizio C Capogrossi
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.,Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Jiang S, Liu H, Zhou S, Zhang X, Peng C, Zhou H, Tong Y, Lu Q. Association of bisphenol A and its alternatives bisphenol S and F exposure with hypertension and blood pressure: A cross-sectional study in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113639. [PMID: 31796315 DOI: 10.1016/j.envpol.2019.113639] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/05/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Epidemiological studies have investigated the associations of bisphenol A (BPA) exposure with hypertension risk or blood pressure levels, but findings are inconsistent. Furthermore, the association between its alternatives bisphenol S and F (BPS and BPF) and hypertension risk are not yet known. We conducted a cross-sectional study in 1437 eligible participants without hypertension-related diseases, with complete data about blood pressure levels, hypertension diagnosis, and urinary bisphenols concentrations. Multivariable logistic and linear models were respectively applied to examine the associations of urinary bisphenols concentrations with hypertension risk and blood pressure levels. The dose-response relationship was explored by the restricted cubic spline model. Compared with the reference group of BPA, individuals in the middle and high exposure group had an adjusted odds ratio (OR) of 1.30 and 1.40 for hypertension, had a 3.08 and 2.82 mm Hg higher systolic blood pressure (SBP) levels, respectively, with an inverted "U" shaped dose-response relationship. Compared with the reference group of BPS, individuals in the second and third tertile had an adjusted OR of 1.49 and 1.48 for hypertension, had a 2.61 and 3.89 mm Hg increased levels of SBP, respectively, with a monotonic curve. No significant associations of BPF exposure with hypertension risk or blood pressure levels were found. BPA and BPS exposure were suggested to be associated with increased hypertension risk and blood pressure levels, with different dose-response relationships. Our findings have important implications for public health but require confirmation in prospective studies.
Collapse
Affiliation(s)
- Shunli Jiang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Huimin Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Shuang Zhou
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Xu Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Cheng Peng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Hao Zhou
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Yeqing Tong
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
7
|
Khan SI, Andrews KL, Jennings GL, Sampson AK, Chin-Dusting JPF. Y Chromosome, Hypertension and Cardiovascular Disease: Is Inflammation the Answer? Int J Mol Sci 2019; 20:ijms20122892. [PMID: 31200567 PMCID: PMC6627840 DOI: 10.3390/ijms20122892] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 01/17/2023] Open
Abstract
It is now becomingly increasingly evident that the functions of the mammalian Y chromosome are not circumscribed to the induction of male sex. While animal studies have shown variations in the Y are strongly accountable for blood pressure (BP), this is yet to be confirmed in humans. We have recently shown modulation of adaptive immunity to be a significant mechanism underpinning Y-chromosome-dependent differences in BP in consomic strains. This is paralleled by studies in man showing Y chromosome haplogroup is a significant predictor for coronary artery disease through influencing pathways of immunity. Furthermore, recent studies in mice and humans have shown that Y chromosome lineage determines susceptibility to autoimmune disease. Here we review the evidence in animals and humans that Y chromosome lineage influences hypertension and cardiovascular disease risk, with a novel focus on pathways of immunity as a significant pathway involved.
Collapse
Affiliation(s)
- Shanzana I Khan
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia.
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.
| | - Karen L Andrews
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia.
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.
| | - Garry L Jennings
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.
| | - Amanda K Sampson
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.
| | - Jaye P F Chin-Dusting
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia.
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.
| |
Collapse
|
8
|
Colafella KMM, Denton KM. Sex-specific differences in hypertension and associated cardiovascular disease. Nat Rev Nephrol 2018; 14:185-201. [PMID: 29380817 DOI: 10.1038/nrneph.2017.189] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although intrinsic mechanisms that regulate arterial blood pressure (BP) are similar in men and women, marked variations exist at the molecular, cellular and tissue levels. These physiological disparities between the sexes likely contribute to differences in disease onset, susceptibility, prevalence and treatment responses. Key systems that are important in the development of hypertension and cardiovascular disease (CVD), including the sympathetic nervous system, the renin-angiotensin-aldosterone system and the immune system, are differentially activated in males and females. Biological age also contributes to sexual dimorphism, as premenopausal women experience a higher degree of cardioprotection than men of similar age. Furthermore, sex hormones such as oestrogen and testosterone as well as sex chromosome complement likely contribute to sex differences in BP and CVD. At the cellular level, differences in cell senescence pathways may contribute to increased longevity in women and may also limit organ damage caused by hypertension. In addition, many lifestyle and environmental factors - such as smoking, alcohol consumption and diet - may influence BP and CVD in a sex-specific manner. Evidence suggests that cardioprotection in women is lost under conditions of obesity and type 2 diabetes mellitus. Treatment strategies for hypertension and CVD that are tailored according to sex could lead to improved outcomes for affected patients.
Collapse
Affiliation(s)
- Katrina M Mirabito Colafella
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University Wellington Road, Clayton, Victoria 3800, Australia.,Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Victoria 3800, Australia.,Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, Netherlands
| | - Kate M Denton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University Wellington Road, Clayton, Victoria 3800, Australia.,Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Victoria 3800, Australia
| |
Collapse
|
9
|
Genome-Wide Association Studies and Risk Scores for Coronary Artery Disease: Sex Biases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1065:627-642. [PMID: 30051411 DOI: 10.1007/978-3-319-77932-4_38] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phenotypic sex differences in coronary artery disease (CAD) and its risk factors have been apparent for many decades in basic and clinical research; however, whether these are also present at the gene level and thus influence genome-wide association and genetic risk prediction studies has often been ignored. From fundamental and medical standpoints, this is critically important to assess in order to fully understand the underlying genetic architecture that predisposes to CAD and better predict disease outcomes based on the interaction between genes, sex effects, and environment. In this chapter we aimed to (1) integrate the history and latest research from genome-wide association studies for CAD and clinical and genetic risk scores for prediction of CAD, (2) highlight sex-specific differences in these areas of research, and (3) discuss reasons why sex differences have often not been considered and, where present, why sex differences exist at genetic and phenotypic levels and how important they are for consideration in future research. While we find interesting examples of sex differences in effects of genetic variants on CAD, genome-wide association and genetic risk studies have typically not tested for sex-specific effects despite mounting evidence from diverse fields that these are likely very important to consider at both the genetic and phenotypic levels. In-depth testing for sex effects in large-scale genome-wide association studies that include autosomal and often excluded sex chromosomes alongside parallel improvements in resolution of sex-specific differences for risk factors and disease outcomes for CAD has the potential to substantially improve clinical and genetic risk prediction studies. Developing sex-tailored genetic risk scores as has been done recently for other disorders might be also warranted for CAD. In the era of precision medicine, this level of accuracy is essential for such a common and costly disease.
Collapse
|
10
|
Wang H, Chen H. Gender difference in the response to valsartan/amlodipine single-pill combination in essential hypertension (China Status II): An observational study. J Renin Angiotensin Aldosterone Syst 2016; 17:1470320316643903. [PMID: 27127102 PMCID: PMC5843875 DOI: 10.1177/1470320316643903] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/22/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The China STATUS II is a prospective, multicentre, open-label, post-marketing, observational study including Chinese adults (aged ⩾ 18 years) with essential hypertension who were prescribed once-daily valsartan/amlodipine (Val/Aml 80/5 mg) single-pill combination. In order to examine gender differences in treatment response to Val/Aml, we further analysed data from the China STATUS II study. METHODS A total of 11,312 patients (6456 (57%) men and 4856 (43%) women) received the Val/Aml treatment for 8 weeks. After the treatment, we compared the proportion of patients not achieving the target systolic blood pressure (SBP: < 140 mm Hg) or diastolic blood pressure (DBP: < 90 mm Hg) in different age groups (by Fisher exact probability test) and estimated the changes in blood pressure (BP) according to age and gender, using a mixed model. RESULTS At enrolment, mean SBP was higher in the female versus the male patients (160.0 ± 12.71 versus 159.3 ± 12.31 mm Hg; p = 0.003), whereas the mean DBP was higher in the male versus the female patients (96.4 ± 10.65 versus 94.5 ± 10.72 mm Hg; p < 0.001). The overall proportion of women not achieving the target BP was less than that of men (57.41% versus 59.59%; p < 0.05) at 4 weeks and (22.22% versus 23.78%; p < 0.05) at 8 weeks after the Val/Aml treatment. Among both men and women, the proportion of patients not achieving the target SBP increased with age; however, the proportion not achieving the target DBP decreased with age. The mixed-model analysis showed that the changes in SBP were closely related to gender, indicating that the SBP-lowering effect after Val/Aml treatment might be better in women. In addition, the changes in DBP were closely related to age. CONCLUSIONS Gender might be a factor for consideration in the decision-making process of individualised antihypertensive therapy, in the future.
Collapse
Affiliation(s)
- Huan Wang
- Fujian Provincial Cardiovascular Disease Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Hui Chen
- Fujian Provincial Cardiovascular Disease Institute, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
11
|
Te Riet L, van Esch JHM, Roks AJM, van den Meiracker AH, Danser AHJ. Hypertension: renin-angiotensin-aldosterone system alterations. Circ Res 2015; 116:960-75. [PMID: 25767283 DOI: 10.1161/circresaha.116.303587] [Citation(s) in RCA: 492] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Blockers of the renin-angiotensin-aldosterone system (RAAS), that is, renin inhibitors, angiotensin (Ang)-converting enzyme (ACE) inhibitors, Ang II type 1 receptor antagonists, and mineralocorticoid receptor antagonists, are a cornerstone in the treatment of hypertension. How exactly they exert their effect, in particular in patients with low circulating RAAS activity, also taking into consideration the so-called Ang II/aldosterone escape that often occurs after initial blockade, is still incompletely understood. Multiple studies have tried to find parameters that predict the response to RAAS blockade, allowing a personalized treatment approach. Consequently, the question should now be answered on what basis (eg, sex, ethnicity, age, salt intake, baseline renin, ACE or aldosterone, and genetic variance) a RAAS blocker can be chosen to treat an individual patient. Are all blockers equal? Does optimal blockade imply maximum RAAS blockade, for example, by combining ≥2 RAAS blockers or by simply increasing the dose of 1 blocker? Exciting recent investigations reveal a range of unanticipated extrarenal effects of aldosterone, as well as a detailed insight in the genetic causes of primary aldosteronism, and mineralocorticoid receptor blockers have now become an important treatment option for resistant hypertension. Finally, apart from the deleterious ACE-Ang II-Ang II type 1 receptor arm, animal studies support the existence of protective aminopeptidase A-Ang III-Ang II type 2 receptor and ACE2-Ang-(1 to 7)-Mas receptor arms, paving the way for multiple new treatment options. This review provides an update about all these aspects, critically discussing the many controversies and allowing the reader to obtain a full understanding of what we currently know about RAAS alterations in hypertension.
Collapse
Affiliation(s)
- Luuk Te Riet
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Joep H M van Esch
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anton J M Roks
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anton H van den Meiracker
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - A H Jan Danser
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
12
|
Tipton AJ, Sullivan JC. Sex differences in T cells in hypertension. Clin Ther 2014; 36:1882-1900. [PMID: 25134971 DOI: 10.1016/j.clinthera.2014.07.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/22/2014] [Indexed: 12/24/2022]
Abstract
PURPOSE Hypertension is a major risk factor for cardiovascular disease, stroke, and end-organ damage. There is a sex difference in blood pressure (BP) that begins in adolescence and continues into adulthood, in which men have a higher prevalence of hypertension compared with women until the sixth decade of life. Less than 50% of hypertensive adults in the United States manage to control their BP to recommended levels using current therapeutic options, and women are more likely than are men to have uncontrolled high BP. This, is despite the facts that more women compared with men are aware that they have hypertension and that women are more likely to seek treatment for the disease. Novel therapeutic targets need to be identified in both sexes to increase the percentage of hypertensive individuals with controlled BP. The purpose of this article was to review the available literature on the role of T cells in BP control in both sexes, and the potential therapeutic application/implications of targeting immune cells in hypertension. METHODS A search of PubMed was conducted to determine the impact of sex on T cell-mediated control of BP. The search terms included sex, gender, estrogen, testosterone, inflammation, T cells, T regulatory cells, Th17 cells, hypertension, and blood pressure. Additional data were included from our laboratory examinations of cytokine expression in the kidneys of male and female spontaneously hypertensive rats (SHRs) and differential gene expression in both the renal cortex and mesenteric arterial bed of male and female SHRs. FINDINGS There is a growing scientific literature base regarding the role of T cells in the pathogenesis of hypertension and BP control; however, the majority of these studies have been performed exclusively in males, despite the fact that both men and women develop hypertension. There is increasing evidence that although T cells also mediate BP in females, there are distinct differences in both the T-cell profile and the functional impact of sex differences in T cells on cardiovascular health, although more work is needed to better define the relative impact of different T-cell subtypes on BP in both sexes. IMPLICATIONS The challenge now is to fully understand the molecular mechanisms by which the immune system regulates BP and how the different components of the immune system interact so that specific mechanisms can be targeted therapeutically without compromising natural immune defenses.
Collapse
Affiliation(s)
- Ashlee J Tipton
- Department of Physiology, Georgia Regents University, Augusta, Georgia
| | | |
Collapse
|
13
|
Abstract
Hypertension is a complex and multifaceted disease, and there are well established sex differences in many aspects of blood pressure (BP) control. The intent of this review is to highlight recent work examining sex differences in the molecular mechanisms of BP control in hypertension to assess whether the "one-size-fits-all" approach to BP control is appropriate with regard to sex.
Collapse
|
14
|
Denton KM, Hilliard LM, Tare M. Sex-related differences in hypertension: seek and ye shall find. Hypertension 2013; 62:674-7. [PMID: 23980069 DOI: 10.1161/hypertensionaha.113.00922] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kate M Denton
- Department of Physiology, Monash University, Melbourne, VIC 3800, Australia.
| | | | | |
Collapse
|
15
|
Abstract
Sex differences exist in the regulation of arterial pressure and renal function by the renin-angiotensin system (RAS). This may in part stem from a differential balance in the pressor and depressor arms of the RAS. In males, the ACE/AngII/AT(1)R pathways are enhanced, whereas, in females, the balance is shifted towards the ACE2/Ang(1-7)/MasR and AT(2)R pathways. Evidence clearly demonstrates that premenopausal women, as compared to aged-matched men, are protected from renal and cardiovascular disease, and this differential balance of the RAS between the sexes likely contributes. With aging, this cardiovascular protection in women is lost and this may be related to loss of estrogen postmenopause but the possible contribution of other sex hormones needs to be further examined. Restoration of these RAS depressor pathways in older women, or up-regulation of these in males, represents a therapeutic target that is worth pursuing.
Collapse
|
16
|
Bubb KJ, Khambata RS, Ahluwalia A. Sexual dimorphism in rodent models of hypertension and atherosclerosis. Br J Pharmacol 2013; 167:298-312. [PMID: 22582712 DOI: 10.1111/j.1476-5381.2012.02036.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Approximately one third of all deaths are attributed to cardiovascular disease (CVD), making it the biggest killer worldwide. Despite a number of therapeutic options available, the burden of CVD morbidity continues to grow indicating the need for continued research to address this unmet need. In this respect, investigation of the mechanisms underlying the protection that premenopausal females enjoy from cardiovascular-related disease and mortality is of interest. In this review, we discuss the essential role that rodent animal models play in enabling this field of research. In particular, we focus our discussion on models of hypertension and atherosclerosis.
Collapse
Affiliation(s)
- Kristen J Bubb
- William Harvey Research Institute, Clinical Pharmacology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | | | | |
Collapse
|
17
|
Koellhoffer EC, McCullough LD. The effects of estrogen in ischemic stroke. Transl Stroke Res 2012; 4:390-401. [PMID: 24323337 DOI: 10.1007/s12975-012-0230-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 11/12/2012] [Indexed: 12/12/2022]
Abstract
Stroke is a leading cause of death and the most common cause of long-term disability in the USA. Women have a lower incidence of stroke compared with men throughout most of the lifespan which has been ascribed to protective effects of gonadal steroids, most notably estrogen. Due to the lower stroke incidence observed in pre-menopausal women and robust preclinical evidence of neuroprotective and anti-inflammatory properties of estrogen, researchers have focused on the potential benefits of hormones to reduce ischemic brain injury. However, as women age, they are disproportionately affected by stroke, coincident with the loss of estrogen with menopause. The risk of stroke in elderly women exceeds that of men and it is clear that in some settings estrogen can have pro-inflammatory effects. This review will focus on estrogen and inflammation and its interaction with aging.
Collapse
Affiliation(s)
- Edward C Koellhoffer
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | | |
Collapse
|