1
|
de Araujo NF, Nobrega NRC, Dos Reis Costa DEF, Simplicio JA, de Assis Rabelo Ribeiro N, Tirapelli CR, Bonaventura D. Sodium nitrite induces tolerance in the mouse aorta: Involvement of the renin-angiotensin system, nitric oxide synthase, and reactive oxygen species. Eur J Pharmacol 2024; 985:177056. [PMID: 39427861 DOI: 10.1016/j.ejphar.2024.177056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
Nitrites have emerged as promising therapeutic agents for cardiovascular diseases, alongside nitrates. While chronic use of organic nitrates is well recognized to lead to vascular tolerance, the tolerance associated with nitrite therapy remains incompletely understood. The aim of the present study was to investigate vascular tolerance to sodium nitrite and the underlying molecular mechanisms. Endothelium-denuded aortic rings isolated from male Balb/C mice were incubated with either the EC50 (10-4 mol/L) or EC100 (10-2 mol/L) concentration of sodium nitrite for 15 min to induce tolerance. The EC100 concentration of sodium nitrite induced vascular tolerance. Pre-incubation with captopril and losartan effectively reversed sodium nitrite-induced tolerance. Similarly, pre-incubation with L-NAME and L-arginine prevented sodium nitrite-induced tolerance. Increased levels of reactive oxidative species (ROS) and reduced bioavailability of nitric oxide (NO) were observed in tolerant aortas. Increased superoxide dismutase (SOD) activity and decreased catalase activity were also verified in tolerant aortas. Both captopril and L-NAME prevented the increased levels of ROS observed in tolerant aortas. Furthermore, pre-incubation with catalase effectively prevented sodium nitrite-induced tolerance. Our findings suggest that sodium nitrite induces vascular tolerance through a signaling pathway involving the renin-angiotensin system, nitric oxide synthase, and ROS. This study contributes to the understanding of the interaction between nitrites and vascular tolerance and highlights potential targets to overcome or prevent this phenomenon.
Collapse
Affiliation(s)
- Natalia Ferreira de Araujo
- Laboratory of Vascular Pharmacology, Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Natalia Ribeiro Cabacinha Nobrega
- Laboratory of Vascular Pharmacology, Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniela Esteves Ferreira Dos Reis Costa
- Laboratory of Vascular Pharmacology, Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Janaina Aparecida Simplicio
- Laboratory of Pharmacology, Department of Psychiatric Nursing and Human Sciences, Nursing School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Naiara de Assis Rabelo Ribeiro
- Laboratory of Vascular Pharmacology, Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos Renato Tirapelli
- Laboratory of Pharmacology, Department of Psychiatric Nursing and Human Sciences, Nursing School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Daniella Bonaventura
- Laboratory of Vascular Pharmacology, Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
2
|
Kaltsas A, Zikopoulos A, Dimitriadis F, Sheshi D, Politis M, Moustakli E, Symeonidis EN, Chrisofos M, Sofikitis N, Zachariou A. Oxidative Stress and Erectile Dysfunction: Pathophysiology, Impacts, and Potential Treatments. Curr Issues Mol Biol 2024; 46:8807-8834. [PMID: 39194738 DOI: 10.3390/cimb46080521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Erectile dysfunction (ED) is a prevalent condition affecting men's sexual health, with oxidative stress (OS) having recently been identified as a significant contributing causative factor. This narrative review aims to elucidate the role of OS in the pathophysiology of ED, focusing on impact, mechanisms, and potential therapeutic interventions. Key findings indicate that OS disrupts endothelial function and nitric oxide (NO) signaling, crucial for erectile function. Various sources of reactive oxygen species (ROS) and their detrimental effects on penile tissue are discussed, including aging, diabetes mellitus, hypertension, hyperlipidemia, smoking, obesity, alcohol consumption, psychological stress, hyperhomocysteinemia, chronic kidney disease, and sickle cell disease. Major sources of ROS, such as NADPH oxidase, xanthine oxidase, uncoupled endothelial NO synthase (eNOS), and mitochondrial electron transport, are identified. NO is scavenged by these ROS, leading to endothelial dysfunction characterized by reduced NO availability, impaired vasodilation, increased vascular tone, and inflammation. This ultimately results in ED due to decreased blood flow to penile tissue and the inability to achieve or maintain an erection. Furthermore, ROS impact the transmission of nitrergic neurotransmitters by causing the death of nitrergic neurons and reducing the signaling of neuronal NO synthase (nNOS), exacerbating ED. Therapeutic approaches targeting OS, including antioxidants and lifestyle modifications, show promise in ameliorating ED symptoms. The review underscores the need for further research to develop effective treatments, emphasizing the interplay between OS and vascular health in ED. Integrating pharmacological and non-pharmacological strategies could enhance clinical outcomes for ED patients, advocating for OS management in ED treatment protocols to improve patient quality of life.
Collapse
Affiliation(s)
- Aris Kaltsas
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | | | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Danja Sheshi
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Magdalena Politis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelos N Symeonidis
- Department of Urology II, European Interbalkan Medical Center, 55535 Thessaloniki, Greece
| | - Michael Chrisofos
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikolaos Sofikitis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Athanasios Zachariou
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
3
|
Milusheva M, Stoyanova M, Gledacheva V, Stefanova I, Todorova M, Pencheva M, Stojnova K, Tsoneva S, Nedialkov P, Nikolova S. 2-Amino- N-Phenethylbenzamides for Irritable Bowel Syndrome Treatment. Molecules 2024; 29:3375. [PMID: 39064953 PMCID: PMC11280360 DOI: 10.3390/molecules29143375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal (GI) disorder characterized by abdominal pain or discomfort. Mebeverine is an antispasmodic that has been widely used in clinical practice to relieve the symptoms of IBS. However, its systemic use usually leads to side effects. Therefore, the current paper aimed to synthesize more effective medicines for IBS treatment. We used ring opening of isatoic anhydride for the synthesis in reaction with 2-phenylethylamine. In silico simulation predicted spasmolytic activity for 2-amino-N-phenethylbenzamides. The newly synthesized compounds demonstrated a relaxation effect similar to mebeverine but did not affect the serotonin or Ca2+-dependent signaling pathway of contractile activity (CA) in contrast. Having in mind the anti-inflammatory potential of antispasmodics, the synthesized molecules were tested in vitro and ex vivo for their anti-inflammatory effects. Four of the newly synthesized compounds demonstrated very good activity by preventing albumin denaturation compared to anti-inflammatory drugs/agents well-established in medicinal practice. The newly synthesized compounds also inhibited the expression of interleukin-1β and stimulated the expression of neuronal nitric oxide synthase (nNOS), and, consequently, nitric oxide (NO) synthesis by neurons of the myenteric plexus. This characterizes the newly synthesized compounds as biologically active relaxants, offering a cleaner and more precise application in pharmacological practice, thereby enhancing their potential therapeutic value.
Collapse
Affiliation(s)
- Miglena Milusheva
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.S.); (M.T.)
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Mihaela Stoyanova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.S.); (M.T.)
| | - Vera Gledacheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Iliyana Stefanova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.S.); (M.T.)
| | - Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Kirila Stojnova
- Department of General and Inorganic Chemistry with Methodology of Chemistry Education, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Slava Tsoneva
- Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Paraskev Nedialkov
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.S.); (M.T.)
| |
Collapse
|
4
|
Abolfazli S, Mortazavi P, Kheirandish A, Butler AE, Jamialahmadi T, Sahebkar A. Regulatory effects of curcumin on nitric oxide signaling in the cardiovascular system. Nitric Oxide 2024; 143:16-28. [PMID: 38141926 DOI: 10.1016/j.niox.2023.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/25/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
The continuously rising prevalence of cardiovascular disease (CVD) globally substantially impacts the economic growth of developing countries. Indeed, one of the leading causes of death worldwide is unfavorable cardiovascular events. Reduced nitric oxide (NO) generation is the pathogenic foundation of endothelial dysfunction, which is regarded as the first stage in the development of a number of CVDs. Nitric oxide exerts an array of biological effects, including vasodilation, the suppression of vascular smooth muscle cell proliferation and the functional control of cardiac cells. Numerous treatment strategies aim to increase NO synthesis or upregulate downstream NO signaling pathways. The major component of Curcuma longa, curcumin, has long been utilized in traditional medicine to treat various illnesses, especially CVDs. Curcumin improves CV function as well as having important pleiotropic effects, such as anti-inflammatory and antioxidant, through its ability to increase the bioavailability of NO and to positively impact NO-related signaling pathways. In this review, we discuss the scientific literature relating to curcumin's positive effects on NO signaling and vascular endothelial function.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Parham Mortazavi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Kheirandish
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, PO Box, 15503, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Dąbrowska E, Narkiewicz K. Hypertension and Dyslipidemia: the Two Partners in Endothelium-Related Crime. Curr Atheroscler Rep 2023; 25:605-612. [PMID: 37594602 PMCID: PMC10471742 DOI: 10.1007/s11883-023-01132-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/19/2023]
Abstract
PURPOSE OF REVIEW The goal of this article is to characterize the endothelium's role in the development of hypertension and dyslipidemia and to point out promising therapeutic directions. RECENT FINDINGS Dyslipidemia may facilitate the development of hypertension, whereas the collaboration of these two silent killers potentiates the risk of atherosclerosis. The common pathophysiological denominator for hypertension and dyslipidemia is endothelial cell dysfunction, which manifests as dysregulation of homeostasis, redox balance, vascular tone, inflammation, and thrombosis. Treatment focused on mediators acting in these processes might be groundbreaking. Metabolomic research on hypertension and dyslipidemia has revealed new therapeutic targets. State-of-the-art solutions integrating interview, clinical examination, innovative imaging, and omics profiles along with artificial intelligence have been already shown to improve patients' risk stratification and treatment. Pathomechanisms underlying hypertension and dyslipidemia take place in the endothelium. Novel approaches involving endothelial biomarkers and bioinformatics advances could open new perspectives in patient management.
Collapse
Affiliation(s)
- Edyta Dąbrowska
- Center of Translational Medicine, Medical University of Gdańsk, Dębinki 7, 80-952 Gdańsk, Poland
| | - Krzysztof Narkiewicz
- Center of Translational Medicine, Medical University of Gdańsk, Dębinki 7, 80-952 Gdańsk, Poland
- Department of Hypertension and Diabetology, Medical University of Gdańsk, Smoluchowskiego 17, 80-214, Gdańsk, Poland
| |
Collapse
|
6
|
Dai S, Zhao L, Wang G, Chen C, Li C, Xiao B, Miao Y. Celiac ganglia neurolysis suppresses high blood pressure in rats. Hypertens Res 2023; 46:1771-1781. [PMID: 37173429 DOI: 10.1038/s41440-023-01305-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
The efficacy of renal denervation in the treatment of resistant hypertension has been controversial, and new strategies for its therapy are urgently needed. We performed the celiac ganglia neurolysis (CGN) or sham surgery on both spontaneously hypertensive rat (SHR) and Dahl salt-sensitive rat models of hypertension. Following CGN surgery in both strains, systolic blood pressure, diastolic blood pressure and mean arterial pressure were all lower than the levels in the respective sham surgery rats, which were maintained until the end of the study, 18 weeks postoperatively in SHRs and 12 weeks postoperatively in Dahl rats. CGN therapy destroyed ganglion cell structure and significantly inhibited celiac ganglia nerve viability. Four and twelve weeks after CGN, the plasma renin, angiotensin II and aldosterone levels were markedly attenuated, and the nitric oxide content was significantly increased in the CGN group compared with the respective sham surgery rats. However, CGN did not result in statistical difference in malondialdehyde levels compared with sham surgery in both strains. The CGN has efficacy in reducing high blood pressure and may be an alternative for resistant hypertension. Minimally invasive endoscopic ultrasound-guided celiac ganglia neurolysis (EUS-CGN) and percutaneous CGN are safe and convenient treatment approaches. Moreover, for hypertensive patients who need surgery due to abdominal disease or pain relief from pancreatic cancer, intraoperative CGN or EUS-CGN will be a good choice for hypertension therapy. The graphical abstract of antihypertensive effect of CGN.
Collapse
Affiliation(s)
- Shangnan Dai
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Li Zhao
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Guangfu Wang
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Chongfa Chen
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Chenchen Li
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Bin Xiao
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Pancreas Institute, Nanjing Medical University, Nanjing, China.
| | - Yi Miao
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Pancreas Institute, Nanjing Medical University, Nanjing, China.
- Pancreas Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Janaszak-Jasiecka A, Płoska A, Wierońska JM, Dobrucki LW, Kalinowski L. Endothelial dysfunction due to eNOS uncoupling: molecular mechanisms as potential therapeutic targets. Cell Mol Biol Lett 2023; 28:21. [PMID: 36890458 PMCID: PMC9996905 DOI: 10.1186/s11658-023-00423-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/19/2023] [Indexed: 03/10/2023] Open
Abstract
Nitric oxide (NO) is one of the most important molecules released by endothelial cells, and its antiatherogenic properties support cardiovascular homeostasis. Diminished NO bioavailability is a common hallmark of endothelial dysfunction underlying the pathogenesis of the cardiovascular disease. Vascular NO is synthesized by endothelial nitric oxide synthase (eNOS) from the substrate L-arginine (L-Arg), with tetrahydrobiopterin (BH4) as an essential cofactor. Cardiovascular risk factors such as diabetes, dyslipidemia, hypertension, aging, or smoking increase vascular oxidative stress that strongly affects eNOS activity and leads to eNOS uncoupling. Uncoupled eNOS produces superoxide anion (O2-) instead of NO, thus becoming a source of harmful free radicals exacerbating the oxidative stress further. eNOS uncoupling is thought to be one of the major underlying causes of endothelial dysfunction observed in the pathogenesis of vascular diseases. Here, we discuss the main mechanisms of eNOS uncoupling, including oxidative depletion of the critical eNOS cofactor BH4, deficiency of eNOS substrate L-Arg, or accumulation of its analog asymmetrical dimethylarginine (ADMA), and eNOS S-glutathionylation. Moreover, potential therapeutic approaches that prevent eNOS uncoupling by improving cofactor availability, restoration of L-Arg/ADMA ratio, or modulation of eNOS S-glutathionylation are briefly outlined.
Collapse
Affiliation(s)
- Anna Janaszak-Jasiecka
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland
| | - Joanna M Wierońska
- Department of Neurobiology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Smętna Street, 31-343, Kraków, Poland
| | - Lawrence W Dobrucki
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, 405 N Mathews Ave, MC-251, Urbana, IL, 61801, USA.,Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, Urbana, IL, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland. .,BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdansk, Poland.
| |
Collapse
|
8
|
El-Ashmawy NE, Khedr NF, Shaban MN, Al-Ashmawy GM. Diallyl trisulfide modulated autophagy in isoproterenol induced acute myocardial infarction. CLINICAL PHYTOSCIENCE 2022. [DOI: 10.1186/s40816-022-00351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Abstract
Background
Acute myocardial infarction (AMI) is the most serious manifestation of coronary artery disease. The initial ischemia in AMI causes biochemical and metabolic alterations in cardiomyocytes.
Objectives
The present study aimed to investigate the biomolecular mechanisms underlying cardioprotective effects of diallyl trisulfide (DATS) as well as captopril (CAP) in isoproterenol (ISO) induced AMI focusing on autophagy & PI3K/Akt signaling.
Methods
Seventy male Albino rats were divided into seven groups as follows: Normal control, ISO, ISO + LY294002 (PI3K inhibitor), DATS+ISO, CAP+ISO, DATS+LY294002 + ISO, and CAP+LY294002 + ISO. All treatments (40 mg/kg DATS, 50 mg/kg CAP & 0.3 mg/kg LY294002) were given daily for two weeks before ISO injection (85 mg/kg for 2 days). At the end of the experiment, serum and cardiac tissues were collected. Serum cardiac troponin I (cTnI), and creatine kinase MB (CK-MB) were measured. Cardiac glutathione peroxidase (GSH-px), malondialdehyde (MDA), hypoxia-inducible factor 1 alpha (HIF-1α), autophagy proteins (P62 & LC3IIB) and gene expression of PI3K, Akt, FOXO-1, and eNOS were assessed. Histopathological examination of heart tissue was performed.
Results
DATS and CAP significantly (p < 0.01) decreased serum CK-MB and cTnI, cardiac levels of MDA, HIF-1α, p62 and LC3IIB along with an increase in GSH-px activity compared with ISO group. Moreover, DATS and CAP significantly up-regulated PI3K, Akt, and eNOS gene expression but down-regulated FOXO-1 expression compared to ISO group. However, LY294002 reversed DATS and CAP cardioprotective effects.
Conclusion
DATS and CAP prior treatment proved cardioprotective effects via modulation of autophagy, PI3K/Akt signaling, eNOS and FOXO-1 downregulation in ISO induced AMI rat model.
Collapse
|
9
|
Ranjbar T, Oza PP, Kashfi K. The Renin-Angiotensin-Aldosterone System, Nitric Oxide, and Hydrogen Sulfide at the Crossroads of Hypertension and COVID-19: Racial Disparities and Outcomes. Int J Mol Sci 2022; 23:ijms232213895. [PMID: 36430371 PMCID: PMC9699619 DOI: 10.3390/ijms232213895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease 2019 is caused by SARS-CoV-2 and is more severe in the elderly, racial minorities, and those with comorbidities such as hypertension and diabetes. These pathologies are often controlled with medications involving the renin-angiotensin-aldosterone system (RAAS). RAAS is an endocrine system involved in maintaining blood pressure and blood volume through components of the system. SARS-CoV-2 enters the cells through ACE2, a membrane-bound protein related to RAAS. Therefore, the use of RAAS inhibitors could worsen the severity of COVID-19's symptoms, especially amongst those with pre-existing comorbidities. Although a vaccine is currently available to prevent and reduce the symptom severity of COVID-19, other options, such as nitric oxide and hydrogen sulfide, may also have utility to prevent and treat this virus.
Collapse
Affiliation(s)
- Tara Ranjbar
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Palak P. Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
10
|
Suvorava T, Metry S, Pick S, Kojda G. Alterations in endothelial nitric oxide synthase activity and their relevance to blood pressure. Biochem Pharmacol 2022; 205:115256. [DOI: 10.1016/j.bcp.2022.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022]
|
11
|
Lipoxin alleviates oxidative stress: a state-of-the-art review. Inflamm Res 2022; 71:1169-1179. [PMID: 35947143 DOI: 10.1007/s00011-022-01621-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE This review aims to summarize the capability of lipoxin in regulating oxidative stress. BACKGROUND Oxidative stress is defined as an imbalance between the production of free radicals and the antioxidant system, and it is associated with the existence of a large number of oxidation products, such as reactive oxygen species (ROS) and reaction nitrogen species (RNS), causing damage to human tissues through immunoinflammatory responses. Therefore, reducing oxidative stress is vital to alleviate pathological damage. Lipoxin, an acronym for lipoxygenase interaction product, is a bioactive autacoid metabolite of arachidonic acid made by various cell types. Previous studies have shown that lipoxin is associated with a variety of biological functions, including anti-inflammatory, regulating immune responses, promoting the repair of damaged cells, etc. The deficiency of lipoxin is a critical pathological mechanism in different diseases. Moreover, the ability of lipoxin to attenuate oxidative stress is noteworthy, thereby protecting the human body from diverse diseases. METHODS We searched papers from PubMed database using search terms, such as lipoxin, lipoxin A4, oxidative stress, and other relevant terms. RESULTS A total of 103 articles published over the past 20 years were identified for inclusion. We summarized the capability of lipoxin in regulating oxidative stress and mechanism. CONCLUSION Lipoxin is provided with a protective role in attenuating oxidative stress.
Collapse
|
12
|
Cung T, Wang H, Hartnett ME. The Effects of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase and Erythropoietin, and Their Interactions in Angiogenesis: Implications in Retinopathy of Prematurity. Cells 2022; 11:cells11121951. [PMID: 35741081 PMCID: PMC9222209 DOI: 10.3390/cells11121951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Retinopathy of prematurity (ROP) is a leading cause of vision impairment and blindness in premature infants. Oxidative stress is implicated in its pathophysiology. NADPH oxidase (NOX), a major enzyme responsible for reactive oxygen species (ROS) generation in endothelial cells, has been studied for its involvement in physiologic and pathologic angiogenesis. Erythropoietin (EPO) has gained interest recently due to its tissue protective and angiogenic effects, and it has been shown to act as an antioxidant. In this review, we summarize studies performed over the last five years regarding the role of various NOXs in physiologic and pathologic angiogenesis. We also discuss the effect of EPO in tissue and vasoprotection, and the intersection of EPO and NOX-mediated oxidative stress in angiogenesis and the pathophysiology of ROP.
Collapse
|
13
|
The Endothelial Dysfunction Could Be a Cause of Heart Failure with Preserved Ejection Fraction Development in a Rat Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7377877. [PMID: 35633883 PMCID: PMC9132705 DOI: 10.1155/2022/7377877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
50% of patients with heart failure have a preserved ejection fraction (HFpEF). Numerous studies have investigated the pathophysiological mechanisms of HFpEF and have shown that endothelial dysfunction plays an important role in HFpEF. Yet no studies answered whether endothelial dysfunction could be the cause or is the consequence of HFpEF. Recently, we have shown that the endothelial overexpression of human β3-adrenoreceptor (Tgβ3) in rats leads to the slow development of diastolic dysfunction over ageing. The aim of the study is to decipher the involvement of endothelial dysfunction in the HFpEF development. For that, we investigated endothelial and cardiac function in 15-, 30-, and 45-week-old wild-type (WT) and Tgβ3 rats. The aortic expression of •NO synthase (NOS) isoforms was evaluated by Western blot. Finally, electron paramagnetic resonance measurements were performed on aortas to evaluate •NO and O2•- production. Vascular reactivity was altered as early as 15 weeks of age in response to isoproterenol in Tgβ3 aortas and mesenteric arteries. NOS1 (neuronal NOS) expression was higher in the Tgβ3 aorta at 30 and 45 weeks of age (30 weeks: WT:
; Tgβ3:
; 45 weeks: WT:
; Tgβ3:
;
). Interestingly, the endothelial NOS (NOS3) monomer form is increased in Tgβ3 rats at 45 weeks of age (ratio NOS3 dimer/NOS3 monomer; WT:
; Tgβ3:
;
). Aortic •NO production was increased by NOS2 (inducible NOS) at 15 weeks of age in Tgβ3 rats (+52% vs. WT). Aortic O2•- production was increased in Tgβ3 rats at 30 and 45 weeks of age (+75% and+76%, respectively, vs. WT,
). We have shown that endothelial dysfunction and oxidative stress are present as early as 15 weeks of age and therefore conclude that endothelial dysfunction could be a cause of HFpEF development.
Collapse
|
14
|
Demasi M, Augusto O, Bechara EJH, Bicev RN, Cerqueira FM, da Cunha FM, Denicola A, Gomes F, Miyamoto S, Netto LES, Randall LM, Stevani CV, Thomson L. Oxidative Modification of Proteins: From Damage to Catalysis, Signaling, and Beyond. Antioxid Redox Signal 2021; 35:1016-1080. [PMID: 33726509 DOI: 10.1089/ars.2020.8176] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: The systematic investigation of oxidative modification of proteins by reactive oxygen species started in 1980. Later, it was shown that reactive nitrogen species could also modify proteins. Some protein oxidative modifications promote loss of protein function, cleavage or aggregation, and some result in proteo-toxicity and cellular homeostasis disruption. Recent Advances: Previously, protein oxidation was associated exclusively to damage. However, not all oxidative modifications are necessarily associated with damage, as with Met and Cys protein residue oxidation. In these cases, redox state changes can alter protein structure, catalytic function, and signaling processes in response to metabolic and/or environmental alterations. This review aims to integrate the present knowledge on redox modifications of proteins with their fate and role in redox signaling and human pathological conditions. Critical Issues: It is hypothesized that protein oxidation participates in the development and progression of many pathological conditions. However, no quantitative data have been correlated with specific oxidized proteins or the progression or severity of pathological conditions. Hence, the comprehension of the mechanisms underlying these modifications, their importance in human pathologies, and the fate of the modified proteins is of clinical relevance. Future Directions: We discuss new tools to cope with protein oxidation and suggest new approaches for integrating knowledge about protein oxidation and redox processes with human pathophysiological conditions. Antioxid. Redox Signal. 35, 1016-1080.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Renata N Bicev
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda M Cerqueira
- CENTD, Centre of Excellence in New Target Discovery, Instituto Butantan, São Paulo, Brazil
| | - Fernanda M da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Denicola
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Fernando Gomes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Lía M Randall
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Leonor Thomson
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
15
|
Hong NJ, Gonzalez-Vicente A, Saez F, Garvin JL. Mechanisms of decreased tubular flow-induced nitric oxide in Dahl salt-sensitive rat thick ascending limbs. Am J Physiol Renal Physiol 2021; 321:F369-F377. [PMID: 34308669 PMCID: PMC8530749 DOI: 10.1152/ajprenal.00124.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022] Open
Abstract
Dahl salt-sensitive (SS) rat kidneys produce less nitric oxide (NO) than those of salt-resistant (SR) rats. Thick ascending limb (TAL) NO synthase 3 (NOS3) is a major source of renal NO, and luminal flow enhances its activity. We hypothesized that flow-induced NO is reduced in TALs from SS rats primarily due to NOS uncoupling and diminished NOS3 expression rather than scavenging. Rats were fed normal-salt (NS) or high-salt (HS) diets. We measured flow-induced NO and superoxide in perfused TALs and performed Western blots of renal outer medullas. For rats on NS, flow-induced NO was 35 ± 6 arbitrary units (AU)/min in TALs from SR rats but only 11 ± 2 AU/min in TALs from SS (P < 0.008). The superoxide scavenger tempol decreased the difference in flow-induced NO between strains by about 36% (P < 0.020). The NOS inhibitor N-nitro-l-arginine methyl ester (l-NAME) decreased flow-induced superoxide by 36 ± 8% in TALs from SS rats (P < 0.02) but had no effect in TALs from SR rats. NOS3 expression was not different between strains on NS. For rats on HS, the difference in flow-induced NO between strains was enhanced (SR rats: 44 ± 10 vs. SS: 9 ± 2 AU/min, P < 0.005). Tempol decreased the difference in flow-induced NO between strains by about 37% (P < 0.012). l-NAME did not significantly reduce flow-induced superoxide in either strain. HS increased NOS3 expression in TALs from SR rats but not in TALs from SS rats (P < 0.003). We conclude that 1) on NS, flow-induced NO is diminished in TALs from SS rats mainly due to NOS3 uncoupling such that it produces superoxide and 2) on HS, the difference is enhanced due to failure of TALs from SS rats to increase NOS3 expression.NEW & NOTEWORTHY The Dahl rat has been used extensively to study the causes and effects of salt-sensitive hypertension. Our study suggests that more complex processes other than simple scavenging of nitric oxide (NO) by superoxide lead to less NO production in thick ascending limbs of the Dahl salt-sensitive rat. The predominant mechanism involved depends on dietary salt. Impaired flow-induced NO production in thick ascending limbs most likely contributes to the Na+ retention associated with salt-sensitive hypertension.
Collapse
Affiliation(s)
- Nancy J Hong
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| | | | - Fara Saez
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
16
|
Birk M, Baum E, Zadeh JK, Manicam C, Pfeiffer N, Patzak A, Helmstädter J, Steven S, Kuntic M, Daiber A, Gericke A. Angiotensin II Induces Oxidative Stress and Endothelial Dysfunction in Mouse Ophthalmic Arteries via Involvement of AT1 Receptors and NOX2. Antioxidants (Basel) 2021; 10:antiox10081238. [PMID: 34439486 PMCID: PMC8389243 DOI: 10.3390/antiox10081238] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Angiotensin II (Ang II) has been implicated in the pathophysiology of various age-dependent ocular diseases. The purpose of this study was to test the hypothesis that Ang II induces endothelial dysfunction in mouse ophthalmic arteries and to identify the underlying mechanisms. Ophthalmic arteries were exposed to Ang II in vivo and in vitro to determine vascular function by video microscopy. Moreover, the formation of reactive oxygen species (ROS) was quantified and the expression of prooxidant redox genes and proteins was determined. The endothelium-dependent artery responses were blunted after both in vivo and in vitro exposure to Ang II. The Ang II type 1 receptor (AT1R) blocker, candesartan, and the ROS scavenger, Tiron, prevented Ang II-induced endothelial dysfunction. ROS levels and NOX2 expression were increased following Ang II incubation. Remarkably, Ang II failed to induce endothelial dysfunction in ophthalmic arteries from NOX2-deficient mice. Following Ang II incubation, endothelium-dependent vasodilation was mainly mediated by cytochrome P450 oxygenase (CYP450) metabolites, while the contribution of nitric oxide synthase (NOS) and 12/15-lipoxygenase (12/15-LOX) pathways became negligible. These findings provide evidence that Ang II induces endothelial dysfunction in mouse ophthalmic arteries via AT1R activation and NOX2-dependent ROS formation. From a clinical point of view, the blockade of AT1R signaling and/or NOX2 may be helpful to retain or restore endothelial function in ocular blood vessels in certain ocular diseases.
Collapse
Affiliation(s)
- Michael Birk
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (M.B.); (E.B.); (J.K.Z.); (C.M.); (N.P.)
- Department of Ophthalmology, University Eye Hospital Tübingen, Elfriede-Aulhorn-Straße 7, 72076 Tübingen, Germany
| | - Ewa Baum
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (M.B.); (E.B.); (J.K.Z.); (C.M.); (N.P.)
- Department of Social Sciences and the Humanities, Poznan University of Medical Sciences, ul. Rokietnicka 7, 60-806 Poznań, Poland
| | - Jenia Kouchek Zadeh
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (M.B.); (E.B.); (J.K.Z.); (C.M.); (N.P.)
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (M.B.); (E.B.); (J.K.Z.); (C.M.); (N.P.)
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (M.B.); (E.B.); (J.K.Z.); (C.M.); (N.P.)
| | - Andreas Patzak
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Johanna Helmstädter
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center, Johannes Gutenberg University, Building 605, Langenbeckstr. 1, 55131 Mainz, Germany; (J.H.); (S.S.); (M.K.); (A.D.)
| | - Sebastian Steven
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center, Johannes Gutenberg University, Building 605, Langenbeckstr. 1, 55131 Mainz, Germany; (J.H.); (S.S.); (M.K.); (A.D.)
| | - Marin Kuntic
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center, Johannes Gutenberg University, Building 605, Langenbeckstr. 1, 55131 Mainz, Germany; (J.H.); (S.S.); (M.K.); (A.D.)
| | - Andreas Daiber
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center, Johannes Gutenberg University, Building 605, Langenbeckstr. 1, 55131 Mainz, Germany; (J.H.); (S.S.); (M.K.); (A.D.)
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (M.B.); (E.B.); (J.K.Z.); (C.M.); (N.P.)
- Correspondence: ; Tel.: +49-613-117-8276
| |
Collapse
|
17
|
DeVallance ER, Branyan KW, Olfert IM, Pistilli EE, Bryner RW, Kelley EE, Frisbee JC, Chantler PD. Chronic stress induced perivascular adipose tissue impairment of aortic function and the therapeutic effect of exercise. Exp Physiol 2021; 106:1343-1358. [PMID: 33913209 DOI: 10.1113/ep089449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the central question of this study? Thoracic perivascular adipose tissue (tPVAT) is known to, in part, regulate aortic function: what are the effects of unpredictable chronic mild stress (UCMS) on the tPVAT regulation of aortic function and what is the role of exercise training in alleviating the potential negative actions of UCMS on tPVAT? What is the main finding and its importance? UCMS causes tPVAT to disrupt endothelium-dependent dilatation, increases inflammatory cytokine production and diminishes tPVAT-adiponectin. Exercise training proved efficacious in preventing tPVAT-mediated disruption of aortic function. The data support a tPVAT mechanism through which chronic stress negatively impacts vascular health, which adds to our knowledge of how psychological disorders might increase the risk of cardiovascular disease. ABSTRACT Chronic stress is a major risk for cardiovascular disease. Perivascular adipose tissue (PVAT) has been shown to regulate vascular function; however, the impact of chronic stress and the comorbidity of metabolic syndrome (MetS) on thoracic (t)PVAT is unknown. Additionally, aerobic exercise training (AET) is known to combat the pathology of MetS and chronic stress, but the role of tPVAT in these actions is also unknown. Therefore, the purpose of this study was to examine the effects of unpredictable chronic mild stress (UCMS) on the tPVAT regulation of aortic function and the preventative effect of AET. Lean (LZR) and obese (OZR) Zucker rats (16-17 weeks old) were exposed to 8 weeks of UCMS with and without treadmill exercise (AET). In LZR, UCMS impaired aortic endothelium-dependent dilatation (EDD) (assessed ex vivo by wire myography) and aortic stiffness (assessed by elastic modulus) with no change in OZR subject to UCMS. However, both LZR and OZR UCMS tPVAT impaired EDD compared to respective controls. LZR and OZR subject to UCMS had higher oxidative stress production, diminished adiponectin and impaired aortic nitric oxide levels. Divergently, UCMS induced greater inflammatory cytokine production in LZR UCMS tPVAT, but not in OZR UCMS tPVAT. AET prevented the tPVAT impairment of aortic relaxation with UCMS in LZR and OZR. Additionally, AET reduced aortic stiffness in both LZR and OZR. These beneficial effects on tPVAT regulation of the aorta are likely due to AET preservation of adiponectin, reduced oxidative stress and inflammation, and enhanced nitric oxide. UCMS impaired tPVAT-regulated aortic function in LZR, and augmented MetS-induced EDD in OZR. Conversely, AET in combination with UCMS largely preserved aortic function and the tPVAT environment, in both groups.
Collapse
Affiliation(s)
- Evan R DeVallance
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Kayla W Branyan
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - I Mark Olfert
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Emidio E Pistilli
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Randall W Bryner
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Eric E Kelley
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jefferson C Frisbee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Paul D Chantler
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA.,Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
18
|
Bubb KJ, Ravindran D, Cartland SP, Finemore M, Clayton ZE, Tsang M, Tang O, Kavurma MM, Patel S, Figtree GA. β 3 Adrenergic Receptor Stimulation Promotes Reperfusion in Ischemic Limbs in a Murine Diabetic Model. Front Pharmacol 2021; 12:666334. [PMID: 33967810 PMCID: PMC8100512 DOI: 10.3389/fphar.2021.666334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Aims/Hypothesis: Peripheral arterial disease (PAD) is a major burden, resulting in limb claudication, repeated surgical interventions and amputation. There is an unmet need for improved medical management of PAD that improves quality of life, maintains activities of daily life and reduces complications. Nitric oxide (NO)/redox balance is a key regulator of angiogenesis. We have previously shown beneficial effects of a β3 adrenergic receptor (β3AR) agonist on NO/redox balance. We hypothesized that β3AR stimulation would have therapeutic potential in PAD by promoting limb angiogenesis. Methods: The effect of the β3AR agonist CL 316,243 (1–1,000 nmol/L in vitro, 1 mg/kg/day s. c) was tested in established angiogenesis assays with human endothelial cells and patient-derived endothelial colony forming cells. Post-ischemia reperfusion was determined in streptozotocin and/or high fat diet-induced diabetic and non-diabetic mice in vivo using the hind limb ischemia model. Results: CL 316,243 caused accelerated recovery from hind limb ischemia in non-diabetic and type 1 and 2 diabetic mice. Increased eNOS activity and decreased superoxide generation were detected in hind limb ischemia calf muscle from CL 316, 243 treated mice vs. controls. The protective effect of CL 316,243 in diabetic mice was associated with >50% decreases in eNOS glutathionylation and nitrotyrosine levels. The β3AR agonist directly promoted angiogenesis in endothelial cells in vitro. These pro-angiogenic effects were β3AR and NOS-dependent. Conclusion/Interpretation:β3AR stimulation increased angiogenesis in diabetic ischemic limbs, with demonstrable improvements in NO/redox balance and angiogenesis elicited by a selective agonist. The orally available β3AR agonist, Mirabegron, used for overactive bladder syndrome, makes translation to a clinical trial by repurposing of a β3AR agonist to target PAD immediately feasible.
Collapse
Affiliation(s)
- Kristen J Bubb
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia.,Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,Department of Physiology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Dhanya Ravindran
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia.,Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,Heart Research Institute, Eliza St Newtown, Sydney, NSW, Australia
| | - Siân P Cartland
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia.,Heart Research Institute, Eliza St Newtown, Sydney, NSW, Australia
| | - Meghan Finemore
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia.,Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Zoe E Clayton
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia.,Heart Research Institute, Eliza St Newtown, Sydney, NSW, Australia
| | - Michael Tsang
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia.,Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Owen Tang
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia.,Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Mary M Kavurma
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia.,Heart Research Institute, Eliza St Newtown, Sydney, NSW, Australia
| | - Sanjay Patel
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia.,Heart Research Institute, Eliza St Newtown, Sydney, NSW, Australia
| | - Gemma A Figtree
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia.,Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| |
Collapse
|
19
|
Rashdan NA, Shrestha B, Pattillo CB. S-glutathionylation, friend or foe in cardiovascular health and disease. Redox Biol 2020; 37:101693. [PMID: 32912836 PMCID: PMC7767732 DOI: 10.1016/j.redox.2020.101693] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 12/27/2022] Open
Abstract
Glutathione is a low molecular weight thiol that is present at high levels in the cell. The high levels of glutathione in the cell make it one of the most abundant antioxidants contributing to cellular redox homeostasis. As a general rule, throughout cardiovascular disease and progression there is an imbalance in redox homeostasis characterized by reactive oxygen species overproduction and glutathione underproduction. As research into these imbalances continues, glutathione concentrations are increasingly being observed to drive various physiological and pathological signaling responses. Interestingly in addition to acting directly as an antioxidant, glutathione is capable of post translational modifications (S-glutathionylation) of proteins through both chemical interactions and enzyme mediated events. This review will discuss both the chemical and enzyme-based S-glutathionylation of proteins involved in cardiovascular pathologies and angiogenesis.
Collapse
Affiliation(s)
- N A Rashdan
- Department of Cellular and Molecular Physiology, Louisiana State Health Science Center, Shreveport, LA, USA
| | - B Shrestha
- Department of Cellular and Molecular Physiology, Louisiana State Health Science Center, Shreveport, LA, USA
| | - C B Pattillo
- Department of Cellular and Molecular Physiology, Louisiana State Health Science Center, Shreveport, LA, USA.
| |
Collapse
|
20
|
Pechanova O, Dayar E, Cebova M. Therapeutic Potential of Polyphenols-Loaded Polymeric Nanoparticles in Cardiovascular System. Molecules 2020; 25:molecules25153322. [PMID: 32707934 PMCID: PMC7435870 DOI: 10.3390/molecules25153322] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Numerous studies document an increased production of reactive oxygen species (ROS) with a subsequent decrease in nitric oxide (NO) bioavailability in different cardiovascular diseases, including hypertension, atherosclerosis, and heart failure. Many natural polyphenols have been demonstrated to decrease ROS generation and/or to induce the endogenous antioxidant enzymatic defense system. Moreover, different polyphenolic compounds have the ability to increase the activity/expression of endothelial nitric oxide synthase (eNOS) with a subsequent enhancement of NO generation. However, as a result of low absorption and bioavailability of natural polyphenols, the beneficial effects of these substances are very limited. Recent progress in delivering polyphenols to the targeted tissues revealed new possibilities for the use of polymeric nanoparticles in increasing the efficiency and reducing the degradability of natural polyphenols. This review focuses on the effects of different natural polyphenolic substances, especially resveratrol, quercetin, curcumin, and cherry extracts, and their ability to bind to polymeric nanoparticles, and summarizes the effects of polyphenol-loaded nanoparticles, mainly in the cardiovascular system.
Collapse
|
21
|
Hassanien MA. Ameliorating Effects of Ginger on Isoproterenol-Induced Acute Myocardial Infarction in Rats and its Impact on Cardiac Nitric Oxide. J Microsc Ultrastruct 2020; 8:96-103. [PMID: 33282684 PMCID: PMC7703011 DOI: 10.4103/jmau.jmau_70_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/01/2020] [Accepted: 01/30/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Myocardial infarction is a major heart disease and is considered a significant reason for mortality and morbidity around the world. The model of Isoproterenol (ISO)-induced myocardial infarction provides a supported method for investigating the impacts of numerous possible cardioprotective bioactive substances. Nitric Oxide (NO) could react with reactive oxygen intermediates and free radicals to create harmful species. For several years, researchers have investigated the use of herbs and natural products as antioxidants to protect the body's organs against toxins and drug metabolites. However, studies on the antioxidant effects of ginger against cardiotoxicity induced by drugs and toxic agents remain insufficient, especially its effects on NO. Aims and Objectives: This study aimed to investigate the possible antioxidant and protective role of ginger in ISO-induced acute myocardial infarction in experimental rats. Special emphasis was given to the impact of ginger on NO levels. Materials and Methods: Forty adult male albino rats were used in this study. The animals were randomly divided into four equal groups. Group I served as control and received a normal mouse diet. Group II received ginger extract orally, Group III received normal diet for eight weeks, followed by ISO administration subcutaneously to induce myocardial infarction, Group IV received ginger extracts, followed by ISO. Results and Conclusions: The results of this study illustrated ginger's protective role against ISO-induced acute myocardial infarction. This role is mainly due to ginger's antioxidant and anti-inflammatory properties. We assume that sufficient intake of ginger by individuals who are regularly exposed to ISO would be beneficial in overcoming the cardiotoxicity of ISO. The effects of ginger may take place through inhibition of NOS enzymes, which needs further immunohistochemical and biochemical studies to reveal the underlying different mechanisms of the effects of ginger at the molecular and structural levels.
Collapse
Affiliation(s)
- Mohammed Ahmed Hassanien
- Department of Pharmacy Practice, College of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
22
|
Role of nitric oxide in mediating the cardioprotective effect of agomelatine against isoproterenol-induced myocardial injury in rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1809-1823. [DOI: 10.1007/s00210-020-01860-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/24/2020] [Indexed: 12/19/2022]
|
23
|
Gantner BN, LaFond KM, Bonini MG. Nitric oxide in cellular adaptation and disease. Redox Biol 2020; 34:101550. [PMID: 32438317 PMCID: PMC7235643 DOI: 10.1016/j.redox.2020.101550] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide synthases are the major sources of nitric oxide, a critical signaling molecule involved in a wide range of cellular and physiological processes. These enzymes comprise a family of genes that are highly conserved across all eukaryotes. The three family members found in mammals are important for inter- and intra-cellular signaling in tissues that include the nervous system, the vasculature, the gut, skeletal muscle, and the immune system, among others. We summarize major advances in the understanding of biochemical and tissue-specific roles of nitric oxide synthases, with a focus on how these mechanisms enable tissue adaptation and health or dysfunction and disease. We highlight the unique mechanisms and processes of neuronal nitric oxide synthase, or NOS1. This was the first of these enzymes discovered in mammals, and yet much remains to be understood about this highly conserved and complex gene. We provide examples of two areas that will likely be of increasing importance in nitric oxide biology. These include the mechanisms by which these critical enzymes promote adaptation or disease by 1) coordinating communication by diverse cell types within a tissue and 2) directing cellular differentiation/activation decisions processes.
Collapse
Affiliation(s)
- Benjamin N Gantner
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA.
| | - Katy M LaFond
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA
| | - Marcelo G Bonini
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA; Feinberg School of Medicine, Division of Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, USA
| |
Collapse
|
24
|
Obradovic M, Essack M, Zafirovic S, Sudar‐Milovanovic E, Bajic VP, Van Neste C, Trpkovic A, Stanimirovic J, Bajic VB, Isenovic ER. Redox control of vascular biology. Biofactors 2020; 46:246-262. [PMID: 31483915 PMCID: PMC7187163 DOI: 10.1002/biof.1559] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022]
Abstract
Redox control is lost when the antioxidant defense system cannot remove abnormally high concentrations of signaling molecules, such as reactive oxygen species (ROS). Chronically elevated levels of ROS cause oxidative stress that may eventually lead to cancer and cardiovascular and neurodegenerative diseases. In this review, we focus on redox effects in the vascular system. We pay close attention to the subcompartments of the vascular system (endothelium, smooth muscle cell layer) and give an overview of how redox changes influence those different compartments. We also review the core aspects of redox biology, cardiovascular physiology, and pathophysiology. Moreover, the topic-specific knowledgebase DES-RedoxVasc was used to develop two case studies, one focused on endothelial cells and the other on the vascular smooth muscle cells, as a starting point to possibly extend our knowledge of redox control in vascular biology.
Collapse
Affiliation(s)
- Milan Obradovic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE)ThuwalKingdom of Saudi Arabia
| | - Sonja Zafirovic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| | - Emina Sudar‐Milovanovic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| | - Vladan P. Bajic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| | - Christophe Van Neste
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE)ThuwalKingdom of Saudi Arabia
| | - Andreja Trpkovic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| | - Julijana Stanimirovic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| | - Vladimir B. Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE)ThuwalKingdom of Saudi Arabia
| | - Esma R. Isenovic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| |
Collapse
|
25
|
Chen X, Yao F, Song J, Fu B, Sun G, Song X, Fu C, Jiang R, Sun L. Protective effects of phenolic acid extract from ginseng on vascular endothelial cell injury induced by palmitate via activation of PI3K/Akt/eNOS pathway. J Food Sci 2020; 85:576-581. [PMID: 32078759 DOI: 10.1111/1750-3841.15071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/02/2019] [Accepted: 01/03/2020] [Indexed: 01/30/2023]
Abstract
Elevated free fatty acids may impair insulin-mediated signaling to eNOS that contributes to the pathophysiology of endothelial dysfunction. Previous studies have indicated the protective effect of ginseng and the regulatory potential of phenolic acid components from other plants on endothelial function. Therefore, this study investigated the protective effects of phenolic acid extract from ginseng (PG2) on endothelial cells against palmitate-induced damage. We found that PG2 increases cell viability, inhibits the palmitate-induced intracellular accumulation of lipids, and the overexpression of endothelin-1 (ET-1) through enhancing the phosphorylation of the phosphatidylinositol 3-kinase/Akt/endothelial nitric oxide synthase (PI3K/Akt/eNOS) signaling pathway. The results of this study may be valuable for the development of PG2 to combat the endothelial cell damage caused by hyperlipidemia. PRACTICAL APPLICATION: We proved that phenolic acid extract from ginseng has a protective effect on free fatty acid-induced endothelial dysfunction in vitro. This study provides experimental data for the application of ginseng-derived phenolic acids in treating cardiovascular disease.
Collapse
Affiliation(s)
- Xuenan Chen
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun Univ. of Chinese Medicine, 1478 Gongnong St., Changchun, Jilin Province, 130021, P. R. China
| | - Fan Yao
- Center of Preventive Treatment of Diseases, the Affiliated Hospital to Changchun Univ. of Chinese Medicine, 1478 Gongnong St., Changchun, Jilin Province, 130021, P. R. China
| | - Jia Song
- Technology Innovation Center for Chinese Medicine Biotechnology, College of Science, Beihua Univ., 15 Jilin St., Jilin, Jilin Province, 132013, P. R. China
| | - Baoyu Fu
- Technology Innovation Center for Chinese Medicine Biotechnology, College of Science, Beihua Univ., 15 Jilin St., Jilin, Jilin Province, 132013, P. R. China
| | - Guang Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun Univ. of Chinese Medicine, 1478 Gongnong St., Changchun, Jilin Province, 130021, P. R. China
| | - Xinying Song
- Technology Innovation Center for Chinese Medicine Biotechnology, College of Science, Beihua Univ., 15 Jilin St., Jilin, Jilin Province, 132013, P. R. China
| | - Chunge Fu
- Technology Innovation Center for Chinese Medicine Biotechnology, College of Science, Beihua Univ., 15 Jilin St., Jilin, Jilin Province, 132013, P. R. China
| | - Rui Jiang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun Univ. of Chinese Medicine, 1478 Gongnong St., Changchun, Jilin Province, 130021, P. R. China.,Technology Innovation Center for Chinese Medicine Biotechnology, College of Science, Beihua Univ., 15 Jilin St., Jilin, Jilin Province, 132013, P. R. China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun Univ. of Chinese Medicine, 1478 Gongnong St., Changchun, Jilin Province, 130021, P. R. China
| |
Collapse
|
26
|
Dicarbonyl Stress and S-Glutathionylation in Cerebrovascular Diseases: A Focus on Cerebral Cavernous Malformations. Antioxidants (Basel) 2020; 9:antiox9020124. [PMID: 32024152 PMCID: PMC7071005 DOI: 10.3390/antiox9020124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Dicarbonyl stress is a dysfunctional state consisting in the abnormal accumulation of reactive α-oxaldehydes leading to increased protein modification. In cells, post-translational changes can also occur through S-glutathionylation, a highly conserved oxidative post-translational modification consisting of the formation of a mixed disulfide between glutathione and a protein cysteine residue. This review recapitulates the main findings supporting a role for dicarbonyl stress and S-glutathionylation in the pathogenesis of cerebrovascular diseases, with specific emphasis on cerebral cavernous malformations (CCM), a vascular disease of proven genetic origin that may give rise to various clinical signs and symptoms at any age, including recurrent headaches, seizures, focal neurological deficits, and intracerebral hemorrhage. A possible interplay between dicarbonyl stress and S-glutathionylation in CCM is also discussed.
Collapse
|
27
|
Robillard S, Mercier C, Breton V, Paquin-Veillette J, Guay A, Lizotte F, Geraldes P. Ablation of angiotensin type 2 receptor prevents endothelial nitric oxide synthase glutathionylation and nitration in ischaemic abductor muscle of diabetic mice. Diab Vasc Dis Res 2020; 17:1479164119883978. [PMID: 31726870 PMCID: PMC7510371 DOI: 10.1177/1479164119883978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Peripheral artery disease is a severe complication of diabetes. We have reported that the deletion of angiotensin type 2 receptor in diabetic mice promoted vascular angiogenesis in the ischaemic muscle 4 weeks following ischaemia. However, the angiotensin type 2 receptor deletion beneficial effects occurred 2 weeks post surgery suggesting that angiotensin type 2 receptor may regulate other pro-angiogenic signalling pathways during the early phases of ischaemia. Nondiabetic and diabetic angiotensin type 2 receptor-deficient mice (Agtr2-/Y) underwent femoral artery ligation after 2 months of diabetes. Blood perfusion was measured every week up to 2 weeks post surgery. Expression of vascular endothelial growth factor, vascular endothelial growth factor receptor and endothelial nitric oxide synthase expression and activity were evaluated. Blood flow reperfusion in the ischaemic muscle of diabetic Agtr2+/Y mice was recovered at 35% as compared to a 68% recovery in diabetic Agtr2-/Y mice. The expression of vascular endothelial growth factor and its receptors was diminished in diabetic Agtr2+/Y mice, an observation not seen in diabetic Agtr2-/Y mice. Interestingly, Agtr2-/Y mice were protected from diabetes-induced glutathionylation, nitration and decreased endothelial nitric oxide synthase expression, which correlated with reduced endothelial cell death and enhanced vascular density in diabetic ischaemic muscle. In conclusion, our results suggest that the deletion of angiotensin type 2 receptor promotes blood flow reperfusion in diabetes by favouring endothelial cell survival and function.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blood Flow Velocity
- Cattle
- Cells, Cultured
- Diabetes Mellitus/enzymology
- Diabetes Mellitus/genetics
- Disease Models, Animal
- Endothelial Cells/enzymology
- Endothelial Cells/pathology
- Glutathione/metabolism
- Hindlimb
- Ischemia/enzymology
- Ischemia/genetics
- Ischemia/physiopathology
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Skeletal/blood supply
- Neovascularization, Physiologic
- Nitrates/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Peripheral Arterial Disease/enzymology
- Peripheral Arterial Disease/genetics
- Peripheral Arterial Disease/physiopathology
- Protein Processing, Post-Translational
- Receptor, Angiotensin, Type 2/deficiency
- Receptor, Angiotensin, Type 2/genetics
- Recovery of Function
- Regional Blood Flow
Collapse
Affiliation(s)
- Stéphanie Robillard
- Research Center of the Centre
Hospitalier Universitaire de Sherbrooke, Québec, Canada
| | - Clément Mercier
- Research Center of the Centre
Hospitalier Universitaire de Sherbrooke, Québec, Canada
| | - Valérie Breton
- Research Center of the Centre
Hospitalier Universitaire de Sherbrooke, Québec, Canada
| | | | - Andréanne Guay
- Research Center of the Centre
Hospitalier Universitaire de Sherbrooke, Québec, Canada
| | - Farah Lizotte
- Research Center of the Centre
Hospitalier Universitaire de Sherbrooke, Québec, Canada
| | - Pedro Geraldes
- Research Center of the Centre
Hospitalier Universitaire de Sherbrooke, Québec, Canada
- Division of Endocrinology, Department of
Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
- Pedro Geraldes, Division of Endocrinology,
Department of Medicine, Université de Sherbrooke, 3001 12e Ave Nord, Sherbrooke,
QC J1H 5N4, Canada.
| |
Collapse
|
28
|
Zemskov EA, Lu Q, Ornatowski W, Klinger CN, Desai AA, Maltepe E, Yuan JXJ, Wang T, Fineman JR, Black SM. Biomechanical Forces and Oxidative Stress: Implications for Pulmonary Vascular Disease. Antioxid Redox Signal 2019; 31:819-842. [PMID: 30623676 PMCID: PMC6751394 DOI: 10.1089/ars.2018.7720] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Oxidative stress in the cell is characterized by excessive generation of reactive oxygen species (ROS). Superoxide (O2-) and hydrogen peroxide (H2O2) are the main ROS involved in the regulation of cellular metabolism. As our fundamental understanding of the underlying causes of lung disease has increased it has become evident that oxidative stress plays a critical role. Recent Advances: A number of cells in the lung both produce, and respond to, ROS. These include vascular endothelial and smooth muscle cells, fibroblasts, and epithelial cells as well as the cells involved in the inflammatory response, including macrophages, neutrophils, eosinophils. The redox system is involved in multiple aspects of cell metabolism and cell homeostasis. Critical Issues: Dysregulation of the cellular redox system has consequential effects on cell signaling pathways that are intimately involved in disease progression. The lung is exposed to biomechanical forces (fluid shear stress, cyclic stretch, and pressure) due to the passage of blood through the pulmonary vessels and the distension of the lungs during the breathing cycle. Cells within the lung respond to these forces by activating signal transduction pathways that alter their redox state with both physiologic and pathologic consequences. Future Directions: Here, we will discuss the intimate relationship between biomechanical forces and redox signaling and its role in the development of pulmonary disease. An understanding of the molecular mechanisms induced by biomechanical forces in the pulmonary vasculature is necessary for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Evgeny A Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Qing Lu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Wojciech Ornatowski
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Christina N Klinger
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Jason X-J Yuan
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, Arizona
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| |
Collapse
|
29
|
Lermant A, Murdoch CE. Cysteine Glutathionylation Acts as a Redox Switch in Endothelial Cells. Antioxidants (Basel) 2019; 8:E315. [PMID: 31426416 PMCID: PMC6720164 DOI: 10.3390/antiox8080315] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Abstract
Oxidative post-translational modifications (oxPTM) of receptors, enzymes, ion channels and transcription factors play an important role in cell signaling. oxPTMs are a key way in which oxidative stress can influence cell behavior during diverse pathological settings such as cardiovascular diseases (CVD), cancer, neurodegeneration and inflammatory response. In addition, changes in oxPTM are likely to be ways in which low level reactive oxygen and nitrogen species (RONS) may contribute to redox signaling, exerting changes in physiological responses including angiogenesis, cardiac remodeling and embryogenesis. Among oxPTM, S-glutathionylation of reactive cysteines emerges as an important regulator of vascular homeostasis by modulating endothelial cell (EC) responses to their local redox environment. This review summarizes the latest findings of S-glutathionylated proteins in major EC pathways, and the functional consequences on vascular pathophysiology. This review highlights the diversity of molecules affected by S-glutathionylation, and the complex consequences on EC function, thereby demonstrating an intricate dual role of RONS-induced S-glutathionylation in maintaining vascular homeostasis and participating in various pathological processes.
Collapse
Affiliation(s)
- Agathe Lermant
- Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK
| | - Colin E Murdoch
- Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK.
| |
Collapse
|
30
|
Bubb KJ, Drummond GR, Figtree GA. New opportunities for targeting redox dysregulation in cardiovascular disease. Cardiovasc Res 2019; 116:532-544. [DOI: 10.1093/cvr/cvz183] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/02/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
Abstract
Despite substantial promise, the use of antioxidant therapy to improve cardiovascular outcomes has been disappointing. Whilst the fundamental biology supporting their use continues to build, the challenge now is to differentially target dysregulated redox signalling domains and to identify new ways to deliver antioxidant substances. Looking further afield to other disciplines, there is an emerging ‘tool-kit’ containing sophisticated molecular and drug delivery applications. Applying these to the cardiovascular redox field could prove a successful strategy to combat the increasing disease burden. Excessive reactive oxygen species production and protein modifications in the mitochondria has been the target of successful drug development with several positive outcomes emerging in the cardiovascular space, harnessing both improved delivery mechanisms and enhanced understanding of the biological abnormalities. Using this as a blueprint, similar strategies could be applied and expanded upon in other redox-hot-spots, such as the caveolae sub-cellular region, which houses many of the key cardiovascular redox proteins such as NADPH oxidase, endothelial nitric oxide synthase, angiotensin II receptors, and beta adrenoceptors. The expanded tool kit of drug development, including gene and miRNA therapies, nanoparticle technology and micropeptide targeting, can be applied to target dysregulated redox signalling in subcellular compartments of cardiovascular cells. In this review, we consider the opportunities for improving cardiovascular outcomes by utilizing new technology platforms to target subcellular ‘bonfires’ generated by dysregulated redox pathways, to improve clinical outcomes.
Collapse
Affiliation(s)
- Kristen J Bubb
- Cardiothoracic and Vascular Health, Kolling Institute and Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
| | - Gemma A Figtree
- Cardiothoracic and Vascular Health, Kolling Institute and Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Department of Cardiology, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
31
|
Wei J, Xu L, Du YN, Tang XF, Ye MQ, Wu YJ, Han WQ, Gao PJ. Membrane raft redox signalling contributes to endothelial dysfunction and vascular remodelling of thoracic aorta in angiotensin II-infused rats. Exp Physiol 2019; 104:946-956. [PMID: 30924217 DOI: 10.1113/ep087335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 03/12/2019] [Indexed: 12/21/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is the membrane raft redox signalling pathway involved in blood pressure increase, endothelial dysfunction and vascular remodelling in an angiotensin II-induced hypertensive animal model? What is the main finding and its importance? The membrane raft redox signalling pathway was involved in endothelial dysfunction and medial remodelling in angiotensin II-induced hypertension. ABSTRACT The membrane raft (MR) redox pathway is characterized by NADPH oxidase activation via the clustering of its subunits through lysosome fusion and the activation of acid sphingomyelinase (ASMase). Our previous study shows that the MR redox signalling pathway is associated with angiontensin II (AngII)-induced production of reactive oxygen species (ROS) and endothelial dysfunction in rat mesenteric arteries. In the present study, we hypothesized that this signalling pathway is involved in blood pressure increase, endothelial dysfunction and vascular remodelling in an AngII-induced hypertensive animal model. Sixteen-week-old male Sprague-Dawley rats were subjected to AngII infusion for 2 weeks with or without treatment with the lysosome fusion inhibitor bafilomycin A1 and ASMase inhibitor amitriptyline. After treatments, aortas were harvested for further study. The results showed that the MR redox signalling pathway was activated as indicated by the increase of MR formation, ASMase activity and ROS production in aorta from AngII-infused rats compared with that from control rats. MR formation and ROS production were significantly inhibited in thoracic aorta from AngII-induced rats treated with bafilomycin A1 and amitriptyline. Both treatments significantly attenuated blood pressure increase, endothelial dysfunction and vascular remodelling including medial hypertrophy, and increased collagen and fibronectin deposition in thoracic aortas from AngII-infused rats. Finally, both treatments significantly prevented the increase of inflammatory factors including monocyte chemotactic protein 1, intercellular adhesion molecule 1 and tumour necrosis factor α in thoracic aorta from AngII-infused rats. In conclusion, the present study demonstrates that the MR redox signalling pathway was involved in endothelial dysfunction and medial remodelling in AngII-induced hypertension.
Collapse
Affiliation(s)
- Jian Wei
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China
| | - Lian Xu
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China
| | - Ya-Nan Du
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China
| | - Xiao-Feng Tang
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China
| | - Mao-Qing Ye
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China
| | - Yong-Jie Wu
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China
| | - Wei-Qing Han
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China.,Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ping-Jin Gao
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China.,Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
32
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
33
|
KRIT1 Loss-Of-Function Associated with Cerebral Cavernous Malformation Disease Leads to Enhanced S-Glutathionylation of Distinct Structural and Regulatory Proteins. Antioxidants (Basel) 2019; 8:antiox8010027. [PMID: 30658464 PMCID: PMC6356485 DOI: 10.3390/antiox8010027] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/21/2018] [Accepted: 01/11/2019] [Indexed: 12/21/2022] Open
Abstract
Loss-of-function mutations in the KRIT1 gene are associated with the pathogenesis of cerebral cavernous malformations (CCMs), a major cerebrovascular disease still awaiting therapies. Accumulating evidence demonstrates that KRIT1 plays an important role in major redox-sensitive mechanisms, including transcriptional pathways and autophagy, which play major roles in cellular homeostasis and defense against oxidative stress, raising the possibility that KRIT1 loss has pleiotropic effects on multiple redox-sensitive systems. Using previously established cellular models, we found that KRIT1 loss-of-function affects the glutathione (GSH) redox system, causing a significant decrease in total GSH levels and increase in oxidized glutathione disulfide (GSSG), with a consequent deficit in the GSH/GSSG redox ratio and GSH-mediated antioxidant capacity. Redox proteomic analyses showed that these effects are associated with increased S-glutathionylation of distinct proteins involved in adaptive responses to oxidative stress, including redox-sensitive chaperonins, metabolic enzymes, and cytoskeletal proteins, suggesting a novel molecular signature of KRIT1 loss-of-function. Besides providing further insights into the emerging pleiotropic functions of KRIT1, these findings point definitively to KRIT1 as a major player in redox biology, shedding new light on the mechanistic relationship between KRIT1 loss-of-function and enhanced cell sensitivity to oxidative stress, which may eventually lead to cellular dysfunctions and CCM disease pathogenesis.
Collapse
|
34
|
Nanoparticles in Medicine: A Focus on Vascular Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6231482. [PMID: 30356429 PMCID: PMC6178176 DOI: 10.1155/2018/6231482] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/26/2018] [Accepted: 08/19/2018] [Indexed: 01/16/2023]
Abstract
Nanotechnology has had a significant impact on medicine in recent years, its application being referred to as nanomedicine. Nanoparticles have certain properties with biomedical applications; however, in some situations, they have demonstrated cell toxicity, which has caused concern surrounding their clinical use. In this review, we focus on two aspects: first, we summarize the types of nanoparticles according to their chemical composition and the general characteristics of their use in medicine, and second, we review the applications of nanoparticles in vascular alteration, especially in endothelial dysfunction related to oxidative stress. This condition can lead to a reduction in nitric oxide (NO) bioavailability, consequently affecting vascular tone regulation and endothelial dysfunction, which is the first phase in the development of cardiovascular diseases. Therefore, nanoparticles with antioxidant properties may improve vascular dysfunction associated with hypertension, diabetes mellitus, or atherosclerosis.
Collapse
|
35
|
Role of Nitric Oxide in the Cardiovascular and Renal Systems. Int J Mol Sci 2018; 19:ijms19092605. [PMID: 30177600 PMCID: PMC6164974 DOI: 10.3390/ijms19092605] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022] Open
Abstract
The gasotransmitters are a family of gaseous signaling molecules which are produced endogenously and act at specific receptors to play imperative roles in physiologic and pathophysiologic processes. As a well-known gasotransmitter along with hydrogen sulfide and carbon monoxide, nitric oxide (NO) has earned repute as a potent vasodilator also known as endothelium-derived vasorelaxant factor (EDRF). NO has been studied in greater detail, from its synthesis and mechanism of action to its physiologic, pathologic, and pharmacologic roles in different disease states. Different animal models have been applied to investigate the beneficial effects of NO as an antihypertensive, renoprotective, and antihypertrophic agent. NO and its interaction with different systems like the renin–angiotensin system, sympathetic nervous system, and other gaseous transmitters like hydrogen sulfide are also well studied. However, links that appear to exist between the endocannabinoid (EC) and NO systems remain to be fully explored. Experimental approaches using modulators of its synthesis including substrate, donors, and inhibitors of the synthesis of NO will be useful for establishing the relationship between the NO and EC systems in the cardiovascular and renal systems. Being a potent vasodilator, NO may be unique among therapeutic options for management of hypertension and resulting renal disease and left ventricular hypertrophy. Inclusion of NO modulators in clinical practice may be useful not only as curatives for particular diseases but also for arresting disease prognoses through its interactions with other systems.
Collapse
|
36
|
Vernon ST, Hansen T, Kott KA, Yang JY, O'Sullivan JF, Figtree GA. Utilizing state-of-the-art
“omics” technology and bioinformatics to identify new biological mechanisms and biomarkers for coronary artery disease. Microcirculation 2018; 26:e12488. [DOI: 10.1111/micc.12488] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Stephen T. Vernon
- Cardiothoracic and Vascular Health; Kolling Institute and Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District; Sydney NSW Australia
- Sydney Medical School; Faculty of Medicine and Health; The University of Sydney; Sydney NSW Australia
| | - Thomas Hansen
- Cardiothoracic and Vascular Health; Kolling Institute and Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District; Sydney NSW Australia
- Sydney Medical School; Faculty of Medicine and Health; The University of Sydney; Sydney NSW Australia
| | - Katharine A. Kott
- Cardiothoracic and Vascular Health; Kolling Institute and Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District; Sydney NSW Australia
- Sydney Medical School; Faculty of Medicine and Health; The University of Sydney; Sydney NSW Australia
| | - Jean Y. Yang
- School of Mathematics and Statistics; The University of Sydney; Sydney NSW Australia
- Charles Perkins Centre; The University of Sydney; Sydney NSW Australia
| | - John F. O'Sullivan
- Sydney Medical School; Faculty of Medicine and Health; The University of Sydney; Sydney NSW Australia
- Charles Perkins Centre; The University of Sydney; Sydney NSW Australia
- Heart Research Institute; Sydney NSW Australia
| | - Gemma A. Figtree
- Cardiothoracic and Vascular Health; Kolling Institute and Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District; Sydney NSW Australia
- Sydney Medical School; Faculty of Medicine and Health; The University of Sydney; Sydney NSW Australia
| |
Collapse
|
37
|
Haghikia A, Landmesser U. Lipoproteins and Cardiovascular Redox Signaling: Role in Atherosclerosis and Coronary Disease. Antioxid Redox Signal 2018; 29:337-352. [PMID: 28817963 DOI: 10.1089/ars.2017.7052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
SIGNIFICANCE Lipoproteins, such as low-density lipoprotein, play a causal role in the development of atherosclerosis and coronary disease. Recent Advances: Lipoproteins can stimulate vascular production of reactive oxygen species, which act as important signaling molecules in the cardiovascular system contributing to the pathophysiology of endothelial dysfunction, hypertension, and atherosclerosis. CRITICAL ISSUES Modified lipoproteins have emerged as important regulators of redox signaling, such as oxidized or carbamylated low-density lipoprotein or modified high-density lipoproteins, that contain oxidized lipids, an altered protein cargo, and associated small molecules, such as symmetric dimethylarginine. FUTURE DIRECTIONS In this review, we provide an overview on signaling pathways stimulated by modified lipoproteins in the cardiovascular system and their potential role in cardiovascular disease development. Moreover, we highlight novel aspects of how gut microbiome-related mechanisms-a growing research field-may contribute to lipoprotein modification with subsequent impact on cardiovascular redox signaling. Antioxid. Redox Signal. 29, 337-352.
Collapse
Affiliation(s)
- Arash Haghikia
- 1 Department of Cardiology, Charité Universitätsmedizin Berlin , Berlin, Germany
- 2 German Center for Cardiovascular Research (DZHK) , partner site Berlin, Berlin, Germany
| | - Ulf Landmesser
- 1 Department of Cardiology, Charité Universitätsmedizin Berlin , Berlin, Germany
- 2 German Center for Cardiovascular Research (DZHK) , partner site Berlin, Berlin, Germany
- 3 Berlin Institute of Health (BIH) , Berlin, Germany
| |
Collapse
|
38
|
Chuaiphichai S, Rashbrook VS, Hale AB, Trelfa L, Patel J, McNeill E, Lygate CA, Channon KM, Douglas G. Endothelial Cell Tetrahydrobiopterin Modulates Sensitivity to Ang (Angiotensin) II-Induced Vascular Remodeling, Blood Pressure, and Abdominal Aortic Aneurysm. Hypertension 2018; 72:128-138. [PMID: 29844152 PMCID: PMC6012043 DOI: 10.1161/hypertensionaha.118.11144] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/30/2022]
Abstract
GTPCH (GTP cyclohydrolase 1, encoded by Gch1) is required for the synthesis of tetrahydrobiopterin; a critical regulator of endothelial NO synthase function. We have previously shown that mice with selective loss of Gch1 in endothelial cells have mild vascular dysfunction, but the consequences of endothelial cell tetrahydrobiopterin deficiency in vascular disease pathogenesis are unknown. We investigated the pathological consequence of Ang (angiotensin) II infusion in endothelial cell Gch1 deficient (Gch1fl/fl Tie2cre) mice. Ang II (0.4 mg/kg per day, delivered by osmotic minipump) caused a significant decrease in circulating tetrahydrobiopterin levels in Gch1fl/fl Tie2cre mice and a significant increase in the Nω-nitro-L-arginine methyl ester inhabitable production of H2O2 in the aorta. Chronic treatment with this subpressor dose of Ang II resulted in a significant increase in blood pressure only in Gch1fl/fl Tie2cre mice. This finding was mirrored with acute administration of Ang II, where increased sensitivity to Ang II was observed at both pressor and subpressor doses. Chronic Ang II infusion in Gch1fl/fl Tie2ce mice resulted in vascular dysfunction in resistance mesenteric arteries with an enhanced constrictor and decreased dilator response and medial hypertrophy. Altered vascular remodeling was also observed in the aorta with an increase in the incidence of abdominal aortic aneurysm formation in Gch1fl/fl Tie2ce mice. These findings indicate a specific requirement for endothelial cell tetrahydrobiopterin in modulating the hemodynamic and structural changes induced by Ang II, through modulation of blood pressure, structural changes in resistance vessels, and aneurysm formation in the aorta.
Collapse
Affiliation(s)
- Surawee Chuaiphichai
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Victoria S Rashbrook
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Ashley B Hale
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Lucy Trelfa
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Jyoti Patel
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Eileen McNeill
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Craig A Lygate
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Keith M Channon
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom.
| | - Gillian Douglas
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| |
Collapse
|
39
|
Ibrahim MA, Geddawy A, Abdel-Wahab S. Sitagliptin prevents isoproterenol-induced myocardial infarction in rats by modulating nitric oxide synthase enzymes. Eur J Pharmacol 2018; 829:63-69. [DOI: 10.1016/j.ejphar.2018.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 02/04/2023]
|
40
|
Bubb KJ, Birgisdottir AB, Tang O, Hansen T, Figtree GA. Redox modification of caveolar proteins in the cardiovascular system- role in cellular signalling and disease. Free Radic Biol Med 2017; 109:61-74. [PMID: 28188926 DOI: 10.1016/j.freeradbiomed.2017.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/18/2017] [Accepted: 02/05/2017] [Indexed: 02/07/2023]
Abstract
Rapid and coordinated release of a variety of reactive oxygen species (ROS) such as superoxide (O2.-), hydrogen peroxide (H2O2) and peroxynitrite, in specific microdomains, play a crucial role in cell signalling in the cardiovascular system. These reactions are mediated by reversible and functional modifications of a wide variety of key proteins. Dysregulation of this oxidative signalling occurs in almost all forms of cardiovascular disease (CVD), including at the very early phases. Despite the heavily publicized failure of "antioxidants" to improve CVD progression, pharmacotherapies such as those targeting the renin-angiotensin system, or statins, exert at least part of their large clinical benefit via modulating cellular redox signalling. Over 250 proteins, including receptors, ion channels and pumps, and signalling proteins are found in the caveolae. An increasing proportion of these are being recognized as redox regulated-proteins, that reside in the immediate vicinity of the two major cellular sources of ROS, nicotinamide adenine dinucleotide phosphate oxidase (Nox) and uncoupled endothelial nitric oxide synthase (eNOS). This review focuses on what is known about redox signalling within the caveolae, as well as endogenous protective mechanisms utilized by the cell, and new approaches to targeting dysregulated redox signalling in the caveolae as a therapeutic strategy in CVD.
Collapse
Affiliation(s)
- Kristen J Bubb
- Kolling Institute of Medical Research, University of Sydney and Cardiology Department, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Asa Birna Birgisdottir
- Kolling Institute of Medical Research, University of Sydney and Cardiology Department, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; Department of Cardiothoracic and Vascular Surgery, Heart and Lung Clinic, University Hospital of North Norway, Tromsø, Norway
| | - Owen Tang
- Kolling Institute of Medical Research, University of Sydney and Cardiology Department, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Thomas Hansen
- Kolling Institute of Medical Research, University of Sydney and Cardiology Department, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Gemma A Figtree
- Kolling Institute of Medical Research, University of Sydney and Cardiology Department, Royal North Shore Hospital, St Leonards, NSW 2065, Australia.
| |
Collapse
|
41
|
Zhang MZ, Wang X, Yang H, Fogo AB, Murphy BJ, Kaltenbach R, Cheng P, Zinker B, Harris RC. Lysophosphatidic Acid Receptor Antagonism Protects against Diabetic Nephropathy in a Type 2 Diabetic Model. J Am Soc Nephrol 2017; 28:3300-3311. [PMID: 28739650 DOI: 10.1681/asn.2017010107] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/19/2017] [Indexed: 01/06/2023] Open
Abstract
Lysophosphatidic acid (LPA) functions through activation of LPA receptors (LPARs). LPA-LPAR signaling has been implicated in development of fibrosis. However, the role of LPA-LPAR signaling in development of diabetic nephropathy (DN) has not been studied. We examined whether BMS002, a novel dual LPAR1 and LPAR3 antagonist, affects development of DN in endothelial nitric oxide synthase-knockout db/db mice. Treatment of these mice with BMS002 from 8 to 20 weeks of age led to a significant reduction in albuminuria, similar to that observed with renin-angiotensin system inhibition (losartan plus enalapril). LPAR inhibition also prevented the decline in GFR observed in vehicle-treated mice, such that GFR at week 20 differed significantly between vehicle and LPAR inhibitor groups (P<0.05). LPAR inhibition also reduced histologic glomerular injury; decreased the expression of profibrotic and fibrotic components, including fibronectin, α-smooth muscle actin, connective tissue growth factor, collagen I, and TGF-β; and reduced renal macrophage infiltration and oxidative stress. Notably, LPAR inhibition slowed podocyte loss (podocytes per glomerulus ±SEM at 8 weeks: 667±40, n=4; at 20 weeks: 364±18 with vehicle, n=7, and 536±12 with LPAR inhibition, n=7; P<0.001 versus vehicle). Finally, LPAR inhibition minimized the production of 4-hydroxynonenal (4-HNE), a marker of oxidative stress, in podocytes and increased the phosphorylation of AKT2, an indicator of AKT2 activity, in kidneys. Thus, the LPAR antagonist BMS002 protects against GFR decline and attenuates development of DN through multiple mechanisms. LPAR antagonism might provide complementary beneficial effects to renin-angiotensin system inhibition to slow progression of DN.
Collapse
Affiliation(s)
- Ming-Zhi Zhang
- Division of Nephrology and Hypertension, Department of Medicine, .,Vanderbilt Center for Kidney Disease, and
| | - Xin Wang
- Division of Nephrology and Hypertension, Department of Medicine
| | - Haichun Yang
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Agnes B Fogo
- Vanderbilt Center for Kidney Disease, and.,Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Brian J Murphy
- Fibrosis Discovery Biology or Chemistry, Bristol-Myers Squibb, Pennington, New Jersey; and
| | - Robert Kaltenbach
- Fibrosis Discovery Biology or Chemistry, Bristol-Myers Squibb, Pennington, New Jersey; and
| | - Peter Cheng
- Fibrosis Discovery Biology or Chemistry, Bristol-Myers Squibb, Pennington, New Jersey; and
| | - Bradley Zinker
- Fibrosis Discovery Biology or Chemistry, Bristol-Myers Squibb, Pennington, New Jersey; and
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Department of Medicine, .,Vanderbilt Center for Kidney Disease, and.,United States Department of Veterans Affairs, Nashville, Tennessee
| |
Collapse
|
42
|
Chen Q, Wang Q, Zhu J, Xiao Q, Zhang L. Reactive oxygen species: key regulators in vascular health and diseases. Br J Pharmacol 2017; 175:1279-1292. [PMID: 28430357 DOI: 10.1111/bph.13828] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 12/18/2022] Open
Abstract
ROS are a group of small reactive molecules that play critical roles in the regulation of various cell functions and biological processes. In the vascular system, physiological levels of ROS are essential for normal vascular functions including endothelial homeostasis and smooth muscle cell contraction. In contrast, uncontrolled overproduction of ROS resulting from an imbalance of ROS generation and elimination leads to the development of vascular diseases. Excessive ROS cause vascular cell damage, the recruitment of inflammatory cells, lipid peroxidation, activation of metalloproteinases and deposition of extracellular matrix, collectively leading to vascular remodelling. Evidence from a large number of studies has revealed that ROS and oxidative stress are involved in the initiation and progression of numerous vascular diseases including hypertension, atherosclerosis, restenosis and abdominal aortic aneurysm. Furthermore, considerable research has been implemented to explore antioxidants that can reduce ROS production and oxidative stress in order to ameliorate vascular diseases. In this review, we will discuss the nature and sources of ROS, their roles in vascular homeostasis and specific vascular diseases and various antioxidants as well as some of the pharmacological agents that are capable of reducing ROS and oxidative stress. The aim of this review is to provide information for developing promising clinical strategies targeting ROS to decrease cardiovascular risks. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Qishan Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiwen Wang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianhua Zhu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Bubb KJ, Kok C, Tang O, Rasko NB, Birgisdottir AB, Hansen T, Ritchie R, Bhindi R, Reisman SA, Meyer C, Ward K, Karimi Galougahi K, Figtree GA. The NRF2 activator DH404 attenuates adverse ventricular remodeling post-myocardial infarction by modifying redox signalling. Free Radic Biol Med 2017; 108:585-594. [PMID: 28438659 DOI: 10.1016/j.freeradbiomed.2017.04.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 03/24/2017] [Accepted: 04/19/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND The novel synthetic triterpenoid, bardoxolone methyl, has the ability to upregulate cytoprotective proteins via induction of the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway. This makes it a promising therapeutic agent in disease states characterized by dysregulated oxidative signalling. We have examined the effect of a Nrf2 activator, dihydro-CDDO-trifluoroethyl amide (DH404), a derivative of bardoxolone methyl, on post-infarct cardiac remodeling in rats. METHODS/RESULTS DH404, administered from day 2 post myocardial infarction (MI: 30min transient ischemia followed by reperfusion) resulted in almost complete protection against adverse ventricular remodeling as assessed at day 28 (left ventricular end-systolic area: sham 0.14±0.01cm2, MI vehicle 0.29±0.04cm2 vs. MI DH404 0.18±0.02cm2, P<0.05); infarct size (21.3±3.4% MI vehicle vs. 10.9±2.3% MI DH404, P<0.05) with associated benefits on systolic function (fractional shortening: sham 71.9±2.6%, MI vehicle 36.2±1.9% vs. MI DH404 58.6±4.0%, P<0.05). These structural and functional benefits were associated with lower myocardial expression of atrial natriuretic peptide (ANP, P<0.01 vs. MI vehicle), and decreased fibronectin (P<0.01 vs. MI vehicle) in DH404-treated MI rats at 28 days. MI increased glutathionylation of endothelial nitric oxide synthase (eNOS) in vitro - a molecular switch that uncouples the enzyme, increasing superoxide production and decreasing nitric oxide (NO) bioavailability. MI-induced eNOS glutathionylation was substantially ameliorated by DH404. An associated increase in glutaredoxin 1 (Grx1) co-immunoprecipitation with eNOS without a change in expression was mechanistically intriguing. Indeed, in parallel in vitro experiments, silencing of Grx1 abolished the protective effect of DH404 against Angiotensin II-induced eNOS uncoupling. CONCLUSION The bardoxolone derivative DH404 significantly attenuated cardiac remodeling post MI, at least in part, by re-coupling of eNOS and increasing the functional interaction of Grx1 with eNOS. This agent may have clinical benefits protecting against post MI cardiomyopathy.
Collapse
Affiliation(s)
- Kristen J Bubb
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia
| | - Cindy Kok
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia
| | - Owen Tang
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia
| | - Nathalie B Rasko
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia
| | - Asa B Birgisdottir
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia; Department of Cardiothoracic and Vascular Surgery, Heart and Lung Clinic, University Hospital of North Norway, Tromsø, Norway
| | - Thomas Hansen
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia
| | - Rebecca Ritchie
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Ravinay Bhindi
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia; Department of Cardiology, Royal North Shore Hospital and University of Sydney, Australia
| | | | | | - Keith Ward
- Reata Pharmaceuticals, Inc. Irving, TX, USA
| | - Keyvan Karimi Galougahi
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia
| | - Gemma A Figtree
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia; Department of Cardiology, Royal North Shore Hospital and University of Sydney, Australia.
| |
Collapse
|
44
|
Wang H, Hartnett ME. Roles of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase in Angiogenesis: Isoform-Specific Effects. Antioxidants (Basel) 2017; 6:antiox6020040. [PMID: 28587189 PMCID: PMC5488020 DOI: 10.3390/antiox6020040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is the formation of new blood vessels from preexisting ones and is implicated in physiologic vascular development, pathologic blood vessel growth, and vascular restoration. This is in contrast to vasculogenesis, which is de novo growth of vessels from vascular precursors, or from vascular repair that occurs when circulating endothelial progenitor cells home into an area and develop into blood vessels. The objective of this review is to discuss the isoform-specific role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) in physiologic and pathologic angiogenesis and vascular repair, but will not specifically address vasculogenesis. As the major source of reactive oxygen species (ROS) in vascular endothelial cells (ECs), NOX has gained increasing attention in angiogenesis. Activation of NOX leads to events necessary for physiologic and pathologic angiogenesis, including EC migration, proliferation and tube formation. However, activation of different NOX isoforms has different effects in angiogenesis. Activation of NOX2 promotes pathologic angiogenesis and vascular inflammation, but may be beneficial in revascularization in the hindlimb ischemic model. In contrast, activation of NOX4 appears to promote physiologic angiogenesis mainly by protecting the vasculature during ischemia, hypoxia and inflammation and by restoring vascularization, except in models of oxygen-induced retinopathy and diabetes where NOX4 activation leads to pathologic angiogenesis.
Collapse
Affiliation(s)
- Haibo Wang
- The John A. Moran Eye Center, University of Utah, 65 N. Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - M Elizabeth Hartnett
- The John A. Moran Eye Center, University of Utah, 65 N. Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
45
|
Angiotensin II dependent cardiac remodeling in the eel Anguilla anguilla involves the NOS/NO system. Nitric Oxide 2017; 65:50-59. [DOI: 10.1016/j.niox.2017.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/08/2017] [Accepted: 02/13/2017] [Indexed: 11/19/2022]
|
46
|
Siedlinski M, Nosalski R, Szczepaniak P, Ludwig-Gałęzowska AH, Mikołajczyk T, Filip M, Osmenda G, Wilk G, Nowak M, Wołkow P, Guzik TJ. Vascular transcriptome profiling identifies Sphingosine kinase 1 as a modulator of angiotensin II-induced vascular dysfunction. Sci Rep 2017; 7:44131. [PMID: 28276483 PMCID: PMC5343497 DOI: 10.1038/srep44131] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/03/2017] [Indexed: 12/22/2022] Open
Abstract
Vascular dysfunction is an important phenomenon in hypertension. We hypothesized that angiotensin II (AngII) affects transcriptome in the vasculature in a region-specific manner, which may help to identify genes related to vascular dysfunction in AngII-induced hypertension. Mesenteric artery and aortic transcriptome was profiled using Illumina WG-6v2.0 chip in control and AngII infused (490 ng/kg/min) hypertensive mice. Gene set enrichment and leading edge analyses identified Sphingosine kinase 1 (Sphk1) in the highest number of pathways affected by AngII. Sphk1 mRNA, protein and activity were up-regulated in the hypertensive vasculature. Chronic sphingosine-1-phosphate (S1P) infusion resulted in a development of significantly increased vasoconstriction and endothelial dysfunction. AngII-induced hypertension was blunted in Sphk1-/- mice (systolic BP 167 ± 4.2 vs. 180 ± 3.3 mmHg, p < 0.05), which was associated with decreased aortic and mesenteric vasoconstriction in hypertensive Sphk1-/- mice. Pharmacological inhibition of S1P synthesis reduced vasoconstriction of mesenteric arteries. While Sphk1 is important in mediating vasoconstriction in hypertension, Sphk1-/- mice were characterized by enhanced endothelial dysfunction, suggesting a local protective role of Sphk1 in the endothelium. S1P serum level in humans was correlated with endothelial function (arterial tonometry). Thus, vascular transcriptome analysis shows that S1P pathway is critical in the regulation of vascular function in AngII-induced hypertension, although Sphk1 may have opposing roles in the regulation of vasoconstriction and endothelium-dependent vasorelaxation.
Collapse
Affiliation(s)
- Mateusz Siedlinski
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Ryszard Nosalski
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland.,British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Piotr Szczepaniak
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | | | - Tomasz Mikołajczyk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland.,British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Magdalena Filip
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz Osmenda
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz Wilk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Michał Nowak
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Paweł Wołkow
- Centre for Medical Genomics-OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz J Guzik
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland.,British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, UK
| |
Collapse
|
47
|
Lowe FJ, Luettich K, Talikka M, Hoang V, Haswell LE, Hoeng J, Gaca MD. Development of an Adverse Outcome Pathway for the Onset of Hypertension by Oxidative Stress-Mediated Perturbation of Endothelial Nitric Oxide Bioavailability. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2016.0031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Frazer J. Lowe
- British American Tobacco (Investments) Ltd., Group Research and Development, Southampton, United Kingdom
| | - Karsta Luettich
- Philip Morris International R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Neuchatel, Switzerland
| | - Marja Talikka
- Philip Morris International R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Neuchatel, Switzerland
| | - Vy Hoang
- Selventa, One Alewife Center, Cambridge, Massachusetts
| | - Linsey E. Haswell
- British American Tobacco (Investments) Ltd., Group Research and Development, Southampton, United Kingdom
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Neuchatel, Switzerland
| | - Marianna D. Gaca
- British American Tobacco (Investments) Ltd., Group Research and Development, Southampton, United Kingdom
| |
Collapse
|
48
|
Förstermann U, Xia N, Li H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ Res 2017; 120:713-735. [DOI: 10.1161/circresaha.116.309326] [Citation(s) in RCA: 692] [Impact Index Per Article: 98.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/19/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022]
Abstract
Major reactive oxygen species (ROS)–producing systems in vascular wall include NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase, xanthine oxidase, the mitochondrial electron transport chain, and uncoupled endothelial nitric oxide (NO) synthase. ROS at moderate concentrations have important signaling roles under physiological conditions. Excessive or sustained ROS production, however, when exceeding the available antioxidant defense systems, leads to oxidative stress. Animal studies have provided compelling evidence demonstrating the roles of vascular oxidative stress and NO in atherosclerosis. All established cardiovascular risk factors such as hypercholesterolemia, hypertension, diabetes mellitus, and smoking enhance ROS generation and decrease endothelial NO production. Key molecular events in atherogenesis such as oxidative modification of lipoproteins and phospholipids, endothelial cell activation, and macrophage infiltration/activation are facilitated by vascular oxidative stress and inhibited by endothelial NO. Atherosclerosis develops preferentially in vascular regions with disturbed blood flow (arches, branches, and bifurcations). The fact that these sites are associated with enhanced oxidative stress and reduced endothelial NO production is a further indication for the roles of ROS and NO in atherosclerosis. Therefore, prevention of vascular oxidative stress and improvement of endothelial NO production represent reasonable therapeutic strategies in addition to the treatment of established risk factors (hypercholesterolemia, hypertension, and diabetes mellitus).
Collapse
Affiliation(s)
- Ulrich Förstermann
- From the Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany (U.F., N.X., H.L.); Center for Translational Vascular Biology (CTVB), Johannes Gutenberg University Medical Center, Mainz, Germany (H.L.); and German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany (H.L.)
| | - Ning Xia
- From the Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany (U.F., N.X., H.L.); Center for Translational Vascular Biology (CTVB), Johannes Gutenberg University Medical Center, Mainz, Germany (H.L.); and German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany (H.L.)
| | - Huige Li
- From the Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany (U.F., N.X., H.L.); Center for Translational Vascular Biology (CTVB), Johannes Gutenberg University Medical Center, Mainz, Germany (H.L.); and German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany (H.L.)
| |
Collapse
|
49
|
Booij HG, Koning AM, van Goor H, de Boer RA, Westenbrink BD. Selecting heart failure patients for metabolic interventions. Expert Rev Mol Diagn 2016; 17:141-152. [DOI: 10.1080/14737159.2017.1266939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Harmen G. Booij
- University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Anne M. Koning
- University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Harry van Goor
- University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rudolf A. de Boer
- University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - B. Daan Westenbrink
- University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
50
|
Gonzalez-Vicente A, Saikumar JH, Massey KJ, Hong NJ, Dominici FP, Carretero OA, Garvin JL. Angiotensin II stimulates superoxide production by nitric oxide synthase in thick ascending limbs. Physiol Rep 2016; 4:4/4/e12697. [PMID: 26884476 PMCID: PMC4759044 DOI: 10.14814/phy2.12697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Angiotensin II (Ang II) causes nitric oxide synthase (NOS) to become a source of superoxide (O2 (-)) via a protein kinase C (PKC)-dependent process in endothelial cells. Ang II stimulates both NO and O2 (-) production in thick ascending limbs. We hypothesized that Ang II causes O2 (-) production by NOS in thick ascending limbs via a PKC-dependent mechanism. NO production was measured in isolated rat thick ascending limbs using DAF-FM, whereas O2 (-) was measured in thick ascending limb suspensions using the lucigenin assay. Consistent stimulation of NO was observed with 1 nmol/L Ang II (P < 0.001; n = 9). This concentration of Ang II-stimulated O2 (-) production by 50% (1.77 ± 0.26 vs. 2.62 ± 0.36 relative lights units (RLU)/s/μg protein; P < 0.04; n = 5). In the presence of the NOS inhibitor L-NAME, Ang II-stimulated O2 (-) decreased from 2.02 ± 0.29 to 1.10 ± 0.11 RLU/s/μg protein (P < 0.01; n = 8). L-arginine alone did not change Ang II-stimulated O2 (-) (2.34 ± 0.22 vs. 2.29 ± 0.29 RLU/s/μg protein; n = 5). In the presence of Ang II plus the PKC α/β1 inhibitor Gö 6976, L-NAME had no effect on O2 (-) production (0.78 ± 0.23 vs. 0.62 ± 0.11 RLU/s/μg protein; n = 7). In the presence of Ang II plus apocynin, a NADPH oxidase inhibitor, L-NAME did not change O2 (-) (0.59 ± 0.04 vs. 0.61 ± ×0.08 RLU/s/μg protein; n = 5). We conclude that: (1) Ang II causes NOS to produce O2 (-) in thick ascending limbs via a PKC- and NADPH oxidase-dependent process; and (2) the effect of Ang II is not due to limited substrate.
Collapse
Affiliation(s)
- Agustin Gonzalez-Vicente
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jagannath H Saikumar
- Department of Internal Medicine, Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI
| | - Katherine J Massey
- Department of Internal Medicine, Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI
| | - Nancy J Hong
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Fernando P Dominici
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina Instituto de Química y Fisicoquímica Biológicas, CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Oscar A Carretero
- Department of Internal Medicine, Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio Department of Internal Medicine, Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI
| |
Collapse
|