1
|
Sansoè G, Aragno M. New Viral Diseases and New Possible Remedies by Means of the Pharmacology of the Renin-Angiotensin System. J Renin Angiotensin Aldosterone Syst 2023; 2023:3362391. [PMID: 37476705 PMCID: PMC10356449 DOI: 10.1155/2023/3362391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/01/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
All strains of SARS-CoV-2, as well as previously described SARS-CoV and MERS-CoV, bind to ACE2, the cell membrane receptor of β-coronaviruses. Monocarboxypeptidase ACE2 activity stops upon viral entry into cells, leading to inadequate tissue production of angiotensin 1-7 (Ang1-7). Acute lung injury due to the human respiratory syncytial virus (hRSV) or avian influenza A H7N9 and H5N1 viruses is also characterized by significant downregulation of lung ACE2 and increased systemic levels of angiotensin II (Ang II). Restoration of Ang1-7 anti-inflammatory, antifibrotic, vasodilating, and natriuretic properties was attempted at least in some COVID-19 patients through i.v. infusion of recombinant human ACE2 or intranasal administration of the modified ACE2 protein, with inconsistent clinical results. Conversely, use of ACE inhibitors (ACEis), which increase ACE2 cell expression, seemed to improve the prognosis of hypertensive patients with COVID-19. To restore Ang1-7 tissue levels in all these viral diseases and avoid the untoward effects frequently seen with ACE2 systemic administration, a different strategy may be hypothesized. Experimentally, when metallopeptidase inhibitors block ACE2, neprilysin (NEP), highly expressed in higher and lower airways, starts cleaving angiotensin I (Ang I) into Ang1-7. We suggest a discerning use of ACEis in normohypertensive patients with β-coronavirus disease as well as in atypical pneumonia caused by avian influenza viruses or hRSV to block the main ACE-dependent effects: Ang II synthesis and Ang1-7 degradation into angiotensin 1-5. At the same time, i.v.-infused Ang I, which is not hypertensive provided ACE is inhibited, may become the primary substrate for local Ang1-7 synthesis via ubiquitous NEP; i.e., NEP could replace inadequate ACE2 function if Ang I was freely available. Moreover, inhibitors of chymase, a serine endopeptidase responsible for 80% of Ang II-forming activity in tissues and vessel walls, could protect patients with atypical pneumonia from Ang II-mediated microvascular damage without reducing arterial blood pressure.
Collapse
Affiliation(s)
- Giovanni Sansoè
- Gastroenterology Unit, Humanitas Institute, Gradenigo Hospital, Corso Regina Margherita 10, 10153 Torino, Italy
| | - Manuela Aragno
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
2
|
Chittimalli K, Jahan J, Sakamuri A, McAdams ZL, Ericsson AC, Jarajapu YP. Restoration of the gut barrier integrity and restructuring of the gut microbiome in aging by angiotensin-(1-7). Clin Sci (Lond) 2023; 137:913-930. [PMID: 37254732 PMCID: PMC10881191 DOI: 10.1042/cs20220904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023]
Abstract
Compromised barrier function of colon epithelium with aging is largely due to gut microbial dysbiosis. Recent studies implicate an important role for angiotensin converting enzymes, ACE and ACE2, angiotensins, and the receptors, AT1 receptor (AT1R) and Mas receptor (MasR), in the regulation of colon functions. The present study tested the hypothesis that leaky gut in aging is associated with an imbalance in ACE2/ACE and that the treatment with angiotenisn-(1-7) (Ang-(1-7)) will restore gut barrier integrity and microbiome. Studies were carried out in Young (3-4 months) and old (20-24 months) male mice. Ang-(1-7) was administered by using osmotic pumps. Outcome measures included expressions of ACE, ACE2, AT1R, and MasR, intestinal permeability by using FITC-dextran, and immunohistochemistry of claudin 1 and occludin, and intestinal stem cells (ISCs). ACE2 protein and activity were decreased in Old group while that of ACE were unchanged. Increased intestinal permeability and plasma levels of zonulin-1 in the Old group were normalized by Ang-(1-7). Epithelial disintegrity, reduced number of goblet cells and ISCs in the old group were restored by Ang-(1-7). Expression of claudin 1 and occludin in the aging colon was increased by Ang-(1-7). Infiltration of CD11b+ or F4/80+ inflammatory cells in the old colons were decreased by Ang-(1-7). Gut microbial dysbiosis in aging was evident by decreased richness and altered beta diversity that were reversed by Ang-(1-7) with increased abundance of Lactobacillus or Lachnospiraceae. The present study shows that Ang-(1-7) restores gut barrier integrity and reduces inflammation in the aging colon by restoring the layer of ISCs and by restructuring the gut microbiome.
Collapse
Affiliation(s)
- Kishore Chittimalli
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, U.S.A
| | - Jesmin Jahan
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, U.S.A
| | - Anil Sakamuri
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, U.S.A
| | - Zachary L. McAdams
- Missouri Metagenomics Center, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, U.S.A
| | - Aaron C. Ericsson
- Missouri Metagenomics Center, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, U.S.A
| | - Yagna P.R. Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, U.S.A
| |
Collapse
|
3
|
Sun M, Wu C, Liu L, Gu L, Wang Z, Xu F, Zhu D. Interplay between the renin angiotensin system and oxidative stress contributes to alcohol addiction by stimulating dopamine accumulation in the mesolimbic pathway. Biochem Pharmacol 2023; 212:115578. [PMID: 37137415 DOI: 10.1016/j.bcp.2023.115578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
The brain renin-angiotensin system (RAS) has recently been implicated in the development of substance abuse and addiction. However, the integrative roles of the two counter-regulating RAS arms, including the ACE1/Ang II/AT1R axis and the ACE2/Ang(1-7)/MasR axis, in alcohol addiction remain unclear. Using the 20% ethanol intermittent-access two-bottle-choice (IA2BC) paradigm, we observed significant alcohol preference and addictive behaviors in rats. Additionally, we observed significant disruption in the RAS and redox homeostasis in the ventral tegmental area (VTA), as indicated by upregulation of ACE1 activities, Ang II levels, AT1R expression, and glutathione disulfide contents, as well as downregulation of ACE2 activities, Ang(1-7) levels, MasR expression and glutathione content. Moreover, dopamine accumulated in the VTA and nucleus accumbens of IA2BC rats. Intra-VTA infusion of the antioxidant tempol substantially attenuated RAS imbalance and addictive behaviors. Intra-VTA infusion of the ACE1 inhibitor captopril significantly reduced oxidative stress, alcohol preference, addictive behaviors, and dopamine accumulation, whereas intra-VTA infusion of the ACE2 inhibitor MLN4760 had the opposite effects. The anti-addictive effects of the ACE2/Ang(1-7)/MasR axis were further observed using intra-VTA infusion of Ang(1-7) and a MasR-specific antagonist A779. Therefore, our findings suggest that excessive alcohol intake causes RAS imbalance via oxidative stress, and that a dysregulated RAS in the VTA contributes to alcohol addiction by stimulating oxidative stress and dopaminergic neurotransmission. Breaking the vicious cycle of RAS imbalance and oxidative stress using brain-permeable antioxidants, ACE1 inhibitors, ACE2 activators, or Ang(1-7) mimetics thus represents a promising strategy for combating alcohol addiction.
Collapse
Affiliation(s)
- Ming Sun
- Department of Emergency Medicine, the First Affiliated Hospital of Soochow University, Suzhou, PR China; Department of Emergency Medicine, the Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, PR China
| | - Chao Wu
- Department of Emergency Medicine, the Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, PR China
| | - Lixin Liu
- Department of Emergency Medicine, the Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, PR China
| | - Liang Gu
- Department of Emergency Medicine, the Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, PR China
| | - Zihao Wang
- Department of Emergency Medicine, the Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, PR China
| | - Feng Xu
- Department of Emergency Medicine, the First Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Donglin Zhu
- Department of Neurology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
4
|
Sun X, Lv Y, Lin J. The mechanism of sudden unexpected death in epilepsy: A mini review. Front Neurol 2023; 14:1137182. [PMID: 36815002 PMCID: PMC9939452 DOI: 10.3389/fneur.2023.1137182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is defined as a sudden, unexpected, non-traumatic, non-drowning death in a person with epilepsy. SUDEP is generally considered to result from seizure-related cardiac dysfunction, respiratory depression, autonomic nervous dysfunction, or brain dysfunction. Frequency of generalized tonic clonic seizures (GTCS), prone posture, and refractory epilepsy are considered risk factors. SUDEP has also been associated with inherited cardiac ion channel disease and severe obstructive sleep apnea. Most previous studies of SUDEP mechanisms have focused on cardiac and respiratory dysfunction and imbalance of the neural regulatory system. Cardiac-related mechanisms include reduction in heart rate variability and prolongation of QT interval, which can lead to arrhythmias. Laryngospasm and amygdala activation may cause obstructive and central apnea, respectively. Neural mechanisms include impairment of 5-HT and adenosine neuromodulation. The research to date regarding molecular mechanisms of SUDEP is relatively limited. Most studies have focused on p-glycoprotein, catecholamines, potassium channels, and the renin-angiotensin system, all of which affect cardiac and respiratory function.
Collapse
Affiliation(s)
- Xinyi Sun
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yehui Lv
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China,Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China,*Correspondence: Yehui Lv ✉
| | - Jian Lin
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China,Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
5
|
Gong S, Deng F. Renin-angiotensin system: The underlying mechanisms and promising therapeutical target for depression and anxiety. Front Immunol 2023; 13:1053136. [PMID: 36761172 PMCID: PMC9902382 DOI: 10.3389/fimmu.2022.1053136] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/05/2022] [Indexed: 01/26/2023] Open
Abstract
Emotional disorders, including depression and anxiety, contribute considerably to morbidity across the world. Depression is a serious condition and is projected to be the top contributor to the global burden of disease by 2030. The role of the renin-angiotensin system (RAS) in hypertension and emotional disorders is well established. Evidence points to an association between elevated RAS activity and depression and anxiety, partly through the induction of neuroinflammation, stress, and oxidative stress. Therefore, blocking the RAS provides a theoretical basis for future treatment of anxiety and depression. The evidence for the positive effects of RAS blockers on depression and anxiety is reviewed, aiming to provide a promising target for novel anxiolytic and antidepressant medications and/or for improving the efficacy of currently available medications used for the treatment of anxiety and depression, which independent of blood pressure management.
Collapse
Affiliation(s)
| | - Fang Deng
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Sepehri H, Ganji F, Nazari Z, Vahid M. Effects of Goldblatt hypertension on rats’ hippocampal cholinergic system. Transl Neurosci 2022; 13:72-79. [PMID: 35528844 PMCID: PMC9021738 DOI: 10.1515/tnsci-2022-0215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 11/15/2022] Open
Abstract
Background The classical renin-angiotensin system (RAS) has an important role in the cardiovascular system and water homeostasis in the body. Recently, the existence of RAS with all of its components has been shown in the mammalian brain. RAS participates in many brain activities, including memory acquisition and consolidation. Since the cholinergic neurotransmission in the hippocampus is crucial for these functions, this study aims to evaluate the hippocampal angiotensin receptors (ATs) and choline acetyltransferase (ChAT) mRNA in the renovascular hypertensive rats in captopril- and losartan-treated hypertensive rats. Methods The rats were randomly divided into four groups of eight animals; sham, Goldblatt two kidney one clip (2K1C) hypertensive rats and Goldblatt 2K1C hypertensive rats received 5 mg/kg captopril and Goldblatt 2K1C hypertensive rats received 10 mg/kg losartan. After 8 days of treatment, the rats were sacrificed and angiotensin-converting enzyme (ACE), ChAT, AT1, and AT2 receptor mRNAs in the hippocampus of rats were assessed by real-time PCR. The Morris water maze test was applied to measure the cognitive functioning of the rats. Results Hypertensive rats showed impaired acquisition and memory function in the Morris water maze test. Treatment with ACE inhibitor (captopril) and AT1 receptor antagonist (losartan) reversed the observed acquisition and memory deficit in hypertensive rats. Overexpression of AChE, AT1, and AT2 and low expression of ChAT were noted in the hippocampus of rats with Goldblatt hypertension compared with that of the sham group. Treatment with captopril significantly reversed these changes, while treatment with losartan slightly reduced the mentioned effects. Conclusion The memory-enhancing effect of captopril in renovascular hypertensive rats might lead to increased hippocampal ChAT expression.
Collapse
Affiliation(s)
- Hamid Sepehri
- Department of Physiology, Neuroscience Research Center, Golestan University of Medical Sciences , Gorgan , Iran
| | - Farzaneh Ganji
- Department of Biology, Faculty of Science, Golestan University , Gorgan , Iran
| | - Zahra Nazari
- Department of Biology, Faculty of Science, Golestan University , Gorgan , Iran
| | - Marzieh Vahid
- Department of Biology, Faculty of Science, Golestan University , Gorgan , Iran
| |
Collapse
|
7
|
Abstract
Peptidases generate bioactive peptides that can regulate cell signaling and mediate intercellular communication. While the processing of peptide precursors is initiated intracellularly, some modifications by peptidases may be conducted extracellularly. Thimet oligopeptidase (TOP) is a peptidase that processes neuroendocrine peptides with roles in mood, metabolism, and immune responses, among other functions. TOP also hydrolyzes angiotensin I to angiotensin 1–7, which may be involved in the pathophysiology of COVID-19 infection. Although TOP is primarily cytosolic, it can also be associated with the cell plasma membrane or secreted to the extracellular space. Recent work indicates that membrane-associated TOP can be released with extracellular vesicles (EVs) to the extracellular space. Here we briefly summarize the enzyme’s classical function in extracellular processing of neuroendocrine peptides, as well as its more recently understood role in intracellular processing of various peptides that impact human diseases. Finally, we discuss new findings of EV-associated TOP in the extracellular space.
Collapse
|
8
|
Rukavina Mikusic NL, Pineda AM, Gironacci MM. Angiotensin-(1-7) and Mas receptor in the brain. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key regulator of blood pressure and electrolyte homeostasis. Besides its importance as regulator of the cardiovascular function, the RAS has also been associated to the modulation of higher brain functions, including cognition, memory, depression and anxiety. For many years, angiotensin II (Ang II) has been considered the major bioactive component of the RAS. However, the existence of many other biologically active RAS components has currently been recognized, with similar, opposite, or distinct effects to those exerted by Ang II. Today, it is considered that the RAS is primarily constituted by two opposite arms. The pressor arm is composed by Ang II and the Ang II type 1 (AT1) receptor (AT1R), which mediates the vasoconstrictor, proliferative, hypertensive, oxidative and pro-inflammatory effects of the RAS. The depressor arm is mainly composed by Ang-(1-7), its Mas receptor (MasR) which mediates the depressor, vasodilatory, antiproliferative, antioxidant and anti-inflammatory effects of Ang-(1-7) and the AT2 receptor (AT2R), which opposes to the effects mediated by AT1R activation. Central Ang-(1-7) is implicated in the control of the cardiovascular function, thus participating in the regulation of blood pressure. Ang-(1-7) also exerts neuroprotective actions through MasR activation by opposing to the harmful effects of the Ang II/AT1R axis. This review is focused on the expression and regulation of the Ang-(1-7)/MasR axis in the brain, its main neuroprotective effects and the evidence regarding its involvement in the pathophysiology of several diseases at cardiovascular and neurological level.
Collapse
Affiliation(s)
- Natalia L. Rukavina Mikusic
- Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| | - Angélica M. Pineda
- Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| | - Mariela M. Gironacci
- Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| |
Collapse
|
9
|
Osman IO, Melenotte C, Brouqui P, Million M, Lagier JC, Parola P, Stein A, La Scola B, Meddeb L, Mege JL, Raoult D, Devaux CA. Expression of ACE2, Soluble ACE2, Angiotensin I, Angiotensin II and Angiotensin-(1-7) Is Modulated in COVID-19 Patients. Front Immunol 2021; 12:625732. [PMID: 34194422 PMCID: PMC8236950 DOI: 10.3389/fimmu.2021.625732] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
The etiological agent of COVID-19 SARS-CoV-2, is primarily a pulmonary-tropic coronavirus. Infection of alveolar pneumocytes by SARS-CoV-2 requires virus binding to the angiotensin I converting enzyme 2 (ACE2) monocarboxypeptidase. ACE2, present on the surface of many cell types, is known to be a regulator of blood pressure homeostasis through its ability to catalyze the proteolysis of Angiotensin II (Ang II) into Angiotensin-(1-7) [Ang-(1-7)]. We therefore hypothesized that SARS-CoV-2 could trigger variations of ACE2 expression and Ang II plasma concentration in SARS-CoV-2-infected patients. We report here, that circulating blood cells from COVID-19 patients express less ACE2 mRNA than cells from healthy volunteers. At the level of circulating cells, this ACE2 gene dysregulation mainly affects the monocytes, which also show a lower expression of membrane ACE2 protein. Moreover, soluble ACE2 (sACE2) plasma concentrations are lower in prolonged viral shedders than in healthy controls, while the concentration of sACE2 returns to normal levels in short viral shedders. In the plasma of prolonged viral shedders, we also found higher concentrations of Ang II and angiotensin I (Ang I). On the other hand, the plasma levels of Ang-(1-7) remains almost stable in prolonged viral shedders but seems insufficient to prevent the adverse effects of Ang II accumulation. Altogether, these data evidence that the SARS-CoV-2 may affect the expression of blood pressure regulators with possible harmful consequences on COVID-19 outcome.
Collapse
Affiliation(s)
- Ikram Omar Osman
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Cléa Melenotte
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Philippe Brouqui
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Matthieu Million
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | | | - Philippe Parola
- Aix-Marseille Univ, IRD, APHM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Andréas Stein
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Bernard La Scola
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Line Meddeb
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Jean-Louis Mege
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Christian A. Devaux
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), Marseille, France
| |
Collapse
|
10
|
Beta-Arrestins in the Treatment of Heart Failure Related to Hypertension: A Comprehensive Review. Pharmaceutics 2021. [DOI: 10.3390/pharmaceutics13060838
expr 929824082 + 956151497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Heart failure (HF) is a complicated clinical syndrome that is considered an increasingly frequent reason for hospitalization, characterized by a complex therapeutic regimen, reduced quality of life, and high morbidity. Long-standing hypertension ultimately paves the way for HF. Recently, there have been improvements in the treatment of hypertension and overall management not limited to only conventional medications, but several novel pathways and their pharmacological alteration are also conducive to the treatment of hypertension. Beta-arrestin (β-arrestin), a protein responsible for beta-adrenergic receptors’ (β-AR) functioning and trafficking, has recently been discovered as a potential regulator in hypertension. β-arrestin isoforms, namely β-arrestin1 and β-arrestin2, mainly regulate cardiac function. However, there have been some controversies regarding the function of the two β-arrestins in hypertension regarding HF. In the present review, we try to figure out the paradox between the roles of two isoforms of β-arrestin in the treatment of HF.
Collapse
|
11
|
Rakib A, Eva TA, Sami SA, Mitra S, Nafiz IH, Das A, Tareq AM, Nainu F, Dhama K, Emran TB, Simal-Gandara J. Beta-Arrestins in the Treatment of Heart Failure Related to Hypertension: A Comprehensive Review. Pharmaceutics 2021; 13:838. [PMID: 34198801 PMCID: PMC8228839 DOI: 10.3390/pharmaceutics13060838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
Heart failure (HF) is a complicated clinical syndrome that is considered an increasingly frequent reason for hospitalization, characterized by a complex therapeutic regimen, reduced quality of life, and high morbidity. Long-standing hypertension ultimately paves the way for HF. Recently, there have been improvements in the treatment of hypertension and overall management not limited to only conventional medications, but several novel pathways and their pharmacological alteration are also conducive to the treatment of hypertension. Beta-arrestin (β-arrestin), a protein responsible for beta-adrenergic receptors' (β-AR) functioning and trafficking, has recently been discovered as a potential regulator in hypertension. β-arrestin isoforms, namely β-arrestin1 and β-arrestin2, mainly regulate cardiac function. However, there have been some controversies regarding the function of the two β-arrestins in hypertension regarding HF. In the present review, we try to figure out the paradox between the roles of two isoforms of β-arrestin in the treatment of HF.
Collapse
Affiliation(s)
- Ahmed Rakib
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (A.R.); (T.A.E.); (S.A.S.)
| | - Taslima Akter Eva
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (A.R.); (T.A.E.); (S.A.S.)
| | - Saad Ahmed Sami
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (A.R.); (T.A.E.); (S.A.S.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Iqbal Hossain Nafiz
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (I.H.N.); (A.D.)
| | - Ayan Das
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (I.H.N.); (A.D.)
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Kota Makassar, Sulawesi Selatan 90245, Indonesia;
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo–Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
12
|
Kuriakose J, Montezano A, Touyz R. ACE2/Ang-(1-7)/Mas1 axis and the vascular system: vasoprotection to COVID-19-associated vascular disease. Clin Sci (Lond) 2021; 135:387-407. [PMID: 33511992 PMCID: PMC7846970 DOI: 10.1042/cs20200480] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
The two axes of the renin-angiotensin system include the classical ACE/Ang II/AT1 axis and the counter-regulatory ACE2/Ang-(1-7)/Mas1 axis. ACE2 is a multifunctional monocarboxypeptidase responsible for generating Ang-(1-7) from Ang II. ACE2 is important in the vascular system where it is found in arterial and venous endothelial cells and arterial smooth muscle cells in many vascular beds. Among the best characterized functions of ACE2 is its role in regulating vascular tone. ACE2 through its effector peptide Ang-(1-7) and receptor Mas1 induces vasodilation and attenuates Ang II-induced vasoconstriction. In endothelial cells activation of the ACE2/Ang-(1-7)/Mas1 axis increases production of the vasodilator's nitric oxide and prostacyclin's and in vascular smooth muscle cells it inhibits pro-contractile and pro-inflammatory signaling. Endothelial ACE2 is cleaved by proteases, shed into the circulation and measured as soluble ACE2. Plasma ACE2 activity is increased in cardiovascular disease and may have prognostic significance in disease severity. In addition to its enzymatic function, ACE2 is the receptor for severe acute respiratory syndrome (SARS)-coronavirus (CoV) and SARS-Cov-2, which cause SARS and coronavirus disease-19 (COVID-19) respectively. ACE-2 is thus a double-edged sword: it promotes cardiovascular health while also facilitating the devastations caused by coronaviruses. COVID-19 is associated with cardiovascular disease as a risk factor and as a complication. Mechanisms linking COVID-19 and cardiovascular disease are unclear, but vascular ACE2 may be important. This review focuses on the vascular biology and (patho)physiology of ACE2 in cardiovascular health and disease and briefly discusses the role of vascular ACE2 as a potential mediator of vascular injury in COVID-19.
Collapse
Affiliation(s)
- Jithin Kuriakose
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Augusto C. Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Rhian M. Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
13
|
Becari C, Pereira GL, Oliveira JAC, Polonis K, Garcia-Cairasco N, Costa-Neto CM, Pereira MGAG. Epilepsy Seizures in Spontaneously Hypertensive Rats After Acoustic Stimulation: Role of Renin-Angiotensin System. Front Neurosci 2020; 14:588477. [PMID: 33424536 PMCID: PMC7787150 DOI: 10.3389/fnins.2020.588477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/20/2020] [Indexed: 12/03/2022] Open
Abstract
Hypertension is a common comorbidity observed in individuals with epilepsy. Growing evidence suggests that lower blood pressure is associated with reduced frequency and severity of seizures. In this study, we sought to investigate whether the renin–angiotensin system (RAS), which is a critical regulator of blood pressure, is involved in the pathogenesis of audiogenic epilepsy-related seizures in a hypertensive rat model. Spontaneously hypertensive rats (SHRs) were given RAS inhibitors, angiotensin-converting enzyme (ACE) inhibitor or angiotensin II type I receptor (AT1R) antagonist, for 7 days prior to inducing epileptic seizures by acoustic stimulation. After the pretreatment phase, blood pressure (BP) of SHRs normalized as expected, and there was no difference in systolic and diastolic BP between the pretreated SHRs and normotensive rat group (Wistar). Next, treated and untreated SHRs (a high BP control) were individually subjected to acoustic stimuli twice a day for 2 weeks. The severity of tonic–clonic seizures and the severity of temporal lobe epilepsy seizures (product of forebrain recruitment) were evaluated by the mesencephalic severity index (Rossetti et al. scale) and the limbic index (Racine’s scale), respectively. Seizures were observed in both untreated (a high BP control) SHRs and in SHRs treated with AT1R antagonist and ACE inhibitor. There was no statistical difference in the mesencephalic severity and limbic index between these groups. Our results demonstrate that SHRs present seizure susceptibility with acoustic stimulation. Moreover, although RAS inhibitors effectively reduce blood pressure in SHR, they do not prevent developing epileptic seizures upon acoustic stimulation in SHR. In conclusion, our study shows that RAS is an unlikely link between hypertension and susceptibility to epileptic seizures induced by acoustic stimulation in SHRs, which is in contrast with the anticonvulsant effect of losartan in other animal models of epilepsy.
Collapse
Affiliation(s)
- Christiane Becari
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Giorgia Lemes Pereira
- Department of Biochemistry, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Brazil
| | - José A C Oliveira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Katarzyna Polonis
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Claudio M Costa-Neto
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marilia G A G Pereira
- Department of Biochemistry, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Brazil
| |
Collapse
|
14
|
Ribeiro VT, de Souza LC, Simões E Silva AC. Renin-Angiotensin System and Alzheimer's Disease Pathophysiology: From the Potential Interactions to Therapeutic Perspectives. Protein Pept Lett 2020; 27:484-511. [PMID: 31886744 DOI: 10.2174/0929866527666191230103739] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/27/2019] [Accepted: 11/16/2019] [Indexed: 12/21/2022]
Abstract
New roles of the Renin-Angiotensin System (RAS), apart from fluid homeostasis and Blood Pressure (BP) regulation, are being progressively unveiled, since the discoveries of RAS alternative axes and local RAS in different tissues, including the brain. Brain RAS is reported to interact with pathophysiological mechanisms of many neurological and psychiatric diseases, including Alzheimer's Disease (AD). Even though AD is the most common cause of dementia worldwide, its pathophysiology is far from elucidated. Currently, no treatment can halt the disease course. Successive failures of amyloid-targeting drugs have challenged the amyloid hypothesis and increased the interest in the inflammatory and vascular aspects of AD. RAS compounds, both centrally and peripherally, potentially interact with neuroinflammation and cerebrovascular regulation. This narrative review discusses the AD pathophysiology and its possible interaction with RAS, looking forward to potential therapeutic approaches. RAS molecules affect BP, cerebral blood flow, neuroinflammation, and oxidative stress. Angiotensin (Ang) II, via angiotensin type 1 receptors may promote brain tissue damage, while Ang-(1-7) seems to elicit neuroprotection. Several studies dosed RAS molecules in AD patients' biological material, with heterogeneous results. The link between AD and clinical conditions related to classical RAS axis overactivation (hypertension, heart failure, and chronic kidney disease) supports the hypothesized role of this system in AD. Additionally, RAStargeting drugs as Angiotensin Converting Enzyme inhibitors (ACEis) and Angiotensin Receptor Blockers (ARBs) seem to exert beneficial effects on AD. Results of randomized controlled trials testing ACEi or ARBs in AD are awaited to elucidate whether AD-RAS interaction has implications on AD therapeutics.
Collapse
Affiliation(s)
- Victor Teatini Ribeiro
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Leonardo Cruz de Souza
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.,Department of Internal Medicine, Service of Neurology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
15
|
McFall A, Nicklin SA, Work LM. The counter regulatory axis of the renin angiotensin system in the brain and ischaemic stroke: Insight from preclinical stroke studies and therapeutic potential. Cell Signal 2020; 76:109809. [PMID: 33059037 PMCID: PMC7550360 DOI: 10.1016/j.cellsig.2020.109809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023]
Abstract
Stroke is the 2nd leading cause of death worldwide and the leading cause of physical disability and cognitive issues. Although we have made progress in certain aspects of stroke treatment, the consequences remain substantial and new treatments are needed. Hypertension has long been recognised as a major risk factor for stroke, both haemorrhagic and ischaemic. The renin angiotensin system (RAS) plays a key role in blood pressure regulation and this, plus local expression and signalling of RAS in the brain, both support the potential for targeting this axis therapeutically in the setting of stroke. While historically, focus has been on suppressing classical RAS signalling through the angiotensin type 1 receptor (AT1R), the identification of a counter-regulatory axis of the RAS signalling via the angiotensin type 2 receptor (AT2R) and Mas receptor has renewed interest in targeting the RAS. This review describes RAS signalling in the brain and the potential of targeting the Mas receptor and AT2R in preclinical models of ischaemic stroke. The animal and experimental models, and the route and timing of intervention, are considered from a translational perspective.
Collapse
Affiliation(s)
- Aisling McFall
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Stuart A Nicklin
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Lorraine M Work
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
16
|
Zhu D, Sun M, Liu Q, Yue Y, Lu J, Lin X, Shi J. Angiotensin (1-7) through modulation of the NMDAR-nNOS-NO pathway and serotonergic metabolism exerts an anxiolytic-like effect in rats. Behav Brain Res 2020; 390:112671. [PMID: 32437889 DOI: 10.1016/j.bbr.2020.112671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/05/2020] [Accepted: 04/21/2020] [Indexed: 01/02/2023]
Abstract
Although recent studies have shown that angiotensin (1-7) (Ang [1-7]) exerts anti-stress and anxiolytic-like effects, the underlying mechanisms remain elusive. The ventral hippocampus (VH) is proposed to be a critical brain region for mood and stress management through the N-methyl-d-aspartate receptor (NMDAR) signaling pathway. However, the role of VH NMDAR signaling in the effects of Ang (1-7) remains unclear. In the present study, Ang (1-7) was injected into the bilateral VH of stressed rats, or in combination with a Fyn kinase inhibitor, NMDAR antagonist, neuronal nitric oxide synthase (nNOS) inhibitor, or nitric oxide (NO) scavenger. Anxiety-like behaviors were assessed using the open field test and elevated plus maze test, while alterations in NMDAR-nNOS-NO signaling and serotonergic metabolism were examined in the VH. After 21 days of chronic restraint stress, anxiety-like behaviors were evident. Levels of phosphorylated NR2B (a key NMDAR subunit), its upstream kinase Fyn, as well as activity of nNOS and monoamine oxidase (MAO) were markedly reduced. In contrast, levels of serotonin were increased. Bilateral VH infusion of Ang (1-7) recovered NMDAR-nNOS-NO signaling and MAO-mediated serotonin metabolism, as well as reducing anxiety-like behaviors in stressed rats. These effects were diminished by blockade of MasR (Ang [1-7]-specific receptor), Fyn kinase, NMDAR, nNOS, or NO production. Altogether, these findings indicate that Ang (1-7) exerts anxiolytic effects through modulation of the NMDAR-nNOS-NO pathway and serotonergic metabolism. Future translational research should focus on the relationship between Ang (1-7), glutamatergic neurotransmission, and serotonergic neurotransmission in the VH.
Collapse
Affiliation(s)
- Donglin Zhu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China
| | - Ming Sun
- Emergency Department, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, PR China
| | - Qinqin Liu
- Department of Neurology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, PR China
| | - Yu Yue
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China
| | - Jie Lu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China
| | - Xingjian Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China
| | - Jingping Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
17
|
Marc Y, Boitard SE, Balavoine F, Azizi M, Llorens-Cortes C. Targeting Brain Aminopeptidase A: A New Strategy for the Treatment of Hypertension and Heart Failure. Can J Cardiol 2020; 36:721-731. [PMID: 32389345 DOI: 10.1016/j.cjca.2020.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
The pathophysiology of heart failure (HF) and hypertension are thought to involve brain renin-angiotensin system (RAS) hyperactivity. Angiotensin III, a key effector peptide in the brain RAS, provides tonic stimulatory control over blood pressure (BP) in hypertensive rats. Aminopeptidase A (APA), the enzyme responsible for generating brain angiotensin III, constitutes a potential therapeutic target for hypertension treatment. We focus here on studies of RB150/firibastat, the first prodrug of the specific and selective APA inhibitor EC33 able to cross the blood-brain barrier. We consider its development from therapeutic target discovery to clinical trials of the prodrug. After oral administration, firibastat crosses the gastrointestinal and blood-brain barriers. On arrival in the brain, it is cleaved to generate EC33, which inhibits brain APA activity, lowering BP in various experimental models of hypertension. Firibastat was clinically and biologically well tolerated, even at high doses, in phase I trials conducted in healthy human subjects. It was then shown to decrease BP effectively in patients of various ethnic origins with hypertension in phase II trials. Brain RAS hyperactivity leads to excessive sympathetic activity, which can contribute to HF after myocardial infarction (MI). Chronic treatment with oral firibastat (4 or 8 weeks after MI) has been shown to normalize brain APA activity in mice. This effect is accompanied by a normalization of brain RAS and sympathetic activities, reducing cardiac fibrosis and hypertrophy and preventing cardiac dysfunction. Firibastat may therefore represent a novel therapeutic advance in the clinical management of patients with hypertension and potentially with HF after MI.
Collapse
Affiliation(s)
- Yannick Marc
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; Quantum Genomics, Paris, France
| | - Solène Emmanuelle Boitard
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; Quantum Genomics, Paris, France
| | | | - Michel Azizi
- Centres d'Investigation Clinique 1418, Institut National de la Santé et de la Recherche Médicale, Paris, France; Hypertension Unit and Départements Médico-Universitaires Cardiovasculaire, Rénal, transplantation et neurovasculaire (DMU CARTE), l'Assistance Publique-Hôpitaux de Paris, Hôpital European Georges-Pompidou, Paris, France
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Paris, France.
| |
Collapse
|
18
|
Evans CE, Miners JS, Piva G, Willis CL, Heard DM, Kidd EJ, Good MA, Kehoe PG. ACE2 activation protects against cognitive decline and reduces amyloid pathology in the Tg2576 mouse model of Alzheimer's disease. Acta Neuropathol 2020; 139:485-502. [PMID: 31982938 PMCID: PMC7035243 DOI: 10.1007/s00401-019-02098-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/16/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023]
Abstract
Mid-life hypertension and cerebrovascular dysfunction are associated with increased risk of later life dementia, including Alzheimer’s disease (AD). The classical renin–angiotensin system (cRAS), a physiological regulator of blood pressure, functions independently within the brain and is overactive in AD. cRAS-targeting anti-hypertensive drugs are associated with reduced incidence of AD, delayed onset of cognitive decline, and reduced levels of Aβ and tau in both animal models and human pathological studies. cRAS activity is moderated by a downstream regulatory RAS pathway (rRAS), which is underactive in AD and is strongly associated with pathological hallmarks in human AD, and cognitive decline in animal models of CNS disease. We now show that enhancement of brain ACE2 activity, a major effector of rRAS, by intraperitoneal administration of diminazene aceturate (DIZE), an established activator of ACE2, lowered hippocampal Aβ and restored cognition in mid-aged (13–14-month-old) symptomatic Tg2576 mice. We confirmed that the protective effects of DIZE were directly mediated through ACE2 and were associated with reduced hippocampal soluble Aβ42 and IL1-β levels. DIZE restored hippocampal MasR levels in conjunction with increased NMDA NR2B and downstream ERK signalling expression in hippocampal synaptosomes from Tg2576 mice. Chronic (10 weeks) administration of DIZE to pre-symptomatic 9–10-month-old Tg2576 mice, and acute (10 days) treatment in cognitively impaired 12–13-month-old mice, prevented the development of cognitive impairment. Together these data demonstrate that ACE2 enhancement protects against and reverses amyloid-related hippocampal pathology and cognitive impairment in a preclinical model of AD.
Collapse
|
19
|
Visniauskas B, Simões PSR, Dalio FM, Naffah-Mazzacoratti MDG, Oliveira V, Tufik S, Chagas JR. Sleep deprivation changes thimet oligopeptidase (THOP1) expression and activity in rat brain. Heliyon 2019; 5:e02896. [PMID: 31828230 PMCID: PMC6889027 DOI: 10.1016/j.heliyon.2019.e02896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/01/2019] [Accepted: 11/18/2019] [Indexed: 12/27/2022] Open
Abstract
The consequences of sleep deprivation on memory, cognition, nociception, stress, and endocrine function are related to the balance of neuropeptides, with peptidases being particularly essential. Thimet oligopeptidase (THOP1) is a metallopeptidase implicated in the metabolism of many sleep-related peptides, including angiotensin I, gonadotropin releasing hormone (GnRH), neurotensin, and opioid peptides. In the present study, we evaluated the effect of sleep deprivation and sleep recovery in male rats on THOP1 expression and specific activity in the central nervous system. In the striatum and hypothalamus, THOP1 activity decreased following sleep deprivation and a recovery period. Meanwhile, THOP1 activity and immunoexpression increased in the hippocampal dentate gyrus during the sleep recovery period. Changes in THOP1 expression after sleep deprivation and during sleep recovery can potentially alter the processing of neuropeptides. In particular, processing of opioid peptides may be related to the known increase in pain sensitivity in this model. These results suggest that THOP1 may be an important player in the effects of sleep deprivation.
Collapse
Affiliation(s)
- Bruna Visniauskas
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, 04024-002, Brazil
| | - Priscila S R Simões
- Department of Neurology/Neurosurgery, Universidade Federal de São Paulo, São Paulo, 04039-032, Brazil
| | - Fernanda M Dalio
- Department of Biophysics, Universidade Federal de São Paulo, São Paulo, 04039-032, Brazil
| | | | - Vitor Oliveira
- Department of Biophysics, Universidade Federal de São Paulo, São Paulo, 04039-032, Brazil
| | - Sergio Tufik
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, 04024-002, Brazil
| | - Jair R Chagas
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, 04024-002, Brazil.,Department of Biophysics, Universidade Federal de São Paulo, São Paulo, 04039-032, Brazil
| |
Collapse
|
20
|
Szczurkowska PJ, Polonis K, Becari C, Hoffmann M, Narkiewicz K, Chrostowska M. Epilepsy and hypertension: The possible link for sudden unexpected death in epilepsy? Cardiol J 2019; 28:330-335. [PMID: 31565791 PMCID: PMC8078946 DOI: 10.5603/cj.a2019.0095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 11/25/2022] Open
Abstract
Epilepsy affects about 50 million people worldwide. Sudden unexpected death in epilepsy (SUDEP) is the main cause of death in epilepsy accounting for up to 17% of all deaths in epileptic patients, and therefore remains a major public health problem. SUDEP likely arises from a combination and interaction of multiple risk factors (such as being male, drug resistance, frequent generalized tonic-clonic seizures) making risk prediction and mitigation challenging. While there is a general understanding of the physiopathology of SUDEP, mechanistic hypotheses linking risk factors with a risk of SUDEP are still lacking. Identifying cross-talk between biological systems implicated in SUDEP may facilitate the development of improved models for SUDEP risk assessment, treatment and clinical management. In this review, the aim was to explore an overlap between the pathophysiology of hypertension, cardiovascular disease and epilepsy, and discuss its implication for SUDEP. Presented herein, evidence in literature in support of a cross-talk between the renin-angiotensin system (RAS) and sympathetic nervous system, both known to be involved in the development of hypertension and cardiovascular disease, and as one of the underlying mechanisms of SUDEP. This article also provides a brief description of local RAS in brain neuroinflammation and the role of centrally acting RAS inhibitors in epileptic seizure alleviation.
Collapse
Affiliation(s)
| | - Katarzyna Polonis
- Center for Individualized Medicine - Biomarker Discovery, Mayo Clinic, Rochester, MN, USA
| | - Christiane Becari
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, Ribeirão Preto-SP, Brazil
| | - Michał Hoffmann
- Department of Hypertension and Diabetology, Medical University of Gdansk, Poland
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdansk, Poland
| | - Marzena Chrostowska
- Department of Hypertension and Diabetology, Medical University of Gdansk, Poland.
| |
Collapse
|
21
|
Nehme A, Zouein FA, Zayeri ZD, Zibara K. An Update on the Tissue Renin Angiotensin System and Its Role in Physiology and Pathology. J Cardiovasc Dev Dis 2019. [PMID: 30934934 DOI: 10.3390/jcdd6020014.pmid:30934934;pmcid:pmc6617132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In its classical view, the renin angiotensin system (RAS) was defined as an endocrinesystem involved in blood pressure regulation and body electrolyte balance. However, the emergingconcept of tissue RAS, along with the discovery of new RAS components, increased thephysiological and clinical relevance of the system. Indeed, RAS has been shown to be expressed invarious tissues where alterations in its expression were shown to be involved in multiple diseasesincluding atherosclerosis, cardiac hypertrophy, type 2 diabetes (T2D) and renal fibrosis. In thischapter, we describe the new components of RAS, their tissue-specific expression, and theiralterations under pathological conditions, which will help achieve more tissue- and conditionspecifictreatments.
Collapse
Affiliation(s)
- Ali Nehme
- EA4173, Functional genomics of arterial hypertension, Univeristy Claude Bernard Lyon-1 (UCBL-1),69008 Lyon, France.
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Heart Repair Division, Faculty of Medicine,American University of Beirut, Beirut 11-0236, Lebanon.
| | - Zeinab Deris Zayeri
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz JundishapurUniversity of Medical Sciences, Ahvaz, Iran.
| | - Kazem Zibara
- PRASE, Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
22
|
Nehme A, Zouein FA, Zayeri ZD, Zibara K. An Update on the Tissue Renin Angiotensin System and Its Role in Physiology and Pathology. J Cardiovasc Dev Dis 2019; 6:jcdd6020014. [PMID: 30934934 PMCID: PMC6617132 DOI: 10.3390/jcdd6020014] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
In its classical view, the renin angiotensin system (RAS) was defined as an endocrine system involved in blood pressure regulation and body electrolyte balance. However, the emerging concept of tissue RAS, along with the discovery of new RAS components, increased the physiological and clinical relevance of the system. Indeed, RAS has been shown to be expressed in various tissues where alterations in its expression were shown to be involved in multiple diseases including atherosclerosis, cardiac hypertrophy, type 2 diabetes (T2D) and renal fibrosis. In this chapter, we describe the new components of RAS, their tissue-specific expression, and their alterations under pathological conditions, which will help achieve more tissue- and condition-specific treatments.
Collapse
Affiliation(s)
- Ali Nehme
- EA4173, Functional genomics of arterial hypertension, Univeristy Claude Bernard Lyon-1 (UCBL-1),69008 Lyon, France.
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Heart Repair Division, Faculty of Medicine,American University of Beirut, Beirut 11-0236, Lebanon.
| | - Zeinab Deris Zayeri
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz JundishapurUniversity of Medical Sciences, Ahvaz, Iran.
| | - Kazem Zibara
- PRASE, Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
23
|
|
24
|
The depressor axis of the renin–angiotensin system and brain disorders: a translational approach. Clin Sci (Lond) 2018; 132:1021-1038. [DOI: 10.1042/cs20180189] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023]
Abstract
All the components of the classic renin–angiotensin system (RAS) have been identified in the brain. Today, the RAS is considered to be composed mainly of two axes: the pressor axis, represented by angiotensin (Ang) II/angiotensin-converting enzyme/AT1 receptors, and the depressor and protective one, represented by Ang-(1–7)/ angiotensin-converting enzyme 2/Mas receptors. Although the RAS exerts a pivotal role on electrolyte homeostasis and blood pressure regulation, their components are also implicated in higher brain functions, including cognition, memory, anxiety and depression, and several neurological disorders. Overactivity of the pressor axis of the RAS has been implicated in stroke and several brain disorders, such as cognitive impairment, dementia, and Alzheimer or Parkinson’s disease. The present review is focused on the role of the protective axis of the RAS in brain disorders beyond its effects on blood pressure regulation. Furthermore, the use of drugs targeting centrally RAS and its beneficial effects on brain disorders are also discussed.
Collapse
|
25
|
Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol Rev 2018; 98:505-553. [PMID: 29351514 PMCID: PMC7203574 DOI: 10.1152/physrev.00023.2016] [Citation(s) in RCA: 722] [Impact Index Per Article: 120.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 05/09/2017] [Accepted: 06/18/2017] [Indexed: 12/16/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1-7)/MAS, whose end point is the metabolite ANG-(1-7). ACE2 and other enzymes can form ANG-(1-7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1-7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1-7) in physiology and disease, with particular emphasis on the brain.
Collapse
Affiliation(s)
- Robson Augusto Souza Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Walkyria Oliveira Sampaio
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Andreia C Alzamora
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Daisy Motta-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Natalia Alenina
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Michael Bader
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Maria Jose Campagnole-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
26
|
Ang-(1-7) is an endogenous β-arrestin-biased agonist of the AT 1 receptor with protective action in cardiac hypertrophy. Sci Rep 2017; 7:11903. [PMID: 28928410 PMCID: PMC5605686 DOI: 10.1038/s41598-017-12074-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 09/04/2017] [Indexed: 01/13/2023] Open
Abstract
The renin-angiotensin system (RAS) plays a key role in the control of vasoconstriction as well as sodium and fluid retention mediated mainly by angiotensin (Ang) II acting at the AT1 receptor (AT1R). Ang-(1-7) is another RAS peptide, identified as the endogenous ligand of the Mas receptor and known to counterbalance many of the deleterious effects of AngII. AT1R signaling triggered by β-arrestin-biased agonists has been associated to cardioprotection. Because position 8 in AngII is important for G protein activation, we hypothesized that Ang-(1-7) could be an endogenous β-arrestin-biased agonist of the AT1R. Here we show that Ang-(1-7) binds to the AT1R without activating Gq, but triggering β-arrestins 1 and 2 recruitment and activation. Using an in vivo model of cardiac hypertrophy, we show that Ang-(1-7) significantly attenuates heart hypertrophy by reducing both heart weight and ventricular wall thickness and the increased end-diastolic pressure. Whereas neither the single blockade of AT1 or Mas receptors with their respective antagonists prevented the cardioprotective action of Ang1-7, combination of the two antagonists partially impaired the effect of Ang-(1-7). Taken together, these data indicate that Ang-(1-7) mediates at least part of its cardioprotective effects by acting as an endogenous β-arrestin-biased agonist at the AT1R.
Collapse
|
27
|
Garcia-Cairasco N, Umeoka EHL, Cortes de Oliveira JA. The Wistar Audiogenic Rat (WAR) strain and its contributions to epileptology and related comorbidities: History and perspectives. Epilepsy Behav 2017; 71:250-273. [PMID: 28506440 DOI: 10.1016/j.yebeh.2017.04.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the context of modeling epilepsy and neuropsychiatric comorbidities, we review the Wistar Audiogenic Rat (WAR), first introduced to the neuroscience international community more than 25years ago. The WAR strain is a genetically selected reflex model susceptible to audiogenic seizures (AS), acutely mimicking brainstem-dependent tonic-clonic seizures and chronically (by audiogenic kindling), temporal lobe epilepsy (TLE). Seminal neuroethological, electrophysiological, cellular, and molecular protocols support the WAR strain as a suitable and reliable animal model to study the complexity and emergent functions typical of epileptogenic networks. Furthermore, since epilepsy comorbidities have emerged as a hot topic in epilepsy research, we discuss the use of WARs in fields such as neuropsychiatry, memory and learning, neuroplasticity, neuroendocrinology, and cardio-respiratory autonomic regulation. Last, but not least, we propose that this strain be used in "omics" studies, as well as with the most advanced molecular and computational modeling techniques. Collectively, pioneering and recent findings reinforce the complexity associated with WAR alterations, consequent to the combination of their genetically-dependent background and seizure profile. To add to previous studies, we are currently developing more powerful behavioral, EEG, and molecular methods, combined with computational neuroscience/network modeling tools, to further increase the WAR strain's contributions to contemporary neuroscience in addition to increasing knowledge in a wide array of neuropsychiatric and other comorbidities, given shared neural networks. During the many years that the WAR strain has been studied, a constantly expanding network of multidisciplinary collaborators has generated a growing research and knowledge network. Our current and major wish is to make the WARs available internationally to share our knowledge and to facilitate the planning and execution of multi-institutional projects, eagerly needed to contribute to paradigm shifts in epileptology. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".
Collapse
Affiliation(s)
- Norberto Garcia-Cairasco
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil.
| | - Eduardo H L Umeoka
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil
| | | |
Collapse
|
28
|
Wang XL, Iwanami J, Min LJ, Tsukuda K, Nakaoka H, Bai HY, Shan BS, Kan-No H, Kukida M, Chisaka T, Yamauchi T, Higaki A, Mogi M, Horiuchi M. Deficiency of angiotensin-converting enzyme 2 causes deterioration of cognitive function. NPJ Aging Mech Dis 2016; 2:16024. [PMID: 28721275 PMCID: PMC5515001 DOI: 10.1038/npjamd.2016.24] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/15/2016] [Accepted: 08/18/2016] [Indexed: 02/06/2023] Open
Abstract
The classical renin–angiotensin system (RAS), known as the angiotensin (Ang)-converting enzyme (ACE)/Ang II/Ang II type 1 (AT1) receptor axis, induces various organ damages including cognitive decline. On the other hand, the ACE2/Ang-(1–7)/Mas receptor axis has been highlighted as exerting antagonistic actions against the classical RAS axis in the cardiovascular system. However, the roles of the ACE2/Ang-(1–7)/Mas axis in cognitive function largely remain to be elucidated, and we therefore examined possible roles of ACE2 in cognitive function. Male, 10-week-old C57BL6 (wild type, WT) mice and ACE2 knockout (KO) mice were subjected to the Morris water maze task and Y maze test to evaluate cognitive function. ACE2KO mice exhibited significant impairment of cognitive function, compared with that in WT mice. Superoxide anion production increased in ACE2KO mice, with increased mRNA levels of NADPH oxidase subunit, p22phox, p40phox, p67phox, and gp91phox in the hippocampus of ACE2KO mice compared with WT mice. The protein level of SOD3 decreased in ACE2KO mice compared with WT mice. The AT1 receptor mRNA level in the hippocampus was higher in ACE2KO mice compared with WT mice. In contrast, the AT2 receptor mRNA level in the hippocampus did not differ between the two strains. Mas receptor mRNA was highly expressed in the hippocampus compared with the cortex. Brain-derived neurotrophic factor (BDNF) mRNA and protein levels were lower in the hippocampus in ACE2KO mice compared with WT mice. Taken together, ACE2 deficiency resulted in impaired cognitive function, probably at least in part because of enhanced oxidative stress and a decrease in BDNF.
Collapse
Affiliation(s)
- Xiao-Li Wang
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Jun Iwanami
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Li-Juan Min
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Kana Tsukuda
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Hirotomo Nakaoka
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Hui-Yu Bai
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Bao-Shuai Shan
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Harumi Kan-No
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Masayoshi Kukida
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan.,Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Toshiyuki Chisaka
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan.,Department of Pediatrics, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Toshifumi Yamauchi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan.,Department of Pediatrics, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Akinori Higaki
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan.,Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Masaki Mogi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
29
|
Wilson BA, Nautiyal M, Gwathmey TM, Rose JC, Chappell MC. Evidence for a mitochondrial angiotensin-(1-7) system in the kidney. Am J Physiol Renal Physiol 2016; 310:F637-F645. [PMID: 26697984 PMCID: PMC4824145 DOI: 10.1152/ajprenal.00479.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/10/2015] [Indexed: 11/22/2022] Open
Abstract
Evidence for an intracellular renin-angiotensin system (RAS) in various cell organelles now includes the endoplasmic reticulum, nucleus, and mitochondria (Mito). Indeed, angiotensin (ANG) AT1 and AT2 receptor subtypes were functionally linked to Mito respiration and nitric oxide production, respectively, in previous studies. We undertook a biochemical analysis of the Mito RAS from male and female sheep kidney cortex. Mito were isolated by differential centrifugation followed by a discontinuous Percoll gradient and were coenriched in Mito membrane markers VDAC and ATP synthase, but not β-actin or cathepsin B. Two distinct renin antibodies identified a 37-kDa protein band in Mito; angiotensinogen (Aogen) conversion was abolished by the inhibitor aliskiren. Mito Aogen was detected by an Aogen antibody to an internal sequence of the protein, but not with an antibody directed against the ANG I N terminus. ANG peptides were quantified by three direct RIAs; mitochondrial ANG II and ANG-(1-7) contents were higher compared with ANG I (23 ± 8 and 58 ± 17 vs. 2 ± 1 fmol/mg protein; P < 0.01, n = 3). 125I-ANG I metabolism primarily revealed the formation of 125I-ANG-(1-7) in Mito that reflects the endopeptidases neprilysin and thimet oligopeptidase. Last, immunoblot studies utilizing the ANG-(1-7)/Mas receptor antibody revealed the protein in isolated Mito from sheep renal cortex. Collectively, the current data demonstrate that Mito actively metabolize the RAS precursor protein Aogen, suggesting that ANG-(1-7) may be generated within Mito to establish an intramitochondrial RAS tone and contribute to renal mitochondrial function.
Collapse
Affiliation(s)
- Bryan A Wilson
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Manisha Nautiyal
- Division of Endocrinology, Diabetes, and Metabolism, University of Florida, Gainesville, Florida
| | - TanYa M Gwathmey
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - James C Rose
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina; and
| | - Mark C Chappell
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina;
| |
Collapse
|
30
|
Lu J, Wu L, Jiang T, Wang Y, Zhao H, Gao Q, Pan Y, Tian Y, Zhang Y. Angiotensin AT2 receptor stimulation inhibits activation of NADPH oxidase and ameliorates oxidative stress in rotenone model of Parkinson's disease in CATH.a cells. Neurotoxicol Teratol 2014; 47:16-24. [PMID: 25446015 DOI: 10.1016/j.ntt.2014.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 01/17/2023]
Abstract
Oxidative stress has long been considered as a major contributing factor in the pathogenesis of Parkinson's disease (PD). The brain has an independent local renin-angiotensin system (RAS). Angiotensin II (Ang II) activates NADPH-dependent oxidases, which are a major source of superoxide and are upregulated in major aging-related diseases such as hypertension and neurodegenerative disease. In this study, we firstly examined whether CGP42112, an AT2 receptor (AT2R) agonist, may exert direct protective effects on the rotenone-induced CATH.a cell injury in vitro. We used CATH.a cell line to evaluate changes in cultured dopaminergic neuron levels of superoxide dismutase (SOD), glutathione (GSH) and reactive oxygen species (ROS). We also evaluated expression of NADPH oxidase, AT1 and AT2 receptors in treated with phosphate buffer saline (PBS), rotenone, Ang II, AT2R agonist CGP42112, or AT2R antagonist PD123319, alone and combined (n=6, each group). Quantitative reverse transcriptase PCR (qRT-PCR) and western blot were used to determine messenger RNA (mRNA) and protein levels of the AT1, AT2 receptors and NADPH oxidase. ROS generation was determined by the dichlorodihydrofluorescein diacetate fluorescent probe assay. The levels of SOD and GSH were measured by using available kits. In our study, CGP42112 (100nM) significantly reduced rotenone-induced oxidative stress and elevated the total SOD activity and GSH level. In addition, CGP42112 significantly increased AT2R expression and attenuated Ang II-induced NADPH oxidase activation, and these effects were completely abolished by the AT2R antagonist, PD123319 (1μM). Our results suggest that CGP42112 attenuates rotenone-induced oxidative stress in CATH.a neuron via activating AT2R and suppressing NADPH oxidase expression.
Collapse
Affiliation(s)
- Jie Lu
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Liang Wu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Yao Wang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Hongrui Zhao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Qing Gao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Yang Pan
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Youyong Tian
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Yingdong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China.
| |
Collapse
|
31
|
Abstract
The RAS (renin-angiotensin system) is composed of two arms: the pressor arm containing AngII (angiotensin II)/ACE (angiotensin-converting enzyme)/AT1Rs (AngII type 1 receptors), and the depressor arm represented by Ang-(1-7) [angiotensin-(1-7)]/ACE2/Mas receptors. All of the components of the RAS are present in the brain. Within the brain, Ang-(1-7) contributes to the regulation of BP (blood pressure) by acting at regions that control cardiovascular function such that, when Ang-(1-7) is injected into the nucleus of the solitary tract, caudal ventrolateral medulla, paraventricular nucleus or anterior hypothalamic area, a reduction in BP occurs; however, when injected into the rostral ventrolateral medulla, Ang-(1-7) stimulates an increase in BP. In contrast with AngII, Ang-(1-7) improves baroreflex sensitivity and has an inhibitory neuromodulatory role in hypothalamic noradrenergic neurotransmission. Ang-(1-7) not only exerts effects related to BP regulation, but also acts as a cerebroprotective component of the RAS by reducing cerebral infarct size and neuronal apoptosis. In the present review, we provide an overview of effects elicited by Ang-(1-7) in the brain, which suggest a potential role for Ang-(1-7) in controlling the central development of hypertension.
Collapse
|
32
|
Wilson BA, Marshall AC, Alzayadneh EM, Chappell MC. The ins and outs of angiotensin processing within the kidney. Am J Physiol Regul Integr Comp Physiol 2014; 307:R487-9. [PMID: 24944244 DOI: 10.1152/ajpregu.00177.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The kidney is a key target organ for bioactive components of the renin-angiotensin system (RAS); however, various renal cells such as the tubular epithelium contain an intrinsic RAS. The renal RAS can be functionally divided into ANG II-AT1 receptor and ANG-(1-7)-AT7/Mas receptor arms that functionally oppose one another. The current review considers both extracellular and intracellular pathways that potentially govern the formation and metabolism of angiotensin peptides within the renal proximal tubules.
Collapse
Affiliation(s)
- Bryan A Wilson
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Allyson C Marshall
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Ebaa M Alzayadneh
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Mark C Chappell
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
33
|
Marshall AC, Pirro NT, Rose JC, Diz DI, Chappell MC. Evidence for an angiotensin-(1-7) neuropeptidase expressed in the brain medulla and CSF of sheep. J Neurochem 2014; 130:313-23. [PMID: 24661079 DOI: 10.1111/jnc.12720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/20/2014] [Accepted: 03/21/2014] [Indexed: 11/29/2022]
Abstract
Angiotensin-(1-7) [Ang-(1-7)] is an alternative product of the brain renin-angiotensin system that exhibits central actions to lower blood pressure and improve baroreflex sensitivity. We previously identified a peptidase that metabolizes Ang-(1-7) to the inactive metabolite product Ang-(1-4) in CSF of adult sheep. This study purified the peptidase 1445-fold from sheep brain medulla and characterized this activity. The peptidase was sensitive to the chelating agents o-phenanthroline and EDTA, as well as the mercury compound p-chloromercuribenzoic acid (PCMB). Selective inhibitors to angiotensin-converting enzyme, neprilysin, neurolysin, and thimet oligopeptidase did not attenuate activity; however, the metallopeptidase agent JMV-390 was a potent inhibitor of Ang-(1-7) hydrolysis (Ki = 0.8 nM). Kinetic studies using (125) I-labeled Ang-(1-7), Ang II, and Ang I revealed comparable apparent Km values (2.6, 2.8, and 4.3 μM, respectively), but a higher apparent Vmax for Ang-(1-7) (72 vs. 30 and 6 nmol/min/mg, respectively; p < 0.01). HPLC analysis of the activity confirmed the processing of unlabeled Ang-(1-7) to Ang-(1-4) by the peptidase, but revealed < 5% hydrolysis of Ang II or Ang I, and no hydrolysis of neurotensin, bradykinin or apelin-13. The unique characteristics of the purified neuropeptidase may portend a novel pathway to influence actions of Ang-(1-7) within the brain. Angiotensin-(1-7) actions are mediated by the AT7 /Mas receptor and include reduced blood pressure, decreased oxidative stress, enhanced baroreflex sensitivity, and increased nitric oxide (NO). Ang-(1-7) is directly formed from Ang I by neprilysin (NEP). We identify a new pathway for Ang-(1-7) metabolism in the brain distinct from angiotensin-converting enzyme-dependent hydrolysis. The Ang-(1-7) endopeptidase (A7-EP) degrades the peptide to Ang-(1-4) and may influence central Ang-(1-7) tone.
Collapse
Affiliation(s)
- Allyson C Marshall
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Robson Augusto Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, CEP 31270-910, Brazil.
| |
Collapse
|
35
|
Non-canonical signalling and roles of the vasoactive peptides angiotensins and kinins. Clin Sci (Lond) 2014; 126:753-74. [DOI: 10.1042/cs20130414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
GPCRs (G-protein-coupled receptors) are among the most important targets for drug discovery due to their ubiquitous expression and participation in cellular events under both healthy and disease conditions. These receptors can be activated by a plethora of ligands, such as ions, odorants, small ligands and peptides, including angiotensins and kinins, which are vasoactive peptides that are classically involved in the pathophysiology of cardiovascular events. These peptides and their corresponding GPCRs have been reported to play roles in other systems and under pathophysiological conditions, such as cancer, central nervous system disorders, metabolic dysfunction and bone resorption. More recently, new mechanisms have been described for the functional regulation of GPCRs, including the transactivation of other signal transduction receptors and the activation of G-protein-independent pathways. The existence of such alternative mechanisms for signal transduction and the discovery of agonists that can preferentially trigger one signalling pathway over other pathways (called biased agonists) have opened new perspectives for the discovery and development of drugs with a higher specificity of action and, therefore, fewer side effects. The present review summarizes the current knowledge on the non-canonical signalling and roles of angiotensins and kinins.
Collapse
|
36
|
Chappell MC, Marshall AC, Alzayadneh EM, Shaltout HA, Diz DI. Update on the Angiotensin converting enzyme 2-Angiotensin (1-7)-MAS receptor axis: fetal programing, sex differences, and intracellular pathways. Front Endocrinol (Lausanne) 2014; 4:201. [PMID: 24409169 PMCID: PMC3886117 DOI: 10.3389/fendo.2013.00201] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/18/2013] [Indexed: 12/12/2022] Open
Abstract
The renin-angiotensin-system (RAS) constitutes an important hormonal system in the physiological regulation of blood pressure. Indeed, dysregulation of the RAS may lead to the development of cardiovascular pathologies including kidney injury. Moreover, the blockade of this system by the inhibition of angiotensin converting enzyme (ACE) or antagonism of the angiotensin type 1 receptor (AT1R) constitutes an effective therapeutic regimen. It is now apparent with the identification of multiple components of the RAS that the system is comprised of different angiotensin peptides with diverse biological actions mediated by distinct receptor subtypes. The classic RAS can be defined as the ACE-Ang II-AT1R axis that promotes vasoconstriction, sodium retention, and other mechanisms to maintain blood pressure, as well as increased oxidative stress, fibrosis, cellular growth, and inflammation in pathological conditions. In contrast, the non-classical RAS composed of the ACE2-Ang-(1-7)-Mas receptor axis generally opposes the actions of a stimulated Ang II-AT1R axis through an increase in nitric oxide and prostaglandins and mediates vasodilation, natriuresis, diuresis, and oxidative stress. Thus, a reduced tone of the Ang-(1-7) system may contribute to these pathologies as well. Moreover, the non-classical RAS components may contribute to the effects of therapeutic blockade of the classical system to reduce blood pressure and attenuate various indices of renal injury. The review considers recent studies on the ACE2-Ang-(1-7)-Mas receptor axis regarding the precursor for Ang-(1-7), the intracellular expression and sex differences of this system, as well as an emerging role of the Ang1-(1-7) pathway in fetal programing events and cardiovascular dysfunction.
Collapse
Affiliation(s)
- Mark C. Chappell
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Allyson C. Marshall
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ebaa M. Alzayadneh
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hossam A. Shaltout
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Pharmacology and Toxicology, School of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Debra I. Diz
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- *Correspondence: Debra I. Diz, The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157-1032, USA e-mail:
| |
Collapse
|