1
|
Dimitriadis K, Pyrpyris N, Sakalidis A, Dri E, Iliakis P, Tsioufis P, Tatakis F, Beneki E, Fragkoulis C, Aznaouridis K, Tsioufis K. ANOCA updated: From pathophysiology to modern clinical practice. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2024:S1553-8389(24)00672-9. [PMID: 39341735 DOI: 10.1016/j.carrev.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Lately, a large number of stable ischemic patients, with no obstructed coronary arteries are being diagnosed. Despite this condition, which is being described as angina with no obstructive coronary arteries (ANOCA), was thought to be benign, recent evidence report that it is associated with increased risk for adverse cardiovascular outcomes. ANOCA is more frequent in women and, pathophysiologically, it is predominantly related with microvascular dysfunction, while other factors, such as endothelial dysfunction, inflammation and autonomic nervous system seem to also play a major role to its development, while other studies implicate ANOCA and microvascular dysfunction in the pathogenesis of heart failure with preserved ejection fraction. For establishing an ANOCA diagnosis, measurement including coronary flow reserve (CFR), microvascular resistance (IMR) and hyperemic microvascular resistance (HMR) are mostly used in clinical practice. In addition, new modalities, such as optical coherence tomography (OCT) are being tested and show promising results for future diagnostic use. Regarding management, pharmacotherapy consists of a wide selection of drugs, according to the respected pathophysiology of the disease (vasospastic angina or microvascular dysfunction), while research for new treatment options including interventional techniques, is currently ongoing. This review, therefore, aims to provide a comprehensive analysis of all aspects related to ANOCA, from pathophysiology to clinical managements, as well as clinical implications and suggestions for future research efforts, which will help advance our understanding of the syndrome and establish more, evidence-based, therapies.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece.
| | - Nikolaos Pyrpyris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Athanasios Sakalidis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Eirini Dri
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Panagiotis Iliakis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Panagiotis Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Fotis Tatakis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Eirini Beneki
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Christos Fragkoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Konstantinos Aznaouridis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| |
Collapse
|
2
|
Thomas TS, Walpert AR, Srinivasa S. Large lessons learned from small vessels: coronary microvascular dysfunction in HIV. Curr Opin Infect Dis 2024; 37:26-34. [PMID: 37889554 DOI: 10.1097/qco.0000000000000987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
PURPOSE OF REVIEW Large cohort studies have consistently shown the presence of heart failure is approximately doubled among persons with HIV (PWH). Early studies of cardiovascular disease (CVD) in HIV were primarily focused on atherosclerotic burden, and we now have a greater understanding of large vessel disease in HIV. More recent studies have begun to inform us about small vessel disease, or coronary microvascular dysfunction (CMD), in HIV. CMD is recognized to be an important risk factor for adverse events related to heart failure, associated with cardiovascular mortality, and often presents without overt atherosclerotic disease. RECENT FINDINGS In this review, we highlight implications for CMD and relevant clinical studies in HIV. Inflammation and endothelial dysfunction, well known risk factors in HIV, may mediate the pathogenesis of CMD. Initial studies suggest that CMD worsens with ART initiation. Newer studies reveal CMD is present among well treated PWH without known CVD. In addition, myocardial flow reserve (MFR), a marker of CMD, is reduced in HIV similar to diabetes. There also appears to be sex differences, such that CMD is worse among women vs. men with HIV. SUMMARY Alterations in the coronary microvasculature may be an important mediator of subclinical myocardial dysfunction that deserves further clinical attention among PWH without known CVD.
Collapse
Affiliation(s)
- Teressa S Thomas
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
3
|
Dimitriadis K, Adamopoulou E, Pyrpyris N, Sakalidis A, Leontsinis I, Manta E, Mantzouranis E, Beneki E, Soulaidopoulos S, Konstantinidis D, Fragkoulis C, Aggeli K, Tsioufis K. The effect of SGLT2 inhibitors on the endothelium and the microcirculation: from bench to bedside and beyond. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2023; 9:741-757. [PMID: 37500266 DOI: 10.1093/ehjcvp/pvad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/22/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
AIMS The beneficial cardiovascular effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors irrespective of the presence of diabetes mellitus are nowadays well established and they already constitute a significant pillar for the management of heart failure, irrespective of the ejection fraction. The exact underlying mechanisms accountable for these effects, however, remain largely unknown. The direct effect on endothelial function and microcirculation is one of the most well studied. The broad range of studies presented in this review aims to link all available data from the bench to bedside and highlight the existing gaps as well as the future directions in the investigations concerning the effects of SGLT2 inhibitors on the endothelium and the microcirculation. METHODS AND RESULTS An extensive search has been conducted using the MEDLINE/PubMed database in order to identify the relevant studies. Preclinical data suggest that SGLT2 inhibitors directly affect endothelial function independently of glucose and specifically via several interplaying molecular pathways, resulting in improved vasodilation, increased NO production, enhanced mitochondrial homeostasis, endothelial cell viability, and angiogenesis as well as attenuation of oxidative stress and inflammation. Clinical data systematically confirm this beneficial effect on the endothelium, whereas the evidence concerning the effect on the microcirculation is conflicting. CONCLUSION Preclinical and clinical studies indicate that SGLT2 inhibitors attenuate endothelial and microvascular dysfunction via a combination of mechanisms, which play a role in their beneficial cardiovascular effect.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Eleni Adamopoulou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Nikolaos Pyrpyris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Athanasios Sakalidis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Ioannis Leontsinis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Eleni Manta
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Emmanouil Mantzouranis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Eirini Beneki
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Stergios Soulaidopoulos
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Dimitrios Konstantinidis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Christos Fragkoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Konstantina Aggeli
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27, Athens, Greece
| |
Collapse
|
4
|
Jürgens M, Schou M, Hasbak P, Kjaer A, Wolsk E, Zerahn B, Brandt-Jacobsen NH, Gaede P, Rossing P, Faber J, Inzucchi SE, Gustafsson F, Kistorp C. The effects of empagliflozin on measured glomerular filtration rate and estimated extracellular and plasma volumes in patients with type 2 diabetes. Diabetes Obes Metab 2023; 25:2888-2896. [PMID: 37395341 DOI: 10.1111/dom.15183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023]
Abstract
AIMS To investigate the effects of empagliflozin on measured glomerular filtration rate (mGFR), estimated plasma volume (PV) and estimated extracellular volume (ECV) in a cohort of patients with type 2 diabetes (T2D) and high risk of cardiovascular events. MATERIALS AND METHODS In this prespecified substudy of the randomized, placebo-controlled SIMPLE trial, patients with T2D at high risk of cardiovascular events were allocated to either empagliflozin 25 mg or placebo once daily for 13 weeks. The prespecified outcome was between-group change in mGFR, measured by the 51 Cr-EDTA method after 13 weeks; changes in estimated PV and estimated ECV were included. RESULTS From April 4, 2017 to May 11, 2020, 91 participants were randomized. Of these, 45 patients from the empagliflozin group and 45 patients from the placebo group were included in the intention-to-treat analysis. Treatment with empagliflozin reduced mGFR by -7.9 mL/min (95% confidence interval [CI] -11.1 to -4.7; P < 0.001), estimated ECV by -192.5 mL (95% CI -318.0 to -66.9; P = 0.003) and estimated PV by -128.9 mL (95% CI -218.0 to 39.8; P = 0.005) at Week 13. CONCLUSIONS Treatment with empagliflozin for 13 weeks reduced mGFR, estimated ECV and estimated PV in patients with T2D and high risk of cardiovascular events.
Collapse
Affiliation(s)
- Mikkel Jürgens
- Department of Endocrinology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Endocrinology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Morten Schou
- Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Philip Hasbak
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Emil Wolsk
- Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Bo Zerahn
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Niels H Brandt-Jacobsen
- Department of Endocrinology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Peter Gaede
- Slagelse Hospital, Slagelse, Denmark, University of Southern Denmark, Odense, Denmark
| | - Peter Rossing
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Jens Faber
- Department of Endocrinology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Silvio E Inzucchi
- Yale Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Finn Gustafsson
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Caroline Kistorp
- Department of Endocrinology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Toya T, Nagatomo Y, Ikegami Y, Masaki N, Adachi T. Coronary microvascular dysfunction in heart failure patients. Front Cardiovasc Med 2023; 10:1153994. [PMID: 37332583 PMCID: PMC10272355 DOI: 10.3389/fcvm.2023.1153994] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Coronary microcirculation has multiple layers of autoregulatory function to maintain resting flow and augment hyperemic flow in response to myocardial demands. Functional or structural alterations in the coronary microvascular function are frequently observed in patients with heart failure with preserved or reduced ejection fraction, which may lead to myocardial ischemic injury and resultant worsening of clinical outcomes. In this review, we describe our current understanding of coronary microvascular dysfunction in the pathogenesis of heart failure with preserved and reduced ejection fraction.
Collapse
|
6
|
Brandt-Jacobsen NH, Jürgens M, Hasbak P, Gaede P, Rossing P, Rasmussen JJ, Andersen CF, Forman JL, Faber J, Inzucchi SE, Gustafsson F, Schou M, Kistorp C. Reduction of cardiac adipose tissue volume with short-term empagliflozin treatment in patients with type 2 diabetes: A substudy from the SIMPLE randomized clinical trial. Diabetes Obes Metab 2023; 25:844-855. [PMID: 36484428 PMCID: PMC10107109 DOI: 10.1111/dom.14933] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/19/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Ectopic accumulation of cardiac adipose tissue volume (CAT) has been associated with cardiac remodelling and cardiac dysfunction in type 2 diabetes and may be a future therapeutic target. In this substudy from the SIMPLE-trial, we investigated short-term empagliflozin therapy's effects on CAT in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS Between 4 April 2017 and 11 May 2020, we randomized 90 patients with type 2 diabetes and established or high risk of cardiovascular disease to 25 mg empagliflozin or placebo for 13 weeks. The substudy focused on change in CAT evaluated by images acquired during 82 Rubidium-positron emissions tomography/computed tomography. The analysis included 78 patients who had at least one scan. Furthermore, we report on the relation to the concurrent effects on left ventricular mass, end-diastolic volume and end-systolic volume, body composition and glucometabolic status. RESULTS Mean ± SD baseline CAT was 258.5 ± 117.9 ml. Empagliflozin reduced CAT after 13 weeks by 12.41 ml [95% CI (-23.83 to -0.99), p = .034] as compared with placebo. Similarly, left ventricular mass [-5.16 g, 95% CI (-8.80 to -1.52), p = .006], end-diastolic volume and end-systolic volume decreased with empagliflozin. In addition, significant improvements were observed in body composition, with reduced total fat mass, and in measures of glucose and lipid metabolism. However, no correlation was observed between changes in CAT and changes in cardiac parameters and change in CAT appeared mediated primarily by concurrent change in weight. CONCLUSIONS Empagliflozin provides an early reduction of CAT; however, no association was observed with concurrent changes in cardiac volumetrics.
Collapse
Affiliation(s)
- Niels H Brandt-Jacobsen
- Department of Endocrinology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Jürgens
- Department of Endocrinology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Philip Hasbak
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Peter Gaede
- Department of Intern Medicine, Slagelse Hospital, Slagelse, Denmark
| | - Peter Rossing
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Jon J Rasmussen
- Department of Endocrinology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Camillla Fuchs Andersen
- Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Julie L Forman
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jens Faber
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Silvio E Inzucchi
- Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Finn Gustafsson
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Morten Schou
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Caroline Kistorp
- Department of Endocrinology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
The Therapeutic Role of SGLT-2 Inhibitors in Acute Heart Failure: From Pathophysiologic Mechanisms to Clinical Evidence with Pooled Analysis of Relevant Studies across Safety and Efficacy Endpoints of Interest. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122062. [PMID: 36556427 PMCID: PMC9782870 DOI: 10.3390/life12122062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
(1) Background: Sodium-glucose co-transporter-2 (SGLT-2) inhibitors constitute a novel drug class with remarkable cardiovascular benefits for patients with chronic heart failure (HF). Recently, this class has been utilized in acute HF as an additional treatment option to classic diuretics, which remain the cornerstone of treatment. (2) Methods: We attempted to identify those pathophysiologic mechanisms targeted by SGLT-2 inhibitors, which could be of benefit to patients with acute HF. We then conducted a comprehensive review of the literature within the PubMed database in order to identify relevant studies, both randomized controlled trials (RCTs) and observational studies, assessing the safety and efficacy of SGLT-2 inhibitors in acute HF. (3) Results: SGLT-2 inhibitors induce significant osmotic diuresis and natriuresis, decrease interstitial fluid volume and blood pressure, improve left ventricular (LV) function, ameliorate LV remodeling and prevent atrial arrhythmia occurrence, mechanisms that seem to be beneficial in acute HF. However, currently available studies, including six RCTs and two real-world studies, provide conflicting results concerning the true efficacy of SGLT-2 inhibitors, including "hard" surrogate endpoints. (4) Conclusions: Current evidence appears insufficient to substantiate the use of SGLT-2 inhibitors in acute HF. Further trials are required to shed more light on this issue.
Collapse
|
8
|
Coronary Microvascular Dysfunction in Diabetes Mellitus: Pathogenetic Mechanisms and Potential Therapeutic Options. Biomedicines 2022; 10:biomedicines10092274. [PMID: 36140374 PMCID: PMC9496134 DOI: 10.3390/biomedicines10092274] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic patients are frequently affected by coronary microvascular dysfunction (CMD), a condition consisting of a combination of altered vasomotion and long-term structural change to coronary arterioles leading to impaired regulation of blood flow in response to changing cardiomyocyte oxygen requirements. The pathogenesis of this microvascular complication is complex and not completely known, involving several alterations among which hyperglycemia and insulin resistance play particularly central roles leading to oxidative stress, inflammatory activation and altered barrier function of endothelium. CMD significantly contributes to cardiac events such as angina or infarction without obstructive coronary artery disease, as well as heart failure, especially the phenotype associated with preserved ejection fraction, which greatly impact cardiovascular (CV) prognosis. To date, no treatments specifically target this vascular damage, but recent experimental studies and some clinical investigations have produced data in favor of potential beneficial effects on coronary micro vessels caused by two classes of glucose-lowering drugs: glucagon-like peptide 1 (GLP-1)-based therapy and inhibitors of sodium-glucose cotransporter-2 (SGLT2). The purpose of this review is to describe pathophysiological mechanisms, clinical manifestations of CMD with particular reference to diabetes, and to summarize the protective effects of antidiabetic drugs on the myocardial microvascular compartment.
Collapse
|
9
|
Leccisotti L, Cinti F, Sorice GP, D'Amario D, Lorusso M, Guzzardi MA, Mezza T, Gugliandolo S, Cocchi C, Capece U, Indovina L, Ferraro PM, Iozzo P, Crea F, Giordano A, Giaccari A. Dapagliflozin improves myocardial flow reserve in patients with type 2 diabetes: the DAPAHEART Trial: a preliminary report. Cardiovasc Diabetol 2022; 21:173. [PMID: 36057768 PMCID: PMC9440459 DOI: 10.1186/s12933-022-01607-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
Objective Cardiovascular (CV) outcome trials have shown that in patients with type 2 diabetes (T2D), treatment with sodium-glucose cotransporter-2 inhibitors (SGLT-2i) reduces CV mortality and hospital admission rates for heart failure (HF). However, the mechanisms behind these benefits are not fully understood. This study was performed to investigate the effects of the SGLT-2i dapagliflozin on myocardial perfusion and glucose metabolism in patients with T2D and stable coronary artery disease (coronary stenosis ≥ 30% and < 80%), with or without previous percutaneous coronary intervention (> 6 months) but no HF. Methods This was a single-center, prospective, randomized, double-blind, controlled clinical trial including 16 patients with T2D randomized to SGLT-2i dapagliflozin (10 mg daily) or placebo. The primary outcome was to detect changes in myocardial glucose uptake (MGU) from baseline to 4 weeks after treatment initiation by [(18)F]2-deoxy-2-fluoro-D-glucose (FDG) PET/CT during hyperinsulinemic euglycemic clamp. The main secondary outcome was to assess whether the hypothetical changes in MGU were associated with changes in myocardial blood flow (MBF) and myocardial flow reserve (MFR) measured by 13N-ammonia PET/CT. The study was registered at eudract.ema.europa.eu (EudraCT No. 2016-003614-27) and ClinicalTrials.gov (NCT 03313752). Results 16 patients were randomized to dapagliflozin (n = 8) or placebo (n = 8). The groups were well-matched for baseline characteristics (age, diabetes duration, HbA1c, renal and heart function). There was no significant change in MGU during euglycemic hyperinsulinemic clamp in the dapagliflozin group (2.22 ± 0.59 vs 1.92 ± 0.42 μmol/100 g/min, p = 0.41) compared with the placebo group (2.00 ± 0.55 vs 1.60 ± 0.45 μmol/100 g/min, p = 0.5). Dapagliflozin significantly improved MFR (2.56 ± 0.26 vs 3.59 ± 0.35 p = 0.006 compared with the placebo group 2.34 ± 0.21 vs 2.38 ± 0.24 p = 0.81; pint = 0.001) associated with a reduction in resting MBF corrected for cardiac workload (p = 0.005; pint = 0.045). A trend toward an increase in stress MBF was also detected (p = 0.054). Conclusions SGLT-2 inhibition increases MFR in T2D patients. We provide new insight into SGLT-2i CV benefits, as our data show that patients on SGLT-2i are more resistant to the detrimental effects of obstructive coronary atherosclerosis due to increased MFR, probably caused by an improvement in coronary microvascular dysfunction. Trial registration EudraCT No. 2016-003614-27; ClinicalTrials.gov Identifier: NCT03313752 Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01607-4.
Collapse
Affiliation(s)
- Lucia Leccisotti
- UOC Di Medicina Nucleare, Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italia
| | - Francesca Cinti
- Centro Malattie Endocrine E Metaboliche, Dipartimento Di Scienze Mediche E Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italia
| | - Gian Pio Sorice
- Centro Malattie Endocrine E Metaboliche, Dipartimento Di Scienze Mediche E Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italia.,Sezione Di Medicina Interna, Endocrinologia, Andrologia e Malattie Metaboliche, Dipartimento Dell'Emergenza E Dei Trapianti Di Organi (D.E.T.O.), Università Degli Studi Di Bari "Aldo Moro", Bari, Italia
| | - Domenico D'Amario
- UOC Di Cardiologia, Dipartimento Di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, and Università Cattolica del Sacro Cuore, Rome, Italia
| | - Margherita Lorusso
- UOC Di Medicina Nucleare, Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italia
| | - Maria Angela Guzzardi
- Istituto Di Fisiologia Clinica, Consiglio Nazionale Delle Ricerche (CNR), Pisa, Italia
| | - Teresa Mezza
- Centro Malattie Endocrine E Metaboliche, Dipartimento Di Scienze Mediche E Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italia
| | - Shawn Gugliandolo
- Centro Malattie Endocrine E Metaboliche, Dipartimento Di Scienze Mediche E Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italia
| | - Camilla Cocchi
- Centro Malattie Endocrine E Metaboliche, Dipartimento Di Scienze Mediche E Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italia
| | - Umberto Capece
- Centro Malattie Endocrine E Metaboliche, Dipartimento Di Scienze Mediche E Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italia
| | - Luca Indovina
- UOSD Fisica Medica E Radioprotezione, Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italia
| | - Pietro Manuel Ferraro
- U.O.S. Terapia Conservativa Della Malattia Renale Cronica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Patricia Iozzo
- Istituto Di Fisiologia Clinica, Consiglio Nazionale Delle Ricerche (CNR), Pisa, Italia
| | - Filippo Crea
- UOC Di Cardiologia, Dipartimento Di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, and Università Cattolica del Sacro Cuore, Rome, Italia
| | - Alessandro Giordano
- UOC Di Medicina Nucleare, Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italia.
| | - Andrea Giaccari
- Centro Malattie Endocrine E Metaboliche, Dipartimento Di Scienze Mediche E Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italia.
| |
Collapse
|
10
|
Čertíková Chábová V, Zakiyanov O. Sodium Glucose Cotransporter-2 Inhibitors: Spotlight on Favorable Effects on Clinical Outcomes beyond Diabetes. Int J Mol Sci 2022; 23:2812. [PMID: 35269954 PMCID: PMC8911473 DOI: 10.3390/ijms23052812] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/16/2022] Open
Abstract
Sodium glucose transporter type 2 (SGLT2) molecules are found in proximal tubules of the kidney, and perhaps in the brain or intestine, but rarely in any other tissue. However, their inhibitors, intended to improve diabetes compensation, have many more beneficial effects. They improve kidney and cardiovascular outcomes and decrease mortality. These benefits are not limited to diabetics but were also found in non-diabetic individuals. The pathophysiological pathways underlying the treatment success have been investigated in both clinical and experimental studies. There have been numerous excellent reviews, but these were mostly restricted to limited aspects of the knowledge. The aim of this review is to summarize the known experimental and clinical evidence of SGLT2 inhibitors' effects on individual organs (kidney, heart, liver, etc.), as well as the systemic changes that lead to an improvement in clinical outcomes.
Collapse
Affiliation(s)
- Věra Čertíková Chábová
- Department of Nephrology, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 12800 Prague 2, Czech Republic;
| | | |
Collapse
|
11
|
Suhrs HE, Nilsson M, Bové KB, Zander M, Prescott E. Effect of empagliflozin on coronary microvascular function in patients with type 2 diabetes mellitus–A randomized, placebo-controlled cross-over study. PLoS One 2022; 17:e0263481. [PMID: 35148357 PMCID: PMC8836314 DOI: 10.1371/journal.pone.0263481] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023] Open
Abstract
Purpose Results from large scale cardiovascular outcome trials in patients with type 2 diabetes mellitus (DM2) have found that sodium-glucose cotransporter 2 inhibitors (SGLT2i) reduce cardiovascular death and hospitalization for heart failure, but the mechanisms behind the beneficial cardiovascular effects are not fully understood. We tested the hypothesis that the SGLT2i, empagliflozin, improves non-endothelial dependent coronary microvascular function, thereby leading to better cardiac function. Methods Patients with DM2 followed at the endocrinology outpatient clinic at Bispebjerg University Hospital were included in a double blinded, placebo-controlled cross-over study. Participants were allocated equally to each treatment sequence using simple randomization and treated with empagliflozin 25 mg and placebo for 12 weeks, interrupted by 2 weeks wash-out period. The primary outcome was coronary microvascular function, assessed as coronary flow velocity reserve (CFVR) and measured with transthoracic doppler echocardiography. Echocardiographic parameters of cardiac function were measured, and blood samples were analyzed for a broad panel of cardiovascular biomarkers. Results Thirteen patients were randomized to each sequence and 10 and 9 completed the study according to protocol, respectively, and were included in the analysis of outcome parameters. We found no improvement in CFVR (change in the empagliflozin period was -0.16 (SD 0.58)). There were no effects on cardiac systolic function or indicators of cardiac filling pressure. Well-known effects of empagliflozin were obtained, such as weight loss and reduction in Hba1c level. Creatinine level increased but remained within normal range. We observed a clear trend of reduction in cardiovascular biomarkers after empagliflozin treatment and increased levels after the placebo period. No serious adverse reactions were reported. Conclusions Despite effect on weight-loss, Hba1c and biomarkers, treatment with empagliflozin for 12 weeks did not improve CFVR in patients with DM2.
Collapse
Affiliation(s)
- Hannah Elena Suhrs
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Malin Nilsson
- Department of Endocrinology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Kira Bang Bové
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mette Zander
- Department of Endocrinology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Eva Prescott
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Effect of empagliflozin on myocardial structure and function in patients with type 2 diabetes at high cardiovascular risk: the SIMPLE randomized clinical trial. Int J Cardiovasc Imaging 2021; 38:579-587. [PMID: 34669059 DOI: 10.1007/s10554-021-02443-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/10/2021] [Indexed: 12/21/2022]
Abstract
To investigate the effects of 13 weeks treatment with empagliflozin in patients with high-risk type-2 diabetes mellitus on echocardiographic measures of left ventricular (LV) structure and function compared to placebo. A total of 91 patients were randomized to treatment with empagliflozin (25 mg/day, n = 45) or matching placebo (n = 45) for 13 weeks. Left ventricular (LV) mass, volumes and geometry as well as measures of LV systolic and diastolic function were measured using echocardiography at baseline and follow up. Mean LV mass index (LVMi) was reduced by - 11.5 g/m2 (95% CI - 56.4; 33.4, p = 0.03) with empagliflozin compared to - 1.4 g/m2 (95% CI - 36.5; 33.8, p = 0.63) for placebo. The proportion of patients with LV hypertrophy was reduced by 16.3% (p = 0.04) in the empagliflozin group compared to 1.1% in the placebo group (p = 1.00). The proportion of patients with left atrial volume index > 34 mL/m2 was reduced by 20.0% (p = 0.02) with empagliflozin compared to 9.5% for placebo (p = 0.45) and the E/e' ratio decreased (∆-0.8 (1.9) vs. ∆0.5 (2.0), p < 0.01). 13 weeks empagliflozin treatment in patients with type-2 diabetes at high CV risk significantly reduced LV mass, improved LV geometry and improved diastolic function compared to placebo.
Collapse
|