1
|
Carnwath TP, Demel SL, Prestigiacomo CJ. Genetics of ischemic stroke functional outcome. J Neurol 2024; 271:2345-2369. [PMID: 38502340 PMCID: PMC11055934 DOI: 10.1007/s00415-024-12263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
Ischemic stroke, which accounts for 87% of cerebrovascular accidents, is responsible for massive global burden both in terms of economic cost and personal hardship. Many stroke survivors face long-term disability-a phenotype associated with an increasing number of genetic variants. While clinical variables such as stroke severity greatly impact recovery, genetic polymorphisms linked to functional outcome may offer physicians a unique opportunity to deliver personalized care based on their patient's genetic makeup, leading to improved outcomes. A comprehensive catalogue of the variants at play is required for such an approach. In this review, we compile and describe the polymorphisms associated with outcome scores such as modified Rankin Scale and Barthel Index. Our search identified 74 known genetic polymorphisms spread across 48 features associated with various poststroke disability metrics. The known variants span diverse biological systems and are related to inflammation, vascular homeostasis, growth factors, metabolism, the p53 regulatory pathway, and mitochondrial variation. Understanding how these variants influence functional outcome may be helpful in maximizing poststroke recovery.
Collapse
Affiliation(s)
- Troy P Carnwath
- University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Stacie L Demel
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Charles J Prestigiacomo
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| |
Collapse
|
2
|
Rogalewski A, Schäbitz W. [Therapies for the Improvement of Stroke Recovery - Assessment of Clinical Trial Results]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2023; 91:516-522. [PMID: 38081165 DOI: 10.1055/a-2181-1026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Recovery processes after stroke include restoration or compensation of function initially lost or newly acquired after injury. Therapeutic interventions can either directly improve these processes and/or inhibit processes that impede regeneration. Numerous experimental studies suggested a great opportunity for such treatments, but the results from recent large clinical trials with neuromodulators such as dopamine and fluoxetine have been rather disappointing. The reasons for this are manifold and involve the extrapolation of results from animal models to humans. Given the differences between animals and humans in genetic and epigenetic background, brain size and anatomy, cerebral vascular anatomy, immune system, as well as clinical function, and behavior, direct extrapolation is unlikely to work. Backward blockades include the incompatible adaption of clinical trial objectives and outcomes in clinical trials with regard to previous preclinical findings. For example, the clinical recovery trial design widely varies and has been characterized by the selection of different clinical endpoints, the inclusion a wide spectrum of stroke subtypes and clinical syndromes, and different time windows for treatment initiation after onset of infarction. This review will discuss these aspects based on the results of the recent stroke recovery trials with the aim to contributing to the development of a therapy that improves the functional outcome of a chronic stroke patient.
Collapse
Affiliation(s)
- Andreas Rogalewski
- Klinik für Neurologie, Sankt Elisabeth-Hospital Gütersloh, Gütersloh, Germany
| | - Wolf Schäbitz
- Universitätsklinik für Neurologie, Evangelisches Klinikum Bethel, Universitätsklinikum OWL der Universität Bielefeld, Campus Bielefeld-Bethel, Bielefeld, Germany
| |
Collapse
|
3
|
Zhang H, Liu J, Bingham D, Orr A, Kawabori M, Kim JY, Zheng Z, Lam TI, Massa SM, Swanson RA, Yenari MA. Use of Botulinum Toxin for Limb Immobilization for Rehabilitation in Rats with Experimental Stroke. Biomolecules 2023; 13:512. [PMID: 36979446 PMCID: PMC10046338 DOI: 10.3390/biom13030512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Motor rehabilitation strategies after unilateral stroke suggest that the immobilization of the healthy, unimpaired limb can promote the functional recovery of a paretic limb. In rodents, this has been modeled using casts, harnesses, and other means of restricting the use of the non-paretic forelimb in models of experimental stroke. Here, we evaluated an alternative approach, using botulinum toxin injections to limit the function of the non-paretic forelimb. Adult male rats were subjected to permanent ligation of the left distal middle cerebral artery, resulting in right forelimb paresis. The rats were then subjected to: (1) no treatment; (2) botulinum toxin injections 1 day post stroke; or (3) cast placement 5 days post stroke. Casts were removed after 5 weeks, while the botulinum toxin injection effectively immobilized subjects for approximately the same duration. Rats with bilateral forelimb impairment due to the stroke plus casting or botulinum injections were still able to feed and groom normally. Both immobilization groups showed modest recovery following the stroke compared to those that did not receive immobilization, but the casting approach led to unacceptable levels of animal stress. The botulinum toxin approach to limb immobilization had both advantages and disadvantages over traditional physical limb immobilization. The major advantage was that it was far less stress-inducing to the subject animals and appeared to be well tolerated. A disadvantage was that the paresis took roughly 10 weeks to fully resolve, and any degree of residual paresis could confound the interpretation of the behavioral assessments.
Collapse
Affiliation(s)
- Hongxia Zhang
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
- San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Jialing Liu
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
- San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Deborah Bingham
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
- San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Adrienne Orr
- San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Masahito Kawabori
- San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA
- Department of Neurology, University of California, San Francisco, CA 94143, USA
- Department of Neurosurgery, Hokkaido University, Sapporo 060-0808, Japan
| | - Jong Youl Kim
- San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA
- Department of Neurology, University of California, San Francisco, CA 94143, USA
- Department of Anatomy, Yonsei University, Seoul 03722, Republic of Korea
| | - Zhen Zheng
- San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Tina I. Lam
- San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Stephen M. Massa
- San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Raymond A. Swanson
- San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Midori A. Yenari
- San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Stockbridge MD, Vitti E, Faria AV, Hillis AE. Emotional and qualitative outcomes among patients with left and right hemisphere stroke. Front Neurol 2022; 13:969331. [DOI: 10.3389/fneur.2022.969331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
The differences in mental health outcomes of right and left hemisphere strokes are well studied; however, there is a long-standing controversy surrounding whether depression is associated with lateralization of stroke or not. In this investigation, we examined the effect of lesion location on post-stroke depression controlling for lesion size and hemiparesis in a longitudinal sample assessed at acute, subacute, and chronic timepoints. As a secondary aim, we further examined the effect of lesion location on self-reported difficulties across a wide array of domains. A series of 134 patients with left hemisphere strokes and 79 with right hemisphere strokes completed the Patient Health Questionnaire-9 and an inventory of post-stroke abilities at within acute, subacute, and chronic windows following stroke. When controlling for hemiparesis and overall lesion volume, we found no difference in depression between groups at any timepoint. Additional exploratory analyses provided a further look at differing challenges associated with depression in each group.
Collapse
|
5
|
Differential effects of the cell cycle inhibitor, olomoucine, on functional recovery and on responses of peri-infarct microglia and astrocytes following photothrombotic stroke in rats. J Neuroinflammation 2021; 18:168. [PMID: 34332596 PMCID: PMC8325288 DOI: 10.1186/s12974-021-02208-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/02/2021] [Indexed: 11/17/2022] Open
Abstract
Background Following stroke, changes in neuronal connectivity in tissue surrounding the infarct play an important role in both spontaneous recovery of neurological function and in treatment-induced improvements in function. Microglia and astrocytes influence this process through direct interactions with the neurons and as major determinants of the local tissue environment. Subpopulations of peri-infarct glia proliferate early after stroke providing a possible target to modify recovery. Treatment with cell cycle inhibitors can reduce infarct volume and improve functional recovery. However, it is not known whether these inhibitors can influence neurological function or alter the responses of peri-infarct glia without reducing infarction. The present study aimed to address these issues by testing the effects of the cell cycle inhibitor, olomoucine, on recovery and peri-infarct changes following photothrombotic stroke. Methods Stroke was induced by photothrombosis in the forelimb sensorimotor cortex in Sprague-Dawley rats. Olomoucine was administered at 1 h and 24 h after stroke induction. Forelimb function was monitored up to 29 days. The effects of olomoucine on glial cell responses in peri-infarct tissue were evaluated using immunohistochemistry and Western blotting. Results Olomoucine treatment did not significantly affect maximal infarct volume. Recovery of the affected forelimb on a placing test was impaired in olomoucine-treated rats, whereas recovery in a skilled reaching test was substantially improved. Olomoucine treatment produced small changes in aspects of Iba1 immunolabelling and in the number of CD68-positive cells in cerebral cortex but did not selectively modify responses in peri-infarct tissue. The content of the astrocytic protein, vimentin, was reduced by 30% in the region of the lesion in olomoucine-treated rats. Conclusions Olomoucine treatment modified functional recovery in the absence of significant changes in infarct volume. The effects on recovery were markedly test dependent, adding to evidence that skilled tasks requiring specific training and general measures of motor function can be differentially modified by some interventions. The altered recovery was not associated with specific changes in key responses of peri-infarct microglia, even though these cells were considered a likely target for early olomoucine treatment. Changes detected in peri-infarct reactive astrogliosis could contribute to the altered patterns of functional recovery. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02208-w.
Collapse
|
6
|
Sommer CJ, Schäbitz WR. Principles and requirements for stroke recovery science. J Cereb Blood Flow Metab 2021; 41:471-485. [PMID: 33175596 PMCID: PMC7907998 DOI: 10.1177/0271678x20970048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
The disappointing results in bench-to-bedside translation of neuroprotective strategies caused a certain shift in stroke research towards enhancing the endogenous recovery potential of the brain. One reason for this focus on recovery is the much wider time window for therapeutic interventions which is open for at least several months. Since recently two large clinical studies using d-amphetamine or fluoxetine, respectively, to enhance post-stroke neurological outcome failed again it is a good time for a critical reflection on principles and requirements for stroke recovery science. In principal, stroke recovery science deals with all events from the molecular up to the functional and behavioral level occurring after brain ischemia eventually ending up with any measurable improvement of various clinical parameters. A detailed knowledge of the spontaneously occurring post-ischemic regeneration processes is the indispensable prerequisite for any therapeutic approaches aiming to modify these responses to enhance post-stroke recovery. This review will briefly illuminate the molecular mechanisms of post-ischemic regeneration and the principle possibilities to foster post-stroke recovery. In this context, recent translational approaches are analyzed. Finally, the principal and specific requirements and pitfalls in stroke recovery research as well as potential explanations for translational failures will be discussed.
Collapse
Affiliation(s)
- Clemens J Sommer
- Institute of Neuropathology, University Medical Center of the
Johannes Gutenberg-University Mainz, Mainz, Germany
| | | |
Collapse
|
7
|
Zhong J, Li RW, Wang J, Wang Y, Ge HF, Xian JS, Feng H, Tan L. Neuroprotection by cattle encephalon glycoside and ignotin beyond the time window of thrombolysis in ischemic stroke. Neural Regen Res 2021; 16:312-318. [PMID: 32859790 PMCID: PMC7896241 DOI: 10.4103/1673-5374.290899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/02/2019] [Accepted: 03/03/2020] [Indexed: 01/01/2023] Open
Abstract
Cattle encephalon glycoside and ignotin (CEGI) injection is known as a multi-target neuroprotective drug that contains numerous liposoluble molecules, such as polypeptides, monosialotetrahexosyl ganglioside (GM-1), free amino acids, hypoxanthine and carnosine. CEGI has been approved by the Chinese State Food and Drug Administration and widely used in the treatments of various diseases, such as stroke and Alzheimer's disease. However, the neuroprotective effects of CEGI beyond the time window of thrombolysis (within 4.5 hours) on acute ischemic stroke remain unclear. This study constructed a rat middle cerebral artery occlusion model by suture-occluded method to simulate ischemic stroke. The first daily dose was intraperitoneally injected at 8 hours post-surgery and the CEGI treatments continued for 14 days. Results of the modified five-point Bederson scale, beam balance test and rotameric test showed the neurological function of ischemic stroke rats treated with 4 mL/kg/d CEGI improved significantly, but the mortality within 14 days did not change significantly. Brain MRI and 2,3,5-triphenyltetrazolium chloride staining confirmed that the infarct size in the 4 mL/kg/d CEGI-treated rats was significantly reduced compared with ischemic insult only. The results of transmission electron microscopy and double immunofluorescence staining showed that the hippocampal neuronal necrosis in the ischemic penumbra decreased whereas the immunopositivity of new neuronal-specific protein doublecortin and the percentage of Ki67/doublecortin positive cells increased in CEGI-treated rats compared with untreated rats. Our results suggest that CEGI has an effective neuroprotective effect on ischemic stroke when administered after the time window of thrombolysis. The study was approved by the Animal Ethics Committee of The Third Military Medical University, China.
Collapse
Affiliation(s)
- Jun Zhong
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Rong-Wei Li
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
- Department of Neurosurgery, Hanzhong Central Hospital, Hanzhong, Shaanxi Province, China
| | - Ju Wang
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Wang
- Department of Oncology, Hanzhong Central Hospital, Hanzhong, Shaanxi Province, China
| | - Hong-Fei Ge
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Ji-Shu Xian
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Liang Tan
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| |
Collapse
|
8
|
Joshi H, McIntyre WB, Kooner S, Rathbone M, Gabriele S, Gabriele J, Baranowski D, Frey BN, Mishra RK. Decreased Expression of Cerebral Dopamine Neurotrophic Factor in Platelets of Stroke Patients. J Stroke Cerebrovasc Dis 2020; 29:104502. [DOI: 10.1016/j.jstrokecerebrovasdis.2019.104502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/02/2019] [Accepted: 10/23/2019] [Indexed: 11/24/2022] Open
|
9
|
Gao BY, Xu DS, Liu PL, Li C, Du L, Hua Y, Hu J, Hou JY, Bai YL. Modified constraint-induced movement therapy alters synaptic plasticity of rat contralateral hippocampus following middle cerebral artery occlusion. Neural Regen Res 2020; 15:1045-1057. [PMID: 31823884 PMCID: PMC7034265 DOI: 10.4103/1673-5374.270312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Modified constraint-induced movement therapy is an effective treatment for neurological and motor impairments in patients with stroke by increasing the use of their affected limb and limiting the contralateral limb. However, the molecular mechanism underlying its efficacy remains unclear. In this study, a middle cerebral artery occlusion (MCAO) rat model was produced by the suture method. Rats received modified constraint-induced movement therapy 1 hour a day for 14 consecutive days, starting from the 7th day after middle cerebral artery occlusion. Day 1 of treatment lasted for 10 minutes at 2 r/min, day 2 for 20 minutes at 2 r/min, and from day 3 onward for 20 minutes at 4 r/min. CatWalk gait analysis, adhesive removal test, and Y-maze test were used to investigate motor function, sensory function as well as cognitive function in rodent animals from the 1st day before MCAO to the 21st day after MCAO. On the 21st day after MCAO, the neurotransmitter receptor-related genes from both contralateral and ipsilateral hippocampi were tested by micro-array and then verified by western blot assay. The glutamate related receptor was shown by transmission electron microscopy and the glutamate content was determined by high-performance liquid chromatography. The results of behavior tests showed that modified constraint-induced movement therapy promoted motor and sensory functional recovery in the middle cerebral artery-occluded rats, but had no effect on cognitive function. The modified constraint-induced movement therapy upregulated the expression of glutamate ionotropic receptor AMPA type subunit 3 (Gria3) in the hippocampus and downregulated the expression of the beta3-adrenergic receptor gene Adrb3 and arginine vasopressin receptor 1A, Avpr1a in the middle cerebral artery-occluded rats. In the ipsilateral hippocampus, only Adra2a was downregulated, and there was no significant change in Gria3. Transmission electron microscopy revealed a denser distribution the more distribution of postsynaptic glutamate receptor 2/3, which is an α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor, within 240 nm of the postsynaptic density in the contralateral cornu ammonis 3 region. The size and distribution of the synaptic vesicles within 100 nm of the presynaptic active zone were unchanged. Western blot analysis showed that modified constraint-induced movement therapy also increased the expression of glutamate receptor 2/3 and brain-derived neurotrophic factor in the hippocampus of rats with middle cerebral artery occlusion, but had no effect on Synapsin I levels. Besides, we also found modified constraint-induced movement therapy effectively reduced glutamate content in the contralateral hippocampus. This study demonstrated that modified constraint-induced movement therapy is an effective rehabilitation therapy in middle cerebral artery-occluded rats, and suggests that these positive effects occur via the upregulation of the postsynaptic membrane α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor expression. This study was approved by the Institutional Animal Care and Use Committee of Fudan University, China (approval No. 201802173S) on March 3, 2018.
Collapse
Affiliation(s)
- Bei-Yao Gao
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Dong-Sheng Xu
- Rehabilitation Section, Department of Spine Surgery, Tongji Hospital of Tongji University; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University) Ministry of Education, Shanghai, China
| | - Pei-Le Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ce Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Du
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Yun Hou
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai, China
| | - Yu-Long Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Influencing neuroplasticity in stroke treatment with advanced biomaterials-based approaches. Adv Drug Deliv Rev 2019; 148:204-218. [PMID: 30579882 DOI: 10.1016/j.addr.2018.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/05/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
Abstract
Since the early 1990s, we have known that the adult brain is not static and has the capacity to repair itself. The delivery of various therapeutic factors and cells have resulted in some exciting pre-clinical and clinical outcomes in stroke models by targeting post-injury plasticity to enhance recovery. Developing a deeper understanding of the pathways that modulate plasticity will enable us to optimize delivery strategies for therapeutics and achieve more robust effects. Biomaterials are a key tool for the optimization of these potential treatments, owing to their biocompatibility and tunability. In this review, we identify factors and targets that impact plastic processes known to contribute to recovery, discuss the role of biomaterials in enhancing the efficacy of treatment strategies, and suggest combinatorial approaches based on the stage of injury progression.
Collapse
|
11
|
Khalesi N, Bandehpour M, Bigdeli MR, Niknejad H, Dabbagh A, Kazemi B. 14-3-3ζ protein protects against brain ischemia/reperfusion injury and induces BDNF transcription after MCAO in rat. J Appl Biomed 2019; 17:99-106. [PMID: 34907731 DOI: 10.32725/jab.2019.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/15/2019] [Indexed: 12/27/2022] Open
Abstract
Brain ischemia is a leading cause of death and disability worldwide that occurs when blood supply of the brain is disrupted. Brain-derived neurotrophic factor (BDNF) is a protective factor in neurodegenerative conditions. Nevertheless, there are some problems when exogenous BDNF is to be used in the clinic. 14-3-3ζ is a pro-survival highly-expressed protein in the brain that protects neurons against death. This study evaluates 14-3-3ζ effects on BDNF transcription at early time point after ischemia and its possible protective effects against ischemia damage. Human 14-3-3ζ protein was purified after expression. Rats were assigned into four groups, including sham, ischemia, and two treatment groups. Stereotaxic cannula implantation was carried out in the right cerebral ventricle. After one week, rats underwent middle cerebral artery occlusion (MCAO) surgery and received 14-3-3ζ (produced in our laboratory or standard form as control) in the middle of ischemia time. At 6 h of reperfusion after ischemia, brain parts containing the hippocampus, the cortex, the piriform cortex-amygdala and the striatum were collected for real time PCR analysis. At 24 h of reperfusion after ischemia, neurological function evaluation and infarction volume measurement were performed. The present study showed that 14-3-3ζ could up-regulate BDNF mRNA at early time point after ischemia in the hippocampus, in the cortex and in the piriform cortex-amygdala and could also improve neurological outcome and reduce infarct volume. It seems that 14-3-3ζ could be a candidate factor for increasing endogenous BDNF in the brain and a potential therapeutic factor against brain ischemia.
Collapse
Affiliation(s)
- Naeemeh Khalesi
- Shahid Beheshti University of Medical Sciences, School of Advanced Technologies in Medicine, Biotechnology Department, Tehran, Iran
| | - Mojgan Bandehpour
- Shahid Beheshti University of Medical Sciences, Cellular and Molecular Biology Research Center, Tehran, Iran
| | - Mohammad Reza Bigdeli
- Shahid Beheshti University, Faculty of Life Sciences and Biotechnology, Department of Animal Sciences and Biotechnology, Tehran, Iran.,Shahid Beheshti University, Institute for Cognitive and Brain Science, Tehran, Iran
| | - Hassan Niknejad
- Shahid Beheshti University of Medical Sciences, School of Medicine, Department of Pharmacology, Tehran, Iran
| | - Ali Dabbagh
- Shahid Beheshti University of Medical Sciences, Anesthesiology Research Center, Tehran, Iran
| | - Bahram Kazemi
- Shahid Beheshti University of Medical Sciences, School of Advanced Technologies in Medicine, Biotechnology Department, Tehran, Iran.,Shahid Beheshti University of Medical Sciences, Cellular and Molecular Biology Research Center, Tehran, Iran
| |
Collapse
|
12
|
Okabe N, Himi N, Nakamura-Maruyama E, Hayashi N, Sakamoto I, Hasegawa T, Miyamoto O. Very Early Initiation Reduces Benefits of Poststroke Rehabilitation Despite Increased Corticospinal Projections. Neurorehabil Neural Repair 2019; 33:538-552. [PMID: 31140375 DOI: 10.1177/1545968319850132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background. Although the effect of rehabilitation is influenced by aspects of the training protocol, such as initiation time and intensity of training, it is unclear whether training protocol modifications affect the corticospinal projections. Objective. The present study was designed to investigate how modification of initiation time (time-dependency) and affected forelimb use (use-dependency) influence the effects of rehabilitation on functional recovery and corticospinal projections. Methods. The time-dependency of rehabilitation was investigated in rats forced to use their impaired forelimb immediately, at 1 day, and 4 days after photothrombotic stroke. The use-dependency of rehabilitation was investigated by comparing rats with affected forelimb immobilization (forced nonuse), unaffected forelimb immobilization (forced use), and a combination of forced use and skilled forelimb training beginning at 4 days after stroke. Results. Although forced use beginning 1 day or 4 days after stroke caused significant functional improvement, immediate forced limb use caused no functional improvement. On the other hand, a combination of forced use and skilled forelimb training boosted functional recovery in multiple tasks compared to simple forced use treatment. Histological examination showed that no treatment caused brain damage. However, a retrograde tracer study revealed that immediate forced use and combination training, including forced use and skilled forelimb training, increased corticospinal projections from the contralesional and ipsilesional motor cortex, respectively. Conclusions. These results indicate that although both very early initiation time and enhanced skilled forelimb use increased corticospinal projections, premature initiation time hampers the functional improvement induced by poststroke rehabilitation.
Collapse
Affiliation(s)
- Naohiko Okabe
- 1 Kawasaki Medical School, Kurashiki City, Okayama, Japan.,2 David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Naoyuki Himi
- 1 Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | | | - Norito Hayashi
- 1 Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Issei Sakamoto
- 1 Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Toru Hasegawa
- 1 Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Osamu Miyamoto
- 1 Kawasaki Medical School, Kurashiki City, Okayama, Japan
| |
Collapse
|
13
|
Gusev EI, Martynov MY, Kostenko EV, Petrova LV, Bobyreva SN. [The efficacy of semax in the tretament of patients at different stages of ischemic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 118:61-68. [PMID: 29798983 DOI: 10.17116/jnevro20181183261-68] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIM To evaluate the efficacy of semax and timing of rehabilitation on the dynamics of plasma BDNF levels, motor performance, and Barthel index score in patients after ischemic stroke (IS). MATERIAL AND METHODS One hundred and ten patients after IS (43 men, 67 women, mean age 58.0±9.7, Ме 63 years) were examined. All patients were divided into early (89±9 days) and late (214±22 days) rehabilitation groups. Each group was subdivided into semax+ and semax- subgroups. Standard regimen of semax included 2 courses (6000 mcg/day) for 10 days with 20 day interval. Plasma BDNF levels, motor performance on the British Medical Research Council scale and Barthel index were assessed in all groups. RESULTS Administration of semax, regardless of the timing of rehabilitation, increased BDNF plasma levels which remained high during the whole study period. In semax- subgroups high BDNF plasma levels were positively correlated with early rehabilitation. Administration of semax and high BDNF levels accelerated the improvement and ameliorated the final outcome of Barthel score index. There was a positive correlation between BDNF plasma levels and Barthel score, as well as a correlation between early rehabilitation and motor performance improvement. The correlation between BDNF plasma levels and Barthel score was modified by the timing of rehabilitation. CONCLUSION Early rehabilitation and administration of semax increase BDNF plasma level, speed functional recovery, and improve motor performance.
Collapse
Affiliation(s)
- E I Gusev
- Pirogov Russian National Research Medical University, Ministry of Health of Russiа, Moscow, Russia
| | - M Yu Martynov
- Pirogov Russian National Research Medical University, Ministry of Health of Russiа, Moscow, Russia
| | - E V Kostenko
- Pirogov Russian National Research Medical University, Ministry of Health of Russiа, Moscow, Russia; Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine, Moscow Healthcare Department, Moscow, Russia
| | - L V Petrova
- Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine, Moscow Healthcare Department, Moscow, Russia
| | - S N Bobyreva
- Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine, Moscow Healthcare Department, Moscow, Russia
| |
Collapse
|
14
|
Hussein OA, Abdel-Hafez AMM, Abd El Kareim A. Rat hippocampal CA3 neuronal injury induced by limb ischemia/reperfusion: A possible restorative effect of alpha lipoic acid. Ultrastruct Pathol 2018; 42:133-154. [PMID: 29466087 DOI: 10.1080/01913123.2018.1427165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Limb ischemia reperfusion (I/R) injury is associated with serious local and systemic effects. Reperfusion may augment tissue injury in excess of that produced by ischemia alone. The hippocampus has been reported to be vulnerable to I/R injury. Alpha lipoic acid (ALA) is an endogenous antioxidant with a powerful antioxidative, anti-inflammatory, and antiapoptotic properties. We studied the probable restorative effect of ALA on limb I/R-induced structural damage of rat hippocampus. Forty adult male albino rats were divided equally into four groups: group I (sham); group II (I/R-1 day) has undergone bilateral femoral arteries occlusion (3 h), then reperfusion for 1 day; group III (I/R-7 days) has undergone reperfusion for seven days; group IV (I/R-ALA) has undergone I/R as group III and received an intraperitoneal injection of ALA (100 mg/kg) for 7 days. I/R groups revealed degenerative changes in the pyramidal neuronal perikarya of CA3 field in the form of dark-stained cytoplasm, dilated RER cisternae, mitochondrial alterations, and dense bodies' accumulation. Their dendrites showed disorganized microtubules. Astrogliosis is featured by an increased number and increased immunoreactivity of astrocytes for glial fibrillary acid protein. Morphometric data revealed significant reduction of light neurons, surface area of neurons, and thickness of the CA3 layer. Most blood capillaries exhibited narrow lumen and irregular basal lamina. ALA ameliorated the neuronal damage. Pyramidal neurons revealed preservation of normal structure. Significant increase in the thickness of pyramidal layer in CA3 field and surface area and number of light neurons was observed but astrogliosis persisted. Limb I/R had a deleterious remote effect on the hippocampus aggravated with longer period of reperfusion. This work may encourage the use of ALA in the critical clinical settings with I/R injury.
Collapse
Affiliation(s)
- Ola A Hussein
- a Histology and Cell biology Department, Faculty of Medicine , Assiut University , Assiut , Egypt
| | - Amel M M Abdel-Hafez
- a Histology and Cell biology Department, Faculty of Medicine , Assiut University , Assiut , Egypt
| | - Ayat Abd El Kareim
- a Histology and Cell biology Department, Faculty of Medicine , Assiut University , Assiut , Egypt
| |
Collapse
|
15
|
Balkaya M, Cho S. Genetics of stroke recovery: BDNF val66met polymorphism in stroke recovery and its interaction with aging. Neurobiol Dis 2018; 126:36-46. [PMID: 30118755 DOI: 10.1016/j.nbd.2018.08.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/24/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Stroke leads to long term sensory, motor and cognitive impairments. Most patients experience some degree of spontaneous recovery which is mostly incomplete and varying greatly among individuals. The variation in recovery outcomes has been attributed to numerous factors including lesion size, corticospinal tract integrity, age, gender and race. It is well accepted that genetics play a crucial role in stroke incidence and accumulating evidence suggests that it is also a significant determinant in recovery. Among the number of genes and variations implicated in stroke recovery the val66met single nucleotide polymorphism (SNP) in the BDNF gene influences post-stroke plasticity in the most significant ways. Val66met is the most well characterized BDNF SNP and is common (40-50 % in Asian and 25-32% in Caucasian populations) in humans. It reduces activity-dependent BDNF release, dampens cortical plasticity and is implicated in numerous diseases. Earlier studies on the effects of val66met on stroke outcome and recovery presented primarily a maladaptive role. Novel findings however indicate a much more intricate interaction between val66met and stroke recovery which appears to be influenced by lesion location, post-stroke stage and age. This review will focus on the role of BDNF and val66met SNP in relation to stroke recovery and try to identify potential pathophysiologic mechanisms involved. The effects of age on val66met associated alterations in plasticity and potential consequences in terms of stroke are also discussed.
Collapse
Affiliation(s)
- Mustafa Balkaya
- Burke-Cornell Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA
| | - Sunghee Cho
- Burke-Cornell Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA.
| |
Collapse
|
16
|
Mammele S, Frauenknecht K, Sevimli S, Diederich K, Bauer H, Grimm C, Minnerup J, Schäbitz WR, Sommer CJ. Prevention of an increase in cortical ligand binding to AMPA receptors may represent a novel mechanism of endogenous brain protection by G-CSF after ischemic stroke. Restor Neurol Neurosci 2018; 34:665-75. [PMID: 26410211 DOI: 10.3233/rnn-150543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Using G-CSF deficient mice we recently demonstrated neuroprotective properties of endogenous G-CSF after ischemic stroke. The present follow-up study was designed to check, whether specific alterations in ligand binding densities of excitatory glutamate or inhibitory GABAA receptors may participate in this effect. METHODS Three groups of female mice were subjected to 45 minutes of MCAO: wildtype, G-CSF deficient and G-CSF deficient mice substituted with G-CSF. Infarct volumes were determined after 24 hours and quantitative in vitro receptor autoradiography was performed using [3H]MK-801, [3H]AMPA and [3H]muscimol for labeling of NMDA, AMPA and GABAA receptors, respectively. Ligand binding densities were analyzed in regions in the ischemic core, peri-infarct areas and corresponding contralateral regions. RESULTS Infarct volumes did not significantly differ between the experimental groups. Ligand binding densities of NMDA and GABAA receptors were widely in the same range. However, AMPA receptor binding densities in G-CSF deficient mice were substantially enhanced compared to wildtype mice. G-CSF substitution in mice lacking G-CSF largely reversed this effect. CONCLUSIONS Although infarct volumes did not differ 24 hours after ischemia the increase of AMPA receptor binding densities in G-CSF deficient mice may explain the bigger infarcts previously observed at later time-points with the same stroke model.
Collapse
Affiliation(s)
- Stefan Mammele
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Katrin Frauenknecht
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Sevgi Sevimli
- Department of Neurology, University of Münster, Germany
| | - Kai Diederich
- Department of Neurology, University of Münster, Germany
| | - Henrike Bauer
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Christina Grimm
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jens Minnerup
- Department of Neurology, University of Münster, Germany
| | - Wolf-Rüdiger Schäbitz
- Department of Neurology, University of Münster, Germany.,Neurology, Bethel, EVKB, Bielefeld, Germany
| | - Clemens J Sommer
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
17
|
Huang Q, Sun M, Li M, Zhang D, Han F, Wu JC, Fukunaga K, Chen Z, Qin ZH. Combination of NAD + and NADPH Offers Greater Neuroprotection in Ischemic Stroke Models by Relieving Metabolic Stress. Mol Neurobiol 2017; 55:6063-6075. [PMID: 29164394 DOI: 10.1007/s12035-017-0809-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
Both reduced nicotinamide adenine dinucleotide phosphate (NADPH) and β-nicotinamide adenine dinucleotide hydrate (NAD+) have been reported to have potent neuroprotective effects against ischemic neuronal injury. Both NADPH and NAD+ are essential cofactors for anti-oxidation and cellular energy metabolism. We investigated if combined NADPH and NAD+ could offer better neuroprotective effects on cellular and animal models of ischemic stroke. In vitro studies with primary cultured neurons demonstrated that NAD+ was effective in protecting neurons against oxygen-glucose deprivation/reoxygenation (OGD/R) injury when given during the early time period of reoxygenation. In vivo studies in mice also suggested that NAD+ was effective for ameliorating ischemic brain damage when administered within 2 h after reperfusion. The combination of NADPH and NAD+ provided not only greater beneficial effects but also larger therapeutic window in both cellular and animal models of stroke. The combination of NADPH and NAD+ significantly increased the levels of adenosine triphosphate (ATP) and reduced the levels of reactive oxygen species (ROS) and oxidative damage of macromolecules. Furthermore, the combined medication significantly reduced long-term mortality, improved the functional recovery, and inhibited signaling pathways involved in apoptosis and necroptosis after ischemic stroke. The present study indicates that the combination of NAD+ and NADPH can produce greater therapeutic effects with smaller dose of NADPH; on the other hand, NADPH can significantly prolong the therapeutic window of NAD+. The current results suggest that the combination of NADPH and NAD+ may provide a novel effective therapy for ischemic stroke.
Collapse
Affiliation(s)
- Qiao Huang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Meiling Sun
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China.,Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Mei Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Dingmei Zhang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Feng Han
- Institute of Toxicology and Biochemical Pharmaceutics, School of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
| | - Jun Chao Wu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Zhong Chen
- Institute of Pharmacology, School of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
18
|
Kim H, Kim MJ, Koo YS, Lee HI, Lee SW, Shin MJ, Kim SY, Shin YB, Shin YI, Choi BT, Yun YJ, Shin HK. Histological and functional assessment of the efficacy of constraint-induced movement therapy in rats following neonatal hypoxic-ischemic brain injury. Exp Ther Med 2017; 13:2775-2782. [PMID: 28587341 PMCID: PMC5450637 DOI: 10.3892/etm.2017.4371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/16/2017] [Indexed: 01/08/2023] Open
Abstract
Constraint-induced movement therapy (CIMT) is used in stroke rehabilitation to promote recovery of upper limb motor function. However, its efficacy in improving functional outcomes in children with hemiplegic cerebral palsy has not been clearly determined in clinical or experimental research. The aim of our study was to assess the efficacy of a new experimental model of CIMT, evaluated in terms of mortality, stress, motor and cognitive function in rats having undergone a neonatal hypoxic-ischemic (HI) brain injury. Neonatal HI injury was induced at post-natal day 7 through unilateral ligation of the common carotid artery followed by exposure to hypoxia for 2 h. CIMT was implemented at 3 weeks, post-HI injury, using a pouch to constrain the unimpaired forelimb and forcing use of the affected forelimb using a motorized treadmill. After HI injury, animals demonstrated motor and cognitive deficits, as well as volumetric decreases in the ipsilateral hemisphere to arterial occlusion. CIMT yielded a modest recovery of motor and cognitive function, with no effect in reducing the size of the HI lesion or post-HI volumetric decreases in brain tissue. Therefore, although animal models of stroke have identified benefits of CIMT, CIMT was not sufficient to enhance brain tissue development and functional outcomes in an animal model of hemiplegic cerebral palsy. Based on our outcomes, we suggest that CIMT can be used as an adjunct treatment to further enhance the efficacy of a program of rehabilitation in children with hemiplegic cerebral palsy.
Collapse
Affiliation(s)
- Hyunha Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea.,Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Min Jae Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea.,Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Young Soo Koo
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea.,Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Hae In Lee
- Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Sae-Won Lee
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea.,Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Myung Jun Shin
- Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Soo-Yeon Kim
- Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Yong Beom Shin
- Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Byung Tae Choi
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea.,Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea.,Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Young Ju Yun
- Department of Integrative Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea.,Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea.,Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| |
Collapse
|
19
|
Sommer CJ, Schäbitz WR. Fostering Poststroke Recovery. Stroke 2017; 48:1112-1119. [DOI: 10.1161/strokeaha.116.013324] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Clemens J. Sommer
- From the Institute of Neuropathology, Focus Program Translational Neuroscience (FTN) and Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany (C.J.S.); and Department of Neurology, Bethel, EVKB, University of Munster, Germany (W.-R.S.)
| | - Wolf-Rüdiger Schäbitz
- From the Institute of Neuropathology, Focus Program Translational Neuroscience (FTN) and Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany (C.J.S.); and Department of Neurology, Bethel, EVKB, University of Munster, Germany (W.-R.S.)
| |
Collapse
|
20
|
Qin YY, Li M, Feng X, Wang J, Cao L, Shen XK, Chen J, Sun M, Sheng R, Han F, Qin ZH. Combined NADPH and the NOX inhibitor apocynin provides greater anti-inflammatory and neuroprotective effects in a mouse model of stroke. Free Radic Biol Med 2017; 104:333-345. [PMID: 28132925 DOI: 10.1016/j.freeradbiomed.2017.01.034] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 01/22/2017] [Accepted: 01/25/2017] [Indexed: 01/23/2023]
Abstract
Our previous study has reported that the pentose phosphate pathway product nicotinamide adenine dinucleotide phosphate (NADPH) protected neurons against ischemia/reperfusion-induced brain injury. NADPH can either act as a co-enzyme to produce GSH or a substrate of NADPH oxidase (NOX) to generate ROS. This study was designed to elucidate the effects of co-treatment with NADPH and NOX inhibitor apocynin on ischemia/reperfusion-induced brain inflammation and neuronal injury. The results showed that both NADPH and apocynin markedly attenuated ischemia/reperfusion-induced increases in the levels of NOX2, NOX4 and ROS. NADPH and apocynin significantly inhibited the phosphorylation and degradation of IκBα, NF-κBp65 nuclear localization, and the expression of NF-κB target gene cyclooxygenase (COX2) and inducible nitric oxide synthase (iNOS). Furthermore, both NADPH and apocynin suppressed the expression of inflammasome proteins including NLRP3 ASC, caspase-1, interleukin (IL)-1β and IL-18 in the ischemic cortex as revealed by Western blot analysis and immunofluorescence. Moreover, all these effects were greatly amplified by combination of NADPH and apocynin. Both NADPH and apocynin significantly reduced infarct volume, improved post-stroke survival, and recovery of neurological functions in mouse model of stroke. Consistently, the combination of NADPH and apocynin produced greater beneficial effects in against ischemic brain damage. These studies suggest that, beyond anti-oxidative effects, NADPH may also have anti-inflammatory effects and combination of NADPH and NOX inhibitors could produce a greater neuroprotective effect in ischemic stroke.
Collapse
Affiliation(s)
- Yuan-Yuan Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Department of Pharmacy, Suzhou Hospital of Traditional Chinese Medicine, Suzhou 215009, Jiangsu Province, China
| | - Mei Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Xing Feng
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Lijuan Cao
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Xi-Kui Shen
- Department of Pharmacy, Suzhou Hospital of Traditional Chinese Medicine, Suzhou 215009, Jiangsu Province, China
| | - Jieyu Chen
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Meiling Sun
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Feng Han
- Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics, College of Pharmacy, Zhejiang University, Hangzhou 310058, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
21
|
Edwardson MA, Wang X, Liu B, Ding L, Lane CJ, Park C, Nelsen MA, Jones TA, Wolf SL, Winstein CJ, Dromerick AW. Stroke Lesions in a Large Upper Limb Rehabilitation Trial Cohort Rarely Match Lesions in Common Preclinical Models. Neurorehabil Neural Repair 2017; 31:509-520. [PMID: 28337932 DOI: 10.1177/1545968316688799] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Stroke patients with mild-moderate upper extremity motor impairments and minimal sensory and cognitive deficits provide a useful model to study recovery and improve rehabilitation. Laboratory-based investigators use lesioning techniques for similar goals. OBJECTIVE To determine whether stroke lesions in an upper extremity rehabilitation trial cohort match lesions from the preclinical stroke recovery models used to drive translational research. METHODS Clinical neuroimages from 297 participants enrolled in the Interdisciplinary Comprehensive Arm Rehabilitation Evaluation (ICARE) study were reviewed. Images were characterized based on lesion type (ischemic or hemorrhagic), volume, vascular territory, depth (cortical gray matter, cortical white matter, subcortical), old strokes, and leukoaraiosis. Lesions were compared with those of preclinical stroke models commonly used to study upper limb recovery. RESULTS Among the ischemic stroke participants, median infarct volume was 1.8 mL, with most lesions confined to subcortical structures (61%) including the anterior choroidal artery territory (30%) and the pons (23%). Of ICARE participants, <1% had lesions resembling proximal middle cerebral artery or surface vessel occlusion models. Preclinical models of subcortical white matter injury best resembled the ICARE population (33%). Intracranial hemorrhage participants had small (median 12.5 mL) lesions that best matched the capsular hematoma preclinical model. CONCLUSIONS ICARE subjects are not representative of all stroke patients, but they represent a clinically and scientifically important subgroup. Compared with lesions in general stroke populations and widely studied animal models of recovery, ICARE participants had smaller, more subcortically based strokes. Improved preclinical-clinical translational efforts may require better alignment of lesions between preclinical and human stroke recovery models.
Collapse
Affiliation(s)
- Matthew A Edwardson
- 1 Georgetown University, Washington, DC, USA.,2 MedStar National Rehabilitation Hospital, Washington, DC, USA
| | - Ximing Wang
- 3 University of Southern California, Los Angeles, CA, USA
| | - Brent Liu
- 3 University of Southern California, Los Angeles, CA, USA
| | - Li Ding
- 3 University of Southern California, Los Angeles, CA, USA
| | | | - Caron Park
- 3 University of Southern California, Los Angeles, CA, USA
| | | | | | - Steven L Wolf
- 5 Emory University, Atlanta, GA, USA.,6 VA Center on Visual and Neurocognitive Rehabilitation, Decatur, GA, USA
| | | | - Alexander W Dromerick
- 1 Georgetown University, Washington, DC, USA.,2 MedStar National Rehabilitation Hospital, Washington, DC, USA.,7 VA Medical Center, Washington, DC, USA
| |
Collapse
|
22
|
Xing Y, Wen CY, Li ST, Xia ZX. Non-viral liposome-mediated transfer of brain-derived neurotrophic factor across the blood-brain barrier. Neural Regen Res 2016; 11:617-22. [PMID: 27212923 PMCID: PMC4870919 DOI: 10.4103/1673-5374.180747] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in the repair of central nervous system injury, but cannot directly traverse the blood-brain barrier. Liposomes are a new type of non-viral vector, able to carry macromolecules across the blood-brain barrier and into the brain. Here, we investigate whether BDNF could be transported across the blood-brain barrier by tail-vein injection of liposomes conjugated to transferrin (Tf) and polyethylene glycol (PEG), and carrying BDNF modified with cytomegalovirus promoter (pCMV) or glial fibrillary acidic protein promoter (pGFAP) (Tf-pCMV-BDNF-PEG and Tf-pGFAP-BDNF-PEG, respectively). Both liposomes were able to traverse the blood-brain barrier, and BDNF was mainly expressed in the cerebral cortex. BDNF expression in the cerebral cortex was higher in the Tf-pGFAP-BDNF-PEG group than in the Tf-pCMV-BDNF-PEG group. This study demonstrates the successful construction of a non-virus targeted liposome, Tf-pGFAP-BDNF-PEG, which crosses the blood-brain barrier and is distributed in the cerebral cortex. Our work provides an experimental basis for BDNF-related targeted drug delivery in the brain.
Collapse
Affiliation(s)
- Ying Xing
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Chun-Yan Wen
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Song-Tao Li
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zong-Xin Xia
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China; Central Hospital of Baishan City, Baishan, Jilin Province, China
| |
Collapse
|
23
|
Alhusban A, Kozak A, Eldashan W, Ergul A, Fagan SC. Artery reopening is required for the neurorestorative effects of angiotensin modulation after experimental stroke. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2016; 8:4. [PMID: 27127602 PMCID: PMC4848811 DOI: 10.1186/s13231-016-0018-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/19/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND Blood flow restoration with fibrinolysis and thrombectomy is recommended to limit injury in stroke patients with proximal artery occlusion. Angiotensin receptor blockers have been shown to be neuroprotective in models of permanent and temporary occlusion, but the benefits on expression of trophic factors have been seen only when the artery is reopened. It is possible that early artery opening with endovascular intervention may increase the likelihood of identifying an effective combination therapy for patients. METHODS Normotensive male Wistar rats were subjected to mechanical middle cerebral artery occlusion (either temporary or permanent), followed by randomization to receive candesartan (0.3 mg/kg IV) or saline. Functional outcome, infarct size, and biochemical changes were assessed 24 h after ischemia induction. RESULTS Lack of reperfusion blunted candesartan induced neuroprotection (p < 0.05) and reduced the improvement of functional outcome (p < 0.05). With reperfusion, candesartan increased mature BDNF expression in the contralateral hemisphere (p < 0.05) and activated prosurvival (Akt-GSK3-β) signaling (p < 0.05). Without reperfusion, candesartan significantly reduced VEGF expression and MMP activation and increased NOGO A expression, creating an environment hostile to recovery. CONCLUSION Candesartan induced pro-recovery effects are dependent on the presence of reperfusion.
Collapse
Affiliation(s)
- Ahmed Alhusban
- Clinical Pharmacy Department, College of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110 Jordan
| | - Anna Kozak
- Charlie Norwood VA Medical Center, and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, and Georgia Regents University, Augusta, GA USA
| | - Wael Eldashan
- Charlie Norwood VA Medical Center, and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, and Georgia Regents University, Augusta, GA USA
| | - Adviye Ergul
- Charlie Norwood VA Medical Center, and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, and Georgia Regents University, Augusta, GA USA
| | - Susan C Fagan
- Charlie Norwood VA Medical Center, and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, and Georgia Regents University, Augusta, GA USA
| |
Collapse
|
24
|
Fouda AY, Alhusban A, Ishrat T, Pillai B, Eldahshan W, Waller JL, Ergul A, Fagan SC. Brain-Derived Neurotrophic Factor Knockdown Blocks the Angiogenic and Protective Effects of Angiotensin Modulation After Experimental Stroke. Mol Neurobiol 2016; 54:661-670. [PMID: 26758277 DOI: 10.1007/s12035-015-9675-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/18/2015] [Indexed: 01/02/2023]
Abstract
Angiotensin type 1 receptor blockers (ARBs) have been shown to be neuroprotective and neurorestorative in experimental stroke. The mechanisms proposed include anti-inflammatory, antiapoptotic effects, as well as stimulation of endogenous trophic factors leading to angiogenesis and neuroplasticity. We aimed to investigate the involvement of the neurotrophin, brain-derived neurotrophic factor (BDNF), in ARB-mediated functional recovery after stroke. To achieve this aim, Wistar rats received bilateral intracerebroventricular (ICV) injections of short hairpin RNA (shRNA) lentiviral particles or nontargeting control (NTC) vector, to knock down BDNF in both hemispheres. After 14 days, rats were subjected to 90-min middle cerebral artery occlusion (MCAO) and received the ARB, candesartan, 1 mg/kg, or saline IV at reperfusion (one dose), then followed for another 14 days using a battery of behavioral tests. BDNF protein expression was successfully reduced by about 70 % in both hemispheres at 14 days after bilateral shRNA lentiviral particle injection. The NTC group that received candesartan showed better functional outcome as well as increased vascular density and synaptogenesis as compared to saline treatment. BDNF knockdown abrogated the beneficial effects of candesartan on neurobehavioral outcome, vascular density, and synaptogenesis. In conclusion, BDNF is directly involved in candesartan-mediated functional recovery, angiogenesis, and synaptogenesis.
Collapse
Affiliation(s)
- Abdelrahman Y Fouda
- Charlie Norwood VA Medical Center and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA
| | - Ahmed Alhusban
- Jordan University of Science and Technology, College of Pharmacy, Irbid, Jordan
| | - Tauheed Ishrat
- Charlie Norwood VA Medical Center and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA
| | - Bindu Pillai
- Charlie Norwood VA Medical Center and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA
| | - Wael Eldahshan
- Charlie Norwood VA Medical Center and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA
| | | | - Adviye Ergul
- Charlie Norwood VA Medical Center and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA.,Department of Physiology, Augusta University, Augusta, GA, USA
| | - Susan C Fagan
- Charlie Norwood VA Medical Center and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA. .,Department of Neurology, Augusta University, Augusta, GA, USA.
| |
Collapse
|
25
|
Abstract
Over recent decades, experimental and clinical stroke studies have identified a number of neurorestorative treatments that stimulate neural plasticity and promote functional recovery. In contrast to the acute stroke treatments thrombolysis and endovascular thrombectomy, neurorestorative treatments are still effective when initiated days after stroke onset, which makes them applicable to virtually all stroke patients. In this article, selected physical, pharmacological and cell-based neurorestorative therapies are discussed, with special emphasis on interventions that have already been transferred from the laboratory to the clinical setting. We explain molecular and structural processes that promote neural plasticity, discuss potential limitations of neurorestorative treatments, and offer a speculative viewpoint on how neurorestorative treatments will evolve.
Collapse
Affiliation(s)
- Antje Schmidt
- a Department of Neurology , University of Münster , Münster , Germany
| | - Jens Minnerup
- a Department of Neurology , University of Münster , Münster , Germany
| |
Collapse
|
26
|
Li X, Zheng W, Bai H, Wang J, Wei R, Wen H, Ning H. Intravenous administration of adipose tissue-derived stem cells enhances nerve healing and promotes BDNF expression via the TrkB signaling in a rat stroke model. Neuropsychiatr Dis Treat 2016; 12:1287-93. [PMID: 27330296 PMCID: PMC4898436 DOI: 10.2147/ndt.s104917] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Previous studies have shown the beneficial effects of adipose-derived stem cells (ADSCs) transplantation in stroke. However, the molecular mechanism by which transplanted ADSCs promote nerve healing is not yet elucidated. In order to make clear the molecular mechanism for the neuroprotective effects of ADSCs and investigate roles of the BDNF-TrkB signaling in neuroprotection of ADSCs, we, therefore, examined the neurological function, brain water content, and the protein expression in middle cerebral artery occlusion (MCAO) rats with or without ADSCs transplantation. ADSCs were transplanted intravenously into rats at 30 minutes after MCAO. K252a, an inhibitor of TrkB, was administered into rats by intraventricular and brain stereotaxic injection. Modified neurological severity score tests were performed to measure behavioral outcomes. The results showed that ADSCs significantly alleviated neurological deficits and reduced brain water content in MCAO rats. The protein expression levels of BDNF and TrkB significantly increased in the cortex of MCAO rats with ADSCs treatment. However, K252a administration reversed the ADSCs-induced elevation of BDNF, TrkB, and Bcl-2 and reduction of Bax protein in MCAO rats. ADSCs promote BDNF expression via the TrkB signaling and improve functional neurological recovery in stroke rats.
Collapse
Affiliation(s)
- Xin Li
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Wei Zheng
- Department of Nursing, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Hongying Bai
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jin Wang
- Department of Digestive Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ruili Wei
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Hongtao Wen
- Department of Digestive Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Hanbing Ning
- Department of Digestive Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
27
|
Zeiler SR, Hubbard R, Gibson EM, Zheng T, Ng K, O'Brien R, Krakauer JW. Paradoxical Motor Recovery From a First Stroke After Induction of a Second Stroke: Reopening a Postischemic Sensitive Period. Neurorehabil Neural Repair 2015; 30:794-800. [PMID: 26721868 DOI: 10.1177/1545968315624783] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVE Prior studies have suggested that after stroke there is a time-limited period of increased responsiveness to training as a result of heightened plasticity-a sensitive period thought to be induced by ischemia itself. Using a mouse model, we have previously shown that most training-associated recovery after a caudal forelimb area (CFA) stroke occurs in the first week and is attributable to reorganization in a medial premotor area (AGm). The existence of a stroke-induced sensitive period leads to the counterintuitive prediction that a second stroke should reopen this window and promote full recovery from the first stroke. To test this prediction, we induced a second stroke in the AGm of mice with incomplete recovery after a first stroke in CFA. METHODS Mice were trained to perform a skilled prehension (reach-to-grasp) task to an asymptotic level of performance, after which they underwent photocoagulation-induced stroke in CFA. After a 7-day poststroke delay, the mice were then retrained to asymptote. We then induced a second stroke in the AGm, and after only a 1-day delay, retrained the mice. RESULTS Recovery of prehension was incomplete when training was started after a 7-day poststroke delay and continued for 19 days. However, a second focal stroke in the AGm led to a dramatic response to 9 days of training, with full recovery to normal levels of performance. CONCLUSIONS New ischemia can reopen a sensitive period of heightened responsiveness to training and mediate full recovery from a previous stroke.
Collapse
Affiliation(s)
| | | | | | - Tony Zheng
- Johns Hopkins University, Baltimore, MD, USA
| | | | | | | |
Collapse
|
28
|
Physical Exercise as a Diagnostic, Rehabilitation, and Preventive Tool: Influence on Neuroplasticity and Motor Recovery after Stroke. Neural Plast 2015; 2015:608581. [PMID: 26682073 PMCID: PMC4670869 DOI: 10.1155/2015/608581] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/03/2015] [Accepted: 06/18/2015] [Indexed: 01/19/2023] Open
Abstract
Stroke remains a leading cause of adult motor disabilities in the world and accounts for the greatest number of hospitalizations for neurological disease. Stroke treatments/therapies need to promote neuroplasticity to improve motor function. Physical exercise is considered as a major candidate for ultimately promoting neural plasticity and could be used for different purposes in human and animal experiments. First, acute exercise could be used as a diagnostic tool to understand new neural mechanisms underlying stroke physiopathology. Indeed, better knowledge of stroke mechanisms that affect movements is crucial for enhancing treatment/rehabilitation effectiveness. Secondly, it is well established that physical exercise training is advised as an effective rehabilitation tool. Indeed, it reduces inflammatory processes and apoptotic marker expression, promotes brain angiogenesis and expression of some growth factors, and improves the activation of affected muscles during exercise. Nevertheless, exercise training might also aggravate sensorimotor deficits and brain injury depending on the chosen exercise parameters. For the last few years, physical training has been combined with pharmacological treatments to accentuate and/or accelerate beneficial neural and motor effects. Finally, physical exercise might also be considered as a major nonpharmacological preventive strategy that provides neuroprotective effects reducing adverse effects of brain ischemia. Therefore, prestroke regular physical activity may also decrease the motor outcome severity of stroke.
Collapse
|
29
|
Ng KL, Gibson EM, Hubbard R, Yang J, Caffo B, O'Brien RJ, Krakauer JW, Zeiler SR. Fluoxetine Maintains a State of Heightened Responsiveness to Motor Training Early After Stroke in a Mouse Model. Stroke 2015; 46:2951-60. [PMID: 26294676 PMCID: PMC4934654 DOI: 10.1161/strokeaha.115.010471] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/16/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE Data from both humans and animal models suggest that most recovery from motor impairment after stroke occurs in a sensitive period that lasts only weeks and is mediated, in part, by an increased responsiveness to training. Here, we used a mouse model of focal cortical stroke to test 2 hypotheses. First, we investigated whether responsiveness to training decreases over time after stroke. Second, we tested whether fluoxetine, which can influence synaptic plasticity and stroke recovery, can prolong the period over which large training-related gains can be elicited after stroke. METHODS Mice were trained to perform a skilled prehension task to an asymptotic level of performance after which they underwent stroke induction in the caudal forelimb area. The mice were then retrained after a 1- or 7-day delay with and without fluoxetine. RESULTS Recovery of prehension after a caudal forelimb area stroke was complete if training was initiated 1 day after stroke but incomplete if it was delayed by 7 days. In contrast, if fluoxetine was administered at 24 hours after stroke, then complete recovery of prehension was observed even with the 7-day training delay. Fluoxetine seemed to mediate its beneficial effect by reducing inhibitory interneuron expression in intact premotor cortex rather than through effects on infarct volume or cell death. CONCLUSIONS There is a gradient of diminishing responsiveness to motor training over the first week after stroke. Fluoxetine can overcome this gradient and maintain maximal levels of responsiveness to training even 7 days after stroke.
Collapse
Affiliation(s)
- Kwan L Ng
- From the Departments of Neurology (K.L.N., E.M.G., R.H., J.W.K., S.R.Z.) and Neuroscience (J.W.K.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (J.Y., B.C.); and Department of Neurology, Duke University, Durham, NC (R.J.O.)
| | - Ellen M Gibson
- From the Departments of Neurology (K.L.N., E.M.G., R.H., J.W.K., S.R.Z.) and Neuroscience (J.W.K.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (J.Y., B.C.); and Department of Neurology, Duke University, Durham, NC (R.J.O.)
| | - Robert Hubbard
- From the Departments of Neurology (K.L.N., E.M.G., R.H., J.W.K., S.R.Z.) and Neuroscience (J.W.K.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (J.Y., B.C.); and Department of Neurology, Duke University, Durham, NC (R.J.O.)
| | - Juemin Yang
- From the Departments of Neurology (K.L.N., E.M.G., R.H., J.W.K., S.R.Z.) and Neuroscience (J.W.K.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (J.Y., B.C.); and Department of Neurology, Duke University, Durham, NC (R.J.O.)
| | - Brian Caffo
- From the Departments of Neurology (K.L.N., E.M.G., R.H., J.W.K., S.R.Z.) and Neuroscience (J.W.K.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (J.Y., B.C.); and Department of Neurology, Duke University, Durham, NC (R.J.O.)
| | - Richard J O'Brien
- From the Departments of Neurology (K.L.N., E.M.G., R.H., J.W.K., S.R.Z.) and Neuroscience (J.W.K.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (J.Y., B.C.); and Department of Neurology, Duke University, Durham, NC (R.J.O.)
| | - John W Krakauer
- From the Departments of Neurology (K.L.N., E.M.G., R.H., J.W.K., S.R.Z.) and Neuroscience (J.W.K.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (J.Y., B.C.); and Department of Neurology, Duke University, Durham, NC (R.J.O.)
| | - Steven R Zeiler
- From the Departments of Neurology (K.L.N., E.M.G., R.H., J.W.K., S.R.Z.) and Neuroscience (J.W.K.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (J.Y., B.C.); and Department of Neurology, Duke University, Durham, NC (R.J.O.).
| |
Collapse
|
30
|
Tovar-y-Romo LB, Penagos-Puig A, Ramírez-Jarquín JO. Endogenous recovery after brain damage: molecular mechanisms that balance neuronal life/death fate. J Neurochem 2015; 136:13-27. [PMID: 26376102 DOI: 10.1111/jnc.13362] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/27/2015] [Accepted: 08/25/2015] [Indexed: 01/08/2023]
Abstract
Neuronal survival depends on multiple factors that comprise a well-fueled energy metabolism, trophic input, clearance of toxic substances, appropriate redox environment, integrity of blood-brain barrier, suppression of programmed cell death pathways and cell cycle arrest. Disturbances of brain homeostasis lead to acute or chronic alterations that might ultimately cause neuronal death with consequent impairment of neurological function. Although we understand most of these processes well when they occur independently from one another, we still lack a clear grasp of the concerted cellular and molecular mechanisms activated upon neuronal damage that intervene in protecting damaged neurons from death. In this review, we summarize a handful of endogenously activated mechanisms that balance molecular cues so as to determine whether neurons recover from injury or die. We center our discussion on mechanisms that have been identified to participate in stroke, although we consider different scenarios of chronic neurodegeneration as well. We discuss two central processes that are involved in endogenous repair and that, when not regulated, could lead to tissue damage, namely, trophic support and neuroinflammation. We emphasize the need to construct integrated models of neuronal degeneration and survival that, in the end, converge in neuronal fate after injury. Under neurodegenerative conditions, endogenously activated mechanisms balance out molecular cues that determine whether neurons contend toxicity or die. Many processes involved in endogenous repair may as well lead to tissue damage depending on the strength of stimuli. Signaling mediated by trophic factors and neuroinflammation are examples of these processes as they regulate different mechanisms that mediate neuronal demise including necrosis, apoptosis, necroptosis, pyroptosis and autophagy. In this review, we discuss recent findings on balanced regulation and their involvement in neuronal death.
Collapse
Affiliation(s)
- Luis B Tovar-y-Romo
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F., México
| | - Andrés Penagos-Puig
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F., México
| | - Josué O Ramírez-Jarquín
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F., México
| |
Collapse
|
31
|
Ji XC, Dang YY, Gao HY, Wang ZT, Gao M, Yang Y, Zhang HT, Xu RX. Local Injection of Lenti-BDNF at the Lesion Site Promotes M2 Macrophage Polarization and Inhibits Inflammatory Response After Spinal Cord Injury in Mice. Cell Mol Neurobiol 2015; 35:881-90. [PMID: 25840805 DOI: 10.1007/s10571-015-0182-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/14/2015] [Indexed: 12/28/2022]
Abstract
There is much evidence to suggest that brain-derived neurotrophic factor (BDNF) is a prominent candidate in promoting neuroprotection, axonal regeneration, and synaptic plasticity following spinal cord injury (SCI). Although some evidence indicates that BDNF has potent anti-oxidative effects and may be involved in the regulation of the immune response, the effects of BDNF in the inflammatory response during the course of secondary damage after SCI is still unclear. The present study was designed to investigate the effects of BDNF with a special focus on their effect on macrophage polarization after SCI. Adult C57 mice underwent T10 spinal cord clip compression injury and received lenti-BDNF vector injections at the epicenter of the lesion site. Four days later, total BDNF levels were greatly increased in animals that received lenti-BDNF injections. Confocal imaging showed that more than 80 % of the lenti-virus infected cells were CD11b-positive macrophages. In addition, the expression of arginase-1 and CD206 (associated with M2 macrophage phenotype) significantly increased in the animals that received lenti-BDNF injections compared with those that received lenti-EGFP injections. On the contrary, the expression of CD16/32 and inducible nitric oxide synthase (M1 phenotype marker) was down-regulated as demonstrated using flow cytometry and immunohistochemistry. Furthermore, the production of interleukin 1β and tumor necrosis factor alpha was significantly reduced whereas the levels of interleukin 10 and interleukin 13 were elevated in subjects that received lenti-BDNF vector injections. The time course of functional recovery revealed that gradual recovery was observed in the subacute phase in lenti-BDNF group, little improvement was observed in lenti-EGFP group. At the axonal level, significant retraction of the CST axons were observed in lenti-EGFP injected animals relative to lenti-BDNF group by biotinylated dextran amine tracing. In addition, compared to lenti-BDNF group markedly demyelination was observed in the lenti-EGFP group using luxol fast blue staining. In conclusion, we found that BDNF could promote the shift of M1 to M2 phenotype and ameliorate the inflammatory microenvironment. Furthermore, the roles of BDNF in immunity modulation may enhance neuroprotective effects and partially contribute to the locomotor functional recovery after SCI.
Collapse
Affiliation(s)
- Xin-Chao Ji
- Graduate School, The Third Military Medical University, Chongqing, 400038, China,
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Neuroprotective role of an N-acetyl serotonin derivative via activation of tropomyosin-related kinase receptor B after subarachnoid hemorrhage in a rat model. Neurobiol Dis 2015; 78:126-33. [PMID: 25862938 DOI: 10.1016/j.nbd.2015.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/27/2014] [Accepted: 01/30/2015] [Indexed: 12/12/2022] Open
Abstract
N-[2-(5-hydroxy-1H-indol-3-yl) ethyl]-2-oxopiperidine-3-carboxamide (HIOC), an N-acetyl serotonin derivative, selectively activates tropomyosin-related kinase receptor B (TrkB). This study is to investigate a potential role of HIOC on ameliorating early brain injury after experimental subarachnoid hemorrhage (SAH). One hundred and fifty-six adult male Sprague-Dawley rats were used. SAH model was induced by endovascular perforation. TrkB small interfering RNA (siRNA) or scramble siRNA was injected intracerebroventricularly 24h before SAH. HIOC was administrated intracerebroventricularly 3h after SAH and compared with brain-derived neurotrophic factor (BDNF). SAH grade and neurologic scores were evaluated for the outcome study. For the mechanism study, the expression of TrkB, phosphorylated TrkB (p-TrkB), phosphorylated extracellular signal regulated kinase (p-ERK), B-cell lymphoma 2 (Bcl-2) and cleaved caspase 3 (CC3) was detected by Western blots, and neuronal injury was determined by double immunofluorescence staining of neuronal nuclei and terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling. Knocking down of TrkB decreased the expression of Bcl-2 and aggravated neurologic deficits 24h after SAH. HIOC activated TrkB/ERK pathway, decreased neuronal cell death, and improved neurobehavioral outcome, and these effects were abolished by TrkB siRNA. HIOC was more potent than BDNF in reduction of apoptosis 24h post-SAH. Thus, we conclude that administration of HIOC activated TrkB/ERK signaling cascade and attenuated early brain injury after SAH. HIOC may be a promising agent for further treatment for SAH and other stroke events.
Collapse
|
33
|
Alpha-linolenic acid: an omega-3 fatty acid with neuroprotective properties-ready for use in the stroke clinic? BIOMED RESEARCH INTERNATIONAL 2015; 2015:519830. [PMID: 25789320 PMCID: PMC4350958 DOI: 10.1155/2015/519830] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/08/2014] [Indexed: 01/29/2023]
Abstract
Alpha-linolenic acid (ALA) is plant-based essential omega-3 polyunsaturated fatty acids that must be obtained through the diet. This could explain in part why the severe deficiency in omega-3 intake pointed by numerous epidemiologic studies may increase the brain's vulnerability representing an important risk factor in the development and/or deterioration of certain cardio- and neuropathologies. The roles of ALA in neurological disorders remain unclear, especially in stroke that is a leading cause of death. We and others have identified ALA as a potential nutraceutical to protect the brain from stroke, characterized by its pleiotropic effects in neuroprotection, vasodilation of brain arteries, and neuroplasticity. This review highlights how chronic administration of ALA protects against rodent models of hypoxic-ischemic injury and exerts an anti-depressant-like activity, effects that likely involve multiple mechanisms in brain, and may be applied in stroke prevention. One major effect may be through an increase in mature brain-derived neurotrophic factor (BDNF), a widely expressed protein in brain that plays critical roles in neuronal maintenance, and learning and memory. Understanding the precise roles of ALA in neurological disorders will provide the underpinnings for the development of new therapies for patients and families who could be devastated by these disorders.
Collapse
|
34
|
Qu H, Zhao M, Zhao S, Xiao T, Song C, Cao Y, Jolkkonen J, Zhao C. Forced limb-use enhanced neurogenesis and behavioral recovery after stroke in the aged rats. Neuroscience 2015; 286:316-24. [DOI: 10.1016/j.neuroscience.2014.11.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/21/2014] [Accepted: 11/10/2014] [Indexed: 11/25/2022]
|
35
|
DENG HOULIANG, ZUO XIALIN, ZHANG JINGJING, LIU XIAOXIA, LIU LI, XU QIAN, WU ZHUOMIN, JI AIMIN. α-lipoic acid protects against cerebral ischemia/reperfusion-induced injury in rats. Mol Med Rep 2015; 11:3659-65. [DOI: 10.3892/mmr.2015.3170] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 10/01/2014] [Indexed: 11/05/2022] Open
|
36
|
Diederich K, Schmidt A, Beuker C, Strecker JK, Wagner DC, Boltze J, Schäbitz WR, Minnerup J. Granulocyte colony-stimulating factor (G-CSF) treatment in combination with transplantation of bone marrow cells is not superior to G-CSF treatment alone after cortical stroke in spontaneously hypertensive rats. Front Cell Neurosci 2014; 8:411. [PMID: 25538562 PMCID: PMC4255603 DOI: 10.3389/fncel.2014.00411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/12/2014] [Indexed: 12/02/2022] Open
Abstract
Granulocyte-colony stimulating factor (G-CSF) and bone marrow derived mononuclear cells (BM-MNCs) have both been shown to improve functional outcome following experimental stroke. These effects are associated with increased angiogenesis and neurogenesis. In the present study, we aimed to determine synergistic effects of G-CSF and BM-NMC treatment on long-term structural and functional recovery after photothrombotic stroke. To model the etiology of stroke more closely, we used spontaneously hypertensive (SH) rats in our experiment. Bone marrow derived mononuclear cells transplantation was initiated 1 h after the onset of photothrombotic stroke. Repeated G-CSF treatment commenced immediately after BM-MNC treatment followed by daily injections for five consecutive days. The primary endpoint was functional outcome after ischemia. Secondary endpoints included analysis of neurogenesis and angiogenesis as well as determination of infarct size. Granulocyte-colony stimulating factor treated rats, either in combination with BM-MNC or alone showed improved somatosensory but not gross motor function following ischemia. No beneficial effect of BM-MNC monotherapy was found. Infarct volumes were comparable in all groups. In contrast to previous studies, which used healthy animals, post-stroke neurogenesis and angiogenesis were not enhanced by G-CSF. In conclusion, the combination of G-CSF and BM-MNC was not more effective than G-CSF alone. The reduced efficacy of G-CSF treatment and the absence of any beneficial effect of BM-MNC transplantation might be attributed to hypertension-related morbidity.
Collapse
Affiliation(s)
- Kai Diederich
- Department of Neurology, University of Münster Münster, Germany
| | - Antje Schmidt
- Department of Neurology, University of Münster Münster, Germany
| | - Carolin Beuker
- Department of Neurology, University of Münster Münster, Germany
| | | | - Daniel-Christoph Wagner
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Translational Center for Regenerative Medicine, University of Leipzig Leipzig, Germany
| | - Johannes Boltze
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Translational Center for Regenerative Medicine, University of Leipzig Leipzig, Germany
| | | | - Jens Minnerup
- Department of Neurology, University of Münster Münster, Germany
| |
Collapse
|
37
|
Gadd45b Mediates Axonal Plasticity and Subsequent Functional Recovery After Experimental Stroke in Rats. Mol Neurobiol 2014; 52:1245-1256. [DOI: 10.1007/s12035-014-8909-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/28/2014] [Indexed: 01/25/2023]
|
38
|
Berretta A, Tzeng YC, Clarkson AN. Post-stroke recovery: the role of activity-dependent release of brain-derived neurotrophic factor. Expert Rev Neurother 2014; 14:1335-44. [DOI: 10.1586/14737175.2014.969242] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Abstract
TP53-induced glycolysis and apoptosis regulator (TIGAR) inhibits glycolysis and increases the flow of pentose phosphate pathway (PPP), which generates NADPH and pentose. We hypothesized that TIGAR plays a neuroprotective role in brain ischemia as neurons do not rely on glycolysis but are vulnerable to oxidative stress. We found that TIGAR was highly expressed in brain neurons and was rapidly upregulated in response to ischemia/reperfusion insult in a TP53-independent manner. Overexpression of TIGAR in normal mice with lentivirus reduced ischemic neuronal injury, whereas lentivirus-mediated TIGAR knockdown aggravated it. In cultured primary neurons, increasing TIGAR expression reduced oxygen and glucose deprivation (OGD)/reoxygenation-induced injury, whereas decreasing its expression worsened the injury. The glucose 6-phosphate dehydrogenase was upregulated in mouse and cellular models of stroke, and its upregulation was further enhanced by overexpression of TIGAR. Supplementation of NADPH also reduced ischemia/reperfusion brain injury and alleviated TIGAR knockdown-induced aggravation of ischemic injury. In animal and cellular stroke models, ischemia/reperfusion increased mitochondrial localization of TIGAR. OGD/reoxygenation-induced elevation of ROS, reduction of GSH, dysfunction of mitochondria, and activation of caspase-3 were rescued by overexpression of TIGAR or supplementation of NADPH, while knockdown of TIGAR aggravated these changes. Together, our results show that TIGAR protects ischemic brain injury via enhancing PPP flux and preserving mitochondria function, and thus may be a valuable therapeutic target for ischemic brain injury.
Collapse
|
40
|
Umschweif G, Shabashov D, Alexandrovich AG, Trembovler V, Horowitz M, Shohami E. Neuroprotection after traumatic brain injury in heat-acclimated mice involves induced neurogenesis and activation of angiotensin receptor type 2 signaling. J Cereb Blood Flow Metab 2014; 34:1381-90. [PMID: 24849663 PMCID: PMC4126099 DOI: 10.1038/jcbfm.2014.93] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/23/2014] [Accepted: 04/30/2014] [Indexed: 12/18/2022]
Abstract
Long-term exposure of mice to mild heat (34°C±1°C) confers neuroprotection against traumatic brain injury (TBI); however, the underling mechanisms are not fully understood. Heat acclimation (HA) increases hypothalamic angiotensin II receptor type 2 (AT2) expression and hypothalamic neurogenesis. Accumulating data suggest that activation of the brain AT2 receptor confers protection against several types of brain pathologies, including ischemia, a hallmark of the secondary injury occurring following TBI. As AT2 activates the same pro-survival pathways involved in HA-mediated neuroprotection (e.g., Akt phosphorylation, hypoxia-inducible factor 1α (HIF-1α), and brain-derived neurotrophic factor (BDNF)), we examined the role of AT2 in HA-mediated neuroprotection after TBI. Using an AT2-specific antagonist PD123319, we found that the improvements in motor and cognitive recovery as well as reduced lesion volume and neurogenesis seen in HA mice were all diminished by AT2 inhibition, whereas no significant alternations were observed in control mice. We also found that nerve growth factor/tropomyosin-related kinase receptor A (TrkA), BDNF/TrkB, and HIF-1α pathways are upregulated by HA and inhibited on PD123319 administration, suggesting that these pathways play a role in AT2 signaling in HA mice. In conclusion, AT2 is involved in HA-mediated neuroprotection, and AT2 activation may be protective and should be considered a novel drug target in the treatment of TBI patients.
Collapse
Affiliation(s)
- Gali Umschweif
- 1] Department of Pharmacology, School of Pharmacy, Institute of Drug Research, Jerusalem, Israel [2] Laboratory of Environmental Physiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dalia Shabashov
- Department of Pharmacology, School of Pharmacy, Institute of Drug Research, Jerusalem, Israel
| | | | - Victoria Trembovler
- Department of Pharmacology, School of Pharmacy, Institute of Drug Research, Jerusalem, Israel
| | - Michal Horowitz
- Laboratory of Environmental Physiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Esther Shohami
- Department of Pharmacology, School of Pharmacy, Institute of Drug Research, Jerusalem, Israel
| |
Collapse
|
41
|
Madinier A, Quattromani MJ, Sjölund C, Ruscher K, Wieloch T. Enriched housing enhances recovery of limb placement ability and reduces aggrecan-containing perineuronal nets in the rat somatosensory cortex after experimental stroke. PLoS One 2014; 9:e93121. [PMID: 24664200 PMCID: PMC3963994 DOI: 10.1371/journal.pone.0093121] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/28/2014] [Indexed: 12/23/2022] Open
Abstract
Stroke causes life long disabilities where few therapeutic options are available. Using electrical and magnetic stimulation of the brain and physical rehabilitation, recovery of brain function can be enhanced even late after stroke. Animal models support this notion, and housing rodents in an enriched environment (EE) several days after experimental stroke stimulates lost brain function by multisensory mechanisms. We studied the dynamics of functional recovery of rats with a lesion to the fore and hind limb motor areas induced by photothrombosis (PT), and with subsequent housing in either standard (STD) or EE. In this model, skilled motor function is not significantly enhanced by enriched housing, while the speed of recovery of sensori-motor function substantially improves over the 9-week study period. In particular, this stroke lesion completely obliterates the fore and hind limb placing ability when visual and whisker guidance is prevented, a deficit that persists for up to 9 weeks of recovery, but that is markedly restored within 2 weeks by enriched housing. Enriched housing after stroke also leads to a significant loss of perineuronal net (PNN) immunoreactivity; detection of aggrecan protein backbone with AB1031 antibody was decreased by 13–22%, and labelling of a glycan moiety of aggrecan with Cat-315 antibody was reduced by 25–30% in the peri-infarct area and in the somatosensory cortex, respectively. The majority of these cells are parvalbumin/GABA inhibitory interneurons that are important in sensori-information processing. We conclude that damage to the fore and hind limb motor areas provides a model of loss of limb placing response without visual guidance, a deficit also seen in more than 50% of stroke patients. This loss is amenable to recovery induced by multiple sensory stimulation and correlates with a decrease in aggrecan-containing PNNs around inhibitory interneurons. Modulating the PNN structure after ischemic damage may provide new therapies enhancing tactile/proprioceptive function after stroke.
Collapse
Affiliation(s)
- Alexandre Madinier
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Miriana Jlenia Quattromani
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Carin Sjölund
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Tadeusz Wieloch
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
42
|
Schneider A, Rogalewski A, Wafzig O, Kirsch F, Gretz N, Krüger C, Diederich K, Pitzer C, Laage R, Plaas C, Vogt G, Minnerup J, Schäbitz WR. Forced arm use is superior to voluntary training for motor recovery and brain plasticity after cortical ischemia in rats. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2014; 6:3. [PMID: 24528872 PMCID: PMC3937028 DOI: 10.1186/2040-7378-6-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 01/26/2014] [Indexed: 12/24/2022]
Abstract
Background and purpose Both the immobilization of the unaffected arm combined with physical therapy (forced arm use, FAU) and voluntary exercise (VE) as model for enriched environment are promising approaches to enhance recovery after stroke. The genomic mechanisms involved in long-term plasticity changes after different means of rehabilitative training post-stroke are largely unexplored. The present investigation explored the effects of these physical therapies on behavioral recovery and molecular markers of regeneration after experimental ischemia. Methods 42 Wistar rats were randomly treated with either forced arm use (FAU, 1-sleeve plaster cast onto unaffected limb at 8/10 days), voluntary exercise (VE, connection of a freely accessible running wheel to cage), or controls with no access to a running wheel for 10 days starting at 48 hours after photothrombotic stroke of the sensorimotor cortex. Functional outcome was measured using sensorimotor test before ischemia, after ischemia, after the training period of 10 days, at 3 and 4 weeks after ischemia. Global gene expression changes were assessed from the ipsi- and contralateral cortex and the hippocampus. Results FAU-treated animals demonstrated significantly improved functional recovery compared to the VE-treated group. Both were superior to cage control. A large number of genes are altered by both training paradigms in the ipsi- and contralateral cortex and the hippocampus. Overall, the extent of changes observed correlated well with the functional recovery obtained. One category of genes overrepresented in the gene set is linked to neuronal plasticity processes, containing marker genes such as the NMDA 2a receptor, PKC ζ, NTRK2, or MAP 1b. Conclusions We show that physical training after photothrombotic stroke significantly and permanently improves functional recovery after stroke, and that forced arm training is clearly superior to voluntary running training. The behavioral outcomes seen correlate with patterns and extent of gene expression changes in all brain areas examined. We propose that physical training induces a fundamental change in plasticity-relevant gene expression in several brain regions that enables recovery processes. These results contribute to the debate on optimal rehabilitation strategies, and provide a valuable source of molecular entry points for future pharmacological enhancement of recovery.
Collapse
Affiliation(s)
| | - Andreas Rogalewski
- Neurology Department Bethel EVKB Bielefeld and Dept. of Neurology, University of Muenster, Muenster, Germany
| | | | | | - Norbert Gretz
- Ctr. for Med. Res., Fac. for Clin. Medicine, University of Heidelberg, Mannheim, Germany
| | | | - Kai Diederich
- Neurology Department Bethel EVKB Bielefeld and Dept. of Neurology, University of Muenster, Muenster, Germany
| | | | | | | | | | - Jens Minnerup
- Neurology Department Bethel EVKB Bielefeld and Dept. of Neurology, University of Muenster, Muenster, Germany
| | - Wolf-Rüdiger Schäbitz
- Neurology Department Bethel EVKB Bielefeld and Dept. of Neurology, University of Muenster, Muenster, Germany
| |
Collapse
|
43
|
Schmidt A, Wellmann J, Schilling M, Strecker JK, Sommer C, Schäbitz WR, Diederich K, Minnerup J. Meta-analysis of the Efficacy of Different Training Strategies in Animal Models of Ischemic Stroke. Stroke 2014; 45:239-47. [DOI: 10.1161/strokeaha.113.002048] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Antje Schmidt
- From the Department of Neurology (A.S., M.S., J.-K.S., K.D., J.M.) and Institute of Epidemiology and Social Medicine (J.W.), University of Münster, Münster, Germany; Department of Neuropathology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany (C.S.); and Department of Neurology, Bethel-EvKB, Bielefeld, Germany (W.-R.S.)
| | - Jürgen Wellmann
- From the Department of Neurology (A.S., M.S., J.-K.S., K.D., J.M.) and Institute of Epidemiology and Social Medicine (J.W.), University of Münster, Münster, Germany; Department of Neuropathology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany (C.S.); and Department of Neurology, Bethel-EvKB, Bielefeld, Germany (W.-R.S.)
| | - Matthias Schilling
- From the Department of Neurology (A.S., M.S., J.-K.S., K.D., J.M.) and Institute of Epidemiology and Social Medicine (J.W.), University of Münster, Münster, Germany; Department of Neuropathology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany (C.S.); and Department of Neurology, Bethel-EvKB, Bielefeld, Germany (W.-R.S.)
| | - Jan-Kolja Strecker
- From the Department of Neurology (A.S., M.S., J.-K.S., K.D., J.M.) and Institute of Epidemiology and Social Medicine (J.W.), University of Münster, Münster, Germany; Department of Neuropathology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany (C.S.); and Department of Neurology, Bethel-EvKB, Bielefeld, Germany (W.-R.S.)
| | - Clemens Sommer
- From the Department of Neurology (A.S., M.S., J.-K.S., K.D., J.M.) and Institute of Epidemiology and Social Medicine (J.W.), University of Münster, Münster, Germany; Department of Neuropathology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany (C.S.); and Department of Neurology, Bethel-EvKB, Bielefeld, Germany (W.-R.S.)
| | - Wolf-Rüdiger Schäbitz
- From the Department of Neurology (A.S., M.S., J.-K.S., K.D., J.M.) and Institute of Epidemiology and Social Medicine (J.W.), University of Münster, Münster, Germany; Department of Neuropathology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany (C.S.); and Department of Neurology, Bethel-EvKB, Bielefeld, Germany (W.-R.S.)
| | - Kai Diederich
- From the Department of Neurology (A.S., M.S., J.-K.S., K.D., J.M.) and Institute of Epidemiology and Social Medicine (J.W.), University of Münster, Münster, Germany; Department of Neuropathology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany (C.S.); and Department of Neurology, Bethel-EvKB, Bielefeld, Germany (W.-R.S.)
| | - Jens Minnerup
- From the Department of Neurology (A.S., M.S., J.-K.S., K.D., J.M.) and Institute of Epidemiology and Social Medicine (J.W.), University of Münster, Münster, Germany; Department of Neuropathology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany (C.S.); and Department of Neurology, Bethel-EvKB, Bielefeld, Germany (W.-R.S.)
| |
Collapse
|
44
|
Livingston-Thomas JM, McGuire EP, Doucette TA, Tasker RA. Voluntary forced use of the impaired limb following stroke facilitates functional recovery in the rat. Behav Brain Res 2013; 261:210-9. [PMID: 24388978 DOI: 10.1016/j.bbr.2013.12.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/29/2013] [Accepted: 12/11/2013] [Indexed: 12/22/2022]
Abstract
Constraint induced movement therapy (CIMT), which forces use of the impaired arm following stroke, improves functional recovery. The mechanisms underlying recovery are not well understood, necessitating further investigation into how rehabilitation may affect neuroplasticity using animal models. Animal motivation and stress make modelling CIMT in animals challenging. We have shown that following focal ischemia, voluntary forced use therapy using pet activity balls could engage the impaired forelimb and result in a modest acceleration in recovery. In this study, we investigated the effects of a more intensive appetitively motivated regimen that included task specific reaching exercises. Adult male Sprague Dawley rats were subjected to focal unilateral stroke using intracerebral injections of endothelin-1 or sham surgery. Three days later, stroke animals were assigned to daily rehabilitation or control therapy. Rehabilitation consisted of 30 min of generalized movement sessions in activity balls, followed by 30 min of voluntary task-specific movement using reaching boxes. Rats were tested weekly to measure forelimb deficit and recovery. After 30 days, animals were euthanized and tissue was examined for infarct volume, brain derived neurotrophic factor expression, and the presence of new neurons using doublecortin immunohistochemistry. Rehabilitation resulted in a significant acceleration of forelimb recovery in several tests, and a significant increase in the number of doublecortin-expressing cells. Furthermore, while the proportion of cells expressing BDNF in the peri-infarct region did not change, there was a shift in the cellular origin of expressed BDNF, resulting in significantly more non-neuronal, non-astrocytic BDNF, presumed to be of microglial origin.
Collapse
Affiliation(s)
- Jessica M Livingston-Thomas
- Departments of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI, C1A4P3, Canada
| | - Emily P McGuire
- Departments of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI, C1A4P3, Canada
| | - Tracy A Doucette
- Departments of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI, C1A4P3, Canada
| | - R Andrew Tasker
- Departments of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI, C1A4P3, Canada.
| |
Collapse
|
45
|
Frauenknecht K, Katzav A, Grimm C, Chapman J, Sommer CJ. Altered receptor binding densities in experimental antiphospholipid syndrome despite only moderately enhanced autoantibody levels and absence of behavioral features. Immunobiology 2013; 219:341-9. [PMID: 24332889 DOI: 10.1016/j.imbio.2013.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 12/27/2022]
Abstract
Experimental antiphospholipid syndrome (eAPS) in Balb/c mice causes neuropsychiatric abnormalities including hyperactivity, increased explorative behavior and cognitive deficits. Recently, we have demonstrated that these behavioral changes were linked to an upregulation of serotonergic 5-HT1A receptor binding densities in cortical and hippocampal regions while excitatory and inhibitory neurotransmitter receptors remain largely unchanged. To examine whether the observed behavioral features depend on a critical antibody concentration, mice with only moderately enhanced antiphospholipid antibodies (aPL), about 50-80% of high levels, were analyzed and compared to controls. The staircase test was used to test animals for hyperactivity and explorative behavior. The brains were analyzed for tissue integrity and inflammation. Ligand binding densities of NMDA, AMPA, GABAA, 5-HT1A, M1 and M2 muscarinic acetylcholine receptors, respectively, were analyzed by in vitro receptor autoradiography and compared to brains of mice from our previous study with high levels of aPL. Mice with only moderately enhanced aPL did not develop significant behavioral changes. Brain parenchyma remained intact and neither inflammation nor glial activation was detectable. However, there was a significant decrease of NMDA receptor binding densities in the motor cortex as well as an increase in M1 binding densities in cortical and hippocampal regions, whereas the other receptors analyzed were not altered. Lack of neuropsychiatric symptoms may be due to modulations of receptors resulting in normal behavior. In conclusion, our results support the hypothesis that high levels of aPL are required for the manifestation of neuropsychiatric involvement while at lower antibody levels compensatory mechanisms may preserve normal behavior.
Collapse
Affiliation(s)
- Katrin Frauenknecht
- Department of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| | - Aviva Katzav
- Department of Neurology, Chaim Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, 52621 Tel Hashomer, Israel
| | - Christina Grimm
- Department of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Joab Chapman
- Department of Neurology, Chaim Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, 52621 Tel Hashomer, Israel
| | - Clemens J Sommer
- Department of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
46
|
Zhao SS, Zhao Y, Xiao T, Zhao M, Jolkkonen J, Zhao CS. Increased neurogenesis contributes to the promoted behavioral recovery by constraint-induced movement therapy after stroke in adult rats. CNS Neurosci Ther 2013; 19:194-6. [PMID: 23441692 DOI: 10.1111/cns.12058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/21/2012] [Accepted: 12/23/2012] [Indexed: 11/30/2022] Open
|
47
|
Adams HP, Nudo RJ. Management of patients with stroke: is it time to expand treatment options? Ann Neurol 2013; 74:4-10. [PMID: 23720339 PMCID: PMC3962816 DOI: 10.1002/ana.23948] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/14/2013] [Accepted: 05/17/2013] [Indexed: 12/21/2022]
Abstract
Approximately 700,000 people in the United States have an ischemic stroke annually. Substantial research has tested therapies for the very early treatment of ischemic stroke but, to date, only intravenous thrombolysis and intra-arterial measures to restore perfusion have shown success. Despite a 15-year effort to increase the use of these therapies, only approximately 5% of patients with stroke are currently being treated. Although most patients with stroke have some neurological recovery, more than half of stroke survivors have residual impairments that lead to disability or long-term institutionalized care. Laboratory research has demonstrated several mechanisms that help the brain to recover after a stroke. New pharmacological and cell-based approaches that are known to promote brain plasticity are emerging from laboratory studies and may soon expand the window for stroke treatment to restore function. It is time to build on this knowledge and to translate the understanding of recovery after stroke into the clinical setting. Measures that might augment recovery should become a major focus of clinical research in stroke in the 21st century.
Collapse
Affiliation(s)
- Harold P. Adams
- Division of Cerebrovascular Diseases, Department of Neurology, UIHC Stroke Center, University of Iowa, Iowa City, Iowa
| | - Randolph J. Nudo
- Landon Center on Aging and Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
48
|
Noninvasive strategies to promote functional recovery after stroke. Neural Plast 2013; 2013:854597. [PMID: 23864962 PMCID: PMC3707231 DOI: 10.1155/2013/854597] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/02/2013] [Indexed: 01/17/2023] Open
Abstract
Stroke is a common and disabling global health-care problem, which is the third most common cause of death and one of the main causes of acquired adult disability in many countries. Rehabilitation interventions are a major component of patient care. In the last few years, brain stimulation, mirror therapy, action observation, or mental practice with motor imagery has emerged as interesting options as add-on interventions to standard physical therapies. The neural bases for poststroke recovery rely on the concept of plasticity, namely, the ability of central nervous system cells to modify their structure and function in response to external stimuli. In this review, we will discuss recent noninvasive strategies employed to enhance functional recovery in stroke patients and we will provide an overview of neural plastic events associated with rehabilitation in preclinical models of stroke.
Collapse
|
49
|
Zhao S, Zhao M, Xiao T, Jolkkonen J, Zhao C. Constraint-Induced Movement Therapy Overcomes the Intrinsic Axonal Growth–Inhibitory Signals in Stroke Rats. Stroke 2013; 44:1698-705. [PMID: 23632976 DOI: 10.1161/strokeaha.111.000361] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background and Purpose—
Constraint-induced movement therapy (CIMT) improves functional outcome in patients with stroke possibly through structural plasticity. We hypothesized that CIMT could enhance axonal growth by overcoming the intrinsic growth–inhibitory signals, leading eventually to improved behavioral performance in stroke rats.
Methods—
Focal cerebral ischemia was induced by intracerebral injection of endothelin-1. Adult Wistar rats were divided into a sham-operated group, an ischemic group, and an ischemic group treated with CIMT. CIMT started at postoperative day 7 and continued for 3 weeks. Biotinylated dextran amine was injected into the contralateral sensorimotor cortex at postoperative day 14 to trace crossing axons at the cervical spinal cord. The expressions of Nogo-A, Nogo receptor, RhoA, and Rho-associated kinase in the peri-infarct cortex, and the expressions of biotinylated dextran amine, growth associated protein-43, synaptophysin, vGlut1, and postsynaptic density-95 in the denervated spinal cord were measured by immunohistochemistry and Western blots. Behavioral recovery was analyzed at postoperative days 29 to 32.
Results—
Infarct volumes were not different between groups after stroke. CIMT significantly increased the length and the number of midline crossings of contralateral corticospinal axons to the denervated cervical spinal cord. CIMT significantly decreased the expressions of Nogo-A/Nogo receptor and RhoA/Rho-associated kinase in the peri-infarct cortex, and increased the expressions of growth associated protein-43, synaptophysin, vGlut1, and postsynaptic density-95 in the denervated cervical spinal cord. Behavioral performances assessed by the beam-walking test and the water maze test were improved significantly by CIMT.
Conclusions—
CIMT promoted poststroke synaptic plasticity and axonal growth at least partially by overcoming the intrinsic growth–inhibitory signaling, leading to improved behavioral outcome.
Collapse
Affiliation(s)
- Shanshan Zhao
- From the Department of Neurology (S.Z., C.Z.), and Department of Dermatology (T.X.), The First Hospital of China Medical University, Shenyang, Liaoning, PR China; Department of Cardiology, Shengjing hospital of China Medical University, Shenyang, Liaoning, PR China (M.Z.); Key Laboratory of Immunodermatology, Ministry of Health, Ministry of Education, Shenyang, Liaoning, PR China (T.X.); and Institute of Clinical Medicine–Neurology, University of Eastern Finland, Kuopio, Finland (J.J.)
| | - Mei Zhao
- From the Department of Neurology (S.Z., C.Z.), and Department of Dermatology (T.X.), The First Hospital of China Medical University, Shenyang, Liaoning, PR China; Department of Cardiology, Shengjing hospital of China Medical University, Shenyang, Liaoning, PR China (M.Z.); Key Laboratory of Immunodermatology, Ministry of Health, Ministry of Education, Shenyang, Liaoning, PR China (T.X.); and Institute of Clinical Medicine–Neurology, University of Eastern Finland, Kuopio, Finland (J.J.)
| | - Ting Xiao
- From the Department of Neurology (S.Z., C.Z.), and Department of Dermatology (T.X.), The First Hospital of China Medical University, Shenyang, Liaoning, PR China; Department of Cardiology, Shengjing hospital of China Medical University, Shenyang, Liaoning, PR China (M.Z.); Key Laboratory of Immunodermatology, Ministry of Health, Ministry of Education, Shenyang, Liaoning, PR China (T.X.); and Institute of Clinical Medicine–Neurology, University of Eastern Finland, Kuopio, Finland (J.J.)
| | - Jukka Jolkkonen
- From the Department of Neurology (S.Z., C.Z.), and Department of Dermatology (T.X.), The First Hospital of China Medical University, Shenyang, Liaoning, PR China; Department of Cardiology, Shengjing hospital of China Medical University, Shenyang, Liaoning, PR China (M.Z.); Key Laboratory of Immunodermatology, Ministry of Health, Ministry of Education, Shenyang, Liaoning, PR China (T.X.); and Institute of Clinical Medicine–Neurology, University of Eastern Finland, Kuopio, Finland (J.J.)
| | - Chuansheng Zhao
- From the Department of Neurology (S.Z., C.Z.), and Department of Dermatology (T.X.), The First Hospital of China Medical University, Shenyang, Liaoning, PR China; Department of Cardiology, Shengjing hospital of China Medical University, Shenyang, Liaoning, PR China (M.Z.); Key Laboratory of Immunodermatology, Ministry of Health, Ministry of Education, Shenyang, Liaoning, PR China (T.X.); and Institute of Clinical Medicine–Neurology, University of Eastern Finland, Kuopio, Finland (J.J.)
| |
Collapse
|
50
|
BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci 2013; 14:401-16. [PMID: 23674053 DOI: 10.1038/nrn3505] [Citation(s) in RCA: 550] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing evidence suggests that synaptic dysfunction is a key pathophysiological hallmark in neurodegenerative disorders, including Alzheimer's disease. Understanding the role of brain-derived neurotrophic factor (BDNF) in synaptic plasticity and synaptogenesis, the impact of the BDNF Val66Met polymorphism in Alzheimer's disease-relevant endophenotypes - including episodic memory and hippocampal volume - and the technological progress in measuring synaptic changes in humans all pave the way for a 'synaptic repair' therapy for neurodegenerative diseases that targets pathophysiology rather than pathogenesis. This article reviews the key issues in translating BDNF biology into synaptic repair therapies.
Collapse
|