1
|
Fundere A, Rose A, Xiong F, Muthukumarasamy KM, Altuntas Y, Dasari H, Villeneuve L, Sirois MG, Tanguay JF, Tardif JC, Hiram R. Daily exposure to chlordecone, an organochlorine pesticide, increases cardiac fibrosis and atrial fibrillation vulnerability. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135533. [PMID: 39173376 DOI: 10.1016/j.jhazmat.2024.135533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
CONTEXT Chlordecone (CLD) is a carcinogenic organochlorine pesticide. CLD was shown to disturb the activity of cardiac Na+-K+-ATPase and Ca2+-Mg2+-ATPase. Conditions affecting these transmembrane pumps are often associated with cardiac arrhythmias (CA). However, little is known about the role of CLD on atrial fibrillation (AF) incidence, the most common type of CA. HYPOTHESES 1) Daily ingestion of CLD induces arrhythmogenic cardiac remodeling. 2) A phase of CLD withdrawal can reduce CLD-induced AF susceptibility. METHODS Adult male Wistar rats (250 g-275 g) ingested daily-doses of CLD (0 μg/L, 0.1 μg/L, or 1 μg/L) diluted in their quotidian water for 4 weeks. From day (D)29 to D56, all rats received CLD-free water. Vulnerability to AF and cardiac function were evaluated at D28 and D56 by electrophysiological study, echocardiography, and optical-mapping. Levels of genes and proteins related to inflammation, fibrosis, and senescence were quantified by qPCR and immunoassays. RESULTS Twenty-eight days of CLD exposure were associated with significantly increased AF vulnerability compared to CLD-free rats. Contamination with 1 μg/L CLD significantly reduced atrial conduction velocity (ERP, APD). CLD-weaning normalized food consumption and weight intake. However, after the CLD-withdrawal period of 28 days, AF inducibility, atrial inflammation (IL6, IL1β), and atrial fibrosis (Masson's trichrome staining) remained significantly higher in rats exposed to 1 μg/L CLD compared to 0 μg/L. CONCLUSIONS Prolonged CLD ingestion provokes atrial conduction slowing and increased risk of AF. Although CLD-weaning, some persistent damages occurred in the atrium like atrial fibrosis and atrial senescence signals, which are accompanied by atrial inflammation and arrhythmogenicity.
Collapse
Affiliation(s)
- Alexia Fundere
- Faculty of Pharmacy, University of Montpellier, Montpellier, France; Université des Antilles, Guadeloupe, Pointe-à-Pitre, France; Montreal Heart Institute, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Andrew Rose
- Department of Pharmacology and Therapeutics, McGill University, Canada
| | - Feng Xiong
- Department of Pharmacology and Therapeutics, McGill University, Canada; Montreal Heart Institute, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Kalai Mangai Muthukumarasamy
- Department of Pharmacology and Therapeutics, McGill University, Canada; Montreal Heart Institute, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Yasemin Altuntas
- Montreal Heart Institute, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Harika Dasari
- Montreal Heart Institute, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Louis Villeneuve
- Montreal Heart Institute, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Martin G Sirois
- Montreal Heart Institute, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Jean-François Tanguay
- Montreal Heart Institute, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Roddy Hiram
- Montreal Heart Institute, Faculty of Medicine, University of Montreal, Montreal, Canada.
| |
Collapse
|
2
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad EB, Shamloo AS, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O'Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 2024; 21:e31-e149. [PMID: 38597857 DOI: 10.1016/j.hrthm.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society, the Asia Pacific Heart Rhythm Society, and the Latin American Heart Rhythm Society.
Collapse
Affiliation(s)
- Stylianos Tzeis
- Department of Cardiology, Mitera Hospital, 6, Erythrou Stavrou Str., Marousi, Athens, PC 151 23, Greece.
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo B Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil; Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France; Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, and Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | | | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain; Hospital Viamed Santa Elena, Madrid, Spain
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, USA; Case Western Reserve University, Cleveland, OH, USA; Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA; Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología 'Ignacio Chávez', Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O'Neill
- Cardiovascular Directorate, St. Thomas' Hospital and King's College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
3
|
Belletti R, Osca J, Romero Perez L, Saiz J. Influence of genetic mutations to atria vulnerability to atrial fibrillation: An in-silico 3D human atria study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 254:108307. [PMID: 38981143 DOI: 10.1016/j.cmpb.2024.108307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND AND OBJECTIVE Personalized 3D computer models of atria have been extensively implemented in the last yearsas a tool to facilitate the understanding of the mechanisms underlying different forms of arrhythmia, such as atrial fibrillation (AF). Meanwhile, genetic mutations acting on potassium channel dynamics were demonstrated to induce fibrillatory episodes in asymptomatic patients. This research study aims at assessing the effects and the atrial susceptibility to AF of three gain-of-function mutations - namely, KCNH2 T895M, KCNH2 T436M, and KCNE3-V17M - associated with AF outbreaks, using highly detailed 3D atrial models with realistic wall thickness and heterogenous histological properties. METHODS The 3D atrial model was generated by reconstructing segmented anatomical structures from CT scans of an AF patient. Modified versions of the Courtemanche human atrial myocyte model were used to reproduce the electrophysiological activity of the WT and of the three mutant cells. Ectopic foci (EF) were simulated in sixteen locations across the atrial mesh using an S1-S2 protocol with two S2 basic cycle lengths (BCL) and eleven coupling intervals in order to induce arrhythmias. RESULTS The three genetic mutations at 3D level reduced the APD90. The KCNE3-V17M mutation provoked the highest shortening (55 % in RA and LA with respect to WT), followed by KCNH2 T895M (14 % in RA and 18 % LA with respect to WT)and KCNH2 T436M (7 % in RA and 9 % LA with respect to WT). The KCNE3-V17M mutation led to arrhythmia in 67 % of the cases simulated and in 94 % of ectopic foci considered, at S2 BCL equal to 100 ms. The KCNH2 T436M and KCNH2 T895M mutations increased the vulnerability to AF in a similar way, leading to arrhythmic episodes in 7 % of the simulated conditions, at S2 BCL set to 160 ms. Overall, 60 % of the arrhythmic events generated arise in the left atrium. Spiral waves, multiple rotors and disordered electrical pattern were elicited in the presence of the KCNE3-V17M mutation, exhibiting an instantaneous mean frequency of 7.6 Hz with a mean standard deviation of 1.12 Hz. The scroll waves induced in the presence of the KCNH2 T436M and KCNH2 T895M mutations showed steadiness and regularity with an instantaneous mean frequencies in the range of 4.9 - 5.1 Hz and a mean standard deviation within 0.19 - 0.53 Hz. CONCLUSIONS The pro-arrhythmogenicity of the KCNE3-V17M, KCNH2 T895M and KCNH2 T436M mutations was studied and proved on personalized 3D cardiac models. The three genetic mutations were demonstrated to increase the predisposition of atrial tissue to the formation of AF-susceptible substrate in different ways based on their effects on electrophysiological properties of the atria.
Collapse
Affiliation(s)
- Rebecca Belletti
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politécnica de València, Camino de Vera, s/n, 46022,Valencia, Spain.
| | - Joaquín Osca
- Electrophysiology Section, Cardiology Department, Hospital Universitari i Politecnic La Fe, Avinguda de Fernando Abril Martorell, 106, Quatre Carreres, 46026, València, Spain
| | - Lucia Romero Perez
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politécnica de València, Camino de Vera, s/n, 46022,Valencia, Spain
| | - Javier Saiz
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politécnica de València, Camino de Vera, s/n, 46022,Valencia, Spain
| |
Collapse
|
4
|
Sridhar A, DeSantiago J, Chen H, Pavel MA, Ly O, Owais A, Barney M, Jousma J, Nukala SB, Abdelhady K, Massad M, Rizkallah LE, Ong SG, Rehman J, Darbar D. Modulation of NOX2 causes obesity-mediated atrial fibrillation. J Clin Invest 2024; 134:e175447. [PMID: 39146015 PMCID: PMC11405042 DOI: 10.1172/jci175447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
Obesity is linked to an increased risk of atrial fibrillation (AF) via increased oxidative stress. While NADPH oxidase 2 (NOX2), a major source of oxidative stress and reactive oxygen species (ROS) in the heart, predisposes to AF, the underlying mechanisms remain unclear. Here, we studied NOX2-mediated ROS production in obesity-mediated AF using Nox2-knockout mice and mature human induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-aCMs). Diet-induced obesity (DIO) mice and hiPSC-aCMs treated with palmitic acid (PA) were infused with a NOX blocker (apocynin) and a NOX2-specific inhibitor, respectively. We showed that NOX2 inhibition normalized atrial action potential duration and abrogated obesity-mediated ion channel remodeling with reduced AF burden. Unbiased transcriptomics analysis revealed that NOX2 mediates atrial remodeling in obesity-mediated AF in DIO mice, PA-treated hiPSC-aCMs, and human atrial tissue from obese individuals by upregulation of paired-like homeodomain transcription factor 2 (PITX2). Furthermore, hiPSC-aCMs treated with hydrogen peroxide, a NOX2 surrogate, displayed increased PITX2 expression, establishing a mechanistic link between increased NOX2-mediated ROS production and modulation of PITX2. Our findings offer insights into possible mechanisms through which obesity triggers AF and support NOX2 inhibition as a potential novel prophylactic or adjunctive therapy for patients with obesity-mediated AF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jalees Rehman
- Division of Cardiology
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, Chicago, Illinois, USA
| | - Dawood Darbar
- Division of Cardiology
- Department of Medicine, Jesse Brown Veterans Administration, Chicago, Illinois, USA
| |
Collapse
|
5
|
Johnson OD, Paul S, Gutierrez JA, Russell WK, Ward MC. DNA damage-associated protein co-expression network in cardiomyocytes informs on tolerance to genetic variation and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607863. [PMID: 39185220 PMCID: PMC11343126 DOI: 10.1101/2024.08.14.607863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Cardiovascular disease (CVD) is associated with both genetic variants and environmental factors. One unifying consequence of the molecular risk factors in CVD is DNA damage, which must be repaired by DNA damage response proteins. However, the impact of DNA damage on global cardiomyocyte protein abundance, and its relationship to CVD risk remains unclear. We therefore treated induced pluripotent stem cell-derived cardiomyocytes with the DNA-damaging agent Doxorubicin (DOX) and a vehicle control, and identified 4,178 proteins that contribute to a network comprising 12 co-expressed modules and 403 hub proteins with high intramodular connectivity. Five modules correlate with DOX and represent distinct biological processes including RNA processing, chromatin regulation and metabolism. DOX-correlated hub proteins are depleted for proteins that vary in expression across individuals due to genetic variation but are enriched for proteins encoded by loss-of-function intolerant genes. While proteins associated with genetic risk for CVD, such as arrhythmia are enriched in specific DOX-correlated modules, DOX-correlated hub proteins are not enriched for known CVD risk proteins. Instead, they are enriched among proteins that physically interact with CVD risk proteins. Our data demonstrate that DNA damage in cardiomyocytes induces diverse effects on biological processes through protein co-expression modules that are relevant for CVD, and that the level of protein connectivity in DNA damage-associated modules influences the tolerance to genetic variation.
Collapse
Affiliation(s)
- Omar D. Johnson
- Biochemistry, Cellular and Molecular Biology Graduate Program, University of Texas Medical Branch, Galveston, Texas, USA
- MD-PhD Combined Degree Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sayan Paul
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jose A. Gutierrez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michelle C. Ward
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
6
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad E, Shamloo AS, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O'Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. J Interv Card Electrophysiol 2024; 67:921-1072. [PMID: 38609733 DOI: 10.1007/s10840-024-01771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society (HRS), the Asia Pacific HRS, and the Latin American HRS.
Collapse
Affiliation(s)
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil
- Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
- Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Nikolaos Dagres
- Department of Cardiac Electrophysiology, Charité University Berlin, Berlin, Germany
| | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Cardiology, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - Gerhard Hindricks
- Department of Cardiac Electrophysiology, Charité University Berlin, Berlin, Germany
| | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain
- Hospital Viamed Santa Elena, Madrid, Spain
| | - Gregory F Michaud
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, USA
- Case Western Reserve University, Cleveland, OH, USA
- Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA
- Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología 'Ignacio Chávez', Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O'Neill
- Cardiovascular Directorate, St. Thomas' Hospital and King's College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
7
|
Campora A, Lisi M, Pastore MC, Mandoli GE, Ferrari Chen YF, Pasquini A, Rubboli A, Henein MY, Cameli M. Atrial Fibrillation, Atrial Myopathy, and Thromboembolism: The Additive Value of Echocardiography and Possible New Horizons for Risk Stratification. J Clin Med 2024; 13:3921. [PMID: 38999487 PMCID: PMC11242512 DOI: 10.3390/jcm13133921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac sustained arrhythmia, and it is associated with increased stroke and dementia risk. While the established paradigm attributes these complications to blood stasis within the atria and subsequent thrombus formation with cerebral embolization, recent evidence suggests that atrial myopathy (AM) may play a key role. AM is characterized by structural and functional abnormalities of the atria, and can occur with or without AF. Moving beyond classifications based solely on episode duration, the 4S-AF characterization has offered a more comprehensive approach, incorporating patient's stroke risk, symptom severity, AF burden, and substrate assessment (including AM) for tailored treatment decisions. The "ABC" pathway emphasizes anticoagulation, symptom control, and cardiovascular risk modification and emerging evidence suggests broader benefits of early rhythm control strategies, potentially reducing stroke and dementia risk and improving clinical outcomes. However, a better integration of AM assessment into the current framework holds promise for further personalizing AF management and optimizing patient outcomes. This review explores the emerging concept of AM and its potential role as a risk factor for stroke and dementia and in AF patients' management strategies, highlighting the limitations of current risk stratification methods, like the CHA2DS2-VASc score. Echocardiography, particularly left atrial (LA) strain analysis, has shown to be a promising non-invasive tool for AM evaluation and recent studies suggest that LA strain analysis may be a more sensitive risk stratifier for thromboembolic events than AF itself, with some studies showing a stronger association between LA strain and thromboembolic events compared to traditional risk factors. Integrating it into routine clinical practice could improve patient management and targeted therapies for AF and potentially other thromboembolic events. Future studies are needed to explore the efficacy and safety of anticoagulation in AM patients with and without AF and to refine the diagnostic criteria for AM.
Collapse
Affiliation(s)
- Alessandro Campora
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Viale Bracci 1, 53100 Siena, Italy
| | - Matteo Lisi
- Department of Emergency, Internal Medicine and Cardiology-AUSL Romagna, Division of Cardiology, Ospedale S. Maria delle Croci, Viale Randi 5, 48121 Ravenna, Italy
| | - Maria Concetta Pastore
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Viale Bracci 1, 53100 Siena, Italy
| | - Giulia Elena Mandoli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Viale Bracci 1, 53100 Siena, Italy
| | - Yu Fu Ferrari Chen
- Cardiovascular Division, Pisa University Hospital and University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Annalisa Pasquini
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Rubboli
- Department of Emergency, Internal Medicine and Cardiology-AUSL Romagna, Division of Cardiology, Ospedale S. Maria delle Croci, Viale Randi 5, 48121 Ravenna, Italy
| | - Michael Y Henein
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden
| | - Matteo Cameli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Viale Bracci 1, 53100 Siena, Italy
| |
Collapse
|
8
|
Zaveri S, Chahine M, Boutjdir M. Arrhythmias and ion channelopathies causing sudden cardiac death in Hispanic/Latino and Indigenous populations. J Cardiovasc Electrophysiol 2024; 35:1219-1228. [PMID: 38654386 PMCID: PMC11176016 DOI: 10.1111/jce.16282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
The limited literature and increasing interest in studies on cardiac electrophysiology, explicitly focusing on cardiac ion channelopathies and sudden cardiac death in diverse populations, has prompted a comprehensive examination of existing research. Our review specifically targets Hispanic/Latino and Indigenous populations, which are often underrepresented in healthcare studies. This review encompasses investigations into genetic variants, epidemiology, etiologies, and clinical risk factors associated with arrhythmias in these demographic groups. The review explores the Hispanic paradox, a phenomenon linking healthcare outcomes to socioeconomic factors within Hispanic communities in the United States. Furthermore, it discusses studies exemplifying this observation in the context of arrhythmias and ion channelopathies in Hispanic populations. Current research also sheds light on disparities in overall healthcare quality in Indigenous populations. The available yet limited literature underscores the pressing need for more extensive and comprehensive research on cardiac ion channelopathies in Hispanic/Latino and Indigenous populations. Specifically, additional studies are essential to fully characterize pathogenic genetic variants, identify population-specific risk factors, and address health disparities to enhance the detection, prevention, and management of arrhythmias and sudden cardiac death in these demographic groups.
Collapse
Affiliation(s)
- Sahil Zaveri
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, New York, USA
- Department of Medicine, SUNY Downstate Health Sciences University, New York, New York, USA
| | - Mohamed Chahine
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Québec City, Québec, Canada
- Department of Medicine, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, New York, USA
- Department of Medicine, SUNY Downstate Health Sciences University, New York, New York, USA
- Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
9
|
Kell DB, Lip GYH, Pretorius E. Fibrinaloid Microclots and Atrial Fibrillation. Biomedicines 2024; 12:891. [PMID: 38672245 PMCID: PMC11048249 DOI: 10.3390/biomedicines12040891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Atrial fibrillation (AF) is a comorbidity of a variety of other chronic, inflammatory diseases for which fibrinaloid microclots are a known accompaniment (and in some cases, a cause, with a mechanistic basis). Clots are, of course, a well-known consequence of atrial fibrillation. We here ask the question whether the fibrinaloid microclots seen in plasma or serum may in fact also be a cause of (or contributor to) the development of AF. We consider known 'risk factors' for AF, and in particular, exogenous stimuli such as infection and air pollution by particulates, both of which are known to cause AF. The external accompaniments of both bacterial (lipopolysaccharide and lipoteichoic acids) and viral (SARS-CoV-2 spike protein) infections are known to stimulate fibrinaloid microclots when added in vitro, and fibrinaloid microclots, as with other amyloid proteins, can be cytotoxic, both by inducing hypoxia/reperfusion and by other means. Strokes and thromboembolisms are also common consequences of AF. Consequently, taking a systems approach, we review the considerable evidence in detail, which leads us to suggest that it is likely that microclots may well have an aetiological role in the development of AF. This has significant mechanistic and therapeutic implications.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool L7 8TX, UK;
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
10
|
Jaiswal V, Roy P, Ang SP, Shama N, Deb N, Taha AM, Rajak K, Sharma A, Halder A, Wajid Z, Agrawal V, Khela H, Biswas M. Association between rheumatoid arthritis and atrial fibrillation: A systematic review and meta-analysis. J Arrhythm 2024; 40:203-213. [PMID: 38586849 PMCID: PMC10995606 DOI: 10.1002/joa3.12995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 04/09/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder with a varying range of organs involved leading to adverse outcomes. However, very little is known, with conflicting results about the association between RA and atrial fibrillation (AF). We aim to evaluate the association between RA and AF, and other clinical outcomes. We performed a systematic literature search using PubMed, Embase, and Scopus for relevant articles from inception until September 10, 2023. Primary clinical outcomes were AF. Secondary outcomes were acute coronary syndrome (ACS), stroke, and all-cause mortality (ACM). A total of 4 679 930 patients were included in the analysis, with 81 677 patients in the RA group and 4 493 993 patients in the nonrheumatoid arthritis (NRA) group. The mean age of the patients was 57.2 years. Pooled analysis of primary outcomes shows that RA groups of patients had a significantly higher risk of AF (odds ratios [OR], 1.53; 95% confidence interval [CI]: [1.16-2.03], p < .001) compared with NRA groups. Secondary Outcomes show that the RA group of patients had significantly higher odds of ACS (OR, 1.39; 95% CI: [1.26-1.52], p < .001), and ACM (OR, 1.19; 95% CI: [1.03-1.37], p = .02) compared with the NRA groups. However, the likelihood of stroke (OR, 1.02; 95% CI: [0.94-1.11], p = .61) was comparable between both groups of patients. Our study shows that RA groups of patients are at increased risk of having AF, ACS, and ACM.
Collapse
Affiliation(s)
- Vikash Jaiswal
- Department of Cardiovascular ResearchLarkin Community HospitalSouth MiamiFloridaUSA
| | - Poulami Roy
- Department of Internal MedicineNorth Bengal Medical College and HospitalSiliguriIndia
| | - Song Peng Ang
- Department of Internal MedicineRutgers Health/Community Medical CenterToms RiverNew JerseyUSA
| | - Nishat Shama
- Department of Internal MedicineBangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic DisordersDhakaBangladesh
| | - Novonil Deb
- Department of Internal MedicineNorth Bengal Medical College and HospitalSiliguriIndia
| | | | - Kripa Rajak
- Department of Internal MedicineUPMC HarrisburgHarrisburgPennsylvaniaUSA
| | - Akanksha Sharma
- Department of Internal MedicineUPMC MercyPittsburghPennsylvaniaUSA
| | - Anupam Halder
- Department of Internal MedicineUPMC HarrisburgHarrisburgPennsylvaniaUSA
| | - Zarghoona Wajid
- Department of Internal Medicine, School of MedicineWayne State UniversityDetroitMichiganUSA
| | - Vibhor Agrawal
- Department of MedicineKing George's Medical UniversityLucknowIndia
| | - Harpriya Khela
- Department of MedicineRoyal College of Surgeons in IrelandDublinIreland
| | - Monodeep Biswas
- Department of ElectrophysiologyUniversity of MarylandBaltimoreMarylandUSA
| |
Collapse
|
11
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad EB, Sepehri Shamloo A, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O’Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace 2024; 26:euae043. [PMID: 38587017 PMCID: PMC11000153 DOI: 10.1093/europace/euae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 04/09/2024] Open
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society, the Asia Pacific Heart Rhythm Society, and the Latin American Heart Rhythm Society .
Collapse
Affiliation(s)
- Stylianos Tzeis
- Department of Cardiology, Mitera Hospital, 6, Erythrou Stavrou Str., Marousi, Athens, PC 151 23, Greece
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo B Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil
- Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
- Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, and Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | | | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain
- Hospital Viamed Santa Elena, Madrid, Spain
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David’s Medical Center, Austin, TX, USA
- Case Western Reserve University, Cleveland, OH, USA
- Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA
- Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología ‘Ignacio Chávez’, Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O’Neill
- Cardiovascular Directorate, St. Thomas’ Hospital and King’s College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
12
|
Popa-Fotea NM, Oprescu N, Scafa-Udriste A, Micheu MM. Impact of rs1805127 and rs55742440 Variants on Atrial Remodeling in Hypertrophic Cardiomyopathy Patients with Atrial Fibrillation: A Romanian Cohort Study. Int J Mol Sci 2023; 24:17244. [PMID: 38139087 PMCID: PMC10743528 DOI: 10.3390/ijms242417244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/25/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Atrial fibrillation (AFib) is characterized by a complex genetic component. We aimed to investigate the association between variations in genes related to cardiac ion handling and AFib in a cohort of Romanian patients with hypertrophic cardiomyopathy (HCM). Forty-five unrelated probands with HCM were genotyped by targeted next-generation sequencing (NGS) for 24 genes associated with cardiac ion homeostasis. Subsequently, the study cohort was divided into two groups based on the presence (AFib+) or absence (AFiB-) of AFib detected during ECG monitoring. We identified two polymorphisms (rs1805127 located in KCNE1 and rs55742440 located in SCN1B) linked to AFib susceptibility. In AFib+, rs1805127 was associated with increased indexed left atrial (LA) maximal volume (LAVmax) (58.42 ± 21 mL/m2 vs. 32.54 ± 6.47 mL/m2, p < 0.001) and impaired LA strain reservoir (LASr) (13.3 ± 7.5% vs. 24.4 ± 6.8%, p < 0.05) compared to those without respective variants. The rs55742440 allele was less frequent in patients with AFib+ (12 out of 25, 48%) compared to those without arrhythmia (15 out of 20, 75%, p = 0.05). Also, AFib+ rs55742440 carriers had significantly lower LAVmax compared to those who were genotype negative. Among patients with HCM and AFib+, the rs1805127 variant was accompanied by pronounced LA remodeling, whereas rs55742440's presence was related to a milder LA enlargement.
Collapse
Affiliation(s)
- Nicoleta-Monica Popa-Fotea
- Department 4—Cardio-Thoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania;
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Calea Floreasca 8, 014461 Bucharest, Romania;
| | - Nicoleta Oprescu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Calea Floreasca 8, 014461 Bucharest, Romania;
| | - Alexandru Scafa-Udriste
- Department 4—Cardio-Thoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania;
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Calea Floreasca 8, 014461 Bucharest, Romania;
| | - Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Calea Floreasca 8, 014461 Bucharest, Romania;
| |
Collapse
|
13
|
Grzeczka A, Graczyk S, Kordowitzki P. DNA Methylation and Telomeres-Their Impact on the Occurrence of Atrial Fibrillation during Cardiac Aging. Int J Mol Sci 2023; 24:15699. [PMID: 37958686 PMCID: PMC10650750 DOI: 10.3390/ijms242115699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in humans. AF is characterized by irregular and increased atrial muscle activation. This high-frequency activation obliterates the synchronous work of the atria and ventricles, reducing myocardial performance, which can lead to severe heart failure or stroke. The risk of developing atrial fibrillation depends largely on the patient's history. Cardiovascular diseases are considered aging-related pathologies; therefore, deciphering the role of telomeres and DNA methylation (mDNA), two hallmarks of aging, is likely to contribute to a better understanding and prophylaxis of AF. In honor of Prof. Elizabeth Blackburn's 75th birthday, we dedicate this review to the discovery of telomeres and her contribution to research on aging.
Collapse
Affiliation(s)
| | | | - Pawel Kordowitzki
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Szosa Bydgoska 13, 87-100 Torun, Poland
| |
Collapse
|
14
|
Raben TG, Lello L, Widen E, Hsu SDH. Biobank-scale methods and projections for sparse polygenic prediction from machine learning. Sci Rep 2023; 13:11662. [PMID: 37468507 PMCID: PMC10356957 DOI: 10.1038/s41598-023-37580-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/23/2023] [Indexed: 07/21/2023] Open
Abstract
In this paper we characterize the performance of linear models trained via widely-used sparse machine learning algorithms. We build polygenic scores and examine performance as a function of training set size, genetic ancestral background, and training method. We show that predictor performance is most strongly dependent on size of training data, with smaller gains from algorithmic improvements. We find that LASSO generally performs as well as the best methods, judged by a variety of metrics. We also investigate performance characteristics of predictors trained on one genetic ancestry group when applied to another. Using LASSO, we develop a novel method for projecting AUC and correlation as a function of data size (i.e., for new biobanks) and characterize the asymptotic limit of performance. Additionally, for LASSO (compressed sensing) we show that performance metrics and predictor sparsity are in agreement with theoretical predictions from the Donoho-Tanner phase transition. Specifically, a future predictor trained in the Taiwan Precision Medicine Initiative for asthma can achieve an AUC of [Formula: see text] and for height a correlation of [Formula: see text] for a Taiwanese population. This is above the measured values of [Formula: see text] and [Formula: see text], respectively, for UK Biobank trained predictors applied to a European population.
Collapse
Affiliation(s)
- Timothy G Raben
- Department of Physics and Astronomy, Michigan State University, Michigan, USA.
| | - Louis Lello
- Department of Physics and Astronomy, Michigan State University, Michigan, USA
- Genomic Prediction, Inc., North Brunswick, NJ, USA
| | - Erik Widen
- Department of Physics and Astronomy, Michigan State University, Michigan, USA
- Genomic Prediction, Inc., North Brunswick, NJ, USA
| | - Stephen D H Hsu
- Department of Physics and Astronomy, Michigan State University, Michigan, USA
- Genomic Prediction, Inc., North Brunswick, NJ, USA
| |
Collapse
|
15
|
Alrabghi G, Liu Y, Hu W, Hancox JC, Zhang H. Human atrial fibrillation and genetic defects in transient outward currents: mechanistic insights from multi-scale computational models. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220166. [PMID: 37122220 PMCID: PMC10150223 DOI: 10.1098/rstb.2022.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Previous studies have linked dysfunctional Ito arising from mutations to KCND3-encoded Kv4.3 and KCND2-encoded Kv4.2 to atrial fibrillation. Using computational models, this study aimed to investigate the mechanisms underlying pro-arrhythmic effects of the gain-of-function Kv4.3 (T361S, A545P) and Kv4.2 (S447R) mutations. Wild-type and mutant Ito formulations were developed from and validated against experimental data and incorporated into the Colman et al. model of human atrial cells. Single-cell models were incorporated into one- (1D) and two-dimensional (2D) models of atrial tissue, and a three-dimensional (3D) realistic model of the human atria. The three gain-of-function mutations had similar, albeit quantitatively different, effects: shortening of the action potential duration; lowering the plateau membrane potential, abbreviating the effective refractory period (ERP) and the wavelength (WL) of atrial excitation at the tissue level. Restitution curves for the WL, the ERP and the conduction velocity were leftward shifted, facilitating the conduction of atrial excitation waves at high excitation rates. The mutations also increased lifespan and stationarity of re-entry in both 2D and 3D simulations, which further highlighted a mutation-induced increase in spatial dispersion of repolarization. Collectively, these changes account for pro-arrhythmic effects of these Kv4.3 and Kv4.2 mutations in facilitating AF. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Ghadah Alrabghi
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
- Department of Physics, Faculty of Science, University of Jeddah, 21959 Jeddah, Saudi Arabia
| | - Yizhou Liu
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Wei Hu
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Jules C Hancox
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Henggui Zhang
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 646099 Luzhou, People's Republic of China
| |
Collapse
|
16
|
Leventopoulos G, Koros R, Travlos C, Perperis A, Chronopoulos P, Tsoni E, Koufou EE, Papageorgiou A, Apostolos A, Kaouris P, Davlouros P, Tsigkas G. Mechanisms of Atrial Fibrillation: How Our Knowledge Affects Clinical Practice. Life (Basel) 2023; 13:1260. [PMID: 37374043 PMCID: PMC10303005 DOI: 10.3390/life13061260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Atrial fibrillation (AF) is a very common arrhythmia that mainly affects older individuals. The mechanism of atrial fibrillation is complex and is related to the pathogenesis of trigger activation and the perpetuation of arrhythmia. The pulmonary veins in the left atrium arei confirm that onfirm the most common triggers due to their distinct anatomical and electrophysiological properties. As a result, their electrical isolation by ablation is the cornerstone of invasive AF treatment. Multiple factors and comorbidities affect the atrial tissue and lead to myocardial stretch. Several neurohormonal and structural changes occur, leading to inflammation and oxidative stress and, consequently, a fibrotic substrate created by myofibroblasts, which encourages AF perpetuation. Several mechanisms are implemented into daily clinical practice in both interventions in and the medical treatment of atrial fibrillation.
Collapse
Affiliation(s)
- Georgios Leventopoulos
- Cardiology Department, University Hospital of Patras, 26504 Patras, Greece; (R.K.); (C.T.); (A.P.); (P.C.); (E.T.); (E.-E.K.); (A.P.); (A.A.); (P.K.); (P.D.); (G.T.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cunha PS, Laranjo S, Heijman J, Oliveira MM. The Atrium in Atrial Fibrillation - A Clinical Review on How to Manage Atrial Fibrotic Substrates. Front Cardiovasc Med 2022; 9:879984. [PMID: 35859594 PMCID: PMC9289204 DOI: 10.3389/fcvm.2022.879984] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/03/2022] [Indexed: 12/27/2022] Open
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia in the population and is associated with a significant clinical and economic burden. Rigorous assessment of the presence and degree of an atrial arrhythmic substrate is essential for determining treatment options, predicting long-term success after catheter ablation, and as a substrate critical in the pathophysiology of atrial thrombogenesis. Catheter ablation of AF has developed into an essential rhythm-control strategy. Nowadays is one of the most common cardiac ablation procedures performed worldwide, with its success inversely related to the extent of atrial structural disease. Although atrial substrate evaluation remains complex, several diagnostic resources allow for a more comprehensive assessment and quantification of the extent of left atrial structural remodeling and the presence of atrial fibrosis. In this review, we summarize the current knowledge on the pathophysiology, etiology, and electrophysiological aspects of atrial substrates promoting the development of AF. We also describe the risk factors for its development and how to diagnose its presence using imaging, electrocardiograms, and electroanatomic voltage mapping. Finally, we discuss recent data regarding fibrosis biomarkers that could help diagnose atrial fibrotic substrates.
Collapse
Affiliation(s)
- Pedro Silva Cunha
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Central Lisbon Hospital University Center, Lisbon, Portugal
- Lisbon School of Medicine, Universidade de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Center, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Sérgio Laranjo
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Central Lisbon Hospital University Center, Lisbon, Portugal
- Lisbon School of Medicine, Universidade de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Center, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Mário Martins Oliveira
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Central Lisbon Hospital University Center, Lisbon, Portugal
- Lisbon School of Medicine, Universidade de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Center, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
18
|
Zhang X, Huang J, Li J, Lu Q, Huang Y, Lu D, Tang Y, Zhu J, Zhuang J. Association Between TCF21 Gene Polymorphism with the Incidence of Paroxysmal Atrial Fibrillation and the Efficacy of Radiofrequency Ablation for Patients with Paroxysmal Atrial Fibrillation. Int J Gen Med 2022; 15:4975-4983. [PMID: 35601004 PMCID: PMC9122043 DOI: 10.2147/ijgm.s366956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Atrial fibrillation (AF) is the most common sustained arrhythmia with a high rate of recurrence after catheter ablation. The gene encoding transcription factor 21 (TCF21) has been linked to coronary artery disease risk by human genome-wide association studies in multiple racial ethnic groups. However, the association of TCF21 with AF remains unclear. Patients and Methods Circulating leukocytes in patients with paroxysmal AF (PAF) and 92 age-matched controls without a history of cardiovascular disease, AF and other arrhythmias were collected. A total of 224 PAF patients receiving radiofrequency ablation had an 18-month scheduled follow-up study for recurrence of AF. Three single-nucleotide polymorphisms (SNPs) of TCF21 (rs2327429, rs2327433 and rs12190287) were genotyped by PCR, and serum levels of TCF21 were measured by ELISA. Results More males and smokers were observed in the PAF group compared with controls. C allele of rs2327429, G allele and GG genotype of rs12190287 were markedly associated with the increased onset of PAF. The levels of serum TCF21 were significantly higher in PAF group than those in control group (1.96 ± 0.85 vs 0.86 ± 0.49 ng/mL, P<0.001). Based on logistic regression analysis, we confirmed that risk allele at rs12190287 and serum TCF21 concentration were independently correlated with the incidence of PAF. Furthermore, GG genotype of rs12190287 enhanced the susceptibility of AF recurrence after ablation. Conclusion G allele and GG genotype of rs12190287 in TCF21 and elevated TCF21 concentration are significantly associated with the onset of PAF and recurrence after ablation.
Collapse
Affiliation(s)
- Xianlin Zhang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People’s Republic of China
| | - Juan Huang
- Health Management Centre, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People’s Republic of China
| | - Jinlong Li
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People’s Republic of China
| | - Qiao Lu
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People’s Republic of China
| | - Yuli Huang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People’s Republic of China
| | - Dongyu Lu
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People’s Republic of China
| | - Yang Tang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People’s Republic of China
| | - Jian Zhu
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People’s Republic of China
| | - Jianhui Zhuang
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
- Correspondence: Jianhui Zhuang, Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China, Tel +86-13621742833, Email
| |
Collapse
|
19
|
Jæger KH, Edwards AG, Giles WR, Tveito A. Arrhythmogenic influence of mutations in a myocyte-based computational model of the pulmonary vein sleeve. Sci Rep 2022; 12:7040. [PMID: 35487957 PMCID: PMC9054808 DOI: 10.1038/s41598-022-11110-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/12/2022] [Indexed: 11/09/2022] Open
Abstract
In the heart, electrophysiological dysregulation arises from defects at many biological levels (from point mutations in ion channel proteins to gross structural abnormalities). These defects disrupt the normal pattern of electrical activation, producing ectopic activity and reentrant arrhythmia. To interrogate mechanisms that link these primary biological defects to macroscopic electrophysiologic dysregulation most prior computational studies have utilized either (i) detailed models of myocyte ion channel dynamics at limited spatial scales, or (ii) homogenized models of action potential conduction that reproduce arrhythmic activity at tissue and organ levels. Here we apply our recent model (EMI), which integrates electrical activation and propagation across these scales, to study human atrial arrhythmias originating in the pulmonary vein (PV) sleeves. These small structures initiate most supraventricular arrhythmias and include pronounced myocyte-to-myocyte heterogeneities in ion channel expression and intercellular coupling. To test EMI's cell-based architecture in this physiological context we asked whether ion channel mutations known to underlie atrial fibrillation are capable of initiating arrhythmogenic behavior via increased excitability or reentry in a schematic PV sleeve geometry. Our results illustrate that EMI's improved spatial resolution can directly interrogate how electrophysiological changes at the individual myocyte level manifest in tissue and as arrhythmia in the PV sleeve.
Collapse
Affiliation(s)
| | | | - Wayne R Giles
- Simula Research Laboratory, Oslo, Norway.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | |
Collapse
|
20
|
|
21
|
Time series proteome profile analysis reveals a protective role of citrate synthase in angiotensin II-induced atrial fibrillation. J Hypertens 2022; 40:765-775. [PMID: 35013064 PMCID: PMC8901035 DOI: 10.1097/hjh.0000000000003075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Angiotensin (Ang) II and elevated blood pressure are considered to be the main risk factors for atrial fibrillation. However, the proteome profiles and key mediators/signaling pathways involved in the development of Ang II-induced atrial fibrillation remain unclear. METHODS Male wild-type C57BL/6 mice (10-week old) were infused with Ang II (2000 ng/kg per min) for 1, 2, or 3 weeks, respectively. Time series proteome profiling of atrial tissues was performed using isobaric tags for relative and absolute quantitation and liquid chromatography coupled with tandem mass spectrometry. RESULTS We identified a total of 1566 differentially expressed proteins (DEPs) in the atrial tissues at weeks 1, 2, and 3 after Ang II infusion. These DEPs were predominantly involved in mitochondrial oxidation-reduction and tricarboxylic acid cycle in Ang II-infused atria. Moreover, coexpression network analysis revealed that citrate synthase, a rate-limiting enzyme in the tricarboxylic acid cycle, was localized at the center of the mitochondrial oxidation-reduction process, and its expression was significantly downreguated in Ang II-infused atria at different time points. Cardiomyocyte-specific overexpresion of citrate synthase markedly reduced atrial fibrillation susceptibility and atrial remodeling in mice. These beneficial effects were associated with increased ATP production and mitochondrial oxidative phosphorylation system complexes I-V expression and inhibition of oxidative stress. CONCLUSION The current study defines the dynamic changes of the DEPs involved in Ang II-induced atrial fibrillation, and identifies that citrate synthase plays a protective role in regulating atrial fibrillation development, and increased citrate synthase expression may represent a potential therapeutic option for atrial fibrillation treatment.
Collapse
|
22
|
Li N, Feng Q, Yu F, Zhou J, Guo X. Plasma growth differentiation factor-15 in patients with "lone" atrial fibrillation. J Clin Lab Anal 2022; 36:e24373. [PMID: 35334497 PMCID: PMC9102623 DOI: 10.1002/jcla.24373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
Abstract
Background Growth differentiation factor‐15 (GDF‐15) is a member of the transforming growth factor β superfamily, correlated with various stimuli, including cardiovascular disease. The association between plasma GDF‐15 level and “lone” AF, that is, AF of unknown etiology (UeAF), is uncertain. Methods All patients aged 60 years or younger. AF patients were hospitalized for primary catheter ablation. Patients with sinus rhythm admitted for other diseases during the same period were included in the control group. ELISA was used to measure plasma GDF‐15 concentrations. Results 60 UeAF patients, 60 paroxysmal AF (PAF) patients, and 70 control patients were enrolled. The mean age was 44.6 years. In the UeAF group, no patients had traditional clinical risk factors. The plasma GDF‐15 level in the UeAF group was (1028.5 ± 180.5) pg/ml, higher than in the control group, and moderately lower than in the PAF group. In all patients, positive correlations were found between plasma GDF‐15 level and age (R = 0.210, p < 0.05), and between plasma GDF‐15 level and left atrial diameter (LAD; R = 0.338, p < 0.05; in the UeAF group: R = 0.475, p < 0.05; in the PAF group: R = 0.504, p < 0.05). Conclusions Our study first investigated the role of GDF‐15 in UeAF. The plasma GDF‐15 level in UeAF patients was higher than in sinus rhythm patients and lower than in PAF patients. Moreover, GDF‐15 was positively correlated with age and LAD. The role of GDF‐15 in UeAF needs further study.
Collapse
Affiliation(s)
- Na Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qian Feng
- Department of Third Cardiology, Zhangjiakou First Hospital, Zhangjiakou, China
| | - Fangfang Yu
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jian Zhou
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xueyuan Guo
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Herrera-Rivero M, Gandhi S, Witten A, Ghalawinji A, Schotten U, Stoll M. Cardiac chamber-specific genetic alterations suggest candidate genes and pathways implicating the left ventricle in the pathogenesis of atrial fibrillation. Genomics 2022; 114:110320. [PMID: 35218871 DOI: 10.1016/j.ygeno.2022.110320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/12/2022] [Accepted: 02/19/2022] [Indexed: 11/15/2022]
Abstract
It is believed that the atria play a predominant role in the initiation and maintenance of atrial fibrillation (AF), while the role of left ventricular dysfunction in the pathophysiology remains enigmatic. We sought to dissect chamber specificity of AF-associated transcriptional changes using RNA-sequencing. We performed intra- and inter-chamber differential expression analyses comparing AF against sinus rhythm to identify genes specifically dysregulated in human left atria, right atria, and left ventricle (LV), and integrated known AF genetic associations with expression quantitative trait loci datasets to inform the potential for disease causal contributions within each chamber. Inter-chamber patterns changed drastically. Vast AF-associated transcriptional changes specific to LV, enriched for biological pathway terms implicating mitochondrial function, developmental processes and immunity, were supported at the genetic level, but no major enrichments for candidate genes specific to the atria were found. Our observations suggest an active role of the LV in the pathogenesis of AF.
Collapse
Affiliation(s)
- Marisol Herrera-Rivero
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Shrey Gandhi
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany; Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Anika Witten
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Amer Ghalawinji
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Ulrich Schotten
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Monika Stoll
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany; Department of Biochemistry, Genetic Epidemiology and Statistical Genetics, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
24
|
Erhard N, Metzner A, Fink T. Late arrhythmia recurrence after atrial fibrillation ablation: incidence, mechanisms and clinical implications. Herzschrittmacherther Elektrophysiol 2022; 33:71-76. [PMID: 35006336 PMCID: PMC8873127 DOI: 10.1007/s00399-021-00836-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022]
Abstract
Background and objectives Catheter ablation of atrial fibrillation (AF) has become a well-established and widely used therapy, with pulmonary vein isolation (PVI) being the key modality of ablation. However, arrhythmia recurrences after PVI are common, with a relevant number of patients undergoing repeat ablation. Arrhythmia recurrence after PVI may vary regarding time point and mode of recurrence. While early arrhythmia recurrences of AF after PVI are mostly found to be the product of electrical reconnection of the pulmonary veins, the exact mechanisms of very late arrhythmia recurrence, occurring later than 12 months after successful PVI, remain unclear. This review provides an overview on the current evidence on time point and mechanisms of arrhythmia recurrence after PVI focussing on late arrhythmia recurrence. Recent findings The incidence of late arrhythmia recurrence after PVI can lie at a rate of up to 30% according to long-term follow-up studies. Mechanisms of recurrence include electrical reconnection of previously isolated pulmonary veins and development of atrial fibrosis. The use of cryoballoon ablation is likely to be more effective in reducing late arrhythmia recurrences compared to radiofrequency ablation. Novel scores such as the MB-LATER score or the APPLE score may become useful tools in predicting arrhythmia recurrence after PVI. Results and conclusion Late arrhythmia recurrence after PVI is common and leads to a relevant impairment of long-term success. Relevant data are currently limited and exact mechanisms of arrhythmia recurrence remain unclear. Further studies are needed to elucidate pathogenetic mechanisms of late arrhythmia recurrence after PVI in order to improve treatment strategies.
Collapse
Affiliation(s)
- Nico Erhard
- Department of Electrophysiology, German Heart Centre Munich, Lazarettstr. 36, 80636, Munich, Germany.
| | - Andreas Metzner
- Department of Cardiac Electrophysiology, University Heart Center, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Thomas Fink
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
25
|
Martínez-Barrios E, Cesar S, Cruzalegui J, Hernandez C, Arbelo E, Fiol V, Brugada J, Brugada R, Campuzano O, Sarquella-Brugada G. Clinical Genetics of Inherited Arrhythmogenic Disease in the Pediatric Population. Biomedicines 2022; 10:106. [PMID: 35052786 PMCID: PMC8773373 DOI: 10.3390/biomedicines10010106] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022] Open
Abstract
Sudden death is a rare event in the pediatric population but with a social shock due to its presentation as the first symptom in previously healthy children. Comprehensive autopsy in pediatric cases identify an inconclusive cause in 40-50% of cases. In such cases, a diagnosis of sudden arrhythmic death syndrome is suggested as the main potential cause of death. Molecular autopsy identifies nearly 30% of cases under 16 years of age carrying a pathogenic/potentially pathogenic alteration in genes associated with any inherited arrhythmogenic disease. In the last few years, despite the increasing rate of post-mortem genetic diagnosis, many families still remain without a conclusive genetic cause of the unexpected death. Current challenges in genetic diagnosis are the establishment of a correct genotype-phenotype association between genes and inherited arrhythmogenic disease, as well as the classification of variants of uncertain significance. In this review, we provide an update on the state of the art in the genetic diagnosis of inherited arrhythmogenic disease in the pediatric population. We focus on emerging publications on gene curation for genotype-phenotype associations, cases of genetic overlap and advances in the classification of variants of uncertain significance. Our goal is to facilitate the translation of genetic diagnosis to the clinical area, helping risk stratification, treatment and the genetic counselling of families.
Collapse
Affiliation(s)
- Estefanía Martínez-Barrios
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - Sergi Cesar
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - José Cruzalegui
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - Clara Hernandez
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - Elena Arbelo
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (R.B.)
- Arrhythmias Unit, Hospital Clinic, University of Barcelona-IDIBAPS, 08036 Barcelona, Spain
| | - Victoria Fiol
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - Josep Brugada
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (R.B.)
- Arrhythmias Unit, Hospital Clinic, University of Barcelona-IDIBAPS, 08036 Barcelona, Spain
| | - Ramon Brugada
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (R.B.)
- Medical Science Department, School of Medicine, University of Girona, 17004 Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17190 Girona, Spain
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17007 Girona, Spain
| | - Oscar Campuzano
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (R.B.)
- Medical Science Department, School of Medicine, University of Girona, 17004 Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17190 Girona, Spain
| | - Georgia Sarquella-Brugada
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
- Medical Science Department, School of Medicine, University of Girona, 17004 Girona, Spain
| |
Collapse
|
26
|
Guo XJ, Qiu XB, Wang J, Guo YH, Yang CX, Li L, Gao RF, Ke ZP, Di RM, Sun YM, Xu YJ, Yang YQ. PRRX1 Loss-of-Function Mutations Underlying Familial Atrial Fibrillation. J Am Heart Assoc 2021; 10:e023517. [PMID: 34845933 PMCID: PMC9075371 DOI: 10.1161/jaha.121.023517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Atrial fibrillation (AF) is the most common form of clinical cardiac dysrhythmia responsible for thromboembolic cerebral stroke, congestive heart failure, and death. Aggregating evidence highlights the strong genetic basis of AF. Nevertheless, AF is of pronounced genetic heterogeneity, and in an overwhelming majority of patients, the genetic determinants underpinning AF remain elusive. Methods and Results By genome‐wide screening with polymorphic microsatellite markers and linkage analysis in a 4‐generation Chinese family affected with autosomal‐dominant AF, a novel locus for AF was mapped to chromosome 1q24.2–q25.1, a 3.20‐cM (≈4.19 Mbp) interval between markers D1S2851 and D1S218, with the greatest 2‐point logarithm of odds score of 4.8165 for the marker D1S452 at recombination fraction=0.00. Whole‐exome sequencing and bioinformatics analyses showed that within the mapping region, only the mutation in the paired related homeobox 1 (PRRX1) gene, NM_022716.4:c.319C>T;(p.Gln107*), cosegregated with AF in the family. In addition, sequencing analyses of PRRX1 in another cohort of 225 unrelated patients with AF revealed a new mutation, NM_022716.4:c.437G>T; (p.Arg146Ile), in a patient. The 2 mutations were absent in 908 control subjects. Biological analyses in HeLa cells demonstrated that the 2 mutants had significantly diminished transactivation on the target genes ISL1 and SHOX2 and markedly decreased ability to bind the promoters of ISL1 and SHOX2 (2 genes causally linked to AF), although with normal intracellular distribution. Conclusions This study first indicates that PRRX1 loss‐of‐function mutations predispose to AF, which provides novel insight into the molecular pathogenesis underpinning AF, implying potential implications for precisive prophylaxis and management of AF.
Collapse
Affiliation(s)
- Xiao-Juan Guo
- Department of Cardiology and the Center for Complex Cardiac Arrhythmias of Minhang District Shanghai Fifth People's HospitalFudan University Shanghai China
| | - Xing-Biao Qiu
- Department of Cardiology Shanghai Chest HospitalShanghai Jiao Tong University Shanghai China
| | - Jun Wang
- Department of Cardiology Shanghai Jing'an District Central HospitalFudan University Shanghai China
| | - Yu-Han Guo
- Department of Cardiology and the Center for Complex Cardiac Arrhythmias of Minhang District Shanghai Fifth People's HospitalFudan University Shanghai China
| | - Chen-Xi Yang
- Department of Cardiology and the Center for Complex Cardiac Arrhythmias of Minhang District Shanghai Fifth People's HospitalFudan University Shanghai China
| | - Li Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East HospitalTongji University School of Medicine Shanghai China.,Institute of Medical GeneticsTongji University Shanghai China
| | - Ri-Feng Gao
- Department of Cardiology and the Center for Complex Cardiac Arrhythmias of Minhang District Shanghai Fifth People's HospitalFudan University Shanghai China
| | - Zun-Ping Ke
- Department of Cardiology and the Center for Complex Cardiac Arrhythmias of Minhang District Shanghai Fifth People's HospitalFudan University Shanghai China
| | - Ruo-Min Di
- Department of Cardiology and the Center for Complex Cardiac Arrhythmias of Minhang District Shanghai Fifth People's HospitalFudan University Shanghai China
| | - Yu-Min Sun
- Department of Cardiology Shanghai Jing'an District Central HospitalFudan University Shanghai China
| | - Ying-Jia Xu
- Department of Cardiology and the Center for Complex Cardiac Arrhythmias of Minhang District Shanghai Fifth People's HospitalFudan University Shanghai China
| | - Yi-Qing Yang
- Department of Cardiology and the Center for Complex Cardiac Arrhythmias of Minhang District Shanghai Fifth People's HospitalFudan University Shanghai China.,Cardiovascular Research Laboratory and Central Laboratory Shanghai Fifth People's HospitalFudan University Shanghai China
| |
Collapse
|
27
|
A Higher Polygenic Risk Score Is Associated with a Higher Recurrence Rate of Atrial Fibrillation in Direct Current Cardioversion-Treated Patients. Medicina (B Aires) 2021; 57:medicina57111263. [PMID: 34833481 PMCID: PMC8624440 DOI: 10.3390/medicina57111263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022] Open
Abstract
Background and Objectives: Recurrence of atrial fibrillation (AF) within six months after sinus rhythm restoration with direct current cardioversion (DCC) is a significant treatment challenge. Currently, the factors influencing outcome are mostly unknown. Studies have found a link between genetics and the risk of AF and efficacy of rhythm control. The aim of this study was to examine the association between eight single-nucleotide variants (SNVs) and the risk of AF development and recurrence after DCC. Materials and Methods: Regarding the occurrence of AF, 259 AF cases and 108 controls were studied. Genotypes for the eight SNVs located in the genes CAV1, MYH7, SOX5, KCNN3, ZFHX3, KCNJ5 and PITX2 were determined using high-resolution melting analysis and confirmed with Sanger sequencing. Six months after DCC, a telephone interview was conducted to determine whether AF had recurred. A polygenic risk score (PRS) was calculated as the unweighted sum of risk alleles. Multivariate regression analyses were performed to assess SNV and PRS association with AF occurrence and recurrence after DCC. Results: The risk allele of rs2200733 (PITX2) was significantly associated with the development of AF (p = 0.012, OR = 2.31, 95% CI = 1.206–4.423). AF recurred in 60% of patients and the allele generally associated with a decreased risk of AF of rs11047543 (SOX5) was associated with a greater risk of AF recurrence (p = 0.014, OR = 0.223, 95% CI = 0.067–0.738). A PRS of greater than 7 was significantly associated (p = 0.008) with a higher likelihood of developing AF after DCC (OR = 4.174, 95% CI = 1.454–11.980). Conclusions: A higher PRS is associated with increased odds of AF recurrence after treatment with DCC. PITX2 (rs2200733) is significantly associated with an increased risk of AF. The protective allele of rs11047543 (SOX5) is associated with a greater risk of AF recurrence. Further studies are needed to predict the success of rhythm control and guide patient selection towards the most efficacious treatment.
Collapse
|
28
|
Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, Benetos A, Biffi A, Boavida JM, Capodanno D, Cosyns B, Crawford C, Davos CH, Desormais I, Di Angelantonio E, Franco OH, Halvorsen S, Hobbs FDR, Hollander M, Jankowska EA, Michal M, Sacco S, Sattar N, Tokgozoglu L, Tonstad S, Tsioufis KP, van Dis I, van Gelder IC, Wanner C, Williams B. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur J Prev Cardiol 2021; 29:5-115. [PMID: 34558602 DOI: 10.1093/eurjpc/zwab154] [Citation(s) in RCA: 236] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Alessandro Biffi
- European Federation of Sports Medicine Association (EFSMA).,International Federation of Sport Medicine (FIMS)
| | | | | | | | | | | | | | | | | | | | - F D Richard Hobbs
- World Organization of National Colleges, Academies and Academic Associations of General Practitioners/Family Physicians (WONCA) - Europe
| | | | | | | | | | | | | | | | | | | | | | - Christoph Wanner
- European Renal Association - European Dialysis and Transplant Association (ERA-EDTA)
| | | | | |
Collapse
|
29
|
Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, Benetos A, Biffi A, Boavida JM, Capodanno D, Cosyns B, Crawford C, Davos CH, Desormais I, Di Angelantonio E, Franco OH, Halvorsen S, Hobbs FDR, Hollander M, Jankowska EA, Michal M, Sacco S, Sattar N, Tokgozoglu L, Tonstad S, Tsioufis KP, van Dis I, van Gelder IC, Wanner C, Williams B. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 2021; 42:3227-3337. [PMID: 34458905 DOI: 10.1093/eurheartj/ehab484] [Citation(s) in RCA: 2546] [Impact Index Per Article: 848.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | - Alessandro Biffi
- European Federation of Sports Medicine Association (EFSMA)
- International Federation of Sport Medicine (FIMS)
| | | | | | | | | | | | | | | | | | | | - F D Richard Hobbs
- World Organization of National Colleges, Academies and Academic Associations of General Practitioners/Family Physicians (WONCA) - Europe
| | | | | | | | | | | | | | | | | | | | | | - Christoph Wanner
- European Renal Association - European Dialysis and Transplant Association (ERA-EDTA)
| | | |
Collapse
|
30
|
van den Berg NWE, Neefs J, Kawasaki M, Nariswari FA, Wesselink R, Fabrizi B, Jongejan A, Klaver MN, Havenaar H, Hulsman EL, Wintgens LIS, Baalman SWE, Meulendijks ER, van Boven WJ, de Jong JSSG, van Putte BP, Driessen AHG, Boersma LVA, de Groot JR. Extracellular matrix remodeling precedes atrial fibrillation: Results of the PREDICT-AF trial. Heart Rhythm 2021; 18:2115-2125. [PMID: 34332113 DOI: 10.1016/j.hrthm.2021.07.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND To which extent atrial remodeling occurs before atrial fibrillation (AF) is unknown. OBJECTIVE The PREventive left atrial appenDage resection for the predICtion of fuTure Atrial Fibrillation (PREDICT-AF) study investigated such subclinical remodeling, which may be used for risk stratification and AF prevention. METHODS Patients (N = 150) without a history of AF with a CHA2DS2-VASc score of ≥2 at an increased risk of developing AF were included. The left atrial appendage was excised and blood samples were collected during elective cardiothoracic surgery for biomarker discovery. Participants were followed for 2 years with Holter monitoring to determine any atrial tachyarrhythmia after a 50-day blanking period. RESULTS Eighteen patients (12%) developed incident AF, which was associated with increased tissue gene expression of collagen I (COL1A1), collagen III (COL3A1), and collagen VIII (COL8A2), tenascin-C (TNC), thrombospondin-2 (THBS2), and biglycan (BGN). Furthermore, the fibroblast activating endothelin-1 (EDN1) and sodium voltage-gated channel β subunit 2 (SCN2B) were associated with incident AF whereas the Kir2.1 channel (KCNJ2) tended to downregulate. The plasma levels of COL8A2 and TNC correlated with tissue expression and predicted incident AF. A gene panel including tissue KCNJ2, COL1A1, COL8A2, and EDN1 outperformed clinical prediction models in discriminating incident AF. CONCLUSION The PREDICT-AF study demonstrates that atrial remodeling occurs long before incident AF and implies future potential for early patient identification and therapies to prevent AF (ClinicalTrials.gov identifier NCT03130985).
Collapse
Affiliation(s)
- Nicoline W E van den Berg
- Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jolien Neefs
- Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Makiri Kawasaki
- Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Fransisca A Nariswari
- Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Robin Wesselink
- Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Benedetta Fabrizi
- Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijn N Klaver
- Department of Cardiology and Cardiothoracic Surgery, St. Antonius Ziekenhuis, Nieuwegein, The Netherlands
| | - Hanna Havenaar
- Department of Cardiology and Cardiothoracic Surgery, St. Antonius Ziekenhuis, Nieuwegein, The Netherlands
| | - Elise L Hulsman
- Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisette I S Wintgens
- Department of Cardiology and Cardiothoracic Surgery, St. Antonius Ziekenhuis, Nieuwegein, The Netherlands
| | - Sarah W E Baalman
- Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eva R Meulendijks
- Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wim Jan van Boven
- Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Bart P van Putte
- Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Cardiology and Cardiothoracic Surgery, St. Antonius Ziekenhuis, Nieuwegein, The Netherlands
| | - Antoine H G Driessen
- Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lucas V A Boersma
- Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Cardiology and Cardiothoracic Surgery, St. Antonius Ziekenhuis, Nieuwegein, The Netherlands
| | - Joris R de Groot
- Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | | |
Collapse
|
31
|
Heijman J, Sutanto H, Crijns HJGM, Nattel S, Trayanova NA. Computational models of atrial fibrillation: achievements, challenges, and perspectives for improving clinical care. Cardiovasc Res 2021; 117:1682-1699. [PMID: 33890620 PMCID: PMC8208751 DOI: 10.1093/cvr/cvab138] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Despite significant advances in its detection, understanding and management, atrial fibrillation (AF) remains a highly prevalent cardiac arrhythmia with a major impact on morbidity and mortality of millions of patients. AF results from complex, dynamic interactions between risk factors and comorbidities that induce diverse atrial remodelling processes. Atrial remodelling increases AF vulnerability and persistence, while promoting disease progression. The variability in presentation and wide range of mechanisms involved in initiation, maintenance and progression of AF, as well as its associated adverse outcomes, make the early identification of causal factors modifiable with therapeutic interventions challenging, likely contributing to suboptimal efficacy of current AF management. Computational modelling facilitates the multilevel integration of multiple datasets and offers new opportunities for mechanistic understanding, risk prediction and personalized therapy. Mathematical simulations of cardiac electrophysiology have been around for 60 years and are being increasingly used to improve our understanding of AF mechanisms and guide AF therapy. This narrative review focuses on the emerging and future applications of computational modelling in AF management. We summarize clinical challenges that may benefit from computational modelling, provide an overview of the different in silico approaches that are available together with their notable achievements, and discuss the major limitations that hinder the routine clinical application of these approaches. Finally, future perspectives are addressed. With the rapid progress in electronic technologies including computing, clinical applications of computational modelling are advancing rapidly. We expect that their application will progressively increase in prominence, especially if their added value can be demonstrated in clinical trials.
Collapse
Affiliation(s)
- Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Henry Sutanto
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Harry J G M Crijns
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Stanley Nattel
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Duisburg, Germany
- IHU Liryc and Fondation Bordeaux Université, Bordeaux, France
| | - Natalia A Trayanova
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
32
|
Belletti R, Romero L, Martinez-Mateu L, Cherry EM, Fenton FH, Saiz J. Arrhythmogenic Effects of Genetic Mutations Affecting Potassium Channels in Human Atrial Fibrillation: A Simulation Study. Front Physiol 2021; 12:681943. [PMID: 34135774 PMCID: PMC8201780 DOI: 10.3389/fphys.2021.681943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
Genetic mutations in genes encoding for potassium channel protein structures have been recently associated with episodes of atrial fibrillation in asymptomatic patients. The aim of this study is to investigate the potential arrhythmogenicity of three gain-of-function mutations related to atrial fibrillation-namely, KCNH2 T895M, KCNH2 T436M, and KCNE3-V17M-using modeling and simulation of the electrophysiological activity of the heart. A genetic algorithm was used to tune the parameters' value of the original ionic currents to reproduce the alterations experimentally observed caused by the mutations. The effects on action potentials, ionic currents, and restitution properties were analyzed using versions of the Courtemanche human atrial myocyte model in different tissues: pulmonary vein, right, and left atrium. Atrial susceptibility of the tissues to spiral wave generation was also investigated studying the temporal vulnerability. The presence of the three mutations resulted in an overall more arrhythmogenic substrate. Higher current density, action potential duration shortening, and flattening of the restitution curves were the major effects of the three mutations at the single-cell level. The genetic mutations at the tissue level induced a higher temporal vulnerability to the rotor's initiation and progression, by sustaining spiral waves that perpetuate until the end of the simulation. The mutation with the highest pro-arrhythmic effects, exhibiting the widest sustained VW and the smallest meandering rotor's tip areas, was KCNE3-V17M. Moreover, the increased susceptibility to arrhythmias and rotor's stability was tissue-dependent. Pulmonary vein tissues were more prone to rotor's initiation, while in left atrium tissues rotors were more easily sustained. Re-entries were also progressively more stable in pulmonary vein tissue, followed by the left atrium, and finally the right atrium. The presence of the genetic mutations increased the susceptibility to arrhythmias by promoting the rotor's initiation and maintenance. The study provides useful insights into the mechanisms underlying fibrillatory events caused by KCNH2 T895M, KCNH2 T436M, and KCNE3-V17M and might aid the planning of patient-specific targeted therapies.
Collapse
Affiliation(s)
- Rebecca Belletti
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Lucia Romero
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Laura Martinez-Mateu
- Departamento de Teoría de la Señal y Comunicaciones y Sistemas Telemáticos y Computación, Universidad Rey Juan Carlos, Madrid, Spain
| | - Elizabeth M. Cherry
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Flavio H. Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| | - Javier Saiz
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
33
|
Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, Boriani G, Castella M, Dan GA, Dilaveris PE, Fauchier L, Filippatos G, Kalman JM, Meir ML, Lane DA, Lebeau JP, Lettino M, Lip GY, Pinto FJ, Neil Thomas G, Valgimigli M, Van Gelder IC, Van Putte BP, Watkins CL. Guía ESC 2020 sobre el diagnóstico y tratamiento de la fibrilación auricular, desarrollada en colaboración de la European Association of Cardio-Thoracic Surgery (EACTS). Rev Esp Cardiol 2021. [DOI: 10.1016/j.recesp.2020.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Abstract
PURPOSE OF REVIEW Atrial fibrillation is the most common sustained cardiac arrhythmia. In addition to traditional risk factors, it is increasingly recognized that a genetic component underlies atrial fibrillation development. This review aims to provide an overview of the genetic cause of atrial fibrillation and clinical applications, with a focus on recent developments. RECENT FINDINGS Genome-wide association studies have now identified around 140 genetic loci associated with atrial fibrillation. Studies into the effects of several loci and their tentative gene targets have identified novel pathways associated with atrial fibrillation development. However, further validations of causality are still needed for many implicated genes. Genetic variants at identified loci also help predict individual atrial fibrillation risk and response to different therapies. SUMMARY Continued advances in the field of genetics and molecular biology have led to significant insight into the genetic underpinnings of atrial fibrillation. Potential clinical applications of these studies include the identification of new therapeutic targets and development of genetic risk scores to optimize management of this common cardiac arrhythmia.
Collapse
Affiliation(s)
- Jitae A. Kim
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mihail G. Chelu
- Department of Cardiology, Baylor College of Medicine, Houston, TX, USA
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX
| |
Collapse
|
35
|
Nakajima T, Tamura S, Kurabayashi M, Kaneko Y. Towards Mutation-Specific Precision Medicine in Atypical Clinical Phenotypes of Inherited Arrhythmia Syndromes. Int J Mol Sci 2021; 22:ijms22083930. [PMID: 33920294 PMCID: PMC8069124 DOI: 10.3390/ijms22083930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
Most causal genes for inherited arrhythmia syndromes (IASs) encode cardiac ion channel-related proteins. Genotype-phenotype studies and functional analyses of mutant genes, using heterologous expression systems and animal models, have revealed the pathophysiology of IASs and enabled, in part, the establishment of causal gene-specific precision medicine. Additionally, the utilization of induced pluripotent stem cell (iPSC) technology have provided further insights into the pathophysiology of IASs and novel promising therapeutic strategies, especially in long QT syndrome. It is now known that there are atypical clinical phenotypes of IASs associated with specific mutations that have unique electrophysiological properties, which raises a possibility of mutation-specific precision medicine. In particular, patients with Brugada syndrome harboring an SCN5A R1632C mutation exhibit exercise-induced cardiac events, which may be caused by a marked activity-dependent loss of R1632C-Nav1.5 availability due to a marked delay of recovery from inactivation. This suggests that the use of isoproterenol should be avoided. Conversely, the efficacy of β-blocker needs to be examined. Patients harboring a KCND3 V392I mutation exhibit both cardiac (early repolarization syndrome and paroxysmal atrial fibrillation) and cerebral (epilepsy) phenotypes, which may be associated with a unique mixed electrophysiological property of V392I-Kv4.3. Since the epileptic phenotype appears to manifest prior to cardiac events in this mutation carrier, identifying KCND3 mutations in patients with epilepsy and providing optimal therapy will help prevent sudden unexpected death in epilepsy. Further studies using the iPSC technology may provide novel insights into the pathophysiology of atypical clinical phenotypes of IASs and the development of mutation-specific precision medicine.
Collapse
|
36
|
Mohanty S, Della Rocca DG, Gianni C, Trivedi C, Mayedo AQ, MacDonald B, Natale A. Predictors of recurrent atrial fibrillation following catheter ablation. Expert Rev Cardiovasc Ther 2021; 19:237-246. [PMID: 33678103 DOI: 10.1080/14779072.2021.1892490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Atrial fibrillation (AF) is a complex and multi-factorial rhythm disorder. Catheter ablation is widely used for the management of AF. However, it is limited by relapse of the arrhythmia necessitating repeat procedures. AREAS COVERED This review aims to discuss the predictors of post-ablation recurrent AF including age, gender, genetic predisposition, AF type and duration, comorbidities, lifestyle factors, echocardiographic parameters of heart chambers, left atrial fibrosis and ablation strategies and targets. An extensive literature search was undertaken on PubMed and Google Scholar to obtain full texts of relevant AF-related articles. EXPERT OPINION Maintenance of stable sinus rhythm is the main intended outcome of AF ablation. Therefore, it is very crucial to identify the risk factors that may influence the ablation success. Most of these predictors such as comorbidities, ablation strategy and targets and lifestyle factors are either reversible or modifiable. Thus, not only the awareness of these known risk factors by both patients and their physicians but also future research to identify the unknown predictors are critical to optimize care in this multi-faceted morbidity.
Collapse
Affiliation(s)
- Sanghamitra Mohanty
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, USA
| | | | - Carola Gianni
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, USA
| | - Chintan Trivedi
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, USA
| | | | - Bryan MacDonald
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, USA
| | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, USA.,Department of electrophysiology, Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA.,Metro Health Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
37
|
Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, Boriani G, Castella M, Dan GA, Dilaveris PE, Fauchier L, Filippatos G, Kalman JM, La Meir M, Lane DA, Lebeau JP, Lettino M, Lip GYH, Pinto FJ, Thomas GN, Valgimigli M, Van Gelder IC, Van Putte BP, Watkins CL. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J 2021; 42:373-498. [PMID: 32860505 DOI: 10.1093/eurheartj/ehaa612] [Citation(s) in RCA: 5588] [Impact Index Per Article: 1862.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
38
|
Bai J, Zhu Y, Lo A, Gao M, Lu Y, Zhao J, Zhang H. In Silico Assessment of Class I Antiarrhythmic Drug Effects on Pitx2-Induced Atrial Fibrillation: Insights from Populations of Electrophysiological Models of Human Atrial Cells and Tissues. Int J Mol Sci 2021; 22:1265. [PMID: 33514068 PMCID: PMC7866025 DOI: 10.3390/ijms22031265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Electrical remodelling as a result of homeodomain transcription factor 2 (Pitx2)-dependent gene regulation was linked to atrial fibrillation (AF) and AF patients with single nucleotide polymorphisms at chromosome 4q25 responded favorably to class I antiarrhythmic drugs (AADs). The possible reasons behind this remain elusive. The purpose of this study was to assess the efficacy of the AADs disopyramide, quinidine, and propafenone on human atrial arrhythmias mediated by Pitx2-induced remodelling, from a single cell to the tissue level, using drug binding models with multi-channel pharmacology. Experimentally calibrated populations of human atrial action po-tential (AP) models in both sinus rhythm (SR) and Pitx2-induced AF conditions were constructed by using two distinct models to represent morphological subtypes of AP. Multi-channel pharmaco-logical effects of disopyramide, quinidine, and propafenone on ionic currents were considered. Simulated results showed that Pitx2-induced remodelling increased maximum upstroke velocity (dVdtmax), and decreased AP duration (APD), conduction velocity (CV), and wavelength (WL). At the concentrations tested in this study, these AADs decreased dVdtmax and CV and prolonged APD in the setting of Pitx2-induced AF. Our findings of alterations in WL indicated that disopyramide may be more effective against Pitx2-induced AF than propafenone and quinidine by prolonging WL.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Yijie Zhu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Andy Lo
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand; (A.L.); (J.Z.)
| | - Meng Gao
- Department of Computer Science and Technology, College of Electrical Engineering and Information, Northeast Agricultural University, Harbin 150030, China
| | - Yaosheng Lu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand; (A.L.); (J.Z.)
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
39
|
Manifestations of gene expression profiles in human right atrial myocardium caused by mechanical stretch. Heart Vessels 2020; 36:577-588. [PMID: 33180177 DOI: 10.1007/s00380-020-01724-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
This investigation was aimed to identify gene profiles in human atrial myocardium in response to chronic mechanical stretch. Right atrial appendages from 21 patients were divided into 2 groups based on the size of right atrial volume. The microarray DATA analyses differentially identified 335 genes (> 2.0-fold, corrected P < 0.05) including "functionally unknown genes". This study identified 26 up-regulated genes (natriuretic peptide B, G protein subunit gamma 13, thyroid stimulating hormone beta, etc.) and 23 down-regulated genes (oligodendrocyte transcription factor 1, carbonic anhydrase 12, etc.), which could be responsible for chronic stretch-mediated structural remodeling in the atrium.
Collapse
|
40
|
Abstract
Cardiac arrhythmias are defined as electrical disorders of the pumping heart, including therein a wide range of physiopathological entities [...]
Collapse
|
41
|
Sumer SA, Hoffmann S, Laue S, Campbell B, Raedecke K, Frajs V, Clauss S, Kääb S, Janssen JWG, Jauch A, Laugwitz KL, Dorn T, Moretti A, Rappold GA. Precise Correction of Heterozygous SHOX2 Mutations in hiPSCs Derived from Patients with Atrial Fibrillation via Genome Editing and Sib Selection. Stem Cell Reports 2020; 15:999-1013. [PMID: 32976766 PMCID: PMC7562944 DOI: 10.1016/j.stemcr.2020.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022] Open
Abstract
Patient-specific human induced pluripotent stem cells (hiPSCs) offer unprecedented opportunities for the investigation of multigenic disease, personalized medicine, and stem cell therapy. For heterogeneous diseases such as atrial fibrillation (AF), however, precise correction of the associated mutation is crucial. Here, we generated and corrected hiPSC lines from two AF patients carrying different heterozygous SHOX2 mutations. We developed a strategy for the scarless correction of heterozygous mutations, based on stochastic enrichment by sib selection, followed by allele quantification via digital PCR and next-generation sequencing to detect isogenic subpopulations. This allowed enriching edited cells 8- to 20-fold. The method does not require antibiotic selection or cell sorting and can be easily combined with base-and-prime editing approaches. Our strategy helps to overcome low efficiencies of homology-dependent repair in hiPSCs and facilitates the generation of isogenic control lines that represent the gold standard for modeling complex diseases in vitro.
Collapse
Affiliation(s)
- Simon Alexander Sumer
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Baden-Wuerttemberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Sandra Hoffmann
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Baden-Wuerttemberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Svenja Laue
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar - Technical University of Munich, 81675 Munich, Bavaria, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Munich, Munich, Germany
| | - Birgit Campbell
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar - Technical University of Munich, 81675 Munich, Bavaria, Germany
| | - Kristin Raedecke
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Baden-Wuerttemberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Viktoria Frajs
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Baden-Wuerttemberg, Germany
| | - Sebastian Clauss
- DZHK (German Center for Cardiovascular Research), Partner Site Munich, Munich, Germany; Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), 81675 Munich, Bavaria, Germany
| | - Stefan Kääb
- DZHK (German Center for Cardiovascular Research), Partner Site Munich, Munich, Germany; Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), 81675 Munich, Bavaria, Germany
| | - Johannes W G Janssen
- Department of Human Genetics, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Baden-Wuerttemberg, Germany
| | - Anna Jauch
- Department of Human Genetics, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Baden-Wuerttemberg, Germany
| | - Karl-Ludwig Laugwitz
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar - Technical University of Munich, 81675 Munich, Bavaria, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Munich, Munich, Germany
| | - Tatjana Dorn
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar - Technical University of Munich, 81675 Munich, Bavaria, Germany
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar - Technical University of Munich, 81675 Munich, Bavaria, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Munich, Munich, Germany
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Baden-Wuerttemberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
42
|
Tidbury N, Preston J, Ding WY, Rivera-Caravaca JM, Marín F, Lip GYH. Utilizing biomarkers associated with cardiovascular events in atrial fibrillation: informing a precision medicine response. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1804864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Nicola Tidbury
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
| | - Joshua Preston
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
| | - Wern Yew Ding
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
| | - José Miguel Rivera-Caravaca
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Cardiology, Hospital Clínico Universitario Virgen De La Arrixaca, University of Murcia, Instituto Murciano De Investigación Biosanitaria (Imib-arrixaca), CIBERCV, Murcia, Spain
| | - Francisco Marín
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Cardiology, Hospital Clínico Universitario Virgen De La Arrixaca, University of Murcia, Instituto Murciano De Investigación Biosanitaria (Imib-arrixaca), CIBERCV, Murcia, Spain
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
43
|
Xu C, Zhang R, Xia Y, Xiong L, Yang W, Wang P. Annotation of susceptibility SNPs associated with atrial fibrillation. Aging (Albany NY) 2020; 12:16981-16998. [PMID: 32902410 PMCID: PMC7521544 DOI: 10.18632/aging.103615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/18/2020] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Genome-wide association studies (GWAS) and the candidate gene based association studies have identified a panel of variants associated with atrial fibrillation (AF), however, most of the identified single nucleotide polymorphisms (SNPs) were found located within intergenic or intronic genomic regions, and whether the positive SNPs have a real biological function is unknown, and the real disease causing gene need to be studied. RESULTS The current results of the genetic studies including common variants identified by GWAS (338 index SNPs) and candidate gene based association studies (40 SNPs) were summarized. CONCLUSION Our study suggests the relationship between genetic variants and possible targeted genes, and provides insight into potential genetic pathways underlying AF incidence and development. The results may provide an encyclopedia of AF susceptibility SNPs and shed light on the functional mechanisms of AF variants identified through genetic studies. METHODS We summarized AF susceptibility SNPs identified by GWAS and candidate gene based association studies, and give a comprehensive functional annotation of all these AF susceptibility loci. by genomic annotation, microRNA binding prediction, promoter activity analysis, enhancer activity analysis, transcription factors binding activity prediction, expression quantitative trait loci (eQTL) analysis, long-range transcriptional regulatory function analysis, gene ontology and pathway enrichment analysis.
Collapse
Affiliation(s)
- Chengqi Xu
- College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Rongfeng Zhang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, P. R. China
| | - Yunlong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, P. R. China
| | - Liang Xiong
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, P. R. China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Pengyun Wang
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, P. R. China
| |
Collapse
|
44
|
Wu SH, Wang XH, Xu YJ, Gu JN, Yang CX, Qiao Q, Guo XJ, Guo YH, Qiu XB, Jiang WF, Yang YQ. ISL1 loss-of-function variation causes familial atrial fibrillation. Eur J Med Genet 2020; 63:104029. [PMID: 32771629 DOI: 10.1016/j.ejmg.2020.104029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 02/08/2023]
Abstract
Atrial fibrillation (AF) represents the most frequent form of sustained cardiac rhythm disturbance, affecting approximately 1% of the general population worldwide, and confers a substantially enhanced risk of cerebral stroke, heart failure, and death. Increasing epidemiological studies have clearly demonstrated a strong genetic basis for AF, and variants in a wide range of genes, including those coding for ion channels, gap junction channels, cardiac structural proteins and transcription factors, have been identified to underlie AF. Nevertheless, the genetic pathogenesis of AF is complex and still far from completely understood. Here, whole-exome sequencing and bioinformatics analyses of a three-generation family with AF were performed, and after filtering variants by multiple metrics, we identified a heterozygous variant in the ISL1 gene (encoding a transcription factor critical for embryonic cardiogenesis and postnatal cardiac remodeling), NM_002202.2: c.481G > T; p.(Glu161*), which was validated by Sanger sequencing and segregated with autosome-dominant AF in the family with complete penetrance. The nonsense variant was absent from 284 unrelated healthy individuals used as controls. Functional assays with a dual-luciferase reporter assay system revealed that the truncating ISL1 protein lost transcriptional activation on the verified target genes MEF2C and NKX2-5. Additionally, the variant nullified the synergistic transactivation between ISL1 and TBX5 as well as GATA4, two other transcription factors that have been implicated in AF. The findings suggest ISL1 as a novel gene contributing to AF, which adds new insight to the genetic mechanisms underpinning AF, implying potential implications for genetic testing and risk stratification of the AF family members.
Collapse
Affiliation(s)
- Shao-Hui Wu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Hua Wang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qi Qiao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xiao-Juan Guo
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yu-Han Guo
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
45
|
Hilderink S, Devalla HD, Bosch L, Wilders R, Verkerk AO. Ultrarapid Delayed Rectifier K + Channelopathies in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Front Cell Dev Biol 2020; 8:536. [PMID: 32850774 PMCID: PMC7399090 DOI: 10.3389/fcell.2020.00536] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. About 5-15% of AF patients have a mutation in a cardiac gene, including mutations in KCNA5, encoding the Kv1.5 α-subunit of the ion channel carrying the atrial-specific ultrarapid delayed rectifier K+ current (IKur). Both loss-of-function and gain-of-function AF-related mutations in KCNA5 are known, but their effects on action potentials (APs) of human cardiomyocytes have been poorly studied. Here, we assessed the effects of wild-type and mutant IKur on APs of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). We found that atrial-like hiPSC-CMs, generated by a retinoic acid-based differentiation protocol, have APs with faster repolarization compared to ventricular-like hiPSC-CMs, resulting in shorter APs with a lower AP plateau. Native IKur, measured as current sensitive to 50 μM 4-aminopyridine, was 1.88 ± 0.49 (mean ± SEM, n = 17) and 0.26 ± 0.26 pA/pF (n = 17) in atrial- and ventricular-like hiPSC-CMs, respectively. In both atrial- and ventricular-like hiPSC-CMs, IKur blockade had minimal effects on AP parameters. Next, we used dynamic clamp to inject various amounts of a virtual IKur, with characteristics as in freshly isolated human atrial myocytes, into 11 atrial-like and 10 ventricular-like hiPSC-CMs, in which native IKur was blocked. Injection of IKur with 100% density shortened the APs, with its effect being strongest on the AP duration at 20% repolarization (APD20) of atrial-like hiPSC-CMs. At IKur densities < 100% (compared to 100%), simulating loss-of-function mutations, significant AP prolongation and raise of plateau were observed. At IKur densities > 100%, simulating gain-of-function mutations, APD20 was decreased in both atrial- and ventricular-like hiPSC-CMs, but only upon a strong increase in IKur. In ventricular-like hiPSC-CMs, lowering of the plateau resulted in AP shortening. We conclude that a decrease in IKur, mimicking loss-of-function mutations, has a stronger effect on the AP of hiPSC-CMs than an increase, mimicking gain-of-function mutations, whereas in ventricular-like hiPSC-CMs such increase results in AP shortening, causing their AP morphology to become more atrial-like. Effects of native IKur modulation on atrial-like hiPSC-CMs are less pronounced than effects of virtual IKur injection because IKur density of atrial-like hiPSC-CMs is substantially smaller than that of freshly isolated human atrial myocytes.
Collapse
Affiliation(s)
- Sarah Hilderink
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Harsha D Devalla
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Leontien Bosch
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
46
|
Insight into atrial fibrillation through analysis of the coding transcriptome in humans. Biophys Rev 2020; 12:817-826. [PMID: 32666467 DOI: 10.1007/s12551-020-00735-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Atrial fibrillation is the most common sustained cardiac arrhythmia in humans, and its prevalence continues to increase because of the aging of the world population. Much still needs to be learned about the molecular pathways involved in the development and the persistence of the disease. Analysis of the transcriptome of cardiac tissue has provided valuable insight into diverse aspects of atrial remodeling, in particular concerning electrical remodeling-related to ion channels-and structural remodeling identified by dysregulation of processes linked to inflammation, fibrosis, oxidative stress, and thrombogenesis. The huge amount of data produced by these studies now represents a valuable source for the identification of novel potential therapeutic targets. In addition, the shift from cardiac tissue to peripheral blood as a substrate for transcriptome analysis revealed this strategy as a promising tool for improved diagnosis and therefore better patient care.
Collapse
|
47
|
Huang X, Li Y, Zhang J, Wang X, Li Z, Li G. The molecular genetic basis of atrial fibrillation. Hum Genet 2020; 139:1485-1498. [PMID: 32617797 DOI: 10.1007/s00439-020-02203-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022]
Abstract
As the most common cardiac arrhythmia, atrial fibrillation (AF) is a major risk factor for stroke, heart failure, and premature death with considerable associated costs. However, no available treatment options have optimal benefit-harm profiles currently, reflecting an incomplete understanding of the biological mechanisms underlying this complex arrhythmia. Recently, molecular epidemiological studies, especially genome-wide association studies, have emphasized the substantial genetic component of AF etiology. A comprehensive mapping of the genetic underpinnings for AF can expand our knowledge of AF mechanism and further facilitate the process of locating novel therapeutics for AF. Here we provide a state-of-the-art review of the molecular genetics of AF incorporating evidence from linkage analysis and candidate gene, as well as genome-wide association studies of common variations and rare copy number variations; potential epigenetic modifications (e.g., DNA methylation, histone modification, and non-coding RNAs) are also involved. We also outline the challenges in mechanism investigation and potential future directions in this article.
Collapse
Affiliation(s)
- Xin Huang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, 466 Newport Middle Road, Haizhu District, Guangzhou, 510317, Guangdong, China
| | - Yuhui Li
- Department of Cardiology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Junguo Zhang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, 466 Newport Middle Road, Haizhu District, Guangzhou, 510317, Guangdong, China
| | - Xiaojie Wang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, 466 Newport Middle Road, Haizhu District, Guangzhou, 510317, Guangdong, China
| | - Ziyi Li
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, 466 Newport Middle Road, Haizhu District, Guangzhou, 510317, Guangdong, China
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, 466 Newport Middle Road, Haizhu District, Guangzhou, 510317, Guangdong, China. .,Department of Health Research Methods, Evidence, and Impact (HEI), McMaster University Hamilton, 1280 Main St West, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
48
|
Abdulhai F, Refaat MM. Pulmonary vein isolation and QT prolongation in paroxysmal atrial fibrillation: What have we learned? J Cardiovasc Electrophysiol 2020; 31:2380-2381. [PMID: 32557959 DOI: 10.1111/jce.14622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Farah Abdulhai
- Department of Internal Medicine, Cardiovascular Medicine/Cardiac Electrophysiology, American University of Beirut Faculty of Medicine and Medical Center, Beirut, Lebanon
| | - Marwan M Refaat
- Department of Internal Medicine, Cardiovascular Medicine/Cardiac Electrophysiology, American University of Beirut Faculty of Medicine and Medical Center, Beirut, Lebanon
| |
Collapse
|
49
|
Lo ACY, Bai J, Gladding PA, Fedorov VV, Zhao J. Afterdepolarizations and abnormal calcium handling in atrial myocytes with modulated SERCA uptake: a sensitivity analysis of calcium handling channels. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190557. [PMID: 32448059 PMCID: PMC7287332 DOI: 10.1098/rsta.2019.0557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/23/2020] [Indexed: 05/21/2023]
Abstract
Delayed afterdepolarizations (DADs) and spontaneous depolarizations (SDs) are typically triggered by spontaneous diastolic Ca2+ release from the sarcoplasmic reticulum (SR) which is caused by an elevated SR Ca2+-ATPase (SERCA) uptake and dysfunctional ryanodine receptors. However, recent studies on the T-box transcription factor gene (TBX5) demonstrated that abnormal depolarizations could occur despite a reduced SERCA uptake. Similar findings have also been reported in experimental or clinical studies of diabetes and heart failure. To investigate the sensitivity of SERCA in the genesis of DADs/SDs as well as its dependence on other Ca2+ handling channels, we performed systematic analyses using the Maleckar et al. model. Results showed that the modulation of SERCA alone cannot trigger abnormal depolarizations, but can instead affect the interdependency of other Ca2+ handling channels in triggering DADs/SDs. Furthermore, we discovered the existence of a threshold value for the intracellular concentration of Ca2+ ([Ca2+]i) for abnormal depolarizations, which is modulated by the maximum SERCA uptake and the concentration of Ca2+ in the uptake and release compartments in the SR ([Ca2+]up and [Ca2+]rel). For the first time, our modelling study reconciles different mechanisms of abnormal depolarizations in the setting of 'lone' AF, reduced TBX5, diabetes and heart failure, and may lead to more targeted treatment for these patients. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
Collapse
Affiliation(s)
- Andy C. Y. Lo
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jieyun Bai
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, People's Republic of China
| | - Patrick A. Gladding
- Department of Cardiology, Waitemata District Health Board, Auckland, New Zealand
| | - Vadim V. Fedorov
- Department of Physiology and Cell Biology and Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- e-mail:
| |
Collapse
|
50
|
Cole OM, Tosif S, Shaw M, Lip GYH. Acute Kidney Injury and Postoperative Atrial Fibrillation In Patients Undergoing Cardiac Surgery. J Cardiothorac Vasc Anesth 2020; 34:1783-1790. [PMID: 32224024 DOI: 10.1053/j.jvca.2019.12.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/27/2019] [Accepted: 12/31/2019] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To test the hypothesis that acute kidney injury (AKI) in the postoperative period could be an additional risk factor for the development of atrial fibrillation (AF) and to examine the risk factors for postoperative AF in the authors' cohort of patients. DESIGN A retrospective observational study. SETTING Large regional cardiothoracic surgical center in the UK. PARTICIPANTS Patients undergoing elective cardiac surgery at the authors' institution between July 1, 2013, and December 31, 2018. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS A total of 5,588 patients were included in the study. The incidence of postoperative AF was 1,384 (24.8%), and postoperative AKI occurred in 686 patients (12.3%). Postoperative AKI was significantly associated with postoperative AF after adjustment for preoperative variables (adjusted odds ratio = 1.572; 95% confidence interval = 1.295-1.908; p < 0.001). Other factors associated with postoperative AF were increasing age; increasing body mass index; New York Heart Association class ≥III; previous congestive heart failure; and recent myocardial infarction, coronary artery bypass graft with valve surgery, and aortic surgery (all p < 0.05). CONCLUSIONS This analysis of a large, contemporary cohort of patients identifies postoperative AKI as an associated risk factor for postoperative AF, along with other perioperative variables. Early identification of this patient cohort would allow targeted preventative treatment to reduce the incidence of postoperative AF.
Collapse
Affiliation(s)
- Oana M Cole
- Liverpool Heart and Chest Hospital, Thomas Lane, Liverpool, United Kingdom.
| | - Shervin Tosif
- Liverpool Heart and Chest Hospital, Thomas Lane, Liverpool, United Kingdom; Dr. Tosif is now a Locum Staff Anaesthetist at Austin Health, Melbourne, Australia
| | - Matthew Shaw
- Liverpool Heart and Chest Hospital, Thomas Lane, Liverpool, United Kingdom
| | - Gregory Y H Lip
- Liverpool Heart and Chest Hospital, Thomas Lane, Liverpool, United Kingdom; Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|