1
|
Khoukaz HB, Vadali M, Schoenherr A, Ramirez-Perez FI, Morales-Quinones M, Sun Z, Fujie S, Foote CA, Lyu Z, Zeng S, Augenreich MA, Cai D, Chen SY, Joshi T, Ji Y, Hill MA, Martinez-Lemus LA, Fay WP. PAI-1 Regulates the Cytoskeleton and Intrinsic Stiffness of Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2024; 44:2191-2203. [PMID: 38868940 PMCID: PMC11424258 DOI: 10.1161/atvbaha.124.320938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/01/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Plasma concentration of PAI-1 (plasminogen activator inhibitor-1) correlates with arterial stiffness. Vascular smooth muscle cells (SMCs) express PAI-1, and the intrinsic stiffness of SMCs is a major determinant of total arterial stiffness. We hypothesized that PAI-1 promotes SMC stiffness by regulating the cytoskeleton and that pharmacological inhibition of PAI-1 decreases SMC and aortic stiffness. METHODS PAI-039, a specific inhibitor of PAI-1, and small interfering RNA were used to inhibit PAI-1 expression in cultured human SMCs. Effects of PAI-1 inhibition on SMC stiffness, F-actin (filamentous actin) content, and cytoskeleton-modulating enzymes were assessed. WT (wild-type) and PAI-1-deficient murine SMCs were used to determine PAI-039 specificity. RNA sequencing was performed to determine the effects of PAI-039 on SMC gene expression. In vivo effects of PAI-039 were assessed by aortic pulse wave velocity. RESULTS PAI-039 significantly reduced intrinsic stiffness of human SMCs, which was accompanied by a significant decrease in cytoplasmic F-actin content. PAI-1 gene knockdown also decreased cytoplasmic F-actin. PAI-1 inhibition significantly increased the activity of cofilin, an F-actin depolymerase, in WT murine SMCs, but not in PAI-1-deficient SMCs. RNA-sequencing analysis suggested that PAI-039 upregulates AMPK (AMP-activated protein kinase) signaling in SMCs, which was confirmed by Western blotting. Inhibition of AMPK prevented activation of cofilin by PAI-039. In mice, PAI-039 significantly decreased aortic stiffness and tunica media F-actin content without altering the elastin or collagen content. CONCLUSIONS PAI-039 decreases intrinsic SMC stiffness and cytoplasmic stress fiber content. These effects are mediated by AMPK-dependent activation of cofilin. PAI-039 also decreases aortic stiffness in vivo. These findings suggest that PAI-1 is an important regulator of the SMC cytoskeleton and that pharmacological inhibition of PAI-1 has the potential to prevent and treat cardiovascular diseases involving arterial stiffening.
Collapse
Affiliation(s)
- Hekmat B Khoukaz
- Departments of Medicine (H.B.K., M.V., F.I.R.-P., M.M.-Q., Y.J., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Manisha Vadali
- Departments of Medicine (H.B.K., M.V., F.I.R.-P., M.M.-Q., Y.J., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Alex Schoenherr
- Medical Pharmacology and Physiology (A.S., C.A.F., S.-Y.C., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Francisco I Ramirez-Perez
- Departments of Medicine (H.B.K., M.V., F.I.R.-P., M.M.-Q., Y.J., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Mariana Morales-Quinones
- Departments of Medicine (H.B.K., M.V., F.I.R.-P., M.M.-Q., Y.J., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Zhe Sun
- Dalton Cardiovascular Research Center (Z.S., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Shumpei Fujie
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan (S.F.)
| | - Christopher A Foote
- Medical Pharmacology and Physiology (A.S., C.A.F., S.-Y.C., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Zhen Lyu
- Electrical Engineering and Computer Science (Z.L., S.Z.), University of Missouri, Columbia
| | - Shuai Zeng
- Electrical Engineering and Computer Science (Z.L., S.Z.), University of Missouri, Columbia
| | - Marc A Augenreich
- Nutrition and Exercise Physiology (M.A.A.), University of Missouri, Columbia
| | - Dunpeng Cai
- Surgery (D.C., S.-Y.C.), University of Missouri, Columbia
| | - Shi-You Chen
- Medical Pharmacology and Physiology (A.S., C.A.F., S.-Y.C., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
- Surgery (D.C., S.-Y.C.), University of Missouri, Columbia
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (S.-Y.C., W.P.F.)
| | - Trupti Joshi
- Health Management and Informatics (T.J.), University of Missouri, Columbia
| | - Yan Ji
- Departments of Medicine (H.B.K., M.V., F.I.R.-P., M.M.-Q., Y.J., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Michael A Hill
- Medical Pharmacology and Physiology (A.S., C.A.F., S.-Y.C., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
- Dalton Cardiovascular Research Center (Z.S., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Luis A Martinez-Lemus
- Departments of Medicine (H.B.K., M.V., F.I.R.-P., M.M.-Q., Y.J., L.A.M.-L., W.P.F.), University of Missouri, Columbia
- Medical Pharmacology and Physiology (A.S., C.A.F., S.-Y.C., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
- Dalton Cardiovascular Research Center (Z.S., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - William P Fay
- Departments of Medicine (H.B.K., M.V., F.I.R.-P., M.M.-Q., Y.J., L.A.M.-L., W.P.F.), University of Missouri, Columbia
- Medical Pharmacology and Physiology (A.S., C.A.F., S.-Y.C., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
- Dalton Cardiovascular Research Center (Z.S., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (S.-Y.C., W.P.F.)
| |
Collapse
|
2
|
Wang B, Xu W, Mei Z, Yang W, Meng X, An G. Association between serum Klotho levels and estimated pulse wave velocity in postmenopausal women: a cross-sectional study of NHANES 2007-2016. Front Endocrinol (Lausanne) 2024; 15:1471548. [PMID: 39329104 PMCID: PMC11424431 DOI: 10.3389/fendo.2024.1471548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Background Postmenopausal women are at an increased risk of arterial stiffness, which can be assessed using estimated pulse wave velocity (ePWV). This study aimed to investigate the relationship between serum klotho levels and ePWV in postmenopausal women. Methods This cross-sectional study used data from postmenopausal women who participated in the National Health and Nutrition Examination Survey (NHANES) between 2007 and 2016. Participants were divided into two groups based on the presence of hypertension. Weighted multivariate linear regression was used to analyze the relationship between serum Klotho levels and ePWV in each group. Restricted cubic spline models with multivariable adjustments were employed to examine nonlinear associations within each group. Results Our analysis included 4,468 postmenopausal women from the NHANES database, with 1,671 in the non-hypertensive group and 2,797 in the hypertensive group. In all regression models, serum Klotho (ln-transformed) levels were significantly and independently negatively correlated with ePWV in the non-hypertensive group. After fully adjusting for confounders, a 1-unit increase in ln(Klotho) was associated with a 0.13 m/s decrease in ePWV (β = -0.13, 95% CI -0.23 to -0.03; p = 0.008). Additionally, in the fully adjusted model, participants in the highest quartile of ln(Klotho) had an ePWV value 0.14 m/s lower than those in the lowest quartile (p for trend = 0.017; 95% CI -0.23 to -0.05; p = 0.002). This negative correlation was consistent across subgroups and was particularly significant among women aged < 60 years, nonsmokers, and non-Hispanic Black women. However, no association was observed between serum Klotho levels and ePWV in the hypertensive group. Conclusion Hypertension may affect the relationship between serum Klotho level and ePWV in postmenopausal women. Increased serum Klotho levels may reduce arterial stiffness in postmenopausal women. Further studies are required to confirm these findings.
Collapse
Affiliation(s)
- Baiqiang Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenqu Xu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zeyuan Mei
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Yang
- Department of Cardiology, People's Hospital of Rizhao, Rizhao, China
| | - Xiao Meng
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Guipeng An
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
3
|
Mushajiang M, Li Y, Sun Z, Liu J, Zhang L, Wang Z. USP10 alleviates Nε-carboxymethyl-lysine-induced vascular calcification and atherogenesis in diabetes mellitus by promoting AMPK activation. Cell Signal 2024; 120:111211. [PMID: 38705504 DOI: 10.1016/j.cellsig.2024.111211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/21/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
Vascular calcification (VC) is a characteristic feature in patients with diabetes mellitus (DM) and is closely associated with the osteogenic differentiation of vascular smooth muscle cells (VSMCs). Ubiquitin-Specific Protease 10 (USP10) has been shown to regulate multiple cellular processes; however, its relationship with diabetic VC remains unclear. This study aims to elucidate the role of USP10 in VC development and the underlying regulatory mechanisms. Nε-carboxymethyl lysine (CML) was significantly increased in calcified ateries from diabetic atherosclerosis ApoE-/- mice fed with high-fat diets. CML downregulated USP10 expression in VSMCs and calcified mice coronary arteries, as assessd by Western blotting, RT-qPCR,immunofluorescence and immunohistochemistry. Loss-and gain-of-function experiments were conducted both in vitro and in vivo to verify the biological functions of USP10. Ectopic expression of USP10 mitigated the severity of VC. With regard to the mechanism, the interaction between USP10 and AMPKα was investigated through double-label immunofluorescence and Co-immunoprecipitation. In vitro ubiquitination assay revealed that USP10 was capable of mediating AMPKα ubiquitination and caused increased AMPKα phosphorylation level at Thr172. Moreover, the anticalcification effect of USP10 was reversed by pharmacological inhibition of AMPK signaling pathway. The current fundings suggest an important role of USP10 in diabetic VC progression, at least in part, via mediating the ubiquitination and activation of AMPKα. USP10 may serve as a novel therapeutic target for the treatment of diabetic VC.
Collapse
MESH Headings
- Animals
- Ubiquitin Thiolesterase/metabolism
- Ubiquitin Thiolesterase/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Mice
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Lysine/metabolism
- Lysine/analogs & derivatives
- AMP-Activated Protein Kinases/metabolism
- Male
- Ubiquitination
- Mice, Inbred C57BL
- Humans
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/pathology
Collapse
Affiliation(s)
- Mayibai Mushajiang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yalan Li
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Jia Liu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| |
Collapse
|
4
|
Wen Z, Liu X, Zhang T. L-shaped association of systemic immune-inflammation index (SII) with serum soluble α-Klotho in the prospective cohort study from the NHANES database. Sci Rep 2024; 14:13189. [PMID: 38851827 PMCID: PMC11162490 DOI: 10.1038/s41598-024-64050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024] Open
Abstract
The systemic immune-inflammation index (SII), an integrated and ground-breaking inflammatory measure, has been widely used in various fields. We aimed to assess the association between the systemic immune-inflammation index (SII) and α-Klotho (a new anti-aging biomarker). In this cross-sectional investigation, people with complete information on SII and α-Klotho from the National Health and Nutrition Examination Survey (NHANES) between 2007 and 2016 were the study's subject population. SII was calculated by platelet count × neutrophil count/lymphocyte count. The association between SII and α-Klotho was investigated using multivariable linear regression and a generalized additive model. In order to explore the non-linear connection, we employed smoothed curve fitting. Subgroup analysis were also performed. A total of 13,701 participants with an average age of 57.73 ± 10.86 years were enrolled, of whom 51.53% were female. After fully adjustment, SII was negatively associated with serum soluble α-Klotho [β(95% CI) = - 0.07 (- 0.08, - 0.05)]. Furthermore, we found L-shaped association between SII and klotho protein level, with the inflection point at 255 pg/ml. Subgroup analysis and interaction test revealed that there was no discernible dependence on gender, age, race, smoking, alcohol, diabetes and hypertension (all p for interaction > 0.05). SII level was negatively associated with serum klotho protein concentration in American adults. To verify our findings, more large-scale prospective investigations are still required.
Collapse
Affiliation(s)
- Zujun Wen
- Department of Pharmacy, Heyuan People's Hospital, Heyuan, China
| | - Xiang Liu
- The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Tingting Zhang
- Department of Pharmacy, Heyuan People's Hospital, Heyuan, China.
| |
Collapse
|
5
|
Afsar B, Afsar RE. Hypertension and cellular senescence. Biogerontology 2023:10.1007/s10522-023-10031-4. [PMID: 37010665 DOI: 10.1007/s10522-023-10031-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
Essential or primary hypertension is a wordwide health problem. Elevated blood pressure (BP) is closely associated not only with increased chronological aging but also with biological aging. There are various common pathways that play a role in cellular aging and BP regulation. These include but not limited to inflammation, oxidative stress, mitochondrial dysfunction, air pollution, decreased klotho activity increased renin angiotensin system activation, gut dysbiosis etc. It has already been shown that some anti-hypertensive drugs have anti-senescent actions and some senolytic drugs have BP lowering effects. In this review, we have summarized the common mechanisms underlying cellular senescence and HT and their relationships. We further reviewed the effect of various antihypertensive medications on cellular senescence and suggest further issues to be studied.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
6
|
Chen J, Lin Y, Sun Z. Inhibition of miR-101-3p prevents human aortic valve interstitial cell calcification through regulation of CDH11/SOX9 expression. Mol Med 2023; 29:24. [PMID: 36809926 PMCID: PMC9945614 DOI: 10.1186/s10020-023-00619-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is the second leading cause of adult heart diseases. The purpose of this study is to investigate whether miR-101-3p plays a role in the human aortic valve interstitial cells (HAVICs) calcification and the underlying mechanisms. METHODS Small RNA deep sequencing and qPCR analysis were used to determine changes in microRNA expression in calcified human aortic valves. RESULTS The data showed that miR-101-3p levels were increased in the calcified human aortic valves. Using cultured primary HAVICs, we demonstrated that the miR-101-3p mimic promoted calcification and upregulated the osteogenesis pathway, while anti-miR-101-3p inhibited osteogenic differentiation and prevented calcification in HAVICs treated with the osteogenic conditioned medium. Mechanistically, miR-101-3p directly targeted cadherin-11 (CDH11) and Sry-related high-mobility-group box 9 (SOX9), key factors in the regulation of chondrogenesis and osteogenesis. Both CDH11 and SOX9 expressions were downregulated in the calcified human HAVICs. Inhibition of miR-101-3p restored expression of CDH11, SOX9 and ASPN and prevented osteogenesis in HAVICs under the calcific condition. CONCLUSION miR-101-3p plays an important role in HAVIC calcification through regulation of CDH11/SOX9 expression. The finding is important as it reveals that miR-1013p may be a potential therapeutic target for calcific aortic valve disease.
Collapse
Affiliation(s)
- Jianglei Chen
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yi Lin
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA. .,Department of Physiology, College of Medicine, UT Cardiovascular Institute, University of Tennessee Health Science Center, 956 Court Avenue, Memphis, TN, 38163, USA.
| |
Collapse
|
7
|
Luo L, Guo J, Li Y, Liu T, Lai L. Klotho promotes AMPK activity and maintains renal vascular integrity by regulating the YAP signaling pathway. Int J Med Sci 2023; 20:194-205. [PMID: 36794161 PMCID: PMC9925983 DOI: 10.7150/ijms.80220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
The development and formation of mammalian blood vessels are closely related to the regulation of signal transduction pathways. Klotho/AMPK and YAP/TAZ signaling pathways are closely related to angiogenesis, but the internal relationship between them is not clear. In this study, we found that Klotho heterozygous deletion mice (Klotho+/- mice) had obvious thickening of the renal vascular wall, obvious enlargement of vascular volume, and significant proliferation and pricking of vascular endothelial cells. Western blot showed that the expression levels of total YAP protein, p-YAP protein (Ser127 and Ser397), p-MOB1, MST1, LATS1, and SAV1 in renal vascular endothelial cells were significantly lower in Klotho+/- mice than in wild-type mice. Knockdown of endogenous Klotho in HUVECs accelerated their ability to divide and form vascular branches in the extracellular matrix. Meanwhile, the results of CO-IP western blot showed that the expression of LATS1 and p-LATS1 interacting with AMPK protein decreased significantly, and the ubiquitination level of YAP protein also decreased significantly in vascular endothelial cells of kidney tissue of Klotho+/- mice. Subsequently, continuous overexpression of exogenous Klotho protein in Klotho heterozygous deficient mice effectively reversed the abnormal renal vascular structure by weakening the expression of the YAP signal transduction pathway. Therefore, we confirmed that Klotho and AMPKα proteins were highly expressed in vascular endothelial cells of adult mouse tissues and organs; this resulted in a phosphorylation modification of YAP protein, closed the activity of the YAP/TAZ signal transduction pathway, and inhibited the growth and proliferation of vascular endothelial cells. When Klotho was absent, the phosphorylation modification of YAP protein by AMPKα was inhibited, resulting in the activation of the YAP/TAZ signal transduction pathway and finally inducing the excessive proliferation of vascular endothelial cells.
Collapse
Affiliation(s)
- Lei Luo
- The Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.,Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Jianming Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yi Li
- The Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Lingyun Lai
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
8
|
Yan Y, Chen J. Association between serum Klotho concentration and all-cause and cardiovascular mortality among American individuals with hypertension. Front Cardiovasc Med 2022; 9:1013747. [PMID: 36457804 PMCID: PMC9705974 DOI: 10.3389/fcvm.2022.1013747] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/31/2022] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND AND AIMS Evidence indicates that serum Klotho concentration is associated with mortality in patients with chronic kidney disease (CKD). However, evidence on this association among people with hypertension is scarce. Therefore, we aimed to examine the association between serum Klotho concentration and all-cause and cardiovascular mortality in American patients with hypertension. METHODS AND RESULTS We included 6,778 participants with hypertension from the National Health and Nutrition Examination Survey (NHANES) 2007-2014. A Cox proportional hazard model was used to compute the hazard ratios (HRs) and 95% confidence intervals (CIs). The correlation between serum Klotho concentration and mortality was determined using restricted cubic spline and piecewise linear regression analyses. During 36,714 person-years of follow-up, 575 deaths were documented. Lower serum Klotho concentration was associated with increased all-cause mortality, but not cardiovascular mortality after multivariate adjustment. According to spline analysis, the correlation between serum Klotho concentration and all-cause mortality was non-linear (P < 0.001), and the threshold value was 574 pg/mL. The HR below the threshold point was 0.79 (95% CI: 0.67-0.93); no significant difference was found above the threshold point. CONCLUSION Higher serum Klotho concentration was associated with lower all-cause mortality, but not cardiovascular mortality in patients with hypertension with or without chronic renal impairment.
Collapse
Affiliation(s)
- Yuqin Yan
- *Correspondence: Yuqin Yan, ; orcid.org/0000-0001-6973-8909
| | | |
Collapse
|
9
|
Fan J, Wang S, Lu X, Sun Z. Transplantation of bone marrow cells from miR150 knockout mice improves senescence-associated humoral immune dysfunction and arterial stiffness. Metabolism 2022; 134:155249. [PMID: 35792174 PMCID: PMC9796492 DOI: 10.1016/j.metabol.2022.155249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 06/06/2022] [Accepted: 06/24/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND PURPOSE The senescence-accelerated mouse P1 (SAMP1) suffers from humoral immune deficiency, arterial stiffness and accelerated aging. In contrast, the microRNA-150 knockout (miR-150-KO) mice show enhanced humoral immune function including increased B cell population and elevated serum immunoglobulin levels and enjoy extended lifespan. The purpose of this study was to investigate whether transplantation of bone marrow cells (BMCs) from miR-150-KO mice affects immune deficiency and arterial stiffening in SAMP1 mice. METHODS AND RESULTS Pulse wave velocity and blood pressure were increased significantly in SAMP1 mice (10 months), indicating arterial stiffening and hypertension. Interestingly, transplantation of BMCs from miR-150-KO mice significantly attenuated arterial stiffening and hypertension in SAMP1 mice within eight weeks. BMC transplantation from miR-150-KO mice partially rescued the downregulation of B lymphocytes, largely restored serum IgG and IgM levels, decreased inflammatory cytokine and chemokine expression, and attenuated macrophage and T cell infiltration in aortas in SAMP1 mice. BMC transplantation nearly abolished the upregulation of collagen 1, TGFβ1, Scleraxis, MMP-2 and MMP-9 expression and the downregulation of elastin levels in aortas in SAMP1 mice. FISH staining confirmed existence of the transplanted BMCs at end of the experiment. In cultured endothelial cells, IgG-deficient medium invoked upregulation of inflammatory cytokine/chemokine expression which can be rescued by treatment with IgG. CONCLUSIONS Accelerated senescence caused arterial stiffening via impairing the humoral immune function in SAMP1 mice. BMC transplantation from miR-150-KO mice attenuated arterial matrix remodeling and stiffening and hypertension in SAMP1 mice partly via improving the humoral immune function which attenuates vascular inflammation.
Collapse
Affiliation(s)
- Jun Fan
- Department of Physiology, College of Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK 73034, USA
| | - Shirley Wang
- Department of Physiology, College of Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK 73034, USA
| | - Xianglan Lu
- Department of Physiology, College of Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK 73034, USA
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Physiology, College of Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK 73034, USA.
| |
Collapse
|
10
|
Fan J, Wang S, Chen K, Sun Z. Aging impairs arterial compliance via Klotho-mediated downregulation of B-cell population and IgG levels. Cell Mol Life Sci 2022; 79:494. [PMID: 36001158 PMCID: PMC10082671 DOI: 10.1007/s00018-022-04512-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Aging is associated with compromised immune function and arterial remodeling and stiffness. The purpose of this study is to investigate whether in vivo AAV-based delivery of secreted Klotho (SKL) gene (AAV-SKL) improves aging- and senescence-associated immune dysfunction and arterial stiffness. METHODS AND RESULTS Senescence-accelerated mice prone strain 1 (SAMP1, 10 months) and old mice (20 months) were used. Serum SKL levels, B-cell population and serum IgG levels were markedly decreased in SAMP1 and old mice. Rescue of downregulation of serum SKL levels by in vivo AAV2-based delivery of SKL gene (AAV-SKL) increased B-cell population and serum IgG levels and attenuated arterial stiffness in SAMP1 and old mice. Thus, Klotho deficiency may play a role in senescence- and aging-associated humoral immune dysfunction and arterial stiffness. Vascular infiltration of inflammatory cells and expression of TGFβ1, collagen 1, scleraxis, MMP-2 and MMP-9 were increased while the elastin level was decreased in aortas of SAMP1 and old mice which can be rescued by AAV-SKL. Interestingly, treatment with IgG effectively rescued arterial inflammation and remodeling and attenuated arterial stiffness and hypertension in aging mice. In cultured B-lymphoblast cells, we further showed that SKL regulates B-cell proliferation and maturation partly via the NFkB pathway. CONCLUSION Aging-associated arterial stiffening may be largely attributed to downregulation of B-cell population and serum IgG levels. AAV-SKL attenuates arterial stiffness in aging mice partly via restoring B-cell population and serum IgG levels which attenuates aging-associated vascular inflammation and arterial remodeling.
Collapse
Affiliation(s)
- Jun Fan
- Department of Physiology, College of Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Shirley Wang
- Department of Physiology, College of Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Kai Chen
- Department of Physiology, College of Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, A302 Coleman Building, 956 Court Avenue, Memphis, TN, 38163, USA
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, A302 Coleman Building, 956 Court Avenue, Memphis, TN, 38163, USA.
| |
Collapse
|
11
|
Xu JP, Zeng RX, He MH, Lin SS, Guo LH, Zhang MZ. Associations Between Serum Soluble α-Klotho and the Prevalence of Specific Cardiovascular Disease. Front Cardiovasc Med 2022; 9:899307. [PMID: 35795366 PMCID: PMC9251131 DOI: 10.3389/fcvm.2022.899307] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/20/2022] [Indexed: 12/03/2022] Open
Abstract
Objective Accumulating experimental evidence has identified the beneficial effects of the anti-aging protein, serum soluble α-Klotho, on longevity, and the cardiovascular system. Although a previous study has revealed the predictive value of α-Klotho on total cardiovascular disease (CVD), the associations between α-Klotho and specific CVDs, including congestive heart failure (CHF), coronary heart disease (CHD), myocardial infarction (MI), and stroke, remains to be fully elucidated in humans. Methods For 8,615 adults in the 2007 to 2016 National Health and Nutrition Examination Survey, stratified multivariable logistic regression models, restricted cubic spline curves, and subgroup analyses were used to evaluate the associations between α-Klotho and the four specific CVDs. Results In the quartile analyses, compared to those in the highest quartile, participants in the lowest level of α-Klotho were significantly associated with CHF [odds ratio (OR) = 1.46, 95% CI: 1.09–1.97] and MI (1.33, 1.02–1.74), which was not the case for CHD (1.12, 0.91–1.38) or stroke (0.96, 0.73–1.25). Each unit increment in the ln-transformed α-Klotho concentrations was only positively associated with a 38 and 24% reduction in the prevalence of CHF and MI, respectively. Restricted cubic spline curves indicated that the α-Klotho was correlated with CHF and MI in linear-inverse relationships. Conclusion The present findings suggested that the serum soluble α-Klotho is significantly associated with the prevalence of CHF and MI. To better determine whether α-Klotho is a specific biomarker of CVD, particularly for CHD and stroke, further research in humans is needed.
Collapse
Affiliation(s)
- Jun-Peng Xu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Rui-Xiang Zeng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Mu-Hua He
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shan-Shan Lin
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Heng Guo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Min-Zhou Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- *Correspondence: Min-Zhou Zhang
| |
Collapse
|
12
|
Fung TY, Iyaswamy A, Sreenivasmurthy SG, Krishnamoorthi S, Guan XJ, Zhu Z, Su CF, Liu J, Kan Y, Zhang Y, Wong HLX, Li M. Klotho an Autophagy Stimulator as a Potential Therapeutic Target for Alzheimer’s Disease: A Review. Biomedicines 2022; 10:biomedicines10030705. [PMID: 35327507 PMCID: PMC8945569 DOI: 10.3390/biomedicines10030705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) is an age-associated neurodegenerative disease; it is the most common cause of senile dementia. Klotho, a single-pass transmembrane protein primarily generated in the brain and kidney, is active in a variety of metabolic pathways involved in controlling neurodegeneration and ageing. Recently, many studies have found that the upregulation of Klotho can improve pathological cognitive deficits in an AD mice model and have demonstrated that Klotho plays a role in the induction of autophagy, a major contributing factor for AD. Despite the close association between Klotho and neurodegenerative diseases, such as AD, the underlying mechanism by which Klotho contributes to AD remains poorly understood. In this paper, we will introduce the expression, location and structure of Klotho and its biological functions. Specifically, this review is devoted to the correlation of Klotho protein and the AD phenotype, such as the effect of Klotho in upregulating the amyloid-beta clearance and in inducing autophagy for the clearance of toxic proteins, by regulating the autophagy lysosomal pathway (ALP). In summary, the results of multiple studies point out that targeting Klotho would be a potential therapeutic strategy in AD treatment.
Collapse
Affiliation(s)
- Tsz Yan Fung
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (T.Y.F.); (S.G.S.); (S.K.); (X.-J.G.); (Z.Z.); (C.-F.S.); (J.L.); (Y.K.)
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (T.Y.F.); (S.G.S.); (S.K.); (X.-J.G.); (Z.Z.); (C.-F.S.); (J.L.); (Y.K.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
- Correspondence: or (A.I.); (H.L.X.W.); (M.L.); Tel.: +852-3411-2919 (M.L.); Fax: +852-3411-2461 (M.L.)
| | - Sravan G. Sreenivasmurthy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (T.Y.F.); (S.G.S.); (S.K.); (X.-J.G.); (Z.Z.); (C.-F.S.); (J.L.); (Y.K.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Senthilkumar Krishnamoorthi
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (T.Y.F.); (S.G.S.); (S.K.); (X.-J.G.); (Z.Z.); (C.-F.S.); (J.L.); (Y.K.)
- Centre for Trans-Disciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Chennai 600077, Tamil Nadu, India
| | - Xin-Jie Guan
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (T.Y.F.); (S.G.S.); (S.K.); (X.-J.G.); (Z.Z.); (C.-F.S.); (J.L.); (Y.K.)
| | - Zhou Zhu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (T.Y.F.); (S.G.S.); (S.K.); (X.-J.G.); (Z.Z.); (C.-F.S.); (J.L.); (Y.K.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Cheng-Fu Su
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (T.Y.F.); (S.G.S.); (S.K.); (X.-J.G.); (Z.Z.); (C.-F.S.); (J.L.); (Y.K.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Jia Liu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (T.Y.F.); (S.G.S.); (S.K.); (X.-J.G.); (Z.Z.); (C.-F.S.); (J.L.); (Y.K.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Yuxuan Kan
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (T.Y.F.); (S.G.S.); (S.K.); (X.-J.G.); (Z.Z.); (C.-F.S.); (J.L.); (Y.K.)
| | - Yuan Zhang
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518025, China;
| | - Hoi Leong Xavier Wong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Correspondence: or (A.I.); (H.L.X.W.); (M.L.); Tel.: +852-3411-2919 (M.L.); Fax: +852-3411-2461 (M.L.)
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (T.Y.F.); (S.G.S.); (S.K.); (X.-J.G.); (Z.Z.); (C.-F.S.); (J.L.); (Y.K.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
- Correspondence: or (A.I.); (H.L.X.W.); (M.L.); Tel.: +852-3411-2919 (M.L.); Fax: +852-3411-2461 (M.L.)
| |
Collapse
|
13
|
Sun QW, Sun Z. Stem Cell Therapy for Pulmonary Arterial Hypertension: An Update. J Heart Lung Transplant 2022; 41:692-703. [DOI: 10.1016/j.healun.2022.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/04/2022] [Accepted: 02/27/2022] [Indexed: 10/18/2022] Open
|
14
|
Serum klotho and pulse pressure; insight from NHANES. Int J Cardiol 2022; 355:54-58. [DOI: 10.1016/j.ijcard.2022.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
|
15
|
Lin Y, Sun Z. Klotho deficiency-induced arterial calcification involves osteoblastic transition of VSMCs and activation of BMP signaling. J Cell Physiol 2022; 237:720-729. [PMID: 34368951 PMCID: PMC8810603 DOI: 10.1002/jcp.30541] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/07/2021] [Accepted: 07/24/2021] [Indexed: 01/03/2023]
Abstract
Klotho is an aging-suppressor gene. The purpose of this study was to investigate whether Klotho deficiency affects arterial structure. We found that Klotho-deficient (kl/kl) mice developed severe arterial calcification and elastin fragmentation. Klotho-deficient mice demonstrated higher levels of bone morphogenetic proteins (BMP2, BMP4) and runt-related transcription factor 2 (RUNX2) in aortas, indicating that Klotho deficiency upregulates expression of BMP2 and RUNX2 (a key transcription factor in osteoblasts). To exclude the potential involvement of hyperphosphatemia in arterial calcification, Klotho-deficient mice were given a low phosphate diet (0.2%). The low phosphate diet normalized blood phosphate levels and abolished calcification in the lungs and kidneys, but it did not prevent calcification in the aortas in Klotho-deficient mice. Thus, Klotho deficiency per se might play a causal role in the pathogenesis of arterial calcification, which is independent of hyperphosphatemia. In cultured mouse aortic smooth muscle cells (ASMCs), Klotho-deficient serum-induced transition of ASMCs to osteoblasts. Klotho-deficient serum promoted BMP2/vitamin D3-induced protein expression of PIT2 and RUNX2, phosphorylation of SMAD1/5/8 and SMAD2/3, and extracellular matrix calcification. Interestingly, treatments with recombinant Klotho protein abolished BMP2/vitamin D3-induced osteoblastic transition and morphogenesis and calcification. Therefore, Klotho is a critical regulator in the maintenance of normal arterial homeostasis. Klotho deficiency-induced arterial calcification is an active process that involves the osteoblastic transition of SMCs and activation of the BMP2-RUNX2 signaling.
Collapse
Affiliation(s)
- Yi Lin
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104, USA
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN 73136, USA,Address Correspondence to: Zhongjie Sun, MD, PhD, FAHA, Professor and Chair, Department of Physiology, University of Tennessee HSC, C302B Coleman Bldg., 956 Court Ave., Memphis, TN 38163-2116, USA, Tel. 901-448-2679,
| |
Collapse
|
16
|
Zhang X, Wang L, Guo R, Xiao J, Liu X, Dong M, Luan X, Ji X, Lu H. Ginsenoside Rb1 Ameliorates Diabetic Arterial Stiffening via AMPK Pathway. Front Pharmacol 2021; 12:753881. [PMID: 34712140 PMCID: PMC8546248 DOI: 10.3389/fphar.2021.753881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Macrovascular complication of diabetes mellitus, characterized by increased aortic stiffness, is a major cause leading to many adverse clinical outcomes. It has been reported that ginsenoside Rb1 (Rb1) can improve glucose tolerance, enhance insulin activity, and restore the impaired endothelial functions in animal models. The aim of this study was to explore whether Rb1 could alleviate the pathophysiological process of arterial stiffening in diabetes and its potential mechanisms. Experimental Approach: Diabetes was induced in male C57BL/6 mice by administration of streptozotocin. These mice were randomly selected for treatment with Rb1 (10-60 mg/kg, i. p.) once daily for 8 weeks. Aortic stiffness was assessed using ultrasound and measurement of blood pressure and relaxant responses in the aortic rings. Mechanisms of Rb1 treatment were studied in MOVAS-1 VSMCs cultured in a high-glucose medium. Key Results: Rb1 improved DM-induced arterial stiffening and the impaired aortic compliance and endothelium-dependent vasodilation. Rb1 ameliorated DM-induced aortic remodeling characterized by collagen deposition and elastic fibers disorder. MMP2, MMP9, and TGFβ1/Smad2/3 pathways were involved in this process. In addition, Rb1-mediated improvement of arterial stiffness was partly achieved via inhibiting oxidative stress in DM mice, involving regulating NADPH oxidase. Finally, Rb1 could blunt the inhibition effects of DM on AMPK phosphorylation. Conclusion and Implications: Rb1 may represent a novel prevention strategy to alleviate collagen deposition and degradation to prevent diabetic macroangiopathy and diabetes-related complications.
Collapse
Affiliation(s)
- Xinyu Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rong Guo
- Department of Cardiology, Ji'an Municipal Center People's Hospital, Ji'an, China
| | - Jie Xiao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoling Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mei Dong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaorong Luan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoping Ji
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huixia Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Dr. Gilbert Hung Ginseng Laboratory, Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, Hong Kong, SAR China
| |
Collapse
|
17
|
Lu Y, Yuan T, Min X, Yuan Z, Cai Z. AMPK: Potential Therapeutic Target for Vascular Calcification. Front Cardiovasc Med 2021; 8:670222. [PMID: 34046440 PMCID: PMC8144331 DOI: 10.3389/fcvm.2021.670222] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
Vascular calcification (VC) is an urgent worldwide health issue with no available medical treatment. It is an active cell-driven process by osteogenic differentiation of vascular cells with complex mechanisms. The AMP-activated protein kinase (AMPK) serves as the master sensor of cellular energy status. Accumulating evidence reveals the vital role of AMPK in VC progression. AMPK is involved in VC in various ways, including inhibiting runt-related transcription factor 2 signaling pathways, triggering autophagy, attenuating endoplasmic reticulum stress and dynamic-related protein 1-mediated mitochondrial fission, and activating endothelial nitric oxide synthase. AMPK activators, like metformin, are associated with reduced calcification deposits in certain groups of patients, indicating that AMPK is a potential therapeutic target for VC.
Collapse
Affiliation(s)
- Yi Lu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tan Yuan
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinjia Min
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Yuan
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhejun Cai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Jiaxing Key Laboratory of Cardiac Rehabilitation, Jiaxing, China
| |
Collapse
|
18
|
Kanbay M, Demiray A, Afsar B, Covic A, Tapoi L, Ureche C, Ortiz A. Role of Klotho in the Development of Essential Hypertension. Hypertension 2021; 77:740-750. [PMID: 33423524 DOI: 10.1161/hypertensionaha.120.16635] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Klotho has antiaging properties, and serum levels decrease with physiological aging and aging-related diseases, such as hypertension, cardiovascular, and chronic kidney disease. Klotho deficiency in mice results in accelerated aging and cardiovascular injury, whereas Klotho supplementation slows down the progression of aging-related diseases. The pleiotropic functions of Klotho include, but are not limited to, inhibition of insulin/IGF-1 (insulin-like growth factor 1) and WNT (wingless-related integration site) signaling pathways, suppression of oxidative stress and aldosterone secretion, regulation of calcium-phosphate homeostasis, and modulation of autophagy with inhibition of apoptosis, fibrosis, and cell senescence. Accumulating evidence shows an interconnection between Klotho deficiency and hypertension, and Klotho gene polymorphisms are associated with hypertension in humans. In this review, we critically review the current understanding of the role of Klotho in the development of essential hypertension and the most important underlying pathways involved, such as the FGF23 (fibroblast growth factor 23)/Klotho axis, aldosterone, Wnt5a/RhoA, and SIRT1 (Sirtuin1). Based on this critical review, we suggest avenues for further research.
Collapse
Affiliation(s)
- Mehmet Kanbay
- From the Division of Nephrology, Department of Medicine (M.K.), Koc University School of Medicine, Istanbul, Turkey
| | - Atalay Demiray
- Department of Medicine (A.D.), Koc University School of Medicine, Istanbul, Turkey
| | - Baris Afsar
- Division of Nephrology, Department of Internal Medicine, Suleyman Demirel University School of Medicine, Isparta Turkey (B.A.)
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa University of Medicine, Iasi, Romania (A.C., L.T., C.U.)
| | - Laura Tapoi
- Department of Nephrology, Grigore T. Popa University of Medicine, Iasi, Romania (A.C., L.T., C.U.)
| | - Carina Ureche
- Department of Nephrology, Grigore T. Popa University of Medicine, Iasi, Romania (A.C., L.T., C.U.)
| | - Alberto Ortiz
- Cardiovascular Diseases Institute, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania (A.O.)
- IIS-Fundacion Jimenez Diaz, Department of Medicine, School of Medicine, Universidad Autonoma de Madrid, Spain (A.O.)
| |
Collapse
|
19
|
Liang WY, Wang LH, Wei JH, Li QL, Li QY, Liang Q, Hu NQ, Li LH. No significant association of serum klotho concentration with blood pressure and pulse wave velocity in a Chinese population. Sci Rep 2021; 11:2374. [PMID: 33504927 PMCID: PMC7840754 DOI: 10.1038/s41598-021-82258-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/19/2021] [Indexed: 01/14/2023] Open
Abstract
Klotho, an important anti-aging protein, may be related to elevated blood pressure (BP) and arterial stiffness. We aimed to investigate associations between the serum klotho concentration and peripheral/central BP and arterial stiffness based on the carotid–femoral pulse wave velocity (cfPWV) in a Chinese population. We invited all inhabitants aged ≥ 18 years in two Dali communities for participation. The SphygmoCor system was used to record radial arterial waveforms. Aortic waveforms were derived using a generalized transfer function. The central BP was assessed by calibrating the brachial BP, which was measured using an oscillometric device. The serum klotho concentration was measured using an enzyme-linked immunosorbent assay and logarithmically transformed. Of the 716 participants (mean age: 51.9 ± 12.6 years), 467 (65.2%) were women. The median serum klotho concentration was 381.8 pg/mL. The serum klotho concentration did not significantly differ between patients with and without hypertension (P > 0.05) and between those with and without arterial stiffness (cfPWV ≥ 10 m/s) (P > 0.05). After adjusting for confounders, the serum klotho concentration was not significantly associated with the peripheral or central BP (P > 0.05) and cfPWV (P > 0.05). Our data indicated that the serum klotho concentration was not associated with BP or cfPWV in the general Chinese population.
Collapse
Affiliation(s)
- Wan-Ying Liang
- Department of Gerontology, The First Affiliated Hospital of Dali University, Jiashibo Road 32, Dali, 671000, Yunnan Province, China
| | - Li-Hong Wang
- Department of Gerontology, The First Affiliated Hospital of Dali University, Jiashibo Road 32, Dali, 671000, Yunnan Province, China
| | - Jian-Hang Wei
- Department of Gerontology, The First Affiliated Hospital of Dali University, Jiashibo Road 32, Dali, 671000, Yunnan Province, China
| | - Qing-Lu Li
- Department of Gerontology, The First Affiliated Hospital of Dali University, Jiashibo Road 32, Dali, 671000, Yunnan Province, China
| | - Qi-Yan Li
- Department of Gerontology, The First Affiliated Hospital of Dali University, Jiashibo Road 32, Dali, 671000, Yunnan Province, China
| | - Quan Liang
- Department of Gerontology, The First Affiliated Hospital of Dali University, Jiashibo Road 32, Dali, 671000, Yunnan Province, China
| | - Nai-Qing Hu
- Department of Gerontology, The First Affiliated Hospital of Dali University, Jiashibo Road 32, Dali, 671000, Yunnan Province, China
| | - Li-Hua Li
- Department of Gerontology, The First Affiliated Hospital of Dali University, Jiashibo Road 32, Dali, 671000, Yunnan Province, China.
| |
Collapse
|
20
|
Mytych J, Sołek P, Będzińska A, Rusinek K, Warzybok A, Tabęcka-Łonczyńska A, Koziorowski M. Klotho-mediated changes in the expression of Atg13 alter formation of ULK1 complex and thus initiation of ER- and Golgi-stress response mediated autophagy. Apoptosis 2020; 25:57-72. [PMID: 31732843 DOI: 10.1007/s10495-019-01579-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the previous paper of our group, we have demonstrated that one of the crucial factors involved in the crosstalk between autophagy and apoptosis is klotho protein. We have shown that klotho silencing in normal human fibroblasts intensifies lipopolysaccharide (LPS)-induced p-eIF2a-mediated stress of endoplasmic reticulum and thus leads to retardation of prosurvival autophagy and induction of apoptotic cell death. In this study, we have performed a detailed step-by-step analysis of autophagy flux-related genes' expression and endoplasmic reticulum and Golgi stress related pathways in order to determine the exact mechanistic event when autophagy is inhibited in klotho-deficient cells on account of apoptosis initiation. We provide evidence that klotho-silencing in LPS-treated cells results in differential course of ER- and Golgi-mediated stress response. Further, we show that in klotho-deficient cells formation of ULK1 complex is inhibited and thus autophagy initiation is blocked on the account of apoptosis activation, while in the control cells cytoprotective autophagy is activated. Finally, in klotho-deficient cells formation of ULK1 complex is prevented by downregulated expression of Atg13. Thus, this study suggests a novel targeting pathway for efficient elimination of autophagy-deficient cells.
Collapse
Affiliation(s)
- Jennifer Mytych
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland.
| | - Przemysław Sołek
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Agnieszka Będzińska
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Kinga Rusinek
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Aleksandra Warzybok
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Anna Tabęcka-Łonczyńska
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Marek Koziorowski
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| |
Collapse
|
21
|
Buchanan S, Combet E, Stenvinkel P, Shiels PG. Klotho, Aging, and the Failing Kidney. Front Endocrinol (Lausanne) 2020; 11:560. [PMID: 32982966 PMCID: PMC7481361 DOI: 10.3389/fendo.2020.00560] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Klotho has been recognized as a gene involved in the aging process in mammals for over 30 years, where it regulates phosphate homeostasis and the activity of members of the fibroblast growth factor (FGF) family. The α-Klotho protein is the receptor for Fibroblast Growth Factor-23 (FGF23), regulating phosphate homeostasis and vitamin D metabolism. Phosphate toxicity is a hallmark of mammalian aging and correlates with diminution of Klotho levels with increasing age. As such, modulation of Klotho activity is an attractive target for therapeutic intervention in the diseasome of aging; in particular for chronic kidney disease (CKD), where Klotho has been implicated directly in the pathophysiology. A range of senotherapeutic strategies have been developed to directly or indirectly influence Klotho expression, with varying degrees of success. These include administration of exogenous Klotho, synthetic and natural Klotho agonists and indirect approaches, via modulation of the foodome and the gut microbiota. All these approaches have significant potential to mitigate loss of physiological function and resilience accompanying old age and to improve outcomes within the diseasome of aging.
Collapse
Affiliation(s)
- Sarah Buchanan
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Emilie Combet
- School of Medicine, Dentistry & Nursing, Human Nutrition, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Peter Stenvinkel
- Division of Renal Medicine M99, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Paul G. Shiels
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
22
|
Gao D, Wang S, Lin Y, Sun Z. In vivo AAV delivery of glutathione reductase gene attenuates anti-aging gene klotho deficiency-induced kidney damage. Redox Biol 2020; 37:101692. [PMID: 32863229 PMCID: PMC7476318 DOI: 10.1016/j.redox.2020.101692] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/27/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Klotho is an aging-suppressor gene which leads to accelerated aging when disrupted. This study was designed to investigate whether glutathione reductase (GR), a critical intracellular antioxidant enzyme, is involved in the pathogenesis of kidney damages associated with accelerated aging in Klotho-haplodeficient (KL+/-) mice. METHODS AND RESULTS Klotho-haplodeficient (KL+/-) mice and WT mice were used. We found that Klotho haplodeficiency impaired kidney function as evidenced by significant increases in plasma urea and creatinine and a decrease in urinary creatinine in KL+/- mice. The expression and activity of GR was decreased significantly in renal tubular epithelial cells of KL+/- mice, suggesting that Klotho deficiency downregulated GR. We constructed adeno-associated virus 2 (AAV2) carrying GR full-length cDNA (AAV-GR). Interestingly, in vivo AAV-GR delivery significantly improved Klotho deficiency-induced renal functional impairment and structural remodeling. Furthermore, in vivo expression of GR rescued the downregulation of the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio, which subsequently diminished oxidative damages in kidneys, as evidenced by significant decreases in renal 4-HNE expression and urinary 8-isoprostane levels in KL mice. CONCLUSION This study provides the first evidence that Klotho deficiency-induced kidney damage may be partly attributed to downregulation of GR expression. In vivo delivery of AAV-GR may be a promising therapeutic approach for aging-related kidney damage.
Collapse
Affiliation(s)
- Diansa Gao
- Department of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shirley Wang
- Department of Physiology, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA
| | - Yi Lin
- Department of Physiology, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA.
| |
Collapse
|
23
|
Feng R, Ullah M, Chen K, Ali Q, Lin Y, Sun Z. Stem cell-derived extracellular vesicles mitigate ageing-associated arterial stiffness and hypertension. J Extracell Vesicles 2020; 9:1783869. [PMID: 32939234 PMCID: PMC7480600 DOI: 10.1080/20013078.2020.1783869] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 02/01/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022] Open
Abstract
The prevalence of arterial stiffness and hypertension increases with age. This study investigates the effect of induced pluripotent mesenchymal stem cell-derived extracellular vesicles (EVs) on ageing-associated arterial stiffness and hypertension. EVs were collected and purified from induced pluripotent stem cell-derived mesenchymal stem cells (iPS-MSCs). Young and old male C57BL/6 mice were used. Mice in the EVs group were injected via tail vein once a week for four weeks (18 x 106 EVs/mouse/injection). Blood pressure (BP) was measured using the tail-cuff method and validated by direct cannulation. Pulse wave velocity (PWV) was measured using a Doppler workstation. PWV and BP were increased significantly in the old mice, indicating arterial stiffness and hypertension. Intravenous administration of EVs significantly attenuated ageing-related arterial stiffness and hypertension, while enhancing endothelium-dependent vascular relaxation and arterial compliance in the old EVs mice. Elastin degradation and collagen I deposition (fibrosis) were increased in aortas of the old mice, but EVs substantially improved ageing-associated structural remodelling. Mechanistically, EVs abolished downregulation of sirtuin type 1 (SIRT1), and endothelial nitric oxide synthase (eNOS) protein expression in aortas of the older mice. In cultured human aortic endothelial cells, EVs promoted the expression of SIRT1, AMP-activated protein kinase alpha (AMPKα), and eNOS. In conclusion, iPS-MSC-derived EVs attenuated ageing-associated vascular endothelial dysfunction, arterial stiffness, and hypertension, likely via activation of the SIRT1-AMPKα-eNOS pathway and inhibition of MMPs and elastase. Thus, EVs mitigate arterial ageing. This finding also sheds light into the therapeutic potential of EVs for ageing-related vascular diseases. ABBREVIATIONS EV: Extracellular vesicles; iPS: induced pluripotent stem cell; MSC: mesenchymal stem cell; AMPKα: AMP activated protein kinase α; eNOS: endothelial nitric oxide synthase; Sirt1: sirtuin 1; JNC7: Seventh Report of the Joint National Committee; CVD: cardiovascular disease; PWV: pulse wave velocity; BP: blood pressure; SNP: sodium nitroprusside.
Collapse
Affiliation(s)
- Rui Feng
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mujib Ullah
- Department of Physiology, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Kai Chen
- Department of Physiology, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Quaisar Ali
- Department of Physiology, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Yi Lin
- Department of Physiology, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, USA
| |
Collapse
|
24
|
Ji B, Wei H, Ding Y, Liang H, Yao L, Wang H, Qu H, Deng H. Protective potential of klotho protein on diabetic retinopathy: Evidence from clinical and in vitro studies. J Diabetes Investig 2020; 11:162-169. [PMID: 31197979 PMCID: PMC6944830 DOI: 10.1111/jdi.13100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/18/2019] [Accepted: 06/11/2019] [Indexed: 01/14/2023] Open
Abstract
AIMS/INTRODUCTION The purpose of the present study was to observe the relationship between serum α-klotho (KL) protein level and diabetic retinopathy (DR), and to further examine the effects of KL protein on apoptosis induced by palmitic acid (PA) in human retinal endothelial cells. MATERIALS AND METHODS A total of 17 healthy people and 60 type 2 diabetes patients were included. According to the results from fundus fluorescein angiography, the diabetes patients were divided into three subgroups: without DR, non-proliferative DR and proliferative DR. Serum KL level was measured by enzyme-linked immunosorbent assay. In vitro, human retinal endothelial cells were exposed to PA with or without KL protein. Apoptosis rates were analyzed by flow cytometry analysis. Apoptotic-related protein expressions were detected by western blotting analysis. RESULTS Serum KL level was lower in diabetes patients than that in healthy participants (P = 0.007), and was gradually decreased among the without DR, non-proliferative DR and proliferative DR subgroups (P = 0.045). A logistic regression analysis showed that after adjusting for the other confounding factors, serum KL level was independently and negatively related with DR (P = 0.049). Furthermore, the increased apoptosis rates induced by PA were inhibited with the addition of KL protein. Consistently, KL protein reversed the expression levels of the increased pro-apoptotic protein Bax and the decreased anti-apoptotic protein Bcl-2 induced by PA. However, the anti-apoptotic effect of KL protein was attenuated by LY294002 through the phosphatidylinositol 3 kinase-serine∕threonine kinase pathway. CONCLUSIONS The data suggested that KL protein was probably a potential protective factor against retinopathy in type 2 diabetes patients.
Collapse
Affiliation(s)
- Baolan Ji
- Department of EndocrinologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Huili Wei
- Department of EndocrinologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yao Ding
- Department of EndocrinologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Huimin Liang
- Department of EndocrinologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Lu Yao
- Department of EndocrinologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Hang Wang
- Department of EndocrinologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Hua Qu
- Department of EndocrinologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Huacong Deng
- Department of EndocrinologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
25
|
Mangoni AA, Tommasi S, Zinellu A, Sotgia S, Bassu S, Piga M, Erre GL, Carru C. Methotrexate and Vasculoprotection: Mechanistic Insights and Potential Therapeutic Applications in Old Age. Curr Pharm Des 2019; 25:4175-4184. [DOI: 10.2174/1381612825666191112091700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
Abstract
Increasing age is a strong, independent risk factor for atherosclerosis and cardiovascular disease. Key
abnormalities driving cardiovascular risk in old age include endothelial dysfunction, increased arterial stiffness,
blood pressure, and the pro-atherosclerotic effects of chronic, low-grade, inflammation. The identification of
novel therapies that comprehensively target these alterations might lead to a major breakthrough in cardiovascular
risk management in the older population. Systematic reviews and meta-analyses of observational studies have
shown that methotrexate, a first-line synthetic disease-modifying anti-rheumatic drug, significantly reduces
cardiovascular morbidity and mortality in patients with rheumatoid arthritis, a human model of systemic
inflammation, premature atherosclerosis, and vascular aging. We reviewed in vitro and in vivo studies
investigating the effects of methotrexate on endothelial function, arterial stiffness, and blood pressure, and the
potential mechanisms of action involved. The available evidence suggests that methotrexate might have beneficial
effects on vascular homeostasis and blood pressure control by targeting specific inflammatory pathways,
adenosine metabolism, and 5' adenosine monophosphate-activated protein kinase. Such effects might be
biologically and clinically relevant not only in patients with rheumatoid arthritis but also in older adults with high
cardiovascular risk. Therefore, methotrexate has the potential to be repurposed for cardiovascular risk
management in old age because of its putative pharmacological effects on inflammation, vascular homeostasis,
and blood pressure. However, further study and confirmation of these effects are essential in order to adequately
design intervention studies of methotrexate in the older population.
Collapse
Affiliation(s)
- Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | - Sara Tommasi
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Salvatore Sotgia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Stefania Bassu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Matteo Piga
- Rheumatology Unit, University Clinic and AOU of Cagliari, Cagliari, Italy
| | - Gian L. Erre
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital (AOUSS) and University of Sassari, Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
26
|
Mencke R, Umbach AT, Wiggenhauser LM, Voelkl J, Olauson H, Harms G, Bulthuis M, Krenning G, Quintanilla-Martinez L, van Goor H, Lang F, Hillebrands JL. Klotho Deficiency Induces Arteriolar Hyalinosis in a Trade-Off with Vascular Calcification. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2503-2515. [DOI: 10.1016/j.ajpath.2019.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/11/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
|
27
|
Chen K, Sun Z. Autophagy plays a critical role in Klotho gene deficiency-induced arterial stiffening and hypertension. J Mol Med (Berl) 2019; 97:1615-1625. [PMID: 31630227 DOI: 10.1007/s00109-019-01841-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/03/2019] [Accepted: 10/09/2019] [Indexed: 01/09/2023]
Abstract
Klotho is an anti-aging gene that shortens the life span when disrupted and extends the lifespan when overexpressed. This study investigated whether autophagy plays a role in Klotho gene deficiency-induced arterial stiffening and hypertension. Klotho mutant heterozygous (KL+/-) mice and age- and sex-matched wild-type (WT) mice were used. Arteries were examined for autophagy using Western blot assays. Pulse wave velocity (PWV), a direct measure of arterial stiffness, and blood pressure (BP) increased significantly in KL (+/-) mice. The autophagy level, as measured by LC3-II expression and autophagy flux, increased in aortas of KL (+/-) mice, indicating that Klotho gene deficiency upregulated autophagy. Chloroquine diminished Klotho gene deficiency-induced increases in PWV and BP and eliminated the upregulation of autophagic flux in KL (+/-) mice. Klotho gene deficiency-induced arterial stiffness was accompanied by upregulation of MMP9, TGFβ-1, TGFβ-3, RUNX2, and ALP, but these changes were effectively mitigated by chloroquine. Chloroquine also halted an increase in scleraxis expression in aortas of Klotho (+/-) mice. In cultured mouse aortic smooth muscle cells, Klotho gene deficiency increased autophagy, leading to upregulation of scleraxis, a key transcription factor of collagen synthesis. Klotho gene deficiency failed to upregulate scleraxis expression when autophagy was inhibited, suggesting that autophagy is a critical mediator of Klotho gene deficiency-induced upregulation of scleraxis. Suppression of enhanced autophagy by chloroquine lessens Klotho gene deficiency-induced arterial stiffening and hypertension by stopping upregulation of MMP9 and scleraxis. The enhanced autophagic activity plays a crucial role in Klotho gene deficiency-induced arterial stiffening and hypertension. KEY MESSAGES: Klotho gene deficiency upregulates autophagy. Upregulation of autophagy plays a role in the pathogenesis of arterial stiffening. Autophagy regulates MMP9 activity and scleraxis expression.
Collapse
Affiliation(s)
- Kai Chen
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, C302B Coleman Bldg., 956 Court Ave, Memphis, TN, 38163-2116, USA
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, C302B Coleman Bldg., 956 Court Ave, Memphis, TN, 38163-2116, USA.
| |
Collapse
|
28
|
Brown IAM, Diederich L, Good ME, DeLalio LJ, Murphy SA, Cortese-Krott MM, Hall JL, Le TH, Isakson BE. Vascular Smooth Muscle Remodeling in Conductive and Resistance Arteries in Hypertension. Arterioscler Thromb Vasc Biol 2019; 38:1969-1985. [PMID: 30354262 DOI: 10.1161/atvbaha.118.311229] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is a leading cause of death worldwide and accounts for >17.3 million deaths per year, with an estimated increase in incidence to 23.6 million by 2030. 1 Cardiovascular death represents 31% of all global deaths 2 -with stroke, heart attack, and ruptured aneurysms predominantly contributing to these high mortality rates. A key risk factor for cardiovascular disease is hypertension. Although treatment or reduction in hypertension can prevent the onset of cardiovascular events, existing therapies are only partially effective. A key pathological hallmark of hypertension is increased peripheral vascular resistance because of structural and functional changes in large (conductive) and small (resistance) arteries. In this review, we discuss the clinical implications of vascular remodeling, compare the differences between vascular smooth muscle cell remodeling in conductive and resistance arteries, discuss the genetic factors associated with vascular smooth muscle cell function in hypertensive patients, and provide a prospective assessment of current and future research and pharmacological targets for the treatment of hypertension.
Collapse
Affiliation(s)
- Isola A M Brown
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.)
| | - Lukas Diederich
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University, Dusseldorf, Germany (L.D., M.M.C.-K.)
| | - Miranda E Good
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.)
| | - Leon J DeLalio
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.).,Department of Pharmacology (L.J.D.)
| | - Sara A Murphy
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.)
| | - Miriam M Cortese-Krott
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University, Dusseldorf, Germany (L.D., M.M.C.-K.)
| | - Jennifer L Hall
- Lillehei Heart Institute (J.L.H.).,Division of Cardiology, Department of Medicine (J.L.H.), University of Minnesota, Minneapolis.,American Heart Association, Dallas, TX (J.L.H.)
| | - Thu H Le
- Division of Nephrology, Department of Medicine (T.H.L.)
| | - Brant E Isakson
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.).,Department of Molecular Physiology and Biophysics (B.E.I.), University of Virginia School of Medicine, Charlottesville
| |
Collapse
|
29
|
Abstract
Advancing age promotes cardiovascular disease (CVD), the leading cause of death in the United States and many developed nations. Two major age-related arterial phenotypes, large elastic artery stiffening and endothelial dysfunction, are independent predictors of future CVD diagnosis and likely are responsible for the development of CVD in older adults. Not limited to traditional CVD, these age-related changes in the vasculature also contribute to other age-related diseases that influence mammalian health span and potential life span. This review explores mechanisms that influence age-related large elastic artery stiffening and endothelial dysfunction at the tissue level via inflammation and oxidative stress and at the cellular level via Klotho and energy-sensing pathways (AMPK [AMP-activated protein kinase], SIRT [sirtuins], and mTOR [mammalian target of rapamycin]). We also discuss how long-term calorie restriction-a health span- and life span-extending intervention-can prevent many of these age-related vascular phenotypes through the prevention of deleterious alterations in these mechanisms. Lastly, we discuss emerging novel mechanisms of vascular aging, including senescence and genomic instability within cells of the vasculature. As the population of older adults steadily expands, elucidating the cellular and molecular mechanisms of vascular dysfunction with age is critical to better direct appropriate and measured strategies that use pharmacological and lifestyle interventions to reduce risk of CVD within this population.
Collapse
Affiliation(s)
- Anthony J. Donato
- University of Utah, Department of Internal Medicine, Division of Geriatrics, Salt Lake City, Utah
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, Salt Lake City, Utah
| | - Daniel R. Machin
- University of Utah, Department of Internal Medicine, Division of Geriatrics, Salt Lake City, Utah
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, Salt Lake City, Utah
| | - Lisa A. Lesniewski
- University of Utah, Department of Internal Medicine, Division of Geriatrics, Salt Lake City, Utah
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, Salt Lake City, Utah
| |
Collapse
|
30
|
Chen K, Sun Z. Activation of DNA demethylases attenuates aging-associated arterial stiffening and hypertension. Aging Cell 2018; 17:e12762. [PMID: 29659128 PMCID: PMC6052484 DOI: 10.1111/acel.12762] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2018] [Indexed: 11/26/2022] Open
Abstract
DNA methylation increases with age. The objective of this study was to investigate whether compound H, a potential activator of DNA demethylases, attenuates aging‐related arterial stiffness and hypertension. Aged mice (24–27 months) and adult mice (12 months) were used. Pulse wave velocity (PWV), a direct measure of arterial stiffness, and blood pressure (BP) were increased significantly in aged mice. Notably, daily treatments with compound H (15 mg/kg, IP) for 2 weeks significantly attenuated the aging‐related increases in PWV and BP. Compound H abolished aging‐associated downregulation of secreted Klotho (SKL) levels in both kidneys and serum likely by enhancing DNA demethylase activity and decreasing DNA methylation. Aging‐related arterial stiffness was associated with accumulation of stiffer collagen and degradation of compliant elastin which are accompanied by increased expression of MMP2, MMP9, TGF‐β1, and TGF‐β3. These changes were effectively attenuated by compound H, suggesting rejuvenation of aged arteries. Compound H also rescued downregulation of Sirt1 deacetylase, AMPKα, and eNOS activities in aortas of aged mice. In cultured smooth muscle cells (SMCc) Klotho‐deficient serum upregulated expression of MMPs and TGFβ which, however, was not affected by compound H. In conclusion, compound H attenuates aging‐associated arterial stiffness and hypertension by activation of DNA demethylase which increases renal SKL expression and consequently circulating SKL levels leading to activation of the Sirt1‐AMPK‐eNOS pathway in aortas of aged mice.
Collapse
Affiliation(s)
- Kai Chen
- Department of Physiology; College of Medicine; University of Oklahoma Health Sciences Center; Oklahoma City OK USA
| | - Zhongjie Sun
- Department of Physiology; College of Medicine; University of Oklahoma Health Sciences Center; Oklahoma City OK USA
| |
Collapse
|
31
|
Gogulamudi VR, Cai J, Lesniewski LA. Reversing age-associated arterial dysfunction: insight from preclinical models. J Appl Physiol (1985) 2018; 125:1860-1870. [PMID: 29745797 DOI: 10.1152/japplphysiol.00086.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cardiovascular diseases (CVDs) remain the leading causes of death in the United States, and advancing age is a primary risk factor. Impaired endothelium-dependent dilation and increased stiffening of the arteries with aging are independent predictors of CVD. Increased tissue and systemic oxidative stress and inflammation underlie this age-associated arterial dysfunction. Calorie restriction (CR) is the most powerful intervention known to increase life span and improve age-related phenotypes, including arterial dysfunction. However, the translatability of long-term CR to clinical populations is limited, stimulating interest in the pursuit of pharmacological CR mimetics to reproduce the beneficial effects of CR. The energy-sensing pathways, mammalian target of rapamycin, AMPK, and sirtuin-1 have all been implicated in the beneficial effects of CR on longevity and/or physiological function and, as such, have emerged as potential targets for therapeutic intervention as CR mimetics. Although manipulation of each of these pathways has CR-like benefits on arterial function, the magnitude and/or mechanisms can be disparate from that of CR. Nevertheless, targeting these pathways in older individuals may provide some benefits against arterial dysfunction and CVD. The goal of this review is to provide a brief discussion of the mechanisms and pathways underlying age-associated dysfunction in large arteries, explain how these are impacted by CR, and to present the available evidence, suggesting that targets for energy-sensing pathways may act as vascular CR mimetics.
Collapse
Affiliation(s)
| | - Jinjin Cai
- Department of Internal Medicine-Division of Geriatrics, University of Utah , Salt Lake City, Utah
| | - Lisa A Lesniewski
- Department of Internal Medicine-Division of Geriatrics, University of Utah , Salt Lake City, Utah.,Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center-Salt Lake City, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah , Salt Lake City, Utah
| |
Collapse
|
32
|
Jung D, Xu Y, Sun Z. Induction of anti-aging gene klotho with a small chemical compound that demethylates CpG islands. Oncotarget 2018; 8:46745-46755. [PMID: 28657902 PMCID: PMC5564520 DOI: 10.18632/oncotarget.18608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/05/2017] [Indexed: 11/25/2022] Open
Abstract
Klotho (KL) is described as an anti-aging gene because mutation of Kl gene leads to multiple pre-mature aging phenotypes and shortens lifespan in mice. Growing evidence suggests that an increase in KL expression may be beneficial for age-related diseases such as arteriosclerosis and diabetes. It remains largely unknown, however, how Kl expression could be induced. Here we discovered novel molecular mechanism for induction of Kl expression with a small molecule ‘Compound H’, N-(2-chlorophenyl)-1H-indole-3-caboxamide. Compound H was originally identified through a high-throughput screening of small molecules for identifying Kl inducers. However, how Compound H induces Kl expression has never been investigated. We found that Compound H increased Kl expression via demethylation in CpG islands of the Kl gene. The demethylation was accomplished by activating demethylases rather than inhibiting methylases. Due to demethylation, Compound H enhanced binding of transcription factors, Pax4 and Kid3, to the promoter of the Kl gene. Pax4 and Kid3 regulated Kl promoter activity positively and negatively, respectively. Thus, our results show that demethylation is an important molecular mechanism that mediates Compound H-induced Kl expression. Further investigation is warranted to determine whether Compound H demethylates the Kl gene in vivo and whether it can serve as a therapeutic agent for repressing or delaying the onset of age-related diseases.
Collapse
Affiliation(s)
- Dongju Jung
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Current address: Department of Biomedical Laboratory Science, Hoseo University, Chungnam, Republic of Korea
| | - Yuechi Xu
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
33
|
Liu F, Chu C, Wei Q, Shi J, Li H, Dong N. Metformin ameliorates TGF-β1-induced osteoblastic differentiation of human aortic valve interstitial cells by inhibiting β-catenin signaling. Biochem Biophys Res Commun 2018; 500:710-716. [PMID: 29679571 DOI: 10.1016/j.bbrc.2018.04.141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/17/2018] [Indexed: 01/30/2023]
Abstract
Osteoblastic differentiation of aortic valve interstitial cells (AVICs) is the central process in the development of calcific aortic valve disease (CAVD). Metformin is a widely used first-line antidiabetic drug, and recently, pleiotropic benefits of metformin beyond hypoglycemia have been reported in the cardiovascular system. Here, we examined the effect of metformin on the osteoblastic differentiation of human AVICs. Our results showed that metformin ameliorated TGF-β1-induced production of osteogenic proteins Runx2 and osteopontin as well as calcium deposition in the cultured human AVICs. Experiments using AICAR, Compound C and AMPKα siRNA showed that the beneficial effect of metformin on TGF-β1-induced osteoblastic differentiation of human AVICs was mediated by AMPKα. Moreover, metformin inhibited the TGF-β1-induced activation of β-catenin, and β-catenin siRNA blocked TGF-β1-induced osteoblastic differentiation of AVICs. Smad2/3 and JNK were phosphorylated to promote the TGF-β1-induced activation of β-catenin and osteoblastic differentiation of AVICs, and metformin also alleviated TGF-β1-induced activation of Smad2/3 and JNK. In conclusion, our results suggest a beneficial effect of metformin based on the prevention of osteoblastic differentiation of human AVICs via inhibition of β-catenin, which indicates the therapeutic potential of metformin for CAVD.
Collapse
Affiliation(s)
- Fayuan Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Chong Chu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Qinyu Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Huadong Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China.
| |
Collapse
|
34
|
Chen J, Fan J, Wang S, Sun Z. Secreted Klotho Attenuates Inflammation-Associated Aortic Valve Fibrosis in Senescence-Accelerated Mice P1. Hypertension 2018; 71:877-885. [PMID: 29581213 DOI: 10.1161/hypertensionaha.117.10560] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/09/2017] [Accepted: 03/01/2018] [Indexed: 01/04/2023]
Abstract
Senescence-accelerated mice P1 (SAMP1) is an aging model characterized by shortened lifespan and early signs of senescence. Klotho is an aging-suppressor gene. The purpose of this study is to investigate whether in vivo expression of secreted klotho (Skl) gene attenuates aortic valve fibrosis in SAMP1 mice. SAMP1 mice and age-matched (AKR/J) control mice were used. SAMP1 mice developed obvious fibrosis in aortic valves, namely fibrotic aortic valve disease. Serum level of Skl was decreased drastically in SAMP1 mice. Expression of MCP-1 (monocyte chemoattractant protein 1), ICAM-1 (intercellular adhesion molecule 1), F4/80, and CD68 was increased in aortic valves of SAMP1 mice, indicating inflammation. An increase in expression of α-smooth muscle actin (myofibroblast marker), transforming growth factorβ-1, and scleraxis (a transcription factor of collagen synthesis) was also found in aortic valves of SAMP1 mice, suggesting that accelerated aging is associated with myofibroblast transition and collagen gene activation. We constructed adeno-associated virus 2 carrying mouse Skl cDNA for in vivo expression of Skl. Skl gene delivery effectively increased serum Skl of SAMP1 mice to the control level. Skl gene delivery inhibited inflammation and myofibroblastic transition in aortic valves and attenuated fibrotic aortic valve disease in SAMP1 mice. It is concluded that senescence-related fibrotic aortic valve disease in SAMP1 mice is associated with a decrease in serum klotho leading to inflammation, including macrophage infiltration and transforming growth factorβ-1/scleraxis-driven myofibroblast differentiation in aortic valves. Restoration of serum Skl levels by adeno-associated virus 2 carrying mouse Skl cDNA effectively suppresses inflammation and myofibroblastic transition and attenuates aortic valve fibrosis. Skl may be a potential therapeutic target for fibrotic aortic valve disease.
Collapse
Affiliation(s)
- Jianglei Chen
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Jun Fan
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Shirley Wang
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Zhongjie Sun
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City.
| |
Collapse
|
35
|
Mencke R, Olauson H, Hillebrands JL. Effects of Klotho on fibrosis and cancer: A renal focus on mechanisms and therapeutic strategies. Adv Drug Deliv Rev 2017; 121:85-100. [PMID: 28709936 DOI: 10.1016/j.addr.2017.07.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/28/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022]
Abstract
Klotho is a membrane-bound protein predominantly expressed in the kidney, where it acts as a permissive co-receptor for Fibroblast Growth Factor 23. In its shed form, Klotho exerts anti-fibrotic effects in several tissues. Klotho-deficient mice spontaneously develop fibrosis and Klotho deficiency exacerbates the disease progression in fibrotic animal models. Furthermore, Klotho overexpression or supplementation protects against fibrosis in various models of renal and cardiac fibrotic disease. These effects are mediated at least partially by the direct inhibitory effects of soluble Klotho on TGFβ1 signaling, Wnt signaling, and FGF2 signaling. Soluble Klotho, as present in the circulation, appears to be the primary mediator of anti-fibrotic effects. Similarly, through inhibition of the TGFβ1, Wnt, FGF2, and IGF1 signaling pathways, Klotho also inhibits tumorigenesis. The Klotho promoter gene is generally hypermethylated in cancer, and overexpression or supplementation of Klotho has been found to inhibit tumor growth in various animal models. This review focuses on the protective effects of soluble Klotho in inhibiting renal fibrosis and fibrosis in distant organs secondary to renal Klotho deficiency. We also discuss the structure-function relationships of Klotho domains and biological effects in the context of potential targeted treatment strategies.
Collapse
Affiliation(s)
- Rik Mencke
- Department of Pathology and Medical Biology (Division of Pathology), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hannes Olauson
- Department of Clinical Science, Intervention and Technology (Division of Renal Medicine), Karolinska Institutet, Stockholm, Sweden
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology (Division of Pathology), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
36
|
Soluble levels and endogenous vascular gene expression of KLOTHO are related to inflammation in human atherosclerotic disease. Clin Sci (Lond) 2017; 131:2601-2609. [PMID: 28963437 DOI: 10.1042/cs20171242] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/13/2017] [Accepted: 09/25/2017] [Indexed: 01/29/2023]
Abstract
Atherosclerosis is a chronic inflammatory disorder affecting the artery wall. Klotho, an anti-aging factor expressed in the vessel walls that participates in the maintenance of vascular homeostasis, can be down-regulated by inflammation. In this proof-of-concept work we seek to characterize the arterial KLOTHO expression in the vascular wall, as well as the serum concentration of this protein, in a group of patients with clinical atherosclerotic disease. In addition, we aim to analyze the relationship between Klotho and inflammation. Vascular samples were obtained from 27 patients with atherosclerotic disease under an elective vascular surgery procedure, and from 11 control subjects (cadaveric organ donation programme). qRT-PCR was performed to analyze the gene expression of KLOTHO, TNF-α, IL-6, and IL-10 Serum levels of soluble KLOTHO were measured by ELISA. As compared with control subjects, serum concentrations and vascular expression of Klotho were lower in patients with atherosclerotic vascular disease, whereas inflammatory status was significantly higher. There was a negative and significant correlation between inflammatory parameters and Klotho. After controlling for the effect of other variables, partial correlation showed a direct relationship between vascular KLOTHO gene expression and IL-10 mRNA levels, whereas there was a negative association with serum LDL concentrations and vascular TNF-α expression. Our study indicates an inverse interrelationship between inflammation and Klotho in atherosclerosis. Further studies are necessary to elucidate whether the inflammatory state causes Klotho deficiency or, on the contrary, reduction of Klotho could be responsible for greater inflammation, and finally, to investigate the potential clinical relevance of this association.
Collapse
|
37
|
Guo Y, Zhuang X, Huang Z, Zou J, Yang D, Hu X, Du Z, Wang L, Liao X. Klotho protects the heart from hyperglycemia-induced injury by inactivating ROS and NF-κB-mediated inflammation both in vitro and in vivo. Biochim Biophys Acta Mol Basis Dis 2017; 1864:238-251. [PMID: 28982613 DOI: 10.1016/j.bbadis.2017.09.029] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/10/2017] [Accepted: 09/28/2017] [Indexed: 12/23/2022]
Abstract
Cardiac inflammation and oxidative stress play a key role in the pathogenesis of diabetic cardiomyopathy (DCM). The anti-aging protein Klotho has been found to protect cells from inflammation and oxidative stress. The current study aimed to explore the cardioprotective effects of Klotho on DCM and the underlying mechanisms. H9c2 cells and neonatal cardiomyocytes were incubated with 33mM glucose in the presence or absence of Klotho. Klotho pretreatment effectively inhibited high glucose-induced inflammation, ROS generation, apoptosis, mitochondrial dysfunction, fibrosis and hypertrophy in both H9c2 cells and neonatal cardiomyocytes. In STZ-induced type 1 diabetic mice, intraperitoneal injection of Klotho at 0.01mg/kg per 48h for 3months completely suppressed cardiac inflammatory cytokines and oxidative stress and prevented cardiac cell death and remodeling, which subsequently improved cardiac dysfunction without affecting hyperglycemia. This study revealed that Klotho may exert its protective effects by augmenting nuclear factor erythroid 2-related factor 2 (Nrf2) expression and inactivating nuclear factor κB (NF-κB) activation both in vitro and in vivo. Thus, this work demonstrated for the first time that the anti-aging protein Klotho may be a potential therapeutic agent to treat DCM by inhibiting oxidative stress and inflammation. We also demonstrated the critical roles of the Nrf2 and NF-κB pathways in diabetes-stimulated cardiac injuries and indicated that they may be key therapeutic targets for diabetic complications.
Collapse
Affiliation(s)
- Yue Guo
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China; Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China
| | - Xiaodong Zhuang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Zena Huang
- Department of Critical Care Medicine and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Jing Zou
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, PR China
| | - Daya Yang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Xun Hu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Zhimin Du
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Lichun Wang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China; Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China.
| | - Xinxue Liao
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China; Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China.
| |
Collapse
|
38
|
Lacolley P, Regnault V, Segers P, Laurent S. Vascular Smooth Muscle Cells and Arterial Stiffening: Relevance in Development, Aging, and Disease. Physiol Rev 2017; 97:1555-1617. [DOI: 10.1152/physrev.00003.2017] [Citation(s) in RCA: 332] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/15/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022] Open
Abstract
The cushioning function of large arteries encompasses distension during systole and recoil during diastole which transforms pulsatile flow into a steady flow in the microcirculation. Arterial stiffness, the inverse of distensibility, has been implicated in various etiologies of chronic common and monogenic cardiovascular diseases and is a major cause of morbidity and mortality globally. The first components that contribute to arterial stiffening are extracellular matrix (ECM) proteins that support the mechanical load, while the second important components are vascular smooth muscle cells (VSMCs), which not only regulate actomyosin interactions for contraction but mediate also mechanotransduction in cell-ECM homeostasis. Eventually, VSMC plasticity and signaling in both conductance and resistance arteries are highly relevant to the physiology of normal and early vascular aging. This review summarizes current concepts of central pressure and tensile pulsatile circumferential stress as key mechanical determinants of arterial wall remodeling, cell-ECM interactions depending mainly on the architecture of cytoskeletal proteins and focal adhesion, the large/small arteries cross-talk that gives rise to target organ damage, and inflammatory pathways leading to calcification or atherosclerosis. We further speculate on the contribution of cellular stiffness along the arterial tree to vascular wall stiffness. In addition, this review provides the latest advances in the identification of gene variants affecting arterial stiffening. Now that important hemodynamic and molecular mechanisms of arterial stiffness have been elucidated, and the complex interplay between ECM, cells, and sensors identified, further research should study their potential to halt or to reverse the development of arterial stiffness.
Collapse
Affiliation(s)
- Patrick Lacolley
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Véronique Regnault
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Patrick Segers
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Stéphane Laurent
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| |
Collapse
|
39
|
Cheng XY, Li YY, Huang C, Li J, Yao HW. AMP-activated protein kinase reduces inflammatory responses and cellular senescence in pulmonary emphysema. Oncotarget 2017; 8:22513-22523. [PMID: 28186975 PMCID: PMC5410241 DOI: 10.18632/oncotarget.15116] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
Current drug therapy fails to reduce lung destruction of chronic obstructive pulmonary disease (COPD). AMP-activated protein kinase (AMPK) has emerged as an important integrator of signals that control energy balance and lipid metabolism. However, there are no studies regarding the role of AMPK in reducing inflammatory responses and cellular senescence during the development of emphysema. Therefore, we hypothesize that AMPK reduces inflammatroy responses, senescence, and lung injury. To test this hypothesis, human bronchial epithelial cells (BEAS-2B) and small airway epithelial cells (SAECs) were treated with cigarette smoke extract (CSE) in the presence of a specific AMPK activator (AICAR, 1 mM) and inhibitor (Compound C, 5 μM). Elastase injection was performed to induce mouse emphysema, and these mice were treated with a specific AMPK activator metformin as well as Compound C. AICAR reduced, whereas Compound C increased CSE-induced increase in IL-8 and IL-6 release and expression of genes involved in cellular senescence. Knockdown of AMPKα1/α2 increased expression of pro-senescent genes (e.g., p16, p21, and p66shc) in BEAS-2B cells. Prophylactic administration of an AMPK activator metformin (50 and 250 mg/kg) reduced while Compound C (4 and 20 mg/kg) aggravated elastase-induced airspace enlargement, inflammatory responses and cellular senescence in mice. This is in agreement with therapeutic effect of metformin (50 mg/kg) on airspace enlargement. Furthermore, metformin prophylactically protected against but Compound C further reduced mitochondrial proteins SOD2 and SIRT3 in emphysematous lungs. In conclusion, AMPK reduces abnormal inflammatory responses and cellular senescence, which implicates as a potential therapeutic target for COPD/emphysema.
Collapse
Affiliation(s)
- Xiao-Yu Cheng
- School of Pharmacy, Anhui Medical University, Hefei, The People's Republic of China
| | - Yang-Yang Li
- School of Pharmacy, Anhui Medical University, Hefei, The People's Republic of China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei, The People's Republic of China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, The People's Republic of China
| | - Hong-Wei Yao
- School of Pharmacy, Anhui Medical University, Hefei, The People's Republic of China
| |
Collapse
|
40
|
Affiliation(s)
- Gary L Pierce
- From the Department of Health and Human Physiology (G.L.P.), Abboud Cardiovascular Research Center (G.L.P.), and UIHC Center for Hypertension Research (G.L.P.), The University of Iowa, Iowa City.
| |
Collapse
|
41
|
Xu Y, Sun Z. Regulation of S-formylglutathione hydrolase by the anti-aging gene klotho. Oncotarget 2017; 8:88259-88275. [PMID: 29179433 PMCID: PMC5687603 DOI: 10.18632/oncotarget.19111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/26/2017] [Indexed: 12/22/2022] Open
Abstract
Klotho is an aging-suppressor gene. The purpose of this study is to investigate the binding sites (receptors) and function of short-form Klotho (Skl). We showed that Skl physically bound to multiple proteins. We found physical and functional interactions between Skl and S-formylglutathione hydrolase (FGH), a key enzyme in the generation of the major cellular anti-oxidant GSH, using co-immunoprecipitation-coupled mass spectrometry. We further confirmed the colocalization of Skl and FGH around the nucleus in kidney cells using immunofluorescent staining. Skl positively regulated FGH gene expression via Kid3 transcription factor. Overexpression of Skl increased FGH mRNA and protein expression while silencing of Skl attenuated FGH mRNA and protein expression. Klotho gene mutation suppressed FGH expression in red blood cells and kidneys resulting in anemia and kidney damage in mice. Overexpression of Skl increased total GSH production and the GSH/GSSG ratio, an index of anti-oxidant capacity, leading to a decrease in intracellular H2O2 and superoxide levels. The antioxidant activity of Skl was eliminated by silencing of FGH, indicating that Skl increased GSH via FGH. Interestingly, Skl directly interacted with FGH and regulated its function. Site-directed mutagenesis of the N-glycan-modified residues in Skl abolished its antioxidant activity, suggesting that these N-glycan moieties are important features that interact with FGH. Specific mutation of Asp to Ala at site 285 resulted in a loss of anti-oxidant activity of Skl, suggesting that N-glycosylation at site 285 is the key mechanism that determines Skl activity. Therefore, this study demonstrates, for the first time, that Skl regulates anti-oxidant GSH generation via interaction with FGH through N-glycosylation.
Collapse
Affiliation(s)
- Yuechi Xu
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
42
|
Olauson H, Mencke R, Hillebrands JL, Larsson TE. Tissue expression and source of circulating αKlotho. Bone 2017; 100:19-35. [PMID: 28323144 DOI: 10.1016/j.bone.2017.03.043] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 12/16/2022]
Abstract
αKlotho (Klotho), a type I transmembrane protein and a coreceptor for Fibroblast Growth Factor-23, was initially thought to be expressed only in a limited number of tissues, most importantly the kidney, parathyroid gland and choroid plexus. Emerging data may suggest a more ubiquitous Klotho expression pattern which has prompted reevaluation of the restricted Klotho paradigm. Herein we systematically review the evidence for Klotho expression in various tissues and cell types in humans and other mammals, and discuss potential reasons behind existing conflicting data. Based on current literature and tissue expression atlases, we propose a classification of tissues into high, intermediate and low/absent Klotho expression. The functional relevance of Klotho in organs with low expression levels remain uncertain and there is currently limited data on a role for membrane-bound Klotho outside the kidney. Finally, we review the evidence for the tissue source of soluble Klotho, and conclude that the kidney is likely to be the principal source of circulating Klotho in physiology.
Collapse
Affiliation(s)
- Hannes Olauson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | - Rik Mencke
- Division of Pathology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan-Luuk Hillebrands
- Division of Pathology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tobias E Larsson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
Abstract
Epidemiological studies have shown that ageing is a major non-reversible risk factor for cardiovascular disease. Vascular ageing starts early in life and is characterized by a gradual change of vascular structure and function resulting in increased arterial stiffening. At the present review we discuss the role of the most important molecular pathways involved in vascular ageing, their association with arterial stiffening and possible novel therapeutic targets that may delay this otherwise irreversible degenerating process. Specifically, we discuss the role of oxidative stress, telomere shortening, and ubiquitin proteasome system in endothelial cell senescence and dysfunction in vascular inflammation and in arterial stiffening. Further, we summarize the most important molecular mechanisms regulating vascular ageing including sirtuin 1, telomerase, klotho, JunD, and amyloid beta 1-40 peptide.
Collapse
Affiliation(s)
- Ageliki Laina
- Department of Clinical Therapeutics, Alexandra Hospital, University of Athens, Athens, Greece
| | - Konstantinos Stellos
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany; Department of Cardiology, Center of Internal Medicine, Goethe University Frankfurt, Frankfurt, Germany; German Center of Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung; DZHK), Rhein-Main Partner Site, Frankfurt, Germany
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, University of Athens, Athens, Greece.
| |
Collapse
|
44
|
Mencke R, Hillebrands JL. The role of the anti-ageing protein Klotho in vascular physiology and pathophysiology. Ageing Res Rev 2017; 35:124-146. [PMID: 27693241 DOI: 10.1016/j.arr.2016.09.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/23/2016] [Indexed: 02/08/2023]
Abstract
Klotho is an anti-ageing protein that functions in many pathways that govern ageing, like regulation of phosphate homeostasis, insulin signaling, and Wnt signaling. Klotho expression levels and levels in blood decline during ageing. The vascular phenotype of Klotho deficiency features medial calcification, intima hyperplasia, endothelial dysfunction, arterial stiffening, hypertension, and impaired angiogenesis and vasculogenesis, with characteristics similar to aged human arteries. Klotho-deficient phenotypes can be prevented and rescued by Klotho gene expression or protein supplementation. High phosphate levels are likely to be directly pathogenic and are a prerequisite for medial calcification, but more important determinants are pathways that regulate cellular senescence, suggesting that deficiency of Klotho renders cells susceptible to phosphate toxicity. Overexpression of Klotho is shown to ameliorate medial calcification, endothelial dysfunction, and hypertension. Endogenous vascular Klotho expression is a controversial subject and, currently, no compelling evidence exists that supports the existence of vascular membrane-bound Klotho expression, as expressed in kidney. In vitro, Klotho has been shown to decrease oxidative stress and apoptosis in both SMCs and ECs, to reduce SMC calcification, to maintain the contractile SMC phenotype, and to prevent μ-calpain overactivation in ECs. Klotho has many protective effects with regard to the vasculature and constitutes a very promising therapeutic target. The purpose of this review is to explore the etiology of the vascular phenotype of Klotho deficiency and the therapeutic potential of Klotho in vascular disease.
Collapse
|
45
|
Chen PGF, Sun Z. AAV Delivery of Endothelin-1 shRNA Attenuates Cold-Induced Hypertension. Hum Gene Ther 2016; 28:190-199. [PMID: 27736201 DOI: 10.1089/hum.2016.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cold temperatures are associated with increased prevalence of hypertension. Cold exposure increases endothelin-1 (ET1) production. The purpose of this study is to determine whether upregulation of ET1 contributes to cold-induced hypertension (CIH). In vivo RNAi silencing of the ET1 gene was achieved by adeno-associated virus 2 (AAV2) delivery of ET1 short-hairpin small interfering RNA (ET1-shRNA). Four groups of male rats were used. Three groups were given AAV.ET1-shRNA, AAV.SC-shRNA (scrambled shRNA), and phosphate-buffered saline (PBS), respectively, before exposure to a moderately cold environment (6.7 ± 2°C), while the last group was given PBS and kept at room temperature (warm, 24 ± 2°C) and served as a control. We found that systolic blood pressure of the PBS-treated and SC-shRNA-treated groups increased significantly within 2 weeks of exposure to cold, reached a peak level (145 ± 4.8 mmHg) by 6 weeks, and remained elevated thereafter. By contrast, blood pressure of the ET1-shRNA-treated group did not increase, suggesting that silencing of ET1 prevented the development of CIH. Animals were euthanized after 10 weeks of exposure to cold. Cold exposure significantly increased the left ventricle (LV) surface area and LV weight in cold-exposed rats, suggesting LV hypertrophy. Superoxide production in the heart was increased by cold exposure. Interestingly, ET1-shRNA prevented cold-induced superoxide production and cardiac hypertrophy. ELISA assay indicated that ET1-shRNA abolished the cold-induced upregulation of ET1 levels, indicating effective silencing of ET1. In conclusion, upregulation of ET1 plays a critical role in the pathogenesis of CIH and cardiac hypertrophy. AAV delivery of ET1-shRNA is an effective therapeutic strategy for cold-related cardiovascular disease.
Collapse
Affiliation(s)
- Peter Gin-Fu Chen
- 2 Departments of Medicine and Physiology, College of Medicine, University of Florida , Gainesville, Florida
| | - Zhongjie Sun
- 1 Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma.,2 Departments of Medicine and Physiology, College of Medicine, University of Florida , Gainesville, Florida
| |
Collapse
|
46
|
Chen J, Lin Y, Sun Z. Deficiency in the anti-aging gene Klotho promotes aortic valve fibrosis through AMPKα-mediated activation of RUNX2. Aging Cell 2016; 15:853-60. [PMID: 27242197 PMCID: PMC5013020 DOI: 10.1111/acel.12494] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2016] [Indexed: 01/14/2023] Open
Abstract
Fibrotic aortic valve disease (FAVD) is an important cause of aortic stenosis, yet currently there is no effective treatment for FAVD due to its unknown etiology. The purpose of this study was to investigate whether deficiency in the anti‐aging Klotho gene (KL) promotes high‐fat‐diet‐induced FAVD and to explore the underlying molecular mechanism. Heterozygous Klotho‐deficient (KL+/−) mice and WT littermates were fed with a high‐fat diet (HFD) or normal diet for 13 weeks, followed by treatment with the AMPKα activator (AICAR) for an additional 2 weeks. A HFD caused a greater increase in collagen levels in the aortic valves of KL+/− mice than of WT mice, indicating that Klotho deficiency promotes HFD‐induced aortic valve fibrosis (AVF). AMPKα activity (pAMPKα) was decreased, while protein expression of collagen I and RUNX2 was increased in the aortic valves of KL+/− mice fed with a HFD. Treatment with AICAR markedly attenuated HFD‐induced AVF in KL+/− mice. AICAR not only abolished the downregulation of pAMPKα but also eliminated the upregulation of collagen I and RUNX2 in the aortic valves of KL+/− mice fed with HFD. In cultured porcine aortic valve interstitial cells, Klotho‐deficient serum plus cholesterol increased RUNX2 and collagen I protein expression, which were attenuated by activation of AMPKα by AICAR. Interestingly, silencing of RUNX2 abolished the stimulatory effect of Klotho deficiency on cholesterol‐induced upregulation of matrix proteins, including collagen I and osteocalcin. In conclusion, Klotho gene deficiency promotes HFD‐induced fibrosis in aortic valves, likely through the AMPKα–RUNX2 pathway.
Collapse
Affiliation(s)
- Jianglei Chen
- Department of Physiology College of Medicine University of Oklahoma Health Sciences Center Oklahoma City OK 73104 USA
| | - Yi Lin
- Department of Physiology College of Medicine University of Oklahoma Health Sciences Center Oklahoma City OK 73104 USA
| | - Zhongjie Sun
- Department of Physiology College of Medicine University of Oklahoma Health Sciences Center Oklahoma City OK 73104 USA
| |
Collapse
|
47
|
Varshney R, Ali Q, Wu C, Sun Z. Monocrotaline-Induced Pulmonary Hypertension Involves Downregulation of Antiaging Protein Klotho and eNOS Activity. Hypertension 2016; 68:1255-1263. [PMID: 27672025 DOI: 10.1161/hypertensionaha.116.08184] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022]
Abstract
The objective of this study is to investigate whether stem cell delivery of secreted Klotho (SKL), an aging-suppressor protein, attenuates monocrotaline-induced pulmonary vascular dysfunction and remodeling. Overexpression of SKL in mesenchymal stem cells (MSCs) was achieved by transfecting MSCs with lentiviral vectors expressing SKL-green fluorescent protein (GFP). Four groups of rats were treated with monocrotaline, whereas an additional group was given saline (control). Three days later, 4 monocrotaline-treated groups received intravenous delivery of nontransfected MSCs, MSC-GFP, MSC-SKL-GFP, and PBS, respectively. Ex vivo vascular relaxing responses to acetylcholine were diminished in small pulmonary arteries (PAs) in monocrotaline-treated rats, indicating pulmonary vascular endothelial dysfunction. Interestingly, delivery of MSCs overexpressing SKL (MSC-SKL-GFP) abolished monocrotaline-induced pulmonary vascular endothelial dysfunction and PA remodeling. Monocrotaline significantly increased right ventricular systolic blood pressure, which was attenuated significantly by MSC-SKL-GFP, indicating improved PA hypertension. MSC-SKL-GFP also attenuated right ventricular hypertrophy. Nontransfected MSCs slightly, but not significantly, improved PA hypertension and pulmonary vascular endothelial dysfunction. MSC-SKL-GFP attenuated monocrotaline-induced inflammation, as evidenced by decreased macrophage infiltration around PAs. MSC-SKL-GFP increased SKL levels, which rescued the downregulation of SIRT1 (Sirtuin 1) expression and endothelial NO synthase (eNOS) phosphorylation in the lungs of monocrotaline-treated rats. In cultured endothelial cells, SKL abolished monocrotaline-induced downregulation of eNOS activity and NO levels and enhanced cell viability. Therefore, stem cell delivery of SKL is an effective therapeutic strategy for pulmonary vascular endothelial dysfunction and PA remodeling. SKL attenuates monocrotaline-induced PA remodeling and PA smooth muscle cell proliferation, likely by reducing inflammation and restoring SIRT1 levels and eNOS activity.
Collapse
Affiliation(s)
- Rohan Varshney
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Quaisar Ali
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Chengxiang Wu
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Zhongjie Sun
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City.
| |
Collapse
|
48
|
Gao D, Zuo Z, Tian J, Ali Q, Lin Y, Lei H, Sun Z. Activation of SIRT1 Attenuates Klotho Deficiency-Induced Arterial Stiffness and Hypertension by Enhancing AMP-Activated Protein Kinase Activity. Hypertension 2016; 68:1191-1199. [PMID: 27620389 DOI: 10.1161/hypertensionaha.116.07709] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 08/17/2016] [Indexed: 12/27/2022]
Abstract
Arterial stiffness is an independent risk factor for stroke and myocardial infarction. This study was designed to investigate the role of SIRT1, an important deacetylase, and its relationship with Klotho, a kidney-derived aging-suppressor protein, in the pathogenesis of arterial stiffness and hypertension. We found that the serum level of Klotho was decreased by ≈45% in patients with arterial stiffness and hypertension. Interestingly, Klotho haplodeficiency caused arterial stiffening and hypertension, as evidenced by significant increases in pulse wave velocity and blood pressure in Klotho-haplodeficient (KL+/-) mice. Notably, the expression and activity of SIRT1 were decreased significantly in aortic endothelial and smooth muscle cells in KL+/- mice, suggesting that Klotho deficiency downregulates SIRT1. Treatment with SRT1720 (15 mg/kg/d, IP), a specific SIRT1 activator, abolished Klotho deficiency-induced arterial stiffness and hypertension in KL+/- mice. Klotho deficiency was associated with significant decreases in activities of AMP-activated protein kinase α (AMPKα) and endothelial NO synthase (eNOS) in aortas, which were abolished by SRT1720. Furthermore, Klotho deficiency upregulated NADPH oxidase activity and superoxide production, increased collagen expression, and enhanced elastin fragmentation in the media of aortas. These Klotho deficiency-associated changes were blocked by SRT1720. In conclusion, this study provides the first evidence that Klotho deficiency downregulates SIRT1 activity in arterial endothelial and smooth muscle cells. Pharmacological activation of SIRT1 may be an effective therapeutic strategy for arterial stiffness and hypertension.
Collapse
Affiliation(s)
- Diansa Gao
- From the Department of Cardiology (D.G., Z.Z., H.L., Z.S.) and Department of Physical Examination (J.T.), the First Affiliated Hospital, Chongqing Medical University, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (D.G., Q.A., Y.L., Z.S.)
| | - Zhong Zuo
- From the Department of Cardiology (D.G., Z.Z., H.L., Z.S.) and Department of Physical Examination (J.T.), the First Affiliated Hospital, Chongqing Medical University, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (D.G., Q.A., Y.L., Z.S.)
| | - Jing Tian
- From the Department of Cardiology (D.G., Z.Z., H.L., Z.S.) and Department of Physical Examination (J.T.), the First Affiliated Hospital, Chongqing Medical University, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (D.G., Q.A., Y.L., Z.S.)
| | - Quaisar Ali
- From the Department of Cardiology (D.G., Z.Z., H.L., Z.S.) and Department of Physical Examination (J.T.), the First Affiliated Hospital, Chongqing Medical University, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (D.G., Q.A., Y.L., Z.S.)
| | - Yi Lin
- From the Department of Cardiology (D.G., Z.Z., H.L., Z.S.) and Department of Physical Examination (J.T.), the First Affiliated Hospital, Chongqing Medical University, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (D.G., Q.A., Y.L., Z.S.)
| | - Han Lei
- From the Department of Cardiology (D.G., Z.Z., H.L., Z.S.) and Department of Physical Examination (J.T.), the First Affiliated Hospital, Chongqing Medical University, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (D.G., Q.A., Y.L., Z.S.)
| | - Zhongjie Sun
- From the Department of Cardiology (D.G., Z.Z., H.L., Z.S.) and Department of Physical Examination (J.T.), the First Affiliated Hospital, Chongqing Medical University, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (D.G., Q.A., Y.L., Z.S.).
| |
Collapse
|
49
|
Dipeptidyl peptidase-4 inhibition with linagliptin prevents western diet-induced vascular abnormalities in female mice. Cardiovasc Diabetol 2016; 15:94. [PMID: 27391040 PMCID: PMC4938903 DOI: 10.1186/s12933-016-0414-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/23/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Vascular stiffening, a risk factor for cardiovascular disease, is accelerated, particularly in women with obesity and type 2 diabetes. Preclinical evidence suggests that dipeptidylpeptidase-4 (DPP-4) inhibitors may have cardiovascular benefits independent of glycemic lowering effects. Recent studies show that consumption of a western diet (WD) high in fat and simple sugars induces aortic stiffening in female C57BL/6J mice in advance of increasing blood pressure. The aims of this study were to determine whether administration of the DPP-4 inhibitor, linagliptin (LGT), prevents the development of aortic and endothelial stiffness induced by a WD in female mice. METHODS C56Bl6/J female mice were fed a WD for 4 months. Aortic stiffness and ex vivo endothelial stiffness were evaluated by Doppler pulse wave velocity (PWV) and atomic force microscopy (AFM), respectively. In addition, we examined aortic vasomotor responses and remodeling markers via immunohistochemistry. Results were analyzed via 2-way ANOVA, p < 0.05 was considered as statistically significant. RESULTS Compared to mice fed a control diet (CD), WD-fed mice exhibited a 24 % increase in aortic PWV, a five-fold increase in aortic endothelial stiffness, and impaired endothelium-dependent vasodilation. In aorta, these findings were accompanied by medial wall thickening, adventitial fibrosis, increased fibroblast growth factor 23 (FGF-23), decreased Klotho, enhanced oxidative stress, and endothelial cell ultrastructural changes, all of which were prevented with administration of LGT. CONCLUSIONS The present findings support the notion that DPP-4 plays a role in development of WD-induced aortic stiffening, vascular oxidative stress, endothelial dysfunction, and vascular remodeling. Whether, DPP-4 inhibition could be a therapeutic tool used to prevent the development of aortic stiffening and the associated cardiovascular complications in obese and diabetic females remains to be elucidated.
Collapse
|
50
|
Kalaitzidis RG, Duni A, Siamopoulos KC. Klotho, the Holy Grail of the kidney: from salt sensitivity to chronic kidney disease. Int Urol Nephrol 2016; 48:1657-66. [PMID: 27215557 DOI: 10.1007/s11255-016-1325-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/17/2016] [Indexed: 01/05/2023]
Abstract
The Klotho gene displays an extremely shortened life span with loss of function missense mutations leading to premature multiple organ failure, thus resembling human premature aging syndromes. The transmembrane form of Klotho protein functions as an obligatory co-receptor for FGF23. Klotho and FGF23 are crucial components for the regulation of vitamin D metabolism and subsequently blood phosphate levels. The secreted Klotho protein has multiple regulatory functions, including effects on electrolyte homeostasis, on growth factor pathways as well as on oxidative stress, which are currently the object of extensive research. Klotho protein deficiency is observed in many experimental and clinical disease models. Genetic polymorphisms such as the G-395A polymorphism in the promoter region of the Klotho gene have been associated with the development of essential hypertension. The kidneys are the primary site of Klotho production, and renal Klotho is decreased in CKD, followed by a reduction in plasma Klotho. Klotho deficiency has been both associated with progression of CKD as well as with its cardinal systemic manifestations, including cardiovascular disease. Thus, Klotho has been suggested both as a risk biomarker for early detection of CKD and additionally as a potential therapeutic tool in the future.
Collapse
Affiliation(s)
- Rigas G Kalaitzidis
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece.
| | - Anila Duni
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece
| | | |
Collapse
|