1
|
Balhara M, Neikirk K, Marshall A, Hinton A, Kirabo A. Endoplasmic Reticulum Stress in Hypertension and Salt Sensitivity of Blood Pressure. Curr Hypertens Rep 2024; 26:273-290. [PMID: 38602583 PMCID: PMC11166838 DOI: 10.1007/s11906-024-01300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW Hypertension is a principal risk factor for cardiovascular morbidity and mortality, with its severity exacerbated by high sodium intake, particularly in individuals with salt-sensitive blood pressure. However, the mechanisms underlying hypertension and salt sensitivity are only partly understood. Herein, we review potential interactions in hypertension pathophysiology involving the immune system, endoplasmic reticulum (ER) stress, the unfolded protein response (UPR), and proteostasis pathways; identify knowledge gaps; and discuss future directions. RECENT FINDINGS Recent advancements by our research group and others reveal interactions within and between adaptive and innate immune responses in hypertension pathophysiology. The salt-immune-hypertension axis is further supported by the discovery of the role of dendritic cells in hypertension, marked by isolevuglandin (IsoLG) formation. Alongside these broadened understandings of immune-mediated salt sensitivity, the contributions of T cells to hypertension have been recently challenged by groups whose findings did not support increased resistance of Rag-1-deficient mice to Ang II infusion. Hypertension has also been linked to ER stress and the UPR. Notably, a holistic approach is needed because the UPR engages in crosstalk with autophagy, the ubiquitin proteasome, and other proteostasis pathways, that may all involve hypertension. There is a critical need for studies to establish cause and effect relationships between ER stress and the UPR in hypertension pathophysiology in humans and to determine whether the immune system and ER stress function mainly to exacerbate or initiate hypertension and target organ injury. This review of recent studies proposes new avenues for future research for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Maria Balhara
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37212-8802, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Andrea Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37212-8802, USA.
- Vanderbilt Center for Immunobiology, Nashville, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, USA.
- Vanderbilt Institute for Global Health, Nashville, USA.
| |
Collapse
|
2
|
Patil CN, Ritter ML, Wackman KK, Oliveira V, Balapattabi K, Grobe CC, Brozoski DT, Reho JJ, Nakagawa P, Mouradian GC, Kriegel AJ, Kwitek AE, Hodges MR, Segar JL, Sigmund CD, Grobe JL. Cardiometabolic effects of DOCA-salt in male C57BL/6J mice are variably dependent on sodium and nonsodium components of diet. Am J Physiol Regul Integr Comp Physiol 2022; 322:R467-R485. [PMID: 35348007 PMCID: PMC9054347 DOI: 10.1152/ajpregu.00017.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 01/22/2023]
Abstract
Hypertension characterized by low circulating renin activity accounts for roughly 25%-30% of primary hypertension in humans and can be modeled experimentally via deoxycorticosterone acetate (DOCA)-salt treatment. In this model, phenotypes develop in progressive phases, although the timelines and relative contributions of various mechanisms to phenotype development can be distinct between laboratories. To explore interactions among environmental influences such as diet formulation and dietary sodium (Na) content on phenotype development in the DOCA-salt paradigm, we examined an array of cardiometabolic endpoints in young adult male C57BL/6J mice during sham or DOCA-salt treatments when mice were maintained on several common, commercially available laboratory rodent "chow" diets including PicoLab 5L0D (0.39% Na), Envigo 7913 (0.31% Na), Envigo 2920x (0.15% Na), or a customized version of Envigo 2920x (0.4% Na). Energy balance (weight gain, food intake, digestive efficiency, and energy efficiency), fluid and electrolyte homeostasis (fluid intake, Na intake, fecal Na content, hydration, and fluid compartmentalization), renal functions (urine production rate, glomerular filtration rate, urine Na excretion, renal expression of renin, vasopressin receptors, aquaporin-2 and relationships among markers of vasopressin release, aquaporin-2 shedding, and urine osmolality), and blood pressure, all exhibited changes that were subject to interactions between diet and DOCA-salt. Interestingly, some of these phenotypes, including blood pressure and hydration, were dependent on nonsodium dietary components, as Na-matched diets resulted in distinct phenotype development. These findings provide a broad and robust illustration of an environment × treatment interaction that impacts the use and interpretation of a common rodent model of low-renin hypertension.
Collapse
Affiliation(s)
- Chetan N Patil
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - McKenzie L Ritter
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kelsey K Wackman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vanessa Oliveira
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Connie C Grobe
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Daniel T Brozoski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gary C Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jeffrey L Segar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Curt D Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
3
|
Huang L, Hou Y, Li H, Wu H, Hu J, Lu Y, Liu X. Endoplasmic reticulum stress is involved in small white follicular atresia in chicken ovaries. Theriogenology 2022; 184:140-152. [DOI: 10.1016/j.theriogenology.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/26/2022] [Accepted: 03/13/2022] [Indexed: 11/26/2022]
|
4
|
Reho JJ, Nakagawa P, Mouradian GC, Grobe CC, Saravia FL, Burnett CML, Kwitek AE, Kirby JR, Segar JL, Hodges MR, Sigmund CD, Grobe JL. Methods for the Comprehensive in vivo Analysis of Energy Flux, Fluid Homeostasis, Blood Pressure, and Ventilatory Function in Rodents. Front Physiol 2022; 13:855054. [PMID: 35283781 PMCID: PMC8914175 DOI: 10.3389/fphys.2022.855054] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/03/2022] [Indexed: 01/22/2023] Open
Abstract
Cardiovascular disease represents the leading cause of death in the United States, and metabolic diseases such as obesity represent the primary impediment to improving cardiovascular health. Rodent (mouse and rat) models are widely used to model cardiometabolic disease, and as a result, there is increasing interest in the development of accurate and precise methodologies with sufficiently high resolution to dissect mechanisms controlling cardiometabolic physiology in these small organisms. Further, there is great utility in the development of centralized core facilities furnished with high-throughput equipment configurations and staffed with professional content experts to guide investigators and ensure the rigor and reproducibility of experimental endeavors. Here, we outline the array of specialized equipment and approaches that are employed within the Comprehensive Rodent Metabolic Phenotyping Core (CRMPC) and our collaborating laboratories within the Departments of Physiology, Pediatrics, Microbiology & Immunology, and Biomedical Engineering at the Medical College of Wisconsin (MCW), for the detailed mechanistic dissection of cardiometabolic function in mice and rats. We highlight selected methods for the analysis of body composition and fluid compartmentalization, electrolyte accumulation and flux, energy accumulation and flux, physical activity, ingestive behaviors, ventilatory function, blood pressure, heart rate, autonomic function, and assessment and manipulation of the gut microbiota. Further, we include discussion of the advantages and disadvantages of these approaches for their use with rodent models, and considerations for experimental designs using these methods.
Collapse
Affiliation(s)
- John J. Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gary C. Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Connie C. Grobe
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Fatima L. Saravia
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Colin M. L. Burnett
- Department of Internal Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA, United States
| | - Anne E. Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
| | - John R. Kirby
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeffrey L. Segar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Matthew R. Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States,*Correspondence: Justin L. Grobe,
| |
Collapse
|
5
|
Yue J, Wei YJ, Yang XL, Liu SY, Yang H, Zhang C‐Q. NLRP3 inflammasome and endoplasmic reticulum stress in the epileptogenic zone in temporal lobe epilepsy: molecular insights into their interdependence. Neuropathol Appl Neurobiol 2020; 46:770-785. [PMID: 32311777 DOI: 10.1111/nan.12621] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 03/25/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023]
Affiliation(s)
- J. Yue
- Epilepsy Research Center of PLA Department of Neurosurgery Xinqiao Hospital Army Medical University Chongqing China
| | - Y. J. Wei
- Epilepsy Research Center of PLA Department of Neurosurgery Xinqiao Hospital Army Medical University Chongqing China
| | - X. L. Yang
- Epilepsy Research Center of PLA Department of Neurosurgery Xinqiao Hospital Army Medical University Chongqing China
| | - S. Y. Liu
- Epilepsy Research Center of PLA Department of Neurosurgery Xinqiao Hospital Army Medical University Chongqing China
| | - H. Yang
- Epilepsy Research Center of PLA Department of Neurosurgery Xinqiao Hospital Army Medical University Chongqing China
| | - C. ‐Q. Zhang
- Epilepsy Research Center of PLA Department of Neurosurgery Xinqiao Hospital Army Medical University Chongqing China
| |
Collapse
|
6
|
Transglutaminase 2 Induces Deficits in Social Behavior in Mice. Neural Plast 2018; 2018:2019091. [PMID: 30647729 PMCID: PMC6311865 DOI: 10.1155/2018/2019091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/08/2018] [Accepted: 10/11/2018] [Indexed: 11/18/2022] Open
Abstract
Impairments in social behavior are highly implicated in many neuropsychiatric disorders. Recent studies indicate a role for endoplasmic reticulum (ER) stress in altering social behavior, but the underlying mechanism is not known. In the present study, we examined the role of transglutaminase 2 (TG2), a calcium-dependent enzyme known to be induced following ER stress, in social behavior in mice. ER stress induced by tunicamycin administration increased TG2 protein levels in the mouse prefrontal cortex (PFC). PFC-specific inhibition of TG2 attenuated ER stress-induced deficits in social behavior. Conversely, overexpression of TG2 in the PFC resulted in social behavior impairments in mice. In addition, systemic administration of cysteamine, a TG2 inhibitor, attenuated social behavior deficits. Our preliminary findings using postmortem human brain samples found increases in TG2 mRNA and protein levels in the middle frontal gyrus of subjects with autism spectrum disorder. These findings in mice and human postmortem brain samples identify changes in TG2 activity in the possible dysregulation of social behavior.
Collapse
|
7
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 693] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
8
|
Crider A, Nelson T, Davis T, Fagan K, Vaibhav K, Luo M, Kamalasanan S, Terry AV, Pillai A. Estrogen Receptor β Agonist Attenuates Endoplasmic Reticulum Stress-Induced Changes in Social Behavior and Brain Connectivity in Mice. Mol Neurobiol 2018; 55:7606-7618. [PMID: 29430617 PMCID: PMC6070416 DOI: 10.1007/s12035-018-0929-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/24/2018] [Indexed: 11/26/2022]
Abstract
Impaired social interaction is a key feature of several major psychiatric disorders including depression, autism, and schizophrenia. While, anatomically, the prefrontal cortex (PFC) is known as a key regulator of social behavior, little is known about the cellular mechanisms that underlie impairments of social interaction. One etiological mechanism implicated in the pathophysiology of the aforementioned psychiatric disorders is cellular stress and consequent adaptive responses in the endoplasmic reticulum (ER) that can result from a variety of environmental and physical factors. The ER is an organelle that serves essential roles in protein modification, folding, and maturation of proteins; however, the specific role of ER stress in altered social behavior is unknown. In this study, treatment with tunicamycin, an ER stress inducer, enhanced the phosphorylation level of inositol-requiring ER-to-nucleus signal kinase 1 (IRE1) and increased X-box-binding protein 1 (XBP1) mRNA splicing activity in the mouse PFC, whereas inhibition of IRE1/XBP1 pathway in PFC by a viral particle approach attenuated social behavioral deficits caused by tunicamycin treatment. Reduced estrogen receptor beta (ERβ) protein levels were found in the PFC of male mice following tunicamycin treatment. Pretreatment with an ERβ specific agonist, ERB-041 significantly attenuated tunicamycin-induced deficits in social behavior, and activation of IRE1/XBP1 pathway in mouse PFC. Moreover, ERB-041 inhibited tunicamycin-induced increases in functional connectivity between PFC and hippocampus in male mice. Together, these results show that ERβ agonist attenuates ER stress-induced deficits in social behavior through the IRE-1/XBP1 pathway.
Collapse
Affiliation(s)
- Amanda Crider
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, 997 St. Sebastian Way, Augusta, GA, 30912, USA
| | - Tyler Nelson
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, 997 St. Sebastian Way, Augusta, GA, 30912, USA
| | - Talisha Davis
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, 997 St. Sebastian Way, Augusta, GA, 30912, USA
| | - Kiley Fagan
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, 997 St. Sebastian Way, Augusta, GA, 30912, USA
| | - Kumar Vaibhav
- Department of Neurosurgery, and Department of Medical Laboratory Imaging and Radiologic Sciences (MLLIRS-CAHS), Augusta University, Augusta, GA, 30912, USA
| | - Matthew Luo
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, 997 St. Sebastian Way, Augusta, GA, 30912, USA
| | - Sunay Kamalasanan
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, 997 St. Sebastian Way, Augusta, GA, 30912, USA
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, 30912, USA
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, 997 St. Sebastian Way, Augusta, GA, 30912, USA.
| |
Collapse
|
9
|
Endoplasmic Reticulum Stress, a Driver or an Innocent Bystander in Endothelial Dysfunction Associated with Hypertension? Curr Hypertens Rep 2018; 19:64. [PMID: 28717886 DOI: 10.1007/s11906-017-0762-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Hypertension (htn) is a polygenic disorder that effects up to one third of the US population. The endoplasmic reticulum (ER) stress response is a homeostatic pathway that regulates membrane structure, protein folding, and secretory function. Emerging evidence suggests that ER stress may induce endothelial dysfunction; however, it is unclear whether ER stress-associated endothelial dysfunction modulates htn. RECENT FINDINGS Exogenous and endogenous molecules activate ER stress in the endothelium, and ER stress mediates some forms of neurogenic htn, such as angiotensin II-dependent htn. Human studies suggest that ER stress induces endothelial dysfunction, though direct evidence that ER stress augments blood pressure in humans is lacking. However, animal and cellular models demonstrate direct evidence that ER stress influences htn. ER stress is likely one of many players in a complex interplay among molecular pathways that influence the expression of htn. Targeted activation of specific ER stress pathways may provide novel therapeutic opportunities.
Collapse
|
10
|
Perrotta M, Lori A, Carnevale L, Fardella S, Cifelli G, Iacobucci R, Mastroiacovo F, Iodice D, Pallante F, Storto M, Lembo G, Carnevale D. Deoxycorticosterone acetate-salt hypertension activates placental growth factor in the spleen to couple sympathetic drive and immune system activation. Cardiovasc Res 2018; 114:456-467. [DOI: 10.1093/cvr/cvy001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 01/06/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Marialuisa Perrotta
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| | - Andrea Lori
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| | - Lorenzo Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| | - Stefania Fardella
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| | - Giuseppe Cifelli
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| | - Roberta Iacobucci
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| | - Francesco Mastroiacovo
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| | - Daniele Iodice
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| | - Fabio Pallante
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| | - Marianna Storto
- Clinical Pathology Laboratory, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| | - Giuseppe Lembo
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
- Department of Molecular Medicine, ‘Sapienza’ University of Rome, 00161 Rome, Italy
| | - Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
- Department of Molecular Medicine, ‘Sapienza’ University of Rome, 00161 Rome, Italy
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The central nervous system plays a pivotal role in the regulation of extracellular fluid volume and consequently arterial blood pressure. Key hypothalamic regions sense and integrate neurohumoral signals to subsequently alter intake (thirst and salt appetite) and output (renal excretion via neuroendocrine and autonomic function). Here, we review recent findings that provide new insight into such mechanisms that may represent new therapeutic targets. RECENT FINDINGS Implementation of cutting edge neuroscience approaches such as opto- and chemogenetics highlight pivotal roles of circumventricular organs to impact body fluid homeostasis. Key signaling mechanisms within these areas include the N-terminal variant of transient receptor potential vannilloid type-1, NaX, epithelial sodium channel, brain electroneutral transporters, and non-classical actions of vasopressin. Despite the identification of several new mechanisms, future studies need to better define the neurochemical phenotype and molecular profiles of neurons within circumventricular organs for future therapeutic potential.
Collapse
|
12
|
Young CN. Endoplasmic reticulum stress in the pathogenesis of hypertension. Exp Physiol 2017; 102:869-884. [PMID: 28605068 DOI: 10.1113/ep086274] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/09/2017] [Indexed: 01/05/2025]
Abstract
What is the topic of this review? This review highlights the emerging role of disruptions in endoplasmic reticulum (ER) function, namely ER stress, as a contributor to hypertension. What advances does it highlight? This review presents an integrative view of ER stress in cardiovascular control systems, including systems within the brain, kidney and peripheral vasculature, as related to development of hypertension. The endoplasmic reticulum (ER) is a cellular organelle specialized in the synthesis, folding, assembly and modification of proteins. In situations of increased protein demand, complex signalling pathways, termed the unfolded protein response, influence a series of cellular feedback loops to control ER function strictly. Although this is initially a compensatory attempt to maintain cellular homeostasis, chronic activation of the unfolded protein response, known as ER stress, leads to sustained changes in cellular function. A growing body of literature points to ER stress in diverse cardioregulatory systems, including the brain, kidney and vasculature, as central to the development of hypertension. Here, these recent findings from essential and obesity-related forms of hypertension are highlighted in an integrative manner, with discussion of the potential upstream causes and downstream consequences of ER stress. Given that hypertension is a leading medical and socio-economic global challenge, emerging findings suggest that targeting ER stress might represent a viable strategy for the treatment of hypertensive disease.
Collapse
Affiliation(s)
- Colin N Young
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
13
|
Wei SG, Yu Y, Weiss RM, Felder RB. Endoplasmic reticulum stress increases brain MAPK signaling, inflammation and renin-angiotensin system activity and sympathetic nerve activity in heart failure. Am J Physiol Heart Circ Physiol 2016; 311:H871-H880. [PMID: 27496879 DOI: 10.1152/ajpheart.00362.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/28/2016] [Indexed: 12/15/2022]
Abstract
We previously reported that endoplasmic reticulum (ER) stress is induced in the subfornical organ (SFO) and the hypothalamic paraventricular nucleus (PVN) of heart failure (HF) rats and is reduced by inhibition of mitogen-activated protein kinase (MAPK) signaling. The present study further examined the relationship between brain MAPK signaling, ER stress, and sympathetic excitation in HF. Sham-operated (Sham) and HF rats received a 4-wk intracerebroventricular (ICV) infusion of vehicle (Veh) or the ER stress inhibitor tauroursodeoxycholic acid (TUDCA, 10 μg/day). Lower mRNA levels of the ER stress biomarkers GRP78, ATF6, ATF4, and XBP-1s in the SFO and PVN of TUDCA-treated HF rats validated the efficacy of the TUDCA dose. The elevated levels of phosphorylated p44/42 and p38 MAPK in SFO and PVN of Veh-treated HF rats, compared with Sham rats, were significantly reduced in TUDCA-treated HF rats as shown by Western blot and immunofluorescent staining. Plasma norepinephrine levels were higher in Veh-treated HF rats, compared with Veh-treated Sham rats, and were significantly lower in the TUDCA-treated HF rats. TUDCA-treated HF rats also had lower mRNA levels for angiotensin converting enzyme, angiotensin II type 1 receptor, tumor necrosis factor-α, interleukin-1β, cyclooxygenase-2, and NF-κB p65, and a higher mRNA level of IκB-α, in the SFO and PVN than Veh-treated HF rats. These data suggest that ER stress contributes to the augmented sympathetic activity in HF by inducing MAPK signaling, thereby promoting inflammation and renin-angiotensin system activity in key cardiovascular regulatory regions of the brain.
Collapse
Affiliation(s)
- Shun-Guang Wei
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - Yang Yu
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - Robert M Weiss
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - Robert B Felder
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa; and Veterans Affairs Medical Center, Iowa City, Iowa
| |
Collapse
|
14
|
Muta K, Morgan DA, Grobe JL, Sigmund CD, Rahmouni K. mTORC1 Signaling Contributes to Drinking But Not Blood Pressure Responses to Brain Angiotensin II. Endocrinology 2016; 157:3140-8. [PMID: 27254006 PMCID: PMC4967111 DOI: 10.1210/en.2016-1243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) is a molecular node that couples extracellular cues to a wide range of cellular events controlling various physiological processes. Here, we identified mTORC1 signaling as a critical mediator of angiotensin II (Ang II) action in the brain. In neuronal GT1-7 cells, we show that Ang II stimulates neuronal mTORC1 signaling in an Ang II type 1 receptor-dependent manner. In mice, a single intracerebroventricular (ICV) injection or chronic sc infusion of Ang II activated mTORC1 signaling in the subfornical organ, a critical brain region in cardiovascular control and fluid balance. Moreover, transgenic sRA mice with brain-specific overproduction of Ang II displayed increased mTORC1 signaling in the subfornical organ. To test the functional role of brain mTORC1 in mediating the action of Ang II, we examined the consequence of mTORC1 inhibition with rapamycin on Ang II-induced increase in water intake and arterial pressure. ICV pretreatment with rapamycin blocked ICV Ang II-mediated increases in the frequency, duration, and amount of water intake but did not interfere with the pressor response evoked by Ang II. In addition, ICV delivery of rapamycin significantly reduced polydipsia, but not hypertension, of sRA mice. These results demonstrate that mTORC1 is a novel downstream pathway of Ang II type 1 receptor signaling in the brain and selectively mediates the effect of Ang II on drinking behavior.
Collapse
Affiliation(s)
- Kenjiro Muta
- Department of Pharmacology (K.M., D.A.M., J.L.G., C.D.S., K.R.), University of Iowa Healthcare Center for Hypertension Research (J.L.G., C.D.S., K.R.), and Fraternal Order of Eagles Diabetes Research Center (J.L.G., C.D.S., K.R.), University of Iowa, Iowa City, Iowa 52242
| | - Donald A Morgan
- Department of Pharmacology (K.M., D.A.M., J.L.G., C.D.S., K.R.), University of Iowa Healthcare Center for Hypertension Research (J.L.G., C.D.S., K.R.), and Fraternal Order of Eagles Diabetes Research Center (J.L.G., C.D.S., K.R.), University of Iowa, Iowa City, Iowa 52242
| | - Justin L Grobe
- Department of Pharmacology (K.M., D.A.M., J.L.G., C.D.S., K.R.), University of Iowa Healthcare Center for Hypertension Research (J.L.G., C.D.S., K.R.), and Fraternal Order of Eagles Diabetes Research Center (J.L.G., C.D.S., K.R.), University of Iowa, Iowa City, Iowa 52242
| | - Curt D Sigmund
- Department of Pharmacology (K.M., D.A.M., J.L.G., C.D.S., K.R.), University of Iowa Healthcare Center for Hypertension Research (J.L.G., C.D.S., K.R.), and Fraternal Order of Eagles Diabetes Research Center (J.L.G., C.D.S., K.R.), University of Iowa, Iowa City, Iowa 52242
| | - Kamal Rahmouni
- Department of Pharmacology (K.M., D.A.M., J.L.G., C.D.S., K.R.), University of Iowa Healthcare Center for Hypertension Research (J.L.G., C.D.S., K.R.), and Fraternal Order of Eagles Diabetes Research Center (J.L.G., C.D.S., K.R.), University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
15
|
Wei SG, Yu Y, Weiss RM, Felder RB. Inhibition of Brain Mitogen-Activated Protein Kinase Signaling Reduces Central Endoplasmic Reticulum Stress and Inflammation and Sympathetic Nerve Activity in Heart Failure Rats. Hypertension 2015; 67:229-36. [PMID: 26573710 DOI: 10.1161/hypertensionaha.115.06329] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/24/2015] [Indexed: 01/05/2023]
Abstract
Mitogen-activated protein kinase (MAPK) signaling and endoplasmic reticulum (ER) stress in the brain have been implicated in the pathophysiology of hypertension. This study determined whether ER stress occurs in subfornical organ and hypothalamic paraventricular nucleus in heart failure (HF) and how MAPK signaling interacts with ER stress and other inflammatory mediators. HF rats had significantly higher levels of the ER stress biomarkers (glucose-regulated protein 78, activating transcription factor 6, activating transcription factor 4, X-box binding protein 1, P58(IPK), and C/EBP homologous protein) in subfornical organ and paraventricular nucleus, which were attenuated by a 4-week intracerebroventricular infusion of inhibitors selective for p44/42 MAPK (PD98059), p38 MAPK (SB203580), or c-Jun N-terminal kinase (SP600125). HF rats also had higher mRNA levels of tumor necrosis factor-α, interleukin-1β, cyclooxygenase-2, and nuclear factor-κB p65, and a lower mRNA level of IκB-α, in subfornical organ and paraventricular nucleus, compared with SHAM rats, and these indicators of increased inflammation were attenuated in the HF rats treated with the MAPK inhibitors. Plasma norepinephrine level was higher in HF rats than in SHAM rats but was reduced in the HF rats treated with PD98059 and SB203580. A 4-week intracerebroventricular infusion of PD98059 also improved some hemodynamic and anatomic indicators of left ventricular function in HF rats. These data demonstrate that ER stress increases in the subfornical organ and paraventricular nucleus of rats with ischemia-induced HF and that inhibition of brain MAPK signaling reduces brain ER stress and inflammation and decreases sympathetic excitation in HF. An interaction between MAPK signaling and ER stress in cardiovascular regions of the brain may contribute to the development of HF.
Collapse
Affiliation(s)
- Shun-Guang Wei
- From the Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (S.-G.W., Y.Y., R.M.W., R.B.F.); and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Yang Yu
- From the Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (S.-G.W., Y.Y., R.M.W., R.B.F.); and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Robert M Weiss
- From the Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (S.-G.W., Y.Y., R.M.W., R.B.F.); and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Robert B Felder
- From the Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (S.-G.W., Y.Y., R.M.W., R.B.F.); and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.).
| |
Collapse
|
16
|
Young CN, Davisson RL. Angiotensin-II, the Brain, and Hypertension: An Update. Hypertension 2015; 66:920-6. [PMID: 26324508 DOI: 10.1161/hypertensionaha.115.03624] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Colin N Young
- From the Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, DC (C.N.Y.); Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (R.L.D.); and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY (R.L.D.).
| | - Robin L Davisson
- From the Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, DC (C.N.Y.); Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (R.L.D.); and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY (R.L.D.)
| |
Collapse
|