1
|
Hu XQ, Song R, Dasgupta C, Liu T, Zhang M, Twum-Barimah S, Blood AB, Zhang L. Rad-mediated inhibition of Ca V1.2 channel activity contributes to uterine artery haemodynamic adaptation to pregnancy. J Physiol 2024; 602:6729-6744. [PMID: 39612361 DOI: 10.1113/jp287334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024] Open
Abstract
The striking increase of uterine blood flow during pregnancy is essential for normal fetal development as well as for cardiovascular well-being of the mother. Yet, the underlying mechanisms of pregnancy-mediated vasodilatation of the uterine artery are not fully understood. In this study, we test the hypothesis that Rad, a monomeric G protein, is a novel regulatory mechanism in inhibiting CaV1.2 channel currents in uterine artery haemodynamic adaptation to pregnancy in a sheep model. We found that pregnancy significantly upregulates Rad expression and decreases CaV1.2 channel currents in uterine arterial smooth muscle cells. Rad knockdown ex vivo and in vivo increases CaV1.2 activity and channel window currents by reducing steady-state inactivation in uterine arteries of pregnant sheep, recapitulating the phenotype of uterine arteries in non-pregnant animals. Moreover, Rad knockdown in vivo in pregnant sheep enhances myogenic tone and phenylephrine-induced vasoconstriction of uterine arteries. Whereas knockdown of Rad has no effect on mesenteric arterial CaV1.2 channel activity and mean arterial blood pressure, it significantly increases uterine vascular resistance and decreases uterine artery blood flow. Our study reveals a novel cause-and-effect mechanism of Rad in pregnancy-induced suppression of CaV1.2 channel activity in uterine arteries to facilitate increased uterine blood flow, providing new insights into fundamental mechanisms of uterine haemodynamic adaptation to pregnancy. KEY POINTS: Pregnancy suppresses CaV1.2 channel currents in uterine arterial smooth muscle cells. Rad, a monomeric G protein, is upregulated in uterine arteries of pregnant sheep. Rad knockdown ex vivo or in vivo increases CaV1.2 channel currents in uterine arteries from pregnant ewes. In vivo knockdown of Rad elevates uterine vascular resistance and decreases uterine blood flow in pregnant sheep. The study reveals a novel mechanism of Rad in pregnancy-induced suppression of CaV1.2 channel activity in uterine arterial haemodynamic adaptation to pregnancy.
Collapse
MESH Headings
- Animals
- Female
- Pregnancy
- Uterine Artery/physiology
- Calcium Channels, L-Type/metabolism
- Calcium Channels, L-Type/physiology
- Calcium Channels, L-Type/genetics
- Sheep
- Adaptation, Physiological/physiology
- Hemodynamics
- Vasoconstriction/physiology
- Vasodilation/physiology
- Myocytes, Smooth Muscle/physiology
- Myocytes, Smooth Muscle/metabolism
- Vascular Resistance/physiology
- Muscle, Smooth, Vascular/physiology
- Muscle, Smooth, Vascular/metabolism
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Chiranjib Dasgupta
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Taiming Liu
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Meijuan Zhang
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Stephen Twum-Barimah
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Arlin B Blood
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
2
|
Nelapudi N, Boskind M, Hu XQ, Mallari D, Chan M, Wilson D, Romero M, Albert-Minckler E, Zhang L, Blood AB, Wilson CG, Puglisi JL, Wilson SM. Long-term hypoxia modulates depolarization activation of BK Ca currents in fetal sheep middle cerebral arterial myocytes. Front Physiol 2024; 15:1479882. [PMID: 39563935 PMCID: PMC11573761 DOI: 10.3389/fphys.2024.1479882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
Introduction Previous evidence indicates that gestational hypoxia disrupts cerebrovascular development, increasing the risk of intracranial hemorrhage and stroke in the newborn. Due to the role of cytosolic Ca2+ in regulating vascular smooth muscle (VSM) tone and fetal cerebrovascular blood flow, understanding Ca2+ signals can offer insight into the pathophysiological disruptions taking place in hypoxia-related perinatal cerebrovascular disease. This study aimed to determine the extent to which gestational hypoxia disrupts local Ca2+ sparks and whole-cell Ca2+ signals and coupling with BKCa channel activity. Methods Confocal imaging of cytosolic Ca2+ and recording BKCa currents of fetal sheep middle cerebral arterial (MCA) myocytes was performed. MCAs were isolated from term fetal sheep (∼140 days of gestation) from ewes held at low- (700 m) and high-altitude (3,801 m) hypoxia (LTH) for 100+ days of gestation. Arteries were depolarized with 30 mM KCl (30K), in the presence or absence of 10 μM ryanodine (Ry), to block RyR mediated Ca2+ release. Results Membrane depolarization increased Ry-sensitive Ca2+ spark frequency in normoxic and LTH groups along with BKCa activity. LTH reduced Ca2+ spark and whole-cell Ca2+ activity and induced a large leftward shift in the voltage-dependence of BKCa current activation. The influence of LTH on the spatial and temporal aspects of Ca2+ sparks and whole-cell Ca2+ responses varied. Discussion Overall, LTH attenuates Ca2+ signaling while increasing the coupling of Ca2+ sparks to BKCa activity; a process that potentially helps maintain oxygen delivery to the developing brain.
Collapse
Affiliation(s)
- Nikitha Nelapudi
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Madison Boskind
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Xiang-Qun Hu
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - David Mallari
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Michelle Chan
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Devin Wilson
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Monica Romero
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Eris Albert-Minckler
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Lubo Zhang
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Arlin B Blood
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Christopher G Wilson
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Jose Luis Puglisi
- Department of Biostatistics, California Northstate University School of Medicine, Elk Grove, CA, United States
| | - Sean M Wilson
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
3
|
Collins HE, Alexander BT, Care AS, Davenport MH, Davidge ST, Eghbali M, Giussani DA, Hoes MF, Julian CG, LaVoie HA, Olfert IM, Ozanne SE, Bytautiene Prewit E, Warrington JP, Zhang L, Goulopoulou S. Guidelines for assessing maternal cardiovascular physiology during pregnancy and postpartum. Am J Physiol Heart Circ Physiol 2024; 327:H191-H220. [PMID: 38758127 PMCID: PMC11380979 DOI: 10.1152/ajpheart.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Maternal mortality rates are at an all-time high across the world and are set to increase in subsequent years. Cardiovascular disease is the leading cause of death during pregnancy and postpartum, especially in the United States. Therefore, understanding the physiological changes in the cardiovascular system during normal pregnancy is necessary to understand disease-related pathology. Significant systemic and cardiovascular physiological changes occur during pregnancy that are essential for supporting the maternal-fetal dyad. The physiological impact of pregnancy on the cardiovascular system has been examined in both experimental animal models and in humans. However, there is a continued need in this field of study to provide increased rigor and reproducibility. Therefore, these guidelines aim to provide information regarding best practices and recommendations to accurately and rigorously measure cardiovascular physiology during normal and cardiovascular disease-complicated pregnancies in human and animal models.
Collapse
Grants
- HL169157 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HD088590 NICHD NIH HHS
- HD083132 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- The Biotechnology and Biological Sciences Research Council
- P20GM103499 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- British Heart Foundation (BHF)
- R21 HD111908 NICHD NIH HHS
- Distinguished University Professor
- The Lister Insititute
- ES032920 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- Canadian Insitute's of Health Research Foundation Grant
- HL149608 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Royal Society (The Royal Society)
- U.S. Department of Defense (DOD)
- HL138181 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- MC_00014/4 UKRI | Medical Research Council (MRC)
- RG/17/8/32924 British Heart Foundation
- Jewish Heritage Fund for Excellence
- HD111908 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL163003 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- APP2002129 NHMRC Ideas Grant
- HL159865 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL131182 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL163818 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NS103017 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- HL143459 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138181 NHLBI NIH HHS
- 20CSA35320107 American Heart Association (AHA)
- RG/17/12/33167 British Heart Foundation (BHF)
- National Heart Foundation Future Leader Fellowship
- P20GM121334 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- HL146562-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL155295 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HD088590-06 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL147844 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- WVU SOM Synergy Grant
- R01 HL146562 NHLBI NIH HHS
- R01 HL159865 NHLBI NIH HHS
- HL159447 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- ES034646-01 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL150472 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 2021T017 Dutch Heart Foundation Dekker Grant
- MC_UU_00014/4 Medical Research Council
- R01 HL163003 NHLBI NIH HHS
- Christenson professor In Active Healthy Living
- National Heart Foundation
- Dutch Heart Foundation Dekker
- WVU SOM Synergy
- Jewish Heritage
- Department of Health | National Health and Medical Research Council (NHMRC)
- Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Collapse
Affiliation(s)
- Helen E Collins
- University of Louisville, Louisville, Kentucky, United States
| | - Barbara T Alexander
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alison S Care
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Mansoureh Eghbali
- University of California Los Angeles, Los Angeles, California, United States
| | | | | | - Colleen G Julian
- University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Holly A LaVoie
- University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - I Mark Olfert
- West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | | | | | - Junie P Warrington
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lubo Zhang
- Loma Linda University School of Medicine, Loma Linda, California, United States
| | | |
Collapse
|
4
|
Asunción-Alvarez D, Palacios J, Ybañez-Julca RO, Rodriguez-Silva CN, Nwokocha C, Cifuentes F, Greensmith DJ. Calcium signaling in endothelial and vascular smooth muscle cells: sex differences and the influence of estrogens and androgens. Am J Physiol Heart Circ Physiol 2024; 326:H950-H970. [PMID: 38334967 DOI: 10.1152/ajpheart.00600.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Calcium signaling in vascular endothelial cells (ECs) and smooth muscle cells (VSMCs) is essential for the regulation of vascular tone. However, the changes to intracellular Ca2+ concentrations are often influenced by sex differences. Furthermore, a large body of evidence shows that sex hormone imbalance leads to dysregulation of Ca2+ signaling and this is a key factor in the pathogenesis of cardiovascular diseases. In this review, the effects of estrogens and androgens on vascular calcium-handling proteins are discussed, with emphasis on the associated genomic or nongenomic molecular mechanisms. The experimental models from which data were collected were also considered. The review highlights 1) in female ECs, transient receptor potential vanilloid 4 (TRPV4) and mitochondrial Ca2+ uniporter (MCU) enhance Ca2+-dependent nitric oxide (NO) generation. In males, only transient receptor potential canonical 3 (TRPC3) plays a fundamental role in this effect. 2) Female VSMCs have lower cytosolic Ca2+ levels than males due to differences in the activity and expression of stromal interaction molecule 1 (STIM1), calcium release-activated calcium modulator 1 (Orai1), calcium voltage-gated channel subunit-α1C (CaV1.2), Na+-K+-2Cl- symporter (NKCC1), and the Na+/K+-ATPase. 3) When compared with androgens, the influence of estrogens on Ca2+ homeostasis, vascular tone, and incidence of vascular disease is better documented. 4) Many studies use supraphysiological concentrations of sex hormones, which may limit the physiological relevance of outcomes. 5) Sex-dependent differences in Ca2+ signaling mean both sexes ought to be included in experimental design.
Collapse
Affiliation(s)
- Daniel Asunción-Alvarez
- Laboratorio de Bioquímica Aplicada, Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Javier Palacios
- Laboratorio de Bioquímica Aplicada, Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Roberto O Ybañez-Julca
- Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo, Perú
| | - Cristhian N Rodriguez-Silva
- Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo, Perú
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences Physiology Section, Faculty of Medical Sciences, The University of the West Indies, Kingston, Jamaica
| | - Fredi Cifuentes
- Laboratorio de Fisiología Experimental (EphyL), Instituto Antofagasta (IA), Universidad de Antofagasta, Antofagasta, Chile
| | - David J Greensmith
- Biomedical Research Centre, School of Science, Engineering and Environment, The University of Salford, Salford, United Kingdom
| |
Collapse
|
5
|
Baldwin SN, Jepps TA, Greenwood IA. Cycling matters: Sex hormone regulation of vascular potassium channels. Channels (Austin) 2023; 17:2217637. [PMID: 37243715 PMCID: PMC10228406 DOI: 10.1080/19336950.2023.2217637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023] Open
Abstract
Sex hormones and the reproductive cycle (estrus in rodents and menstrual in humans) have a known impact on arterial function. In spite of this, sex hormones and the estrus/menstrual cycle are often neglected experimental factors in vascular basic preclinical scientific research. Recent research by our own laboratory indicates that cyclical changes in serum concentrations of sex -hormones across the rat estrus cycle, primary estradiol, have significant consequences for the subcellular trafficking and function of KV. Vascular potassium channels, including KV, are essential components of vascular reactivity. Our study represents a small part of a growing field of literature aimed at determining the role of sex hormones in regulating arterial ion channel function. This review covers key findings describing the current understanding of sex hormone regulation of vascular potassium channels, with a focus on KV channels. Further, we highlight areas of research where the estrus cycle should be considered in future studies to determine the consequences of physiological oscillations in concentrations of sex hormones on vascular potassium channel function.
Collapse
Affiliation(s)
- Samuel N Baldwin
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas A Jepps
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Iain A Greenwood
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George’s University of London, London, UK
| |
Collapse
|
6
|
Romero-Martínez BS, Sommer B, Solís-Chagoyán H, Calixto E, Aquino-Gálvez A, Jaimez R, Gomez-Verjan JC, González-Avila G, Flores-Soto E, Montaño LM. Estrogenic Modulation of Ionic Channels, Pumps and Exchangers in Airway Smooth Muscle. Int J Mol Sci 2023; 24:ijms24097879. [PMID: 37175587 PMCID: PMC10178541 DOI: 10.3390/ijms24097879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 05/15/2023] Open
Abstract
To preserve ionic homeostasis (primarily Ca2+, K+, Na+, and Cl-), in the airway smooth muscle (ASM) numerous transporters (channels, exchangers, and pumps) regulate the influx and efflux of these ions. Many of intracellular processes depend on continuous ionic permeation, including exocytosis, contraction, metabolism, transcription, fecundation, proliferation, and apoptosis. These mechanisms are precisely regulated, for instance, through hormonal activity. The lipophilic nature of steroidal hormones allows their free transit into the cell where, in most cases, they occupy their cognate receptor to generate genomic actions. In the sense, estrogens can stimulate development, proliferation, migration, and survival of target cells, including in lung physiology. Non-genomic actions on the other hand do not imply estrogen's intracellular receptor occupation, nor do they initiate transcription and are mostly immediate to the stimulus. Among estrogen's non genomic responses regulation of calcium homeostasis and contraction and relaxation processes play paramount roles in ASM. On the other hand, disruption of calcium homeostasis has been closely associated with some ASM pathological mechanism. Thus, this paper intends to summarize the effects of estrogen on ionic handling proteins in ASM. The considerable diversity, range and power of estrogens regulates ionic homeostasis through genomic and non-genomic mechanisms.
Collapse
Affiliation(s)
- Bianca S Romero-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Bettina Sommer
- Laboratorio de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México 14080, Mexico
| | - Héctor Solís-Chagoyán
- Neurociencia Cognitiva Evolutiva, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Eduardo Calixto
- Departamento de Neurobiología, Dirección de Investigación en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Ciudad de México 14370, Mexico
| | - Arnoldo Aquino-Gálvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México City 14080, Mexico
| | - Ruth Jaimez
- Laboratorio de Estrógenos y Hemostasis, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan C Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Ciudad de México 10200, Mexico
| | - Georgina González-Avila
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", México City 14080, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
7
|
Hu XQ, Song R, Dasgupta C, Blood AB, Zhang L. TET2 confers a mechanistic link of microRNA-210 and mtROS in hypoxia-suppressed spontaneous transient outward currents in uterine arteries of pregnant sheep. J Physiol 2023; 601:1501-1514. [PMID: 36856073 PMCID: PMC10106393 DOI: 10.1113/jp284336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/27/2023] [Indexed: 03/02/2023] Open
Abstract
Hypoxia during pregnancy impairs uterine vascular adaptation via microRNA-210 (miR-210)-mediated mitochondrial dysfunction and mitochondrial reactive oxygen species (mtROS) generation. TET methylcytosine dioxygenase 2 (TET2) participates in regulating inflammation and oxidative stress and its deficiency contributes to the pathogenesis of multiple cardiovascular diseases. Thus, we hypothesize a role of TET2 in hypoxia/miR-210-mediated mtROS suppressing spontaneous transient outward currents (STOCs) in uterine arteries. We found that gestational hypoxia downregulated TET2 in uterine arteries of pregnant sheep and TET2 was a target of miR-210. Knockdown of TET2 with small interfering RNAs suppressed mitochondrial respiration, increased mtROS, inhibited STOCs and elevated myogenic tone. By contrast, overexpression of TET2 negated hypoxia- and miR-210-induced mtROS. The effects of TET2 knockdown in uterine arteries on mtROS, STOCs and myogenic contractions were blocked by the mitochondria-targeted antioxidant MitoQ. In addition, the recovery effects of inhibiting endogenous miR-210 with miR-210-LNA on hypoxia-induced suppression of STOCs and augmentation of myogenic tone were reversed by TET2 knockdown in uterine arteries. Together, our study reveals a novel mechanistic link between the miR-210-TET2-mtROS pathway and inhibition of STOCs and provides new insights into the understanding of uterine vascular maladaptation in pregnancy complications associated with gestational hypoxia. KEY POINTS: Gestational hypoxia downregulates TET methylcytosine dioxygenase 2 (TET2) in uterine arteries of pregnant sheep. TET2 is a downstream target of microRNA-210 (miR-210) and miR-210 mediates hypoxia-induced TET2 downregulation. Knockdown of TET2 in uterine arteries recapitulates the effect of hypoxia and miR-210 and impairs mitochondrial bioenergetics and increases mitochondrial reactive oxygen species (mtROS) . Overexpression of TET2 negates the effect of hypoxia and miR-210 on increasing mtROS. TET2 knockdown reiterates the effect of hypoxia and miR-210 and suppresses spontaneous transient outward currents (STOCs) and elevates myogenic tone, and these effects are blocked by MitoQ. Knockdown of TET2 reverses the miR-210-LNA-induced reversal of the effects of hypoxia on STOCs and myogenic tone in uterine arteries.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Rui Song
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Chiranjib Dasgupta
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Arlin B Blood
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
8
|
Ca 2+-Activated K + Channels and the Regulation of the Uteroplacental Circulation. Int J Mol Sci 2023; 24:ijms24021349. [PMID: 36674858 PMCID: PMC9867535 DOI: 10.3390/ijms24021349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Adequate uteroplacental blood supply is essential for the development and growth of the placenta and fetus during pregnancy. Aberrant uteroplacental perfusion is associated with pregnancy complications such as preeclampsia, fetal growth restriction (FGR), and gestational diabetes. The regulation of uteroplacental blood flow is thus vital to the well-being of the mother and fetus. Ca2+-activated K+ (KCa) channels of small, intermediate, and large conductance participate in setting and regulating the resting membrane potential of vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) and play a critical role in controlling vascular tone and blood pressure. KCa channels are important mediators of estrogen/pregnancy-induced adaptive changes in the uteroplacental circulation. Activation of the channels hyperpolarizes uteroplacental VSMCs/ECs, leading to attenuated vascular tone, blunted vasopressor responses, and increased uteroplacental blood flow. However, the regulation of uteroplacental vascular function by KCa channels is compromised in pregnancy complications. This review intends to provide a comprehensive overview of roles of KCa channels in the regulation of the uteroplacental circulation under physiological and pathophysiological conditions.
Collapse
|
9
|
Potassium Channels in the Uterine Vasculature: Role in Healthy and Complicated Pregnancies. Int J Mol Sci 2022; 23:ijms23169446. [PMID: 36012712 PMCID: PMC9409294 DOI: 10.3390/ijms23169446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022] Open
Abstract
A progressive increase in maternal uterine and placental blood flow must occur during pregnancy to sustain the development of the fetus. Changes in maternal vasculature enable an increased uterine blood flow, placental nutrient and oxygen exchange, and subsequent fetal development. K+ channels are important modulators of vascular function, promoting vasodilation, inducing cell proliferation, and regulating cell signaling. Different types of K+ channels, such as Ca2+-activated, ATP-sensitive, and voltage-gated, have been implicated in the adaptation of maternal vasculature during pregnancy. Conversely, K+ channel dysfunction has been associated with vascular-related complications of pregnancy, including intrauterine growth restriction and pre-eclampsia. In this article, we provide an updated and comprehensive literature review that highlights the relevance of K+ channels as regulators of uterine vascular reactivity and their potential as therapeutic targets.
Collapse
|
10
|
Hu XQ, Song R, Dasgupta C, Romero M, Juarez R, Hanson J, Blood AB, Wilson SM, Zhang L. MicroRNA-210-mediated mitochondrial reactive oxygen species confer hypoxia-induced suppression of spontaneous transient outward currents in ovine uterine arteries. Br J Pharmacol 2022; 179:4640-4654. [PMID: 35776536 PMCID: PMC9474621 DOI: 10.1111/bph.15914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/26/2022] [Accepted: 06/22/2022] [Indexed: 12/05/2022] Open
Abstract
Background and Purpose Hypoxia during pregnancy is associated with increased uterine vascular resistance and elevated blood pressure both in women and female sheep. A previous study demonstrated a causal role of microRNA‐210 (miR‐210) in gestational hypoxia‐induced suppression of Ca2+ sparks/spontaneous transient outward currents (STOCs) in ovine uterine arteries, but the underlying mechanisms remain undetermined. We tested the hypothesis that miR‐210 perturbs mitochondrial metabolism and increases mitochondrial reactive oxygen species (mtROS) that confer hypoxia‐induced suppression of STOCs in uterine arteries. Experimental Approach Resistance‐sized uterine arteries were isolated from near‐term pregnant sheep and were treated ex vivo in normoxia and hypoxia (10.5% O2) for 48 h. Key Results Hypoxia increased mtROS and suppressed mitochondrial respiration in uterine arteries, which were also produced by miR‐210 mimic to normoxic arteries and blocked by antagomir miR‐210‐LNA in hypoxic arteries. Hypoxia or miR‐210 mimic inhibited Ca2+ sparks/STOCs and increased uterine arterial myogenic tone, which were inhibited by the mitochondria‐targeted antioxidant MitoQ. Hypoxia and miR‐210 down‐regulated iron–sulfur cluster scaffold protein (ISCU) in uterine arteries and knockdown of ISCU via siRNAs suppressed mitochondrial respiration, increased mtROS, and inhibited STOCs. In addition, blockade of mitochondrial electron transport chain with antimycin and rotenone inhibited large‐conductance Ca2+‐activated K+ channels, decreased STOCs and increased uterine arterial myogenic tone. Conclusion and Implications This study demonstrates a novel mechanistic role for the miR‐210‐ISCU‐mtROS axis in inhibiting Ca2+ sparks/STOCs in the maladaptation of uterine arteries and provides new insights into the understanding of mitochondrial perturbations in the pathogenesis of pregnancy complications resulted from hypoxia.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Rui Song
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Chiranjib Dasgupta
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Monica Romero
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Rucha Juarez
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Jenna Hanson
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Arlin B Blood
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Sean M Wilson
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
11
|
Reid C, Romero M, Chang SB, Osman N, Puglisi JL, Wilson CG, Blood AB, Zhang L, Wilson SM. Long-Term Hypoxia Negatively Influences Ca2+ Signaling in Basilar Arterial Myocytes of Fetal and Adult Sheep. Front Physiol 2022; 12:760176. [PMID: 35115953 PMCID: PMC8804533 DOI: 10.3389/fphys.2021.760176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
Cerebral arterial vasoreactivity is vital to the regulation of cerebral blood flow. Depolarization of arterial myocytes elicits whole-cell Ca2+ oscillations as well as subcellular Ca2+ sparks due to activation of ryanodine receptors on the sarcoplasmic reticulum. Previous evidence illustrates that contraction of cerebral arteries from sheep and underlying Ca2+ signaling pathways are modified by age and that long-term hypoxia (LTH) causes aberrations in Ca2+ signaling pathways and downstream effectors impacting vasoregulation. We hypothesize that age and LTH affect the influence of membrane depolarization on whole-cell intracellular Ca2+ oscillations and sub-cellular Ca2+ spark activity in cerebral arteries. To test this hypothesis, we examined Ca2+ oscillatory and spark activities using confocal fluorescence imaging techniques of Fluo-4 loaded basilar arterial myocytes of low- and high-altitude term fetal (∼145 days of gestation) and adult sheep, where high-altitude pregnant and non-pregnant sheep were placed at 3,801 m for >100 days. Ca2+ oscillations and sparks were recorded using an in situ preparation evaluated in the absence or presence of 30 mM K+ (30K) to depolarize myocytes. Myocytes from adult animals tended to have a lower basal rate of whole-cell Ca2+ oscillatory activity and 30K increased the activity within cells. LTH decreased the ability of myocytes to respond to depolarization independent of age. These observations illustrate that both altitude and age play a role in affecting whole-cell and localized Ca2+ signaling, which are important to arterial vasoreactivity and cerebral blood flow.
Collapse
Affiliation(s)
- Casey Reid
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Monica Romero
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Stephanie B. Chang
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Noah Osman
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Jose L. Puglisi
- Department of Biostatistics, School of Medicine, California Northstate University, Elk Grove, CA, United States
| | - Christopher G. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Arlin B. Blood
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Sean M. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, CA, United States
- *Correspondence: Sean M. Wilson,
| |
Collapse
|
12
|
Hu X, Zhang L. Uteroplacental Circulation in Normal Pregnancy and Preeclampsia: Functional Adaptation and Maladaptation. Int J Mol Sci 2021; 22:8622. [PMID: 34445328 PMCID: PMC8395300 DOI: 10.3390/ijms22168622] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Uteroplacental blood flow increases as pregnancy advances. Adequate supply of nutrients and oxygen carried by uteroplacental blood flow is essential for the well-being of the mother and growth/development of the fetus. The uteroplacental hemodynamic change is accomplished primarily through uterine vascular adaptation, involving hormonal regulation of myogenic tone, vasoreactivity, release of vasoactive factors and others, in addition to the remodeling of spiral arteries. In preeclampsia, hormonal and angiogenic imbalance, proinflammatory cytokines and autoantibodies cause dysfunction of both endothelium and vascular smooth muscle cells of the uteroplacental vasculature. Consequently, the vascular dysfunction leads to increased vascular resistance and reduced blood flow in the uteroplacental circulation. In this article, the (mal)adaptation of uteroplacental vascular function in normal pregnancy and preeclampsia and underlying mechanisms are reviewed.
Collapse
Affiliation(s)
- Xiangqun Hu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
13
|
Scott K, Morgan HL, Delles C, Fisher S, Graham D, McBride MW. Distinct uterine artery gene expression profiles during early gestation in the stroke-prone spontaneously hypertensive rat. Physiol Genomics 2021; 53:160-171. [PMID: 33719581 DOI: 10.1152/physiolgenomics.00159.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During pregnancy, the uterine spiral arteries undergo major vascular remodeling to ensure sufficient uteroplacental perfusion to support the fetus. In pregnancies complicated by hypertensive disorders, this remodeling is deficient leading to impaired uteroplacental blood flow and poor maternal and fetal outcomes. The underlying genetic mechanisms for failed vascular remodeling are not fully understood. This study aimed to examine the early-pregnancy-associated gene changes in the uterine arteries of spontaneously hypertensive stroke-prone rats (SHRSP) compared with their normotensive counterparts, Wistar-Kyoto rats (WKY). Uterine arteries from gestational day 6.5 WKY and SHRSP were processed for RNA-sequencing, along with virgin, age-matched controls for each strain. Gene expression changes were identified and biological pathways were implicated and interpretated using ingenuity pathway analysis (IPA). This study found that WKY uterine arteries from early pregnancy exhibit a gene expression pattern that is suggestive of a pregnancy-dependent reduction in Ca2+ handling and renin-angiotensin-aldosterone system (RAAS) components and an increase in ATP production. In contrast, the expression pattern of pregnant SHRSP uterine arteries was dominated by an elevated immune response and increased production of reactive oxygen species (ROS) and downstream effectors of the RAAS. These results suggest that in a rat model, hypertension during pregnancy impacts uterine artery gene expression patterns as early as the first week of pregnancy. The pathway changes involved may underlie or contribute to the adverse vascular remodeling and resultant placental ischemia and systemic vascular dysfunction observed in SHRSP in late gestation.
Collapse
Affiliation(s)
- Kayley Scott
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| | - Hannah L Morgan
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| | - Christian Delles
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| | - Simon Fisher
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| | - Delyth Graham
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| | - Martin W McBride
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| |
Collapse
|
14
|
Hu XQ, Zhang L. Hypoxia and Mitochondrial Dysfunction in Pregnancy Complications. Antioxidants (Basel) 2021; 10:antiox10030405. [PMID: 33800426 PMCID: PMC7999178 DOI: 10.3390/antiox10030405] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is a common and severe stress to an organism's homeostatic mechanisms, and hypoxia during gestation is associated with significantly increased incidence of maternal complications of preeclampsia, adversely impacting on the fetal development and subsequent risk for cardiovascular and metabolic disease. Human and animal studies have revealed a causative role of increased uterine vascular resistance and placental hypoxia in preeclampsia and fetal/intrauterine growth restriction (FGR/IUGR) associated with gestational hypoxia. Gestational hypoxia has a major effect on mitochondria of uteroplacental cells to overproduce reactive oxygen species (ROS), leading to oxidative stress. Excess mitochondrial ROS in turn cause uteroplacental dysfunction by damaging cellular macromolecules, which underlies the pathogenesis of preeclampsia and FGR. In this article, we review the current understanding of hypoxia-induced mitochondrial ROS and their role in placental dysfunction and the pathogenesis of pregnancy complications. In addition, therapeutic approaches selectively targeting mitochondrial ROS in the placental cells are discussed.
Collapse
|
15
|
Hu XQ, Dasgupta C, Song R, Romero M, Wilson SM, Zhang L. MicroRNA-210 Mediates Hypoxia-Induced Repression of Spontaneous Transient Outward Currents in Sheep Uterine Arteries During Gestation. Hypertension 2021; 77:1412-1427. [PMID: 33641365 DOI: 10.1161/hypertensionaha.120.16831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Xiang-Qun Hu
- From the Lawrence D. Longo, MD, Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Chiranjib Dasgupta
- From the Lawrence D. Longo, MD, Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Rui Song
- From the Lawrence D. Longo, MD, Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Monica Romero
- From the Lawrence D. Longo, MD, Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Sean M Wilson
- From the Lawrence D. Longo, MD, Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Lubo Zhang
- From the Lawrence D. Longo, MD, Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| |
Collapse
|
16
|
Leslie E, Lopez V, Anti NAO, Alvarez R, Kafeero I, Welsh DG, Romero M, Kaushal S, Johnson CM, Bosviel R, Blaženović I, Song R, Brito A, Frano MRL, Zhang L, Newman JW, Fiehn O, Wilson SM. Gestational long-term hypoxia induces metabolomic reprogramming and phenotypic transformations in fetal sheep pulmonary arteries. Am J Physiol Lung Cell Mol Physiol 2021; 320:L770-L784. [PMID: 33624555 DOI: 10.1152/ajplung.00469.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Gestational long-term hypoxia increases the risk of myriad diseases in infants including persistent pulmonary hypertension. Similar to humans, fetal lamb lung development is susceptible to long-term intrauterine hypoxia, with structural and functional changes associated with the development of pulmonary hypertension including pulmonary arterial medial wall thickening and dysregulation of arterial reactivity, which culminates in decreased right ventricular output. To further explore the mechanisms associated with hypoxia-induced aberrations in the fetal sheep lung, we examined the premise that metabolomic changes and functional phenotypic transformations occur due to intrauterine, long-term hypoxia. To address this, we performed electron microscopy, Western immunoblotting, calcium imaging, and metabolomic analyses on pulmonary arteries isolated from near-term fetal lambs that had been exposed to low- or high-altitude (3,801 m) hypoxia for the latter 110+ days of gestation. Our results demonstrate that the sarcoplasmic reticulum was swollen with high luminal width and distances to the plasma membrane in the hypoxic group. Hypoxic animals were presented with higher endoplasmic reticulum stress and suppressed calcium storage. Metabolically, hypoxia was associated with lower levels of multiple omega-3 polyunsaturated fatty acids and derived lipid mediators (e.g., eicosapentaenoic acid, docosahexaenoic acid, α-linolenic acid, 5-hydroxyeicosapentaenoic acid (5-HEPE), 12-HEPE, 15-HEPE, prostaglandin E3, and 19(20)-epoxy docosapentaenoic acid) and higher levels of some omega-6 metabolites (P < 0.02) including 15-keto prostaglandin E2 and linoleoylglycerol. Collectively, the results reveal broad evidence for long-term hypoxia-induced metabolic reprogramming and phenotypic transformations in the pulmonary arteries of fetal sheep, conditions that likely contribute to the development of persistent pulmonary hypertension.
Collapse
Affiliation(s)
- Eric Leslie
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, New Mexico
| | - Vanessa Lopez
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Nana A O Anti
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Rafael Alvarez
- Center for Health Disparities and Molecular Mechanisms, Loma Linda University School of Medicine, Loma Linda, California
| | - Isaac Kafeero
- Center for Health Disparities and Molecular Mechanisms, Loma Linda University School of Medicine, Loma Linda, California
| | - Donald G Welsh
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Monica Romero
- Advanced Imaging and Microscopy Core, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Shawn Kaushal
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Catherine M Johnson
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
| | - Remy Bosviel
- NIH West Coast Metabolomics Center, Genome Center, University of California, Davis, California
| | - Ivana Blaženović
- NIH West Coast Metabolomics Center, Genome Center, University of California, Davis, California
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Alex Brito
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital biodesign and personalized healthcare," I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California.,Center for Health Research, California Polytechnic State University, San Luis Obispo, California.,Cal Poly Metabolomics Service Center, California Polytechnic State University, San Luis Obispo, California
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - John W Newman
- NIH West Coast Metabolomics Center, Genome Center, University of California, Davis, California.,Department of Nutrition, University of California, Davis, California.,USDA-ARS Western Human Nutrition Research Center, Davis, California
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, Genome Center, University of California, Davis, California.,West Coast Metabolomics Center, University of California, Davis, California
| | - Sean M Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California.,Advanced Imaging and Microscopy Core, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
17
|
Hydrogen Sulfide Relaxes Human Uterine Artery via Activating Smooth Muscle BK Ca Channels. Antioxidants (Basel) 2020; 9:antiox9111127. [PMID: 33202933 PMCID: PMC7697977 DOI: 10.3390/antiox9111127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022] Open
Abstract
Opening of large conductance calcium-activated and voltage-dependent potassium (BKCa) channels hyperpolarizes plasma membranes of smooth muscle (SM) to cause vasodilation, underling a key mechanism for mediating uterine artery (UA) dilation in pregnancy. Hydrogen sulfide (H2S) has been recently identified as a new UA vasodilator, yet the mechanism underlying H2S-induced UA dilation is unknown. Here, we tested whether H2S activated BKCa channels in human UA smooth muscle cells (hUASMC) to mediate UA relaxation. Multiple BKCa subunits were found in human UA in vitro and hUASMC in vitro, and high β1 and γ1 proteins were localized in SM cells in human UA. Baseline outward currents, recorded by whole-cell and single-channel patch clamps, were significantly inhibited by specific BKCa blockers iberiotoxin (IBTX) or tetraethylammonium, showing specific BKCa activity in hUASMC. H2S dose (NaHS, 1–1000 µM)-dependently potentiated BKCa currents and open probability. Co-incubation with a Ca2+ blocker nifedipine (5 µM) or a chelator (ethylene glycol-bis (β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA), 5 mM) did not alter H2S-potentiated BKCa currents and open probability. NaHS also dose-dependently relaxed phenylephrine pre-constricted freshly prepared human UA rings, which was inhibited by IBTX. Thus, H2S stimulated human UA relaxation at least partially via activating SM BKCa channels independent of extracellular Ca2+.
Collapse
|
18
|
Hu XQ, Song R, Romero M, Dasgupta C, Min J, Hatcher D, Xiao D, Blood A, Wilson SM, Zhang L. Gestational Hypoxia Inhibits Pregnancy-Induced Upregulation of Ca 2+ Sparks and Spontaneous Transient Outward Currents in Uterine Arteries Via Heightened Endoplasmic Reticulum/Oxidative Stress. Hypertension 2020; 76:930-942. [PMID: 32683903 PMCID: PMC7429261 DOI: 10.1161/hypertensionaha.120.15235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hypoxia during pregnancy profoundly affects uterine vascular adaptation and increases the risk of pregnancy complications, including preeclampsia and fetal intrauterine growth restriction. We recently demonstrated that increases in Ca2+ sparks and spontaneous transient outward currents (STOCs) played an essential role in pregnancy-induced uterine vascular adaptation. In the present study, we hypothesize that gestational hypoxia suppresses Ca2+ sparks/STOCs coupling leading to increased uterine vascular tone via enhanced endoplasmic reticulum (ER)/oxidative stress. Uterine arteries were obtained from nonpregnant and near-term pregnant sheep residing in low altitude or acclimatizing to high-altitude (3801 m) hypoxia for ≈110 days. High-altitude hypoxia suppressed pregnancy-induced upregulation of RyR1 and RyR2 (ryanodine receptor 1 and 2) protein abundance, Ca2+ sparks, and STOCs in uterine arteries. Inhibition of Ca2+ sparks/STOCs with the RyR inhibitor ryanodine significantly increased pressure-dependent myogenic tone in uterine arteries from low-altitude normoxic pregnant animals but not those from high-altitude hypoxic pregnant animals. Gestational hypoxia significantly increased ER/oxidative stress in uterine arteries. Of importance, the hypoxia-mediated suppression of Ca2+ sparks/STOCs and increase in myogenic tone in uterine arteries of pregnant animals were reversed by inhibiting ER/oxidative stress. Of great interest, the impaired sex hormonal regulation of STOCs in high-altitude animals was annulled by scavenging reactive oxygen species but not by inhibiting ER stress. Together, the findings reveal the differential mechanisms of ER and oxidative stresses in suppressing Ca2+ sparks/STOCs and increasing myogenic tone of uterine arteries in hypoxia during gestation, providing new insights into the understanding of pregnancy complications associated with hypoxia.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Rui Song
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Monica Romero
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Chiranjib Dasgupta
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Joseph Min
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Daisy Hatcher
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Daliao Xiao
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Arlin Blood
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Sean M Wilson
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Lubo Zhang
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| |
Collapse
|
19
|
Mandalà M. Influence of Estrogens on Uterine Vascular Adaptation in Normal and Preeclamptic Pregnancies. Int J Mol Sci 2020; 21:ijms21072592. [PMID: 32276444 PMCID: PMC7177259 DOI: 10.3390/ijms21072592] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
During pregnancy, the maternal cardiovascular system undergoes significant changes, including increased heart rate, cardiac output, plasma volume, and uteroplacental blood flow (UPBF) that are required for a successful pregnancy outcome. The increased UPBF is secondary to profound circumferential growth that extends from the downstream small spiral arteries to the upstream conduit main uterine artery. Although some of the mechanisms underlying uterine vascular remodeling are, in part, known, the factors that drive the remodeling are less clear. That higher circulating levels of estrogens are positively correlated with gestational uterine vascular remodeling suggests their involvement in this process. Estrogens binding to the estrogen receptors expressed in cytotrophoblast cells and in the uterine artery wall stimulate an outward hypertrophic remodeling of uterine vasculature. In preeclampsia, generally lower concentrations of estrogens limit the proper uterine remodeling, thereby reducing UPBF increases and restricting the growth of the fetus. This review aims to report estrogenic regulation of the maternal uterine circulatory adaptation in physiological and pathological pregnancy that favors vasodilation, and to consider the underlying molecular mechanisms by which estrogens regulate uteroplacental hemodynamics.
Collapse
Affiliation(s)
- Maurizio Mandalà
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
20
|
Song R, Hu XQ, Romero M, Holguin MA, Kagabo W, Xiao D, Wilson SM, Zhang L. Ryanodine receptor subtypes regulate Ca2+ sparks/spontaneous transient outward currents and myogenic tone of uterine arteries in pregnancy. Cardiovasc Res 2020; 117:792-804. [PMID: 32251501 DOI: 10.1093/cvr/cvaa089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/18/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
AIMS Our recent study demonstrated that increased Ca2+ sparks and spontaneous transient outward currents (STOCs) played an important role in uterine vascular tone and haemodynamic adaptation to pregnancy. The present study examined the role of ryanodine receptor (RyR) subtypes in regulating Ca2+ sparks/STOCs and myogenic tone in uterine arterial adaptation to pregnancy. METHODS AND RESULTS Uterine arteries isolated from non-pregnant and near-term pregnant sheep were used in the present study. Pregnancy increased the association of α and β1 subunits of large-conductance Ca2+-activated K+ (BKCa) channels and enhanced the co-localization of RyR1 and RyR2 with the β1 subunit in the uterine artery. In contrast, RyR3 was not co-localized with BKCa β1 subunit. Knockdown of RyR1 or RyR2 in uterine arteries of pregnant sheep downregulated the β1 but not α subunit of the BKCa channel and decreased the association of α and β1 subunits. Unlike RyR1 and RyR2, knockdown of RyR3 had no significant effect on either expression or association of BKCa subunits. In addition, knockdown of RyR1 or RyR2 significantly decreased Ca2+ spark frequency, suppressed STOCs frequency and amplitude, and increased pressure-dependent myogenic tone in uterine arteries of pregnant animals. RyR3 knockdown did not affect Ca2+ sparks/STOCs and myogenic tone in the uterine artery. CONCLUSION Together, the present study demonstrates a novel mechanistic paradigm of RyR subtypes in the regulation of Ca2+ sparks/STOCs and uterine vascular tone, providing new insights into the mechanisms underlying uterine vascular adaptation to pregnancy.
Collapse
Affiliation(s)
- Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Xiang-Qun Hu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Monica Romero
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Mark A Holguin
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Whitney Kagabo
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Daliao Xiao
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Sean M Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
21
|
Whole-Genome Uterine Artery Transcriptome Profiling and Alternative Splicing Analysis in Rat Pregnancy. Int J Mol Sci 2020; 21:ijms21062079. [PMID: 32197362 PMCID: PMC7139363 DOI: 10.3390/ijms21062079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/05/2020] [Accepted: 03/13/2020] [Indexed: 01/27/2023] Open
Abstract
During pregnancy, the uterine artery (UA) undergoes extensive remodeling to permit a 20–40 fold increase in blood flow with associated changes in the expression of a multitude of genes. This study used next-gen RNA sequencing technology to identify pathways and genes potentially involved in arterial adaptations in pregnant rat UA (gestation day 20) compared with non-pregnant rat UA (diestrus). A total of 2245 genes were differentially expressed, with 1257 up-regulated and 970 down-regulated in pregnant UA. Gene clustering analysis revealed a unique cluster of suppressed genes implicated in calcium signaling pathway and vascular smooth muscle contraction in pregnant UA. Transcription factor binding site motif scanning identified C2H2 ZF, AP-2 and CxxC as likely factors functional on the promoters of down-regulated genes involved in calcium signaling and vascular smooth muscle contraction. In addition, 1686 genes exhibited alternative splicing that were mainly implicated in microtubule organization and smooth muscle contraction. Cross-comparison analysis identified novel genes that were both differentially expressed and alternatively spliced; these were involved in leukocyte and B cell biology and lipid metabolism. In conclusion, this first comprehensive study provides a valuable resource for understanding the molecular mechanism underlying gestational uterine arterial adaptations during pregnancy.
Collapse
|
22
|
Zheng J, Zhou H, Yang M, Song S, Dai Q, Ji G, Zhou Z. Reduced Ca 2+ spark activity contributes to detrusor overactivity of rats with partial bladder outlet obstruction. Aging (Albany NY) 2020; 12:4163-4177. [PMID: 32112553 PMCID: PMC7093189 DOI: 10.18632/aging.102855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022]
Abstract
We tested whether or not altered Ca2+ spark activity accounted for detrusor overactivity (DO) of Wistar rats after partial bladder outlet obstruction (PBOO). We constructed a DO model through PBOO and studied the Ca2+ spark activity of detrusor. By way of using confocal microscopy and the patch-clamp technique, Ca2+ sparks and spontaneous transient outward currents (STOCs) in detrusor myocytes were measured respectively. Our results indicated that Ca2+ spark activity and STOCs were significantly reduced in the DO detrusor myocytes compared to unafflicted control cells, and both of these had levels that were remarkably increased by applications of caffeine (10 μM), a RyR agonist, in DO myocytes. In addition, measures of detrusor contractions were also recorded by using freshly isolated detrusor strips. These results indicated that the spontaneous contraction of DO detrusor was significantly enhanced, and that the effect of caffeine (10 μM) upon detrusor contractions was reversed by applications of iberiotoxin (100 nM) which is a BK channel blocker. Western blotting (WB) analyses indicated that the levels of expression of ryanodine receptor type 2 (RyR2) and FK506 binding protein 12.6 (FKBP12.6) in bladder muscle were respectively decreased and increased in the samples from DO rats. Thus, we considered in the rat DO model wherein PBOO, the reduced Ca2+ spark activity in detrusor myocytes partly contributed to overactive detrusor contractions. The impaired Ca2+ spark activity may have resulted from decreased RyR2 expression and increased FKBP12.6 expression. Such novel findings in our research might help to provide means for better treatment outcomes for patients afflicted by bladder dysfunction.
Collapse
Affiliation(s)
- Ji Zheng
- Department of Urology, Urological Surgery Research Institute, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Hao Zhou
- Department of Urology, Urological Surgery Research Institute, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mengjun Yang
- Department of Urology, Urological Surgery Research Institute, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Siji Song
- Department of Urology, Urological Surgery Research Institute, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qiang Dai
- Department of Urology, Urological Surgery Research Institute, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Guangju Ji
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhansong Zhou
- Department of Urology, Urological Surgery Research Institute, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
23
|
Mukhtarova N, Ko NL, Gokina NI, Mandalá M, Osol G. Enhanced Vascular Smooth Muscle Calcium Sensitivity and Loss of Endothelial Vasodilator Influence Contribute to Myogenic Tone Development in Rat Radial Uterine Arteries during Gestation. J Vasc Res 2020; 57:126-135. [PMID: 32106116 DOI: 10.1159/000505670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/01/2020] [Indexed: 12/18/2022] Open
Abstract
Uterine artery myogenic tone (MT) develops during pregnancy in hemochorial placentates such as rats and humans. The physiological reason for its appearance is not clear, and we reasoned that it may be a late pregnancy (LP) event in preparation for controlling hemorrhage during parturition. We also hypothesized that gestational increases in RhoA-induced vascular smooth muscle (VSM) calcium sensitivity are contributory and occur under the tonic influence of nitric oxide (NO). Second-order pre-placental radial arteries from early-pregnant (day 12, n = 5), mid-pregnant (day 16, n = 5) and LP (day 20, n = 20) rats were used in combination with arteriography, VSM calcium measurements, pharmacological RHO/Rho-associated protein kinase (ROCK) and nitric oxide synthase (NOS) inhibition, and Western blotting. A subgroup of LP animals (LP + LN; n = 5) treated with L-NAME from gestational days 10 to 20 were used to determine the effects of NOS inhibition on MT and RhoA expression. MT was evident throughout pregnancy, but its expression in pressurized vessels was masked by endothelial NO-induced vasodilation during early gestation. RhoA protein expression was upregulated in LP and attenuated by in vivo NOS inhibition (as was MT). In vitro RHO/ROCK inhibition decreased MT in a concentration-dependent manner without reducing VSM calcium. In summary, pressure-dependent uterine artery tone increases with gestational age due to a combination of RhoA-mediated increases in VSM calcium sensitivity and a loss of endothelial NO influence.
Collapse
Affiliation(s)
- Narmin Mukhtarova
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - Nga Ling Ko
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - Natalia I Gokina
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - Maurizio Mandalá
- Department of Biology, Ecology and Earth Science, University of Calabria, Arcavacata di Rende, Italy
| | - George Osol
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont Larner College of Medicine, Burlington, Vermont, USA,
| |
Collapse
|
24
|
Hu XQ, Zhang L. MicroRNAs in Uteroplacental Vascular Dysfunction. Cells 2019; 8:E1344. [PMID: 31671866 PMCID: PMC6912833 DOI: 10.3390/cells8111344] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Pregnancy complications of preeclampsia and intrauterine growth restriction (IUGR) are major causes of maternal and perinatal/neonatal morbidity and mortality. Although their etiologies remain elusive, it is generally accepted that they are secondary to placental insufficiency conferred by both failure in spiral artery remodeling and uteroplacental vascular malfunction. MicroRNAs (miRNAs) are small no-coding RNA molecules that regulate gene expression at the post-transcriptional level. Increasing evidence suggests that miRNAs participate in virtually all biological processes and are involved in numerous human diseases. Differentially expressed miRNAs in the placenta are typical features of both preeclampsia and IUGR. Dysregulated miRNAs target genes of various signaling pathways in uteroplacental tissues, contributing to the development of both complications. In this review, we provide an overview of how aberrant miRNA expression in preeclampsia and IUGR impacts the expression of genes involved in trophoblast invasion and uteroplacental vascular adaptation.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| |
Collapse
|