1
|
Devasia AG, Shanmugham M, Ramasamy A, Bellanger S, Parry LJ, Leo CH. Therapeutic potential of relaxin or relaxin mimetics in managing cardiovascular complications of diabetes. Biochem Pharmacol 2024; 229:116507. [PMID: 39182735 DOI: 10.1016/j.bcp.2024.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Diabetes mellitus is a metabolic disease with an escalating global prevalence. Despite the abundance and relative efficacies of current therapeutic approaches, they primarily focus on attaining the intended glycaemic targets, but patients ultimately still suffer from various diabetes-associated complications such as retinopathy, nephropathy, cardiomyopathy, and atherosclerosis. There is a need to explore innovative and effective diabetic treatment strategies that not only address the condition itself but also combat its complications. One promising option is the reproductive hormone relaxin, an endogenous ligand of the RXFP1 receptor. Relaxin is known to exert beneficial actions on the cardiovascular system through its vasoprotective, anti-inflammatory and anti-fibrotic effects. Nevertheless, the native relaxin peptide exhibits a short biological half-life, limiting its therapeutic potential. Recently, several relaxin mimetics and innovative delivery technologies have been developed to extend its biological half-life and efficacy. The current review provides a comprehensive landscape of the cardiovascular effects of relaxin, focusing on its potential therapeutic applications in managing complications associated with diabetes. The latest advancements in the development of relaxin mimetics and delivery methods for the treatment of cardiometabolic disorders are also discussed.
Collapse
Affiliation(s)
- Arun George Devasia
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore; Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Meyammai Shanmugham
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore; A*STAR Skin Research Labs (A*SRL), Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Adaikalavan Ramasamy
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Sophie Bellanger
- A*STAR Skin Research Labs (A*SRL), Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Laura J Parry
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Chen Huei Leo
- Department of Biomedical Engineering, College of Design & Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
2
|
Romero G, Martin B, Gabris B, Salama G. Relaxin suppresses atrial fibrillation, reverses fibrosis and reduces inflammation in aged hearts. Biochem Pharmacol 2024; 227:116407. [PMID: 38969298 DOI: 10.1016/j.bcp.2024.116407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Healthy aging results in cardiac structural and electrical remodeling that increase susceptibility to cardiovascular diseases. Relaxin has shown broad cardioprotective effects including anti-fibrotic, anti-arrhythmic and anti-inflammatory outcomes in multiple models. This paper focuses on the cardioprotective effects of Relaxin in a rat model of aging. Sustained atrial or ventricular fibrillation are readily induced in the hearts of aged but not young control animals. Treatment with Relaxin suppressed this arrhythmogenic response by increasing conduction velocity, decreasing fibrosis and promoting substantial cardiac remodeling. Relaxin treatment resulted in a significant increase in the levels of: Nav1.5, Cx43, βcatenin and Wnt1 in rat hearts. In isolated cardiomyocytes, Relaxin increased Nav1.5 expression. These effects were mimicked by CHIR 99021, a pharmacological activator of canonical Wnt signaling, but blocked by the canonical Wnt inhibitor Dickkopf1. Relaxin prevented TGF-β-dependent differentiation of cardiac fibroblasts into myofibroblasts while increasing the expression of Wnt1; the effects of Relaxin on cardiac fibroblast differentiation were blocked by Dickkopf1. RNASeq studies demonstrated reduced expression of pro-inflammatory cytokines and an increase in the expression of α- and β-globin in Relaxin-treated aged males. Relaxin reduces arrhythmogenicity in the hearts of aged rats by reduction of fibrosis and increased conduction velocity. These changes are accompanied by substantial remodeling of the cardiac tissue and appear to be mediated by increased canonical Wnt signaling. Relaxin also exerts significant anti-inflammatory and anti-oxidant effects in the hearts of aged rodents. The mechanisms by which Relaxin increases the expression of Wnt ligands, promotes Wnt signaling and reprograms gene expression remain to be determined.
Collapse
Affiliation(s)
- Guillermo Romero
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Brian Martin
- Departments of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Beth Gabris
- Departments of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Guy Salama
- Departments of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Shan X, Zhao Z, Lai P, Liu Y, Li B, Ke Y, Jiang H, Zhou Y, Li W, Wang Q, Qin P, Xue Y, Zhang Z, Wei C, Ma B, Liu W, Luo C, Lu X, Lin J, Shu L, Jie Y, Xian X, Delcassian D, Ge Y, Miao L. RNA nanotherapeutics with fibrosis overexpression and retention for MASH treatment. Nat Commun 2024; 15:7263. [PMID: 39191801 DOI: 10.1038/s41467-024-51571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) poses challenges for targeted delivery and retention of therapeutic proteins due to excess extracellular matrix (ECM). Here we present a new approach to treat MASH, termed "Fibrosis overexpression and retention (FORT)". In this strategy, we design (1) retinoid-derivative lipid nanoparticle (LNP) to enable enhanced mRNA overexpression in fibrotic regions, and (2) mRNA modifications which facilitate anchoring of therapeutic proteins in ECM. LNPs containing carboxyl-retinoids, rather than alcohol- or ester-retinoids, effectively deliver mRNA with over 10-fold enhancement of protein expression in fibrotic livers. The carboxyl-retinoid rearrangement on the LNP surface improves protein binding and membrane fusion. Therapeutic proteins are then engineered with an endogenous collagen-binding domain. These fusion proteins exhibit increased retention in fibrotic lesions and reduced systemic toxicity. In vivo, fibrosis-targeting LNPs encoding fusion proteins demonstrate superior therapeutic efficacy in three clinically relevant male-animal MASH models. This approach holds promise in fibrotic diseases unsuited for protein injection.
Collapse
Affiliation(s)
- Xinzhu Shan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhiqiang Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Pingping Lai
- Institute of Cardiovascular Sciences and State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuxiu Liu
- Chinese Institute for Brain Research, Beijing, China
| | - Buyao Li
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yubin Ke
- China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Science, Dongguan, China
| | - Hanqiu Jiang
- China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Science, Dongguan, China
| | - Yilong Zhou
- Department of Surgery, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Pengxia Qin
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yizhe Xue
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zihan Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chenlong Wei
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Bin Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Wei Liu
- Keymed Biosciences (Chengdu) Limited, Chengdu, Sichuan, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Xueguang Lu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Lin
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Li Shu
- Interdisplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yin Jie
- Chinese Institute for Brain Research, Beijing, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences and State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | | | - Yifan Ge
- Interdisplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Lei Miao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, China.
| |
Collapse
|
4
|
Handley TNG, Praveen P, Tailhades J, Wu H, Bathgate RAD, Hossain MA. Further Developments towards a Minimal Potent Derivative of Human Relaxin-2. Int J Mol Sci 2023; 24:12670. [PMID: 37628851 PMCID: PMC10454739 DOI: 10.3390/ijms241612670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Human relaxin-2 (H2 relaxin) is a peptide hormone with potent vasodilatory and anti-fibrotic effects, which is of interest for the treatment of heart failure and fibrosis. H2 relaxin binds to the Relaxin Family Peptide Receptor 1 (RXFP1). Native H2 relaxin is a two-chain, three-disulfide-bond-containing peptide, which is unstable in human serum and difficult to synthesize efficiently. In 2016, our group developed B7-33, a single-chain peptide derived from the B-chain of H2 relaxin. B7-33 demonstrated poor affinity and potency in HEK cells overexpressing RXFP1; however, it displayed equivalent potency to H2 relaxin in fibroblasts natively expressing RXFP1, where it also demonstrated the anti-fibrotic effects of the native hormone. B7-33 reversed organ fibrosis in numerous pre-clinical animal studies. Here, we detail our efforts towards a minimal H2 relaxin scaffold and attempts to improve scaffold activity through Aib substitution and hydrocarbon stapling to re-create the peptide helicity present in the native H2 relaxin.
Collapse
Affiliation(s)
| | - Praveen Praveen
- The Florey, Melbourne, VIC 3052, Australia; (T.N.G.H.); (P.P.); (H.W.)
| | - Julien Tailhades
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3004, Australia;
| | - Hongkang Wu
- The Florey, Melbourne, VIC 3052, Australia; (T.N.G.H.); (P.P.); (H.W.)
| | - Ross A. D. Bathgate
- The Florey, Melbourne, VIC 3052, Australia; (T.N.G.H.); (P.P.); (H.W.)
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mohammed Akhter Hossain
- The Florey, Melbourne, VIC 3052, Australia; (T.N.G.H.); (P.P.); (H.W.)
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC 3010, Australia
- School of Chemistry and Bio21, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
5
|
Kloka JA, Friedrichson B, Wülfroth P, Henning R, Zacharowski K. Microvascular Leakage as Therapeutic Target for Ischemia and Reperfusion Injury. Cells 2023; 12:1345. [PMID: 37408180 DOI: 10.3390/cells12101345] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 07/07/2023] Open
Abstract
Reperfusion injury is a very common complication of various indicated therapies such as the re-opening of vessels in the myocardium or brain as well as reflow in hemodynamic shutdown (cardiac arrest, severe trauma, aortic cross-clamping). The treatment and prevention of reperfusion injury has therefore been a topic of immense interest in terms of mechanistic understanding, the exploration of interventions in animal models and in the clinical setting in major prospective studies. While a wealth of encouraging results has been obtained in the lab, the translation into clinical success has met with mixed outcomes at best. Considering the still very high medical need, progress continues to be urgently needed. Multi-target approaches rationally linking interference with pathophysiological pathways as well as a renewed focus on aspects of microvascular dysfunction, especially on the role of microvascular leakage, are likely to provide new insights.
Collapse
Affiliation(s)
- Jan Andreas Kloka
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Benjamin Friedrichson
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | | | | | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| |
Collapse
|
6
|
Yang T, Zhang D. Research progress on the effects of novel hypoglycemic drugs in diabetes combined with myocardial ischemia/reperfusion injury. Ageing Res Rev 2023; 86:101884. [PMID: 36801379 DOI: 10.1016/j.arr.2023.101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Acute myocardial infarction (AMI) reperfusion is associated with ischemia/reperfusion (I/R) injury, which leads to enlarged myocardial infarction size, poor healing of the infarcted myocardium, and poor left ventricular remodeling, thus increasing the risk of major adverse cardiovascular events (MACEs). Diabetes increases myocardial susceptibility to I/R injury, decreases myocardial responsiveness to cardioprotective strategies, exacerbates myocardial I/R injury, and expands the infarct size of AMI, thereby increasing the incidence of malignant arrhythmias and heart failure. Currently, evidence regarding pharmacological interventions for diabetes combined with AMI and I/R injury is lacking. Traditional hypoglycemic drugs have a limited role in the prevention and treatment of diabetes combined with I/R injury. Current evidence suggests that novel hypoglycemic drugs may exert a preventive effect on diabetes combined with myocardial I/R injury, especially glucagon-like peptide-1 receptor agonists (GLP-1 RA) and sodium-dependent glucose transporter protein 2 inhibitors (SGLT2i), which may increase coronary blood flow, reduce acute thrombosis, attenuate I/R injury, decrease myocardial infarction size, inhibit structural and functional remodeling of the ischemic heart, improve cardiac function, and reduce the occurrence of MACEs of diabetes patients combined with AMI via mechanisms such as reduction of inflammatory response, inhibition of oxidative stress, and improvement of vascular endothelial function. This paper will systematically elaborate the protective role and molecular mechanisms of GLP-1 RA and SGLT2i in diabetes combined with myocardial I/R injury, aiming to provide clinical assistance.
Collapse
Affiliation(s)
- Tiangui Yang
- Department of Cardiology, Shengjing Hospital of China Medical University, China.
| | - Daqing Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
7
|
Praveen P, Wang C, Handley TNG, Wu H, Samuel CS, Bathgate RAD, Hossain MA. A Lipidated Single-B-Chain Derivative of Relaxin Exhibits Improved In Vitro Serum Stability without Altering Activity. Int J Mol Sci 2023; 24:ijms24076616. [PMID: 37047588 PMCID: PMC10094921 DOI: 10.3390/ijms24076616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Human relaxin-2 (H2 relaxin) is therapeutically very important due to its strong anti-fibrotic, vasodilatory, and cardioprotective effects. Therefore, relaxin’s receptor, relaxin family peptide receptor 1 (RXFP1), is a potential target for the treatment of fibrosis and related disorders, including heart failure. H2 relaxin has a complex two-chain structure (A and B) and three disulfide bridges. Our laboratory has recently developed B7-33 peptide, a single-chain agonist based on the B-chain of H2 relaxin. However, the peptide B7-33 has a short circulation time in vitro in serum (t1/2 = ~6 min). In this study, we report structure-activity relationship studies on B7-33 utilizing different fatty-acid conjugations at different positions. We have shown that by fatty-acid conjugation with an appropriate spacer length, the in vitro half-life of B7-33 can be increased from 6 min to 60 min. In the future, the lead lipidated molecule will be studied in animal models to measure its PK/PD properties, which will lead to their pre-clinical applications.
Collapse
Affiliation(s)
- Praveen Praveen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Chao Wang
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC 3168, Australia
| | - Thomas N. G. Handley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Hongkang Wu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Chrishan S. Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC 3168, Australia
| | - Ross A. D. Bathgate
- Department of Biochemistry and Pharmacology, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Mohammed Akhter Hossain
- Florey Department of Neuroscience and Mental, Florey Institute of Neuroscience and Mental Health, School of Chemistry, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
8
|
Alam F, Gaspari TA, Kemp-Harper BK, Low E, Aw A, Ferens D, Spizzo I, Jefferis AM, Praveen P, Widdop RE, Bathgate RAD, Hossain MA, Samuel CS. The single-chain relaxin mimetic, B7-33, maintains the cardioprotective effects of relaxin and more rapidly reduces left ventricular fibrosis compared to perindopril in an experimental model of cardiomyopathy. Biomed Pharmacother 2023; 160:114370. [PMID: 36753958 DOI: 10.1016/j.biopha.2023.114370] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
The hormone, relaxin (RLX), exerts various organ-protective effects independently of etiology. However, its complex two-chain and three disulphide bonded structure is a limitation to its preparation and affordability. Hence, a single chain-derivative of RLX, B7-33, was developed and shown to retain the anti-fibrotic effects of RLX in vitro and in vivo. Here, we determined whether B7-33 could retain the other cardioprotective effects of RLX, and also compared its therapeutic efficacy to the ACE inhibitor, perindopril. Adult male 129sv mice were subjected to isoprenaline (ISO; 25 mg/kg/day, s.c)-induced cardiomyopathy, then s.c-treated with either RLX (0.5 mg/kg/day), B7-33 (0.25 mg/kg/day; equivalent dose corrected for MW) or perindopril (1 mg/kg/day) from days 7-14 post-injury. Control mice received saline instead of ISO. Changes in animal body weight (BW) and systolic blood pressure (SBP) were measured weekly, whilst cardiomyocyte hypertrophy and measures of vascular dysfunction and rarefaction, left ventricular (LV) inflammation and fibrosis were assessed at day 14 post-injury. ISO-injured mice had significantly increased LV inflammation, cardiomyocyte hypertrophy, fibrosis, vascular rarefaction and aortic contractility in the absence of any changes in BW or SBP at day 14 post-injury. Both B7-33 and RLX equivalently reduced LV fibrosis and normalised the ISO-induced LV inflammation and cardiomyocyte hypertrophy, whilst restoring blood vessel density and aortic contractility. Comparatively, perindopril lowered SBP and the ISO-induced LV inflammation and vascular rarefaction, but not fibrosis or hypertrophy. As B7-33 retained the cardioprotective effects of RLX and provided rapid-occurring anti-fibrotic effects compared to perindopril, it could be considered as a cost-effective cardioprotective therapy.
Collapse
Affiliation(s)
- Fariha Alam
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Tracey A Gaspari
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Barbara K Kemp-Harper
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Edward Low
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Aaron Aw
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Dorota Ferens
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Iresha Spizzo
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Ann-Maree Jefferis
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Praveen Praveen
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Ross A D Bathgate
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Mohammed Akhter Hossain
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia; School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia.
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
9
|
Azam T, Zhang H, Zhou F, Wang X. Recent Advances on Drug Development and Emerging Therapeutic Agents Through Targeting Cellular Homeostasis for Ageing and Cardiovascular Disease. FRONTIERS IN AGING 2022; 3:888190. [PMID: 35821839 PMCID: PMC9261412 DOI: 10.3389/fragi.2022.888190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022]
Abstract
Ageing is a progressive physiological process mediated by changes in biological pathways, resulting in a decline in tissue and cellular function. It is a driving factor in numerous age-related diseases including cardiovascular diseases (CVDs). Cardiomyopathies, hypertension, ischaemic heart disease, and heart failure are some of the age-related CVDs that are the leading causes of death worldwide. Although individual CVDs have distinct clinical and pathophysiological manifestations, a disturbance in cellular homeostasis underlies the majority of diseases which is further compounded with aging. Three key evolutionary conserved signalling pathways, namely, autophagy, mitophagy and the unfolded protein response (UPR) are involved in eliminating damaged and dysfunctional organelle, misfolded proteins, lipids and nucleic acids, together these molecular processes protect and preserve cellular homeostasis. However, amongst the numerous molecular changes during ageing, a decline in the signalling of these key molecular processes occurs. This decline also increases the susceptibility of damage following a stressful insult, promoting the development and pathogenesis of CVDs. In this review, we discuss the role of autophagy, mitophagy and UPR signalling with respect to ageing and cardiac disease. We also highlight potential therapeutic strategies aimed at restoring/rebalancing autophagy and UPR signalling to maintain cellular homeostasis, thus mitigating the pathological effects of ageing and CVDs. Finally, we highlight some limitations that are likely hindering scientific drug research in this field.
Collapse
Affiliation(s)
- Tayyiba Azam
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Hongyuan Zhang
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Fangchao Zhou
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xin Wang
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
10
|
Devarakonda T, Valle Raleigh J, Mauro AG, Lambert JM, Cowart LA, Salloum FN. Chronic treatment with serelaxin mitigates adverse remodeling in a murine model of ischemic heart failure and modulates bioactive sphingolipid signaling. Sci Rep 2022; 12:8897. [PMID: 35614179 PMCID: PMC9132995 DOI: 10.1038/s41598-022-12930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
Relaxin is a pleiotropic hormone demonstrated to confer cardioprotection in animal models of myocardial infarction and ischemic heart failure by modulating inflammation, fibrosis and arrhythmogenesis. Several of these pathways in the ischemic myocardium are intricately tied with the downstream signaling of bioactive sphingolipids, which play an active role during post-infarction remodeling. In this current study, we examined the effects of relaxin on sphingosine 1-phosphate (S1P), and the potential benefits of relaxin treatment on cardiac health in a rodent model of ischemic heart failure. Acute (30 min) and sub-acute (24 h) treatment of primary cardiomyocytes with serelaxin (recombinant human relaxin-2) increased the cardiomyocyte content of S1P. In the rodent model, treatment with relaxin for 28 days following myocardial ischemia by way of permanent left coronary artery occlusion improved survival and cardiac function, reduced fibrosis and apoptosis, and mitigated the expression of several pro-inflammatory and pro-fibrotic markers. The expression of beclin-1 (autophagy marker) was also reduced. The expression of S1P was significantly higher in cardiac tissue and plasma samples extracted from serelaxin-treated mice at day 28. In conclusion, our studies show a significant protection from relaxin in ischemic heart disease, and demonstrate the association between relaxin signaling and S1P generation.
Collapse
Affiliation(s)
- Teja Devarakonda
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-070, Box 980204, Richmond, VA, 23298, USA
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Juan Valle Raleigh
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-070, Box 980204, Richmond, VA, 23298, USA
| | - Adolfo G Mauro
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-070, Box 980204, Richmond, VA, 23298, USA
| | - Johana M Lambert
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Lauren Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Hunter Holmes McGuire Veterans' Affairs Medical Center, Richmond, VA, USA
| | - Fadi N Salloum
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-070, Box 980204, Richmond, VA, 23298, USA.
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
11
|
Devarakonda T, Mauro AG, Cain C, Das A, Salloum FN. Cardiac Gene Therapy With Relaxin Receptor 1 Overexpression Protects Against Acute Myocardial Infarction. JACC Basic Transl Sci 2022; 7:53-63. [PMID: 35128209 PMCID: PMC8807852 DOI: 10.1016/j.jacbts.2021.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/12/2022]
Abstract
AAV9 vectors can upregulate Rxfp1 mRNA in murine heart after intravenous injection. RXFP1 upregulation sensitizes the left ventricle to relaxin-induced inotropy. RXFP1 overexpression protects heart from ischemia-reperfusion injury.
Relaxin is a pleiotropic hormone shown to confer cardioprotection in several preclinical models of cardiac ischemia-reperfusion injury. In the present study, the effects of up-regulating relaxin family peptide receptor 1 (RXFP1) via adeno-associated virus serotype 9 (AAV9) vectors were investigated in a mouse model of myocardial infarction. AAV9-RXFP1 vectors were generated and injected in adult male CD1 mice. Up-regulation of Rxfp1 was confirmed via quantitative polymerase chain reaction, and overexpressing animals showed increased sensitivity to relaxin-induced ventricular inotropic response. Overexpressing animals also demonstrated reduced infarct size and preserved cardiac function 24 hours after ischemia-reperfusion. Up-regulation of RXFP1 via AAV9 vectors has potential therapeutic utility in preventing adverse remodeling after myocardial infarction.
Collapse
Key Words
- AAV, adeno-associated virus
- CMV, cytomegalovirus
- GLS, global longitudinal strain
- IR, ischemia-reperfusion
- LV function
- LV, left ventricular
- MAPK, mitogen-activated protein kinase
- MI, myocardial infarction
- PV, pressure-volume
- RXFP1
- RXFP1, relaxin family peptide receptor 1
- SIRO, simulated ischemia and reoxygenation
- VEC, empty vector
- eNOS, endothelial nitric oxide synthase
- gene therapy
- ischemia-reperfusion injury
- mRNA, messenger ribonucleic acid
- relaxin
Collapse
Affiliation(s)
- Teja Devarakonda
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Adolfo G. Mauro
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Chad Cain
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Anindita Das
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Fadi N. Salloum
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
- Address for correspondence: Dr Fadi N. Salloum, Division of Cardiology, Box 980204, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-070, Richmond, Virginia 23298, USA.
| |
Collapse
|
12
|
Samuel CS, Bennett RG. Relaxin as an anti-fibrotic treatment: Perspectives, challenges and future directions. Biochem Pharmacol 2021; 197:114884. [PMID: 34968489 DOI: 10.1016/j.bcp.2021.114884] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Fibrosis refers to the scarring and hardening of tissues, which results from a failed immune system-coordinated wound healing response to chronic organ injury and which manifests from the aberrant accumulation of various extracellular matrix components (ECM), primarily collagen. Despite being a hallmark of prolonged tissue damage and related dysfunction, and commonly associated with high morbidity and mortality, there are currently no effective cures for its regression. An emerging therapy that meets several criteria of an effective anti-fibrotic treatment, is the recombinant drug-based form of the human hormone, relaxin (also referred to as serelaxin, which is bioactive in several other species). This review outlines the broad anti-fibrotic and related organ-protective roles of relaxin, mainly from studies conducted in preclinical models of ageing and fibrotic disease, including its ability to ameliorate several aspects of fibrosis progression and maturation, from immune cell infiltration, pro-inflammatory and pro-fibrotic cytokine secretion, oxidative stress, organ hypertrophy, cell apoptosis, myofibroblast differentiation and ECM production, to its ability to facilitate established ECM degradation. Studies that have compared and/or combined these therapeutic effects of relaxin with current standard of care medication have also been discussed, along with the main challenges that have hindered the translation of the anti-fibrotic efficacy of relaxin to the clinic. The review then outlines the future directions as to where scientists and several pharmaceutical companies that have recognized the therapeutic potential of relaxin are working towards, to progress its development as a treatment for human patients suffering from various fibrotic diseases.
Collapse
Affiliation(s)
- Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Robert G Bennett
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; Department of Internal Medicine, Division of Diabetes, Endocrinology & Metabolism, University of Nebraska Medical Center, Omaha, NE 68198-4130, USA.
| |
Collapse
|
13
|
Unfolded protein response during cardiovascular disorders: a tilt towards pro-survival and cellular homeostasis. Mol Cell Biochem 2021; 476:4061-4080. [PMID: 34259975 DOI: 10.1007/s11010-021-04223-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) is an organelle that orchestrates the production and proper assembly of an extensive types of secretory and membrane proteins. Endoplasmic reticulum stress is conventionally related to prolonged disruption in the protein folding machinery resulting in the accumulation of unfolded proteins in the ER. This disruption is often manifested due to oxidative stress, Ca2+ leakage, iron imbalance, disease conditions which in turn hampers the cellular homeostasis and induces cellular apoptosis. A mild ER stress is often reverted back to normal. However, cells retaliate to acute ER stress by activating the unfolded protein response (UPR) which comprises three signaling pathways, Activating transcription factor 6 (ATF6), inositol requiring enzyme 1 alpha (IRE1α), and protein kinase RNA-activated-like ER kinase (PERK). The UPR response participates in both protective and pro-apoptotic responses and not much is known about the mechanistic aspects of the switch from pro-survival to pro-apoptosis. When ER stress outpaces UPR response then cell apoptosis prevails which often leads to the development of various diseases including cardiomyopathies. Therefore, it is important to identify molecules that modulate the UPR that may serve as promising tools towards effective treatment of cardiovascular diseases. In this review, we elucidated the latest advances in construing the contribution imparted by the three arms of UPR to combat the adverse environment in the ER to restore cellular homeostasis during cardiomyopathies. We also summarized the various therapeutic agents that plays crucial role in tilting the UPR response towards pro-survival.
Collapse
|
14
|
Analgesic effect of central relaxin receptor activation on persistent inflammatory pain in mice: behavioral and neurochemical data. Pain Rep 2021; 6:e937. [PMID: 34159282 PMCID: PMC8213244 DOI: 10.1097/pr9.0000000000000937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/26/2021] [Accepted: 04/23/2021] [Indexed: 01/02/2023] Open
Abstract
Supplemental Digital Content is Available in the Text. Relaxin peptide analogues produce strong but transient analgesia in inflammatory pain in mouse. Relaxin and its RXFP1 receptor represent a new peptidergic system that modulates pain processing in the forebrain areas. Introduction: The relaxin peptide signaling system is involved in diverse physiological processes, but its possible roles in the brain, including nociception, are largely unexplored. Objective: In light of abundant expression of relaxin receptor (RXFP1) mRNA/protein in brain regions involved in pain processing, we investigated the effects of central RXFP1 activation on nociceptive behavior in a mouse model of inflammatory pain and examined the neurochemical phenotype and connectivity of relaxin and RXFP1 mRNA-positive neurons. Methods: Mice were injected with Complete Freund Adjuvant (CFA) into a hind paw. After 4 days, the RXFP1 agonist peptides, H2-relaxin or B7-33, ± the RXFP1 antagonist, B-R13/17K-H2, were injected into the lateral cerebral ventricle, and mechanical and thermal sensitivity were assessed at 30 to 120 minutes. Relaxin and RXFP1 mRNA in excitatory and inhibitory neurons were examined using multiplex, fluorescent in situ hybridization. Relaxin-containing neurons were detected using immunohistochemistry and their projections assessed using fluorogold retrograde tract-tracing. Results: Both H2-relaxin and B7-33 produced a strong, but transient, reduction in mechanical and thermal sensitivity of the CFA-injected hind paw alone, at 30 minutes postinjection. Notably, coinjection of B-R13/17K-H2 blocked mechanical, but not thermal, analgesia. In the claustrum, cingulate cortex, and subiculum, RXFP1 mRNA was expressed in excitatory neurons. Relaxin immunoreactivity was detected in neurons in forebrain and midbrain areas involved in pain processing and sending projections to the RXFP1-rich, claustrum and cingulate cortex. No changes were detected in CFA mice. Conclusion: Our study identified a previously unexplored peptidergic system that can control pain processing in the brain and produce analgesia.
Collapse
|
15
|
Devarakonda T, Mauro AG, Guzman G, Hovsepian S, Cain C, Das A, Praveen P, Hossain MA, Salloum FN. B7-33, a Functionally Selective Relaxin Receptor 1 Agonist, Attenuates Myocardial Infarction-Related Adverse Cardiac Remodeling in Mice. J Am Heart Assoc 2020; 9:e015748. [PMID: 32295457 PMCID: PMC7428518 DOI: 10.1161/jaha.119.015748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Human relaxin‐2 is a peptide hormone capable of pleiotropic effects in several organ systems. Its recombinant formulation (serelaxin) has been demonstrated to reduce infarct size and prevent excessive scar formation in animal models of cardiac ischemia‐reperfusion injury. B7‐33, a synthetically designed peptide analogous to B‐chain of relaxin‐2, invokes signaling at relaxin family peptide receptor 1 (cognate receptor for relaxin‐2) by preferentially phosphorylating the mitogen‐activated protein kinase extracellular signal‐regulated kinase 1/2. We sought to investigate the effects of B7‐33 treatment post ischemia‐reperfusion injury in mice. Methods and Results Adult male CD1 mice were subjected to ischemia‐reperfusion via ligation of left anterior descending artery for 30 minutes, followed by 24 hours or 7 days of reperfusion. Echocardiography was performed to assess cardiac function, and cardiac tissue was stained to determine infarct size at 24 hours. B7‐33 significantly reduced infarct size (21.99% versus 45.32%; P=0.02) and preserved fractional shortening (29% versus 23%; P=0.02) compared with vehicle. The difference in fractional shortening further increased at 7 days post myocardial infarction (29% versus 20% for B7‐33 and vehicle groups, respectively). In vitro, primary cardiomyocytes were isolated from adult hearts and subjected to simulated ischemia‐reperfusion injury (simulated ischemia reoxygenation). B7‐33 (50 and 100 nmol/L) improved cell survival and reduced the expression of GRP78 (glucose regulated protein), an endoplasmic reticulum stress marker. Subsequently, B7‐33 (100 nmol/L) reduced tunicamycin (2.5 μg/mL) induced upregulation of GRP78 in an extracellular signal‐regulated kinase 1/2–dependent manner. Conclusions B7‐33 confers acute cardioprotection and limits myocardial infarction–related adverse remodeling in mice by attenuating cardiomyocyte death and endoplasmic reticulum stress as well as preserving cardiac function.
Collapse
Affiliation(s)
- Teja Devarakonda
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| | - Adolfo G Mauro
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| | - Geronimo Guzman
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| | - Sahak Hovsepian
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| | - Chad Cain
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| | - Anindita Das
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| | - Praveen Praveen
- Florey Institute of Neuroscience and Mental Health University of Melbourne Parkville Australia
| | - Mohammed Akhter Hossain
- Florey Institute of Neuroscience and Mental Health University of Melbourne Parkville Australia
| | - Fadi N Salloum
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| |
Collapse
|