1
|
Mitra A, Mandal S, Banerjee K, Ganguly N, Sasmal P, Banerjee D, Gupta S. Cardiac Regeneration in Adult Zebrafish: A Review of Signaling and Metabolic Coordination. Curr Cardiol Rep 2025; 27:15. [PMID: 39792206 DOI: 10.1007/s11886-024-02162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE OF REVIEW This review investigates how post-injury cellular signaling and energy metabolism are two pivotal points in zebrafish's cardiomyocyte cell cycle re-entry and proliferation. It seeks to highlight the probable mechanism of action in proliferative cardiomyocytes compared to mammals and identify gaps in the current understanding of metabolic regulation of cardiac regeneration. RECENT FINDINGS Metabolic substrate changes after birth correlate with reduced cardiomyocyte proliferation in mammals. Unlike adult mammalian hearts, zebrafish can regenerate cardiomyocytes by re-entering the cell cycle, characterized by a metabolic switch from oxidative metabolism to increased glycolysis. Zebrafish provide a valuable model for studying metabolic regulation during cell cycle re-entry and cardiac regeneration. Proliferative cardiomyocytes have upregulated Notch, hippo, and Wnt signaling and decreased ROS generation, DNA damage in different zebrafish cardiac regeneration models. Understanding the correlation between metabolic switches during cell cycle re-entry of already differentiated zebrafish cardiomyocytes is being increasingly recognized as a critical factor in heart regeneration. Zebrafish studies provide insights into metabolic adaptations during heart regeneration, emphasizing the importance of a metabolic switch. However, there are mechanistic gaps, and extensive studies are required to aid in formulating therapeutic strategies for cardiac regenerative medicine.
Collapse
Affiliation(s)
- Arkadeep Mitra
- Department of Zoology, City College, 102/1, Raja Rammohan Sarani, Kolkata, 700009, West Bengal, India
| | - Subhadeep Mandal
- Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India
| | - Kalyan Banerjee
- Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India
| | - Nilanjan Ganguly
- Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India
| | - Pramit Sasmal
- Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India
| | - Durba Banerjee
- Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St, Seattle, WA, 98109, USA.
| | - Shreyasi Gupta
- Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India.
| |
Collapse
|
2
|
Challa AA, Vidal P, Maurya SK, Maurya CK, Baer LA, Wang Y, James NM, Pardeshi PJ, Fasano M, Carley AN, Stanford KI, Lewandowski ED. UCP1-dependent brown adipose activation accelerates cardiac metabolic remodeling and reduces initial hypertrophic and fibrotic responses to pathological stress. FASEB J 2024; 38:e23709. [PMID: 38809700 PMCID: PMC11163965 DOI: 10.1096/fj.202400922r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Brown adipose tissue (BAT) is correlated to cardiovascular health in rodents and humans, but the physiological role of BAT in the initial cardiac remodeling at the onset of stress is unknown. Activation of BAT via 48 h cold (16°C) in mice following transverse aortic constriction (TAC) reduced cardiac gene expression for LCFA uptake and oxidation in male mice and accelerated the onset of cardiac metabolic remodeling, with an early isoform shift of carnitine palmitoyltransferase 1 (CPT1) toward increased CPT1a, reduced entry of long chain fatty acid (LCFA) into oxidative metabolism (0.59 ± 0.02 vs. 0.72 ± 0.02 in RT TAC hearts, p < .05) and increased carbohydrate oxidation with altered glucose transporter content. BAT activation with TAC reduced early hypertrophic expression of β-MHC by 61% versus RT-TAC and reduced pro-fibrotic TGF-β1 and COL3α1 expression. While cardiac natriuretic peptide expression was yet to increase at only 3 days TAC, Nppa and Nppb expression were elevated in Cold TAC versus RT TAC hearts 2.7- and 2.4-fold, respectively. Eliminating BAT thermogenic activation with UCP1 KO mice eliminated differences between Cold TAC and RT TAC hearts, confirming effects of BAT activation rather than autonomous cardiac responses to cold. Female responses to BAT activation were blunted, with limited UCP1 changes with cold, partly due to already activated BAT in females at RT compared to thermoneutrality. These data reveal a previously unknown physiological mechanism of UCP1-dependent BAT activation in attenuating early cardiac hypertrophic and profibrotic signaling and accelerating remodeled metabolic activity in the heart at the onset of cardiac stress.
Collapse
Affiliation(s)
- Azariyas A. Challa
- Department of Internal Medicine, College of Medicine, Ohio State University. Columbus, OH, 43210, USA
| | - Pablo Vidal
- Davis Heart and Lung Research Institute and Department of Internal Medicine, College of Medicine, Ohio State University. Columbus, OH, 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University. Columbus, OH., 43210, USA
- Department of Surgery, General and Gastrointestinal Surgery, College of Medicine, The Ohio State University. Columbus, OH., 43210, USA
| | - Santosh K. Maurya
- Department of Internal Medicine, College of Medicine, Ohio State University. Columbus, OH, 43210, USA
- Davis Heart and Lung Research Institute and Department of Internal Medicine, College of Medicine, Ohio State University. Columbus, OH, 43210, USA
| | - Chandan K. Maurya
- Department of Internal Medicine, College of Medicine, Ohio State University. Columbus, OH, 43210, USA
- Davis Heart and Lung Research Institute and Department of Internal Medicine, College of Medicine, Ohio State University. Columbus, OH, 43210, USA
| | - Lisa A. Baer
- Davis Heart and Lung Research Institute and Department of Internal Medicine, College of Medicine, Ohio State University. Columbus, OH, 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University. Columbus, OH., 43210, USA
- Department of Surgery, General and Gastrointestinal Surgery, College of Medicine, The Ohio State University. Columbus, OH., 43210, USA
| | - Yang Wang
- Department of Internal Medicine, College of Medicine, Ohio State University. Columbus, OH, 43210, USA
- Davis Heart and Lung Research Institute and Department of Internal Medicine, College of Medicine, Ohio State University. Columbus, OH, 43210, USA
| | - Natasha Maria James
- Davis Heart and Lung Research Institute and Department of Internal Medicine, College of Medicine, Ohio State University. Columbus, OH, 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University. Columbus, OH., 43210, USA
- Department of Surgery, General and Gastrointestinal Surgery, College of Medicine, The Ohio State University. Columbus, OH., 43210, USA
| | - Parth J. Pardeshi
- Davis Heart and Lung Research Institute and Department of Internal Medicine, College of Medicine, Ohio State University. Columbus, OH, 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University. Columbus, OH., 43210, USA
- Department of Surgery, General and Gastrointestinal Surgery, College of Medicine, The Ohio State University. Columbus, OH., 43210, USA
| | - Matthew Fasano
- Department of Internal Medicine, College of Medicine, Ohio State University. Columbus, OH, 43210, USA
- Davis Heart and Lung Research Institute and Department of Internal Medicine, College of Medicine, Ohio State University. Columbus, OH, 43210, USA
| | - Andrew N. Carley
- Department of Internal Medicine, College of Medicine, Ohio State University. Columbus, OH, 43210, USA
- Davis Heart and Lung Research Institute and Department of Internal Medicine, College of Medicine, Ohio State University. Columbus, OH, 43210, USA
| | - Kristin I. Stanford
- Davis Heart and Lung Research Institute and Department of Internal Medicine, College of Medicine, Ohio State University. Columbus, OH, 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University. Columbus, OH., 43210, USA
- Department of Surgery, General and Gastrointestinal Surgery, College of Medicine, The Ohio State University. Columbus, OH., 43210, USA
| | - E. Douglas Lewandowski
- Department of Internal Medicine, College of Medicine, Ohio State University. Columbus, OH, 43210, USA
- Davis Heart and Lung Research Institute and Department of Internal Medicine, College of Medicine, Ohio State University. Columbus, OH, 43210, USA
| |
Collapse
|
3
|
Liu K, Zhang S, Xu S, Yang W, Li Y, Chen Y, Shen F, Wang Y, Chen Z, Li H, Ding X. Ultrasensitive Proteomics of Trace Cardiac Tissues with Anchor-Nanoparticles. Anal Chem 2024; 96:9460-9467. [PMID: 38820243 DOI: 10.1021/acs.analchem.4c00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Pathological cardiac hypertrophy is a complex process that often leads to heart failure. Label-free proteomics has emerged as an important platform to reveal protein variations and to elucidate the mechanisms of cardiac hypertrophy. Endomyocardial biopsy is a minimally invasive technique for sampling cardiac tissue, but it yields only limited amounts of an ethically permissible specimen. After regular pathological examination, the remaining trace samples pose significant challenges for effective protein extraction and mass spectrometry analysis. Herein, we developed trace cardiac tissue proteomics based on the anchor-nanoparticles (TCPA) method. We identified an average of 6666 protein groups using ∼50 μg of myocardial interventricular septum samples by TCPA. We then applied TCPA to acquire proteomics from patients' cardiac samples both diagnosed as hypertrophic hearts and myocarditis controls and identified significant alterations in pathways such as regulation of actin cytoskeleton, oxidative phosphorylation, and cGMP-PKG signaling pathway. Moreover, we found multiple lipid metabolic pathways to be dysregulated in transthyretin cardiac amyloidosis compared to other types of cardiac hypertrophy. TCPA offers a new technique for studying pathological cardiac hypertrophy and can serve as a platform toolbox for proteomic research in other cardiac diseases.
Collapse
Affiliation(s)
- Kun Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shuang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Sudan Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wenyi Yang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ya Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Youming Chen
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Feng Shen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yuchen Wang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zixuan Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hongli Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
4
|
Carmo HRP, Bonilha I, Barreto J, Tognolini M, Zanotti I, Sposito AC. High-Density Lipoproteins at the Interface between the NLRP3 Inflammasome and Myocardial Infarction. Int J Mol Sci 2024; 25:1290. [PMID: 38279290 PMCID: PMC10816227 DOI: 10.3390/ijms25021290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Despite significant therapeutic advancements, morbidity and mortality following myocardial infarction (MI) remain unacceptably high. This clinical challenge is primarily attributed to two significant factors: delayed reperfusion and the myocardial injury resulting from coronary reperfusion. Following reperfusion, there is a rapid intracellular pH shift, disruption of ionic balance, heightened oxidative stress, increased activity of proteolytic enzymes, initiation of inflammatory responses, and activation of several cell death pathways, encompassing apoptosis, necroptosis, and pyroptosis. The inflammatory cell death or pyroptosis encompasses the activation of the intracellular multiprotein complex known as the NLRP3 inflammasome. High-density lipoproteins (HDL) are endogenous particles whose components can either promote or mitigate the activation of the NLRP3 inflammasome. In this comprehensive review, we explore the role of inflammasome activation in the context of MI and provide a detailed analysis of how HDL can modulate this process.
Collapse
Affiliation(s)
- Helison R. P. Carmo
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), Division of Cardiology, State University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (H.R.P.C.); (I.B.); (J.B.); (A.C.S.)
| | - Isabella Bonilha
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), Division of Cardiology, State University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (H.R.P.C.); (I.B.); (J.B.); (A.C.S.)
| | - Joaquim Barreto
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), Division of Cardiology, State University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (H.R.P.C.); (I.B.); (J.B.); (A.C.S.)
| | | | - Ilaria Zanotti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Andrei C. Sposito
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), Division of Cardiology, State University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (H.R.P.C.); (I.B.); (J.B.); (A.C.S.)
| |
Collapse
|
5
|
Carvalho RA. The glycolytic pathway to heart failure. GLYCOLYSIS 2024:235-266. [DOI: 10.1016/b978-0-323-91704-9.00010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Wei J, Duan X, Chen J, Zhang D, Xu J, Zhuang J, Wang S. Metabolic adaptations in pressure overload hypertrophic heart. Heart Fail Rev 2024; 29:95-111. [PMID: 37768435 DOI: 10.1007/s10741-023-10353-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
This review article offers a detailed examination of metabolic adaptations in pressure overload hypertrophic hearts, a condition that plays a pivotal role in the progression of heart failure with preserved ejection fraction (HFpEF) to heart failure with reduced ejection fraction (HFrEF). The paper delves into the complex interplay between various metabolic pathways, including glucose metabolism, fatty acid metabolism, branched-chain amino acid metabolism, and ketone body metabolism. In-depth insights into the shifts in substrate utilization, the role of different transporter proteins, and the potential impact of hypoxia-induced injuries are discussed. Furthermore, potential therapeutic targets and strategies that could minimize myocardial injury and promote cardiac recovery in the context of pressure overload hypertrophy (POH) are examined. This work aims to contribute to a better understanding of metabolic adaptations in POH, highlighting the need for further research on potential therapeutic applications.
Collapse
Affiliation(s)
- Jinfeng Wei
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xuefei Duan
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jiaying Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Dengwen Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jindong Xu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| | - Sheng Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Linzhi People's Hospital, Linzhi, Tibet, China.
| |
Collapse
|
7
|
Chen S, Zou Y, Song C, Cao K, Cai K, Wu Y, Zhang Z, Geng D, Sun W, Ouyang N, Zhang N, Li Z, Sun G, Zhang Y, Sun Y, Zhang Y. The role of glycolytic metabolic pathways in cardiovascular disease and potential therapeutic approaches. Basic Res Cardiol 2023; 118:48. [PMID: 37938421 PMCID: PMC10632287 DOI: 10.1007/s00395-023-01018-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
Cardiovascular disease (CVD) is a major threat to human health, accounting for 46% of non-communicable disease deaths. Glycolysis is a conserved and rigorous biological process that breaks down glucose into pyruvate, and its primary function is to provide the body with the energy and intermediate products needed for life activities. The non-glycolytic actions of enzymes associated with the glycolytic pathway have long been found to be associated with the development of CVD, typically exemplified by metabolic remodeling in heart failure, which is a condition in which the heart exhibits a rapid adaptive response to hypoxic and hypoxic conditions, occurring early in the course of heart failure. It is mainly characterized by a decrease in oxidative phosphorylation and a rise in the glycolytic pathway, and the rise in glycolysis is considered a hallmark of metabolic remodeling. In addition to this, the glycolytic metabolic pathway is the main source of energy for cardiomyocytes during ischemia-reperfusion. Not only that, the auxiliary pathways of glycolysis, such as the polyol pathway, hexosamine pathway, and pentose phosphate pathway, are also closely related to CVD. Therefore, targeting glycolysis is very attractive for therapeutic intervention in CVD. However, the relationship between glycolytic pathway and CVD is very complex, and some preclinical studies have confirmed that targeting glycolysis does have a certain degree of efficacy, but its specific role in the development of CVD has yet to be explored. This article aims to summarize the current knowledge regarding the glycolytic pathway and its key enzymes (including hexokinase (HK), phosphoglucose isomerase (PGI), phosphofructokinase-1 (PFK1), aldolase (Aldolase), phosphoglycerate metatase (PGAM), enolase (ENO) pyruvate kinase (PKM) lactate dehydrogenase (LDH)) for their role in cardiovascular diseases (e.g., heart failure, myocardial infarction, atherosclerosis) and possible emerging therapeutic targets.
Collapse
Affiliation(s)
- Shuxian Chen
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Nanxiang Ouyang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
- Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
8
|
Rico A, Valls A, Guembelzu G, Azpitarte M, Aiastui A, Zufiria M, Jaka O, López de Munain A, Sáenz A. Altered expression of proteins involved in metabolism in LGMDR1 muscle is lost in cell culture conditions. Orphanet J Rare Dis 2023; 18:315. [PMID: 37817200 PMCID: PMC10565977 DOI: 10.1186/s13023-023-02873-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Limb-girdle muscular dystrophy R1 calpain 3-related (LGMDR1) is an autosomal recessive muscular dystrophy due to mutations in the CAPN3 gene. While the pathophysiology of this disease has not been clearly established yet, Wnt and mTOR signaling pathways impairment in LGMDR1 muscles has been reported. RESULTS A reduction in Akt phosphorylation ratio and upregulated expression of proteins implicated in glycolysis (HK-II) and in fructose and lactate transport (GLUT5 and MCT1) in LGMDR1 muscle was observed. In vitro analysis to establish mitochondrial and glycolytic functions of primary cultures were performed, however, no differences between control and patients were observed. Additionally, gene expression analysis showed a lack of correlation between primary myoblasts/myotubes and LGMDR1 muscle while skin fibroblasts and CD56- cells showed a slightly better correlation with muscle. FRZB gene was upregulated in all the analyzed cell types (except in myoblasts). CONCLUSIONS Proteins implicated in metabolism are deregulated in LGMDR1 patients' muscle. Obtained results evidence the limited usefulness of primary myoblasts/myotubes for LGMDR1 gene expression and metabolic studies. However, since FRZB is the only gene that showed upregulation in all the analyzed cell types it is suggested its role as a key regulator of the pathophysiology of the LGMDR1 muscle fiber. The Wnt signaling pathway inactivation, secondary to FRZB upregulation, and GLUT5 overexpression may participate in the impaired adipogenesis in LGMD1R patients.
Collapse
Affiliation(s)
- Anabel Rico
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain
| | - Andrea Valls
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain
| | - Garazi Guembelzu
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain
| | - Margarita Azpitarte
- Cell Culture, Histology and Multidisciplinary 3D Printing Platform, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Ana Aiastui
- Department of Neurology, Donostialdea Integrated Health Organization, San Sebastián, Spain
| | - Mónica Zufiria
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain
| | - Oihane Jaka
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain
| | - Adolfo López de Munain
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain
- Department of Neurology, Donostialdea Integrated Health Organization, San Sebastián, Spain
- Department of Neurosciences, University of the Basque Country UPV-EHU, San Sebastián, Spain
- Faculty of Medicine, University of Deusto, Bilbao, Spain
| | - Amets Sáenz
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain.
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
9
|
Yamamoto K, Ohta Y, Taguchi A, Akiyama M, Nakabayashi H, Nagao Y, Ryoko H, Wada Y, Yamamoto T, Yano M, Tanizawa Y. Effects of pemafibrate on left ventricular diastolic function in patients with type 2 diabetes mellitus: a pilot study. Diabetol Int 2023; 14:434-439. [PMID: 37781469 PMCID: PMC10533442 DOI: 10.1007/s13340-023-00645-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/14/2023] [Indexed: 10/03/2023]
Abstract
Aims/introduction Diabetic cardiomyopathy (DCM) is characterized predominantly by diastolic dysfunction. The multiple mechanisms underlying DCM include altered energy substrate utilization. Recent studies indicate that PPARα plays an important role in the pathogenesis of lipotoxic cardiomyopathy. Pemafibrate is known to be a selective PPARα modulator (SPPARMα). We thus investigated the effects of pemafibrate on cardiac diastolic function in patients with type 2 diabetes. Materials and methods Seventeen patients with type 2 diabetes (T2D) and hypertriglyceridemia were screened and treated with pemafibrate at a dose of 0.2 mg/day for 8-16 weeks. Fourteen patients were eligible for analysis. Echocardiography was used for assessment of diastolic function. Early diastolic filling velocity (E), late atrial filling velocity (A) and the E/A ratio were included in this study. Peak early diastolic annular velocities (e') were also assessed using color tissue Doppler images. The primary endpoints were changes in the ratio of E to A (E/A), e', and the ratio of E to e' (E/e') from baseline. Results Pemafibrate significantly increased average e' (7.24 ± 0.58 vs 7.94 ± 0.67, p = 0.019) and a significant reduction in E/e' (9.01 ± 0.94 vs 8.20 ± 0.91, p = 0.041). The increase in e' was significantly related to increases in fasting blood glucose (r = 0.607, p = 0.021) and non-esterified fatty acid (r = 0.592, p = 0.026). Conclusion Pemafibrate improved diastolic function in patients with T2D and hypertriglyceridemia, suggesting that PPARα activation by pemafibrate prevents the development of DCM at an early stage.
Collapse
Affiliation(s)
- Kaoru Yamamoto
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi Japan
| | - Yasuharu Ohta
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi Japan
- Department of Diabetes Research, School of Medicine, Yamaguchi University, Ube, Yamaguchi Japan
| | - Akihiko Taguchi
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi Japan
| | - Masaru Akiyama
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi Japan
| | - Hiroko Nakabayashi
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi Japan
| | - Yuko Nagao
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi Japan
| | - Hatanaka Ryoko
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi Japan
| | - Yasuaki Wada
- Division of Laboratory, Yamaguchi University Hospital, Ube, Yamaguchi Japan
| | - Takeshi Yamamoto
- Department of Medicine and Clinical Science, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Masafumi Yano
- Department of Medicine and Clinical Science, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Yukio Tanizawa
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi Japan
| |
Collapse
|
10
|
Mukherjee S, Chakraborty M, Msengi EN, Haubner J, Zhang J, Jellinek MJ, Carlson HL, Pyles K, Ulmasov B, Lutkewitte AJ, Carpenter D, McCommis KS, Ford DA, Finck BN, Neuschwander-Tetri BA, Chakraborty A. Ube4A maintains metabolic homeostasis and facilitates insulin signaling in vivo. Mol Metab 2023; 75:101767. [PMID: 37429524 PMCID: PMC10368927 DOI: 10.1016/j.molmet.2023.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
OBJECTIVE Defining the regulators of cell metabolism and signaling is essential to design new therapeutic strategies in obesity and NAFLD/NASH. E3 ubiquitin ligases control diverse cellular functions by ubiquitination-mediated regulation of protein targets, and thus their functional aberration is associated with many diseases. The E3 ligase Ube4A has been implicated in human obesity, inflammation, and cancer. However, its in vivo function is unknown, and no animal models are available to study this novel protein. METHODS A whole-body Ube4A knockout (UKO) mouse model was generated, and various metabolic parameters were compared in chow- and high fat diet (HFD)-fed WT and UKO mice, and in their liver, adipose tissue, and serum. Lipidomics and RNA-Seq studies were performed in the liver samples of HFD-fed WT and UKO mice. Proteomic studies were conducted to identify Ube4A's targets in metabolism. Furthermore, a mechanism by which Ube4A regulates metabolism was identified. RESULTS Although the body weight and composition of young, chow-fed WT and UKO mice are similar, the knockouts exhibit mild hyperinsulinemia and insulin resistance. HFD feeding substantially augments obesity, hyperinsulinemia, and insulin resistance in both sexes of UKO mice. HFD-fed white and brown adipose tissue depots of UKO mice have increased insulin resistance and inflammation and reduced energy metabolism. Moreover, Ube4A deletion exacerbates hepatic steatosis, inflammation, and liver injury in HFD-fed mice with increased lipid uptake and lipogenesis in hepatocytes. Acute insulin treatment resulted in impaired activation of the insulin effector protein kinase Akt in liver and adipose tissue of chow-fed UKO mice. We identified the Akt activator protein APPL1 as a Ube4A interactor. The K63-linked ubiquitination (K63-Ub) of Akt and APPL1, known to facilitate insulin-induced Akt activation, is impaired in UKO mice. Furthermore, Ube4A K63-ubiquitinates Akt in vitro. CONCLUSION Ube4A is a novel regulator of obesity, insulin resistance, adipose tissue dysfunction and NAFLD, and preventing its downregulation may ameliorate these diseases.
Collapse
Affiliation(s)
- Sandip Mukherjee
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Molee Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Eliwaza N Msengi
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Jake Haubner
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Matthew J Jellinek
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Haley L Carlson
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Kelly Pyles
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Barbara Ulmasov
- Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Andrew J Lutkewitte
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Danielle Carpenter
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Kyle S McCommis
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - David A Ford
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Brian N Finck
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Brent A Neuschwander-Tetri
- Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Anutosh Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.
| |
Collapse
|
11
|
Yang R, Zhang S, Duan C, Guo Y, Shan X, Zhang X, Yue S, Zhang Y, Liu Y. Effect of prolactin on cytotoxicity and oxidative stress in ovine ovarian granulosa cells. PeerJ 2023; 11:e15629. [PMID: 37456891 PMCID: PMC10340108 DOI: 10.7717/peerj.15629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
Background Prolactin (PRL) has been reported to be associated with oxidative stress, which is an important contributor leading to cell apoptosis. However, little is known about the mechanisms underlying the effects of PRL on cytotoxicity and oxidative stress in ovine ovarian granulosa cells (GCs). Methods Ovine ovarian GCs were treated with 0, 4, 20, 100 and 500 ng/mL of PRL. Then, the cytotoxicity, cell viability, malondialdehyde (MDA), reactive oxygen species (ROS), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) of GCs were detected. Additionally, 500 ng/mL PRL was chosen as the high PRL concentration (HPC) due to its high cytotoxicity and oxidative stress. Proteomic and metabonomic were performed to examine the overall difference in proteins and metabolic pathways between C (control: 0 ng/mL PRL) and P groups (500 ng/mL PRL). Results The results indicated that GCs treated with 4 ng/mL PRL significantly decreased (P < 0.05) the cytotoxicity, ROS and MDA, increased (P < 0.05) the cell viability, SOD and T-AOC, and the GCs treated with 500 ng/mL PRL showed the opposite trend (P < 0.05). Supplementation with 500 ng/mL PRL significantly increased the proteins of MT-ND1, MAPK12, UBA52 and BCL2L1, which were enriched in ROS and mitophagy pathways. Pathway enrichment analysis showed that the pentose phosphate pathway was significantly enriched in the P group. Conclusion A low concentration of PRL inhibited cytotoxicity and oxidative stress. HPC induced oxidative stress in ovine ovarian GCs via the pentose phosphate pathway by modulating the associated proteins MT-ND1 in ROS pathway and UBA52, MAPK12 and BCL2L1 in mitophagy pathway, resulting in cytotoxicity.
Collapse
Affiliation(s)
| | - Shuo Zhang
- China Agricultural University, Beijing, China
| | | | - Yunxia Guo
- Hebei Agricultural University, Baoding, China
| | - Xinyu Shan
- Hebei Agricultural University, Baoding, China
| | | | - Sicong Yue
- Hebei Agricultural University, Baoding, China
| | | | - Yueqin Liu
- Hebei Agricultural University, Baoding, China
| |
Collapse
|
12
|
Kogot-Levin A, Riahi Y, Abramovich I, Mosenzon O, Agranovich B, Kadosh L, Ben-Haroush Schyr R, Kleiman D, Hinden L, Cerasi E, Ben-Zvi D, Bernal-Mizrachi E, Tam J, Gottlieb E, Leibowitz G. Mapping the metabolic reprogramming induced by sodium-glucose cotransporter 2 inhibition. JCI Insight 2023; 8:e164296. [PMID: 36809274 PMCID: PMC10132155 DOI: 10.1172/jci.insight.164296] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Diabetes is associated with increased risk for kidney disease, heart failure, and mortality. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) prevent these adverse outcomes; however, the mechanisms involved are not clear. We generated a roadmap of the metabolic alterations that occur in different organs in diabetes and in response to SGLT2i. In vivo metabolic labeling with 13C-glucose in normoglycemic and diabetic mice treated with or without dapagliflozin, followed by metabolomics and metabolic flux analyses, showed that, in diabetes, glycolysis and glucose oxidation are impaired in the kidney, liver, and heart. Treatment with dapagliflozin failed to rescue glycolysis. SGLT2 inhibition increased glucose oxidation in all organs; in the kidney, this was associated with modulation of the redox state. Diabetes was associated with altered methionine cycle metabolism, evident by decreased betaine and methionine levels, whereas treatment with SGLT2i increased hepatic betaine along with decreased homocysteine levels. mTORC1 activity was inhibited by SGLT2i along with stimulation of AMPK in both normoglycemic and diabetic animals, possibly explaining the protective effects against kidney, liver, and heart diseases. Collectively, our findings suggest that SGLT2i induces metabolic reprogramming orchestrated by AMPK-mTORC1 signaling with common and distinct effects in various tissues, with implications for diabetes and aging.
Collapse
Affiliation(s)
- Aviram Kogot-Levin
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yael Riahi
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ifat Abramovich
- The laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology Haifa, Israel
| | - Ofri Mosenzon
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Bella Agranovich
- The laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology Haifa, Israel
| | - Liat Kadosh
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Rachel Ben-Haroush Schyr
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Faculty of Medicine, and
| | - Doron Kleiman
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Faculty of Medicine, and
| | - Liad Hinden
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Erol Cerasi
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Faculty of Medicine, and
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eyal Gottlieb
- The laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology Haifa, Israel
| | - Gil Leibowitz
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
13
|
Peng G, Yan J, Chen L, Li L. Glycometabolism reprogramming: Implications for cardiovascular diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 179:26-37. [PMID: 36963725 DOI: 10.1016/j.pbiomolbio.2023.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 03/26/2023]
Abstract
Glycometabolism is well known for its roles as the main source of energy, which mainly includes three metabolic pathways: oxidative phosphorylation, glycolysis and pentose phosphate pathway. The orderly progress of glycometabolism is the basis for the maintenance of cardiovascular function. However, upon exposure to harmful stimuli, the intracellular glycometabolism changes or tends to shift toward another glycometabolism pathway more suitable for its own development and adaptation. This shift away from the normal glycometabolism is also known as glycometabolism reprogramming, which is commonly related to the occurrence and aggravation of cardiovascular diseases. In this review, we elucidate the physiological role of glycometabolism in the cardiovascular system and summarize the mechanisms by which glycometabolism drives cardiovascular diseases, including diabetes, cardiac hypertrophy, heart failure, atherosclerosis, and pulmonary hypertension. Collectively, directing GMR back to normal glycometabolism might provide a therapeutic strategy for the prevention and treatment of related cardiovascular diseases.
Collapse
Affiliation(s)
- Guolong Peng
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Jialong Yan
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China.
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
14
|
Chhabra A, Jain N, Varshney R, Sharma M. H2S regulates redox signaling downstream of cardiac β-adrenergic receptors in a G6PD-dependent manner. Cell Signal 2023; 107:110664. [PMID: 37004833 DOI: 10.1016/j.cellsig.2023.110664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/04/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Stimulating β-adrenergic receptors (β-AR) culminates in pathological hypertrophy - a condition underlying multiple cardiovascular diseases (CVDs). The ensuing signal transduction network appears to involve mutually communicating phosphorylation-cascades and redox signaling modules, although the regulators of redox signaling processes remain largely unknown. We previously showed that H2S-induced Glucose-6-phosphate dehydrogenase (G6PD) activity is critical for suppressing cardiac hypertrophy in response to adrenergic stimulation. Here, we extended our findings and identified novel H2S-dependent pathways constraining β-AR-induced pathological hypertrophy. We demonstrated that H2S regulated early redox signal transduction processes - including suppression of cue-dependent production of reactive oxygen species (ROS) and oxidation of cysteine thiols (R-SOH) on critical signaling intermediates (including AKT1/2/3 & ERK1/2). Consistently, the maintenance of intracellular levels of H2S dampened the transcriptional signature associated with pathological hypertrophy upon β-AR-stimulation, as demonstrated by RNA-seq analysis. We further prove that H2S remodels cell metabolism by promoting G6PD activity to enforce changes in the redox state that favor physiological cardiomyocyte growth over pathological hypertrophy. Thus, our data suggest that G6PD is an effector of H2S-mediated suppression of pathological hypertrophy and that the accumulation of ROS in the G6PD-deficient background can drive maladaptive remodeling. Our study reveals an adaptive role for H2S relevant to basic and translational studies. Identifying adaptive signaling mediators of the β-AR-induced hypertrophy may reveal new therapeutic targets and routes for CVD therapy optimization.
Collapse
Affiliation(s)
- Aastha Chhabra
- Peptide & Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110054, India
| | - Neha Jain
- Peptide & Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110054, India
| | - Rajeev Varshney
- Peptide & Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110054, India
| | - Manish Sharma
- Peptide & Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110054, India.
| |
Collapse
|
15
|
Marshall KD, Klutho PJ, Song L, Roy R, Krenz M, Baines CP. Cardiac Myocyte-Specific Overexpression of FASTKD1 Prevents Ventricular Rupture After Myocardial Infarction. J Am Heart Assoc 2023; 12:e025867. [PMID: 36789858 PMCID: PMC10111501 DOI: 10.1161/jaha.122.025867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Background The mitochondrial mRNA-binding protein FASTKD1 (Fas-activated serine/threonine [FAST] kinase domain-containing protein 1) protects myocytes from oxidative stress in vitro. However, the role of FASTKD1 in the myocardium in vivo is unknown. Therefore, we developed cardiac-specific FASTKD1 transgenic mice to test the effects of this protein on experimental myocardial infarction (MI). Methods and Results Transgenic mouse lines with cardiac myocyte-specific overexpression of FASTKD1 to varying degrees were generated. These mice displayed normal cardiac morphological features and function at the gross and microscopic levels. Isolated cardiac mitochondria from all transgenic mouse lines showed normal mitochondrial function, ATP levels, and permeability transition pore activity. Male nontransgenic and transgenic mice from the highest-expressing line were subjected to 8 weeks of permanent coronary ligation. Of nontransgenic mice, 40% underwent left ventricular free wall rupture within 7 days of MI compared with 0% of FASTKD1-overexpressing mice. At 3 days after MI, FASTKD1 overexpression did not alter infarct size. However, increased FASTKD1 resulted in decreased neutrophil and increased macrophage infiltration, elevated levels of the extracellular matrix component periostin, and enhanced antioxidant capacity compared with control mice. In contrast, markers of mitochondrial fusion/fission and apoptosis remained unaltered. Instead, transcriptomic analyses indicated activation of the integrated stress response in the FASTKD1 transgenic hearts. Conclusions Cardiac-specific overexpression of FASTKD1 results in viable mice displaying normal cardiac morphological features and function. However, these mice are resistant to MI-induced cardiac rupture and display altered inflammatory, extracellular matrix, and antioxidant responses following MI. Moreover, these protective effects were associated with enhanced activation of the integrated stress response.
Collapse
Affiliation(s)
- Kurt D Marshall
- Department of Biomedical Sciences University of Missouri Columbia MO
| | - Paula J Klutho
- Dalton Cardiovascular Research Center University of Missouri Columbia MO
| | - Lihui Song
- Dalton Cardiovascular Research Center University of Missouri Columbia MO
| | - Rajika Roy
- Dalton Cardiovascular Research Center University of Missouri Columbia MO
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology University of Missouri Columbia MO.,Dalton Cardiovascular Research Center University of Missouri Columbia MO
| | - Christopher P Baines
- Department of Biomedical Sciences University of Missouri Columbia MO.,Department of Medical Pharmacology and Physiology University of Missouri Columbia MO.,Dalton Cardiovascular Research Center University of Missouri Columbia MO
| |
Collapse
|
16
|
Bengel P, Elkenani M, Beuthner BE, Pietzner M, Mohamed BA, Pollok-Kopp B, Krätzner R, Toischer K, Puls M, Fischer A, Binder L, Hasenfuß G, Schnelle M. Metabolomic Profiling in Patients with Different Hemodynamic Subtypes of Severe Aortic Valve Stenosis. Biomolecules 2023; 13:95. [PMID: 36671480 PMCID: PMC9855798 DOI: 10.3390/biom13010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
Severe aortic stenosis (AS) is a common pathological condition in an ageing population imposing significant morbidity and mortality. Based on distinct hemodynamic features, i.e., ejection fraction (EF), transvalvular gradient and stroke volume, four different AS subtypes can be distinguished: (i) normal EF and high gradient, (ii) reduced EF and high gradient, (iii) reduced EF and low gradient, and (iv) normal EF and low gradient. These subtypes differ with respect to pathophysiological mechanisms, cardiac remodeling, and prognosis. However, little is known about metabolic changes in these different hemodynamic conditions of AS. Thus, we carried out metabolomic analyses in serum samples of 40 AS patients (n = 10 per subtype) and 10 healthy blood donors (controls) using ultrahigh-performance liquid chromatography-tandem mass spectroscopy. A total of 1293 biochemicals could be identified. Principal component analysis revealed different metabolic profiles in all of the subgroups of AS (All-AS) vs. controls. Out of the determined biochemicals, 48% (n = 620) were altered in All-AS vs. controls (p < 0.05). In this regard, levels of various acylcarnitines (e.g., myristoylcarnitine, fold-change 1.85, p < 0.05), ketone bodies (e.g., 3-hydroxybutyrate, fold-change 11.14, p < 0.05) as well as sugar metabolites (e.g., glucose, fold-change 1.22, p < 0.05) were predominantly increased, whereas amino acids (e.g., leucine, fold-change 0.8, p < 0.05) were mainly reduced in All-AS. Interestingly, these changes appeared to be consistent amongst all AS subtypes. Distinct differences between AS subtypes were found for metabolites belonging to hemoglobin metabolism, diacylglycerols, and dihydrosphingomyelins. These findings indicate that relevant changes in substrate utilization appear to be consistent for different hemodynamic subtypes of AS and may therefore reflect common mechanisms during AS-induced heart failure. Additionally, distinct metabolites could be identified to significantly differ between certain AS subtypes. Future studies need to define their pathophysiological implications.
Collapse
Affiliation(s)
- Philipp Bengel
- Clinic for Cardiology & Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Manar Elkenani
- Clinic for Cardiology & Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Bo E. Beuthner
- Clinic for Cardiology & Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, Cambridge CB2 0QQ, UK
- Computational Medicine, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Belal A. Mohamed
- Clinic for Cardiology & Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Beatrix Pollok-Kopp
- Department of Transfusion Medicine, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Ralph Krätzner
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Karl Toischer
- Clinic for Cardiology & Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Miriam Puls
- Clinic for Cardiology & Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Andreas Fischer
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
- Division Vascular Signaling and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Lutz Binder
- Department of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Gerd Hasenfuß
- Clinic for Cardiology & Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Moritz Schnelle
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
17
|
Kuhn AR, van Bilsen M. Oncometabolism: A Paradigm for the Metabolic Remodeling of the Failing Heart. Int J Mol Sci 2022; 23:ijms232213902. [PMID: 36430377 PMCID: PMC9699042 DOI: 10.3390/ijms232213902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Heart failure is associated with profound alterations in cardiac intermediary metabolism. One of the prevailing hypotheses is that metabolic remodeling leads to a mismatch between cardiac energy (ATP) production and demand, thereby impairing cardiac function. However, even after decades of research, the relevance of metabolic remodeling in the pathogenesis of heart failure has remained elusive. Here we propose that cardiac metabolic remodeling should be looked upon from more perspectives than the mere production of ATP needed for cardiac contraction and relaxation. Recently, advances in cancer research have revealed that the metabolic rewiring of cancer cells, often coined as oncometabolism, directly impacts cellular phenotype and function. Accordingly, it is well feasible that the rewiring of cardiac cellular metabolism during the development of heart failure serves similar functions. In this review, we reflect on the influence of principal metabolic pathways on cellular phenotype as originally described in cancer cells and discuss their potential relevance for cardiac pathogenesis. We discuss current knowledge of metabolism-driven phenotypical alterations in the different cell types of the heart and evaluate their impact on cardiac pathogenesis and therapy.
Collapse
|
18
|
The intersection of metabolism and inflammation is governed by the intracellular topology of hexokinases and the metabolic fate of glucose. IMMUNOMETABOLISM (COBHAM (SURREY, ENGLAND)) 2022; 4:e00011. [PMID: 36337735 PMCID: PMC9616595 DOI: 10.1097/in9.0000000000000011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/23/2022] [Indexed: 12/03/2022]
Abstract
Hexokinases (HKs) catalyze the first and irreversible step of glucose metabolism. Its product, glucose-6-phosphate (G-6P) serves as a precursor for catabolic processes like glycolysis for adenosine 5'-triphosphate (ATP) production and anabolic pathways including the pentose phosphate pathway (PPP) for the generation of intermediaries like nicotinamide adenine dinucleotide phosphate (NADPH) and ribulose-5-P. Thus, the cellular fate of glucose is important not only for growth and maintenance, but also to determine different cellular activities. Studies in immune cells have demonstrated an intimate linkage between metabolic pathways and inflammation, however the precise molecular mechanisms that determine the cellular fate of glucose during inflammation or aging are not completely understood. Here we discuss a study by De Jesus et al that describes the role of HK1 cytosolic localization as a critical regulator of glucose flux by shunting glucose into the PPP at the expense of glycolysis, exacerbating the inflammatory response of macrophages. The authors convincingly demonstrate a novel mechanism that is independent of its mitochondrial functions, but involve the association to a protein complex that inhibits glycolysis at the level of glyceraldehyde 3-phosphate dehydrogenase. We expand the discussion by comparing previous studies related to the HK2 isoform and how cells have evolved to regulate the mitochondrial association of these two isoforms by non-redundant mechanism.
Collapse
|
19
|
Karlstaedt A, Taegtmeyer H. Cardio-Onco-Metabolism - Metabolic vulnerabilities in cancer and the heart. J Mol Cell Cardiol 2022; 171:71-80. [PMID: 35777454 PMCID: PMC10193535 DOI: 10.1016/j.yjmcc.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 02/05/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
Cancer and cardiovascular diseases (CVDs) are the leading cause of death worldwide. Metabolic remodeling is a hallmark of both cancer and the failing heart. Tumors reprogram metabolism to optimize nutrient utilization and meet increased demands for energy provision, biosynthetic pathways, and proliferation. Shared risk factors for cancer and CVDs suggest intersecting mechanisms for disease pathogenesis and progression. In this review, we aim to highlight the role of metabolic remodeling in cancer and its potential to impair cardiac function. Understanding these mechanisms will help us develop biomarkers, better therapies, and identify patients at risk of developing heart disease after surviving cancer.
Collapse
Affiliation(s)
- Anja Karlstaedt
- Smidt Heart Institute, Department of Cardiology, Cedars Sinai Medical Center, Los Angeles, California, USA.
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
20
|
Zeng H, Pan T, Zhan M, Hailiwu R, Liu B, Yang H, Li P. Suppression of PFKFB3-driven glycolysis restrains endothelial-to-mesenchymal transition and fibrotic response. Signal Transduct Target Ther 2022; 7:303. [PMID: 36045132 PMCID: PMC9433407 DOI: 10.1038/s41392-022-01097-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/03/2022] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
Endothelial-to-mesenchymal transition (EndoMT), the process wherein endothelial cells lose endothelial identity and adopt mesenchymal-like phenotypes, constitutes a critical contributor to cardiac fibrosis. The phenotypic plasticity of endothelial cells can be intricately shaped by alteration of metabolic pathways, but how endothelial cells adjust cellular metabolism to drive EndoMT is incompletely understood. Here, we identified 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) as a critical driver of EndoMT via triggering abnormal glycolysis and compromising mitochondrial respiration. Pharmacological suppression of PFKFB3 with salvianolic acid C (SAC), a phenolic compound derived from Salvia miltiorrhiza, attenuates EndoMT and fibrotic response. PFKFB3-haplodeficiency recapitulates the anti-EndoMT effect of SAC while PFKFB3-overexpression augments the magnitude of EndoMT and exacerbates cardiac fibrosis. Mechanistically, PFKFB3-driven glycolysis compromises cytoplasmic nicotinamide adenine dinucleotide phosphate (reduced form, NADPH) production via hijacking glucose flux from pentose phosphate pathway. Efflux of mitochondrial NADPH through isocitrate/α-ketoglutarate shuttle replenishes cytoplasmic NADPH pool but meanwhile impairs mitochondrial respiration by hampering mitochondrial iron-sulfur cluster biosynthesis. SAC disrupts PFKFB3 stability by accelerating its degradation and thus maintains metabolic homeostasis in endothelial cells, underlying its anti-EndoMT effects. These findings for the first time identify the critical role of PFKFB3 in triggering EndoMT by driving abnormal glycolysis in endothelial cells, and also highlight the therapeutic potential for pharmacological intervention of PFKFB3 (with SAC or other PFKFB3 inhibitors) to combat EndoMT-associated fibrotic responses via metabolic regulation.
Collapse
Affiliation(s)
- Hao Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ting Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Meiling Zhan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Renaguli Hailiwu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Baolin Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
21
|
de Oliveira Silva T, Lino CA, Miranda JB, Balbino-Silva CS, Lunardon G, Lima VM, Jensen L, Donato J, Irigoyen MC, Barreto-Chaves MLM, Diniz GP. miRNA-143-3p-Sox6-Myh7 pathway is altered in obesogenic diet-induced cardiac hypertrophy. Exp Physiol 2022; 107:892-905. [PMID: 35765992 DOI: 10.1113/ep090315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? To investigate the effect of an obesogenic diet on the expression of microRNAs (miRNAs) involved in cardiac hypertrophy in female mice. What is the main finding and its importance? Female mice fed an obesogenic diet exhibited cardiac hypertrophy associated with increased levels of miRNA-143-3p, decreased levels of Sox6 and increased expression of Myh7. Inhibition of miRNA-143-3p increased Sox6 mRNA levels and reduced Myh7 expression in cardiomyocytes, and prevented angiotensin II-induced cardiomyocyte hypertrophy. Our results indicate that the miRNA-143-3p-Sox6-Myh7 pathway may play a key role in obesity-induced cardiac hypertrophy. ABSTRACT Obesity induces cardiometabolic disorders associated with a high risk of mortality. We have previously shown that the microRNA (miRNA) expression profile is changed in obesity-induced cardiac hypertrophy in male mice. Here, we investigated the effect of an obesogenic diet on the expression of microRNAs (miRNAs) involved in cardiac hypertrophy in female mice. Female mice fed an obesogenic diet displayed an increased body weight gain, glucose intolerance, insulin resistance, and dyslipidemia. In addition, obese female mice exhibited cardiac hypertrophy associated with increased levels of several miRNAs, including miR-143-3p. Bioinformatic analysis identified Sox6, a regulator of Myh7 transcription, as a predicted target of the miR-143-3p. Female mice fed an obesogenic diet exhibited decreased levels of Sox6 and increased expression of Myh7 in the heart. Loss-of-function studies in cardiomyocytes revealed that inhibition of miR-143-3p increased Sox6 mRNA levels and reduced Myh7 expression. Collectively, our results indicate that obesity-associated cardiac hypertrophy in female mice is accompanied by alterations in diverse miRNAs, and suggest that the miR-143-3p-Sox6-Myh7 pathway may play a key role in obesity-induced cardiac hypertrophy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Caroline A Lino
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Juliane B Miranda
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Camila S Balbino-Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Guilherme Lunardon
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Vanessa M Lima
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Leonardo Jensen
- Hypertension Unit, Heart Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Gabriela P Diniz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
22
|
Sparks K, Couturier CS, Buskirk J, Flores A, Hoeferle A, Hoffman J, Stecyk JAW. Gene expression of hypoxia-inducible factor (HIF), HIF regulators, and putative HIF targets in ventricle and telencephalon of Trachemys scripta acclimated to 21 °C or 5 °C and exposed to normoxia, anoxia or reoxygenation. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111167. [PMID: 35182763 PMCID: PMC8977064 DOI: 10.1016/j.cbpa.2022.111167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
Abstract
In anoxia-sensitive mammals, hypoxia inducible factor (HIF) promotes cellular survival in hypoxia, but also tumorigenesis. By comparison, anoxia-tolerant vertebrates likely need to circumvent a prolonged upregulation of HIF to survive long-term anoxia, making them attractive biomedical models for investigating HIF regulation. To lend insight into the role of HIF in anoxic Trachemys scripta ventricle and telencephalon, 21 °C- and 5 °C-acclimated turtles were exposed to normoxia, anoxia (24 h at 21 °C; 24 h or 14 d at 5 °C) or anoxia + reoxygenation and the gene expression of HIF-1α (hif1a) and HIF-2α (hif2a), two regulators of HIF, and eleven putative downstream targets of HIF quantified by qPCR. Changes in gene expression with anoxia at 21 °C differentially aligned with a circumvention of HIF activity. Whereas hif1a and hif2a expression was unaffected in ventricle and telencephalon, and BCL2 interacting protein 3 gene expression reduced by 30% in telencephalon, gene expression of vascular endothelial growth factor-A increased in ventricle (4.5-fold) and telencephalon (1.5-fold), and hexokinase 1 (2-fold) and hexokinase 2 (3-fold) gene expression increased in ventricle. At 5 °C, the pattern of gene expression in ventricle or telencephalon was unaltered with oxygenation state. However, cold acclimation in normoxia induced downregulation of HIF-1α, HIF-2α, and HIF target gene expression in telencephalon. Overall, the findings lend support to the postulation that prolonged activation of HIF is counterproductive for long-term anoxia survival. Nevertheless, quantification of the effect of anoxia and acclimation temperature on HIF binding activity and regulation at the protein level are needed to provide a strong scientific framework whereby new strategies for oxygen related pathologies can be developed.
Collapse
Affiliation(s)
- Kenneth Sparks
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States
| | - Christine S Couturier
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States
| | - Jacob Buskirk
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States
| | - Alicia Flores
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States
| | - Aurora Hoeferle
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States
| | - Jessica Hoffman
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States
| | - Jonathan A W Stecyk
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States.
| |
Collapse
|
23
|
Torimoto K, Okuno K, Kuroda R, Shanas N, Cicalese SM, Eguchi K, Elliott KJ, Kawai T, Corbett CB, Peluzzo AM, St. Paul AK, Autieri MV, Scalia R, Rizzo V, Hashimoto T, Eguchi S. Glucose consumption of vascular cell types in culture: toward optimization of experimental conditions. Am J Physiol Cell Physiol 2022; 322:C73-C85. [PMID: 34817269 PMCID: PMC8791793 DOI: 10.1152/ajpcell.00257.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this study, we have looked for an optimum media glucose concentration and compared glucose consumption in three vascular cell types, endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and adventitial fibroblasts (AFs) with or without angiotensin II (AngII) stimulation. In a subconfluent 6-well experiment in 1 mL DMEM with a standard low (100 mg/dL), a standard high (450 mg/dL), or a mixed middle (275 mg/dL) glucose concentration, steady and significant glucose consumption was observed in all cell types. After 48-h incubation, media that contained low glucose was reduced to almost 0 mg/dL, media that contained high glucose remained significantly higher at ∼275 mg/dL, and media that contained middle glucose remained closer to physiological range. AngII treatment enhanced glucose consumption in AFs and VSMCs but not in ECs. Enhanced extracellular acidification rate by AngII was also observed in AFs. In AFs, AngII induction of target proteins at 48 h varied depending on the glucose concentration used. In low glucose media, induction of glucose regulatory protein 78 or hexokinase II was highest, whereas induction of VCAM-1 was lowest. Utilization of specific inhibitors further suggests essential roles of angiotensin II type-1 receptor and glycolysis in AngII-induced fibroblast activation. Overall, this study demonstrates a high risk of hypo- or hyperglycemic conditions when standard low or high glucose media is used with vascular cells. Moreover, these conditions may significantly alter experimental outcomes. Media glucose concentration should be monitored during any culture experiments and utilization of middle glucose media is recommended for all vascular cell types.
Collapse
Affiliation(s)
- Keiichi Torimoto
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Keisuke Okuno
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ryohei Kuroda
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - No’Ad Shanas
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Stephanie M. Cicalese
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Kunie Eguchi
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Katherine J. Elliott
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Tatsuo Kawai
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Cali B. Corbett
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Amanda M. Peluzzo
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Amanda K. St. Paul
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Michael V. Autieri
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Rosario Scalia
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Victor Rizzo
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Tomoki Hashimoto
- 2Barrow Aneurysm and AVM Research Center, Departments of Neurosurgery and Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| | - Satoru Eguchi
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Li L, Xu W, Zhang L. KLF15 Regulates Oxidative Stress Response in Cardiomyocytes through NAD . Metabolites 2021; 11:metabo11090620. [PMID: 34564436 PMCID: PMC8468172 DOI: 10.3390/metabo11090620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
KLF15 has recently emerged as a central regulator of metabolism. Although its connection to oxidative stress has been suspected, there has not been any study to date that directly demonstrates the molecular link. In this study, we sought to determine the role of KLF15 in cardiac oxidative stress. We found that KLF15 deficiency in the heart is associated with increased oxidative stress. Acute deficiency of KLF15 in neonatal rat ventricular myocytes (NRVMs) leads to the defective clearance of reactive oxygen species (ROS) and an exaggerated cell death following a variety of oxidative stresses. Mechanistically, we found that KLF15 deficiency leads to reduced amounts of the rate-limiting NAD+ salvage enzyme NAMPT and to NAD+ deficiency. The resultant SIRT3-dependent hyperacetylation and the inactivation of mitochondrial antioxidants can be rescued by MnSOD mimetics or NAD+ precursors. Collectively, these findings suggest that KLF15 regulates cardiac ROS clearance through the regulation of NAD+ levels. Our findings establish KLF15 as a central coordinator of cardiac metabolism and ROS clearance.
Collapse
|
25
|
Karlstaedt A, Barrett M, Hu R, Gammons ST, Ky B. Cardio-Oncology: Understanding the Intersections Between Cardiac Metabolism and Cancer Biology. JACC Basic Transl Sci 2021; 6:705-718. [PMID: 34466757 PMCID: PMC8385559 DOI: 10.1016/j.jacbts.2021.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/24/2022]
Abstract
An important priority in the cardiovascular care of oncology patients is to reduce morbidity and mortality, and improve the quality of life in cancer survivors through cross-disciplinary efforts. The rate of survival in cancer patients has improved dramatically over the past decades. Nonetheless, survivors may be more likely to die from cardiovascular disease in the long term, secondary, not only to the potential toxicity of cancer therapeutics, but also to the biology of cancer. In this context, efforts from basic and translational studies are crucial to understanding the molecular mechanisms causal to cardiovascular disease in cancer patients and survivors, and identifying new therapeutic targets that may prevent and treat both diseases. This review aims to highlight our current understanding of the metabolic interaction between cancer and the heart, including potential therapeutic targets. An overview of imaging techniques that can support both research studies and clinical management is also provided. Finally, this review highlights opportunities and challenges that are necessary to advance our understanding of metabolism in the context of cardio-oncology.
Collapse
Key Words
- 99mTc-MIBI, 99mtechnetium-sestamibi
- CVD, cardiovascular disease
- D2-HG, D-2-hydroxyglutarate
- FAO, fatty acid oxidation
- FASN, fatty acid synthase
- GLS, glutaminase
- HF, heart failure
- IDH, isocitrate dehydrogenase
- IGF, insulin-like growth factor
- MCT1, monocarboxylate transporter 1
- MRS, magnetic resonance spectroscopy
- PDH, pyruvate dehydrogenase
- PET, positron emission tomography
- PI3K, insulin-activated phosphoinositide-3-kinase
- PTM, post-translational modification
- SGLT2, sodium glucose co-transporter 2
- TRF, time-restricted feeding
- [18F]FDG, 2-deoxy-2-[fluorine-18]fluoro-D-glucose
- cancer
- cardio-oncology
- heart failure
- metabolism
- oncometabolism
- α-KG, α-ketoglutarate
Collapse
Affiliation(s)
- Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Matthew Barrett
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ray Hu
- Departments of Medicine and Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Seth Thomas Gammons
- Department of Cancer Systems Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Bonnie Ky
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Departments of Medicine and Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Bae J, Paltzer WG, Mahmoud AI. The Role of Metabolism in Heart Failure and Regeneration. Front Cardiovasc Med 2021; 8:702920. [PMID: 34336958 PMCID: PMC8322239 DOI: 10.3389/fcvm.2021.702920] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
Heart failure is the leading cause of death worldwide. The inability of the adult mammalian heart to regenerate following injury results in the development of systolic heart failure. Thus, identifying novel approaches toward regenerating the adult heart has enormous therapeutic potential for adult heart failure. Mitochondrial metabolism is an essential homeostatic process for maintaining growth and survival. The emerging role of mitochondrial metabolism in controlling cell fate and function is beginning to be appreciated. Recent evidence suggests that metabolism controls biological processes including cell proliferation and differentiation, which has profound implications during development and regeneration. The regenerative potential of the mammalian heart is lost by the first week of postnatal development when cardiomyocytes exit the cell cycle and become terminally differentiated. This inability to regenerate following injury is correlated with the metabolic shift from glycolysis to fatty acid oxidation that occurs during heart maturation in the postnatal heart. Thus, understanding the mechanisms that regulate cardiac metabolism is key to unlocking metabolic interventions during development, disease, and regeneration. In this review, we will focus on the emerging role of metabolism in cardiac development and regeneration and discuss the potential of targeting metabolism for treatment of heart failure.
Collapse
Affiliation(s)
- Jiyoung Bae
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Wyatt G Paltzer
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Ahmed I Mahmoud
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
27
|
Katz DH, Tahir UA, Ngo D, Benson MD, Gao Y, Shi X, Nayor M, Keyes MJ, Larson MG, Hall ME, Correa A, Sinha S, Shen D, Herzig M, Yang Q, Robbins JM, Chen ZZ, Cruz DE, Peterson B, Vasan RS, Wang TJ, Wilson JG, Gerszten RE. Multiomic Profiling in Black and White Populations Reveals Novel Candidate Pathways in Left Ventricular Hypertrophy and Incident Heart Failure Specific to Black Adults. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2021; 14:e003191. [PMID: 34019435 PMCID: PMC8497179 DOI: 10.1161/circgen.120.003191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/05/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Increased left ventricular (LV) mass is associated with adverse cardiovascular events including heart failure (HF). Both increased LV mass and HF disproportionately affect Black individuals. To understand the underlying mechanisms, we undertook a proteomic screen in a Black cohort and compared the findings to results from a White cohort. METHODS We measured 1305 plasma proteins using the SomaScan platform in 1772 Black participants (mean age, 56 years; 62% women) in JHS (Jackson Heart Study) with LV mass assessed by 2-dimensional echocardiography. Incident HF was assessed in 1600 participants. We then compared protein associations in JHS to those observed in White participants from FHS (Framingham Heart Study; mean age, 54 years; 56% women). RESULTS In JHS, there were 110 proteins associated with LV mass and 13 proteins associated with incident HF hospitalization with false discovery rate <5% after multivariable adjustment. Several proteins showed expected associations with both LV mass and HF, including NT-proBNP (N-terminal pro-B-type natriuretic peptide; β=0.04; P=2×10-8; hazard ratio, 1.48; P=0.0001). The strongest association with LV mass was novel: LKHA4 (leukotriene-A4 hydrolase; β=0.05; P=5×10-15). This association was confirmed on an alternate proteomics platform and further supported by related metabolomic data. Fractalkine/CX3CL1 (C-X3-C Motif Chemokine Ligand 1) showed a novel association with incident HF (hazard ratio, 1.32; P=0.0002). While established biomarkers such as cystatin C and NT-proBNP showed consistent associations in Black and White individuals, LKHA4 and fractalkine were significantly different between the two groups. CONCLUSIONS We identified several novel biological pathways specific to Black adults hypothesized to contribute to the pathophysiologic cascade of LV hypertrophy and incident HF including LKHA4 and fractalkine.
Collapse
Affiliation(s)
- Daniel H. Katz
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Usman A. Tahir
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Debby Ngo
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Mark D. Benson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Yan Gao
- Univ of Mississippi Medical Center, Jackson, MS
| | - Xu Shi
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Matthew Nayor
- Cardiology Division, Department of Medicine, Massachusetts General Hospital
| | - Michelle J. Keyes
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Framingham Heart Study, Framingham
| | | | | | | | - Sumita Sinha
- Whitehead Institute for Biomedical Research, Cambridge
| | - Dongxiao Shen
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Matthew Herzig
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Jeremy M. Robbins
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Zsu-Zsu Chen
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Daniel E. Cruz
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Bennet Peterson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | | | - Thomas J. Wang
- Department of Medicine, UT Southwestern Medical Center, Dallas, TX
| | - James G. Wilson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| |
Collapse
|
28
|
Ciscato F, Ferrone L, Masgras I, Laquatra C, Rasola A. Hexokinase 2 in Cancer: A Prima Donna Playing Multiple Characters. Int J Mol Sci 2021; 22:ijms22094716. [PMID: 33946854 PMCID: PMC8125560 DOI: 10.3390/ijms22094716] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Hexokinases are a family of ubiquitous exose-phosphorylating enzymes that prime glucose for intracellular utilization. Hexokinase 2 (HK2) is the most active isozyme of the family, mainly expressed in insulin-sensitive tissues. HK2 induction in most neoplastic cells contributes to their metabolic rewiring towards aerobic glycolysis, and its genetic ablation inhibits malignant growth in mouse models. HK2 can dock to mitochondria, where it performs additional functions in autophagy regulation and cell death inhibition that are independent of its enzymatic activity. The recent definition of HK2 localization to contact points between mitochondria and endoplasmic reticulum called Mitochondria Associated Membranes (MAMs) has unveiled a novel HK2 role in regulating intracellular Ca2+ fluxes. Here, we propose that HK2 localization in MAMs of tumor cells is key in sustaining neoplastic progression, as it acts as an intersection node between metabolic and survival pathways. Disrupting these functions by targeting HK2 subcellular localization can constitute a promising anti-tumor strategy.
Collapse
Affiliation(s)
- Francesco Ciscato
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
- Correspondence: (F.C.); (A.R.)
| | - Lavinia Ferrone
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
| | - Ionica Masgras
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
- Institute of Neuroscience, National Research Council, 56124 Pias, Italy
| | - Claudio Laquatra
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
| | - Andrea Rasola
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
- Correspondence: (F.C.); (A.R.)
| |
Collapse
|
29
|
Pasqua T, Rocca C, Giglio A, Angelone T. Cardiometabolism as an Interlocking Puzzle between the Healthy and Diseased Heart: New Frontiers in Therapeutic Applications. J Clin Med 2021; 10:721. [PMID: 33673114 PMCID: PMC7918460 DOI: 10.3390/jcm10040721] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiac metabolism represents a crucial and essential connecting bridge between the healthy and diseased heart. The cardiac muscle, which may be considered an omnivore organ with regard to the energy substrate utilization, under physiological conditions mainly draws energy by fatty acids oxidation. Within cardiomyocytes and their mitochondria, through well-concerted enzymatic reactions, substrates converge on the production of ATP, the basic chemical energy that cardiac muscle converts into mechanical energy, i.e., contraction. When a perturbation of homeostasis occurs, such as an ischemic event, the heart is forced to switch its fatty acid-based metabolism to the carbohydrate utilization as a protective mechanism that allows the maintenance of its key role within the whole organism. Consequently, the flexibility of the cardiac metabolic networks deeply influences the ability of the heart to respond, by adapting to pathophysiological changes. The aim of the present review is to summarize the main metabolic changes detectable in the heart under acute and chronic cardiac pathologies, analyzing possible therapeutic targets to be used. On this basis, cardiometabolism can be described as a crucial mechanism in keeping the physiological structure and function of the heart; furthermore, it can be considered a promising goal for future pharmacological agents able to appropriately modulate the rate-limiting steps of heart metabolic pathways.
Collapse
Affiliation(s)
- Teresa Pasqua
- Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy
| | - Anita Giglio
- Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy;
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy
- National Institute of Cardiovascular Research (I.N.R.C.), 40126 Bologna, Italy
| |
Collapse
|
30
|
Branovets J, Karro N, Barsunova K, Laasmaa M, Lygate CA, Vendelin M, Birkedal R. Cardiac expression and location of hexokinase changes in a mouse model of pure creatine deficiency. Am J Physiol Heart Circ Physiol 2021; 320:H613-H629. [PMID: 33337958 DOI: 10.1152/ajpheart.00188.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/10/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Creatine kinase (CK) is considered the main phosphotransfer system in the heart, important for overcoming diffusion restrictions and regulating mitochondrial respiration. It is substrate limited in creatine-deficient mice lacking l-arginine:glycine amidinotransferase (AGAT) or guanidinoacetate N-methyltranferase (GAMT). Our aim was to determine the expression, activity, and mitochondrial coupling of hexokinase (HK) and adenylate kinase (AK), as these represent alternative energy transfer systems. In permeabilized cardiomyocytes, we assessed how much endogenous ADP generated by HK, AK, or CK stimulated mitochondrial respiration and how much was channeled to mitochondria. In whole heart homogenates, and cytosolic and mitochondrial fractions, we measured the activities of AK, CK, and HK. Lastly, we assessed the expression of the major HK, AK, and CK isoforms. Overall, respiration stimulated by HK, AK, and CK was ∼25, 90, and 80%, respectively, of the maximal respiration rate, and ∼20, 0, and 25%, respectively, was channeled to the mitochondria. The activity, distribution, and expression of HK, AK, and CK did not change in GAMT knockout (KO) mice. In AGAT KO mice, we found no changes in AK, but we found a higher HK activity in the mitochondrial fraction, greater expression of HK I, but a lower stimulation of respiration by HK. Our findings suggest that mouse hearts depend less on phosphotransfer systems to facilitate ADP flux across the mitochondrial membrane. In AGAT KO mice, which are a model of pure creatine deficiency, the changes in HK may reflect changes in metabolism as well as influence mitochondrial regulation and reactive oxygen species production.NEW & NOTEWORTHY In creatine-deficient AGAT-/- and GAMT-/- mice, the myocardial creatine kinase system is substrate limited. It is unknown whether subcellular localization and mitochondrial ADP channeling by hexokinase and adenylate kinase may compensate as alternative phosphotransfer systems. Our results show no changes in adenylate kinase, which is the main alternative to creatine kinase in heart. However, we found increased expression and activity of hexokinase I in AGAT-/- cardiomyocytes. This could affect mitochondrial regulation and reactive oxygen species production.
Collapse
Affiliation(s)
- Jelena Branovets
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Niina Karro
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Karina Barsunova
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Martin Laasmaa
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marko Vendelin
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Rikke Birkedal
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
31
|
Hexokinase II dissociation alone cannot account for changes in heart mitochondrial function, morphology and sensitivity to permeability transition pore opening following ischemia. PLoS One 2020; 15:e0234653. [PMID: 32579577 PMCID: PMC7313731 DOI: 10.1371/journal.pone.0234653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/31/2020] [Indexed: 12/22/2022] Open
Abstract
We previously demonstrated that hexokinase II (HK2) dissociation from mitochondria during cardiac ischemia correlates with cytochrome c (cyt-c) loss, oxidative stress and subsequent reperfusion injury. However, whether HK2 release is the primary signal mediating this ischemia-induced mitochondrial dysfunction was not established. To investigate this, we studied the effects of dissociating HK2 from isolated heart mitochondria. Mitochondria isolated from Langendorff-perfused rat hearts before and after 30 min global ischemia ± ischemic preconditioning (IPC) were subject to in vitro dissociation of HK2 by incubation with glucose-6-phosphate at pH 6.3. Prior HK2 dissociation from pre- or end-ischemic heart mitochondria had no effect on their cyt-c release, respiration (± ADP) or mitochondrial permeability transition pore (mPTP) opening. Inner mitochondrial membrane morphology was assessed indirectly by monitoring changes in light scattering (LS) and confirmed by transmission electron microscopy. Although no major ultrastructure differences were detected between pre- and end-ischemia mitochondria, the amplitude of changes in LS was reduced in the latter. This was prevented by IPC but not mimicked in vitro by HK2 dissociation. We also observed more Drp1, a mitochondrial fission protein, in end-ischemia mitochondria. IPC failed to prevent this increase but did decrease mitochondrial-associated dynamin 2. In vitro HK2 dissociation alone cannot replicate ischemia-induced effects on mitochondrial function implying that in vivo dissociation of HK2 modulates end-ischemia mitochondrial function indirectly perhaps involving interaction with mitochondrial fission proteins. The resulting changes in mitochondrial morphology and cristae structure would destabilize outer / inner membrane interactions, increase cyt-c release and enhance mPTP sensitivity to [Ca2+].
Collapse
|
32
|
Myocardium Metabolism in Physiological and Pathophysiological States: Implications of Epicardial Adipose Tissue and Potential Therapeutic Targets. Int J Mol Sci 2020; 21:ijms21072641. [PMID: 32290181 PMCID: PMC7177518 DOI: 10.3390/ijms21072641] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023] Open
Abstract
The main energy substrate of adult cardiomyocytes for their contractility are the fatty acids. Its metabolism generates high ATP levels at the expense of high oxygen consumption in the mitochondria. Under low oxygen supply, they can get energy from other substrates, mainly glucose, lactate, ketone bodies, etc., but the mitochondrial dysfunction, in pathological conditions, reduces the oxidative metabolism. In consequence, fatty acids are stored into epicardial fat and its accumulation provokes inflammation, insulin resistance, and oxidative stress, which enhance the myocardium dysfunction. Some therapies focused on improvement the fatty acids entry into mitochondria have failed to demonstrate benefits on cardiovascular disorders. Oppositely, those therapies with effects on epicardial fat volume and inflammation might improve the oxidative metabolism of myocardium and might reduce the cardiovascular disease progression. This review aims at explain (a) the energy substrate adaptation of myocardium in physiological conditions, (b) the reduction of oxidative metabolism in pathological conditions and consequences on epicardial fat accumulation and insulin resistance, and (c) the reduction of cardiovascular outcomes after regulation by some therapies.
Collapse
|
33
|
Liu Y, Afzal J, Vakrou S, Greenland GV, Talbot CC, Hebl VB, Guan Y, Karmali R, Tardiff JC, Leinwand LA, Olgin JE, Das S, Fukunaga R, Abraham MR. Differences in microRNA-29 and Pro-fibrotic Gene Expression in Mouse and Human Hypertrophic Cardiomyopathy. Front Cardiovasc Med 2019; 6:170. [PMID: 31921893 PMCID: PMC6928121 DOI: 10.3389/fcvm.2019.00170] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Hypertrophic cardiomyopathy (HCM) is characterized by myocyte hypertrophy and fibrosis. Studies in two mouse models (R92W-TnT/R403Q-MyHC) at early HCM stage revealed upregulation of endothelin (ET1) signaling in both mutants, but TGFβ signaling only in TnT mutants. Dysregulation of miR-29 expression has been implicated in cardiac fibrosis. But it is unknown whether expression of miR-29a/b/c and profibrotic genes is commonly regulated in mouse and human HCM. Methods: In order to understand mechanisms underlying fibrosis in HCM, and examine similarities/differences in expression of miR-29a/b/c and several profibrotic genes in mouse and human HCM, we performed parallel studies in rat cardiac myocyte/fibroblast cultures, examined gene expression in two mouse models of (non-obstructive) HCM (R92W-TnT, R403Q-MyHC)/controls at early (5 weeks) and established (24 weeks) disease stage, and analyzed publicly available mRNA/miRNA expression data from obstructive-HCM patients undergoing septal myectomy/controls (unused donor hearts). Results: Myocyte cultures: ET1 increased superoxide/H2O2, stimulated TGFβ expression/secretion, and suppressed miR-29a expression in myocytes. The effect of ET1 on miR-29 and TGFβ expression/secretion was antagonized by N-acetyl-cysteine, a reactive oxygen species scavenger. Fibroblast cultures: ET1 had no effect on pro-fibrotic gene expression in fibroblasts. TGFβ1/TGFβ2 suppressed miR-29a and increased collagen expression, which was abolished by miR-29a overexpression. Mouse and human HCM: Expression of miR-29a/b/c was lower, and TGFB1/collagen gene expression was higher in TnT mutant-LV at 5 and 24 weeks; no difference was observed in expression of these genes in MyHC mutant-LV and in human myectomy tissue. TGFB2 expression was higher in LV of both mutant mice and human myectomy tissue. ACE2, a negative regulator of the renin-angiotensin-aldosterone system, was the most upregulated transcript in human myectomy tissue. Pathway analysis predicted upregulation of the anti-hypertrophic/anti-fibrotic liver X receptor/retinoid X receptor (LXR/RXR) pathway only in human myectomy tissue. Conclusions: Our in vitro studies suggest that activation of ET1 signaling in cardiac myocytes increases reactive oxygen species and stimulates TGFβ secretion, which downregulates miR-29a and increases collagen in fibroblasts, thus contributing to fibrosis. Our gene expression studies in mouse and human HCM reveal allele-specific differences in miR-29 family/profibrotic gene expression in mouse HCM, and activation of anti-hypertrophic/anti-fibrotic genes and pathways in human HCM.
Collapse
Affiliation(s)
- Yamin Liu
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California, San Francisco, San Francisco, CA, United States.,Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, MD, United States
| | - Junaid Afzal
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California, San Francisco, San Francisco, CA, United States.,Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, MD, United States
| | - Styliani Vakrou
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, MD, United States
| | - Gabriela V Greenland
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California, San Francisco, San Francisco, CA, United States.,Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, MD, United States
| | - C Conover Talbot
- Johns Hopkins School of Medicine, Institute for Basic Biomedical Sciences, Baltimore, MD, United States
| | - Virginia B Hebl
- Intermountain Medical Center, Intermountain Heart Institute, Murray, UT, United States
| | - Yufan Guan
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, MD, United States
| | - Rehan Karmali
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California, San Francisco, San Francisco, CA, United States
| | - Jil C Tardiff
- Sarver Heart Center, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Leslie A Leinwand
- Molecular, Cellular and Developmental Biology, Biofrontiers Institute, University of Colorado, Boulder, CO, United States
| | - Jeffrey E Olgin
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California, San Francisco, San Francisco, CA, United States
| | - Samarjit Das
- Department of Anesthesia and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - M Roselle Abraham
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California, San Francisco, San Francisco, CA, United States.,Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
34
|
Koop AMC, Bossers GPL, Ploegstra MJ, Hagdorn QAJ, Berger RMF, Silljé HHW, Bartelds B. Metabolic Remodeling in the Pressure-Loaded Right Ventricle: Shifts in Glucose and Fatty Acid Metabolism-A Systematic Review and Meta-Analysis. J Am Heart Assoc 2019; 8:e012086. [PMID: 31657265 PMCID: PMC6898858 DOI: 10.1161/jaha.119.012086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Right ventricular (RV) failure because of chronic pressure load is an important determinant of outcome in pulmonary hypertension. Progression towards RV failure is characterized by diastolic dysfunction, fibrosis and metabolic dysregulation. Metabolic modulation has been suggested as therapeutic option, yet, metabolic dysregulation may have various faces in different experimental models and disease severity. In this systematic review and meta‐analysis, we aimed to identify metabolic changes in the pressure loaded RV and formulate recommendations required to optimize translation between animal models and human disease. Methods and Results Medline and EMBASE were searched to identify original studies describing cardiac metabolic variables in the pressure loaded RV. We identified mostly rat‐models, inducing pressure load by hypoxia, Sugen‐hypoxia, monocrotaline (MCT), pulmonary artery banding (PAB) or strain (fawn hooded rats, FHR), and human studies. Meta‐analysis revealed increased Hedges’ g (effect size) of the gene expression of GLUT1 and HK1 and glycolytic flux. The expression of MCAD was uniformly decreased. Mitochondrial respiratory capacity and fatty acid uptake varied considerably between studies, yet there was a model effect in carbohydrate respiratory capacity in MCT‐rats. Conclusions This systematic review and meta‐analysis on metabolic remodeling in the pressure‐loaded RV showed a consistent increase in glucose uptake and glycolysis, strongly suggest a downregulation of beta‐oxidation, and showed divergent and model‐specific changes regarding fatty acid uptake and oxidative metabolism. To translate metabolic results from animal models to human disease, more extensive characterization, including function, and uniformity in methodology and studied variables, will be required.
Collapse
Affiliation(s)
- Anne-Marie C Koop
- Department of Pediatric Cardiology University Medical Center Groningen Center for Congenital Heart Diseases University of Groningen The Netherlands
| | - Guido P L Bossers
- Department of Pediatric Cardiology University Medical Center Groningen Center for Congenital Heart Diseases University of Groningen The Netherlands
| | - Mark-Jan Ploegstra
- Department of Pediatric Cardiology University Medical Center Groningen Center for Congenital Heart Diseases University of Groningen The Netherlands
| | - Quint A J Hagdorn
- Department of Pediatric Cardiology University Medical Center Groningen Center for Congenital Heart Diseases University of Groningen The Netherlands
| | - Rolf M F Berger
- Department of Pediatric Cardiology University Medical Center Groningen Center for Congenital Heart Diseases University of Groningen The Netherlands
| | - Herman H W Silljé
- Department of Cardiology University Medical Center Groningen University of Groningen The Netherlands
| | - Beatrijs Bartelds
- Department of Pediatric Cardiology University Medical Center Groningen Center for Congenital Heart Diseases University of Groningen The Netherlands
| |
Collapse
|
35
|
Abstract
Metabolic pathways integrate to support tissue homeostasis and to prompt changes in cell phenotype. In particular, the heart consumes relatively large amounts of substrate not only to regenerate ATP for contraction but also to sustain biosynthetic reactions for replacement of cellular building blocks. Metabolic pathways also control intracellular redox state, and metabolic intermediates and end products provide signals that prompt changes in enzymatic activity and gene expression. Mounting evidence suggests that the changes in cardiac metabolism that occur during development, exercise, and pregnancy as well as with pathological stress (eg, myocardial infarction, pressure overload) are causative in cardiac remodeling. Metabolism-mediated changes in gene expression, metabolite signaling, and the channeling of glucose-derived carbon toward anabolic pathways seem critical for physiological growth of the heart, and metabolic inefficiency and loss of coordinated anabolic activity are emerging as proximal causes of pathological remodeling. This review integrates knowledge of different forms of cardiac remodeling to develop general models of how relationships between catabolic and anabolic glucose metabolism may fortify cardiac health or promote (mal)adaptive myocardial remodeling. Adoption of conceptual frameworks based in relational biology may enable further understanding of how metabolism regulates cardiac structure and function.
Collapse
Affiliation(s)
- Andrew A Gibb
- From the Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (A.A.G.)
| | - Bradford G Hill
- the Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville School of Medicine, KY (B.G.H.).
| |
Collapse
|
36
|
Abstract
The heart consumes large amounts of energy in the form of ATP that is continuously replenished by oxidative phosphorylation in mitochondria and, to a lesser extent, by glycolysis. To adapt the ATP supply efficiently to the constantly varying demand of cardiac myocytes, a complex network of enzymatic and signalling pathways controls the metabolic flux of substrates towards their oxidation in mitochondria. In patients with heart failure, derangements of substrate utilization and intermediate metabolism, an energetic deficit, and oxidative stress are thought to underlie contractile dysfunction and the progression of the disease. In this Review, we give an overview of the physiological processes of cardiac energy metabolism and their pathological alterations in heart failure and diabetes mellitus. Although the energetic deficit in failing hearts - discovered >2 decades ago - might account for contractile dysfunction during maximal exertion, we suggest that the alterations of intermediate substrate metabolism and oxidative stress rather than an ATP deficit per se account for maladaptive cardiac remodelling and dysfunction under resting conditions. Treatments targeting substrate utilization and/or oxidative stress in mitochondria are currently being tested in patients with heart failure and might be promising tools to improve cardiac function beyond that achieved with neuroendocrine inhibition.
Collapse
|
37
|
Chu L, Xiao L, Xu B, Xu J. Dissociation of HKII in retinal epithelial cells induces oxidative stress injury in the retina. Int J Mol Med 2019; 44:1377-1387. [PMID: 31432102 PMCID: PMC6713434 DOI: 10.3892/ijmm.2019.4304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/27/2019] [Indexed: 12/20/2022] Open
Abstract
The retina is sensitive to injury resulting from oxidative stress (OS) due to its high oxygen consumption. Patients with retinitis pigmentosa suffer from excessive OS. N‑acetylcysteine (NAC) is used as a mucolytic agent for the clinical treatment of disorders, such as chronic bronchitis and other pulmonary diseases. The aim of the present study was to investigate the role of hexokinase 2 (HKII) in retinal OS injury. Amyloid β (Aβ)1‑40 was used to establish a cellular model of OS. Cell viability was measured with a Cell Counting Kit‑8 assay, and the apoptosis, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) of cells were analyzed via flow cytometry with corresponding kits. The mRNA and protein levels were detected by reverse transcription‑quantitative PCR and western blot analyses, respectively. It was observed that Aβ1‑40 reduced the expression of HKII in the mitochondria of retinal pigment epithelial ARPE cells and impaired mitochondrial antioxidant functions. Additionally, knockdown of HKII promoted apoptosis, and increased ROS levels and the MMP. NAC attenuated the inhibition of mitochondrial functions induced by Aβ1‑40. The knockdown of HKII was revealed to decrease the levels of Bcl‑2, manganese superoxide dismutase (SOD) and copper‑zinc‑SOD, and increase the levels of cleaved caspase‑3, Bax and cytochrome c. The present findings suggested that the dissociation of HKII induced by OS induces apoptosis and mitochondrial damage. This study provided improved understanding of the mechanisms underlying the effects of OS on retinal epithelial cells.
Collapse
Affiliation(s)
- Liqun Chu
- Department of Ophthalmology, Xiyuan Hospital, China Academy of Traditional Chinese Medicine, Beijing 100091, P.R. China
| | - Lin Xiao
- Department of Ophthalmology, Beijing Shijitan Hospital, CMU, Beijing 100038, P.R. China
| | - Bing Xu
- Department of Ophthalmology, Beijing Shijitan Hospital, CMU, Beijing 100038, P.R. China
| | - Jingmei Xu
- Department of Ophthalmology, Beijing Shijitan Hospital, CMU, Beijing 100038, P.R. China
| |
Collapse
|
38
|
Tabish AM, Arif M, Song T, Elbeck Z, Becker RC, Knöll R, Sadayappan S. Association of intronic DNA methylation and hydroxymethylation alterations in the epigenetic etiology of dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2019; 317:H168-H180. [PMID: 31026178 PMCID: PMC6692731 DOI: 10.1152/ajpheart.00758.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 01/03/2023]
Abstract
In this study, we investigated the role of DNA methylation [5-methylcytosine (5mC)] and 5-hydroxymethylcytosine (5hmC), epigenetic modifications that regulate gene activity, in dilated cardiomyopathy (DCM). A MYBPC3 mutant mouse model of DCM was compared with wild type and used to profile genomic 5mC and 5hmC changes by Chip-seq, and gene expression levels were analyzed by RNA-seq. Both 5mC-altered genes (957) and 5hmC-altered genes (2,022) were identified in DCM hearts. Diverse gene ontology and KEGG pathways were enriched for DCM phenotypes, such as inflammation, tissue fibrosis, cell death, cardiac remodeling, cardiomyocyte growth, and differentiation, as well as sarcomere structure. Hierarchical clustering of mapped genes affected by 5mC and 5hmC clearly differentiated DCM from wild-type phenotype. Based on these data, we propose that genomewide 5mC and 5hmC contents may play a major role in DCM pathogenesis. NEW & NOTEWORTHY Our data demonstrate that development of dilated cardiomyopathy in mice is associated with significant epigenetic changes, specifically in intronic regions, which, when combined with gene expression profiling data, highlight key signaling pathways involved in pathological cardiac remodeling and heart contractile dysfunction.
Collapse
Affiliation(s)
- Ali M Tabish
- Integrated Cardio-Metabolic Centre, Karolinska Institutet , Stockholm , Sweden
| | - Mohammed Arif
- Heart, Lung, Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Taejeong Song
- Heart, Lung, Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Zaher Elbeck
- Integrated Cardio-Metabolic Centre, Karolinska Institutet , Stockholm , Sweden
| | - Richard C Becker
- Heart, Lung, Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Ralph Knöll
- Integrated Cardio-Metabolic Centre, Karolinska Institutet , Stockholm , Sweden
- Cardiovascular and Metabolic Disease Innovative Medicines and Early Development Unit, AstraZeneca R&D, Gothenburg , Sweden
| | - Sakthivel Sadayappan
- Heart, Lung, Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati , Cincinnati, Ohio
| |
Collapse
|
39
|
Affiliation(s)
- Diem H Tran
- 1 Division of Cardiology Department of Internal Medicine University of Texas Southwestern Medical Center Dallas TX
| | - Zhao V Wang
- 1 Division of Cardiology Department of Internal Medicine University of Texas Southwestern Medical Center Dallas TX
| |
Collapse
|
40
|
Chhabra A, Mishra S, Kumar G, Gupta A, Keshri GK, Bharti B, Meena RN, Prabhakar AK, Singh DK, Bhargava K, Sharma M. Glucose-6-phosphate dehydrogenase is critical for suppression of cardiac hypertrophy by H 2S. Cell Death Discov 2018; 4:6. [PMID: 29531803 PMCID: PMC5841415 DOI: 10.1038/s41420-017-0010-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
Hydrogen Sulfide (H2S), recently identified as the third endogenously produced gaseous messenger, is a promising therapeutic prospect for multiple cardio-pathological states, including myocardial hypertrophy. The molecular niche of H2S in normal or diseased cardiac cells is, however, sparsely understood. Here, we show that β-adrenergic receptor (β-AR) overstimulation, known to produce hypertrophic effects in cardiomyocytes, rapidly decreased endogenous H2S levels. The preservation of intracellular H2S levels under these conditions strongly suppressed hypertrophic responses to adrenergic overstimulation, thus suggesting its intrinsic role in this process. Interestingly, unbiased global transcriptome sequencing analysis revealed an integrated metabolic circuitry, centrally linked by NADPH homeostasis, as the direct target of intracellular H2S augmentation. Within these gene networks, glucose-6-phosphate dehydrogenase (G6PD), the first and rate-limiting enzyme (producing NADPH) in pentose phosphate pathway, emerged as the critical node regulating cellular effects of H2S. Utilizing both cellular and animal model systems, we show that H2S-induced elevated G6PD activity is critical for the suppression of cardiac hypertrophy in response to adrenergic overstimulation. We also describe experimental evidences suggesting multiple processes/pathways involved in regulation of G6PD activity, sustained over extended duration of time, in response to endogenous H2S augmentation. Our data, thus, revealed H2S as a critical endogenous regulator of cardiac metabolic circuitry, and also mechanistic basis for its anti-hypertrophic effects.
Collapse
Affiliation(s)
- Aastha Chhabra
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Shalini Mishra
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Gaurav Kumar
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Asheesh Gupta
- Biochemical Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Gaurav Kumar Keshri
- Biochemical Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Brij Bharti
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Ram Niwas Meena
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Amit Kumar Prabhakar
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | | | - Kalpana Bhargava
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Manish Sharma
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| |
Collapse
|
41
|
Karlstaedt A, Schiffer W, Taegtmeyer H. Actionable Metabolic Pathways in Heart Failure and Cancer-Lessons From Cancer Cell Metabolism. Front Cardiovasc Med 2018; 5:71. [PMID: 29971237 PMCID: PMC6018530 DOI: 10.3389/fcvm.2018.00071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/24/2018] [Indexed: 12/21/2022] Open
Abstract
Recent advances in cancer cell metabolism provide unprecedented opportunities for a new understanding of heart metabolism and may offer new approaches for the treatment of heart failure. Key questions driving the cancer field to understand how tumor cells reprogram metabolism and to benefit tumorigenesis are also applicable to the heart. Recent experimental and conceptual advances in cancer cell metabolism provide the cardiovascular field with the unique opportunity to target metabolism. This review compares cancer cell metabolism and cardiac metabolism with an emphasis on strategies of cellular adaptation, and how to exploit metabolic changes for therapeutic benefit.
Collapse
Affiliation(s)
- Anja Karlstaedt
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Walter Schiffer
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Heinrich Taegtmeyer
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
42
|
Li Z, Liu Y, Guo X, Sun G, Ma Q, Dai Y, Zhu G, Sun Y. Long noncoding RNA myocardial infarction‑associated transcript is associated with the microRNA‑150‑5p/P300 pathway in cardiac hypertrophy. Int J Mol Med 2018; 42:1265-1272. [PMID: 29786749 PMCID: PMC6089782 DOI: 10.3892/ijmm.2018.3700] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 05/17/2018] [Indexed: 01/09/2023] Open
Abstract
In numerous diseases, abnormal expression of myocardial infarction-associated transcript (MIAT) has been reported to be involved in cell proliferation, apoptosis and migration. However, whether this long non-coding RNA MIAT has a regulatory effect on heart hypertrophy requires further investigation. To this end, the present study evaluated MIAT in hypertrophic cardiomyocytes in vitro and in vivo. Neonatal rat ventricular myocytes (NRVMs) were induced by isoproterenol (ISO) to create a cell hypertrophy model, and mice were intraperitoneally injected with ISO to establish an animal model. Echocardiography, immunofluorescence staining, western blot analysis, RNA isolation and reverse transcription-polymerase chain reaction were applied to test the involvement of MIAT in cardiac hypertrophy. The results revealed that MIAT was upregulated under ISO stimulation at the mRNA level both in vivo and in vitro. Silencing of MIAT resulted in decreased expression levels of atrial natriuretic peptide and brain natriuretic peptide in ISO-treated NRVM cardiomyocytes, confirming the connection between MIAT and hypertrophy. Furthermore, MIAT small interfering RNA significantly increased microRNA (miR)-150 and decreased P300 expression in NRVMs. In conclusion, the MIAT/miR-150-5p axis targets P300 as a positive regulator of cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Zhao Li
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yamin Liu
- Department of Pharmacy, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaofan Guo
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qun Ma
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ying Dai
- Department of Cardiology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Guangshuo Zhu
- Department of Cardiology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
43
|
Jia Y, Liu N, Viswakarma N, Sun R, Schipma MJ, Shang M, Thorp EB, Kanwar YS, Thimmapaya B, Reddy JK. PIMT/NCOA6IP Deletion in the Mouse Heart Causes Delayed Cardiomyopathy Attributable to Perturbation in Energy Metabolism. Int J Mol Sci 2018; 19:ijms19051485. [PMID: 29772707 PMCID: PMC5983783 DOI: 10.3390/ijms19051485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 01/09/2023] Open
Abstract
PIMT/NCOA6IP, a transcriptional coactivator PRIP/NCOA6 binding protein, enhances nuclear receptor transcriptional activity. Germline disruption of PIMT results in early embryonic lethality due to impairment of development around blastocyst and uterine implantation stages. We now generated mice with Cre-mediated cardiac-specific deletion of PIMT (csPIMT−/−) in adult mice. These mice manifest enlargement of heart, with nearly 100% mortality by 7.5 months of age due to dilated cardiomyopathy. Significant reductions in the expression of genes (i) pertaining to mitochondrial respiratory chain complexes I to IV; (ii) calcium cycling cardiac muscle contraction (Atp2a1, Atp2a2, Ryr2); and (iii) nuclear receptor PPAR- regulated genes involved in glucose and fatty acid energy metabolism were found in csPIMT−/− mouse heart. Elevated levels of Nppa and Nppb mRNAs were noted in csPIMT−/− heart indicative of myocardial damage. These hearts revealed increased reparative fibrosis associated with enhanced expression of Tgfβ2 and Ctgf. Furthermore, cardiac-specific deletion of PIMT in adult mice, using tamoxifen-inducible Cre-approach (TmcsPIMT−/−), results in the development of cardiomyopathy. Thus, cumulative evidence suggests that PIMT functions in cardiac energy metabolism by interacting with nuclear receptor coactivators and this property could be useful in the management of heart failure.
Collapse
Affiliation(s)
- Yuzhi Jia
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Ning Liu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Ruya Sun
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Mathew J Schipma
- Next Generation Sequencing Core Facility, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Meng Shang
- Feinberg Cardiovascular Research Institute and Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Edward B Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Yashpal S Kanwar
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Bayar Thimmapaya
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Janardan K Reddy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
44
|
Pan M, Han Y, Basu A, Dai A, Si R, Willson C, Balistrieri A, Scott BT, Makino A. Overexpression of hexokinase 2 reduces mitochondrial calcium overload in coronary endothelial cells of type 2 diabetic mice. Am J Physiol Cell Physiol 2018. [PMID: 29513568 DOI: 10.1152/ajpcell.00350.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coronary microvascular rarefaction, due to endothelial cell (EC) dysfunction, is one of the causes of increased morbidity and mortality in diabetes. Coronary ECs in diabetes are more apoptotic due partly to mitochondrial calcium overload. This study was designed to investigate the role of hexokinase 2 (HK2, an endogenous inhibitor of voltage-dependent anion channel) in coronary endothelial dysfunction in type 2 diabetes. We used mouse coronary ECs (MCECs) isolated from type 2 diabetic mice and human coronary ECs (HCECs) from type 2 diabetic patients to examine protein levels and mitochondrial function. ECs were more apoptotic and capillary density was lower in the left ventricle of diabetic mice than the control. MCECs from diabetic mice exhibited significant increase in mitochondrial Ca2+ concentration ([Ca2+]mito) compared with the control. Among several regulatory proteins for [Ca2+]mito, hexokinase 1 (HK1) and HK2 were significantly lower in MCECs from diabetic mice than control MCECs. We also found that the level of HK2 ubiquitination was higher in MCECs from diabetic mice than in control MCECs. In line with the data from MCECs, HCECs from diabetic patients showed lower HK2 protein levels than HCECs from nondiabetic patients. High-glucose treatment, but not high-fat treatment, significantly decreased HK2 protein levels in MCECs. HK2 overexpression in MCECs of diabetic mice not only lowered the level of [Ca2+]mito, but also reduced mitochondrial reactive oxygen species production toward the level seen in control MCECs. These data suggest that HK2 is a potential therapeutic target for coronary microvascular disease in diabetes by restoring mitochondrial function in coronary ECs.
Collapse
Affiliation(s)
- Minglin Pan
- Department of Medicine, University of Illinois at Chicago , Chicago, Illinois.,The Second Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Ying Han
- Department of Physiology, University of Arizona , Tucson, Arizona.,Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Aninda Basu
- Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Anzhi Dai
- Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Rui Si
- Department of Physiology, University of Arizona , Tucson, Arizona
| | - Conor Willson
- Department of Physiology, University of Arizona , Tucson, Arizona
| | - Angela Balistrieri
- Department of Physiology, University of Arizona , Tucson, Arizona.,Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Brian T Scott
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Ayako Makino
- Department of Physiology, University of Arizona , Tucson, Arizona.,Department of Medicine, University of Arizona , Tucson, Arizona.,Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| |
Collapse
|
45
|
Puddighinu G, D'Amario D, Foglio E, Manchi M, Siracusano A, Pontemezzo E, Cordella M, Facchiano F, Pellegrini L, Mangoni A, Tafani M, Crea F, Germani A, Russo MA, Limana F. Molecular mechanisms of cardioprotective effects mediated by transplanted cardiac ckit + cells through the activation of an inflammatory hypoxia-dependent reparative response. Oncotarget 2017; 9:937-957. [PMID: 29416668 PMCID: PMC5787525 DOI: 10.18632/oncotarget.22946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 11/12/2017] [Indexed: 12/16/2022] Open
Abstract
The regenerative effects of cardiac ckit+ stem cells (ckit+CSCs) in acute myocardial infarction (MI) have been studied extensively, but how these cells exert a protective effect on cardiomyocytes is not well known. Growing evidences suggest that in adult stem cells injury triggers inflammatory signaling pathways which control tissue repair and regeneration. Aim of the present study was to determine the mechanisms underlying the cardioprotective effects of ckit+CSCs following transplantation in a murine model of MI. Following isolation and in vitro expansion, cardiac ckit+CSCs were subjected to normoxic and hypoxic conditions and assessed at different time points. These cells adapted to hypoxia as showed by the activation of HIF-1α and the expression of a number of genes, such as VEGF, GLUT1, EPO, HKII and, importantly, of alarmin receptors, such as RAGE, P2X7R, TLR2 and TLR4. Activation of these receptors determined an NFkB-dependent inflammatory and reparative gene response (IRR). Importantly, hypoxic ckit+CSCs increased the secretion of the survival growth factors IGF-1 and HGF. To verify whether activation of the IRR in a hypoxic microenvironment could exert a beneficial effect in vivo, autologous ckit+CSCs were transplanted into mouse heart following MI. Interestingly, transplantation of ckit+CSCs lowered apoptotic rates and induced autophagy in the peri-infarct area; further, it reduced hypertrophy and fibrosis and, most importantly, improved cardiac function. ckit+CSCs are able to adapt to a hypoxic environment and activate an inflammatory and reparative response that could account, at least in part, for a protective effect on stressed cardiomyocytes following transplantation in the infarcted heart.
Collapse
Affiliation(s)
- Giovanni Puddighinu
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Domenico D'Amario
- Department of Cardiovascular Sciences, Catholic University of The Sacred Heart, Rome, Italy
| | - Eleonora Foglio
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Melissa Manchi
- Department of Cardiovascular Sciences, Catholic University of The Sacred Heart, Rome, Italy
| | - Andrea Siracusano
- Department of Cardiovascular Sciences, Catholic University of The Sacred Heart, Rome, Italy
| | - Elena Pontemezzo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Martina Cordella
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Pellegrini
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico (CCP), Milan, Italy
| | - Antonella Mangoni
- Department of Pathological Anatomy, Catholic University of The Sacred Heart, Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular Sciences, Catholic University of The Sacred Heart, Rome, Italy
| | - Antonia Germani
- Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, Rome, Italy
| | - Matteo Antonio Russo
- IRCCS San Raffaele Pisana, Rome, Italy.,MEBIC Consortium, San Raffaele Roma Open University, Rome, Italy
| | - Federica Limana
- IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele Roma Open University, Rome, Italy
| |
Collapse
|
46
|
Ritterhoff J, Tian R. Metabolism in cardiomyopathy: every substrate matters. Cardiovasc Res 2017; 113:411-421. [PMID: 28395011 DOI: 10.1093/cvr/cvx017] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/01/2017] [Indexed: 12/12/2022] Open
Abstract
Cardiac metabolism is highly adaptive to changes in fuel availability and the energy demand of the heart. This metabolic flexibility is key for the heart to maintain its output during the development and in response to stress. Alterations in substrate preference have been observed in multiple disease states; a clear understanding of their impact on cardiac function in the long term is critical for the development of metabolic therapies. In addition, the contribution of cellular metabolism to growth, survival, and other signalling pathways through the generation of metabolic intermediates has been increasingly noted, adding another layer of complexity to the impact of metabolism on cardiac function. In a quest to understand the complexity of the cardiac metabolic network, genetic tools have been engaged to manipulate cardiac metabolism in a variety of mouse models. The ability to engineer cardiac metabolism in vivo has provided tremendous insights and brought about conceptual innovations. In this review, we will provide an overview of the cardiac metabolic network and highlight alterations observed during cardiac development and pathological hypertrophy. We will focus on consequences of altered substrate preference on cardiac response to chronic stresses through energy providing and non-energy providing pathways.
Collapse
|
47
|
Integration of flux measurements to resolve changes in anabolic and catabolic metabolism in cardiac myocytes. Biochem J 2017; 474:2785-2801. [PMID: 28706006 PMCID: PMC5545928 DOI: 10.1042/bcj20170474] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022]
Abstract
Although ancillary pathways of glucose metabolism are critical for synthesizing cellular building blocks and modulating stress responses, how they are regulated remains unclear. In the present study, we used radiometric glycolysis assays, [13C6]-glucose isotope tracing, and extracellular flux analysis to understand how phosphofructokinase (PFK)-mediated changes in glycolysis regulate glucose carbon partitioning into catabolic and anabolic pathways. Expression of kinase-deficient or phosphatase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in rat neonatal cardiomyocytes co-ordinately regulated glycolytic rate and lactate production. Nevertheless, in all groups, >40% of glucose consumed by the cells was unaccounted for via catabolism to pyruvate, which suggests entry of glucose carbons into ancillary pathways branching from metabolites formed in the preparatory phase of glycolysis. Analysis of 13C fractional enrichment patterns suggests that PFK activity regulates glucose carbon incorporation directly into the ribose and the glycerol moieties of purines and phospholipids, respectively. Pyrimidines, UDP-N-acetylhexosamine, and the fatty acyl chains of phosphatidylinositol and triglycerides showed lower 13C incorporation under conditions of high PFK activity; the isotopologue 13C enrichment pattern of each metabolite indicated limitations in mitochondria-engendered aspartate, acetyl CoA and fatty acids. Consistent with this notion, high glycolytic rate diminished mitochondrial activity and the coupling of glycolysis to glucose oxidation. These findings suggest that a major portion of intracellular glucose in cardiac myocytes is apportioned for ancillary biosynthetic reactions and that PFK co-ordinates the activities of the pentose phosphate, hexosamine biosynthetic, and glycerolipid synthesis pathways by directly modulating glycolytic intermediate entry into auxiliary glucose metabolism pathways and by indirectly regulating mitochondrial cataplerosis.
Collapse
|
48
|
Kolar D, Gresikova M, Waskova-Arnostova P, Elsnicova B, Kohutova J, Hornikova D, Vebr P, Neckar J, Blahova T, Kasparova D, Novotny J, Kolar F, Novakova O, Zurmanova JM. Adaptation to chronic continuous hypoxia potentiates Akt/HK2 anti-apoptotic pathway during brief myocardial ischemia/reperfusion insult. Mol Cell Biochem 2017; 432:99-108. [PMID: 28290047 DOI: 10.1007/s11010-017-3001-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/04/2017] [Indexed: 01/30/2023]
Abstract
Adaptation to chronic hypoxia represents a potential cardioprotective intervention reducing the extent of acute ischemia/reperfusion (I/R) injury, which is a major cause of death worldwide. The main objective of this study was to investigate the anti-apoptotic Akt/hexokinase 2 (HK2) pathway in hypoxic hearts subjected to I/R insult. Hearts isolated from male Wistar rats exposed either to continuous normobaric hypoxia (CNH; 10% O2) or to room air for 3 weeks were perfused according to Langendorff and subjected to 10 min of no-flow ischemia and 10 min of reperfusion. The hearts were collected either after ischemia or after reperfusion and used for protein analyses and quantitative fluorescence microscopy. The CNH resulted in increased levels of HK1 and HK2 proteins and the total HK activity after ischemia compared to corresponding normoxic group. Similarly, CNH hearts exhibited increased ischemic level of Akt protein phosphorylated on Ser473. The CNH also strengthened the interaction of HK2 with mitochondria and prevented downregulation of mitochondrial creatine kinase after reperfusion. The Bax/Bcl-2 ratio was significantly lower after I/R in CNH hearts than in normoxic ones, suggesting a lower probability of apoptosis. In conclusion, the Akt/HK2 pathway is likely to play a role in the development of a cardioprotective phenotype of CNH by preventing the detachment of HK2 from mitochondria at reperfusion period and decreases the Bax/Bcl-2 ratio during I/R insult, thereby lowering the probability of apoptosis activation in the mitochondrial compartment.
Collapse
Affiliation(s)
- David Kolar
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Milada Gresikova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Petra Waskova-Arnostova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Barbara Elsnicova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jana Kohutova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Daniela Hornikova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Pavel Vebr
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jan Neckar
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Tereza Blahova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Dita Kasparova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Frantisek Kolar
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Novakova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jitka M Zurmanova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic.
| |
Collapse
|
49
|
Microarray and Co-expression Network Analysis of Genes Associated with Acute Doxorubicin Cardiomyopathy in Mice. Cardiovasc Toxicol 2016; 15:377-93. [PMID: 25575753 DOI: 10.1007/s12012-014-9306-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Clinical use of doxorubicin (DOX) in cancer therapy is limited by its dose-dependent cardiotoxicity. But molecular mechanisms underlying this phenomenon have not been well defined. This study was to investigate the effect of DOX on the changes of global genomics in hearts. Acute cardiotoxicity was induced by giving C57BL/6J mice a single intraperitoneal injection of DOX (15 mg/kg). Cardiac function and apoptosis were monitored using echocardiography and TUNEL assay at days 1, 3 and 5. Myocardial glucose and ATP levels were measured. Microarray assays were used to screen gene expression profiles in the hearts at day 5, and the results were confirmed with qPCR analysis. DOX administration caused decreased cardiac function, increased cardiomyocyte apoptosis and decreased glucose and ATP levels. Microarrays showed 747 up-regulated genes and 438 down-regulated genes involved in seven main functional categories. Among them, metabolic pathway was the most affected by DOX. Several key genes, including 2,3-bisphosphoglycerate mutase (Bpgm), hexokinase 2, pyruvate dehydrogenase kinase, isoenzyme 4 and fructose-2,6-bisphosphate 2-phosphatase, are closely related to glucose metabolism. Gene co-expression networks suggested the core role of Bpgm in DOX cardiomyopathy. These results obtained in mice were further confirmed in cultured cardiomyocytes. In conclusion, genes involved in glucose metabolism, especially Bpgm, may play a central role in the pathogenesis of DOX-induced cardiotoxicity.
Collapse
|
50
|
Tan VP, Miyamoto S. Nutrient-sensing mTORC1: Integration of metabolic and autophagic signals. J Mol Cell Cardiol 2016; 95:31-41. [PMID: 26773603 DOI: 10.1016/j.yjmcc.2016.01.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/11/2015] [Accepted: 01/04/2016] [Indexed: 12/26/2022]
Abstract
The ability of adult cardiomyocytes to regenerate is limited, and irreversible loss by cell death plays a crucial role in heart diseases. Autophagy is an evolutionarily conserved cellular catabolic process through which long-lived proteins and damaged organelles are targeted for lysosomal degradation. Autophagy is important in cardiac homeostasis and can serve as a protective mechanism by providing an energy source, especially in the face of sustained starvation. Cellular metabolism is closely associated with cell survival, and recent evidence suggests that metabolic and autophagic signaling pathways exhibit a high degree of crosstalk and are functionally interdependent. In this review, we discuss recent progress in our understanding of regulation of autophagy and its crosstalk with metabolic signaling, with a focus on the nutrient-sensing mTOR complex 1 (mTORC1) pathway.
Collapse
Affiliation(s)
- Valerie P Tan
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Shigeki Miyamoto
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA.
| |
Collapse
|