1
|
Perez-Bonilla P, LaViolette B, Bhandary B, Ullas S, Chen X, Hirenallur-Shanthappa D. Isoproterenol induced cardiac hypertrophy: A comparison of three doses and two delivery methods in C57BL/6J mice. PLoS One 2024; 19:e0307467. [PMID: 39038017 PMCID: PMC11262646 DOI: 10.1371/journal.pone.0307467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024] Open
Abstract
Heart Failure (HF) continues to be a complex public health issue with increasing world population prevalence. Although overall mortality has decreased for HF and hypertrophic cardiomyopathy (HCM), a precursor for HF, their prevalence continues to increase annually. Because the etiology of HF and HCM is heterogeneous, it has been difficult to identify novel therapies to combat these diseases. Isoproterenol (ISP), a non-selective β-adrenoreceptor agonist, is commonly used to induce cardiotoxicity and cause acute and chronic HCM and HF in mice. However, the variability in dose and duration of ISP treatment used in studies has made it difficult to determine the optimal combination of ISP dose and delivery method to develop a reliable ISP-induced mouse model for disease. Here we examined cardiac effects induced by ISP via subcutaneous (SQ) and SQ-minipump (SMP) infusions across 3 doses (2, 4, and 10mg/kg/day) over 2 weeks to determine whether SQ and SMP ISP delivery induced comparable disease severity in C57BL/6J mice. To assess disease, we measured body and heart weight, surface electrocardiogram (ECG), and echocardiography recordings. We found all 3 ISP doses comparably increase heart weight, but these increases are more pronounced when ISP was administered via SMP. We also found that the combination of ISP treatment and delivery method induces contrasting heart rate, RR interval, and R and S amplitudes that may place SMP treated mice at higher risk for sustained disease burden. Mice treated via SMP also had increased heart wall thickness and LV Mass, but mice treated via SQ showed greater increase in gene markers for hypertrophy and fibrosis. Overall, these data suggest that at 2 weeks, mice treated with 2, 4, or 10mg/kg/day ISP via SQ and SMP routes cause similar pathological heart phenotypes but highlight the importance of drug delivery method to induce differing disease pathways.
Collapse
Affiliation(s)
- Patricia Perez-Bonilla
- Global Discovery, Investigative & Translational Sciences–Animal Models and Imaging, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Brianna LaViolette
- Global Discovery, Investigative & Translational Sciences–Animal Models and Imaging, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Bidur Bhandary
- Rare Diseases Research Unit, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Soumya Ullas
- Global Discovery, Investigative & Translational Sciences–Animal Models and Imaging, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Xian Chen
- Global Discovery, Investigative & Translational Sciences–Animal Models and Imaging, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Dinesh Hirenallur-Shanthappa
- Global Discovery, Investigative & Translational Sciences–Animal Models and Imaging, Pfizer Inc, Cambridge, Massachusetts, United States of America
| |
Collapse
|
2
|
Hao WR, Cheng CH, Liu JC, Chen HY, Chen JJ, Cheng TH. Understanding Galectin-3's Role in Diastolic Dysfunction: A Contemporary Perspective. Life (Basel) 2024; 14:906. [PMID: 39063659 PMCID: PMC11277993 DOI: 10.3390/life14070906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Diastolic dysfunction, a prevalent condition characterized by impaired relaxation and filling of the left ventricle, significantly contributes to heart failure with preserved ejection fraction (HFpEF). Galectin-3, a β-galactoside-binding lectin, has garnered attention as a potential biomarker and mediator of fibrosis and inflammation in cardiovascular diseases. This comprehensive review investigates the impact of galectin-3 on diastolic dysfunction. We explore its molecular mechanisms, including its involvement in cellular signaling pathways and interaction with components of the extracellular matrix. Evidence from both animal models and clinical studies elucidates galectin-3's role in cardiac remodeling, inflammation, and fibrosis, shedding light on the underlying pathophysiology of diastolic dysfunction. Additionally, we examine the diagnostic and therapeutic implications of galectin-3 in diastolic dysfunction, emphasizing its potential as both a biomarker and a therapeutic target. This review underscores the significance of comprehending galectin-3's role in diastolic dysfunction and its promise in enhancing diagnosis and treatment approaches for HFpEF patients.
Collapse
Affiliation(s)
- Wen-Rui Hao
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei City 23561, Taiwan; (W.-R.H.); (J.-C.L.)
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11002, Taiwan
| | - Chun-Han Cheng
- Department of Medical Education, Linkou Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan;
| | - Ju-Chi Liu
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei City 23561, Taiwan; (W.-R.H.); (J.-C.L.)
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11002, Taiwan
| | - Huan-Yuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (H.-Y.C.); (J.-J.C.)
| | - Jin-Jer Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (H.-Y.C.); (J.-J.C.)
- Division of Cardiology, Department of Internal Medicine and Graduate Institute of Clinical Medical Science, China Medical University, Taichung City 404333, Taiwan
| | - Tzu-Hurng Cheng
- Department of Biochemistry, School of Medicine, College of Medicine, China Medical University, Taichung City 404333, Taiwan
| |
Collapse
|
3
|
Hagău AC, Suciu H, Popoiu AV, Muntean I. Advanced Echocardiography Assessment in the Management of Alcapa Syndrome: Case Report. J Cardiovasc Dev Dis 2024; 11:219. [PMID: 39057639 PMCID: PMC11276838 DOI: 10.3390/jcdd11070219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Anomalous origin of the left coronary artery from the pulmonary artery (ALCAPA) is a rare and potentially life-threatening condition affecting infants that requires immediate corrective surgery to restore blood flow to the myocardium. We present a case of an infant with ALCAPA and severe heart failure. What sets this case apart is the utilization of speckle-tracking echocardiography as a non-invasive method for assessing global and regional myocardial function before and after surgical intervention. Our preoperative analysis revealed compromised contraction in specific areas of the left ventricle (LV), in the regions that were supplied by both the left coronary artery (LCA) and the right coronary artery (RCA). Interestingly, despite an increase in ejection fraction (EF) measured by conventional echocardiography, the postoperative speckle-tracking analysis revealed persistent impairment in the anterior territories supplied by LCA, highlighting the potential of this technique in identifying myocardial abnormalities during postoperative follow-up. In conclusion, speckle-tracking echocardiography may be a valuable tool for identifying subtle myocardial changes in ALCAPA patients with a higher sensitivity in detecting regional left ventricular (LV) dysfunction compared to conventional echocardiography.
Collapse
Affiliation(s)
- Asmaa Carla Hagău
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D., George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540136 Târgu Mureș, Romania
- Clinic of Paediatric Cardiology, Emergency Institute for Cardiovascular Diseases and Transplantation of Târgu Mureș, 540139 Târgu Mureș, Romania;
| | - Horațiu Suciu
- Department of Surgery IV, Emergency Institute of Cardiovascular Diseases and Transplantation Târgu Mureș, 540139 Târgu Mureș, Romania;
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| | - Anca Voichița Popoiu
- Department of Pediatrics, Children’s Hospital “Louis Turcanu”, 300732 Timisoara, Romania;
- Department of Pediatrics, University of Medicine and Pharmacy “Victor Babes” Timisoara, 300732 Timisoara, Romania
| | - Iolanda Muntean
- Clinic of Paediatric Cardiology, Emergency Institute for Cardiovascular Diseases and Transplantation of Târgu Mureș, 540139 Târgu Mureș, Romania;
- Department of Pediatrics III, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| |
Collapse
|
4
|
Yan WF, Yang ZG, Li XM, Tang SS, Guo YK, Jiang L, Min CY, Li Y. Additional Impact of Aortic Regurgitation on Left Ventricular Strain and Remodeling in Essential Hypertension Patients Evaluated Using MRI. J Magn Reson Imaging 2024; 60:339-349. [PMID: 37966904 DOI: 10.1002/jmri.29117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Understanding the impact of aortic regurgitation (AR) on hypertensive patients' hearts is important. PURPOSE To assess left ventricular (LV) strain and structure in hypertensive patients and investigate the relationship with AR severity. STUDY TYPE Retrospective. POPULATION 263 hypertensive patients (99 with AR) and 62 controls, with cardiac MRI data. FIELD STRENGTH/SEQUENCE Balanced steady-state free precession (bSSFP) sequence at 3.0T. ASSESSMENT AR was classified as mild, moderate, or severe based on echocardiographic findings. LV geometry was classified as normal, concentric remodeling, eccentric hypertrophy, or concentric hypertrophy based on MRI assessment of LV mass/volume ratio and LV Mass index (LVMI). LV global radial peak strain (GRPS), global circumferential peak strain (GCPS), and global longitudinal peak strain (GLPS) were obtained by post-processing bSSFP cine datasets using commercial software. STATISTICAL TESTS ANOVA, Kruskal-Wallis test, Spearman's correlation coefficients (r), chi-square test, and multivariable linear regression analysis. A P value <0.05 was considered statistically significant. RESULTS Hypertensive patients with AR had significantly lower LV myocardial strain and higher LVMI than the group without AR (GRPS 26.25 ± 12.23 vs. 34.53 ± 9.85, GCPS -17.4 ± 5.84 vs. -20.57 ± 3.57, GLPS -9.86 ± 4.08 vs. -12.95 ± 2.94, LVMI 90.56 ± 38.56 vs.58.84 ± 17.55). Of the 99 patients with AR, 56 had mild AR, 26 had moderate AR and 17 had severe AR. The degree of AR was significantly negatively correlated to the absolute values of LV GRPS, GCPS and GLPS (r = -0.284 - -0.416). LV eccentric hypertrophy increased significantly with AR severity (no AR 21.3%, mild AR 42.9%, moderate AR 73.1%, severe AR 82.4%). In multivariable analysis, the degree of AR was an independent factor affecting LV global strain and LVMI even after considering confounding factors (β values for global myocardial strain were -0.431 to -0.484, for LVMI was 0.646). DATA CONCLUSION Increasing AR severity leads to decreased cardiac function and worse ventricular geometric phenotypes in hypertensive patients. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Wei-Feng Yan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xue-Ming Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Si-Shi Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chen-Yan Min
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Shvets DA, Povetkin SV. Limitations of Diagnosis of Ischemic Left Ventricular Dysfunction Using the Values of Strain, Twist and Untwist in Patients With Myocardial Infarction of Various Localization. KARDIOLOGIIA 2024; 64:55-62. [PMID: 38597763 DOI: 10.18087/cardio.2024.3.n2253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/16/2022] [Indexed: 04/11/2024]
Abstract
AIM To compare capabilities for diagnosing regional and global myocardial dysfunction using the values of longitudinal and circular strain, left ventricular (LV) torsion and untwisting in patients with myocardial infarction (MI) of various locations. MATERIAL AND METHODS Patients included in the study (n=121) were divided into three groups: patients with unstable angina (n=30), patients with anterior MI (n=45), and patients with inferior MI (n=46). Clinical, laboratory and instrumental test were performed, including echocardiography. For a quantitative analysis of LV contractility, the maximum systolic peaks of regional and global longitudinal and circular strain, systolic and diastolic rotation, LV torsion and untwisting were measured. RESULTS Anterior MI was characterized by injury of the LV apical segments, while inferior MI was characterized by injury of the basal segments. In anterior MI, the longitudinal strain was reduced less than 14.5% and circular strain less than 19.3% in the apical segment of the LV anteroseptal wall (ASW). In akinesia of the LV ASW apical segment, longitudinal and circular strains were reduced less than 10%. The magnitude of the circular strain of the LV ASW apical segment (diagnostic threshold 19.3%, sensitivity (Se) 87%, specificity (Sp) 90%) was superior to that of the longitudinal strain as a diagnostic marker for regional ischemic dysfunction in anterior MI. The magnitude of the circular strain of the basal segment of the LV inferior wall in inferior MI has a greater diagnostic value for identifying regional systolic dysfunction than the value of the longitudinal strain of this LV segment. The diagnostic threshold was 17.3%, Se 79%, Sp 80%. CONCLUSION A decrease in the circular strain of the LV ASW less than 19.3% in the LV apical segment is more specific (Sp 90%) for diagnosing regional systolic dysfunction in anterior MI than a decrease in longitudinal strain. A circular strain value of less than 17.3% in the basal segment of the LV inferior wall is more specific (Sp 80%) than the longitudinal strain of this segment for diagnosing regional systolic dysfunction in inferior MI. Predominant injury to the LV apex in anterior MI can cause systolic and diastolic myocardial dysfunction, which is manifested by a decrease in LV circular deformation, torsion and untwisting.
Collapse
|
6
|
Qi Y, Chen Z, Guo B, Liu Z, Wang L, Liu S, Xue L, Ma M, Yin Y, Li Y, Liu G. Speckle-tracking echocardiography provides sensitive measurements of subtle early alterations associated with cardiac dysfunction in T2DM rats. BMC Cardiovasc Disord 2023; 23:266. [PMID: 37217862 DOI: 10.1186/s12872-023-03239-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Diabetic cardiomyopathy results in cardiac structural and functional abnormalities. Previous studies have demonstrated that inhibiting the RhoA/ROCK signalling pathway increases the injury resistance of cardiomyocytes. The early detection of cardiac structural and functional alterations may facilitate an improved understanding of the pathophysiologic progress and guide therapy. This study aimed to identify the optimal diagnostic measures for the subtle early alterations of cardiac dysfunction in type 2 diabetes mellitus (T2DM) rats. METHODS Twenty-four rat models were divided into four groups and received treatments for 4 weeks: the CON group (control rats), the DM group (T2DM rats), the DMF group (T2DM rats receiving fasudil) and the CONF group (control rats receiving fasudil) group. Left ventricular (LV) structure was quantified by histological staining and transmission electron microscopy. LV function and myocardial deformation were assessed by high-frequency echocardiography. RESULTS Treatment with fasudil, a ROCK inhibitor, significantly protected against diabetes-induced myocardial hypertrophy, fibrosis and mitochondrial dysfunction. Impaired LV performance was found in T2DM rats, as evidenced by significant reductions in the ejection fraction (EF), fractional shortening (FS) and the mitral valve (MV) E/A ratio (which decreased 26%, 34% and 20%, respectively). Fasudil failed to improve the conventional ultrasonic parameters in T2DM rats, but the myocardial deformation measured by speckle-tracking echocardiography (STE) were significantly improved (global circumferential strain, GCS: P = 0.003; GCS rate, GCSR: P = 0.021). When receiver operating characteristic (ROC) curves were used in combination with linear regression analysis, STE parameters were found to be characterized by both optimal prediction of cardiac damage [AUC (95% CI): fractional area change, FAC: 0.927 (0.744, 0.993); GCS: 0.819 (0.610, 0.945); GCSR: 0.899 (0.707, 0.984)] and stronger correlations with cardiac fibrosis (FAC: r = -0.825; GCS: r = 0.772; GCSR: r = 0.829) than conventional parameters. CONCLUSION The results suggest that STE parameters are more sensitive and specific than conventional parameters in predicting the subtle cardiac functional changes that occur in the early stage, providing new insight into the management of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yanchao Qi
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, People's Republic of China
- Heart Center, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, People's Republic of China
| | - Zhiyan Chen
- Heart Center, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, People's Republic of China
| | - Bingyan Guo
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Zhe Liu
- Heart Center, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, People's Republic of China
| | - Lijie Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Suyun Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Lixiang Xue
- Center of Basic Medical Research, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Meifang Ma
- Department of Cardiology, Handan Central Hospital, Handan, 056008, Hebei, People's Republic of China
| | - Yajuan Yin
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, People's Republic of China
- Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, 050031, Hebei, People's Republic of China
- Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, 050031, Hebei, People's Republic of China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050031, People's Republic of China
| | - Yongjun Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China.
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, People's Republic of China.
- Heart Center, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, People's Republic of China.
- Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, 050031, Hebei, People's Republic of China.
- Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, 050031, Hebei, People's Republic of China.
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050031, People's Republic of China.
| |
Collapse
|
7
|
Schreiber LM, Lohr D, Baltes S, Vogel U, Elabyad IA, Bille M, Reiter T, Kosmala A, Gassenmaier T, Stefanescu MR, Kollmann A, Aures J, Schnitter F, Pali M, Ueda Y, Williams T, Christa M, Hofmann U, Bauer W, Gerull B, Zernecke A, Ergün S, Terekhov M. Ultra-high field cardiac MRI in large animals and humans for translational cardiovascular research. Front Cardiovasc Med 2023; 10:1068390. [PMID: 37255709 PMCID: PMC10225557 DOI: 10.3389/fcvm.2023.1068390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/04/2023] [Indexed: 06/01/2023] Open
Abstract
A key step in translational cardiovascular research is the use of large animal models to better understand normal and abnormal physiology, to test drugs or interventions, or to perform studies which would be considered unethical in human subjects. Ultrahigh field magnetic resonance imaging (UHF-MRI) at 7 T field strength is becoming increasingly available for imaging of the heart and, when compared to clinically established field strengths, promises better image quality and image information content, more precise functional analysis, potentially new image contrasts, and as all in-vivo imaging techniques, a reduction of the number of animals per study because of the possibility to scan every animal repeatedly. We present here a solution to the dual use problem of whole-body UHF-MRI systems, which are typically installed in clinical environments, to both UHF-MRI in large animals and humans. Moreover, we provide evidence that in such a research infrastructure UHF-MRI, and ideally combined with a standard small-bore UHF-MRI system, can contribute to a variety of spatial scales in translational cardiovascular research: from cardiac organoids, Zebra fish and rodent hearts to large animal models such as pigs and humans. We present pilot data from serial CINE, late gadolinium enhancement, and susceptibility weighted UHF-MRI in a myocardial infarction model over eight weeks. In 14 pigs which were delivered from a breeding facility in a national SARS-CoV-2 hotspot, we found no infection in the incoming pigs. Human scanning using CINE and phase contrast flow measurements provided good image quality of the left and right ventricle. Agreement of functional analysis between CINE and phase contrast MRI was excellent. MRI in arrested hearts or excised vascular tissue for MRI-based histologic imaging, structural imaging of myofiber and vascular smooth muscle cell architecture using high-resolution diffusion tensor imaging, and UHF-MRI for monitoring free radicals as a surrogate for MRI of reactive oxygen species in studies of oxidative stress are demonstrated. We conclude that UHF-MRI has the potential to become an important precision imaging modality in translational cardiovascular research.
Collapse
Affiliation(s)
- Laura M. Schreiber
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - David Lohr
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Steffen Baltes
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ulrich Vogel
- Institute for Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany
| | - Ibrahim A. Elabyad
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maya Bille
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Theresa Reiter
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Aleksander Kosmala
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Radiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Tobias Gassenmaier
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Radiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maria R. Stefanescu
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Alena Kollmann
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Julia Aures
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Florian Schnitter
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Mihaela Pali
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Yuichiro Ueda
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, Wuerzburg, Germany
| | - Tatiana Williams
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center Wuerzburg, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Martin Christa
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ulrich Hofmann
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Wolfgang Bauer
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Brenda Gerull
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center Wuerzburg, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, Wuerzburg, Germany
| | - Maxim Terekhov
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
8
|
Wang F, Xu X, Wang Q, Yu D, Lv L, Wang Q. Comparison of left ventricular global and segmental strain parameters by cardiovascular magnetic resonance tissue tracking in light-chain cardiac amyloidosis and hypertrophic cardiomyopathy. Quant Imaging Med Surg 2023; 13:449-461. [PMID: 36620161 PMCID: PMC9816718 DOI: 10.21037/qims-22-329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/14/2022] [Indexed: 02/01/2023]
Abstract
Background Apical sparing of left ventricular (LV) strain can occur in light-chain cardiac amyloidosis (AL-CA). We employed indicators of the strain ratio of the apex to base (RAB) and the relative apical sparing of strain (RAS) on the basis of LV global and segmental strain to distinguish AL-CA from hypertrophic cardiomyopathy (HCM). Methods In all, 36 AL-CA patients, 37 HCM patients, and 36 healthy controls underwent 3.0 T cardiac magnetic resonance (CMR) examination. We compared LV strain parameters from CMR tissue tracking (CMR-TT), including global and segmental peak radial strain (PRS), peak circumferential strain (PCS), and peak longitudinal strain (PLS); the peak systolic strain rate in radial, circumferential, and longitudinal directions (PSSR_R, PSSR_C, PSSR_L); and the peak diastolic strain rate in radial, circumferential, and longitudinal directions (PDSR_R, PDSR_C, PDSR_L). We also assessed the values of RAB and RAS. Differences in all groups were compared using an independent t-test and a nonparametric rank sum test. Results In the comparison of global strain parameters, all the peak strain, systolic, and diastolic peak strain rates of the AL-CA group significantly decreased compared with those of the HCM and healthy control groups (all P<0.001). The values of PSSR in all directions were lower in the AL-CA than in the HCM patients (PSSR_R, P<0.001; PSSR_C, P=0.004; PSSR_L, P=0.010) . In the analysis of segmental strain parameters, all peak strains in the basal segment showed significant differences between the AL-CA and HCM groups (all P<0.001). Some strain rate parameters in the basal segment were also noted to be significantly different (PSSR_R, P<0.001; PSSR_L, P<0.001; PDSR_R, P=0.015; PDSR_C, P=0.020). Both the RAB and RAS of peak strain in all directions showed significant differences between the AL-CA and HCM groups (all P<0.001). The RAB of the radial and circumferential PSSR showed statistical differences between the 2 groups (P<0.001 and P=0.001). The RAS in the radial direction of both the PSSR and PDSR was statistically different (P=0.003 and P=0.012). Conclusions The CMR-TT technique can be used to quantitatively compare global and segmental strain differences between AL-CA and HCM. In addition, RAB and RAS are reliable parameters for assessing the apical sparing pattern and thus, for distinguishing AL-CA from HCM.
Collapse
|
9
|
Thiele A, Luettges K, Ritter D, Beyhoff N, Smeir E, Grune J, Steinhoff JS, Schupp M, Klopfleisch R, Rothe M, Wilck N, Bartolomaeus H, Migglautsch AK, Breinbauer R, Kershaw EE, Grabner GF, Zechner R, Kintscher U, Foryst-Ludwig A. Pharmacological inhibition of adipose tissue adipose triglyceride lipase by Atglistatin prevents catecholamine-induced myocardial damage. Cardiovasc Res 2022; 118:2488-2505. [PMID: 34061169 PMCID: PMC9890462 DOI: 10.1093/cvr/cvab182] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 02/05/2023] Open
Abstract
AIMS Heart failure (HF) is characterized by an overactivation of β-adrenergic signalling that directly contributes to impairment of myocardial function. Moreover, β-adrenergic overactivation induces adipose tissue lipolysis, which may further worsen the development of HF. Recently, we demonstrated that adipose tissue-specific deletion of adipose triglyceride lipase (ATGL) prevents pressure-mediated HF in mice. In this study, we investigated the cardioprotective effects of a new pharmacological inhibitor of ATGL, Atglistatin, predominantly targeting ATGL in adipose tissue, on catecholamine-induced cardiac damage. METHODS AND RESULTS Male 129/Sv mice received repeated injections of isoproterenol (ISO, 25 mg/kg BW) to induce cardiac damage. Five days prior to ISO application, oral Atglistatin (2 mmol/kg diet) or control treatment was started. Two and twelve days after the last ISO injection cardiac function was analysed by echocardiography. The myocardial deformation was evaluated using speckle-tracking-technique. Twelve days after the last ISO injection, echocardiographic analysis revealed a markedly impaired global longitudinal strain, which was significantly improved by the application of Atglistatin. No changes in ejection fraction were observed. Further studies included histological-, WB-, and RT-qPCR-based analysis of cardiac tissue, followed by cell culture experiments and mass spectrometry-based lipidome analysis. ISO application induced subendocardial fibrosis and a profound pro-apoptotic cardiac response, as demonstrated using an apoptosis-specific gene expression-array. Atglistatin treatment led to a dramatic reduction of these pro-fibrotic and pro-apoptotic processes. We then identified a specific set of fatty acids (FAs) liberated from adipocytes under ISO stimulation (palmitic acid, palmitoleic acid, and oleic acid), which induced pro-apoptotic effects in cardiomyocytes. Atglistatin significantly blocked this adipocytic FA secretion. CONCLUSION This study demonstrates cardioprotective effects of Atglistatin in a mouse model of catecholamine-induced cardiac damage/dysfunction, involving anti-apoptotic and anti-fibrotic actions. Notably, beneficial cardioprotective effects of Atglistatin are likely mediated by non-cardiac actions, supporting the concept that pharmacological targeting of adipose tissue may provide an effective way to treat cardiac dysfunction.
Collapse
Affiliation(s)
- Arne Thiele
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| | - Katja Luettges
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| | - Daniel Ritter
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| | - Niklas Beyhoff
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| | - Elia Smeir
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| | - Jana Grune
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Physiology, 10115 Berlin, Germany
| | - Julia S Steinhoff
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
| | - Michael Schupp
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Pathology, College of Veterinary Medicine, Freie
Universität, 14163 Berlin, Germany
| | | | - Nicola Wilck
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation of
Max-Delbrück Center for Molecular Medicine, Charité - Universitätsmedizin
Berlin, 13125 Berlin, Germany
- Division of Nephrology and Internal Intensive Care Medicine, Charité -
Universitätsmedizin Berlin, 10117 Berlin,
Germany
| | - Hendrik Bartolomaeus
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation of
Max-Delbrück Center for Molecular Medicine, Charité - Universitätsmedizin
Berlin, 13125 Berlin, Germany
| | - Anna K Migglautsch
- Institute of Organic Chemistry, Graz University of
Technology, 8010 Graz, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of
Technology, 8010 Graz, Austria
| | - Erin E Kershaw
- Division of Endocrinology and Metabolism, University of
Pittsburgh, PA, USA
| | - Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz,
8010 Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz,
8010 Graz, Austria
| | - Ulrich Kintscher
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| | - Anna Foryst-Ludwig
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| |
Collapse
|
10
|
A Scoping Review of Galectin-3 as a Biomarker of Cardiovascular Diseases in Pediatric Populations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074349. [PMID: 35410028 PMCID: PMC8998322 DOI: 10.3390/ijerph19074349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 02/05/2023]
Abstract
Galectin-3 as a cardiac biomarker has proven to be a significant prognostic tool in adults. However, it has not yet been established in the pediatric population as a biomarker in daily clinical practice. The aim of the study was to summarize the current knowledge on galectin-3 as a biomarker in children with cardiac conditions by reviewing the literature. Bibliographic databases such as PubMed, Web of Science and Embase were searched, and consequently twelve articles met the inclusion criteria. Supplemental handsearching of references delivered one additional source. These prospective studies concerning galectin-3 as a cardiac biomarker present analyses performed in cohorts composed of healthy children and children with cardiovascular diseases. The results, despite being based on small cohort studies, inform that galectin-3 could serve as a potential biomarker in cardiovascular risk stratification in children with heart failure, arrhythmia, Kawasaki disease or in patients undergoing cardiac surgery. The evidence for the usefulness of galectin-3 in the assessment of such pathologies as idiopathic dilated cardiomyopathy, coarctation of the aorta, functionally univentricular heart or tetralogy of Fallot were not completely confirmed. Galectin-3 seems to be a promising biomarker; however, there is a need for further research to establish its use in daily clinical practice.
Collapse
|
11
|
Lohr D, Thiele A, Stahnke M, Braun V, Smeir E, Spranger J, Brachs S, Klopfleisch R, Foryst-Ludwig A, Schreiber LM, Kintscher U, Beyhoff N. Assessment of Myocardial Microstructure in a Murine Model of Obesity-Related Cardiac Dysfunction by Diffusion Tensor Magnetic Resonance Imaging at 7T. Front Cardiovasc Med 2022; 9:839714. [PMID: 35449873 PMCID: PMC9016133 DOI: 10.3389/fcvm.2022.839714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/14/2022] [Indexed: 01/10/2023] Open
Abstract
BackgroundObesity exerts multiple deleterious effects on the heart that may ultimately lead to cardiac failure. This study sought to characterize myocardial microstructure and function in an experimental model of obesity-related cardiac dysfunction.MethodsMale C57BL/6N mice were fed either a high-fat diet (HFD; 60 kcal% fat, n = 12) or standard control diet (9 kcal% fat, n = 10) for 15 weeks. At the end of the study period, cardiac function was assessed by ultra-high frequency echocardiography, and hearts were processed for further analyses. The three-dimensional myocardial microstructure was examined ex vivo at a spatial resolution of 100 × 100 × 100 μm3 by diffusion tensor magnetic resonance imaging (DT-MRI) at 7T. Myocardial deformation, diffusion metrics and fiber tract geometry were analyzed with respect to the different myocardial layers (subendocardium/subepicardium) and segments (base/mid-cavity/apex). Results were correlated with blood sample analyses, histopathology, and gene expression data.ResultsHFD feeding induced significantly increased body weight combined with a pronounced accumulation of visceral fat (body weight 42.3 ± 5.7 vs. 31.5 ± 2.2 g, body weight change 73.7 ± 14.8 vs. 31.1 ± 6.6%, both P < 0.001). Obese mice showed signs of diastolic dysfunction, whereas left-ventricular ejection fraction and fractional shortening remained unchanged (E/e’ 41.6 ± 16.6 vs. 24.8 ± 6.0, P < 0.01; isovolumic relaxation time 19 ± 4 vs. 14 ± 4 ms, P < 0.05). Additionally, global longitudinal strain was reduced in the HFD group (−15.1 ± 3.0 vs. −20.0 ± 4.6%, P = 0.01), which was mainly driven by an impairment in basal segments. However, histopathology and gene expression analyses revealed no myocardial fibrosis or differences in cardiomyocyte morphology. Mean diffusivity and eigenvalues of the diffusion tensor were lower in the basal subepicardium of obese mice as assessed by DT-MRI (P < 0.05). The three-dimensional fiber tract arrangement of the left ventricle (LV) remained preserved.ConclusionFifteen weeks of high-fat diet induced alterations in myocardial diffusion properties in mice, whereas no remodeling of the three-dimensional myofiber arrangement of the LV was observed. Obese mice showed reduced longitudinal strain and lower mean diffusivity predominantly in the left-ventricular base, and further investigation into the significance of this regional pattern is required.
Collapse
Affiliation(s)
- David Lohr
- Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Arne Thiele
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal Research Center, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Max Stahnke
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal Research Center, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Vera Braun
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal Research Center, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Elia Smeir
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal Research Center, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Joachim Spranger
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolism, Cardiovascular-Metabolic-Renal Research Center, Berlin, Germany
| | - Sebastian Brachs
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolism, Cardiovascular-Metabolic-Renal Research Center, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Pathology, College of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Anna Foryst-Ludwig
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal Research Center, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Laura M. Schreiber
- Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ulrich Kintscher
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal Research Center, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Niklas Beyhoff
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal Research Center, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Cardiology, Campus Benjamin Franklin, Berlin, Germany
- *Correspondence: Niklas Beyhoff,
| |
Collapse
|
12
|
Betz IR, Qaiyumi SJ, Goeritzer M, Thiele A, Brix S, Beyhoff N, Grune J, Klopfleisch R, Greulich F, Uhlenhaut NH, Kintscher U, Foryst-Ludwig A. Cardioprotective Effects of Palmitoleic Acid (C16:1n7) in a Mouse Model of Catecholamine-Induced Cardiac Damage Are Mediated by PPAR Activation. Int J Mol Sci 2021; 22:ijms222312695. [PMID: 34884498 PMCID: PMC8657733 DOI: 10.3390/ijms222312695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 01/25/2023] Open
Abstract
Palmitoleic acid (C16:1n7) has been identified as a regulator of physiological cardiac hypertrophy. In the present study, we aimed to investigate the molecular pathways involved in C16:1n7 responses in primary murine cardiomyocytes (PCM) and a mouse model of isoproterenol (ISO)-induced cardiac damage. PCMs were stimulated with C16:1n7 or a vehicle. Afterwards, RNA sequencing was performed using an Illumina HiSeq sequencer. Confirmatory analysis was performed in PCMs and HL-1 cardiomyocytes. For an in vivo study, 129 sv mice were orally treated with a vehicle or C16:1n7 for 22 days. After 5 days of pre-treatment, the mice were injected with ISO (25 mg/kg/d s. c.) for 4 consecutive days. Cardiac phenotyping was performed using echocardiography. In total, 129 genes were differentially expressed in PCMs stimulated with C16:1n7, including Angiopoietin-like factor 4 (Angptl4) and Pyruvate Dehydrogenase Kinase 4 (Pdk4). Both Angptl4 and Pdk4 are proxisome proliferator-activated receptor α/δ (PPARα/δ) target genes. Our in vivo results indicated cardioprotective and anti-fibrotic effects of C16:1n7 application in mice. This was associated with the C16:1n7-dependent regulation of the cardiac PPAR-specific signaling pathways. In conclusion, our experiments demonstrated that C16:1n7 might have protective effects on cardiac fibrosis and inflammation. Our study may help to develop future lipid-based therapies for catecholamine-induced cardiac damage.
Collapse
Affiliation(s)
- Iris Rosa Betz
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
- Berlin Institute of Health, Emergency Department Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Sarah Julia Qaiyumi
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
| | - Madeleine Goeritzer
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Arne Thiele
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Sarah Brix
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Niklas Beyhoff
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Jana Grune
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Pathology, College of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Franziska Greulich
- German Center for Environmental Health GmbH, Institute for Diabetes and Cancer (IDC), 85764 Munich, Germany; (F.G.); (N.H.U.)
- Metabolic Programming, School of Life Sciences Weihenstephan, Technische Universitaet Muenchen (TUM), 85354 Freising, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, 13125 Berlin, Germany
| | - Nina Henriette Uhlenhaut
- German Center for Environmental Health GmbH, Institute for Diabetes and Cancer (IDC), 85764 Munich, Germany; (F.G.); (N.H.U.)
- Metabolic Programming, School of Life Sciences Weihenstephan, Technische Universitaet Muenchen (TUM), 85354 Freising, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, 13125 Berlin, Germany
| | - Ulrich Kintscher
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Anna Foryst-Ludwig
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Correspondence:
| |
Collapse
|
13
|
Smeir E, Leberer S, Blumrich A, Vogler G, Vasiliades A, Dresen S, Jaeger C, Gloaguen Y, Klose C, Beule D, Schulze PC, Bodmer R, Foryst-Ludwig A, Kintscher U. Depletion of cardiac cardiolipin synthase alters systolic and diastolic function. iScience 2021; 24:103314. [PMID: 34805785 PMCID: PMC8581512 DOI: 10.1016/j.isci.2021.103314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/13/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Cardiolipin (CL) is a major cardiac mitochondrial phospholipid maintaining regular mitochondrial morphology and function in cardiomyocytes. Cardiac CL production includes its biosynthesis and a CL remodeling process. Here we studied the impact of CL biosynthesis and the enzyme cardiolipin synthase (CLS) on cardiac function. CLS and cardiac CL species were significantly downregulated in cardiomyocytes following catecholamine-induced cardiac damage in mice, accompanied by increased oxygen consumption rates, signs of oxidative stress, and mitochondrial uncoupling. RNAi-mediated cardiomyocyte-specific knockdown of CLS in Drosophila melanogaster resulted in marked cardiac dilatation, severe impairment of systolic performance, and slower diastolic filling velocity assessed by fluorescence-based heart imaging. Finally, we showed that CL72:8 is significantly decreased in cardiac samples from patients with heart failure with reduced ejection fraction (HFrEF). In summary, we identified CLS as a regulator of cardiac function. Considering the cardiac depletion of CL species in HFrEF, pharmacological targeting of CLS may be a promising therapeutic approach. Cardiolipin synthase (CLS) is reduced in isoproterenol (ISO)-induced cardiac damage This is accompanied by alterations of cardiolipins and mitochondrial function CLS mutant Drosophila melanogaster exhibit mild cardiac changes Cardiomyocyte-CLS knockdown in Drosophila results in severe cardiac dysfunction
Collapse
Affiliation(s)
- Elia Smeir
- Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health/ Institute of Pharmacology, Center for Cardiovascular Research, Hessische Street 3-4, 10115 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Sarah Leberer
- Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health/ Institute of Pharmacology, Center for Cardiovascular Research, Hessische Street 3-4, 10115 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Annelie Blumrich
- Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health/ Institute of Pharmacology, Center for Cardiovascular Research, Hessische Street 3-4, 10115 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Georg Vogler
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Anastasia Vasiliades
- Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health/ Institute of Pharmacology, Center for Cardiovascular Research, Hessische Street 3-4, 10115 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Sandra Dresen
- Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health/ Institute of Pharmacology, Center for Cardiovascular Research, Hessische Street 3-4, 10115 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Carsten Jaeger
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Yoann Gloaguen
- Berlin Institute of Health, BIH, Core Unit Bioinformatics, Berlin, Germany.,Berlin Institute of Health, BIH, Metabolomics Platform, Berlin, Germany
| | | | - Dieter Beule
- Berlin Institute of Health, BIH, Core Unit Bioinformatics, Berlin, Germany
| | - P Christian Schulze
- Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Anna Foryst-Ludwig
- Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health/ Institute of Pharmacology, Center for Cardiovascular Research, Hessische Street 3-4, 10115 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Ulrich Kintscher
- Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health/ Institute of Pharmacology, Center for Cardiovascular Research, Hessische Street 3-4, 10115 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| |
Collapse
|
14
|
Berg J, Jablonowski R, Mohammad M, Solem K, Borgquist R, Ostenfeld E, Arheden H, Carlsson M. Ventricular longitudinal shortening is an independent predictor of death in heart failure patients with reduced ejection fraction. Sci Rep 2021; 11:20280. [PMID: 34645886 PMCID: PMC8514526 DOI: 10.1038/s41598-021-99613-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
Reduced ventricular longitudinal shortening measured by atrioventricular plane displacement (AVPD) and global longitudinal strain (GLS) are prognostic markers in heart disease. This study aims to determine if AVPD and GLS with cardiovascular magnetic resonance (CMR) are independent predictors of cardiovascular (CV) and all-cause death also in heart failure with reduced ejection fraction (HFrEF). Patients (n = 287) were examined with CMR and AVPD, GLS, ventricular volumes, myocardial fibrosis/scar were measured. Follow-up was 5 years with cause of death retrieved from a national registry. Forty CV and 60 all-cause deaths occurred and CV non-survivors had a lower AVPD (6.4 ± 2.0 vs 8.0 ± 2.4 mm, p < 0.001) and worse GLS (− 6.1 ± 2.2 vs − 7.7 ± 3.1%, p = 0.001). Kaplan–Meier analyses displayed increased survival for patients in the highest AVPD- and GLS-tertiles vs. the lowest tertiles (AVPD: p = 0.001, GLS: p = 0.013). AVPD and GLS showed in univariate analysis a hazard ratio (HR) of 1.30 (per-mm-decrease) and 1.19 (per-%-decrease) for CV death. Mean AVPD and GLS were independent predictors of all-cause death (HR = 1.24 per-mm-decrease and 1.15 per-%-decrease), but only AVPD showed incremental value over age, sex, body-mass-index, EF, etiology and fibrosis/scar for CV death (HR = 1.33 per-mm-decrease, p < 0.001). Ventricular longitudinal shortening remains independently prognostic for death in HFrEF even after adjusting for well-known clinical risk factors.
Collapse
Affiliation(s)
- J Berg
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden.,Syntach AB, Lund, Sweden
| | - R Jablonowski
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - M Mohammad
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | | | - R Borgquist
- Cardiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - E Ostenfeld
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - H Arheden
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - M Carlsson
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
15
|
Wang L, Chen H. Correlation between serum miR-122 and myocardial damage and ventricular function in patients with essential hypertension. J Thorac Dis 2021; 13:4999-5006. [PMID: 34527338 PMCID: PMC8411147 DOI: 10.21037/jtd-21-677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 07/19/2021] [Indexed: 12/29/2022]
Abstract
Background Myocardial damage and decreased ventricular function are risk factors leading to a bad prognosis in patients with essential hypertension (EH). MicroRNAs play important roles in myocardial function impairment in patients with hypertension. The purpose of our research was to investigate the correlation between serum miR-122 and myocardial damage and ventricular functions in EH patients. Methods The clinic data of EH patients (group A, n=60) and healthy individuals (group B, n=60) from December 2016 to December 2019 in our hospital were collected and analyzed. Serum miR-122, myocardial damage markers [B-type brain natriuretic peptide (BNP), homocysteine (Hcy), cardiac troponin T (cTnT) and creatine kinase MB isoenzyme (CK-MB)] and cardiac function indicators [ejection fraction (EF), left ventricular septal thickness (IVST), left ventricular isovolumic relaxation time (IVRT), left ventricular end-diastolic diameter (LVEDD), left ventricular posterior wall thickness (LVPWT), and left ventricular end-systolic diameter (LVESD)] were assessed in both groups. The correlation between serum miR-122 and myocardial damage markers and ventricular function indicators was analyzed. Results (I) The mean serum miR-122 concentration in group A and group B was 6.86±1.23 and 3.36±1.87 µmol/L, respectively. The serum miR-122 concentration in group A was evidently increased compared with that in group B. (II) The levels of BNP, Hcy, cTnT, and CK-MB in the peripheral blood in group A were evidently increased compared with those in group B (P<0.05). (III) EF and IVRT were evidently decreased in group A compared with that in group B (P<0.05). (IV) Serum miR-122 concentration was positively correlated with the myocardial damage markers BNP, Hcy, cTnT and CK-MB, and serum miR-122 concentration was negatively correlated with the ventricular function indicators EF and IVRT but not significantly correlated with other ventricular function indicators (IVST, LVEDD, LVPWT and LVESD). Conclusions The serum miR-122 concentration in EH patients was higher than that in healthy individuals, and miR-122 concentration was positively correlated with myocardial damage markers. Serum miR-122 level was negatively correlated with the ventricular function indicators EF and IVRT but was not significantly correlated with other ventricular function indicators (IVST, LVEDD, LVPWT, and LVESD).
Collapse
Affiliation(s)
- Liangguo Wang
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huabing Chen
- Department of Radiology, Second Clinical School of Medicine, Changjiang University, Jingzhou, China
| |
Collapse
|
16
|
Ritter D, Goeritzer M, Thiele A, Blumrich A, Beyhoff N, Luettges K, Smeir E, Kasch J, Grune J, Müller OJ, Klopfleisch R, Jaeger C, Foryst-Ludwig A, Kintscher U. Liver X Receptor Agonist AZ876 Induces Beneficial Endogenous Cardiac Lipid Reprogramming and Protects Against Isoproterenol-Induced Cardiac Damage. J Am Heart Assoc 2021; 10:e019473. [PMID: 34227403 PMCID: PMC8483473 DOI: 10.1161/jaha.120.019473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background It is known that dietary intake of polyunsaturated fatty acids may improve cardiac function. However, relatively high daily doses are required to achieve sufficient cardiac concentrations of beneficial omega‐3 fatty acids. The liver X receptor (LXR) is a nuclear hormone receptor and a crucial regulator of lipid homeostasis in mammals. LXR activation has been shown to endogenously reprogram cellular lipid profiles toward increased polyunsaturated fatty acids levels. Here we studied whether LXR lipid reprogramming occurs in cardiac tissue and exerts cardioprotective actions. Methods and Results Male 129SV mice were treated with the LXR agonist AZ876 (20 µmol/kg per day) for 11 days. From day 6, the mice were injected with the nonselective β‐agonist isoproterenol for 4 consecutive days to induce diastolic dysfunction and subendocardial fibrosis while maintaining systolic function. Treatment with isoproterenol led to a marked impairment of global longitudinal strain and the E/e' ratio of transmitral flow to mitral annular velocity, which were both significantly improved by the LXR agonist. Histological examination showed a significant reduction in isoproterenol‐induced subendocardial fibrosis by AZ876. Analysis of the cardiac lipid composition by liquid chromatography‐high resolution mass spectrometry revealed a significant increase in cardiac polyunsaturated fatty acids levels and a significant reduction in saturated fatty acids by AZ876. Conclusions The present study provides evidence that the LXR agonist AZ876 prevents subendocardial damage, improves global longitudinal strain and E/e' in a mouse model of isoproterenol‐induced cardiac damage, accompanied by an upregulation of cardiac polyunsaturated fatty acids levels. Cardiac LXR activation and beneficial endogenous cardiac lipid reprogramming may provide a new therapeutic strategy in cardiac disease with diastolic dysfunction.
Collapse
Affiliation(s)
- Daniel Ritter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu BerlinInstitute of PharmacologyCenter for Cardiovascular Research Berlin Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin Berlin Germany
| | - Madeleine Goeritzer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu BerlinInstitute of PharmacologyCenter for Cardiovascular Research Berlin Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin Berlin Germany
| | - Arne Thiele
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu BerlinInstitute of PharmacologyCenter for Cardiovascular Research Berlin Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin Berlin Germany
| | - Annelie Blumrich
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu BerlinInstitute of PharmacologyCenter for Cardiovascular Research Berlin Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin Berlin Germany
| | - Niklas Beyhoff
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu BerlinInstitute of PharmacologyCenter for Cardiovascular Research Berlin Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin Berlin Germany.,Berlin Institute of Health Berlin Germany
| | - Katja Luettges
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu BerlinInstitute of PharmacologyCenter for Cardiovascular Research Berlin Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin Berlin Germany
| | - Elia Smeir
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu BerlinInstitute of PharmacologyCenter for Cardiovascular Research Berlin Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin Berlin Germany
| | - Juliane Kasch
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu BerlinInstitute of PharmacologyCenter for Cardiovascular Research Berlin Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin Berlin Germany
| | - Jana Grune
- DZHK (German Centre for Cardiovascular Research), partner site Berlin Berlin Germany.,Charité -Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu BerlinInstitute of Physiology Berlin Germany
| | - Oliver J Müller
- Department of Internal Medicine III University of Kiel Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck Kiel Germany
| | - Robert Klopfleisch
- Department of Veterinary Pathology College of Veterinary Medicine Freie Universität Berlin Berlin Germany
| | - Carsten Jaeger
- Federal Institute for Material Research and Testing Berlin Germany
| | - Anna Foryst-Ludwig
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu BerlinInstitute of PharmacologyCenter for Cardiovascular Research Berlin Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin Berlin Germany
| | - Ulrich Kintscher
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu BerlinInstitute of PharmacologyCenter for Cardiovascular Research Berlin Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin Berlin Germany
| |
Collapse
|
17
|
Goerg J, Sommerfeld M, Greiner B, Lauer D, Seckin Y, Kulikov A, Ivkin D, Kintscher U, Okovityi S, Kaschina E. Low-Dose Empagliflozin Improves Systolic Heart Function after Myocardial Infarction in Rats: Regulation of MMP9, NHE1, and SERCA2a. Int J Mol Sci 2021; 22:ijms22115437. [PMID: 34063987 PMCID: PMC8196699 DOI: 10.3390/ijms22115437] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022] Open
Abstract
The effects of the selective sodium-glucose cotransporter 2 (SGLT2) inhibitor empagliflozin in low dose on cardiac function were investigated in normoglycemic rats. Cardiac parameters were measured by intracardiac catheterization 30 min after intravenous application of empagliflozin to healthy animals. Empagliflozin increased the ventricular systolic pressure, mean pressure, and the max dP/dt (p < 0.05). Similarly, treatment with empagliflozin (1 mg/kg, p.o.) for one week increased the cardiac output, stroke volume, and fractional shortening (p < 0.05). Myocardial infarction (MI) was induced by ligation of the left coronary artery. On day 7 post MI, empagliflozin (1 mg/kg, p.o.) improved the systolic heart function as shown by the global longitudinal strain (−21.0 ± 1.1% vs. −16.6 ± 0.7% in vehicle; p < 0.05). In peri-infarct tissues, empagliflozin decreased the protein expression of matrix metalloproteinase 9 (MMP9) and favorably regulated the cardiac transporters sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) and sodium hydrogen exchanger 1 (NHE1). In H9c2 cardiac cells, empagliflozin decreased the MMP2,9 activity and prevented apoptosis. Empagliflozin did not alter the arterial stiffness, blood pressure, markers of fibrosis, and necroptosis. Altogether, short-term treatment with low-dose empagliflozin increased the cardiac contractility in normoglycemic rats and improved the systolic heart function in the early phase after MI. These effects are attributed to a down-regulation of MMP9 and NHE1, and an up-regulation of SERCA2a. This study is of clinical importance because it suggests that a low-dose treatment option with empagliflozin may improve cardiovascular outcomes post-MI. Down-regulation of MMPs could be relevant to many remodeling processes including cancer disease.
Collapse
Affiliation(s)
- Jana Goerg
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Center for Cardiovascular Research (CCR), 10115 Berlin, Germany; (J.G.); (M.S.); (B.G.); (D.L.); (Y.S.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10115 Berlin, Germany
| | - Manuela Sommerfeld
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Center for Cardiovascular Research (CCR), 10115 Berlin, Germany; (J.G.); (M.S.); (B.G.); (D.L.); (Y.S.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10115 Berlin, Germany
| | - Bettina Greiner
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Center for Cardiovascular Research (CCR), 10115 Berlin, Germany; (J.G.); (M.S.); (B.G.); (D.L.); (Y.S.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10115 Berlin, Germany
| | - Dilyara Lauer
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Center for Cardiovascular Research (CCR), 10115 Berlin, Germany; (J.G.); (M.S.); (B.G.); (D.L.); (Y.S.); (U.K.)
| | - Yasemin Seckin
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Center for Cardiovascular Research (CCR), 10115 Berlin, Germany; (J.G.); (M.S.); (B.G.); (D.L.); (Y.S.); (U.K.)
- Department of Biotechnology, University of Applied Science, 13353 Berlin, Germany
| | - Alexander Kulikov
- Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia;
| | - Dmitry Ivkin
- Saint-Petersburg State Chemical-Pharmaceutical University, 197376 Saint Petersburg, Russia; (D.I.); (S.O.)
| | - Ulrich Kintscher
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Center for Cardiovascular Research (CCR), 10115 Berlin, Germany; (J.G.); (M.S.); (B.G.); (D.L.); (Y.S.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10115 Berlin, Germany
| | - Sergey Okovityi
- Saint-Petersburg State Chemical-Pharmaceutical University, 197376 Saint Petersburg, Russia; (D.I.); (S.O.)
| | - Elena Kaschina
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Center for Cardiovascular Research (CCR), 10115 Berlin, Germany; (J.G.); (M.S.); (B.G.); (D.L.); (Y.S.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10115 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-525-024
| |
Collapse
|
18
|
Pietrzak R, Książczyk TM, Górska E, Małek ŁA, Werner B. Evaluation of Galectin-3 Plasma Concentration in Adolescents with Ventricular Arrhythmia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052410. [PMID: 33801193 PMCID: PMC7967785 DOI: 10.3390/ijerph18052410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/21/2022]
Abstract
Galectin-3 (G3) is a biomarker known as an inflammatory state exponent. The aim of this paper was to analyze the G3 in adolescents with ventricular arrhythmia (VES) in order to evaluate its impact on myocardial tissue preservation. The study group (SG) consisted of 25 VES adolescents. The control group (CG) was 21 healthy children. G3 was assessed in the SG and CG. In the SG electrocardiography, Holter monitoring, echocardiography and CMR were performed. The G3 in SG was 13.45 ± 11.4 ng/mL and in CG 7.2 ± 2.0 ng/mL, p < 0.001. Moderate positive correlation between the G3 and z-score of the left ventricular diameter (r = 0.47, p = 0.041) and moderate negative correlation between the G3 and the left ventricular ejection fraction in cardiac magnetic resonance (CMR EF) (-0.49, p = 0.032) were found. According to the multiple linear regression analysis, CMR EF and VES were independent predictors for G3 elevation. Conclusion: Galectin-3 plasma concentration is elevated and correlates with the chosen left ventricular dysfunction parameters in adolescents suffering from ventricular arrhythmia. Further investigation is necessary to establish if elevated G3 is a useful biomarker for screening young individuals with ventricular arrhythmia who are at risk of structural cardiovascular pathology.
Collapse
Affiliation(s)
- Radosław Pietrzak
- Department of Pediatric Cardiology and General Pediatrics, Medical University of Warsaw, Żwirki i Wigury Street 63a, 02-091 Warsaw, Poland; (T.M.K.); (B.W.)
- Correspondence:
| | - Tomasz M. Książczyk
- Department of Pediatric Cardiology and General Pediatrics, Medical University of Warsaw, Żwirki i Wigury Street 63a, 02-091 Warsaw, Poland; (T.M.K.); (B.W.)
| | - Elżbieta Górska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Żwirki i Wigury Street 63a, 02-091 Warsaw, Poland;
| | - Łukasz A. Małek
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, National Institute of Cardiology, Alpejska Street 42, 04-628 Warsaw, Poland;
| | - Bożena Werner
- Department of Pediatric Cardiology and General Pediatrics, Medical University of Warsaw, Żwirki i Wigury Street 63a, 02-091 Warsaw, Poland; (T.M.K.); (B.W.)
| |
Collapse
|
19
|
Beyhoff N, Lohr D, Thiele A, Foryst-Ludwig A, Klopfleisch R, Schreiber LM, Kintscher U. Myocardial Infarction After High-Dose Catecholamine Application-A Case Report From an Experimental Imaging Study. Front Cardiovasc Med 2020; 7:580296. [PMID: 33330644 PMCID: PMC7717942 DOI: 10.3389/fcvm.2020.580296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Although heart failure following myocardial infarction (MI) represents a major health burden, underlying microstructural and functional changes remain incompletely understood. Here, we report on a case of unexpected MI after treatment with the catecholamine isoproterenol in an experimental imaging study in mice using different state-of-the-art imaging modalities. The decline in cardiac function was documented by ultrahigh-frequency echocardiography and speckle-tracking analyses. Myocardial microstructure was studied ex vivo at a spatial resolution of 100 × 100 × 100 μm3 using diffusion tensor magnetic resonance imaging (DT-MRI) and histopathologic analyses. Two weeks after ISO treatment, the animal showed an apical aneurysm accompanied by reduced radial strain in corresponding segments and impaired global systolic function. DT-MRI revealed a loss of contractile fiber tracts together with a disarray of remaining fibers as corresponding microstructural correlates. This preclinical case report provides valuable insights into pathophysiology and morphologic-functional relations of heart failure following MI using emerging imaging technologies.
Collapse
Affiliation(s)
- Niklas Beyhoff
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - David Lohr
- Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Arne Thiele
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Anna Foryst-Ludwig
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Pathology, College of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Laura M. Schreiber
- Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Ulrich Kintscher
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
20
|
Lohr D, Terekhov M, Veit F, Schreiber LM. Longitudinal assessment of tissue properties and cardiac diffusion metrics of the ex vivo porcine heart at 7 T: Impact of continuous tissue fixation using formalin. NMR IN BIOMEDICINE 2020; 33:e4298. [PMID: 32207190 DOI: 10.1002/nbm.4298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/18/2020] [Accepted: 03/05/2020] [Indexed: 05/12/2023]
Abstract
In this study we aimed to assess the effects of continuous formalin fixation on diffusion and relaxation metrics of the ex vivo porcine heart at 7 T. Magnetic resonance imaging was performed on eight piglet hearts using a 7 T whole body system. Hearts were measured fresh within 3 hours of cardiac arrest followed by immersion in 10% neutral buffered formalin. T2* and T2 were assessed using a gradient multi-echo and multi-echo spin echo sequence, respectively. A spin echo and a custom stimulated echo sequence were employed to assess diffusion time-dependent changes in metrics of cardiac diffusion tensor imaging. SNR was determined for b = 0 images. Scans were performed for 5 mm thick apical, midcavity and basal slices (in-plane resolution: 1 mm) and repeated 7, 15, 50, 100 and 200 days postfixation. Eigenvalues of the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) decreased significantly (P < 0.05) following fixation. Relative to fresh hearts, FA values 7 and 200 days postfixation were 90% and 80%, while respective relative ADC values at those fixation stages were 78% and 92%. Statistical helix and sheetlet angle distributions as well as respective mean and median values showed no systematic influence of continuous formalin fixation. Similar to changes in the ADC, values for T2 , T2* and SNR dropped initially postfixation. Respective relative values compared with fresh hearts at day 7 were 64%, 79% and 68%, whereas continuous fixation restored T2 , T2* and SNR leading to relative values of 74%, 100%, and 81% at day 200, respectively. Relaxation parameters and diffusion metrics are significantly altered by continuous formalin fixation. The preservation of microstructure metrics following prolonged fixation is a key finding that may enable future studies of ventricular remodeling in cardiac pathologies.
Collapse
Affiliation(s)
- David Lohr
- Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maxim Terekhov
- Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Franziska Veit
- Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Laura Maria Schreiber
- Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|