1
|
Correa-Paz C, Pérez-Mato M, Bellemain-Sagnard M, González-Domínguez M, Marie P, Pérez-Gayol L, López-Arias E, del Pozo-Filíu L, López-Amoedo S, Bugallo-Casal A, Alonso-Alonso ML, Candamo-Lourido M, Santamaría-Cadavid M, Arias-Rivas S, Rodríguez-Yañez M, Iglesias-Rey R, Castillo J, Vivien D, Rubio M, Campos F. Pharmacological preclinical comparison of tenecteplase and alteplase for the treatment of acute stroke. J Cereb Blood Flow Metab 2024; 44:1306-1318. [PMID: 38436292 PMCID: PMC11342720 DOI: 10.1177/0271678x241237427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
Alteplase (rtPA) remains the standard thrombolytic drug for acute ischemic stroke. However, new rtPA-derived molecules, such as tenecteplase (TNK), with prolonged half-lives following a single bolus administration, have been developed. Although TNK is currently under clinical evaluation, the limited preclinical data highlight the need for additional studies to elucidate its benefits. The toxicities of rtPA and TNK were evaluated in endothelial cells, astrocytes, and neuronal cells. In addition, their in vivo efficacy was independently assessed at two research centers using an ischemic thromboembolic mouse model. Both therapies were tested via early (20 and 30 min) and late administration (4 and 4.5 h) after stroke. rtPA, but not TNK, caused cell death only in neuronal cultures. Mice were less sensitive to thrombolytic therapies than humans, requiring doses 10-fold higher than the established clinical dose. A single bolus dose of 2.5 mg/kg TNK led to an infarct reduction similar to perfusion with 10 mg/kg of rtPA. Early administration of TNK decreased the hemorrhagic transformations compared to that by the early administration of rtPA; however, this result was not obtained following late administration. These two independent preclinical studies support the use of TNK as a promising reperfusion alternative to rtPA.
Collapse
Affiliation(s)
- Clara Correa-Paz
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - María Pérez-Mato
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mathys Bellemain-Sagnard
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Marco González-Domínguez
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - Pauline Marie
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Lara Pérez-Gayol
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - Esteban López-Arias
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - Lucia del Pozo-Filíu
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - Sonia López-Amoedo
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - Ana Bugallo-Casal
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - María Luz Alonso-Alonso
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - María Candamo-Lourido
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - María Santamaría-Cadavid
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, A Coruña, Spain
| | - Susana Arias-Rivas
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, A Coruña, Spain
| | - Manuel Rodríguez-Yañez
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, A Coruña, Spain
| | - Ramón Iglesias-Rey
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- Department of Clinical Research, Caen Normandie University Hospital, Caen, France
| | - Marina Rubio
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Francisco Campos
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| |
Collapse
|
2
|
Franx B, Dijkhuizen RM, Dippel DWJ. Acute Ischemic Stroke in the Clinic and the Laboratory: Targets for Translational Research. Neuroscience 2024; 550:114-124. [PMID: 38670254 DOI: 10.1016/j.neuroscience.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Ischemic stroke research has enabled significant advancements in diagnosis, treatment, and management of this debilitating disease, yet challenges remain standing in the way of better patient prognoses. In this narrative review, a fictional case illustrates challenges and uncertainties that medical professionals still face - penumbra identification, lack of neuroprotective agents, side-effects of tissue plasminogen activator, dearth of molecular biomarkers, incomplete microvascular reperfusion or no-reflow, post-recanalization hyperperfusion, blood pressure management and procedural anesthetic effects. The current state of the field is broadly reviewed per topic, with the aim to introduce a broad audience (scientist and clinician alike) to recent successes in translational stroke research and pending scientific queries that are tractable for preclinical assessment. Opportunities for co-operation between clinical and experimental stroke experts are highlighted to increase the size and frequency of strides the field makes to improve our understanding of this disease and ways of treating it.
Collapse
Affiliation(s)
- Bart Franx
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Rick M Dijkhuizen
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Diederik W J Dippel
- Stroke Center, Dept of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
3
|
Rashedi S, Greason CM, Sadeghipour P, Talasaz AH, O'Donoghue ML, Jimenez D, Monreal M, Anderson CD, Elkind MSV, Kreuziger LMB, Lang IM, Goldhaber SZ, Konstantinides SV, Piazza G, Krumholz HM, Braunwald E, Bikdeli B. Fibrinolytic Agents in Thromboembolic Diseases: Historical Perspectives and Approved Indications. Semin Thromb Hemost 2024; 50:773-789. [PMID: 38428841 DOI: 10.1055/s-0044-1781451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Fibrinolytic agents catalyze the conversion of the inactive proenzyme plasminogen into the active protease plasmin, degrading fibrin within the thrombus and recanalizing occluded vessels. The history of these medications dates to the discovery of the first fibrinolytic compound, streptokinase, from bacterial cultures in 1933. Over time, researchers identified two other plasminogen activators in human samples, namely urokinase and tissue plasminogen activator (tPA). Subsequently, tPA was cloned using recombinant DNA methods to produce alteplase. Several additional derivatives of tPA, such as tenecteplase and reteplase, were developed to extend the plasma half-life of tPA. Over the past decades, fibrinolytic medications have been widely used to manage patients with venous and arterial thromboembolic events. Currently, alteplase is approved by the U.S. Food and Drug Administration (FDA) for use in patients with pulmonary embolism with hemodynamic compromise, ST-segment elevation myocardial infarction (STEMI), acute ischemic stroke, and central venous access device occlusion. Reteplase and tenecteplase have also received FDA approval for treating patients with STEMI. This review provides an overview of the historical background related to fibrinolytic agents and briefly summarizes their approved indications across various thromboembolic diseases.
Collapse
Affiliation(s)
- Sina Rashedi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Christie M Greason
- Thrombosis Research Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Parham Sadeghipour
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Clinical Trial Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azita H Talasaz
- Department of Pharmacotherapy and Outcomes Sciences, Virginia Commonwealth University, Richmond, Virginia
- Department of Pharmacy Practice, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, New York, New York
- Department of Pharmacy, New York-Presbyterian Hospital Columbia University Medical Center, New York, New York
| | - Michelle L O'Donoghue
- Division of Cardiovascular Medicine, TIMI Study Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - David Jimenez
- Respiratory Department, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
- Medicine Department, Universidad de Alcalá (IRYCIS), Madrid, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Manuel Monreal
- Department of Internal Medicine, Hospital Germans Trias i Pujol, Badalona, Spain
- Universidad Catolica de Murcia, Murcia, Spain
| | - Christopher D Anderson
- Program in Medical and Population Genetics, Broad Institute of Harvard and the Massachusetts Institute of Technology, Boston, Massachusetts
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, Massachusetts
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Mitchell S V Elkind
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Lisa M Baumann Kreuziger
- Medical College of Wisconsin, Milwaukee, Wisconsin
- Blood Research Institute, Versiti, Milwaukee, Wisconsin
| | - Irene M Lang
- Department of Internal Medicine II, Cardiology and Center of Cardiovascular Medicine, Medical University of Vienna, Vienna, Austria
| | - Samuel Z Goldhaber
- Thrombosis Research Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stavros V Konstantinides
- Center for Thrombosis and Haemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Department of Cardiology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Gregory Piazza
- Thrombosis Research Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Harlan M Krumholz
- YNHH/Yale Center for Outcomes Research and Evaluation (CORE), New Haven, Connecticut
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, Connecticut
- Department of Health Policy and Management, Yale School of Public Health, New Haven, Connecticut
| | - Eugene Braunwald
- Division of Cardiovascular Medicine, TIMI Study Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Behnood Bikdeli
- Thrombosis Research Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- YNHH/Yale Center for Outcomes Research and Evaluation (CORE), New Haven, Connecticut
| |
Collapse
|
4
|
Marè A, Lorenzut S, Janes F, Gentile C, Marinig R, Tereshko Y, Gigli GL, Valente M, Merlino G. Comparison of pharmacokinetic properties of alteplase and tenecteplase. The future of thrombolysis in acute ischemic stroke. Expert Opin Drug Metab Toxicol 2024; 20:25-36. [PMID: 38275111 DOI: 10.1080/17425255.2024.2311168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024]
Abstract
INTRODUCTION The drug most frequently used for thrombolysis in cases of acute ischemic stroke (AIS) is alteplase. However, there is moderate-to-high-quality evidence that tenecteplase has similar or higher efficacy and safety. With improved pharmacokinetic properties over alteplase, tenecteplase could be a significant advantage in treating AIS. AREAS COVERED After conducting an extensive search on Scopus and PubMed, this manuscript reviews and compares the pharmacokinetic properties of alteplase and tenecteplase. Additionally, it provides information on pharmacodynamics, clinical efficacy, safety, tolerability, and drug-drug interactions. EXPERT OPINION The pharmacokinetic profile of alteplase and tenecteplase is derived from studies in patients with acute myocardial infarction. Thanks to its pharmacokinetic properties, tenecteplase is the drug closest to being the ideal fibrinolytic for AIS. Its longer half-life enables a single-bolus administration, which is particularly useful in emergencies. Tenecteplase has proven to have a good efficacy and safety profile in randomized clinical trials. Although we are awaiting the results of the ongoing phase 3 randomized clinical trials, we believe that tenecteplase has the potential to revolutionize the treatment of AIS through thrombolysis.
Collapse
Affiliation(s)
- Alessandro Marè
- Clinical Neurology, Department of Head, Neck and Neurosciences, Udine University Hospital, Udine, Italy
| | - Simone Lorenzut
- Stroke Unit, Department of Head, Neck and Neurosciences, Udine University Hospital, Udine, Italy
| | - Francesco Janes
- Clinical Neurology, Department of Head, Neck and Neurosciences, Udine University Hospital, Udine, Italy
- Stroke Unit, Department of Head, Neck and Neurosciences, Udine University Hospital, Udine, Italy
| | - Carolina Gentile
- Stroke Unit, Department of Head, Neck and Neurosciences, Udine University Hospital, Udine, Italy
| | - Roberto Marinig
- Stroke Unit, Department of Head, Neck and Neurosciences, Udine University Hospital, Udine, Italy
| | - Yan Tereshko
- Clinical Neurology, Department of Head, Neck and Neurosciences, Udine University Hospital, Udine, Italy
| | | | - Mariarosaria Valente
- Clinical Neurology, Department of Head, Neck and Neurosciences, Udine University Hospital, Udine, Italy
- DAME, University of Udine, Udine, Italy
| | - Giovanni Merlino
- Clinical Neurology, Department of Head, Neck and Neurosciences, Udine University Hospital, Udine, Italy
- Stroke Unit, Department of Head, Neck and Neurosciences, Udine University Hospital, Udine, Italy
| |
Collapse
|
5
|
Soldozy S, Dalzell C, Skaff A, Ali Y, Norat P, Yagmurlu K, Park MS, Kalani MYS. Reperfusion injury in acute ischemic stroke: Tackling the irony of revascularization. Clin Neurol Neurosurg 2023; 225:107574. [PMID: 36696846 DOI: 10.1016/j.clineuro.2022.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023]
Abstract
Reperfusion injury is an unfortunate consequence of restoring blood flow to tissue after a period of ischemia. This phenomenon can occur in any organ, although it has been best studied in cardiac cells. Based on cardiovascular studies, neuroprotective strategies have been developed. The molecular biology of reperfusion injury remains to be fully elucidated involving several mechanisms, however these mechanisms all converge on a similar final common pathway: blood brain barrier disruption. This results in an inflammatory cascade that ultimately leads to a loss of cerebral autoregulation and clinical worsening. In this article, the authors present an overview of these mechanisms and the current strategies being employed to minimize injury after restoration of blood flow to compromised cerebral territories.
Collapse
Affiliation(s)
- Sauson Soldozy
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA; Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
| | - Christina Dalzell
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Anthony Skaff
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Yusuf Ali
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Pedro Norat
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Kaan Yagmurlu
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Min S Park
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - M Yashar S Kalani
- Department of Surgery, University of Oklahoma, and St. John's Neuroscience Institute, Tulsa, OK, USA.
| |
Collapse
|
6
|
Kolahchi Z, Rahimian N, Momtazmanesh S, Hamidianjahromi A, Shahjouei S, Mowla A. Direct Mechanical Thrombectomy Versus Prior Bridging Intravenous Thrombolysis in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010185. [PMID: 36676135 PMCID: PMC9863165 DOI: 10.3390/life13010185] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/15/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND The current guideline recommends using an intravenous tissue-type plasminogen activator (IV tPA) prior to mechanical thrombectomy (MT) in eligible acute ischemic stroke (AIS) with emergent large vessel occlusion (ELVO). Some recent studies found no significant differences in the long-term functional outcomes between bridging therapy (BT, i.e., IV tPA prior to MT) and direct MT (dMT). METHODS We conducted a systematic review and meta-analysis to compare the safety and functional outcomes between BT and dMT in AIS patients with ELVO who were eligible for IV tPA administration. Based on the ELVO location, patients were categorized as the anterior group (occlusion of the anterior circulation), or the combined group (occlusion of the anterior and/or posterior circulation). A subgroup analysis was performed based on the study type, i.e., RCT and non-RCT. RESULTS Thirteen studies (3985 patients) matched the eligibility criteria. Comparing the BT and dMT groups, no significant differences in terms of mortality and good functional outcome were observed at 90 days. Symptomatic intracranial hemorrhagic (sICH) events were more frequent in BT patients in the combined group (OR = 0.73, p = 0.02); this result remained significant only in the non-RCT subgroup (OR = 0.67, p = 0.03). The RCT subgroup had a significantly higher rate of successful revascularization in BT patients (OR = 0.73, p = 0.02). CONCLUSIONS Our meta-analysis uncovered no significant differences in functional outcome and mortality rate at 90 days between dMT and BT in patients with AIS who had ELVO. Although BT performed better in terms of successful recanalization rate, there is a risk of increased sICH rate in this group.
Collapse
Affiliation(s)
- Zahra Kolahchi
- School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Nasrin Rahimian
- Department of Neurology, Creighton University Medical Center, Omaha, NE 68124, USA
| | - Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Anahid Hamidianjahromi
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shima Shahjouei
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Ashkan Mowla
- Division of Stroke and Endovascular Neurosurgery, Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Correspondence: ; Tel.: +323-409-7422; Fax: +323-226-7833
| |
Collapse
|
7
|
Zhao H, Wang M, Huang X, Wu X, Xiao H, Jin F, Lv J, Cheng J, Zhao Y, Zhang C. Wasp venom from Vespa magnifica acts as a neuroprotective agent to alleviate neuronal damage after stroke in rats. PHARMACEUTICAL BIOLOGY 2022; 60:334-346. [PMID: 35171059 PMCID: PMC8863380 DOI: 10.1080/13880209.2022.2032207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/24/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
CONTEXT Acute ischaemic stroke (AIS) is a major cause of disability and death, which is a serious threat to human health and life. Wasp venom extracted from Vespa magnifica Smith (Vespidae) could treat major neurological disorders. OBJECTIVE This study investigated the effects of wasp venom on AIS in rats. MATERIAL AND METHODS We used a transient middle cerebral artery occlusion (MCAO) model in Sprague-Dawley rats (260-280 g, n = 8-15) with a sham operation group being treated as negative control. MCAO rats were treated with wasp venom (0.05, 0.2 and 0.6 mg/kg, i.p.) using intraperitoneal injection. After treatment 48 h, behavioural tests, cortical blood flow (CBF), TTC staining, H&E staining, Nissl staining, TUNEL assay, immunohistochemistry (IHC) and ELISA were employed to investigate neuroprotective effects of wasp venom. RESULTS Compared with the MCAO group, wasp venom (0.6 mg/kg) improved neurological impairment, accelerated CBF recovery (205.6 ± 52.92 versus 216.7 ± 34.56), reduced infarct volume (337.1 ± 113.2 versus 140.7 ± 98.03) as well as BBB permeability as evidenced by changes in claudin-5 and AQP4. In addition, function recovery of stroke by wasp venom treatment was associated with a decrease in TNF-α, IL-1β, IL-6 and inhibition activated microglia as well as apoptosis. Simultaneously, the wasp venom regulated the angiogenesis factors VEGF and b-FGF in the brain. CONCLUSIONS Wasp venom exhibited a potential neuroprotective effect for AIS. In the future, we will focus on determining whether the observed actions were due to a single compound or the interaction of multiple components of the venom.
Collapse
Affiliation(s)
- Hairong Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, PR China
- School of Medicine, Xiamen University, Xiamen, PR China
| | - Mei Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, PR China
| | - Xi Huang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, PR China
| | - Xiumei Wu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, PR China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Huai Xiao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, PR China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Fanmao Jin
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, PR China
| | - Jiaming Lv
- School of Medicine, Xiamen University, Xiamen, PR China
| | - Jidong Cheng
- School of Medicine, Xiamen University, Xiamen, PR China
| | - Yu Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, PR China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, PR China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| |
Collapse
|
8
|
Pintér P, Alpár A. The Role of Extracellular Matrix in Human Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms231911085. [PMID: 36232390 PMCID: PMC9569603 DOI: 10.3390/ijms231911085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The dense neuropil of the central nervous system leaves only limited space for extracellular substances free. The advent of immunohistochemistry, soon followed by advanced diagnostic tools, enabled us to explore the biochemical heterogeneity and compartmentalization of the brain extracellular matrix in exploratory and clinical research alike. The composition of the extracellular matrix is critical to shape neuronal function; changes in its assembly trigger or reflect brain/spinal cord malfunction. In this study, we focus on extracellular matrix changes in neurodegenerative disorders. We summarize its phenotypic appearance and biochemical characteristics, as well as the major enzymes which regulate and remodel matrix establishment in disease. The specifically built basement membrane of the central nervous system, perineuronal nets and perisynaptic axonal coats can protect neurons from toxic agents, and biochemical analysis revealed how the individual glycosaminoglycan and proteoglycan components interact with these molecules. Depending on the site, type and progress of the disease, select matrix components can either proactively trigger the formation of disease-specific harmful products, or reactively accumulate, likely to reduce tissue breakdown and neuronal loss. We review the diagnostic use and the increasing importance of medical screening of extracellular matrix components, especially enzymes, which informs us about disease status and, better yet, allows us to forecast illness.
Collapse
Affiliation(s)
- Panka Pintér
- Department of Anatomy, Semmelweis University, 1113 Budapest, Hungary
| | - Alán Alpár
- Department of Anatomy, Semmelweis University, 1113 Budapest, Hungary
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, 1051 Budapest, Hungary
- Correspondence:
| |
Collapse
|
9
|
|
10
|
Correa-Paz C, Navarro Poupard MF, Polo E, Rodríguez-Pérez M, Migliavacca M, Iglesias-Rey R, Ouro A, Maqueda E, Hervella P, Sobrino T, Castillo J, del Pino P, Pelaz B, Campos F. Sonosensitive capsules for brain thrombolysis increase ischemic damage in a stroke model. J Nanobiotechnology 2022; 20:46. [PMID: 35062954 PMCID: PMC8780814 DOI: 10.1186/s12951-022-01252-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/08/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Ischemic stroke is the most common cerebrovascular disease and is caused by interruption of blood supply to the brain. To date, recombinant tissue plasminogen activator (rtPA) has been the main pharmacological treatment in the acute phase. However, this treatment has some drawbacks, such as a short half-life, low reperfusion rate, risk of hemorrhagic transformations, and neurotoxic effects. To overcome the limitations of rtPA and improve its effectiveness, we recently designed sonosensitive sub-micrometric capsules (SCs) loaded with rtPA with a size of approximately 600 nm, synthesized using the layer-by-layer (LbL) technique, and coated with gelatine for clot targeting. In this study, we evaluated the rtPA release of ultrasound (US)-responsive SCs in healthy mice and the therapeutic effect in a thromboembolic stroke model.
Results
In healthy mice, SCs loaded with rtPA 1 mg/kg responded properly to external US exposure, extending the half-life of the drug in the blood stream more than the group treated with free rtPA solution. The gelatine coating also contributed to stabilizing the encapsulation and maintaining the response to US. When the same particles were administered in the stroke model, these SCs appeared to aggregate in the ischemic brain region, probably generating secondary embolisms and limiting the thrombolytic effect of rtPA. Despite the promising results of these thrombolytic particles, at least under the dose and size conditions used in this study, the administration of these capsules represents a risk factor for stroke.
Conclusions
This is the first study to report the aggregation risk of a drug carrier in neurological pathologies such as stroke. Biocompatibility analysis related to the use of nano-and microparticles should be deeply studied to anticipate the limitations and orientate the design of new nanoparticles for translation to humans.
Graphical Abstract
Collapse
|
11
|
PSD-95: An Effective Target for Stroke Therapy Using Neuroprotective Peptides. Int J Mol Sci 2021; 22:ijms222212585. [PMID: 34830481 PMCID: PMC8618101 DOI: 10.3390/ijms222212585] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Therapies for stroke have remained elusive in the past despite the great relevance of this pathology. However, recent results have provided strong evidence that postsynaptic density protein-95 (PSD-95) can be exploited as an efficient target for stroke neuroprotection by strategies able to counteract excitotoxicity, a major mechanism of neuronal death after ischemic stroke. This scaffold protein is key to the maintenance of a complex framework of protein interactions established at the postsynaptic density (PSD) of excitatory neurons, relevant to neuronal function and survival. Using cell penetrating peptides (CPPs) as therapeutic tools, two different approaches have been devised and advanced to different levels of clinical development. First, nerinetide (Phase 3) and AVLX-144 (Phase 1) were designed to interfere with the coupling of the ternary complex formed by PSD-95 with GluN2B subunits of the N-methyl-D-aspartate type of glutamate receptors (NMDARs) and neuronal nitric oxide synthase (nNOS). These peptides reduced neurotoxicity derived from NMDAR overactivation, decreased infarct volume and improved neurobehavioral results in different models of ischemic stroke. However, an important caveat to this approach was PSD-95 processing by calpain, a pathological mechanism specifically induced by excitotoxicity that results in a profound alteration of survival signaling. Thus, a third peptide (TP95414) has been recently developed to interfere with PSD-95 cleavage and reduce neuronal death, which also improves neurological outcome in a preclinical mouse model of permanent ischemia. Here, we review recent advancements in the development and characterization of PSD-95-targeted CPPs and propose the combination of these two approaches to improve treatment of stroke and other excitotoxicity-associated disorders.
Collapse
|
12
|
Demel SL, Stanton R, Aziz YN, Adeoye O, Khatri P. Reflection on the Past, Present, and Future of Thrombolytic Therapy for Acute Ischemic Stroke. Neurology 2021; 97:S170-S177. [PMID: 34785615 DOI: 10.1212/wnl.0000000000012806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 05/26/2021] [Indexed: 11/15/2022] Open
Abstract
More than 25 years have passed since the US Food and Drug Administration approved IV recombinant tissue plasminogen activator (alteplase) for the treatment of acute ischemic stroke. This landmark decision brought a previously untreatable disease into a new therapeutic landscape, providing inspiration for clinicians and hope to patients. Since that time, the use of alteplase in the clinical setting has become standard of care, continually improving with quality measures such as door-to-needle times and other metrics of specialized stroke unit care. The past decade has seen more widespread use of alteplase in the prehospital setting with mobile stroke units and telestroke and beyond initial time windows via the use of CT perfusion or MRI. Simultaneously, the position of alteplase is being challenged by new lytics and by the concept of its bypass altogether in the era of endovascular therapy. We provide an overview of alteplase, including its earliest trials and how they have shaped the current therapeutic landscape of ischemic stroke treatment, and touch on new frontiers for thrombolytic therapy. We highlight the critical role of thrombolytic therapy in the past, present, and future of ischemic stroke care.
Collapse
Affiliation(s)
- Stacie L Demel
- From the Department of Neurology (S.L.D., R.S., Y.N.A., P.K.), University of Cincinnati, OH; and Department of Emergency Medicine (O.A.), Washington University, St. Louis, MO.
| | - Robert Stanton
- From the Department of Neurology (S.L.D., R.S., Y.N.A., P.K.), University of Cincinnati, OH; and Department of Emergency Medicine (O.A.), Washington University, St. Louis, MO
| | - Yasmin N Aziz
- From the Department of Neurology (S.L.D., R.S., Y.N.A., P.K.), University of Cincinnati, OH; and Department of Emergency Medicine (O.A.), Washington University, St. Louis, MO
| | - Opeolu Adeoye
- From the Department of Neurology (S.L.D., R.S., Y.N.A., P.K.), University of Cincinnati, OH; and Department of Emergency Medicine (O.A.), Washington University, St. Louis, MO
| | - Pooja Khatri
- From the Department of Neurology (S.L.D., R.S., Y.N.A., P.K.), University of Cincinnati, OH; and Department of Emergency Medicine (O.A.), Washington University, St. Louis, MO
| |
Collapse
|
13
|
Safouris A, Magoufis G, Tsivgoulis G. Emerging agents for the treatment and prevention of stroke: progress in clinical trials. Expert Opin Investig Drugs 2021; 30:1025-1035. [PMID: 34555978 DOI: 10.1080/13543784.2021.1985463] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Recent years have witnessed unprecedented progress in stroke care, but unmet needs persist regarding the efficacy of acute treatment and secondary prevention. Novel approaches are being tested to enhance the efficacy of thrombolysis or provide neuroprotection in non-thrombolized patients. AREAS COVERED The current review highlights pharmaceutical agents under evaluation in clinical trials concerning the acute, subacute, and chronic phase post-stroke. We examine the evidence in favor of tenecteplase as an alternative thrombolytic drug to alteplase, nerinetide as a promising neuroprotective agent, and glibenclamide for reducing edema in malignant hemispheric infarction. We discuss the use of ticagrelor and the promising novel category of factor XI inhibitors in the subacute phase after stroke. We offer our insights on combined rivaroxaban and antiplatelet therapy, PCSK-9 inhibitors, and other non-statin hypolipidemic agents, as well as novel antidiabetic agents that have been shown to reduce cardiovascular events in the long-term. EXPERT OPINION Current approaches in stroke treatment and stroke prevention have already transformed stroke care from a linear one-for-all treatment paradigm to a more individualized approach that targets specific patient subgroups with novel pharmaceutical agents. This tendency enriches the therapeutic armamentarium with novel agents developed for specific stroke subgroups. ABBREVIATIONS IVT: intravenous thrombolysis; RCTs: randomized-controlled clinical trials; TNK: Tenecteplase; COVID-19: Coronavirus 2019 Disease; EXTEND-IA TNK: The Tenecteplase versus Alteplase Before Endovascular Therapy for Ischemic Stroke trial; AIS: acute ischemic stroke; NNT: number needed to treat; MT: mechanical thrombectomy; sICH: symptomatic intracranial hemorrhage; mRS: modified Rankin Scale; AHA/ASA: American Heart Association/American Stroke Association; ESO: European Stroke Organization; NA-1: Nerinetide; ENACT: Evaluating Neuroprotection in Aneurysm Coiling Therapy; CTA: CT angiography; TIA: transient ischemic attack; CHANCE: Clopidogrel in High-risk patients with Acute Non-disabling Cerebrovascular Events; LOF: loss-of-function; PRINCE: Platelet Reactivity in Acute Nondisabling Cerebrovascular Events; THALES: Acute Stroke or Transient Ischemic Attack Treated with Ticagrelor and ASA [acetylsalicylic acid] for Prevention of Stroke and Death; CHANCE-2: Clopidogrel With Aspirin in High-risk Patients With Acute Non-disabling Cerebrovascular Events II; FXI: Factor XI; PACIFIC-STROKE: Program of Anticoagulation via Inhibition of FXIa by the Oral Compound BAY 2433334-NonCardioembolic Stroke study; COMPASS: Cardiovascular Outcomes for People Using Anticoagulation Strategies; CANTOS-ICAD: Combination Antithrombotic Treatment for Prevention of Recurrent Ischemic Stroke in Intracranial Atherosclerotic Disease; SAMMPRIS: Stenting and Aggressive Medical Therapy for Preventing Recurrent Stroke in Intracranial Stenosis; WASID: Warfarin-Aspirin Symptomatic Intracranial Disease; SPARCL: Stroke Prevention by Aggressive Reduction in Cholesterol Levels; LDL-C: low-density lipoprotein cholesterol; TST: Treat Stroke to Target; IMPROVE-IT: Improved Reduction of Outcomes: Vytorin Efficacy International Trial; PCSK9: proprotein convertase subtilisin-kexin type 9; FOURIER: Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk; CLEAR: Cholesterol Lowering via Bempedoic acid, an ACL-inhibiting Regimen; REDUCE-IT: Reduction of Cardiovascular Events With EPA Intervention Trial; STRENGTH: Outcomes Study to Assess STatin Residual Risk Reduction With EpaNova in HiGh CV Risk PatienTs With Hypertriglyceridemia; ACCORD: Action to Control Cardiovascular Risk in Diabetes; ADVANCE: Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation; VADT: Veterans Affairs Diabetes Trial; GLP-1R: Glucagon-like peptide-1 receptor; SGLT2: sodium-glucose cotransporter 2; CONVINCE: COlchicine for preventioN of Vascular Inflammation in Non-CardioEmbolic stroke; PROBE: Prospective Randomized Open-label Blinded Endpoint assessment.
Collapse
Affiliation(s)
- Apostolos Safouris
- Stroke Unit, Metropolitan Hospital, Piraeus, Greece.,Second Department of Neurology, National & Kapodistrian University of Athens, School of Medicine, "Attikon" University Hospital, Athens, Greece
| | | | - Georgios Tsivgoulis
- Second Department of Neurology, National & Kapodistrian University of Athens, School of Medicine, "Attikon" University Hospital, Athens, Greece.,Department of Neurology, The University of Tennessee Health Science Center, Memphis, USA
| |
Collapse
|
14
|
Mayor-Nunez D, Ji Z, Sun X, Teves L, Garman JD, Tymianski M. Plasmin-resistant PSD-95 inhibitors resolve effect-modifying drug-drug interactions between alteplase and nerinetide in acute stroke. Sci Transl Med 2021; 13:13/588/eabb1498. [PMID: 33827973 DOI: 10.1126/scitranslmed.abb1498] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 10/12/2020] [Accepted: 01/14/2021] [Indexed: 01/10/2023]
Abstract
Neuroprotection for acute ischemic stroke is achievable with the eicosapeptide nerinetide, an inhibitor of the protein-protein interactions of the synaptic scaffolding protein PSD-95. However, nerinetide is subject to proteolytic cleavage if administered after alteplase, a standard-of-care thrombolytic agent that nullifies nerinetide's beneficial effects. Here, we showed, on the basis of pharmacokinetic data consistent between rats, primates, and humans, that in a rat model of embolic middle cerebral artery occlusion (eMCAO), nerinetide maintained its effectiveness when administered before alteplase. Because of its short plasma half-life, it can be followed by alteplase within minutes without reducing its neuroprotective effectiveness. In addition, the problem of protease sensitivity is solved by substituting cleavage-prone amino acids from their l- to their d-enantiomeric form. Treatment of rats subjected to eMCAO with such an agent, termed d-Tat-l-2B9c, eliminated protease sensitivity and maintained neuroprotective effectiveness. Our data suggest that both the clinical-stage PSD-95 inhibitor nerinetide and protease-resistant agents such as d-Tat-l-2B9c may be practically integrated into existing stroke care workflows and standards of care.
Collapse
Affiliation(s)
- Diana Mayor-Nunez
- NoNO Inc., Toronto, Ontario M5V 1E7, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada
| | - Zhanxin Ji
- NoNO Inc., Toronto, Ontario M5V 1E7, Canada
| | - Xiujun Sun
- NoNO Inc., Toronto, Ontario M5V 1E7, Canada
| | - Lucy Teves
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada
| | | | - Michael Tymianski
- NoNO Inc., Toronto, Ontario M5V 1E7, Canada. .,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario M5T 1P5, Canada
| |
Collapse
|
15
|
Tolhuisen ML, Kappelhof M, Dutra BG, Jansen IGH, Guglielmi V, Dippel DWJ, van Zwam WH, van Oostenbrugge RJ, van der Lugt A, Roos YBWEM, Majoie CBLM, Caan MWA, Marquering HA. Influence of Onset to Imaging Time on Radiological Thrombus Characteristics in Acute Ischemic Stroke. Front Neurol 2021; 12:693427. [PMID: 34220695 PMCID: PMC8253046 DOI: 10.3389/fneur.2021.693427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 11/15/2022] Open
Abstract
Introduction: Radiological thrombus characteristics are associated with patient outcomes and treatment success after acute ischemic stroke. These characteristics could be expected to undergo time-dependent changes due to factors influencing thrombus architecture like blood stasis, clot contraction, and natural thrombolysis. We investigated whether stroke onset-to-imaging time was associated with thrombus length, perviousness, and density in the MR CLEAN Registry population. Methods: We included 245 patients with M1-segment occlusions and thin-slice baseline CT imaging from the MR CLEAN Registry, a nation-wide multicenter registry of patients who underwent endovascular treatment for acute ischemic stroke within 6.5 h of onset in the Netherlands. We used multivariable linear regression to investigate the effect of stroke onset-to-imaging time (per 5 min) on thrombus length (in mm), perviousness and density (both in Hounsfield Units). In the first model, we adjusted for age, sex, intravenous thrombolysis, antiplatelet use, and history of atrial fibrillation. In a second model, we additionally adjusted for observed vs. non-observed stroke onset, CT-angiography collateral score, direct presentation at a thrombectomy-capable center vs. transfer, and stroke etiology. We performed exploratory subgroup analyses for intravenous thrombolysis administration, observed vs. non-observed stroke onset, direct presentation vs. transfer, and stroke etiology. Results: Median stroke onset-to-imaging time was 83 (interquartile range 53–141) min. Onset to imaging time was not associated with thrombus length nor perviousness (β 0.002; 95% CI −0.004 to 0.007 and β −0.002; 95% CI −0.015 to 0.011 per 5 min, respectively) and was weakly associated with thrombus density in the fully adjusted model (adjusted β 0.100; 95% CI 0.005–0.196 HU per 5 min). The subgroup analyses showed no heterogeneity of these findings in any of the subgroups, except for a significantly positive relation between onset-to-imaging time and thrombus density in patients transferred from a primary stroke center (adjusted β 0.18; 95% CI 0.022–0.35). Conclusion: In our population of acute ischemic stroke patients, we found no clear association between onset-to-imaging time and radiological thrombus characteristics. This suggests that elapsed time from stroke onset plays a limited role in the interpretation of radiological thrombus characteristics and their effect on treatment results, at least in the early time window.
Collapse
Affiliation(s)
- Manon L Tolhuisen
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Manon Kappelhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Bruna G Dutra
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | - Valeria Guglielmi
- Department of Neurology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Diederik W J Dippel
- Department of Neurology, Erasmus Medical Center University Medical Center, Rotterdam, Netherlands
| | - Wim H van Zwam
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Robert J van Oostenbrugge
- Department of Neurology, Maastricht University Medical Center, Maastricht, Netherlands.,Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, Netherlands
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center University Medical Center, Rotterdam, Netherlands
| | - Yvo B W E M Roos
- Department of Neurology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Charles B L M Majoie
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Matthan W A Caan
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Henk A Marquering
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | |
Collapse
|
16
|
Combination treatment with U0126 and rt-PA prevents adverse effects of the delayed rt-PA treatment after acute ischemic stroke. Sci Rep 2021; 11:11993. [PMID: 34099834 PMCID: PMC8184783 DOI: 10.1038/s41598-021-91469-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/18/2021] [Indexed: 11/11/2022] Open
Abstract
In acute ischemic stroke, the only FDA-approved drug; recombinant tissue plasminogen activator (rt-PA) is limited by restricted time-window due to an enhanced risk of hemorrhagic transformation which is thought to be caused by metalloproteinase (MMP). In experimental stroke inhibitors of the mitogen–activated protein kinase kinase extracellular signal–regulated kinase kinase (MEK) 1/2 pathways reduce the MMPs. This study evaluated whether a MEK1/2 inhibitor in combination with rt-PA can prevent the detrimental effects of delayed rt-PA therapy in stroke. Thromboembolic stroke was induced in C57 black/6J mice and the MEK1/2 inhibitor U0126 was administrated 3.5 h and rt-PA 4 h post stroke-onset. Treatment with rt-PA demonstrated enhanced MMP-9 protein levels and hemorrhagic transformation which was prevented when U0126 was given in conjunction with rt-PA. By blocking the MMP-9 with U0126 the safety of rt-PA administration was improved and demonstrates a promising adjuvant strategy to reduce the harmful effects of delayed rt-PA treatment in acute ischemic stroke.
Collapse
|
17
|
Neuroanesthesiology Update. J Neurosurg Anesthesiol 2021; 33:107-136. [PMID: 33480638 DOI: 10.1097/ana.0000000000000757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/18/2020] [Indexed: 11/27/2022]
Abstract
This review summarizes the literature published in 2020 that is relevant to the perioperative care of neurosurgical patients and patients with neurological diseases as well as critically ill patients with neurological diseases. Broad topics include general perioperative neuroscientific considerations, stroke, traumatic brain injury, monitoring, anesthetic neurotoxicity, and perioperative disorders of cognitive function.
Collapse
|
18
|
Derbisz J, Nowak K, Wnuk M, Pulyk R, Jagiella J, Slowik J, Dziedzic T, Slowik A. Prognostic Significance of Stroke-Associated Infection and other Readily Available Parameters in Acute Ischemic Stroke Treated by Intravenous Thrombolysis. J Stroke Cerebrovasc Dis 2020; 30:105525. [PMID: 33338755 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/15/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES The impact of contracting stroke-associate infection (SAI) that requires antibiotic treatment after an acute ischemic stroke (AIS) treated with alteplase remains unclear. We studied the profiles of SAI in patients with AIS treated with alteplase toward identifying predictive factors and prognostic implications at 90 days post-stroke. METHODS We analyzed 33 parameters readily available within 24 hours after AIS: demographics, risk factors, and several clinical and biochemical parameters. Outcome measures were mRS ≤ 2 and mortality 90 days post-stroke. RESULTS 83 (23.6%) of 352 patients developed SAI. Multivariate logistic regression analysis showed that atrial fibrillation, mRS above 0 pre-stroke, lower delta NIHSS (the difference between NIHSS score measured upon admission and 24 hours after later), CRP≥10 mg/L, and elevated WBC count affected SAI risk (model including CRP levels and WBC count) and atrial fibrillation, mRS above 0 pre-stroke, lower delta NIHSS, HT, and elevated fibrinogen levels affected SAI risk (model excluding CRP levels and WBC count). 231 patients (74.1%) had mRS ≤ 2 at day 90. Multivariate logistic regression analysis showed that younger age, no hypertension, mRS=0 pre-stroke, higher delta NIHSS, no HT, no SAI, and CRP<10 mg/L, were associated with mRS≤2 at day 90. 54 (15.3%) patients died within 90 days. Multivariate logistic regression analysis showed that pre-stroke mRS>0, lower delta NIHSS, HT, CRP≥10 mg/L, lower triglyceride levels affected the risk of death within 90 days. CONCLUSIONS Several markers available within 24 hours post-stroke were predictive of SAI that requires antibiotic treatment. SAI affects long-term outcome but not mortality.
Collapse
Affiliation(s)
- Justyna Derbisz
- Department of Neurology, University Hospital, Jakubowskiego 2 Str., 30-688 Krakow, Poland
| | - Klaudia Nowak
- Department of Neurology, Jagiellonian University Medical College, Jakubowskiego 2 Str., 30-688 Krakow, Poland
| | - Marcin Wnuk
- Department of Neurology, Jagiellonian University Medical College, Jakubowskiego 2 Str., 30-688 Krakow, Poland
| | - Roman Pulyk
- Department of Neurology, Jagiellonian University Medical College, Jakubowskiego 2 Str., 30-688 Krakow, Poland
| | - Jeremiasz Jagiella
- Department of Neurology, Jagiellonian University Medical College, Jakubowskiego 2 Str., 30-688 Krakow, Poland
| | - Joanna Slowik
- Department of Dental Prophylaxis and Experimental Dentistry, Jagiellonian University Medical College, Montelupich 4 Str., 31-155 Krakow, Poland
| | - Tomasz Dziedzic
- Department of Neurology, Jagiellonian University Medical College, Jakubowskiego 2 Str., 30-688 Krakow, Poland
| | - Agnieszka Slowik
- Department of Neurology, Jagiellonian University Medical College, Jakubowskiego 2 Str., 30-688 Krakow, Poland.
| |
Collapse
|
19
|
Bader ER, Allam MM, Harris TGW, Suchdev N, Loke YK, Barlas R. Thrombolysis for aneurysmal subarachnoid haemorrhage. Hippokratia 2020. [DOI: 10.1002/14651858.cd013748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Edward R Bader
- Department of Neurological Surgery; Albert Einstein College of Medicine, Montefiore Medical Center; New York USA
| | - Mazen M Allam
- Foundation Programme; NHS Ayrshire and Arran; Kilmarnock UK
| | - Thomas G W Harris
- Department of Plastic and Reconstructive Surgery; Johns Hopkins University School of Medicine; Baltimore Maryland USA
| | - Neena Suchdev
- Foundation Programme; Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust; Newcastle upon Tyne UK
| | - Yoon Kong Loke
- Norwich Medical School; University of East Anglia; Norwich UK
| | - Raphae Barlas
- Ageing Clinical and Experimental Research; University of Aberdeen; Aberdeen UK
| |
Collapse
|
20
|
Liberale L, Bertolotto M, Minetti S, Contini P, Verzola D, Ameri P, Ghigliotti G, Pende A, Camici GG, Carbone F, Montecucco F. Recombinant Tissue Plasminogen Activator (r-tPA) Induces In-Vitro Human Neutrophil Migration via Low Density Lipoprotein Receptor-Related Protein 1 (LRP-1). Int J Mol Sci 2020; 21:7014. [PMID: 32977685 PMCID: PMC7582901 DOI: 10.3390/ijms21197014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/04/2023] Open
Abstract
Thrombolysis is the gold standard treatment for acute ischemic stroke. Besides its fibrinolytic role, recombinant tissue plasminogen activator (r-tPA) holds several non-fibrinolytic functions. Here, we investigated the potential role of r-tPA on human primary neutrophil migration in vitro. By means of modified Boyden chamber migration assay and checkerboard analysis we showed a dose-dependent chemotactic effect of r-TPA with a maximum effect reached by 0.03 mg/mL (0.003-1 mg/mL). Pre-incubation with MAP kinases inhibitors allowed the identification of PI3K/Akt, but not ERK1/2 as the intracellular pathway mediating the observed effects. Furthermore, by means of real-time PCR, immunocytochemistry and cytofluorimetry we demonstrated that the r-tPA receptor low density lipoprotein receptor-related protein 1 (LRP-1) is synthetized and expressed by neutrophils in response to r-tPA and TNF-α. Inhibition of LRP-1 by receptor-associated protein (RAP), prevented r-tPA-mediated F-actin polymerization, migration and signal through Akt but not ERK1/2. Lastly, also neutrophil degranulation in response to r-tPA seems to be mediated by LRP-1 under adhesion conditions. In conclusion, we show that r-tPA induces neutrophil chemotaxis through LRP-1/Akt pathway. Blunting r-tPA-mediated neutrophil activation might be beneficial as an adjuvant therapy to thrombolysis in this setting.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland; (L.L.); (G.G.C.)
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy; (M.B.); (S.M.); (F.C.)
| | - Maria Bertolotto
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy; (M.B.); (S.M.); (F.C.)
| | - Silvia Minetti
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy; (M.B.); (S.M.); (F.C.)
| | - Paola Contini
- Clinical Immunology, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy;
| | - Daniela Verzola
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy;
| | - Pietro Ameri
- IRCCS Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy; (P.A.); (G.G.); (A.P.)
- Laboratory of Cardiovascular Biology, IRCCS Ospedale Policlinico San Martino & Department of Internal Medicine, University of Genoa, 16126 Genoa, Italy
| | - Giorgio Ghigliotti
- IRCCS Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy; (P.A.); (G.G.); (A.P.)
- Laboratory of Cardiovascular Biology, IRCCS Ospedale Policlinico San Martino & Department of Internal Medicine, University of Genoa, 16126 Genoa, Italy
| | - Aldo Pende
- IRCCS Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy; (P.A.); (G.G.); (A.P.)
- Clinic of Emergency Medicine, Department of Emergency Medicine, University of Genoa, 16126 Genoa, Italy
| | - Giovanni G. Camici
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland; (L.L.); (G.G.C.)
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy; (M.B.); (S.M.); (F.C.)
- IRCCS Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy; (P.A.); (G.G.); (A.P.)
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy; (M.B.); (S.M.); (F.C.)
- IRCCS Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy; (P.A.); (G.G.); (A.P.)
| |
Collapse
|
21
|
Yeh CY, Schulien AJ, Molyneaux BJ, Aizenman E. Lessons from Recent Advances in Ischemic Stroke Management and Targeting Kv2.1 for Neuroprotection. Int J Mol Sci 2020; 21:ijms21176107. [PMID: 32854248 PMCID: PMC7503403 DOI: 10.3390/ijms21176107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022] Open
Abstract
Achieving neuroprotection in ischemic stroke patients has been a multidecade medical challenge. Numerous clinical trials were discontinued in futility and many were terminated in response to deleterious treatment effects. Recently, however, several positive reports have generated the much-needed excitement surrounding stroke therapy. In this review, we describe the clinical studies that significantly expanded the time window of eligibility for patients to receive mechanical endovascular thrombectomy. We further summarize the results available thus far for nerinetide, a promising neuroprotective agent for stroke treatment. Lastly, we reflect upon aspects of these impactful trials in our own studies targeting the Kv2.1-mediated cell death pathway in neurons for neuroprotection. We argue that recent changes in the clinical landscape should be adapted by preclinical research in order to continue progressing toward the development of efficacious neuroprotective therapies for ischemic stroke.
Collapse
Affiliation(s)
- Chung-Yang Yeh
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.-Y.Y.); (A.J.S.)
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Anthony J. Schulien
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.-Y.Y.); (A.J.S.)
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Bradley J. Molyneaux
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- UPMC Stroke Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.-Y.Y.); (A.J.S.)
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- Correspondence:
| |
Collapse
|
22
|
Ba K, Casolla B, Caparros F, Bricout N, Della Schiava L, Pasi M, Dequatre-Ponchelle N, Bodenant M, Bordet R, Cordonnier C, Hénon H, Leys D. Early epileptic seizures in ischaemic stroke treated by mechanical thrombectomy: influence of rt-PA. J Neurol 2020; 268:305-311. [PMID: 32797298 DOI: 10.1007/s00415-020-10155-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/05/2020] [Accepted: 08/10/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND The epileptogenicity of recombinant tissue-plasminogen activator (rt-PA) has been suggested, but seizures were not evaluated in randomised controlled trials. OBJECTIVE To evaluate whether rt-PA was associated with early seizures in a cohort of consecutive patients with cerebral ischaemia. METHOD We included consecutive adults with ischaemic stroke due to large-vessel occlusion from the North-of-France stroke network selected for a mechanical thrombectomy (MT). Patients without contraindication received i.v. rt-PA. We evaluated stroke severity with the National Institutes of Health Stroke Scale (NIHSS), and functional status with the modified Rankin scale (mRS), and recorded epileptic seizures occurring between the end of imaging and day 7. We performed statistics using propensity analyses. RESULTS We included 1638 patients (783 men, 47.8%; median age 71 years; median NIHSS score 16; 1007 treated by rt-PA, 61.5%), in whom 60 (3.7%) developed early epileptic seizures. After adjustment on propensity scores, early seizures were associated with infections [adjusted odds ratio (adjOR) 2.86; 95% confidence interval (CI) 1.37-5.95] and delay between stroke recognition and end of MT (adjOR 1.04 for 10 min more; 95% CI 1.01-1.08), but not with rt-PA (adjOR 1.35; 95% CI 0.55-3.33). The propensity-matched analysis of 343 pairs of patients found no difference in the occurrence of early seizures between those with and without rt-PA (p = 0.386). CONCLUSION We found no significant association between rt-PA and early epileptic seizures. If rt-PA has the potential for epileptogenicity, the magnitude of the effect should be modest compared to its favourable effect on functional outcome.
Collapse
Affiliation(s)
- Khadija Ba
- Department of Neurology (Stroke Unit), Lille Neuroscience and Cognition, Degenerative and Vascular Cognitive Disorders, University of Lille, INSERM (U-1172), CHU Lille, 59000, Lille, France
| | - Barbara Casolla
- Department of Neurology (Stroke Unit), Lille Neuroscience and Cognition, Degenerative and Vascular Cognitive Disorders, University of Lille, INSERM (U-1172), CHU Lille, 59000, Lille, France
| | - François Caparros
- Department of Neurology (Stroke Unit), Lille Neuroscience and Cognition, Degenerative and Vascular Cognitive Disorders, University of Lille, INSERM (U-1172), CHU Lille, 59000, Lille, France
| | - Nicolas Bricout
- Department of Neuroradiology, Lille Neuroscience and Cognition, Degenerative and Vascular Cognitive Disorders, University of Lille, INSERM (U-1172), CHU Lille, 59000, Lille, France
| | - Lucie Della Schiava
- Department of Neurology (Stroke Unit), Lille Neuroscience and Cognition, Degenerative and Vascular Cognitive Disorders, University of Lille, INSERM (U-1172), CHU Lille, 59000, Lille, France
| | - Marco Pasi
- Department of Neurology (Stroke Unit), Lille Neuroscience and Cognition, Degenerative and Vascular Cognitive Disorders, University of Lille, INSERM (U-1172), CHU Lille, 59000, Lille, France
| | - Nelly Dequatre-Ponchelle
- Department of Neurology (Stroke Unit), Lille Neuroscience and Cognition, Degenerative and Vascular Cognitive Disorders, University of Lille, INSERM (U-1172), CHU Lille, 59000, Lille, France
| | - Marie Bodenant
- Department of Neurology (Stroke Unit), Lille Neuroscience and Cognition, Degenerative and Vascular Cognitive Disorders, University of Lille, INSERM (U-1172), CHU Lille, 59000, Lille, France
| | - Régis Bordet
- Department of Pharmacology, Lille Neuroscience and Cognition, Degenerative and Vascular Cognitive Disorders, University of Lille, INSERM (U-1172), CHU Lille, 59000, Lille, France
| | - Charlotte Cordonnier
- Department of Neurology (Stroke Unit), Lille Neuroscience and Cognition, Degenerative and Vascular Cognitive Disorders, University of Lille, INSERM (U-1172), CHU Lille, 59000, Lille, France
| | - Hilde Hénon
- Department of Neurology (Stroke Unit), Lille Neuroscience and Cognition, Degenerative and Vascular Cognitive Disorders, University of Lille, INSERM (U-1172), CHU Lille, 59000, Lille, France
| | - Didier Leys
- Department of Neurology (Stroke Unit), Lille Neuroscience and Cognition, Degenerative and Vascular Cognitive Disorders, University of Lille, INSERM (U-1172), CHU Lille, 59000, Lille, France.
| |
Collapse
|
23
|
Hill MD, Goyal M, Menon BK, Nogueira RG, McTaggart RA, Demchuk AM, Poppe AY, Buck BH, Field TS, Dowlatshahi D, van Adel BA, Swartz RH, Shah RA, Sauvageau E, Zerna C, Ospel JM, Joshi M, Almekhlafi MA, Ryckborst KJ, Lowerison MW, Heard K, Garman D, Haussen D, Cutting SM, Coutts SB, Roy D, Rempel JL, Rohr AC, Iancu D, Sahlas DJ, Yu AYX, Devlin TG, Hanel RA, Puetz V, Silver FL, Campbell BCV, Chapot R, Teitelbaum J, Mandzia JL, Kleinig TJ, Turkel-Parrella D, Heck D, Kelly ME, Bharatha A, Bang OY, Jadhav A, Gupta R, Frei DF, Tarpley JW, McDougall CG, Holmin S, Rha JH, Puri AS, Camden MC, Thomalla G, Choe H, Phillips SJ, Schindler JL, Thornton J, Nagel S, Heo JH, Sohn SI, Psychogios MN, Budzik RF, Starkman S, Martin CO, Burns PA, Murphy S, Lopez GA, English J, Tymianski M. Efficacy and safety of nerinetide for the treatment of acute ischaemic stroke (ESCAPE-NA1): a multicentre, double-blind, randomised controlled trial. Lancet 2020; 395:878-887. [PMID: 32087818 DOI: 10.1016/s0140-6736(20)30258-0] [Citation(s) in RCA: 391] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Nerinetide, an eicosapeptide that interferes with post-synaptic density protein 95, is a neuroprotectant that is effective in preclinical stroke models of ischaemia-reperfusion. In this trial, we assessed the efficacy and safety of nerinetide in human ischaemia-reperfusion that occurs with rapid endovascular thrombectomy in patients who had an acute ischaemic stroke. METHODS For this multicentre, double-blind, randomised, placebo-controlled study done in 48 acute care hospitals in eight countries, we enrolled patients with acute ischaemic stroke due to large vessel occlusion within a 12 h treatment window. Eligible patients were aged 18 years or older with a disabling ischaemic stroke at the time of randomisation, had been functioning independently in the community before the stroke, had an Alberta Stroke Program Early CT Score (ASPECTS) greater than 4, and vascular imaging showing moderate-to-good collateral filling, as determined by multiphase CT angiography. Patients were randomly assigned (1:1) to receive intravenous nerinetide in a single dose of 2·6 mg/kg, up to a maximum dose of 270 mg, on the basis of estimated or actual weight (if known) or saline placebo by use of a real-time, dynamic, internet-based, stratified randomised minimisation procedure. Patients were stratified by intravenous alteplase treatment and declared endovascular device choice. All trial personnel and patients were masked to sequence and treatment allocation. All patients underwent endovascular thrombectomy and received alteplase in usual care when indicated. The primary outcome was a favourable functional outcome 90 days after randomisation, defined as a modified Rankin Scale (mRS) score of 0-2. Secondary outcomes were measures of neurological disability, functional independence in activities of daily living, excellent functional outcome (mRS 0-1), and mortality. The analysis was done in the intention-to-treat population and adjusted for age, sex, baseline National Institutes of Health Stroke Scale score, ASPECTS, occlusion location, site, alteplase use, and declared first device. The safety population included all patients who received any amount of study drug. This trial is registered with ClinicalTrials.gov, NCT02930018. FINDINGS Between March 1, 2017, and Aug 12, 2019, 1105 patients were randomly assigned to receive nerinetide (n=549) or placebo (n=556). 337 (61·4%) of 549 patients with nerinetide and 329 (59·2%) of 556 with placebo achieved an mRS score of 0-2 at 90 days (adjusted risk ratio 1·04, 95% CI 0·96-1·14; p=0·35). Secondary outcomes were similar between groups. We observed evidence of treatment effect modification resulting in inhibition of treatment effect in patients receiving alteplase. Serious adverse events occurred equally between groups. INTERPRETATION Nerinetide did not improve the proportion of patients achieving good clinical outcomes after endovascular thrombectomy compared with patients receiving placebo. FUNDING Canadian Institutes for Health Research, Alberta Innovates, and NoNO.
Collapse
Affiliation(s)
- Michael D Hill
- Foothills Medical Centre, University of Calgary, Calgary, AB, Canada.
| | - Mayank Goyal
- Foothills Medical Centre, University of Calgary, Calgary, AB, Canada
| | - Bijoy K Menon
- Foothills Medical Centre, University of Calgary, Calgary, AB, Canada
| | - Raul G Nogueira
- Emory University School of Medicine, Grady Memorial Hospital, Atlanta, GA, USA
| | - Ryan A McTaggart
- Warren Alpert School of Medicine, Brown University, Providence, RI, USA
| | - Andrew M Demchuk
- Foothills Medical Centre, University of Calgary, Calgary, AB, Canada
| | - Alexandre Y Poppe
- Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Brian H Buck
- University of Alberta Hospital, Edmonton, AB, Canada
| | | | | | | | - Richard H Swartz
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto ON, Canada
| | | | - Eric Sauvageau
- Lyerly Neurosurgery, Baptist Hospital, Jacksonville, FL, USA
| | - Charlotte Zerna
- Foothills Medical Centre, University of Calgary, Calgary, AB, Canada
| | - Johanna M Ospel
- Foothills Medical Centre, University of Calgary, Calgary, AB, Canada
| | - Manish Joshi
- Foothills Medical Centre, University of Calgary, Calgary, AB, Canada
| | | | - Karla J Ryckborst
- Foothills Medical Centre, University of Calgary, Calgary, AB, Canada
| | - Mark W Lowerison
- Clinical Research Unit, University of Calgary, Calgary, AB, Canada
| | | | | | - Diogo Haussen
- Emory University School of Medicine, Grady Memorial Hospital, Atlanta, GA, USA
| | - Shawna M Cutting
- Warren Alpert School of Medicine, Brown University, Providence, RI, USA
| | - Shelagh B Coutts
- Foothills Medical Centre, University of Calgary, Calgary, AB, Canada
| | - Daniel Roy
- Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | | | - Axel Cr Rohr
- University of British Columbia, Vancouver, BC, Canada
| | - Daniela Iancu
- Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada; Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | | | - Amy Y X Yu
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto ON, Canada
| | | | - Ricardo A Hanel
- Lyerly Neurosurgery, Baptist Hospital, Jacksonville, FL, USA
| | - Volker Puetz
- University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden Neurovascular Center, Dresden, Germany
| | - Frank L Silver
- University Health Network, University of Toronto, Toronto, ON, Canada
| | - Bruce C V Campbell
- The Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - René Chapot
- Department of Neuroradiology and Endovascular Therapy, Alfred Krupp Krankenhaus Hospital, Essen, Germany
| | - Jeanne Teitelbaum
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | | | | | - Donald Heck
- Forsyth Medical Center, Winston-Salem, NC, USA
| | - Michael E Kelly
- Royal University Hospital, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aditya Bharatha
- St Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Oh Young Bang
- Samsung Medical Center, Departments of Neurology and Radiology, Sungkyunkwan University, Seoul, South Korea
| | - Ashutosh Jadhav
- University of Pittsburgh Medical Centre, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rishi Gupta
- Wellstar Health Systems, Kennestone Hospital, Marietta, GA, USA
| | - Donald F Frei
- Swedish Medical Center, Colorado Neurological Institute, Denver, CO, USA
| | - Jason W Tarpley
- Providence Little Company of Mary Medical Center, Providence Saint John's Health Center and The Pacific Neuroscience Institute, Torrance, CA, USA
| | | | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institutet and Departments of Neuroradiology and Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Joung-Ho Rha
- Inha University Hospital Neurology, Incheon, South Korea
| | - Ajit S Puri
- University of Massachusetts Medical Center, University of Massachusetts, Worcester, MA, USA
| | - Marie-Christine Camden
- Enfant-Jésus Hospital, Centre Hospitalier Universitaire de Québec, Laval University, Québec City, QC, Canada
| | - Götz Thomalla
- Department of Neurology and Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hana Choe
- Neurosciences Institute, Abington Jefferson Hospital, Philadelphia, PA, USA
| | - Stephen J Phillips
- Queen Elizabeth II Health Science Centre, Dalhousie University, Halifax, NS, Canada
| | | | | | - Simon Nagel
- University Hospital Heidelberg, Heidelberg, Germany
| | - Ji Hoe Heo
- Yonsei University College of Medicine, Seoul, South Korea
| | - Sung-Il Sohn
- Dongsan Hospital, Keimyung University School of Medicine, Daegu, South Korea
| | | | - Ronald F Budzik
- Ohio Health, Riverside Methodist Hospital, Columbus, OH, USA
| | - Sidney Starkman
- UCLA Comprehensive Stroke Center, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | - Seán Murphy
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - George A Lopez
- Rush University Medical Center, Rush University, Chicago, IL, USA
| | - Joey English
- California Pacific Medical Center, Sutter Health, San Francisco, CA, USA
| | | |
Collapse
|
24
|
Abstract
INTRODUCTION Stroke is a significant underlying cause of epilepsy. Seizures due to ischemic stroke (IS) are generally categorized into early seizures (ESs) and late seizures (LSs). Seizures in thrombolysis situations may raise the possibility of other etiology than IS. AIM We overtook a systematic review focusing on the pathogenesis, prevalence, risk factors, detection, management, and clinical outcome of ESs in IS and in stroke/thrombolysis situations. We also collected articles focusing on the association of recombinant tissue-type plasminogen activator (rt-PA) treatment and epileptic seizures. RESULTS We have identified 37 studies with 36,775 participants. ES rate was 3.8% overall in patients with IS with geographical differences. Cortical involvement, severe stroke, hemorrhagic transformation, age (<65 years), large lesion, and atrial fibrillation were the most important risk factors. Sixty-one percent of ESs were partial and 39% were general. Status epilepticus (SE) occurred in 16.3%. 73.6% had an onset within 24 h and 40% may present at the onset of stroke syndrome. Based on EEG findings seizure-like activity could be detected only in approximately 18% of ES patients. MRI diffusion-weighted imaging and multimodal brain imaging may help in the differentiation of ischemia vs. seizure. There are no specific recommendations with regard to the treatment of ES. CONCLUSION ESs are rare complications of acute stroke with substantial burden. A significant proportion can be presented at the onset of stroke requiring an extensive diagnostic workup.
Collapse
|
25
|
Leslie-Mazwi TM, Hamilton S, Mlynash M, Patel AB, Schwamm LH, Lansberg MG, Marks M, Hirsch JA, Albers GW. DEFUSE 3 Non-DAWN Patients. Stroke 2019; 50:618-625. [PMID: 30727856 DOI: 10.1161/strokeaha.118.023310] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background and Purpose- DAWN (Clinical Mismatch in the Triage of Wake Up and Late Presenting Strokes Undergoing Neurointervention With Trevo) and DEFUSE 3 (Endovascular Therapy Following Imaging Evaluation for Ischemic Stroke) established thrombectomy for patients with emergent large vessel occlusions presenting 6 to 24 hours after symptom onset. Given the greater inclusivity of DEFUSE 3, we evaluated the effect of thrombectomy in DEFUSE 3 patients who would have been excluded from DAWN. Methods- Eligibility criteria of the DAWN trial were applied to DEFUSE 3 patient data to identify DEFUSE 3 patients not meeting DAWN criteria (DEFUSE 3 non-DAWN). Reasons for DAWN exclusion in DEFUSE 3 were infarct core too large, National Institutes of Health Stroke Scale (NIHSS) score 6 to 9, and modified Rankin Scale score of 2. Subgroups were compared with the DEFUSE 3 non-DAWN and entire DEFUSE 3 cohorts. Results- There were 71 DEFUSE 3 non-DAWN patients; 31 patients with NIHSS 6 to 9, 33 with core too large, and 13 with premorbid modified Rankin Scale score of 2 (some patients met multiple criteria). For core-too-large patients, median 24-hour infarct volume was 119 mL (interquartile range, 74.6-180) versus 31.5 mL (interquartile range, 17.6-64.3) for core-not-too-large patients ( P<0.001). Complications and functional outcomes were similar between the groups. Thrombectomy in core-too-large patients compared with the remaining DEFUSE 3 non-DAWN patients conveyed benefit for functional outcome (odds ratio, 20.9; CI, 1.3-337.8). Comparing the NIHSS 6 to 9 group with the NIHSS ≥10 patients, modified Rankin Scale score 0 to 2 outcomes were achieved in 74% versus 22% ( P<0.001), with mortality in 6% versus 23% ( P=0.024), respectively. For patients with NIHSS 6 to 9 compared with the remaining DEFUSE 3 non-DAWN patients, thrombectomy trended toward a better chance of functional outcome (odds ratio, 1.86; CI, 0.36-9.529). Conclusions- Patients with pretreatment core infarct volumes <70 mL but too large for inclusion by DAWN criteria demonstrate benefit from endovascular therapy. More permissive pretreatment core thresholds in core-clinical mismatch selection paradigms may be appropriate. In contrast to data supporting a beneficial treatment effect across the full range of NIHSS scores in the entire DEFUSE 3 population, only a trend toward benefit of thrombectomy in patients with NIHSS 6 to 9 was found in this small subgroup.
Collapse
Affiliation(s)
- Thabele M Leslie-Mazwi
- From the Neuroscience Institute, Massachusetts General Hospital, Boston (T.M.L.-M., A.B.P., L.H.S., J.A.H.)
| | - Scott Hamilton
- Stanford Stroke Center, Stanford University Medical Center, Palo Alto, CA (S.H., M. Mlynash, M.G.L., M. Marks, G.W.A.)
| | - Michael Mlynash
- Stanford Stroke Center, Stanford University Medical Center, Palo Alto, CA (S.H., M. Mlynash, M.G.L., M. Marks, G.W.A.)
| | - Aman B Patel
- From the Neuroscience Institute, Massachusetts General Hospital, Boston (T.M.L.-M., A.B.P., L.H.S., J.A.H.)
| | - Lee H Schwamm
- From the Neuroscience Institute, Massachusetts General Hospital, Boston (T.M.L.-M., A.B.P., L.H.S., J.A.H.)
| | - Maarten G Lansberg
- Stanford Stroke Center, Stanford University Medical Center, Palo Alto, CA (S.H., M. Mlynash, M.G.L., M. Marks, G.W.A.)
| | - Michael Marks
- Stanford Stroke Center, Stanford University Medical Center, Palo Alto, CA (S.H., M. Mlynash, M.G.L., M. Marks, G.W.A.)
| | - Joshua A Hirsch
- From the Neuroscience Institute, Massachusetts General Hospital, Boston (T.M.L.-M., A.B.P., L.H.S., J.A.H.)
| | - Gregory W Albers
- Stanford Stroke Center, Stanford University Medical Center, Palo Alto, CA (S.H., M. Mlynash, M.G.L., M. Marks, G.W.A.)
| |
Collapse
|
26
|
Chelluboina B, Vemuganti R. Chronic kidney disease in the pathogenesis of acute ischemic stroke. J Cereb Blood Flow Metab 2019; 39:1893-1905. [PMID: 31366298 PMCID: PMC6775591 DOI: 10.1177/0271678x19866733] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/25/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
Abstract
Chronic kidney disease has a graded and independent inverse impact on cerebrovascular health. Both thrombotic and hemorrhagic complications are highly prevalent in chronic kidney disease patients. Growing evidence suggests that in chronic kidney disease patients, ischemic strokes are more common than hemorrhagic strokes. Chronic kidney disease is asymptomatic until an advanced stage, but mild to moderate chronic kidney disease incites various pathogenic mechanisms such as inflammation, oxidative stress, neurohormonal imbalance, formation of uremic toxins and vascular calcification which damage the endothelium and blood vessels. Cognitive dysfunction, dementia, transient infarcts, and white matter lesions are widespread in mild to moderate chronic kidney disease patients. Uremic toxins produced after chronic kidney disease can pass through the blood-brain barrier and mediate cognitive dysfunction and neurodegeneration. Furthermore, chronic kidney disease precipitates vascular risk factors that can lead to atherosclerosis, hypertension, atrial fibrillation, and diabetes. Chronic kidney disease also exacerbates stroke pathogenesis, worsens recovery outcomes, and limits the eligibility of stroke patients to receive available stroke therapeutics. This review highlights the mechanisms involved in the advancement of chronic kidney disease and its possible association with stroke.
Collapse
Affiliation(s)
- Bharath Chelluboina
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| |
Collapse
|
27
|
Abstract
Ischemic stroke is a leading cause of death and disability throughout the world and is both preventable and treatable. This review focuses on the treatment of the most severe form of ischemic stroke, namely large-vessel ischemic stroke, using endovascular techniques. Such therapies were proven effective in 2015. These therapies are among the most beneficial surgical therapies ever subjected to randomized clinical trials. Recent research has explored treating patients up to 24 h following the onset of stroke using advanced imaging techniques to select patients with brain tissue still at risk. These new findings suggest there exists a tissue clock rather than a time clock when selecting patients for therapy. Stroke systems throughout the world are now embracing endovascular stroke therapy. Improving regional stroke systems of care and expanding eligibility for patients are a major focus of current research.
Collapse
Affiliation(s)
- Wade S Smith
- Department of Neurology, University of California, San Francisco, 505 Parnassus Ave, Box 0114, San Francisco, CA, 94143-0114, USA.
| |
Collapse
|
28
|
LanCL1 attenuates ischemia-induced oxidative stress by Sirt3-mediated preservation of mitochondrial function. Brain Res Bull 2018; 142:216-223. [PMID: 30075199 DOI: 10.1016/j.brainresbull.2018.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 11/23/2022]
Abstract
Lanthionine synthetase C-like protein 1 (LanCL1) is homologous to prokaryotic lanthionine cyclases, and has been shown to have novel functions in neuronal redox homeostasis. A recent study showed that LanCL1 expression was developmental and activity-dependent regulated, and LanCL1 transgene protected neurons against oxidative stress. In the present study, the potential protective effects of LanCL1 against ischemia was investigated in an in vitro model mimicked by oxygen and glucose deprivation (OGD) in neuronal HT22 cells. We found that OGD exposure induced a temporal increase and persistent decreases in the expression of LanCL1 at both mRNA and protein levels. Overexpression of LanCL1 by lentivirus (LV-LanCL1) transfection preserved cell viability, reduced lactate dehydrogenase (LDH) release and attenuated apoptosis after OGD. These protective effects were accompanied by decreased protein radical formation, lipid peroxidation and mitochondrial dysfunction. In addition, LanCL1 significantly stimulated mitochondrial enzyme activities and SOD2 deacetylation in a Sirt3-dependent manner. The results of western blot analysis showed that LanCL1-induced activation of Sirt3 was dependent on Akt-PGC-1α pathway. Knockdown of PGC-1α expression using small interfering RNA (siRNA) or blocking Akt activation using specific antagonist partially prevented the protective effects of LanCL1 in HT22 cells. Taken together, our results show that LanCL1 protects against OGD through activating the Akt-PGC-1α-Sirt3 pathway, and may have potential therapeutic value for ischemic stroke.
Collapse
|
29
|
Gauberti M, Potzeha F, Vivien D, Martinez de Lizarrondo S. Impact of Bradykinin Generation During Thrombolysis in Ischemic Stroke. Front Med (Lausanne) 2018; 5:195. [PMID: 30018956 PMCID: PMC6037726 DOI: 10.3389/fmed.2018.00195] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022] Open
Abstract
Ischemic stroke is one of the leading causes of death and disability worldwide. Current medical management in the acute phase is based on the activation of the fibrinolytic cascade by intravenous injection of a plasminogen activator (such as tissue-type plasminogen activator, tPA) that promotes restauration of the cerebral blood flow and improves stroke outcome. Unfortunately, the use of tPA is associated with deleterious effects such as hemorrhagic transformation, symptomatic brain edema, and angioedema, which limit the efficacy of this therapeutic strategy. Preclinical and clinical evidence suggests that intravenous thrombolysis generates large amounts of bradykinin, a peptide with potent pro-inflammatory, and pro-edematous effects. This tPA-triggered generation of bradykinin could participate in the deleterious effects of thrombolysis and is a potential target to improve neurological outcome in tPA-treated patients. The present review aims at summarizing current evidence linking thrombolysis, bradykinin generation, and neurovascular damage.
Collapse
Affiliation(s)
- Maxime Gauberti
- Normandie Univ, UNICAEN, Institut National de la Santé et de la Recherche Médicale UMR-S U1237, "Physiopathology and Imaging of Neurological Disorders" PhIND, Caen, France.,Department of Diagnostic Imaging and Interventional Radiology, Centre Hospitalier Universitaire Caen Côte de Nacre, Caen, France
| | - Fanny Potzeha
- Normandie Univ, UNICAEN, Institut National de la Santé et de la Recherche Médicale UMR-S U1237, "Physiopathology and Imaging of Neurological Disorders" PhIND, Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, Institut National de la Santé et de la Recherche Médicale UMR-S U1237, "Physiopathology and Imaging of Neurological Disorders" PhIND, Caen, France.,Department of Clinical Research, Centre Hospitalier Universitaire Caen, Caen, France
| | - Sara Martinez de Lizarrondo
- Normandie Univ, UNICAEN, Institut National de la Santé et de la Recherche Médicale UMR-S U1237, "Physiopathology and Imaging of Neurological Disorders" PhIND, Caen, France
| |
Collapse
|
30
|
Assumpção TC, Mizurini DM, Ma D, Monteiro RQ, Ahlstedt S, Reyes M, Kotsyfakis M, Mather TN, Andersen JF, Lukszo J, Ribeiro JMC, Francischetti IMB. Ixonnexin from Tick Saliva Promotes Fibrinolysis by Interacting with Plasminogen and Tissue-Type Plasminogen Activator, and Prevents Arterial Thrombosis. Sci Rep 2018; 8:4806. [PMID: 29555911 PMCID: PMC5859130 DOI: 10.1038/s41598-018-22780-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/22/2018] [Indexed: 12/11/2022] Open
Abstract
Tick saliva is a rich source of modulators of vascular biology. We have characterized Ixonnexin, a member of the "Basic-tail" family of salivary proteins from the tick Ixodes scapularis. Ixonnexin is a 104 residues (11.8 KDa), non-enzymatic basic protein which contains 3 disulfide bonds and a C-terminal rich in lysine. It is homologous to SALP14, a tick salivary FXa anticoagulant. Ixonnexin was produced by ligation of synthesized fragments (51-104) and (1-50) followed by folding. Ixonnexin, like SALP14, interacts with FXa. Notably, Ixonnexin also modulates fibrinolysis in vitro by a unique salivary mechanism. Accordingly, it accelerates plasminogen activation by tissue-type plasminogen activator (t-PA) with Km 100 nM; however, it does not affect urokinase-mediated fibrinolysis. Additionally, lysine analogue ε-aminocaproic acid inhibits Ixonnexin-mediated plasmin generation implying that lysine-binding sites of Kringle domain(s) of plasminogen or t-PA are involved in this process. Moreover, surface plasmon resonance experiments shows that Ixonnexin binds t-PA, and plasminogen (KD 10 nM), but not urokinase. These results imply that Ixonnexin promotes fibrinolysis by supporting the interaction of plasminogen with t-PA through formation of an enzymatically productive ternary complex. Finally, in vivo experiments demonstrates that Ixonnexin inhibits FeCl3-induced thrombosis in mice. Ixonnexin emerges as novel modulator of fibrinolysis which may also affect parasite-vector-host interactions.
Collapse
Affiliation(s)
- Teresa C Assumpção
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Bethesda, USA
| | - Daniella M Mizurini
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dongying Ma
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Bethesda, USA
| | - Robson Q Monteiro
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sydney Ahlstedt
- Department of Pathology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY, USA
| | - Morayma Reyes
- Department of Pathology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY, USA
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Thomas N Mather
- Rhode Island Center for Vector-Borne Disease, University of Rhode Island, Kingston, Rhode Island, USA
| | - John F Andersen
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Bethesda, USA
| | - Jan Lukszo
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Bethesda, USA
| | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Bethesda, USA
| | - Ivo M B Francischetti
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Bethesda, USA.
| |
Collapse
|
31
|
Chen N, Chopp M, Xiong Y, Qian JY, Lu M, Zhou D, He L, Liu Z. Subacute intranasal administration of tissue plasminogen activator improves stroke recovery by inducing axonal remodeling in mice. Exp Neurol 2018. [PMID: 29518364 DOI: 10.1016/j.expneurol.2018.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In addition to thrombolysis, tissue plasminogen activator (tPA) can evoke neurorestorative processes. We therefore investigated the therapeutic effect of subacute intranasal administration of tPA post stroke on neurological recovery and on corticospinal innervation in mice. A transgenic mouse line, in which the pyramidal neurons and corticospinal tract (CST) axons are specifically labeled by yellow fluorescent protein (YFP) was employed. Adult CST-YFP mice were subjected to right unilateral middle cerebral artery occlusion (MCAo), and were randomly divided into groups treated with saline or tPA intranasally in the subacute phase. Pseudorabies virus (PRV)-614-monomeric red fluorescent protein (RFP) was injected into the left forelimb. The cervical spinal cord and brain were processed for fluorescent microscopy to detect YFP and RFP labeling. Primary embryonic neurons were cultured with tPA at different concentrations. Neurite length and branch numbers were then measured. In vivo, subacute tPA treatment significantly enhanced functional recovery (p < 0.05), and increased CST density in the denervated gray matter, and in the numbers of PRV-labeled neurons in bilateral cortices. The behavioral performance was significantly correlated with axonal density in the denervated spinal cord. In vitro, both neurite length and branch numbers significantly increased with concentration of tPA (p < 0.05). Our results demonstrate that tPA dose-dependently increases neurite outgrowth and branching of cultured cortical neurons. Subacute intranasal administration of tPA may provide enhance neurological recovery after stroke by promoting CST axonal remodeling.
Collapse
Affiliation(s)
- Ning Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China; Department of Neurology, Henry Ford Hospital, Detrot, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detrot, MI, United States; Department of Physics, Oakland University, Rochester, MI, United States
| | - Ye Xiong
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, United States
| | - Jian-Yong Qian
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Mei Lu
- Biostatistics and Research Epidemiology, Henry Ford Hospital, Detroit, MI, United States
| | - Dong Zhou
- Department of Neurology, Henry Ford Hospital, Detrot, MI, United States
| | - Li He
- Department of Neurology, Henry Ford Hospital, Detrot, MI, United States.
| | - Zhongwu Liu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
32
|
Iglesias-Rey R, Rodríguez-Yáñez M, Rodríguez-Castro E, Pumar JM, Arias S, Santamaría M, López-Dequidt I, Hervella P, Correa-Paz C, Sobrino T, Vivien D, Campos F, Castellanos M, Castillo J. Worse Outcome in Stroke Patients Treated with rt-PA Without Early Reperfusion: Associated Factors. Transl Stroke Res 2017; 9:347-355. [PMID: 29116527 PMCID: PMC6061244 DOI: 10.1007/s12975-017-0584-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023]
Abstract
Based on preclinical studies suggesting that recombinant tissue plasminogen activator (rt-PA) may promote ischemic brain injuries, we investigated in patients the possible risk of worse clinical outcome after rt-PA treatment as a result of its inability to resolve cerebral ischemia. Here, we designed a cohort study using a retrospective analysis of patients who received treatment with intravenous (4.5-h window) or intraarterial rt-PA, without or with thrombectomy. Controls were consecutive patients who did not receive recanalization treatment, who met all inclusion criteria. As a marker of reperfusion, we defined the variable of early neurological improvement as the difference between the score of the National Institute of Health Stroke Scale (NIHSS) (at admission and 24 h). The main variable was worsening of the patient’s functional situation in the first 3 months. To compare quantitative variables, we used Student’s t test or the Mann-Whitney test. To estimate the odds ratios of each independent variable in the patient’s worsening in the first 3 months, we used a logistic regression model. We included 1154 patients; 577 received rt-PA, and 577 served as controls. In the group of patients treated with rt-PA, 39.4% who did not present clinical reperfusion data developed worsening within 3 months after stroke compared with 3.5% of patients with reperfusion (P < 0.0001). These differences were not significant in the control group. In summary, administration of rt-PA intravenously or intraarterially without reperfusion within the first 24 h may be associated with a higher risk of functional deterioration in the first 3 months.
Collapse
Affiliation(s)
- Ramón Iglesias-Rey
- Clinical Neurosciences Research Laboratory, Department of Neurology, Clinical University Hospital, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain.
| | - Manuel Rodríguez-Yáñez
- Clinical Neurosciences Research Laboratory, Department of Neurology, Clinical University Hospital, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Emilio Rodríguez-Castro
- Clinical Neurosciences Research Laboratory, Department of Neurology, Clinical University Hospital, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - José Manuel Pumar
- Department of Neuroradiology, Clinical University Hospital, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Susana Arias
- Clinical Neurosciences Research Laboratory, Department of Neurology, Clinical University Hospital, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - María Santamaría
- Clinical Neurosciences Research Laboratory, Department of Neurology, Clinical University Hospital, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Iria López-Dequidt
- Clinical Neurosciences Research Laboratory, Department of Neurology, Clinical University Hospital, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Pablo Hervella
- Clinical Neurosciences Research Laboratory, Department of Neurology, Clinical University Hospital, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Clara Correa-Paz
- Clinical Neurosciences Research Laboratory, Department of Neurology, Clinical University Hospital, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory, Department of Neurology, Clinical University Hospital, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Denis Vivien
- Inserm, Inserm, UMR-S U1237, Physiopathology and Imaging of Neurological diseases, GIP Cyceron, Caen Normandie University, 14073, Caen, France
- CHU de Caen, Department of Clinical Research, Caen University Hospital, 14000, Caen, France
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory, Department of Neurology, Clinical University Hospital, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Mar Castellanos
- Department of Neurology, Biomedical Research Institute, University Hospital A Coruña, 15006, Corunna, Spain
| | - José Castillo
- Clinical Neurosciences Research Laboratory, Department of Neurology, Clinical University Hospital, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| |
Collapse
|
33
|
Wei CC, Kong YY, Hua X, Li GQ, Zheng SL, Cheng MH, Wang P, Miao CY. NAD replenishment with nicotinamide mononucleotide protects blood-brain barrier integrity and attenuates delayed tissue plasminogen activator-induced haemorrhagic transformation after cerebral ischaemia. Br J Pharmacol 2017; 174:3823-3836. [PMID: 28812311 DOI: 10.1111/bph.13979] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Tissue plasminogen activator (tPA) is the only approved pharmacological therapy for acute brain ischaemia; however, a major limitation of tPA is the haemorrhagic transformation that follows tPA treatment. Here, we determined whether nicotinamide mononucleotide (NMN), a key intermediate of nicotinamide adenine dinucleotide biosynthesis, affects tPA-induced haemorrhagic transformation. EXPERIMENTAL APPROACH Middle cerebral artery occlusion (MCAO) was achieved in CD1 mice by introducing a filament to the left MCA for 5 h. When the filament was removed for reperfusion, tPA was infused via the tail vein. A single dose of NMN was injected i.p. (300 mg·kg-1 ). Mice were killed at 24 h post ischaemia, and their brains were evaluated for brain infarction, oedema, haemoglobin content, apoptosis, neuroinflammation, blood-brain barrier (BBB) permeability, the expression of tight junction proteins (TJPs) and the activity/expression of MMPs. KEY RESULTS In the mice infused with tPA at 5 h post ischaemia, there were significant increases in mortality, brain infarction, brain oedema, brain haemoglobin level, neural apoptosis, Iba-1 staining (microglia activation) and myeloperoxidase staining (neutrophil infiltration). All these tPA-induced alterations were significantly prevented by NMN administration. Mechanistically, the delayed tPA treatment increased BBB permeability by down-regulating TJPs, including claudin-1, occludin and zonula occludens-1, and enhancing the activities and protein expression of MMP9 and MMP2. Similarly, NMN administration partly blocked these tPA-induced molecular changes. CONCLUSIONS AND IMPLICATIONS Our results demonstrate that NMN ameliorates tPA-induced haemorrhagic transformation in brain ischaemia by maintaining the integrity of the BBB.
Collapse
Affiliation(s)
- Chun-Chun Wei
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Yuan-Yuan Kong
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Xia Hua
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Guo-Qiang Li
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Si-Li Zheng
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Ming-He Cheng
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Pei Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China.,Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University, Shanghai, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
34
|
Renú A, Laredo C, Lopez-Rueda A, Llull L, Tudela R, San-Roman L, Urra X, Blasco J, Macho J, Oleaga L, Chamorro A, Amaro S. Vessel Wall Enhancement and Blood–Cerebrospinal Fluid Barrier Disruption After Mechanical Thrombectomy in Acute Ischemic Stroke. Stroke 2017; 48:651-657. [DOI: 10.1161/strokeaha.116.015648] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/22/2016] [Accepted: 12/19/2016] [Indexed: 01/23/2023]
Abstract
Background and Purpose—
Less than half of acute ischemic stroke patients treated with mechanical thrombectomy obtain permanent clinical benefits. Consequently, there is an urgent need to identify mechanisms implicated in the limited efficacy of early reperfusion. We evaluated the predictors and prognostic significance of vessel wall permeability impairment and its association with blood–cerebrospinal fluid barrier (BCSFB) disruption after acute stroke treated with thrombectomy.
Methods—
A prospective cohort of acute stroke patients treated with stent retrievers was analyzed. Vessel wall permeability impairment was identified as gadolinium vessel wall enhancement (GVE) in a 24- to 48-hour follow-up contrast-enhanced magnetic resonance imaging, and severe BCSFB disruption was defined as subarachnoid hemorrhage or gadolinium sulcal enhancement (present across >10 slices). Infarct volume was evaluated in follow-up magnetic resonance imaging, and clinical outcome was evaluated with the modified Rankin Scale at day 90.
Results—
A total of 60 patients (median National Institutes of Health Stroke Scale score, 18) were analyzed, of whom 28 (47%) received intravenous alteplase before mechanical thrombectomy. Overall, 34 (57%) patients had GVE and 27 (45%) had severe BCSFB disruption. GVE was significantly associated with alteplase use before thrombectomy and with more stent retriever passes, along with the presence of severe BCSFB disruption. GVE was associated with poor clinical outcome, and both GVE and severe BCSFB disruption were associated with increased final infarct volume.
Conclusions—
These findings may support the clinical relevance of direct vessel damage and BCSFB disruption after acute stroke and reinforce the need for further improvements in reperfusion strategies. Further validation in larger cohorts of patients is warranted.
Collapse
Affiliation(s)
- Arturo Renú
- From the Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain (A.R., C.L., L.L., X.U., A.C., S.A.); Radiology Department, Hospital Clinic, Barcelona, Spain (A.L.-R., L.S.-R., J.B., J.M., L.O.); and CIBER de Bioingeniería, Biomateriales y Nanomedicina, Group of Biomedical Imaging of the University of Barcelona, Spain (R.T.)
| | - Carlos Laredo
- From the Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain (A.R., C.L., L.L., X.U., A.C., S.A.); Radiology Department, Hospital Clinic, Barcelona, Spain (A.L.-R., L.S.-R., J.B., J.M., L.O.); and CIBER de Bioingeniería, Biomateriales y Nanomedicina, Group of Biomedical Imaging of the University of Barcelona, Spain (R.T.)
| | - Antonio Lopez-Rueda
- From the Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain (A.R., C.L., L.L., X.U., A.C., S.A.); Radiology Department, Hospital Clinic, Barcelona, Spain (A.L.-R., L.S.-R., J.B., J.M., L.O.); and CIBER de Bioingeniería, Biomateriales y Nanomedicina, Group of Biomedical Imaging of the University of Barcelona, Spain (R.T.)
| | - Laura Llull
- From the Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain (A.R., C.L., L.L., X.U., A.C., S.A.); Radiology Department, Hospital Clinic, Barcelona, Spain (A.L.-R., L.S.-R., J.B., J.M., L.O.); and CIBER de Bioingeniería, Biomateriales y Nanomedicina, Group of Biomedical Imaging of the University of Barcelona, Spain (R.T.)
| | - Raúl Tudela
- From the Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain (A.R., C.L., L.L., X.U., A.C., S.A.); Radiology Department, Hospital Clinic, Barcelona, Spain (A.L.-R., L.S.-R., J.B., J.M., L.O.); and CIBER de Bioingeniería, Biomateriales y Nanomedicina, Group of Biomedical Imaging of the University of Barcelona, Spain (R.T.)
| | - Luis San-Roman
- From the Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain (A.R., C.L., L.L., X.U., A.C., S.A.); Radiology Department, Hospital Clinic, Barcelona, Spain (A.L.-R., L.S.-R., J.B., J.M., L.O.); and CIBER de Bioingeniería, Biomateriales y Nanomedicina, Group of Biomedical Imaging of the University of Barcelona, Spain (R.T.)
| | - Xabier Urra
- From the Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain (A.R., C.L., L.L., X.U., A.C., S.A.); Radiology Department, Hospital Clinic, Barcelona, Spain (A.L.-R., L.S.-R., J.B., J.M., L.O.); and CIBER de Bioingeniería, Biomateriales y Nanomedicina, Group of Biomedical Imaging of the University of Barcelona, Spain (R.T.)
| | - Jordi Blasco
- From the Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain (A.R., C.L., L.L., X.U., A.C., S.A.); Radiology Department, Hospital Clinic, Barcelona, Spain (A.L.-R., L.S.-R., J.B., J.M., L.O.); and CIBER de Bioingeniería, Biomateriales y Nanomedicina, Group of Biomedical Imaging of the University of Barcelona, Spain (R.T.)
| | - Juan Macho
- From the Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain (A.R., C.L., L.L., X.U., A.C., S.A.); Radiology Department, Hospital Clinic, Barcelona, Spain (A.L.-R., L.S.-R., J.B., J.M., L.O.); and CIBER de Bioingeniería, Biomateriales y Nanomedicina, Group of Biomedical Imaging of the University of Barcelona, Spain (R.T.)
| | - Laura Oleaga
- From the Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain (A.R., C.L., L.L., X.U., A.C., S.A.); Radiology Department, Hospital Clinic, Barcelona, Spain (A.L.-R., L.S.-R., J.B., J.M., L.O.); and CIBER de Bioingeniería, Biomateriales y Nanomedicina, Group of Biomedical Imaging of the University of Barcelona, Spain (R.T.)
| | - Angel Chamorro
- From the Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain (A.R., C.L., L.L., X.U., A.C., S.A.); Radiology Department, Hospital Clinic, Barcelona, Spain (A.L.-R., L.S.-R., J.B., J.M., L.O.); and CIBER de Bioingeniería, Biomateriales y Nanomedicina, Group of Biomedical Imaging of the University of Barcelona, Spain (R.T.)
| | - Sergio Amaro
- From the Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain (A.R., C.L., L.L., X.U., A.C., S.A.); Radiology Department, Hospital Clinic, Barcelona, Spain (A.L.-R., L.S.-R., J.B., J.M., L.O.); and CIBER de Bioingeniería, Biomateriales y Nanomedicina, Group of Biomedical Imaging of the University of Barcelona, Spain (R.T.)
| |
Collapse
|
35
|
Leonetti C, Macrez R, Pruvost M, Hommet Y, Bronsard J, Fournier A, Perrigault M, Machin I, Vivien D, Clemente D, De Castro F, Maubert E, Docagne F. Tissue-type plasminogen activator exerts EGF-like chemokinetic effects on oligodendrocytes in white matter (re)myelination. Mol Neurodegener 2017; 12:20. [PMID: 28231842 PMCID: PMC5322587 DOI: 10.1186/s13024-017-0160-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/10/2017] [Indexed: 01/12/2023] Open
Abstract
Background The ability of oligodendrocyte progenitor cells (OPCs) to give raise to myelin forming cells during developmental myelination, normal adult physiology and post-lesion remyelination in white matter depends on factors which govern their proliferation, migration and differentiation. Tissue plasminogen activator (tPA) is a serine protease expressed in the central nervous system (CNS), where it regulates cell fate. In particular, tPA has been reported to protect oligodendrocytes from apoptosis and to facilitate the migration of neurons. Here, we investigated whether tPA can also participate in the migration of OPCs during CNS development and during remyelination after focal white matter lesion. Methods OPC migration was estimated by immunohistological analysis in spinal cord and corpus callosum during development in mice embryos (E13 to P0) and after white matter lesion induced by the stereotactic injection of lysolecithin in adult mice (1 to 21 days post injection). Migration was compared in these conditions between wild type and tPA knock-out animals. The action of tPA was further investigated in an in vitro chemokinesis assay. Results OPC migration along vessels is delayed in tPA knock-out mice during development and during remyelination. tPA enhances OPC migration via an effect dependent on the activation of epidermal growth factor receptor. Conclusion Endogenous tPA facilitates the migration of OPCs during development and during remyelination after white matter lesion by the virtue of its epidermal growth factor-like domain. Electronic supplementary material The online version of this article (doi:10.1186/s13024-017-0160-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camille Leonetti
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Richard Macrez
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Mathilde Pruvost
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Yannick Hommet
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Jérémie Bronsard
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Antoine Fournier
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Maxime Perrigault
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Isabel Machin
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain.,Grupo de Neuroinmuno-reparación, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Diego Clemente
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain.,Grupo de Neuroinmuno-reparación, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Fernando De Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain.,Grupo de Neurobiología del Desarrollo (GNDe), Instituto Cajal, CSIC, Madrid, Spain
| | - Eric Maubert
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Fabian Docagne
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France. .,Inserm, Centre Cyceron, Bvd Becquerel, BP5229, Caen Cedex, 14074, France.
| |
Collapse
|
36
|
Leys D, Hommet Y, Jacquet C, Moulin S, Sibon I, Mas JL, Moulin T, Giroud M, Sagnier S, Cordonnier C, Medeiros de Bustos E, Turc G, Ronzière T, Bejot Y, Detante O, Ouk T, Mendyk AM, Favrole P, Zuber M, Triquenot-Bagan A, Ozkul-Wermester O, Montoro FM, Lamy C, Faivre A, Lebouvier L, Potey C, Poli M, Hénon H, Renou P, Dequatre-Ponchelle N, Bodenant M, Debruxelles S, Rossi C, Bordet R, Vivien D. Proportion of single-chain recombinant tissue plasminogen activator and outcome after stroke. Neurology 2016; 87:2416-2426. [DOI: 10.1212/wnl.0000000000003399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/30/2016] [Indexed: 11/15/2022] Open
|
37
|
Zerna C, Hegedus J, Hill MD. Evolving Treatments for Acute Ischemic Stroke. Circ Res 2016; 118:1425-42. [DOI: 10.1161/circresaha.116.307005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/11/2016] [Indexed: 11/16/2022]
Abstract
The purpose of this article is to review advances in stroke treatment in the hyperacute period. With recent evolutions of technology in the fields of imaging, thrombectomy devices, and emergency room workflow management, as well as improvement in statistical methods and study design, there have been ground breaking changes in the treatment of acute ischemic stroke. We describe how stroke presents as a clinical syndrome and how imaging as the most important biomarker will help differentiate between stroke subtypes and treatment eligibility. The evolution of hyperacute treatment has led to the current standard of care: intravenous thrombolysis with tissue-type plasminogen activator and endovascular treatment for proximal vessel occlusion in the anterior cerebral circulation. All patients with acute ischemic stroke are in need of hyperacute secondary prevention because the risk of recurrence is highest closest to the index event. The dominant themes of modern stroke care are the use of neurovascular imaging and speed of diagnosis and treatment.
Collapse
Affiliation(s)
- Charlotte Zerna
- From the Calgary Stroke Program, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Janka Hegedus
- From the Calgary Stroke Program, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Michael D. Hill
- From the Calgary Stroke Program, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
38
|
van Overbeek EC, Staals J, Knottnerus ILH, ten Cate H, van Oostenbrugge RJ. Plasma tPA-Activity and Progression of Cerebral White Matter Hyperintensities in Lacunar Stroke Patients. PLoS One 2016; 11:e0150740. [PMID: 26942412 PMCID: PMC4778794 DOI: 10.1371/journal.pone.0150740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 02/18/2016] [Indexed: 11/18/2022] Open
Abstract
Introduction Tissue plasminogen activator (tPA)-activity and plasminogen activator inhibitor type 1 (PAI-1) antigen are considered to be haemostasis-related markers of endothelial activation and relate to presence of cerebral white matter hyperintensities (WMH) as was earlier shown in a cross-sectional study. We investigated whether tPA-activity and PAI-1 levels are associated with WMH progression in a longitudinal study. Methods In 127 first-ever lacunar stroke patients in whom baseline brain MRI and plasma levels of tPA-activity and PAI-1-antigen were available, we obtained a 2-year follow-up MRI. We assessed WMH progression by a visual WMH change scale. We determined the relationship between levels of tPA-activity and PAI-1 and WMH progression, by logistic regression analysis. Results Plasma tPA-activity was associated with periventricular WMH progression (OR 2.36, 95% CI 1.01–5.49, with correction for age and sex and baseline presence of WMH), but not with deep or any (periventricular and/or deep) WMH progression. PAI-1 levels were lower in patients with WMH progression, but these results were not significant. Conclusion We found a relationship between plasma tPA-activity and progression of periventricular WMH. More research is needed to determine whether there is a (direct) role of tPA in the development and progression of WMH.
Collapse
Affiliation(s)
- Ellen C. van Overbeek
- Department of Neurology, Maastricht University Medical Centre (MUMC), Maastricht, the Netherlands
- * E-mail:
| | - Julie Staals
- Department of Neurology, Maastricht University Medical Centre (MUMC), Maastricht, the Netherlands
- Cardiovascular Research Institute Maastricht, MUMC, Maastricht, the Netherlands
| | | | - Hugo ten Cate
- Cardiovascular Research Institute Maastricht, MUMC, Maastricht, the Netherlands
- Department of Internal Medicine, MUMC, Maastricht, the Netherlands
| | - Robert J. van Oostenbrugge
- Department of Neurology, Maastricht University Medical Centre (MUMC), Maastricht, the Netherlands
- Cardiovascular Research Institute Maastricht, MUMC, Maastricht, the Netherlands
| |
Collapse
|
39
|
Hoirisch-Clapauch S, Amaral OB, Mezzasalma MAU, Panizzutti R, Nardi AE. Dysfunction in the coagulation system and schizophrenia. Transl Psychiatry 2016; 6:e704. [PMID: 26731441 PMCID: PMC5068878 DOI: 10.1038/tp.2015.204] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 01/24/2023] Open
Abstract
Although different hypotheses have been formulated to explain schizophrenia pathogenesis, the links between them are weak. The observation that five psychotic patients on chronic warfarin therapy for deep-vein thrombosis showed long-term remission of psychotic symptoms made us suspect that abnormalities in the coagulation pathway, specifically low tissue plasminogen activator (tPA) activity, could be one of the missing links. Our hypothesis is supported by a high prevalence of conditions affecting tPA activity in drug-naive schizophrenia, such as antiphospholipid antibodies, elevated cytokine levels, hyperinsulinemia and hyperhomocysteinemia. We recently screened a group of schizophrenia patients and controls for conditions affecting tPA activity. Free-protein S deficiency was highly prevalent among patients, but not found in controls. Free-protein S and functional protein C are natural anticoagulants that form complexes that inhibit tPA inhibitors. All participants had normal protein C levels, suggesting that protein S could have a role in schizophrenia, independent of protein C. Chronic patients and those studied during acute episodes had between three and six conditions affecting tPA and/or protein S activity, while patients in remission had up to two, which led us to postulate that multiple conditions affecting tPA and/or protein S activity could contribute to the full expression of schizophrenia phenotype. This paper describes the physiological roles of tPA and protein S, reviewing how their activity influences pathogenesis and comorbidity of schizophrenia. Next, it analyzes how activity of tPA and protein S is influenced by biochemical abnormalities found in schizophrenia. Last, it suggests future directions for research, such as studies on animal models and on therapeutic approaches for schizophrenia aiming at increasing tPA and protein S activity.
Collapse
Affiliation(s)
- S Hoirisch-Clapauch
- Department of Hematology, Hospital Federal dos Servidores do Estado, Ministry of Health, Rio de Janeiro, Brazil
| | - O B Amaral
- Department of Medical Biochemistry, Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M A U Mezzasalma
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute for Translational Medicine, Instituto Nacional de Ciência e Tecnologia - Translacional em Medicina, Rio de Janeiro, Brazil
| | - R Panizzutti
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Basic-Clinical Neuroscience Program, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A E Nardi
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute for Translational Medicine, Instituto Nacional de Ciência e Tecnologia - Translacional em Medicina, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Rehan M, Sagar A, Sharma V, Mishra S, Ashish, Sahni G. Penta-L-lysine Potentiates Fibrin-Independent Activity of Human Tissue Plasminogen Activator. J Phys Chem B 2015; 119:13271-7. [PMID: 26447340 DOI: 10.1021/acs.jpcb.5b07735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The therapeutic action of tissue plasminogen activator (t-PA) is a two-step process: (1) binding to lysine-rich fibrin (Km event) and (2) converting local plasminogen into plasmin (Kcat event). Overcoming limitations of other structural biophysics methods, we wanted to employ small-angle X-ray scattering (SAXS) to visualize what shape changes occur/accompany t-PA activation, but the prime hurdle was the polydisperse nature of the fibrin, which occluded scattering information from t-PA. Earlier, larger polylysine peptides have been used to potentiate activation of t-PA, so while screening short polylysine peptides as alternatives to fibrin or larger peptides, we found that penta-polylysine (P5) specifically activates t-PA in a dose-dependent manner, averaging to almost 3-fold more than in the absence of any peptide. SAXS data analysis confirmed that P5 does not induce association of t-PA molecules, and a narrower peak profile of the Kratky plot indicated that P5 binding quenches inherent motion in t-PA. Shape reconstruction of t-PA ∓ P5 revealed that P5 closes the "gap" between the two gross domains of t-PA, viz. fused F/E, K1 and K2 domains, and the P domain. Docking experiments suggested that, while other polylysine peptides preferentially interacted with the surfaces of kringle domains, P5 "slipped into" the gap/groove between K2 and P domains, thereby mediating a substantial increase in the number of long-range interactions between the K2 domain and exosites in the P domain. We report here dissection of shape events involved in between Km/Kcat steps of t-PA activation, which can pave the way toward the search for small molecule function regulator(s) of t-PA.
Collapse
Affiliation(s)
- Mohammad Rehan
- CSIR-Institute of Microbial Technology , Sector 39-A, Chandigarh, 160036, India
| | - Amin Sagar
- CSIR-Institute of Microbial Technology , Sector 39-A, Chandigarh, 160036, India
| | - Vandna Sharma
- CSIR-Institute of Microbial Technology , Sector 39-A, Chandigarh, 160036, India
| | - Sanskruti Mishra
- CSIR-Institute of Microbial Technology , Sector 39-A, Chandigarh, 160036, India
| | - Ashish
- CSIR-Institute of Microbial Technology , Sector 39-A, Chandigarh, 160036, India
| | - Girish Sahni
- CSIR-Institute of Microbial Technology , Sector 39-A, Chandigarh, 160036, India
| |
Collapse
|
41
|
Lemarchand E, Maubert E, Haelewyn B, Ali C, Rubio M, Vivien D. Stressed neurons protect themselves by a tissue-type plasminogen activator-mediated EGFR-dependent mechanism. Cell Death Differ 2015; 23:123-31. [PMID: 26068590 DOI: 10.1038/cdd.2015.76] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 11/09/2022] Open
Abstract
In the central nervous system, tissue-type plasminogen activator (tPA) has been associated with both pro-death and prosurvival actions on neurons. In most cases, this has been related to exogenous tPA. In the present study, we addressed the influence of endogenous tPA. We first observed an increased transcription of tPA following either in vivo global brain ischemia in rats or in vitro oxygen glucose deprivation (OGD) on mice and rats hippocampal slices. Hippocampal slices from tPA-deficient mice were more sensitive to OGD than wild-type slices. Pharmacological approaches targeting the known receptors of tPA revealed that only the inhibition of phosphorylation of epidermal growth factor receptors (EGFRs) prevented the neuroprotective effect of endogenous tPA. This study shows that ischemic hippocampal neurons overproduce endogenous tPA as an intend to protect themselves from ischemic death, by a mechanism involving an activation of EGFRs. Thus, strategies contributing to promote either endogenous production of tPA or its associated EGFR-linked signaling pathway may have beneficial effects following brain injuries such as stroke.
Collapse
Affiliation(s)
- E Lemarchand
- INSERM UMR-S U919 Serine Proteases and Pathophysiology of the Neurovascular Unit, Université Caen Basse Normandie, Bd Henri Becquerel, GIP Cyceron, Caen, France
| | - E Maubert
- INSERM UMR-S U919 Serine Proteases and Pathophysiology of the Neurovascular Unit, Université Caen Basse Normandie, Bd Henri Becquerel, GIP Cyceron, Caen, France
| | - B Haelewyn
- ESRP (European Stroke Research Platform), Centre Universitaire de Ressources Biologiques (CURB), Université Caen Basse Normandie, Caen, France
| | - C Ali
- INSERM UMR-S U919 Serine Proteases and Pathophysiology of the Neurovascular Unit, Université Caen Basse Normandie, Bd Henri Becquerel, GIP Cyceron, Caen, France
| | - M Rubio
- INSERM UMR-S U919 Serine Proteases and Pathophysiology of the Neurovascular Unit, Université Caen Basse Normandie, Bd Henri Becquerel, GIP Cyceron, Caen, France
| | - D Vivien
- INSERM UMR-S U919 Serine Proteases and Pathophysiology of the Neurovascular Unit, Université Caen Basse Normandie, Bd Henri Becquerel, GIP Cyceron, Caen, France
| |
Collapse
|