1
|
Schiffrin EL. New Kids on the Hypertension Block: Novel Agents With New Mechanisms of Action. Am J Hypertens 2024; 37:651-653. [PMID: 39138914 DOI: 10.1093/ajh/hpae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 08/15/2024] Open
Affiliation(s)
- Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research and Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Shi X, Li P, Herb M, Liu H, Wang M, Wang X, Feng Y, van Beers T, Xia N, Li H, Prokosch V. Pathological high intraocular pressure induces glial cell reactive proliferation contributing to neuroinflammation of the blood-retinal barrier via the NOX2/ET-1 axis-controlled ERK1/2 pathway. J Neuroinflammation 2024; 21:105. [PMID: 38649885 PMCID: PMC11034147 DOI: 10.1186/s12974-024-03075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND NADPH oxidase (NOX), a primary source of endothelial reactive oxygen species (ROS), is considered a key event in disrupting the integrity of the blood-retinal barrier. Abnormalities in neurovascular-coupled immune signaling herald the loss of ganglion cells in glaucoma. Persistent microglia-driven inflammation and cellular innate immune system dysregulation often lead to deteriorating retinal degeneration. However, the crosstalk between NOX and the retinal immune environment remains unresolved. Here, we investigate the interaction between oxidative stress and neuroinflammation in glaucoma by genetic defects of NOX2 or its regulation via gp91ds-tat. METHODS Ex vivo cultures of retinal explants from wildtype C57BL/6J and Nox2 -/- mice were subjected to normal and high hydrostatic pressure (Pressure 60 mmHg) for 24 h. In vivo, high intraocular pressure (H-IOP) was induced in C57BL/6J mice for two weeks. Both Pressure 60 mmHg retinas and H-IOP mice were treated with either gp91ds-tat (a NOX2-specific inhibitor). Proteomic analysis was performed on control, H-IOP, and treatment with gp91ds-tat retinas to identify differentially expressed proteins (DEPs). The study also evaluated various glaucoma phenotypes, including IOP, retinal ganglion cell (RGC) functionality, and optic nerve (ON) degeneration. The superoxide (O2-) levels assay, blood-retinal barrier degradation, gliosis, neuroinflammation, enzyme-linked immunosorbent assay (ELISA), western blotting, and quantitative PCR were performed in this study. RESULTS We found that NOX2-specific deletion or activity inhibition effectively attenuated retinal oxidative stress, immune dysregulation, the internal blood-retinal barrier (iBRB) injury, neurovascular unit (NVU) dysfunction, RGC loss, and ON axonal degeneration following H-IOP. Mechanistically, we unveiled for the first time that NOX2-dependent ROS-driven pro-inflammatory signaling, where NOX2/ROS induces endothelium-derived endothelin-1 (ET-1) overexpression, which activates the ERK1/2 signaling pathway and mediates the shift of microglia activation to a pro-inflammatory M1 phenotype, thereby triggering a neuroinflammatory outburst. CONCLUSIONS Collectively, we demonstrate for the first time that NOX2 deletion or gp91ds-tat inhibition attenuates iBRB injury and NVU dysfunction to rescue glaucomatous RGC loss and ON axon degeneration, which is associated with inhibition of the ET-1/ERK1/2-transduced shift of microglial cell activation toward a pro-inflammatory M1 phenotype, highlighting NOX2 as a potential target for novel neuroprotective therapies in glaucoma management.
Collapse
Affiliation(s)
- Xin Shi
- Department of Ophthalmology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Panpan Li
- Department of Ophthalmology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Goldenfelsstr. 19-21, 50935, Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Maoren Wang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, P. R. China
| | - Xiaosha Wang
- Department of Ophthalmology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Yuan Feng
- Department of Ophthalmology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Tim van Beers
- Institut I für Anatomie, Universitätsklinikum Köln (AöR), Cologne, Germany
| | - Ning Xia
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131, Mainz, Germany
| | - Verena Prokosch
- Department of Ophthalmology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany.
| |
Collapse
|
3
|
Schiffrin EL, Pollock DM. Endothelin System in Hypertension and Chronic Kidney Disease. Hypertension 2024; 81:691-701. [PMID: 38059359 PMCID: PMC10954415 DOI: 10.1161/hypertensionaha.123.21716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
ET (endothelin) is a powerful vasoconstrictor 21-amino acid peptide present in many tissues, which exerts many physiological functions across the body and participates as a mediator in many pathological conditions. ETs exert their effects through ETA and ETB receptors, which can be blocked by selective receptor antagonists. ETs were shown to play important roles among others, in systemic hypertension, particularly when resistant or difficult to control, and in pulmonary hypertension, atherosclerosis, cardiac hypertrophy, subarachnoid hemorrhage, chronic kidney disease, diabetic cardiovascular disease, scleroderma, some cancers, etc. To date, ET antagonists are only approved for the treatment of primary pulmonary hypertension and recently for IgA nephropathy and used in the treatment of digital ulcers in scleroderma. However, they may soon be approved for the treatment of patients with resistant hypertension and different types of nephropathy. Here, the role of ETs is reviewed with a special emphasis on participation in and treatment of hypertension and chronic kidney disease.
Collapse
Affiliation(s)
- Ernesto L. Schiffrin
- Lady Davis Institute for Medical Research, and Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University
| | - David M. Pollock
- Section of Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
4
|
Zhou W, Li X, Li X, Liu Y, Song W, Yang Q. The role of circular RNA in preeclampsia: From pathophysiological mechanism to clinical application. Life Sci 2024; 338:122407. [PMID: 38184270 DOI: 10.1016/j.lfs.2023.122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Preeclampsia (PE) is a common pregnancy-induced hypertension disorder that poses a significant threat to the health of pregnant women and fetuses, and has become a leading cause of maternal, fetal, and neonatal mortality. Currently, the therapy strategy for PE is mainly prevention management and symptomatic treatment, and only delivery can completely terminate PE. Therefore, a deeper understanding of the pathogenesis of PE is needed to make treatment and prevention more effective and targeted. With the deepening of molecular etiology research, circular RNAs (circRNAs) have been found to be widely involved in various processes of PE pathogenesis. As a kind of RNA with a special "head to tail" loop structure, the characteristics of circRNAs enable them to play diverse roles in the pathophysiology of PE, and can also serve as ideal biomarkers for early prediction and monitoring progression of PE. In this review, we summarized the latest research on PE-related circRNAs, trying to elucidate the unique or shared roles of circRNAs in various pathophysiological mechanisms of PE, aiming to provide a whole picture of current research on PE-related circRNAs, and extend a new perspective for the precise screening and targeted therapy of PE.
Collapse
Affiliation(s)
- Wenjing Zhou
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China; Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiuying Li
- Medical Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| | - Xin Li
- Medical College, Jilin Engineering Vocational College, Siping, Jilin, China.
| | - Yaojia Liu
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Wenling Song
- Department of Obstetrics, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Qiwei Yang
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
5
|
Liver sinusoidal endothelial cells induce BMP6 expression in response to non-transferrin-bound iron. Blood 2023; 141:271-284. [PMID: 36351237 DOI: 10.1182/blood.2022016987] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Homeostatic adaptation to systemic iron overload involves transcriptional induction of bone morphogenetic protein 6 (BMP6) in liver sinusoidal endothelial cells (LSECs). BMP6 is then secreted to activate signaling of the iron hormone hepcidin (HAMP) in neighboring hepatocytes. To explore the mechanism of iron sensing by LSECs, we generated TfrcTek-Cre mice with endothelial cell-specific ablation of transferrin receptor 1 (Tfr1). We also used control Tfrcfl/fl mice to characterize the LSEC-specific molecular responses to iron using single-cell transcriptomics. TfrcTek-Cre animals tended to have modestly increased liver iron content (LIC) compared with Tfrcfl/fl controls but expressed physiological Bmp6 and Hamp messenger RNA (mRNA). Despite a transient inability to upregulate Bmp6, they eventually respond to iron challenges with Bmp6 and Hamp induction, yet occasionally to levels slightly lower relative to LIC. High dietary iron intake triggered the accumulation of serum nontransferrin bound iron (NTBI), which significantly correlated with liver Bmp6 and Hamp mRNA levels and elicited more profound alterations in the LSEC transcriptome than holo-transferrin injection. This culminated in the robust induction of Bmp6 and other nuclear factor erythroid 2-related factor 2 (Nrf2) target genes, as well as Myc target genes involved in ribosomal biogenesis and protein synthesis. LSECs and midzonal hepatocytes were the most responsive liver cells to iron challenges and exhibited the highest expression of Bmp6 and Hamp mRNAs, respectively. Our data suggest that during systemic iron overload, LSECs internalize NTBI, which promotes oxidative stress and thereby transcriptionally induces Bmp6 via Nrf2. Tfr1 appears to contribute to iron sensing by LSECs, mostly under low iron conditions.
Collapse
|
6
|
Endothelial and Vascular Smooth Muscle Dysfunction in Hypertension. Biochem Pharmacol 2022; 205:115263. [PMID: 36174768 DOI: 10.1016/j.bcp.2022.115263] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/11/2022]
Abstract
The development of essential hypertension involves several factors. Vascular dysfunction, characterized by endothelial dysfunction, low-grade inflammation and structural remodeling, plays an important role in the initiation and maintenance of essential hypertension. Although the mechanistic pathways by which essential hypertension develops are poorly understood, several pharmacological classes available on the clinical settings improve blood pressure by interfering in the cardiac output and/or vascular function. This review is divided in two major sections. The first section depicts the major molecular pathways as renin angiotensin aldosterone system (RAAS), endothelin, nitric oxide signalling pathway and oxidative stress in the development of vascular dysfunction. The second section describes the role of some pharmacological classes such as i) RAAS inhibitors, ii) dual angiotensin receptor-neprilysin inhibitors, iii) endothelin-1 receptor antagonists, iv) soluble guanylate cyclase modulators, v) phosphodiesterase type 5 inhibitors and vi) sodium-glucose cotransporter 2 inhibitors in the context of hypertension. Some classes are already approved in the treatment of hypertension, but others are not yet approved. However, due to their potential benefits these classes were included.
Collapse
|
7
|
Clozel M. Aprocitentan and the endothelin system in resistant hypertension. Can J Physiol Pharmacol 2022; 100:573-583. [PMID: 35245103 DOI: 10.1139/cjpp-2022-0010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelin has emerged as a target for therapeutic intervention in systemic hypertension. As a vasoconstrictor, co-mitogenic agent, linking pulse pressure and vascular remodeling, and mediator of aldosterone and catecholamine release, endothelin is a key player in hypertension and end-organ damage. In 10-20% of the hypertensive population, the high blood pressure is resistant to administration of antihypertensive drugs of different classes in combination. Because endothelin is not targeted by the current antihypertensive drugs this may suggest that this resistance is due, in part at least, to a dependence on endothelin. This hypothesis is supported by the observation that this form of hypertension is often salt-sensitive, and that the endothelin system is stimulated by salt. In addition, the endothelin system is activated in subjects at risk of developing resistant hypertension, such as African-Americans or patients with obesity or obstructive sleep apnea. Aprocitentan is a novel, potent, dual endothelin receptor antagonist (ERA) currently in phase 3 development for the treatment of difficult-to-treat hypertension. This article discusses the research which underpinned the discovery of this ERA and the choice of its first clinical indication for patients with forms of hypertension which cannot be well controlled with classical antihypertensive drugs.
Collapse
Affiliation(s)
- Martine Clozel
- Idorsia Pharmaceuticals Ltd, 510456, Allschwil, Basel-Landschaft, Switzerland;
| |
Collapse
|
8
|
Higaki A, Mahmoud AUM, Paradis P, Schiffrin EL. Automated Detection and Diameter Estimation for Mouse Mesenteric Artery Using Semantic Segmentation. J Vasc Res 2021; 58:379-387. [PMID: 34182554 DOI: 10.1159/000516842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pressurized myography is useful for the assessment of small artery structures and function. However, this procedure requires technical expertise for sample preparation and effort to choose an appropriate sized artery. In this study, we developed an automatic artery/vein differentiation and a size measurement system utilizing machine learning algorithms. METHODS AND RESULTS We used 654 independent mouse mesenteric artery images for model training. The model yielded an Intersection-over-Union of 0.744 ± 0.031 and a Dice coefficient of 0.881 ± 0.016. The vessel size and lumen size calculated from the predicted vessel contours demonstrated a strong linear correlation with manually determined vessel sizes (R = 0.722 ± 0.048, p < 0.001 for vessel size and R = 0.908 ± 0.027, p < 0.001 for lumen size). Last, we assessed the relation between the vessel size before and after dissection using a pressurized myography system. We observed a strong positive correlation between the wall/lumen ratio before dissection and the lumen expansion ratio (R = 0.832, p < 0.01). Using multivariate binary logistic regression, 2 models estimating whether the vessel met the size criteria (lumen size of 160-240 μm) were generated with an area under the receiver operating characteristic curve of 0.761 for the upper limit and 0.747 for the lower limit. CONCLUSION The U-Net-based image analysis method could streamline the experimental approach.
Collapse
Affiliation(s)
- Akinori Higaki
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Québec, Canada
- Department of Cardiology, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Ahmad U M Mahmoud
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Québec, Canada
| | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Québec, Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Québec, Canada
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Québec, Canada
| |
Collapse
|
9
|
Aldosterone contributes to hypertension in male mice inducibly overexpressing human endothelin-1 in endothelium. J Hypertens 2021; 39:1908-1917. [PMID: 34039912 DOI: 10.1097/hjh.0000000000002880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Mechanisms of blood pressure (BP) regulation by endothelin (ET)-1 produced by endothelial cells are complex and remain unclear. Long-term exposure to human ET-1 (hET-1) in mice inducibly overexpressing hET-1 in the endothelium (ieET-1) caused sustained BP elevation. ET-1 has been shown to stimulate the release of aldosterone. Whether aldosterone plays a role in hET-1 overexpression-induced BP elevation and vessel injury is unknown. METHOD Nine- to 12-week-old male ieET-1 mice and control mice expressing a tamoxifen-inducible Cre recombinase (CreERT2) in the endothelial cells (ieCre) were treated with tamoxifen for 5 days and studied 3 months later. RESULTS Endothelial hET-1 overexpression increased plasma aldosterone levels, which was reversed by 2-week treatment with atrasentan, an endothelin type A receptors blocker. Aldosterone synthase and cryptochrome 2 adrenal cortex mRNA expression was decreased in ieET-1 mice. Two-week treatment with eplerenone, a mineralocorticoid receptor antagonist, reduced systolic BP by 10 mmHg in ieET-1 mice during rest time. Saline challenge-induced sodium excretion and renal cortex thiazide-sensitive sodium-chloride cotransporter mRNA expression were decreased in ieET-1 mice. The sensitivity of mesenteric arteries to contraction by norepinephrine was increased in ieET-1 mice, and was abrogated by eplerenone treatment, whereas sensitivity of endothelium-independent relaxation responses to sodium nitroprusside was enhanced. Resistance artery remodeling was reduced in eplerenone-treated ieET-1 vs. ieET-1 and ieCre mice. CONCLUSION These results demonstrate that aldosterone contributes to BP elevation and vascular norepinephrine sensitivity and remodeling caused by hET-1 overexpression in endothelium in mice.
Collapse
|
10
|
Tawfeek GAE, Kora MA, Yassein YS, Baghdadi AM, Elzorkany KM. Association of pre-pro-endothelin gene polymorphism and serum endothelin-1 with intradialytic hypertension in an Egyptian population. Cytokine 2020; 137:155293. [PMID: 33128922 DOI: 10.1016/j.cyto.2020.155293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/23/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Intradialytic hypertension (IDH) is a major problem of hemodialysis and it is a multifactorial disorder and need early identification and management. AIM Evaluate the serum concentration of endothelin-1 in patients with IDH and healthy control and the impact of pre-pro-endothelin gene polymorphism on level of endothelin-1 and susceptibility to IDH in Egyptian population. METHODS The patient groups divided into group I, End stage renal disease (ESRD) on chronic hemodialysis with IDH (112); group II, ESRD on chronic hemodialysis without IDH (112); group III, healthy control (112). All undergone to full history, clinical examination, routine laboratory investigations, echocardiography, serum ET-1 level by ELISA and A(8002)G polymorphism detection in pre-pro-endothelin gene by PCR-RFLP. RESULTS Our results showed significantly higher concentration of Endothelin-1 (ET-1) in both patient groups than healthy control and in group with IDH than cases without IDH (p < 0.001). GG, GA and mutated G allele carry the risk of IDH (OR = 15.94, 13.5, 5.51 respectively p < 0.001). There was association between GG and GA genotypes and higher ET-1 level in both patient groups (p < 0.001) and association between GG and GA genotype and higher mean arterial pressure (MAP), delta MAP (DMAP) and increased left ventricular mass index (LVMI) in both patient groups (p = 0.001, 0.028). CONCLUSION Pre-pro-endothelin gene polymorphism A(8002)G is an independent risk factor for IDH through changing the level of ET-1 concentration in Egyptian population undergoing chronic hemodialysis.
Collapse
|
11
|
Schiffrin EL. How Structure, Mechanics, and Function of the Vasculature Contribute to Blood Pressure Elevation in Hypertension. Can J Cardiol 2020; 36:648-658. [PMID: 32389338 DOI: 10.1016/j.cjca.2020.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 01/11/2023] Open
Abstract
Large conduit arteries and the microcirculation participate in the mechanisms of elevation of blood pressure (BP). Large vessels play roles predominantly in older subjects, with stiffening progressing after middle age leading to increases in systolic BP found in most humans with aging. Systolic BP elevation and increased pulsatility penetrate deeper into the distal vasculature, leading to microcirculatory injury, remodelling, and associated endothelial dysfunction. The result is target organ damage in the heart, brain, and kidney. In younger individuals genetically predisposed to high BP, increased salt intake or other exogenous or endogenous risk factors for hypertension, including overweight and excess alcohol intake, lead to enhanced sympathetic activity and vasoconstriction. Enhanced vasoconstrictor responses and myogenic tone become persistent when embedded in an increased extracellular matrix, resulting in remodelling of resistance arteries with a narrowed lumen and increased media-lumen ratio. Stimulation of the renin-angiotensin-aldosterone and endothelin systems and inflammatory and immune activation, to which gut microbiome dysbiosis may contribute as a result of salt intake, also participate in the injury and remodelling of the microcirculation and endothelial dysfunction. Inflammation of perivascular fat and loss of anticontractile factors play roles as well in microvessel remodelling. Exaggerated myogenic tone leads to closure of terminal arterioles, collapse of capillaries and venules, functional rarefaction, and eventually to anatomic rarefaction, compromising tissue perfusion. The remodelling of the microcirculation raises resistance to flow, and accordingly raises BP in a feedback process that over years results in stiffening of conduit arteries and systo-diastolic or predominantly systolic hypertension and, more rarely, predominantly diastolic hypertension. Thus, at different stages of life and the evolution of hypertension, large vessels and the microcirculation interact to contribute to BP elevation.
Collapse
Affiliation(s)
- Ernesto L Schiffrin
- Lady Davis Institute for Medical Research and Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
12
|
Abstract
The vasoactive peptide endothelin is an effective regulator of blood pressure and vascular homeostasis. In addition, the dysregulation of the endothelin signaling pathway is discussed to contribute to ocular diseases like glaucoma or diabetic retinopathy. Furthermore, our workgroup and others showed a protective effect of endothelin 2 for the survival of photoreceptors. In this study, we analyzed mRNA expression levels of the endothelin signaling family in wild-type mice after a puncture of the eye, intravitreal PBS injections, or light-induced photoreceptor degeneration. We observed elevated endothelin receptor a (Eta), endothelin receptor b (Etb), endothelin 1(Et1), and endothelin 2 (Et2) levels, while endothelin 3 (Et3) mRNA levels were not significantly altered. Our findings indicate an important role of the endothelin signaling pathway in response to ocular trauma or disease. These findings make endothelin signaling a promising target to attenuate retinal degeneration.
Collapse
|
13
|
Li W, Yu N, Fan L, Chen SH, Wu JL. Circ_0063517 acts as ceRNA, targeting the miR-31-5p-ETBR axis to regulate angiogenesis of vascular endothelial cells in preeclampsia. Life Sci 2020; 244:117306. [PMID: 31953159 DOI: 10.1016/j.lfs.2020.117306] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/23/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
AIMS Accumulated evidence indicates that the dysregulation of circular RNAs (circRNAs) plays pivotal roles in many human diseases including preeclampsia (PE). Circ_0063517 has been verified to be down-regulated in PE. But the role of circ_0063517 in PE is still unclear. This research aims to probe into the effect of circ_0063517 on angiogenesis in PE development. MAIN METHODS The expression of circ_0063517, endothelin receptor type B (ETBR) and miR-31-5p was assessed by quantitative reverse transcription polymerase chain reaction (RT-qPCR). MTT assay, colony formation assay, scratch assay, transwell assay, and tube formation assay were performed to detect proliferation, migration, and angiogenesis, respectively. Dual luciferase reporter system and RNA immunoprecipitation (RIP) assay were carried out to determine the interaction between miR-31-5p and circ_0063517(or ETBR). ETBR, VEGFRA, and VEGFR2 levels were detected by western blot analysis. The effect of circ_0063517 and ETBR on angiogenesis was evaluated in N-nitro-L-arginine methyl ester hydrochloride (L-NAME)-induced PE in vivo. KEY FINDINGS The levels of circ_0063517 and ETBR were down-regulated in the placenta tissue of PE patients. Conversely, the level of miR-31-5p was up-regulated in PE. Overexpression of circ_0063517 or knockdown of miR-31-5p facilitated growth, migration, and angiogenesis of vascular endothelial cells. Circ_0063517 knockdown-induced repression of the expression of ETBR, VEGFA, and VEGFR2 was partly counteracted by ETBR overexpression. Mechanistically, circ_0063517 sponged miR-31-5p to regulate ETBR expression. Finally, circ_0063517 promoted angiogenesis via enhancing ETBR expression in PE in vivo. SIGNIFICANCE Our findings suggest that circ_0063517-miR-31-5p-ETBR axis regulates angiogenesis during the pathological process of PE.
Collapse
Affiliation(s)
- Wei Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, PR China
| | - Nan Yu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, PR China
| | - Lei Fan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, PR China
| | - Su-Hua Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, PR China
| | - Jian-Li Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, PR China.
| |
Collapse
|
14
|
Abstract
Discovered in 1987 as a potent endothelial cell-derived vasoconstrictor peptide, endothelin-1 (ET-1), the predominant member of the endothelin peptide family, is now recognized as a multifunctional peptide with cytokine-like activity contributing to almost all aspects of physiology and cell function. More than 30 000 scientific articles on endothelin were published over the past 3 decades, leading to the development and subsequent regulatory approval of a new class of therapeutics-the endothelin receptor antagonists (ERAs). This article reviews the history of the discovery of endothelin and its role in genetics, physiology, and disease. Here, we summarize the main clinical trials using ERAs and discuss the role of endothelin in cardiovascular diseases such as arterial hypertension, preecclampsia, coronary atherosclerosis, myocardial infarction in the absence of obstructive coronary artery disease (MINOCA) caused by spontaneous coronary artery dissection (SCAD), Takotsubo syndrome, and heart failure. We also discuss how endothelins contributes to diabetic kidney disease and focal segmental glomerulosclerosis, pulmonary arterial hypertension, as well as cancer, immune disorders, and allograft rejection (which all involve ETA autoantibodies), and neurological diseases. The application of ERAs, dual endothelin receptor/angiotensin receptor antagonists (DARAs), selective ETB agonists, novel biologics such as receptor-targeting antibodies, or immunization against ETA receptors holds the potential to slow the progression or even reverse chronic noncommunicable diseases. Future clinical studies will show whether targeting endothelin receptors can prevent or reduce disability from disease and improve clinical outcome, quality of life, and survival in patients.
Collapse
Affiliation(s)
- Matthias Barton
- From Molecular Internal Medicine, University of Zürich, Switzerland (M.B.)
- Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan (M.Y.)
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX (M.Y.)
| |
Collapse
|
15
|
Palacios-Ramírez R, Hernanz R, Martín A, Pérez-Girón JV, Barrús MT, González-Carnicero Z, Aguado A, Jaisser F, Briones AM, Salaices M, Alonso MJ. Pioglitazone Modulates the Vascular Contractility in Hypertension by Interference with ET-1 Pathway. Sci Rep 2019; 9:16461. [PMID: 31712626 PMCID: PMC6848177 DOI: 10.1038/s41598-019-52839-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
Endothelin-1 (ET-1) is an important modulator of the vascular tone and a proinflammatory molecule that contributes to the vascular damage observed in hypertension. Peroxisome-proliferator activated receptors-γ (PPARγ) agonists show cardioprotective properties by decreasing inflammatory molecules such as COX-2 and reactive oxygen species (ROS), among others. We investigated the possible modulatory effect of PPARγ activation on the vascular effects of ET-1 in hypertension. In spontaneously hypertensive rats (SHR), but not in normotensive rats, ET-1 enhanced phenylephrine-induced contraction through ETA by a mechanism dependent on activation of TP receptors by COX-2-derived prostacyclin and reduction in NO bioavailability due to enhanced ROS production. In SHR, the PPARγ agonist pioglitazone (2.5 mg/Kg·day, 28 days) reduced the increased ETA levels and increased those of ETB. After pioglitazone treatment of SHR, ET-1 through ETB decreased ROS levels that resulted in increased NO bioavailability and diminished phenylephrine contraction. In vascular smooth muscle cells from SHR, ET-1 increased ROS production through AP-1 and NFκB activation, leading to enhanced COX-2 expression. These effects were blocked by pioglitazone. In summary, in hypertension, pioglitazone shifts the vascular ETA/ETB ratio, reduces ROS/COX-2 activation and increases NO availability; these changes explain the effect of ET-1 decreasing phenylephrine-induced contraction.
Collapse
Affiliation(s)
- Roberto Palacios-Ramírez
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Institut National de la Santé et de la Recherche Médicale Inserm U1138, Cordeliers Institute, Paris VI-University, Paris, France
| | - Raquel Hernanz
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Angela Martín
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - José V Pérez-Girón
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - María T Barrús
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Zoe González-Carnicero
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Andrea Aguado
- Depto. de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz (IdiPaz), Madrid, Spain
| | - Frederic Jaisser
- Institut National de la Santé et de la Recherche Médicale Inserm U1138, Cordeliers Institute, Paris VI-University, Paris, France
| | - Ana M Briones
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Depto. de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz (IdiPaz), Madrid, Spain
| | - Mercedes Salaices
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Depto. de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz (IdiPaz), Madrid, Spain
| | - María J Alonso
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain. .,CIBER de Enfermedades Cardiovasculares, Madrid, Spain.
| |
Collapse
|
16
|
Grunewald ZI, Jurrissen TJ, Woodford ML, Ramirez-Perez FI, Park LK, Pettit-Mee R, Ghiarone T, Brown SM, Morales-Quinones M, Ball JR, Staveley-O'Carroll KF, Aroor AR, Fadel PJ, Paradis P, Schiffrin EL, Bender SB, Martinez-Lemus LA, Padilla J. Chronic Elevation of Endothelin-1 Alone May Not Be Sufficient to Impair Endothelium-Dependent Relaxation. Hypertension 2019; 74:1409-1419. [PMID: 31630572 DOI: 10.1161/hypertensionaha.119.13676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Endothelin-1 (ET-1) is a powerful vasoconstrictor peptide considered to be causally implicated in hypertension and the development of cardiovascular disease. Increased ET-1 is commonly associated with reduced NO bioavailability and impaired vascular function; however, whether chronic elevation of ET-1 directly impairs endothelium-dependent relaxation (EDR) remains elusive. Herein, we report that (1) prolonged ET-1 exposure (ie, 48 hours) of naive mouse aortas or cultured endothelial cells did not impair EDR or reduce eNOS (endothelial NO synthase) activity, respectively (P>0.05); (2) mice with endothelial cell-specific ET-1 overexpression did not exhibit impaired EDR or reduced eNOS activity (P>0.05); (3) chronic (8 weeks) pharmacological blockade of ET-1 receptors in obese/hyperlipidemic mice did not improve aortic EDR or increase eNOS activity (P>0.05); and (4) vascular and plasma ET-1 did not inversely correlate with EDR in resistance arteries isolated from human subjects with a wide range of ET-1 levels (r=0.0037 and r=-0.1258, respectively). Furthermore, we report that prolonged ET-1 exposure downregulated vascular UCP-1 (uncoupling protein-1; P<0.05), which may contribute to the preservation of EDR in conditions characterized by hyperendothelinemia. Collectively, our findings demonstrate that chronic elevation of ET-1 alone may not be sufficient to impair EDR.
Collapse
Affiliation(s)
- Zachary I Grunewald
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia
| | - Thomas J Jurrissen
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia
| | - Makenzie L Woodford
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia.,Department of Biological Engineering (F.I.R.-P.), University of Missouri, Columbia
| | - Lauren K Park
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia
| | - Ryan Pettit-Mee
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia
| | - Thaysa Ghiarone
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia
| | - Scott M Brown
- Department of Biomedical Sciences (S.M.B., S.B.B.), University of Missouri, Columbia.,Harry S. Truman Memorial Veterans Hospital (S.M.B., A.R.A., S.B.B.), University of Missouri, Columbia
| | - Mariana Morales-Quinones
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia
| | - James R Ball
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia
| | | | - Annayya R Aroor
- Harry S. Truman Memorial Veterans Hospital (S.M.B., A.R.A., S.B.B.), University of Missouri, Columbia
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington (P.J.F.)
| | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (P.P., E.L.S.), McGill University, Montreal, Québec, Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (P.P., E.L.S.), McGill University, Montreal, Québec, Canada.,Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital (E.L.S.), McGill University, Montreal, Québec, Canada
| | - Shawn B Bender
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia.,Department of Biomedical Sciences (S.M.B., S.B.B.), University of Missouri, Columbia.,Harry S. Truman Memorial Veterans Hospital (S.M.B., A.R.A., S.B.B.), University of Missouri, Columbia
| | - Luis A Martinez-Lemus
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia.,Department of Medical Pharmacology and Physiology (L.A.M.-L.), University of Missouri, Columbia
| | - Jaume Padilla
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia
| |
Collapse
|
17
|
Li F, Kakoki M, Smid M, Boggess K, Wilder J, Hiller S, Bounajim C, Parnell SE, Sulik KK, Smithies O, Maeda-Smithies N. Causative Effects of Genetically Determined High Maternal/Fetal Endothelin-1 on Preeclampsia-Like Conditions in Mice. Hypertension 2018; 71:894-903. [PMID: 29610266 DOI: 10.1161/hypertensionaha.117.10849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/22/2018] [Accepted: 03/06/2018] [Indexed: 12/20/2022]
Abstract
Endothelin-1 (ET-1) is implicated in the pathophysiology of preeclampsia. An association between an EDN1 gene polymorphism with high ET-1 and preeclampsia was reported in humans, but their cause and effect relationships have not been defined. We examined the pregnancy effects in mice with a modified Edn1 allele that increases mRNA stability and thus ET-1 production. Heterozygous Edn1H/+ females showed no obvious abnormalities before pregnancy, but when mated with wild-type (WT) males developed a full spectrum of preeclampsia-like phenotypes, including increased systolic blood pressure, proteinuria, glomerular endotheliosis, and intrauterine fetal growth restriction. At 7.5 days post-coitus, the embryos from Edn1H/+ dams, regardless of their Edn1 genotype, lagged 12 hours in development compared with embryos from WT dams, had disoriented ectoplacental cones, and retained high E-cadherin expression. In contrast, WT females mated with Edn1H/+ males, which also carried half of the fetuses with Edn1H/+ genotype, showed a mild systolic blood pressure increase only. These WT dams had 2× higher plasma soluble fms-like tyrosine kinase-1 than WT dams mated with WT males. In human first trimester trophoblast cells, pharmacological doses of ET-1 increased the cellular sFlt1 transcripts and protein secretion via both type A and B ET-1 receptors. Our data demonstrate that high maternal ET-1 production causes preeclampsia-like phenotypes during pregnancy, affecting both initial stage of trophoblast differentiation/invasion and maternal peripheral vasculature during late gestation. High fetal ET-1 production, however, could cause increased soluble fms-like tyrosine kinase-1 in the maternal circulation and contribute to blood pressure elevation.
Collapse
Affiliation(s)
- Feng Li
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.).
| | - Masao Kakoki
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Marcela Smid
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Kim Boggess
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Jennifer Wilder
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Sylvia Hiller
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Carol Bounajim
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Scott E Parnell
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Kathleen K Sulik
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Oliver Smithies
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Nobuyo Maeda-Smithies
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| |
Collapse
|
18
|
Vascular smooth muscle cell peroxisome proliferator-activated receptor γ protects against endothelin-1-induced oxidative stress and inflammation. J Hypertens 2018; 35:1390-1401. [PMID: 28234672 DOI: 10.1097/hjh.0000000000001324] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS Peroxisome proliferator-activated receptor γ (PPARγ) agonists reduce blood pressure and vascular injury in hypertensive rodents. Pparγ inactivation in vascular smooth muscle cells (VSMC) enhances vascular injury. Transgenic mice overexpressing endothelin (ET)-1 selectively in the endothelium (eET-1) exhibit endothelial dysfunction, increased oxidative stress and inflammation. We hypothesized that inactivation of the Pparγ gene in VSMC (smPparγ-/-) would exaggerate ET-1-induced vascular injury. METHODS AND RESULTS eET-1, smPparγ-/- and eET-1/smPparγ-/- mice were treated with tamoxifen for 5 days and studied 4 weeks later. SBP was higher in eET-1 and unaffected by smPparγ inactivation. Mesenteric artery vasodilatory responses to acetylcholine were impaired only in smPparγ-/-. N(omega)-Nitro-L-arginine methyl ester abrogated relaxation responses, and the Ednra/Ednrb mRNA ratio was decreased in eET-1/smPparγ-/-, which could indicate that nitric oxide production was enhanced by ET-1 stimulation of endothelin type B receptors. Mesenteric artery media/lumen was greater only in eET-1/smPparγ-/-. Mesenteric artery reactive oxygen species increased in smPparγ and were further enhanced in eET-1/smPparγ-/-. Perivascular fat monocyte/macrophage infiltration was higher in eET-1 and smPparγ and increased further in eET-1/smPparγ-/-. Spleen CD11b+ cells were increased in smPparγ-/- and further enhanced in eET-1/smPparγ-/-, whereas Ly-6C(hi) monocytes increased in eET-1 and smPparγ-/- but not in eET-1/smPparγ-/-. Spleen T regulatory lymphocytes increased in smPparγ and decreased in eET-1, and decreased further in eET-1/smPparγ-/-. CONCLUSION VSMC Pparγ inactivation exaggerates ET-1-induced vascular injury, supporting a protective role for PPARγ in hypertension through modulation of pro-oxidant and proinflammatory pathways. Paradoxically, ET-1 overexpression preserved endothelial function in smPparγ-/- mice, presumably by enhancing nitric oxide through stimulation of endothelin type B receptors.
Collapse
|
19
|
Schiffrin E. Does Endothelin-1 Raise or Lower Blood Pressure in Humans? Nephron Clin Pract 2018; 139:47-50. [DOI: 10.1159/000487346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/26/2018] [Indexed: 12/16/2022] Open
|
20
|
Karoor V, Fini MA, Loomis Z, Sullivan T, Hersh LB, Gerasimovskaya E, Irwin D, Dempsey EC. Sustained Activation of Rho GTPases Promotes a Synthetic Pulmonary Artery Smooth Muscle Cell Phenotype in Neprilysin Null Mice. Arterioscler Thromb Vasc Biol 2018; 38:154-163. [PMID: 29191928 PMCID: PMC5746466 DOI: 10.1161/atvbaha.117.310207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 11/15/2017] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Pulmonary artery smooth muscle cells (PASMCs) from neprilysin (NEP) null mice exhibit a synthetic phenotype and increased activation of Rho GTPases compared with their wild-type counterparts. Although Rho GTPases are known to promote a contractile SMC phenotype, we hypothesize that their sustained activity decreases SM-protein expression in these cells. APPROACH AND RESULTS PASMCs isolated from wild-type and NEP-/- mice were used to assess levels of SM-proteins (SM-actin, SM-myosin, SM22, and calponin) by Western blotting, and were lower in NEP-/- PASMCs compared with wild-type. Rac and Rho (ras homology family member) levels and activity were higher in NEP-/- PASMCs, and ShRNA to Rac and Rho restored SM-protein, and attenuated the enhanced migration and proliferation of NEP-/- PASMCs. SM-gene repressors, p-Elk-1, and Klf4 (Kruppel lung factor 4), were higher in NEP-/- PASMCs and decreased by shRNA to Rac and Rho. Costimulation of wild-type PASMCs with PDGF (platelet-derived growth factor) and the NEP substrate, ET-1 (endothelin-1), increased Rac and Rho activity, and decreased SM-protein levels mimicking the NEP knock-out phenotype. Activation of Rac and Rho and downstream effectors was observed in lung tissue from NEP-/- mice and humans with chronic obstructive pulmonary disease. CONCLUSIONS Sustained Rho activation in NEP-/- PASMCs is associated with a decrease in SM-protein levels and increased migration and proliferation. Inactivation of RhoGDI (Rho guanine dissociation inhibitor) and RhoGAP (Rho GTPase activating protein) by phosphorylation may contribute to prolonged activation of Rho in NEP-/- PASMCs. Rho GTPases may thus have a role in integration of signals between vasopeptides and growth factor receptors and could influence pathways that suppress SM-proteins to promote a synthetic phenotype.
Collapse
MESH Headings
- Actins/biosynthesis
- Animals
- Becaplermin/pharmacology
- Calcium-Binding Proteins/biosynthesis
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Endothelin-1/pharmacology
- Enzyme Activation
- Genotype
- Humans
- Kruppel-Like Factor 4
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Microfilament Proteins/biosynthesis
- Muscle Proteins/biosynthesis
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Neprilysin/deficiency
- Neprilysin/genetics
- Phenotype
- Pulmonary Artery/drug effects
- Pulmonary Artery/enzymology
- Pulmonary Artery/pathology
- Pulmonary Disease, Chronic Obstructive/enzymology
- Pulmonary Disease, Chronic Obstructive/pathology
- Signal Transduction
- Smooth Muscle Myosins/biosynthesis
- ets-Domain Protein Elk-1/genetics
- ets-Domain Protein Elk-1/metabolism
- rho GTP-Binding Proteins/genetics
- rho GTP-Binding Proteins/metabolism
- Calponins
Collapse
Affiliation(s)
- Vijaya Karoor
- From the Cardiovascular Pulmonary Research Laboratory (V.K., M.A.F., Z.L., T.S., E.G., D.I., E.C.D.) and Division of Pulmonary Sciences and Critical Care Medicine (V.K., M.A.F., E.C.D.), University of Colorado Anschutz Medical Campus, Aurora; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington (L.B.H.); and Pulmonary and Critical Care, Denver VA Medical Center, CO (E.C.D.).
| | - Mehdi A Fini
- From the Cardiovascular Pulmonary Research Laboratory (V.K., M.A.F., Z.L., T.S., E.G., D.I., E.C.D.) and Division of Pulmonary Sciences and Critical Care Medicine (V.K., M.A.F., E.C.D.), University of Colorado Anschutz Medical Campus, Aurora; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington (L.B.H.); and Pulmonary and Critical Care, Denver VA Medical Center, CO (E.C.D.)
| | - Zoe Loomis
- From the Cardiovascular Pulmonary Research Laboratory (V.K., M.A.F., Z.L., T.S., E.G., D.I., E.C.D.) and Division of Pulmonary Sciences and Critical Care Medicine (V.K., M.A.F., E.C.D.), University of Colorado Anschutz Medical Campus, Aurora; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington (L.B.H.); and Pulmonary and Critical Care, Denver VA Medical Center, CO (E.C.D.)
| | - Timothy Sullivan
- From the Cardiovascular Pulmonary Research Laboratory (V.K., M.A.F., Z.L., T.S., E.G., D.I., E.C.D.) and Division of Pulmonary Sciences and Critical Care Medicine (V.K., M.A.F., E.C.D.), University of Colorado Anschutz Medical Campus, Aurora; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington (L.B.H.); and Pulmonary and Critical Care, Denver VA Medical Center, CO (E.C.D.)
| | - Louis B Hersh
- From the Cardiovascular Pulmonary Research Laboratory (V.K., M.A.F., Z.L., T.S., E.G., D.I., E.C.D.) and Division of Pulmonary Sciences and Critical Care Medicine (V.K., M.A.F., E.C.D.), University of Colorado Anschutz Medical Campus, Aurora; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington (L.B.H.); and Pulmonary and Critical Care, Denver VA Medical Center, CO (E.C.D.)
| | - Evgenia Gerasimovskaya
- From the Cardiovascular Pulmonary Research Laboratory (V.K., M.A.F., Z.L., T.S., E.G., D.I., E.C.D.) and Division of Pulmonary Sciences and Critical Care Medicine (V.K., M.A.F., E.C.D.), University of Colorado Anschutz Medical Campus, Aurora; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington (L.B.H.); and Pulmonary and Critical Care, Denver VA Medical Center, CO (E.C.D.)
| | - David Irwin
- From the Cardiovascular Pulmonary Research Laboratory (V.K., M.A.F., Z.L., T.S., E.G., D.I., E.C.D.) and Division of Pulmonary Sciences and Critical Care Medicine (V.K., M.A.F., E.C.D.), University of Colorado Anschutz Medical Campus, Aurora; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington (L.B.H.); and Pulmonary and Critical Care, Denver VA Medical Center, CO (E.C.D.)
| | - Edward C Dempsey
- From the Cardiovascular Pulmonary Research Laboratory (V.K., M.A.F., Z.L., T.S., E.G., D.I., E.C.D.) and Division of Pulmonary Sciences and Critical Care Medicine (V.K., M.A.F., E.C.D.), University of Colorado Anschutz Medical Campus, Aurora; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington (L.B.H.); and Pulmonary and Critical Care, Denver VA Medical Center, CO (E.C.D.)
| |
Collapse
|
21
|
Coelho SC, Berillo O, Caillon A, Ouerd S, Fraulob-Aquino JC, Barhoumi T, Offermanns S, Paradis P, Schiffrin EL. Three-Month Endothelial Human Endothelin-1 Overexpression Causes Blood Pressure Elevation and Vascular and Kidney Injury. Hypertension 2018; 71:208-216. [DOI: 10.1161/hypertensionaha.117.09925] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/08/2017] [Accepted: 10/17/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Suellen C. Coelho
- From the Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (S.C.C., O.B., A.C., S.O., J.C.F.-A., T.B., P.P., E.L.S.), and Department of Medicine (E.L.S.), Sir Mortimer B. Davis–Jewish General Hospital, McGill University, Montreal, Québec, Canada; and Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Ludwigstrasse, Bad Nauheim, Germany (S.O.)
| | - Olga Berillo
- From the Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (S.C.C., O.B., A.C., S.O., J.C.F.-A., T.B., P.P., E.L.S.), and Department of Medicine (E.L.S.), Sir Mortimer B. Davis–Jewish General Hospital, McGill University, Montreal, Québec, Canada; and Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Ludwigstrasse, Bad Nauheim, Germany (S.O.)
| | - Antoine Caillon
- From the Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (S.C.C., O.B., A.C., S.O., J.C.F.-A., T.B., P.P., E.L.S.), and Department of Medicine (E.L.S.), Sir Mortimer B. Davis–Jewish General Hospital, McGill University, Montreal, Québec, Canada; and Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Ludwigstrasse, Bad Nauheim, Germany (S.O.)
| | - Sofiane Ouerd
- From the Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (S.C.C., O.B., A.C., S.O., J.C.F.-A., T.B., P.P., E.L.S.), and Department of Medicine (E.L.S.), Sir Mortimer B. Davis–Jewish General Hospital, McGill University, Montreal, Québec, Canada; and Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Ludwigstrasse, Bad Nauheim, Germany (S.O.)
| | - Júlio C. Fraulob-Aquino
- From the Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (S.C.C., O.B., A.C., S.O., J.C.F.-A., T.B., P.P., E.L.S.), and Department of Medicine (E.L.S.), Sir Mortimer B. Davis–Jewish General Hospital, McGill University, Montreal, Québec, Canada; and Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Ludwigstrasse, Bad Nauheim, Germany (S.O.)
| | - Tlili Barhoumi
- From the Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (S.C.C., O.B., A.C., S.O., J.C.F.-A., T.B., P.P., E.L.S.), and Department of Medicine (E.L.S.), Sir Mortimer B. Davis–Jewish General Hospital, McGill University, Montreal, Québec, Canada; and Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Ludwigstrasse, Bad Nauheim, Germany (S.O.)
| | - Stefan Offermanns
- From the Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (S.C.C., O.B., A.C., S.O., J.C.F.-A., T.B., P.P., E.L.S.), and Department of Medicine (E.L.S.), Sir Mortimer B. Davis–Jewish General Hospital, McGill University, Montreal, Québec, Canada; and Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Ludwigstrasse, Bad Nauheim, Germany (S.O.)
| | - Pierre Paradis
- From the Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (S.C.C., O.B., A.C., S.O., J.C.F.-A., T.B., P.P., E.L.S.), and Department of Medicine (E.L.S.), Sir Mortimer B. Davis–Jewish General Hospital, McGill University, Montreal, Québec, Canada; and Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Ludwigstrasse, Bad Nauheim, Germany (S.O.)
| | - Ernesto L. Schiffrin
- From the Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (S.C.C., O.B., A.C., S.O., J.C.F.-A., T.B., P.P., E.L.S.), and Department of Medicine (E.L.S.), Sir Mortimer B. Davis–Jewish General Hospital, McGill University, Montreal, Québec, Canada; and Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Ludwigstrasse, Bad Nauheim, Germany (S.O.)
| |
Collapse
|
22
|
Wu Y, Ruan Y, Shen L, Gong Q. Protective effects of PPAR-γ against pregnancy-induced hypertension by differential ETR expression in rat models. J Cell Biochem 2017; 119:3118-3128. [PMID: 29058764 DOI: 10.1002/jcb.26454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/03/2017] [Indexed: 01/12/2023]
Abstract
This study aims to investigate the effects of PPAR-γ on rats with pregnancy-induced hypertension (PIH) by regulating endothelin receptor (ETR). A total of 60 pregnant Wistar rats were selected, and 50 rats were used to establish endotoxin induced PIH rat models. Rats were equally assigned into PIH-NS, PIH-5 mg/kg RM, PIH-10 mg/kg RM, PIH-100 mg/kg ETR, and PIH-200 mg/kg ETR groups, and the rest 10 rats were assigned to a the control group. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting were used for determining mRNA and protein expressions of PPAR-γ and ETA R, respectively. Protein expression of ET-1 was detected by immunohistochemistry. Results show that On the 22nd day of pregnancy, compared with the PIH-NS group, SBP decreased in other groups, and platelet concentration increased most significantly in the PIH-10 mg/kg RM and PIH-200 mg/kg ETR groups. Compared with the control, PIH-10 mg/kg RM and PIH-200 mg/kg ETR groups, the increase in the expression of ET-1 and ETA R was most significant in the PIH-NS group. Compared with the control and PIH-10 mg/kg RM groups, expression of PPAR-γ was lower in the PIH-NS, PIH-5 mg/kg RM, PIH-100 mg/kg ETR, and PIH-200 mg/kg ETR groups. Compared with the PIH-NS, PIH-100 mg/kg ETR and PIH-200 mg/kg ETR groups, PPAR-γ expression was significantly higher in the PIH-5 mg/kg RM group (all P < 0.05). Based on our findings, we conclude that PPAR-γ activation inhibits ETR expression and reduces the effect of ET-1 on vascular contraction thereby delaying PIH progression.
Collapse
Affiliation(s)
- Ying Wu
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, P.R. China
| | - Yan Ruan
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, P.R. China
| | - Lin Shen
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, P.R. China
| | - Qing Gong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong Province, P.R. China
| |
Collapse
|
23
|
Characterisation of preproendothelin-1 derived peptides identifies Endothelin-Like Domain Peptide as a modulator of Endothelin-1. Sci Rep 2017; 7:4956. [PMID: 28694457 PMCID: PMC5503984 DOI: 10.1038/s41598-017-05365-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023] Open
Abstract
Endothelin-1 (ET-1) is involved in the pathogenesis of cardiac and renal diseases, and in the progression of tumour growth in cancer, but current diagnosis and treatment remain inadequate. Peptides derived from the 212 amino acid precursor preproendothelin-1 (ppET-1) may have utility as biomarkers, or cause biological effects that are unaffected by endothelin receptor antagonists. Here, we used specific immunoassays and LC-MS/MS to identify NT-proET-1 (ppET-1[18–50]), Endothelin-Like Domain Peptide (ELDP, ppET-1[93–166]) and CT-proET-1 (ppET-1[169–212]) in conditioned media from cultured endothelial cells. Synthesis of these peptides correlated with ET-1, and plasma ELDP and CT-proET-1 were elevated in patients with chronic heart failure. Clearance rates of NT-proET-1, ELDP and CT-proET-1 were determined after i.v. injection in anaesthetised rats. CT-proET-1 had the slowest systemic clearance, hence providing a biological basis for it being a better biomarker of ET-1 synthesis. ELDP contains the evolutionary conserved endothelin-like domain sequence, which potentially confers biological activity. On isolated arteries ELDP lacked direct vasoconstrictor effects. However, it enhanced ET-1 vasoconstriction and prolonged the increase in blood pressure in anaesthetised rats. ELDP may therefore contribute to disease pathogenesis by augmenting ET-1 responses.
Collapse
|
24
|
Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 2017; 219:22-96. [PMID: 26706498 DOI: 10.1111/apha.12646] [Citation(s) in RCA: 593] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
The endothelium can evoke relaxations of the underlying vascular smooth muscle, by releasing vasodilator substances. The best-characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO) which activates soluble guanylyl cyclase in the vascular smooth muscle cells, with the production of cyclic guanosine monophosphate (cGMP) initiating relaxation. The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDH-mediated responses). As regards the latter, hydrogen peroxide (H2 O2 ) now appears to play a dominant role. Endothelium-dependent relaxations involve both pertussis toxin-sensitive Gi (e.g. responses to α2 -adrenergic agonists, serotonin, and thrombin) and pertussis toxin-insensitive Gq (e.g. adenosine diphosphate and bradykinin) coupling proteins. New stimulators (e.g. insulin, adiponectin) of the release of EDRFs have emerged. In recent years, evidence has also accumulated, confirming that the release of NO by the endothelial cell can chronically be upregulated (e.g. by oestrogens, exercise and dietary factors) and downregulated (e.g. oxidative stress, smoking, pollution and oxidized low-density lipoproteins) and that it is reduced with ageing and in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis toxin-sensitive pathway for NO release which favours vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and EDH, in particular those due to H2 O2 ), endothelial cells also can evoke contraction of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factors. Recent evidence confirms that most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells and that prostacyclin plays a key role in such responses. Endothelium-dependent contractions are exacerbated when the production of nitric oxide is impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive and diabetic patients. In addition, recent data confirm that the release of endothelin-1 can contribute to endothelial dysfunction and that the peptide appears to be an important contributor to vascular dysfunction. Finally, it has become clear that nitric oxide itself, under certain conditions (e.g. hypoxia), can cause biased activation of soluble guanylyl cyclase leading to the production of cyclic inosine monophosphate (cIMP) rather than cGMP and hence causes contraction rather than relaxation of the underlying vascular smooth muscle.
Collapse
Affiliation(s)
- P. M. Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| | - H. Shimokawa
- Department of Cardiovascular Medicine; Tohoku University; Sendai Japan
| | - M. Feletou
- Department of Cardiovascular Research; Institut de Recherches Servier; Suresnes France
| | - E. H. C. Tang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| |
Collapse
|
25
|
Jia W, Zhang Y, Sui M, Zheng J, Guo Q, Sun Q, Guo Q, Ji Z, Wang Z, Liu Q. Effect of acupuncture on the genetic expression of myocardial endothelin-1 and atrial natriuretic peptide in rats with stress-induced prehypertension. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2017. [DOI: 10.1016/j.jtcms.2017.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
26
|
Clinical value of non-HLA antibodies in kidney transplantation: Still an enigma? Transplant Rev (Orlando) 2016; 30:195-202. [DOI: 10.1016/j.trre.2016.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/22/2016] [Accepted: 06/01/2016] [Indexed: 12/14/2022]
|
27
|
Role of endothelin in preeclampsia and hypertension following antiangiogenesis treatment. Curr Opin Nephrol Hypertens 2016; 25:94-9. [DOI: 10.1097/mnh.0000000000000197] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Saleh L, Verdonk K, Visser W, van den Meiracker AH, Danser AHJ. The emerging role of endothelin-1 in the pathogenesis of pre-eclampsia. Ther Adv Cardiovasc Dis 2016; 10:282-93. [PMID: 26755746 DOI: 10.1177/1753944715624853] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pre-eclampsia (PE) is the most frequently encountered medical complication during pregnancy. It is characterized by a rise in systemic vascular resistance with a relatively low cardiac output and hypovolemia, combined with severe proteinuria. Despite the hypovolemia, renin-angiotensin system (RAS) activity is suppressed and aldosterone levels are decreased to the same degree as renin. This suggests that the RAS is not the cause of the hypertension in PE, but rather that its suppression is the consequence of the rise in blood pressure. Abnormal placentation early in pregnancy is widely assumed to be an important initial event in the onset of PE. Eventually, this results in the release of anti-angiogenic factors [in particular, soluble Fms-like tyrosine kinase-1 (sFlt-1)] and cytokines, leading to generalized vascular dysfunction. Elevated sFlt-1 levels bind and inactivate vascular endothelial growth factor (VEGF). Of interest, VEGF inhibition with drugs like sunitinib, applied in cancer patients, results in a PE-like syndrome, characterized by hypertension, proteinuria and renal toxicity. Both in cancer patients treated with sunitinib and in pregnant women with PE, significant rises in endothelin-1 occur. Multiple regression analysis revealed that endothelin-1 is an independent determinant of the hypertension and proteinuria in PE, and additionally a renin suppressor. Moreover, studies in animal models representative of PE, have shown that endothelin receptor blockers prevent the development of this disease. Similarly, endothelin receptor blockers are protective during sunitinib treatment. Taken together, activation of the endothelin system emerges as an important pathway causing the clinical manifestations of PE. This paper critically addresses this concept, taking into consideration both clinical and preclinical data, and simultaneously discusses the therapeutic consequences of this observation.
Collapse
Affiliation(s)
- Langeza Saleh
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The NetherlandsDivision Obstetrics & Prenatal Medicine, Department of Obstetrics & Gynaecology, Erasmus MC, Rotterdam, The Netherlands
| | - Koen Verdonk
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Willy Visser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The NetherlandsDivision Obstetrics & Prenatal Medicine, Department of Obstetrics & Gynaecology, Erasmus MC, Rotterdam, The Netherlands
| | - Anton H van den Meiracker
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Division of Vascular Medicine & Pharmacology, Room EE1418, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
29
|
Baretella O, Vanhoutte P. Endothelium-Dependent Contractions. ADVANCES IN PHARMACOLOGY 2016; 77:177-208. [DOI: 10.1016/bs.apha.2016.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Wirth A, Wang S, Takefuji M, Tang C, Althoff TF, Schweda F, Wettschureck N, Offermanns S. Age-dependent blood pressure elevation is due to increased vascular smooth muscle tone mediated by G-protein signalling. Cardiovasc Res 2015; 109:131-40. [PMID: 26531127 DOI: 10.1093/cvr/cvv249] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/29/2015] [Indexed: 12/22/2022] Open
Abstract
AIMS Arterial hypertension is a major risk factor for cardiovascular diseases. The kidney and its natriuretic function are in the centre of the prevailing models to explain the pathogenesis of hypertension; however, the mechanisms underlying blood pressure elevation remain unclear in most patients. Development of hypertension is strongly correlated with age, and this blood pressure increase typically accelerates in the fourth decade of life. The cause of age-dependent blood pressure elevation is poorly understood. This study aims to understand the role of procontractile G-protein-mediated signalling pathways in vascular smooth muscle in age-dependent hypertension. METHODS AND RESULTS Similar to humans at mid-life, we observed in 1-year-old mice elevated blood pressure levels without any evidence for increased vessel stiffness, impaired renal function, or endocrine abnormalities. Hypertensive aged mice showed signs of endothelial dysfunction and had an increased vascular formation of reactive oxygen species (ROS) and elevated endothelial ET-1 expression. Age-dependent hypertension could be normalized by ETA receptor blockade, smooth muscle-specific inactivation of the gene encoding the ETA receptor, as well as by acute disruption of downstream signalling via induction of smooth muscle-specific Gα12/Gα13, Gαq/Gα11, or LARG deficiency using tamoxifen-inducible smooth muscle-specific conditional mouse knock-out models. Induction of smooth muscle-specific ETA receptor deficiency normalized the blood pressure in aged mice despite the continuous presence of signs of endothelial dysfunction. CONCLUSION Age-dependent blood pressure elevation is due to a highly reversible activation of procontractile signalling in vascular smooth muscle cells indicating that increased vascular tone can be a primary factor in the development of hypertension.
Collapse
Affiliation(s)
- Angela Wirth
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany Institute of Pharmacology, University of Heidelberg, ImNeuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Shengpeng Wang
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Mikito Takefuji
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Cong Tang
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Till F Althoff
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, 93053 Regensburg, Germany
| | - Nina Wettschureck
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany Medical Faculty, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany Medical Faculty, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| |
Collapse
|
31
|
Speed JS, Pollock DM. New clues towards solving the mystery of endothelin and blood pressure regulation. Hypertension 2015; 66:275-7. [PMID: 26101340 DOI: 10.1161/hypertensionaha.115.05277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Joshua S Speed
- From the Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham
| | - David M Pollock
- From the Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham.
| |
Collapse
|