1
|
Chia ZJ, Kumarapperuma H, Zhang R, Little PJ, Kamato D. Smad transcription factors as mediators of 7 transmembrane G protein-coupled receptor signalling. Acta Pharmacol Sin 2024:10.1038/s41401-024-01413-6. [PMID: 39506064 DOI: 10.1038/s41401-024-01413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
The Smad transcription factors are well known for their role at the core of transforming growth factor-β (TGF-β) signalling. However, recent evidence shows that the Smad transcription factors play a vital role downstream of other classes of receptors including G protein-coupled receptors (GPCR). The versatility of Smad transcription factors originated from the two regions that can be differently activated by the TGF-β receptor superfamily or through the recruitment of intracellular kinases stimulated by other receptors classes such as GPCRs. The classic GPCR signalling cascade is further expanded to conditional adoption of the Smad transcription factor under the stimulation of Akt, demonstrating the unique involvement of the Smad transcription factor in GPCR signalling pathways in disease environments. In this review, we provide a summary of the signalling pathways of the Smad transcription factors as an important downstream mediator of GPCRs, presenting exciting opportunities for discovering new therapeutic targets for diseases.
Collapse
Affiliation(s)
- Zheng-Jie Chia
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Hirushi Kumarapperuma
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Ruizhi Zhang
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith Sciences, Griffith University, Nathan, QLD, Australia
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Danielle Kamato
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia.
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
- School of Environment and Science, Griffith Sciences, Griffith University, Nathan, QLD, Australia.
| |
Collapse
|
2
|
Mangum KD, Li Q, Bauer TM, Wolf SJ, Shadiow J, Moon JY, Barrett EC, Joshi AD, Ahmed Z, Wasikowski R, Boyer K, Obi AT, Davis FM, Chang L, Tsoi LC, Gudjonsson J, Gallagher KA. Epigenetic Alteration of Smooth Muscle Cells Regulates Endothelin-Dependent Blood Pressure and Hypertensive Arterial Remodeling. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.09.24310178. [PMID: 39040193 PMCID: PMC11261912 DOI: 10.1101/2024.07.09.24310178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Long-standing hypertension (HTN) affects multiple organ systems and leads to pathologic arterial remodeling, which is driven largely by smooth muscle cell (SMC) plasticity. Although genome wide association studies (GWAS) have identified numerous variants associated with changes in blood pressure in humans, only a small percentage of these variants actually cause HTN. In order to identify relevant genes important in SMC function in HTN, we screened three separate human GWAS and Mendelian randomization studies to identify SNPs located within non-coding gene regions, focusing on genes encoding epigenetic enzymes, as these have been recently identified to control SMC fate in cardiovascular disease. We identified SNPs rs62059712 and rs74480102 in the promoter of the human JMJD3 gene and show that the minor C allele increases JMJD3 transcription in SMCs via increased SP1 binding to the JMJD3 promoter. Using our novel SMC-specific Jmjd3-deficient murine model ( Jmjd3 flox/flox Myh11 CreERT ), we show that loss of Jmjd3 in SMCs results in HTN, mechanistically, due to decreased EDNRB expression and a compensatory increase in EDNRA expression. As a translational corollary, through single cell RNA-sequencing (scRNA-seq) of human arteries, we found strong correlation between JMJD3 and EDNRB expression in SMCs. Further, we identified that JMJD3 is required for SMC-specific gene expression, and loss of JMJD3 in SMCs in the setting of HTN results in increased arterial remodeling by promoting the SMC synthetic phenotype. Our findings link a HTN-associated human DNA variant with regulation of SMC plasticity, revealing therapeutic targets that may be used in the screening and/or personalized treatment of HTN.
Collapse
|
3
|
Gutiérrez A, Gómez Del Val A, Contreras C, Olmos L, Sánchez A, Prieto D. Calcium handling coupled to the endothelin ET A and ET B receptor-mediated vasoconstriction in resistance arteries: Differential regulation by PI3K, PKC and RhoK. Eur J Pharmacol 2023; 956:175948. [PMID: 37541372 DOI: 10.1016/j.ejphar.2023.175948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Abnormal endothelin-1 (ET-1) activity is involved in the pathogenesis of vascular diseases such as essential and pulmonary arterial hypertension, coronary artery disease, and cerebrovascular disease, blockade of ET receptors having shown efficacy in clinical assays and experimental models of hypertension. Augmented Ca2+ influx and changes in Ca2+ sensitization associated with arterial vasoconstriction underlie increased systemic vascular resistance in hypertension. Since peripheral resistance arteries play a key role in blood pressure regulation, we aimed to determine here the specific Ca2+ signaling mechanisms linked to the ET receptor-mediated vasoconstriction in resistance arteries and their selective regulation by protein kinase C (PKC), Rho kinase (RhoK), the phosphatidylinositol 3-kinase (PI3K) and the mitogen-activated protein kinase (MAPK). ET-1-induced contraction was mediated by the endothelin ETA receptor with a minor contribution of vascular smooth muscle (VSM) endothelin ETB receptors. ET receptor activation elicited Ca2+ mobilization from intracellular stores, extracellular Ca2+ influx and Ca2+ sensitization associated with contraction in resistance arteries. Vasoconstriction induced by ET-1 was largely dependent on activation of canonical transient receptor potential channel 3 (TRPC3) and extracellular Ca2+ influx through nifedipine-sensitive voltage-dependent Ca2+ channels. PI3K inhibition reduced intracellular Ca2+ mobilization and Ca2+ entry without altering vasoconstriction elicited by ET-1, while PKC has dual opposite actions by enhancing Ca2+ influx associated with contraction, and by inhibiting Ca2+ release from intracellular stores. RhoK was a major determinant of the enhanced sensitivity of the contractile filaments underlying ET-1 vasoconstriction, with also a modulatory positive action on Ca2+ influx and intracellular Ca2+ release. Augmented RhoK and PKC activities are involved in vascular dysfunction in hypertension and vascular complications of insulin-resistant states, and these kinases are thus potential pharmacological targets in vascular diseases in which the ET pathway is impaired.
Collapse
Affiliation(s)
- Alejandro Gutiérrez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Alfonso Gómez Del Val
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Lucia Olmos
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Ana Sánchez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
4
|
Jia M, Su X, Qin Q, Li Y, Wang S, Chen Y. Tetrahydroxystilbene glucoside attenuated homocysteine-upregulated endothelin receptors in vascular smooth muscle cells via the ERK 1 /2 /NF-κB signaling pathway. Phytother Res 2022; 36:3352-3361. [PMID: 35648450 DOI: 10.1002/ptr.7519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 05/02/2022] [Accepted: 05/18/2022] [Indexed: 11/12/2022]
Abstract
2,3,5,4'-Tetrahydrostilbene-2-o-β-d-glucoside (TSG) is the main active component of Polygonum multiflorum Thunb. It has effects on hypertension. However, the mechanism is unclear. Current research is devoted to exploring the mechanism of TSG improving HHcy-induced hypertension. The mice received a subcutaneous injection of Hcy in the presence or absence of TSG for 4 weeks. Blood pressure (BP) was measured using a noninvasive tail-cuff plethysmography method. Levels of plasma Hcy and endothelin-1 were measured using ELISA. Rat SMA without endothelium was cultured in a serum-free medium in the presence or absence of TSG with or without Hcy. The contractile response to sarafotoxin 6c or endothein-1 was studied using a sensitive myography. The levels of protein were detected using Western blotting. The results showed that TSG lowered HHcy-elevated BP and decreased levels of plasma Hcy and endothelin-1 in mice. Furthermore, the results showed that TSG inhibited Hcy-upregulated ET receptor expression and ET receptor-mediated contractile responses as well as the levels of p-ERK1/2 and p-p65 in SMA. In vivo results further validate the in vitro results. In conclusion, TSG can decrease the levels of plasma Hcy and ET-1 and downregulate Hcy-upregulated ET receptors in VSMCs by inhibiting the ERK1/2 /NF-κB/ETB2 pathway to lower the BP.
Collapse
Affiliation(s)
- Min Jia
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xingli Su
- School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Qiaohong Qin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Yajuan Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Siwang Wang
- Shaanxi Key Laboratory of Biomedicine, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China.,Institute of Materia Medic, Department of Natural Medicine School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yulong Chen
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Zhang X, Zhang H, Yang X, Qin Q, Sun X, Hou Y, Chen D, Jia M, Su X, Chen Y. Angiotensin II upregulates endothelin receptors through the adenosine monophosphate-activated protein kinase/sirtuin 1 pathway in vascular smooth muscle cells. J Pharm Pharmacol 2021; 73:1652-1662. [PMID: 34570873 DOI: 10.1093/jpp/rgab137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES This study was designed to test our hypothesis that angiotensin II (Ang II) upregulates endothelin (ET) receptors in vascular smooth muscle cells (VSMCs). METHODS Rat superior mesenteric artery (SMA) without endothelium was cultured in serum-free medium for 24 h in the presence of Ang II with or without metformin or nicotinamide. In vivo, rats were implanted subcutaneously with a mini-osmotic pump infusing AngII (500 ng/kg/min) for 4 weeks. The level of protein expression was determined using Western blotting. The contractile response to ET receptor agonists was studied using sensitive myography. Caudal artery blood pressure (BP) was measured using non-invasive tail-cuff plethysmography. KEY FINDINGS The results showed that Ang II significantly increased ET receptors and decreased phosphorylated-adenosine monophosphate-activated protein kinase α (p-AMPKα) in SMA. Furthermore, metformin significantly inhibited Ang II-upregulated ET receptors and upregulated Ang II-decreased sirtuin 1 (Sirt1). However, this effect was reversed by nicotinamide. Moreover, the in-vivo results showed that metformin not only inhibited Ang II-induced upregulation of ET receptors but also recovered Ang II-decreased p-AMPKα and Sirt1. In addition, metformin significantly inhibited Ang II-elevated BP. However, the effect was reversed by nicotinamide, except for p-AMPKα. CONCLUSIONS Ang II upregulated ET receptors in VSMCs to elevate BP by inhibiting AMPK, thereby inhibiting Sirt1.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Hongmei Zhang
- The First Affiliated Hospital of Xi'an Medical University, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xinpu Yang
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Qiaohong Qin
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xia Sun
- School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Ying Hou
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Di Chen
- School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Min Jia
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xingli Su
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, China
- School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Wolf P, Mohr A, Gavins G, Behr V, Mörl K, Seitz O, Beck-Sickinger AG. Orthogonal Peptide-Templated Labeling Elucidates Lateral ET A R/ET B R Proximity and Reveals Altered Downstream Signaling. Chembiochem 2021; 23:e202100340. [PMID: 34699123 PMCID: PMC9298254 DOI: 10.1002/cbic.202100340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/03/2021] [Indexed: 12/21/2022]
Abstract
Fine‐tuning of G protein‐coupled receptor (GPCR) signaling is important to maintain cellular homeostasis. Recent studies demonstrated that lateral GPCR interactions in the cell membrane can impact signaling profiles. Here, we report on a one‐step labeling method of multiple membrane‐embedded GPCRs. Based on short peptide tags, complementary probes transfer the cargo (e. g. a fluorescent dye) by an acyl transfer reaction with high spatial and temporal resolution within 5 min. We applied this approach to four receptors of the cardiovascular system: the endothelin receptor A and B (ETAR and ETBR), angiotensin II receptor type 1, and apelin. Wild type‐like G protein activation after N‐terminal modification was demonstrated for all receptor species. Using FRET‐competent dyes, a constitutive proximity between hetero‐receptors was limited to ETAR/ETBR. Further, we demonstrate, that ETAR expression regulates the signaling of co‐expressed ETBR. Our orthogonal peptide‐templated labeling of different GPCRs provides novel insight into the regulation of GPCR signaling.
Collapse
Affiliation(s)
- Philipp Wolf
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Brüderstrasse 34, 04103, Leipzig, Germany
| | - Alexander Mohr
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Brüderstrasse 34, 04103, Leipzig, Germany
| | - Georgina Gavins
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Victoria Behr
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Brüderstrasse 34, 04103, Leipzig, Germany
| | - Karin Mörl
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Brüderstrasse 34, 04103, Leipzig, Germany
| | - Oliver Seitz
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Annette G Beck-Sickinger
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Brüderstrasse 34, 04103, Leipzig, Germany
| |
Collapse
|
7
|
Ford TJ, Corcoran D, Padmanabhan S, Aman A, Rocchiccioli P, Good R, McEntegart M, Maguire JJ, Watkins S, Eteiba H, Shaukat A, Lindsay M, Robertson K, Hood S, McGeoch R, McDade R, Yii E, Sattar N, Hsu LY, Arai AE, Oldroyd KG, Touyz RM, Davenport AP, Berry C. Genetic dysregulation of endothelin-1 is implicated in coronary microvascular dysfunction. Eur Heart J 2020; 41:3239-3252. [PMID: 31972008 PMCID: PMC7557475 DOI: 10.1093/eurheartj/ehz915] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/12/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
AIMS Endothelin-1 (ET-1) is a potent vasoconstrictor peptide linked to vascular diseases through a common intronic gene enhancer [(rs9349379-G allele), chromosome 6 (PHACTR1/EDN1)]. We performed a multimodality investigation into the role of ET-1 and this gene variant in the pathogenesis of coronary microvascular dysfunction (CMD) in patients with symptoms and/or signs of ischaemia but no obstructive coronary artery disease (CAD). METHODS AND RESULTS Three hundred and ninety-one patients with angina were enrolled. Of these, 206 (53%) with obstructive CAD were excluded leaving 185 (47%) eligible. One hundred and nine (72%) of 151 subjects who underwent invasive testing had objective evidence of CMD (COVADIS criteria). rs9349379-G allele frequency was greater than in contemporary reference genome bank control subjects [allele frequency 46% (129/280 alleles) vs. 39% (5551/14380); P = 0.013]. The G allele was associated with higher plasma serum ET-1 [least squares mean 1.59 pg/mL vs. 1.28 pg/mL; 95% confidence interval (CI) 0.10-0.53; P = 0.005]. Patients with rs9349379-G allele had over double the odds of CMD [odds ratio (OR) 2.33, 95% CI 1.10-4.96; P = 0.027]. Multimodality non-invasive testing confirmed the G allele was associated with linked impairments in myocardial perfusion on stress cardiac magnetic resonance imaging at 1.5 T (N = 107; GG 56%, AG 43%, AA 31%, P = 0.042) and exercise testing (N = 87; -3.0 units in Duke Exercise Treadmill Score; -5.8 to -0.1; P = 0.045). Endothelin-1 related vascular mechanisms were assessed ex vivo using wire myography with endothelin A receptor (ETA) antagonists including zibotentan. Subjects with rs9349379-G allele had preserved peripheral small vessel reactivity to ET-1 with high affinity of ETA antagonists. Zibotentan reversed ET-1-induced vasoconstriction independently of G allele status. CONCLUSION We identify a novel genetic risk locus for CMD. These findings implicate ET-1 dysregulation and support the possibility of precision medicine using genetics to target oral ETA antagonist therapy in patients with microvascular angina. TRIAL REGISTRATION ClinicalTrials.gov: NCT03193294.
Collapse
Affiliation(s)
- Thomas J Ford
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 9DH, UK
- Department of Cardiology, Gosford Hospital, NSW, Australia
- Faculty of Medicine, University of Newcastle, NSW, Australia
| | - David Corcoran
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 9DH, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Sandosh Padmanabhan
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 9DH, UK
| | - Alisha Aman
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 9DH, UK
| | - Paul Rocchiccioli
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 9DH, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Richard Good
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 9DH, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Margaret McEntegart
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 9DH, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Addenbrooke's Centre for Clinical Investigation (ACCI), Box 110, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Stuart Watkins
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Hany Eteiba
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Aadil Shaukat
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Mitchell Lindsay
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Keith Robertson
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Stuart Hood
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Ross McGeoch
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert McDade
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Eric Yii
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 9DH, UK
| | - Naveed Sattar
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 9DH, UK
| | - Li-Yueh Hsu
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew E Arai
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keith G Oldroyd
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 9DH, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Rhian M Touyz
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 9DH, UK
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Addenbrooke's Centre for Clinical Investigation (ACCI), Box 110, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Colin Berry
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 9DH, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| |
Collapse
|
8
|
Chen Y, Su X, Qin Q, Yu Y, Jia M, Kong L, Zhang H, Li H. Metformin inhibited homocysteine-induced upregulation of endothelin receptors through the Sirt1/NF-κB signaling pathway in vascular smooth muscle cells. Vascul Pharmacol 2020; 124:106613. [DOI: 10.1016/j.vph.2019.106613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022]
|
9
|
Regal JF, Lund JM, Wing CR, Root KM, McCutcheon L, Bemis LT, Gilbert JS, Fleming SD. Interactions between the complement and endothelin systems in normal pregnancy and following placental ischemia. Mol Immunol 2019; 114:10-18. [PMID: 31326653 DOI: 10.1016/j.molimm.2019.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/22/2019] [Accepted: 06/23/2019] [Indexed: 01/01/2023]
Abstract
Preeclampsia is characterized by new onset hypertension and fetal growth restriction and is associated with aberrant activation of the innate immune complement system and stressed or ischemic placenta. Previous studies have suggested a role for both endothelin and complement system activation products in new onset hypertension in pregnancy, but inter-relationships of the pathways are unclear. We hypothesized that complement activation following placental ischemia stimulates the endothelin pathway to cause hypertension and impair fetal growth. The Reduced Uterine Perfusion Pressure (RUPP) model results in hypertension and fetal growth restriction in a pregnant rat due to placental ischemia caused by mechanical obstruction of blood flow to uterus and placenta. The effect of inhibitor of complement activation soluble Complement Receptor 1 (sCR1) and endothelin A receptor (ETA) antagonist atrasentan on hypertension, fetal weight, complement activation (systemic circulating C3a and local C3 placental deposition) and endothelin [circulating endothelin and message for preproendothelin (PPE), ETA and endothelin B receptor (ETB) in placenta] in the RUPP rat model were determined. Following placental ischemia, sCR1 attenuated hypertension but increased message for PPE and ETA in placenta, suggesting complement activation causes hypertension via an endothelin independent pathway. With ETA antagonism the placental ischemia-induced increase in circulating C3a was unaffected despite inhibition of hypertension, indicating systemic C3a alone is not sufficient. In normal pregnancy, inhibiting complement activation increased plasma endothelin but not placental PPE message. Atrasentan treatment increased fetal weight, circulating endothelin and placental ETA message, and unexpectedly increased local complement activation in placenta (C3 deposition) but not C3a in circulation, suggesting endothelin controls local placental complement activation in normal pregnancy. Atrasentan also significantly decreased message for endogenous complement regulators Crry and CD55 in placenta and kidney in normal pregnancy. Results of our study indicate that complement/endothelin interactions differ in pregnancies complicated with placental ischemia vs normal pregnancy, as well as locally vs systemically. These data clearly illustrate the complex interplay between complement and endothelin indicating that perturbations of either pathway may affect pregnancy outcomes.
Collapse
Affiliation(s)
- Jean F Regal
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Jenna M Lund
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Cameron R Wing
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Kate M Root
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Luke McCutcheon
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Lynne T Bemis
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Jeffrey S Gilbert
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Sherry D Fleming
- Division of Biology, 18 Ackert, Kansas State University, 1717 Claflin Rd, Manhattan, Kansas, 66506, USA.
| |
Collapse
|
10
|
Krawczyk KK, Skovsted GF, Perisic L, Dreier R, Berg JO, Hedin U, Rippe C, Swärd K. Expression of endothelin type B receptors (EDNRB) on smooth muscle cells is controlled by MKL2, ternary complex factors, and actin dynamics. Am J Physiol Cell Physiol 2018; 315:C873-C884. [PMID: 30332284 DOI: 10.1152/ajpcell.00170.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The endothelin type B receptor (ETB or EDNRB) is highly plastic and is upregulated in smooth muscle cells (SMCs) by arterial injury and following organ culture in vitro. We hypothesized that this transcriptional plasticity may arise, in part, because EDNRB is controlled by a balance of transcriptional inputs from myocardin-related transcription factors (MRTFs) and ternary complex factors (TCFs). We found significant positive correlations between the TCFs ELK3 and FLI1 versus EDNRB in human arteries. The MRTF MKL2 also correlated with EDNRB. Overexpression of ELK3, FLI1, and MKL2 in human coronary artery SMCs promoted expression of EDNRB, and the effect of MKL2 was antagonized by myocardin (MYOCD), which also correlated negatively with EDNRB at the tissue level. Silencing of MKL2 reduced basal EDNRB expression, but depolymerization of actin using latrunculin B (LatB) or overexpression of constitutively active cofilin, as well as treatment with the Rho-associated kinase (ROCK) inhibitor Y27632, increased EDNRB in a MEK/ERK-dependent fashion. Transcript-specific primers indicated that the second EDNRB transcript (EDNRB_2) was targeted, but this promoter was largely unresponsive to LatB and was inhibited rather than stimulated by MKL2 and FLI1, suggesting distant control elements or an indirect effect. LatB also reduced expression of endothelin-1, but supplementation experiments argued that this was not the cause of EDNRB induction. EDNRB finally changed in parallel with ELK3 and FLI1 in rat and human carotid artery lesions. These studies implicate the actin cytoskeleton and ELK3, FLI1, and MKL2 in the transcriptional control of EDNRB and increase our understanding of the plasticity of this receptor.
Collapse
Affiliation(s)
| | - Gry Freja Skovsted
- Department of Veterinary and Animal Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Ljubica Perisic
- Department of Molecular Medicine and Surgery, Karolinska Institutet , Stockholm , Sweden
| | - Rasmus Dreier
- Department of Medicine and Department of Clinical Physiology, Nuclear Medicine, and PET, University of Copenhagen, Herlev, Denmark
| | - Jais Oliver Berg
- Department of Plastic and Reconstructive Surgery, Herlev-Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet , Stockholm , Sweden
| | - Catarina Rippe
- Department of Experimental Medical Science, Lund University , Lund , Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University , Lund , Sweden
| |
Collapse
|
11
|
Stobdan T, Zhou D, Williams AT, Cabrales P, Haddad GG. Cardiac-specific knockout and pharmacological inhibition of Endothelin receptor type B lead to cardiac resistance to extreme hypoxia. J Mol Med (Berl) 2018; 96:975-982. [PMID: 30069745 DOI: 10.1007/s00109-018-1673-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 07/11/2018] [Accepted: 07/23/2018] [Indexed: 11/27/2022]
Abstract
Oxygen plays a central role in cardiac energy metabolism. At high altitude where the ambient oxygen level is low, we found EDNRB is associated with human hypoxia adaptation. Our subsequent study in global heterozygous knockout mice (Ednrb-/+) revealed that cardiac function was conserved in these mice when exposed to extreme hypoxia. The major goal of this study was (i) to determine the functional role of cardiomyocyte EdnrB in maintaining cardiac function under hypoxic stress and (ii) to validate the phenotypes we detected in Ednrb-/+ mice using EDNRB blockers. Unlike the global knockouts, cardiac-specific heterozygote (EdnrBflox/+) and homozygote (EdnrBflox/flox) EdnrB knockout mice were phenotypically normal. When treated with graded low levels of oxygen (10% and 5% O2), both EdnrBflox/+ and EdnrBflox/flox were hypoxia tolerant. The cardiac indexes at 10% and 5% O2 for EdnrBflox/+ were significantly higher and lactate levels were significantly lower when compared to the cre-negative controls (P < 0.05). Simultaneously, mice treated with BQ-788 (EDNRB-specific blocker) had a significantly higher cardiac index (P < 0.005) and significantly lower lactate levels (P < 0.0001) than in control mice. A similar result was obtained with mice treated with Bosentan (non-specific). These data indicate that a lower level or complete lack of EdnrB in the cardiomyocytes significantly improves cardiac performance under extreme hypoxia, a novel role of cardiomyocyte EdnrB in the regulation of cardiac function. Furthermore, this rescue under extreme hypoxia can also be achieved using EDNRB-specific pharmacological agents, e.g., BQ-788. This systematically confirms, both genetically and pharmacologically, the protective role of a lower EDNRB under extreme hypoxia stress. KEY MESSAGES Under normal condition, cardiomyocytes-specific EdnrB knockout mice, both heterozygote and homozygote, are phenotypically normal. Under hypoxic condition, a lower level or complete deletion of cardiomyocyte EdnrB conserves cardiac function by maintaining high cardiac index. Similarly, mice treated with both specific (BQ-788) and non-specific (Bosentan) EDNRB blockers are tolerant to hypoxia by maintaining better cardiac function. The oxygen perfusion under extreme hypoxia is better in the mice with lower EDNRB, as depicted by lower lactate level at 5% oxygen. Our current study systematically confirms, both genetically and pharmacologically, the protective role of a lower EDNRB under extreme hypoxia stress. Overall, it supports our hypothesis that studies on human hypoxia adaptation provide new insight to common disease pathogenesis and treatments.
Collapse
Affiliation(s)
- Tsering Stobdan
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0735, La Jolla, CA, 92093, USA
| | - Dan Zhou
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0735, La Jolla, CA, 92093, USA
| | - Alexander T Williams
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Gabriel G Haddad
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0735, La Jolla, CA, 92093, USA. .,Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA. .,Rady Children's Hospital, San Diego, CA, 92123, USA.
| |
Collapse
|
12
|
Hubert A, Bochenek ML, Schütz E, Gogiraju R, Münzel T, Schäfer K. Selective Deletion of Leptin Signaling in Endothelial Cells Enhances Neointima Formation and Phenocopies the Vascular Effects of Diet-Induced Obesity in Mice. Arterioscler Thromb Vasc Biol 2017; 37:1683-1697. [DOI: 10.1161/atvbaha.117.309798] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/03/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Astrid Hubert
- From the Center for Cardiology, Cardiology I (A.H., M.L.B., E.S., R.G., T.M., K.S.) and Center for Thrombosis and Hemostasis (M.L.B.), University Medical Center Mainz, Germany
| | - Magdalena L. Bochenek
- From the Center for Cardiology, Cardiology I (A.H., M.L.B., E.S., R.G., T.M., K.S.) and Center for Thrombosis and Hemostasis (M.L.B.), University Medical Center Mainz, Germany
| | - Eva Schütz
- From the Center for Cardiology, Cardiology I (A.H., M.L.B., E.S., R.G., T.M., K.S.) and Center for Thrombosis and Hemostasis (M.L.B.), University Medical Center Mainz, Germany
| | - Rajinikanth Gogiraju
- From the Center for Cardiology, Cardiology I (A.H., M.L.B., E.S., R.G., T.M., K.S.) and Center for Thrombosis and Hemostasis (M.L.B.), University Medical Center Mainz, Germany
| | - Thomas Münzel
- From the Center for Cardiology, Cardiology I (A.H., M.L.B., E.S., R.G., T.M., K.S.) and Center for Thrombosis and Hemostasis (M.L.B.), University Medical Center Mainz, Germany
| | - Katrin Schäfer
- From the Center for Cardiology, Cardiology I (A.H., M.L.B., E.S., R.G., T.M., K.S.) and Center for Thrombosis and Hemostasis (M.L.B.), University Medical Center Mainz, Germany
| |
Collapse
|
13
|
Becker BK, Feagans AC, Chen D, Kasztan M, Jin C, Speed JS, Pollock JS, Pollock DM. Renal denervation attenuates hypertension but not salt sensitivity in ET B receptor-deficient rats. Am J Physiol Regul Integr Comp Physiol 2017; 313:R425-R437. [PMID: 28701323 DOI: 10.1152/ajpregu.00174.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/16/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023]
Abstract
Hypertension is a prevalent pathology that increases risk for numerous cardiovascular diseases. Because the etiology of hypertension varies across patients, specific and effective therapeutic approaches are needed. The role of renal sympathetic nerves is established in numerous forms of hypertension, but their contribution to salt sensitivity and interaction with factors such as endothelin-1 are poorly understood. Rats deficient of functional ETB receptors (ETB-def) on all tissues except sympathetic nerves are hypertensive and exhibit salt-sensitive increases in blood pressure. We hypothesized that renal sympathetic nerves contribute to hypertension and salt sensitivity in ETB-def rats. The hypothesis was tested through bilateral renal sympathetic nerve denervation and measuring blood pressure during normal salt (0.49% NaCl) and high-salt (4.0% NaCl) diets. Denervation reduced mean arterial pressure in ETB-def rats compared with sham-operated controls by 12 ± 3 (SE) mmHg; however, denervation did not affect the increase in blood pressure after 2 wk of high-salt diet (+19 ± 3 vs. +16 ± 3 mmHg relative to normal salt diet; denervated vs. sham, respectively). Denervation reduced cardiac sympathetic-to-parasympathetic tone [low frequency-high frequency (LF/HF)] during normal salt diet and vasomotor LF/HF tone during high-salt diet in ETB-def rats. We conclude that the renal sympathetic nerves contribute to the hypertension but not to salt sensitivity of ETB-def rats.
Collapse
Affiliation(s)
- Bryan K Becker
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Amanda C Feagans
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daian Chen
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Malgorzata Kasztan
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chunhua Jin
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joshua S Speed
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|