1
|
Castillo-González J, González-Rey E. Beyond wrecking a wall: revisiting the concept of blood-brain barrier breakdown in ischemic stroke. Neural Regen Res 2025; 20:1944-1956. [PMID: 39254550 PMCID: PMC11691464 DOI: 10.4103/nrr.nrr-d-24-00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/17/2024] [Accepted: 07/04/2024] [Indexed: 09/11/2024] Open
Abstract
The blood-brain barrier constitutes a dynamic and interactive boundary separating the central nervous system and the peripheral circulation. It tightly modulates the ion transport and nutrient influx, while restricting the entry of harmful factors, and selectively limiting the migration of immune cells, thereby maintaining brain homeostasis. Despite the well-established association between blood-brain barrier disruption and most neurodegenerative/neuroinflammatory diseases, much remains unknown about the factors influencing its physiology and the mechanisms underlying its breakdown. Moreover, the role of blood-brain barrier breakdown in the translational failure underlying therapies for brain disorders is just starting to be understood. This review aims to revisit this concept of "blood-brain barrier breakdown," delving into the most controversial aspects, prevalent challenges, and knowledge gaps concerning the lack of blood-brain barrier integrity. By moving beyond the oversimplistic dichotomy of an "open"/"bad" or a "closed"/"good" barrier, our objective is to provide a more comprehensive insight into blood-brain barrier dynamics, to identify novel targets and/or therapeutic approaches aimed at mitigating blood-brain barrier dysfunction. Furthermore, in this review, we advocate for considering the diverse time- and location-dependent alterations in the blood-brain barrier, which go beyond tight-junction disruption or brain endothelial cell breakdown, illustrated through the dynamics of ischemic stroke as a case study. Through this exploration, we seek to underscore the complexity of blood-brain barrier dysfunction and its implications for the pathogenesis and therapy of brain diseases.
Collapse
Affiliation(s)
- Julia Castillo-González
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada, Spain
| | - Elena González-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada, Spain
| |
Collapse
|
2
|
Lu W, Wen J. The relationship among H 2S, neuroinflammation and MMP-9 in BBB injury following ischemic stroke. Int Immunopharmacol 2025; 146:113902. [PMID: 39724730 DOI: 10.1016/j.intimp.2024.113902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Blood-brain barrier (BBB) is located at the interface between the central nervous system (CNS) and the circulatory system, which maintains the microenvironmental homeostasis of the CNS. BBB damage is a result of CNS diseases, including ischemic stroke, and is a cause of CNS deterioration. Cerebral ischemia unleashes a profound inflammatory response to remove the damaged tissue in the CNS and prepare the brain for repair. However, the excessive neuroinflammation following stroke onset is associated with BBB breakdown, resulting in neuronal injury and worse neurological outcomes. Additionally, matrix metalloproteinases (MMPs) are likewise responsible for the BBB injury and participate in the pathological processes of neuroinflammation following ischemic stroke. Hydrogen sulfide (H2S) is one of gaseous signaling and freely diffusing molecules. Low concentration of H2S yields the neuroprotection against BBB damage following stroke. This review discussed the current knowledge about the detrimental roles of neuroinflammation and MMPs in BBB injury following ischemic stroke. Specifically, we provided an updated overview of H2S in protecting against BBB injury following ischemic stroke via anti-neuroinflammation and inhibiting MMP-9.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Medical Branch, Hefei Technology College, Hefei, China.
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
Raveena Nagareddy, Kim JH, Kim JH, Thomas RG, Choi KH, Jeong YY. Reactive Oxygen Species-Responsive Chitosan-Bilirubin Nanoparticles Loaded with Statin for Treatment of Cerebral Ischemia. Biomater Res 2024; 28:0097. [PMID: 39450150 PMCID: PMC11499631 DOI: 10.34133/bmr.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Cerebral ischemia impairs blood circulation, leading to elevated reactive oxygen species (ROS) production. A ROS-responsive delivery of drugs can enhance the therapeutic efficacy and minimize the side effects. There is insufficient evidence on the impact of ROS-responsive nanoparticles on ischemic stroke. We developed ROS-responsive chitosan-bilirubin (ChiBil) nanoparticles to target acute ischemic lesions and investigated the effect of atorvastatin-loaded ROS-responsive ChiBil. We randomly assigned rats with transient middle cerebral artery occlusion (MCAO) to 4 groups: saline, Statin, ChiBil, and ChiBil-Statin. These groups were treated daily via the tail vein for 7 d. Behavioral assessment, magnetic resonance (MR) imaging, evaluation of neuroinflammation, blood-brain barrier (BBB) integrity, apoptosis, and neurogenesis after stroke were conducted. In vitro, results showed nanoparticle uptake and reduced intracellular ROS, lipid peroxidation, and inflammatory cytokines (IL-6 and TNF-α). In vivo, results showed improved motor deficits and decreased infarct volumes on MR images in the ChiBil-Statin group compared with the Control group on day 7 (P < 0.05). Furthermore, the expression of inflammatory cytokines such as IL-1β and IL-6 was reduced in the ChiBil-Statin group compared with the Control group (P < 0.05). Improvements in BBB integrity, apoptosis, and neurogenesis were observed in the ChiBil-Statin group. The findings demonstrated that intravenous ROS-responsive multifunctional ChiBil-Statin could effectively deliver drugs to the ischemic brain, exerting marked synergistic pleiotropic neuroprotective effects. Therefore, ChiBil-Statin holds promise as a targeted therapy for ischemic vascular diseases characterized by increased ROS production, leading to new avenues for future research and potential clinical applications.
Collapse
Affiliation(s)
- Raveena Nagareddy
- Department of Biomedical Sciences,
Chonnam National University Medical School and Hwasun Hospital, Hwasun, South Korea
| | - Ja-Hae Kim
- Department of Nuclear Medicine,
Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Ji-Hye Kim
- Department of Neurology,
Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Reju George Thomas
- Department of Radiology,
Chonnam National University Medical School and Hwasun Hospital, Hwasun, South Korea
| | - Kang-Ho Choi
- Department of Neurology,
Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Yong-Yeon Jeong
- Department of Radiology,
Chonnam National University Medical School and Hwasun Hospital, Hwasun, South Korea
| |
Collapse
|
4
|
Lochhead JJ, Ronaldson PT, Davis TP. The role of oxidative stress in blood-brain barrier disruption during ischemic stroke: Antioxidants in clinical trials. Biochem Pharmacol 2024; 228:116186. [PMID: 38561092 PMCID: PMC11410550 DOI: 10.1016/j.bcp.2024.116186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Ischemic stroke is one of the leading causes of death and disability. Occlusion and reperfusion of cerebral blood vessels (i.e., ischemia/reperfusion (I/R) injury) generates reactive oxygen species (ROS) that contribute to brain cell death and dysfunction of the blood-brain barrier (BBB) via oxidative stress. BBB disruption influences the pathogenesis of ischemic stroke by contributing to cerebral edema, hemorrhagic transformation, and extravasation of circulating neurotoxic proteins. An improved understanding of mechanisms for ROS-associated alterations in BBB function during ischemia/reperfusion (I/R) injury can lead to improved treatment paradigms for ischemic stroke. Unfortunately, progress in developing ROS targeted therapeutics that are effective for stroke treatment has been slow. Here, we review how ROS are produced in response to I/R injury, their effects on BBB integrity (i.e., tight junction protein complexes, transporters), and the utilization of antioxidant treatments in ischemic stroke clinical trials. Overall, knowledge in this area provides a strong translational framework for discovery of novel drugs for stroke and/or improved strategies to mitigate I/R injury in stroke patients.
Collapse
Affiliation(s)
- Jeffrey J Lochhead
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| | - Patrick T Ronaldson
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Thomas P Davis
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| |
Collapse
|
5
|
Xie Y, Wu M, Li Y, Zhao Y, Chen S, Yan E, Huang Z, Xie M, Yuan K, Qin C, Zhang X. Low caveolin-1 levels and symptomatic intracranial haemorrhage risk in large-vessel occlusive stroke patients after endovascular thrombectomy. Eur J Neurol 2024; 31:e16342. [PMID: 38757755 PMCID: PMC11235756 DOI: 10.1111/ene.16342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND AND PURPOSE Caveolin-1 (Cav-1) is reported to mediate blood-brain barrier integrity after ischaemic stroke. Our purpose was to assess the role of circulating Cav-1 levels in predicting symptomatic intracranial haemorrhage (sICH) amongst ischaemic stroke patients after endovascular thrombectomy (EVT). METHODS Patients with large-vessel occlusive stroke after EVT from two stroke centres were prospectively included. Serum Cav-1 level was tested after admission. sICH was diagnosed according to the Heidelberg Bleeding Classification. RESULTS Of 325 patients (mean age 68.6 years; 207 men) included, 47 (14.5%) were diagnosed with sICH. Compared with patients without sICH, those with sICH had a lower concentration of Cav-1. After adjusting for potential confounders, multivariate regression analysis demonstrated that the increased Cav-1 level was associated with a lower sICH risk (odds ratio 0.055; 95% confidence interval 0.005-0.669; p = 0.038). Similar results were obtained when Cav-1 levels were analysed as a categorical variable. Using a logistic regression model with restricted cubic splines, a linear and negative association of Cav-1 concentration was found with sICH risk (p = 0.001 for linearity). Furthermore, the performance of the conventional risk factors model in predicting sICH was substantially improved after addition of the Cav-1 levels (integrated discrimination index 2.7%, p = 0.002; net reclassification improvement 39.7%, p = 0.007). CONCLUSIONS Our data demonstrate that decreased Cav-1 levels are related to sICH after EVT. Incorporation of Cav-1 into clinical decision-making may help to identify patients at a high risk of sICH and warrants further consideration.
Collapse
Affiliation(s)
- Yi Xie
- Department of NeurologyAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Min Wu
- Department of NeurologyJinling Hospital, Nanjing Medical UniversityNanjingChina
| | - Yun Li
- Department of NeurologyAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Ying Zhao
- Department of NeurologyAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Shuaiyu Chen
- Department of NeurologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - E. Yan
- Department of NeurologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Zhihang Huang
- Department of NeurologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Mengdi Xie
- Department of NeurologyAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Kang Yuan
- Department of NeurologyAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Chunhua Qin
- Department of NeurologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Xiaohao Zhang
- Department of NeurologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| |
Collapse
|
6
|
Sun X, Liu Z, Zhou L, Ma R, Zhang X, Wang T, Fu F, Wang Y. Escin avoids hemorrhagic transformation in ischemic stroke by protecting BBB through the AMPK/Cav-1/MMP-9 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155071. [PMID: 37716034 DOI: 10.1016/j.phymed.2023.155071] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Hemorrhagic transformation (HT) seriously affects the clinical application of recombinant tissue plasminogen activator (rt-PA). The main strategy for combating HT is to keep the blood-brain barrier (BBB) stable. Escin is the active ingredient of Aesculus hippocastanum and a natural mixture of triterpene saponins, and may play a part in mitigation of HT. PURPOSE This study sought to investigate the effect of Escin in improving rt-PA-induced HT, explore possible mechanisms, and provide new ideas for the treatment of clinical HT. STUDY DESIGN AND METHODS In in vivo experiments, transient middle cerebral artery occlusion (tMCAO) was undertaken in 6-week-old and 12-month-old mice, and rt-PA was administered to induce HT injury. The inhibitory effect of Escin on HT and its protective effect on neurobehavior, the BBB, and cerebrovascular endothelial cells was determined. In in vitro experiments, bEnd.3 cells were injured by oxygen-glucose deprivation/reperfusion (OGD/R) and rt-PA. The protective effect of Escin was measured by the CCK8 assay, release of lactate dehydrogenase (LDH), and expression of tight junction (TJ) proteins. In mechanistic studies, the effect of Escin on the adenosine monophosphate-activated kinase / caveolin-1 / matrix metalloprotease-9 (AMPK/Cav-1/MMP-9) pathway was investigated by employing AMPK inhibitor and Cav-1 siRNA. RESULTS In mice suffering from ischemia, rt-PA caused HT as well as damage to the BBB and cerebrovascular endothelial cells. Escin reduced the infarct volume, cerebral hemorrhage, improved neurobehavioral deficits, and maintained BBB integrity in rt-PA-treated tMCAO mice while attenuating bEnd.3 cells damage caused by rt-PA and OGD/R injury. Under physiological and pathological conditions, Escin increased the expression of p-AMPK and Cav-1, leading to decreased expression of MMP-9, which further attenuated damage to cerebrovascular endothelial cells, and these effects were verified with AMPK inhibitor and Cav-1 siRNA. CONCLUSION We revealed important details of how Escin protects cerebrovascular endothelial cells from HT, these effects were associated with the AMPK/Cav-1/MMP-9 pathway. This study provides experimental foundation for the development of new drugs to mitigate rt-PA-induced HT and the discovery of new clinical application for Escin.
Collapse
Affiliation(s)
- Xiaohui Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Zhaofeng Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Lin Zhou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Runchen Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Xiaofan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Yunjie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China.
| |
Collapse
|
7
|
Cao D, Li B, Cao C, Zhang J, Li X, Li H, Yu Z, Shen H, Ye M. Caveolin-1 aggravates neurological deficits by activating neuroinflammation following experimental intracerebral hemorrhage in rats. Exp Neurol 2023; 368:114508. [PMID: 37598879 DOI: 10.1016/j.expneurol.2023.114508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/30/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is one of the stroke subtypes with the highest mortality. Secondary brain injury is associated with neurological dysfunction and poor prognosis after ICH. Caveolin-1 (CAV1) is the key protein of Caveolae. Previous studies have shown that CAV1 plays an important role in central nervous system diseases, and pointed out that in a collagenase-induced ICH model in vivo, CAV1 is associated with neuroinflammatory activation and poor neurological prognosis. In this study, we explore the role and the molecular mechanism of CAV1 in brain injury via a rat autologous whole blood injection model and an in vitro model of ICH. METHODS Adult male Sprague-Dawley rats ICH model was induced through autologous whole blood injecting into the right basal ganglia. The changes in protein levels of CAV1 in brain tissues of ICH rats were detected by western blot analysis. The immunofluorescent staining was used to explore the changes of CAV1 in microglia/macrophages (Iba1+ cells). Lentivirus vectors were administered by intracerebroventricular injection to induce CAV1 overexpression and knockdown respectively. The western blot analysis, immunofluorescence staining, enzyme-linked immunosorbent assay, terminal deoxynucleotidyl transferase dUTP nick end labeling and Nissl staining were performed to explore the role of CAV1 in secondary brain injury after ICH. Meanwhile, the rotarod test, foot fault test, adhesive-removal test, and Modified Garcia Test, as well as Morris Water Maze test, were performed to evaluate the behavioral cognitive impairment of ICH rats after genetic intervention. Additionally, BV-2 cells treated with oxygen hemoglobin for 24 h, were used as an in vitro model of ICH in this study to explore the molecular mechanism of CAV1 in brain injury; we performed western blot analysis after precise regulation of CAV1 in BV2 cells to observe changes in protein levels and phosphorylated levels of C-Src, IKK-β, and NF-κB. RESULTS The expression of CAV1 in microglia/macrophages (Iba1+ cells) was elevated and reached the peak at 24 h after ICH. CAV1 knockdown ameliorated ICH-induced neurological deficits, while CAV1 overexpression significantly worsened neurological dysfunction of ICH rats. CAV1 knockdown attenuated cellular apoptosis and promoted neuronal survival in brain tissues of ICH rats, while the ICH rats with CAV1 overexpression presented more cellular apoptosis and neuronal loss. Meanwhile, CAV1 knockdown inhibited the microglia activation and neuroinflammatory response, while CAV1 overexpression abolished these effects and aggravated neuroinflammation in brain tissues of ICH rats. Additionally, by inducing to CAV1 knockdown in BV2 cells in an in vitro model of ICH, the levels of p-C-Src, CAV-1, p-CAV-1, and p-IKK-β in cytoplasm and the level of NF-κB p65 in nucleus of BV2 cells were significantly decreased, while they were increased by inducing to CAV1 overexpression. CONCLUSIONS Our research revealed CAV1 aggravated neurological dysfunction in a rat ICH model. CAV1 knockdown exerted neuroprotective effect by suppressing microglia activation and neuroinflammation after ICH might via the C-Src/CAV1/IKK-β/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Demao Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Department of neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Bing Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Department of Neurosurgery, Yancheng City No.1 People's Hospital, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng 224006, Jiangsu Province, China
| | - Cheng Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Department of Neurocritical Intensive Care Unit, Jiangyin Clinical College of Xuzhou Medical College, Jiangyin, Jiangsu Province, China
| | - Juyi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Ming Ye
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| |
Collapse
|
8
|
Li T, Cheng S, Xu L, Lin P, Shao M. Yue-bi-tang attenuates adriamycin-induced nephropathy edema through decreasing renal microvascular permeability via inhibition of the Cav-1/ eNOS pathway. Front Pharmacol 2023; 14:1138900. [PMID: 37229256 PMCID: PMC10203565 DOI: 10.3389/fphar.2023.1138900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Edema is one of the most typical symptoms of nephrotic syndrome. Increased vascular permeability makes a significant contribution to the progression of edema. Yue-bi-tang (YBT) is a traditional formula with excellent clinical efficacy in the treatment of edema. This study investigated the effect of YBT on renal microvascular hyperpermeability-induced edema in nephrotic syndrome and its mechanism. In our study, the content of target chemical components of YBT was identified using UHPLC-Q-Orbitrap HRMS analysis. A nephrotic syndrome model was replicated based on male Sprague-Dawley rats with Adriamycin (6.5 mg/kg) by tail vein injection. The rats were randomly divided into control, model, prednisone, and YBT (22.2 g/kg, 11.1 g/kg, and 6.6 g/kg) groups. After 14 d of treatment, the severity of renal microvascular permeability, edema, the degree of renal injury, and changes in the Cav-1/eNOS pathway were assessed. We found that YBT could regulate renal microvascular permeability, alleviate edema, and reduce renal function impairment. In the model group, the protein expression of Cav-1 was upregulated, whereas VE-cadherin was downregulated, accompanied by the suppression of p-eNOS expression and activation of the PI3K pathway. Meanwhile, an increased NO level in both serum and kidney tissues was observed, and the above situations were improved with YBT intervention. It thus indicates YBT exerts therapeutic effects on the edema of nephrotic syndrome, as it improves the hyperpermeability of renal microvasculature, and that YBT is engaged in the regulation of Cav-1/eNOS pathway-mediated endothelial function.
Collapse
Affiliation(s)
- Tingting Li
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Su Cheng
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Xu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pinglan Lin
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Minghai Shao
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Zhang Y, Ren Y, Zhang Y, Li Y, Xu C, Peng Z, Jia Y, Qiao S, Zhang Z, Shi L. T-cell infiltration in the central nervous system and their association with brain calcification in Slc20a2-deficient mice. Front Mol Neurosci 2023; 16:1073723. [PMID: 36741925 PMCID: PMC9894888 DOI: 10.3389/fnmol.2023.1073723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Primary familial brain calcification (PFBC) is a rare neurodegenerative and neuropsychiatric disorder characterized by bilateral symmetric intracranial calcification along the microvessels or inside neuronal cells in the basal ganglia, thalamus, and cerebellum. Slc20a2 homozygous (HO) knockout mice are the most commonly used model to simulate the brain calcification phenotype observed in human patients. However, the cellular and molecular mechanisms related to brain calcification, particularly at the early stage much prior to the emergence of brain calcification, remain largely unknown. In this study, we quantified the central nervous system (CNS)-infiltrating T-cells of different age groups of Slc20a2-HO and matched wild type mice and found CD45+CD3+ T-cells to be significantly increased in the brain parenchyma, even in the pre-calcification stage of 1-month-old -HO mice. The accumulation of the CD3+ T-cells appeared to be associated with the severity of brain calcification. Further immunophenotyping revealed that the two main subtypes that had increased in the brain were CD3+ CD4- CD8- and CD3+ CD4+ T-cells. The expression of endothelial cell (EC) adhesion molecules increased, while that of tight and adherents junction proteins decreased, providing the molecular precondition for T-cell recruitment to ECs and paracellular migration into the brain. The fusion of lymphocytes and EC membranes and transcellular migration of CD3-related gold particles were captured, suggesting enhancement of transcytosis in the brain ECs. Exogenous fluorescent tracers and endogenous IgG and albumin leakage also revealed an impairment of transcellular pathway in the ECs. FTY720 significantly alleviated brain calcification, probably by reducing T-cell infiltration, modulating neuroinflammation and ossification process, and enhancing the autophagy and phagocytosis of CNS-resident immune cells. This study clearly demonstrated CNS-infiltrating T-cells to be associated with the progression of brain calcification. Impairment of blood-brain barrier (BBB) permeability, which was closely related to T-cell invasion into the CNS, could be explained by the BBB alterations of an increase in the paracellular and transcellular pathways of brain ECs. FTY720 was found to be a potential drug to protect patients from PFBC-related lesions in the future.
Collapse
Affiliation(s)
- Yi Zhang
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yaqiong Ren
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yueni Zhang
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Ying Li
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Chao Xu
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziyue Peng
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Jia
- Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China,Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Shupei Qiao
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Zitong Zhang
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Lei Shi
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China,*Correspondence: Lei Shi,
| |
Collapse
|
10
|
Chen Z, Wang Z, Liu D, Zhao X, Ning S, Liu X, Wang G, Zhang F, Luo F, Yao J, Tian X. Critical role of caveolin-1 in intestinal ischemia reperfusion by inhibiting protein kinase C βII. Free Radic Biol Med 2023; 194:62-70. [PMID: 36410585 DOI: 10.1016/j.freeradbiomed.2022.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
Intestinal ischemia reperfusion (I/R) is a common clinical pathological process. We previously reported that pharmacological inhibition of protein kinase C (PKC) βII with a specific inhibitor attenuated gut I/R injury. However, the endogenous regulatory mechanism of PKCβII inactivation is still unclear. Here, we explored the critical role of caveolin-1 (Cav1) in protecting against intestinal I/R injury by regulating PKCβII inactivation. PKCβII translocated to caveolae and bound with Cav1 after intestinal I/R. Cav1 was highly expressed in the intestine of mice with I/R and IEC-6 cells stimulated with hypoxia/reoxygenation (H/R). Cav1-knockout (KO) mice suffered from worse intestinal injury after I/R than wild-type (WT) mice and showed extremely low survival due to exacerbated systemic inflammatory response syndrome (SIRS) and remote organ (lung and liver) injury. Cav1 deficiency resulted in excessive PKCβII activation and increased oxidative stress and apoptosis after intestinal I/R. Full-length Cav1 scaffolding domain peptide (CSP) suppressed excessive PKCβII activation and protected the gut against oxidative stress and apoptosis due to I/R injury. In summary, Cav1 could regulate PKCβII endogenous inactivation to alleviate intestinal I/R injury. This finding may represent a novel therapeutic strategy for the prevention and treatment of intestinal I/R injury.
Collapse
Affiliation(s)
- Zhao Chen
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China
| | - Zhecheng Wang
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China
| | - Deshun Liu
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China
| | - Xuzi Zhao
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China
| | - Shili Ning
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China
| | - Xingming Liu
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China
| | - Guangzhi Wang
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China
| | - Feng Zhang
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China
| | - Fuwen Luo
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China
| | - Xiaofeng Tian
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China.
| |
Collapse
|
11
|
Zhang L, Wang C, Zhao M, Li X, Qu H, Xu J, Li D. Prognostic Values Serum Cav-1 and NGB Levels in Early Neurological Deterioration After Intravenous Thrombolysis in Patients with Acute Ischemic Stroke. Clin Appl Thromb Hemost 2023; 29:10760296231219707. [PMID: 38092682 PMCID: PMC10722930 DOI: 10.1177/10760296231219707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Early neurological deterioration after intravenous thrombolysis (IAT) leads to increased mortality and morbidity in patients with acute ischemic stroke (AIS). This study investigated the correlation between serum Cav-1 and NGB levels and END after IAT and explored their predictive values for poor prognosis of AIS. Totally 210 patients with AIS who underwent IAT within 4.5 h of onset were included and assigned into END group (n = 90) and Non-END group (n = 120). ELISA was used to detect serum Cav-1 and NGB levels before IAT in AIS patients. The prognosis of END patients after 3 months of treatment was evaluated using the modified Rankin Scale. Logistic multifactorial regression was used to analyze independent risk factors for END and poor prognosis after IAT. ROC curve was used to analyze the predictive effect of Cav-1 and NGB on END and poor prognosis after IAT. The area under the ROC curve was analyzed by MedCalc comparison. Compared with the Non-END group, serum Cav-1 was lower and NGB was higher in the END group. Cav-1 and NGB were independent risk factors for END after IAT. Cav-1 + NGB better predicted END after IAT than Cav-1 or NGB alone. Cav-1 and NGB were independent risk factors for END poor prognosis after IAT. Cav-1 combined with NGB better predicted poor prognosis of END after IAT than Cav-1 or NGB alone. Serum Cav-1 combined with NGB may assist in predicting the risk of END occurrence and poor prognosis after IAT in patients with AIS.
Collapse
Affiliation(s)
- Lihong Zhang
- Department of Neurointervention and Neurological Intensive Care, Dalian Central Hospital Affiliated to Dalian University of Technology, Dalian City, Liaoning Province, China
| | - Cui Wang
- Department of Neurology, Dalian Central Hospital Affiliated to Dalian University of Technology, Dalian City, Liaoning Province, China
| | - Manhong Zhao
- Department of Neurointervention and Neurological Intensive Care, Dalian Central Hospital Affiliated to Dalian University of Technology, Dalian City, Liaoning Province, China
| | - Xuesong Li
- Department of Radiology, Dalian Central Hospital Affiliated to Dalian University of Technology, Dalian City, Liaoning Province, China
| | - Hong Qu
- Bidding and Procurement Office, The Second Affiliated Hospital of Dalian Medical University, City, Liaoning Province, China
| | - Jianping Xu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | - Di Li
- Department of Neurointervention and Neurological Intensive Care, Dalian Central Hospital Affiliated to Dalian University of Technology, Dalian City, Liaoning Province, China
| |
Collapse
|
12
|
Yang W, Wu W, Zhao Y, Li Y, Zhang C, Zhang J, Chen C, Cui S. Caveolin-1 suppresses hippocampal neuron apoptosis via the regulation of HIF1α in hypoxia in naked mole-rats. Cell Biol Int 2022; 46:2060-2074. [PMID: 36054154 PMCID: PMC9826031 DOI: 10.1002/cbin.11890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/08/2022] [Accepted: 08/05/2022] [Indexed: 01/11/2023]
Abstract
Naked mole-rats (NMRs) (Heterocephalus glaber) are highly social and subterranean rodents with large communal colonies in burrows containing low oxygen levels. The inhibition of severe hypoxic conditions is of particular interest to this study. To understand the mechanisms that facilitate neuronal preservation during hypoxia, we investigated the proteins regulating hypoxia tolerance in NMR hippocampal neurons. Caveolin-1 (Cav-1), a transmembrane scaffolding protein, confers prosurvival signalling in the central nervous system. The present study aimed to investigate the role of Cav-1 in hypoxia-induced neuronal injury. Western blotting analysis and immunocytochemistry showed that Cav-1 expression was significantly upregulated in NMR hippocampal neurons under 8% O2 conditions for 8 h. Cav-1 alleviates apoptotic neuronal death from hypoxia. Downregulation of Cav-1 by lentiviral vectors suggested damage to NMR hippocampal neurons under hypoxic conditions in vitro and in vivo. Overexpression of Cav-1 by LV-Cav-1 enhanced hypoxic tolerance of NMR hippocampal neurons in vitro and in vivo. Mechanistically, the levels of hypoxia inducible factor-1α (HIF-1α) are also increased under hypoxic conditions. After inhibiting the binding of HIF-1α to hypoxia response elements in the DNA by echinomycin, Cav-1 levels were downregulated significantly. Furthermore, chromatin immunoprecipitation assays showed the direct role of HIF1α in regulating the expression levels of Cav-1 in NMR hippocampal neurons under hypoxic conditions. These findings suggest that Cav-1 plays a critical role in modulating the apoptosis of NMR hippocampal neurons and warrant further studies targeting Cav-1 to treat hypoxia-associated brain diseases.
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Wenqing Wu
- Department of Laboratory Animal CenterAcademy of Military Medical SciencesBeijingChina
| | - Ying Zhao
- Shanghai Laboratory Animal Research CenterShanghaiChina
| | - Yu Li
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Chengcai Zhang
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Jingyuan Zhang
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Chao Chen
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Shufang Cui
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| |
Collapse
|
13
|
Endothelial caveolin-1 regulates cerebral thrombo-inflammation in acute ischemia/reperfusion injury. EBioMedicine 2022; 84:104275. [PMID: 36152520 PMCID: PMC9508414 DOI: 10.1016/j.ebiom.2022.104275] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Thrombo-inflammation is an important checkpoint that orchestrates infarct development in ischemic stroke. However, the underlying mechanism remains largely unknown. Here, we explored the role of endothelial Caveolin-1 (Cav-1) in cerebral thrombo-inflammation. METHODS The correlation between serum Cav-1 level and clinical outcome was analyzed in acute ischemic stroke patients with successful recanalization. Genetic manipulations by endothelial-specific adeno-associated virus (AAV) and siRNA were applied to investigate the effects of Cav-1 in thrombo-inflammation in a transient middle cerebral artery occlusion (tMCAO) model. Thrombo-inflammation was analyzed by microthrombosis formation, myeloid cell infiltration, and endothelial expression of adhesion molecules as well as inflammatory factors. FINDINGS Reduced circulating Cav-1, with the potential to predict microembolic signals, was more frequently detected in recanalized stroke patients without early neurological improvement. At 24 h after tMCAO, serum Cav-1 was consistently reduced in mice. Endothelial Cav-1 was decreased in the peri-infarct region. Cav-1-/- endothelium, with prominent barrier disruption, displayed extensive microthrombosis, accompanied by increased myeloid cell inflammatory infiltration after tMCAO. Specific enhanced expression of endothelial Cav-1 by AAV-Tie1-Cav-1 remarkably reduced infarct volume, attenuated vascular hyper-permeability and alleviated thrombo-inflammation in both wild-type and Cav-1-/- tMCAO mice. Transcriptome analysis after tMCAO further designated Rxrg as the most significantly changed molecule resulting from the knockdown of Cav-1. Supplementation of RXR-γ siRNA reversed AAV-Tie1-Cav-1-induced amelioration of thrombo-inflammation without affecting endothelial tight junction. INTERPRETATION Endothelial Cav-1/RXR-γ may regulate infarct volume and neurological impairment, possibly through selectively controlling thrombo-inflammation coupling, in cerebral ischemia/reperfusion. FUNDING This work was supported by National Natural Science Foundation of China.
Collapse
|
14
|
Zhao Y, Gan L, Ren L, Lin Y, Ma C, Lin X. Factors influencing the blood-brain barrier permeability. Brain Res 2022; 1788:147937. [PMID: 35568085 DOI: 10.1016/j.brainres.2022.147937] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) is a dynamic structure that protects the brain from harmful blood-borne, endogenous and exogenous substances and maintains the homeostatic microenvironment. All constituent cell types play indispensable roles in the BBB's integrity, and other structural BBB components, such as tight junction proteins, adherens junctions, and junctional proteins, can control the barrier permeability. Regarding the need to exchange nutrients and toxic materials, solute carriers, ATP-binding case families, and ion transporter, as well as transcytosis regulate the influx and efflux transport, while the difference in localisation and expression can contribute to functional differences in transport properties. Numerous chemical mediators and other factors such as non-physicochemical factors have been identified to alter BBB permeability by mediating the structural components and barrier function, because of the close relationship with inflammation. In this review, we highlight recently gained mechanistic insights into the maintenance and disruption of the BBB. A better understanding of the factors influencing BBB permeability could contribute to supporting promising potential therapeutic targets for protecting the BBB and the delivery of central nervous system drugs via BBB permeability interventions under pathological conditions.
Collapse
Affiliation(s)
- Yibin Zhao
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Gan
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Ren
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yubo Lin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Congcong Ma
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianming Lin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
15
|
Li W, Zou J, Shang J, Gao C, Sun R, Liu R, Cao H, Wang Y, Zhang J. Both the Complexity of Tight Junctions and Endothelial Transcytosis Are Increased During BBB Postnatal Development in Rats. Front Neurosci 2022; 16:850857. [PMID: 35573303 PMCID: PMC9095945 DOI: 10.3389/fnins.2022.850857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/14/2022] [Indexed: 12/01/2022] Open
Abstract
The blood-brain barrier (BBB) comprises a single layer of endothelial cells and maintains a safe and homeostatic environment for proper neuronal function and synaptic transmission. BBB is not a discrete physical barrier, but a complex, dynamic, and adaptable interface. BBB continues to mature under the influence of the neural environment within a short period of time after birth. However, the basic mechanism of BBB formation and maintenance remains a mystery. Early studies have identified two structural characteristics of microvascular endothelium: special tight junctions (TJs) and a very low transcellular vesicle transport rate. Previous studies believed that BBB damage was mainly due to the destruction of tight junctions, and the role of vesicle transcytosis was neglected, so there was a lack of research on its impact on blood-brain barrier. It is urgent to get a better clarification of the unique structural and functional characteristics of the BBB endothelium to explain the role of BBB injury in neurological diseases. RNA sequencing was used to study the molecular characterization of cerebral cortex vascular endothelium by isolating them from neonatal, adolescent and adult rats. For investigation the maintenance mechanism of the BBB, we focused on the cellular and molecular regulation of barrier formation and the two characteristics of microvascular endothelial cells. Interestingly, we found that during the development of the blood-brain barrier, although the tight junctions gradually mature, endothelial cell transcytosis is gradually enhanced, resulting in an increase in the permeability of the blood-brain barrier. This study suggested that under physiological conditions, low vesicle transport is playing an important role in maintaining the integrity of the blood-brain barrier. This study not only summarized the unique characteristics of microvascular endothelial cells, but also illustrated a clarified mechanism of the development and maintenance of BBB which can provide new therapeutic opportunities for central nervous system drug delivery. Raw data of RNA sequencing were deposited in NCBI Sequence Read Archive database (PRJNA790676).
Collapse
Affiliation(s)
- Wei Li
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jinlong Zou
- Department of Neurology, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Junkui Shang
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Chenhao Gao
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Ruihua Sun
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Ruijie Liu
- Department of Neurology, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Huixia Cao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Yanliang Wang
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Jiewen Zhang
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
16
|
Gubern-Mérida C, Comajoan P, Huguet G, García-Yebenes I, Lizasoain I, Moro MA, Puig-Parnau I, Sánchez JM, Serena J, Kádár E, Castellanos M. Cav-1 Protein Levels in Serum and Infarcted Brain Correlate with Hemorrhagic Volume in a Mouse Model of Thromboembolic Stroke, Independently of rt-PA Administration. Mol Neurobiol 2022; 59:1320-1332. [PMID: 34984586 DOI: 10.1007/s12035-021-02644-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/11/2021] [Indexed: 12/27/2022]
Abstract
Thrombolytic therapy with recombinant tissue plasminogen activator (rt-PA) is currently the only FDA-approved drug for acute ischemic stroke. However, its administration is still limited due to the associated increased risk of hemorrhagic transformation (HT). rt-PA may exacerbate blood-brain barrier (BBB) injury by several mechanisms that have not been fully elucidated. Caveolin-1 (Cav-1), a major structural protein of caveolae, has been linked to the endothelial barrier function. The effects of rt-PA on Cav-1 expression remain largely unknown. Here, Cav-1 protein expression after ischemic conditions, with or without rt-PA administration, was analyzed in a murine thromboembolic middle cerebral artery occlusion (MCAO) and in brain microvascular endothelial bEnd.3 cells subjected to oxygen/glucose deprivation (OGD). Our results show that Cav-1 is overexpressed in endothelial cells of infarcted area and in bEnd.3 cell line after ischemia but there is disagreement regarding rt-PA effects on Cav-1 expression between both experimental models. Delayed rt-PA administration significantly reduced Cav-1 total levels from 24 to 72 h after reoxygenation and increased pCav-1/Cav-1 at 72 h in the bEnd.3 cells while it did not modify Cav-1 immunoreactivity in the infarcted area at 24 h post-MCAO. Importantly, tissue Cav-1 positively correlated with Cav-1 serum levels at 24 h post-MCAO and negatively correlated with the volume of hemorrhage after infarction, the latter supporting a protective role of Cav-1 in cerebral ischemia. In addition, the negative association between baseline serum Cav-1 levels and hemorrhagic volume points to a potential usefulness of baseline serum Cav-1 levels to predict hemorrhagic volume, independently of rt-PA administration.
Collapse
Affiliation(s)
- Carme Gubern-Mérida
- Cerebrovascular Pathology Research Group, Department of Neurology, Girona Biomedical Research Institute (IDIBGI), Parc Hospitalari Martí i Julià, C/Dr. Castany s/n, M2 Building, 17190, Salt, Girona, Spain.,Cellular and Molecular Neurobiology Research Group, Department of Biology, University of Girona (UdG), Aulari Comú building, C/Maria Aurèlia Capmany 40, 17003, Girona, Spain
| | - Pau Comajoan
- Cerebrovascular Pathology Research Group, Department of Neurology, Girona Biomedical Research Institute (IDIBGI), Parc Hospitalari Martí i Julià, C/Dr. Castany s/n, M2 Building, 17190, Salt, Girona, Spain.,Cellular and Molecular Neurobiology Research Group, Department of Biology, University of Girona (UdG), Aulari Comú building, C/Maria Aurèlia Capmany 40, 17003, Girona, Spain
| | - Gemma Huguet
- Cerebrovascular Pathology Research Group, Department of Neurology, Girona Biomedical Research Institute (IDIBGI), Parc Hospitalari Martí i Julià, C/Dr. Castany s/n, M2 Building, 17190, Salt, Girona, Spain.,Cellular and Molecular Neurobiology Research Group, Department of Biology, University of Girona (UdG), Aulari Comú building, C/Maria Aurèlia Capmany 40, 17003, Girona, Spain
| | - Isaac García-Yebenes
- Neurovascular Research Unit, Department of Pharmacology and Toxicology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Hospital 12 de Octubre (i+12), Complutense University of Madrid (UCM), Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Ignacio Lizasoain
- Neurovascular Research Unit, Department of Pharmacology and Toxicology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Hospital 12 de Octubre (i+12), Complutense University of Madrid (UCM), Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - María Angeles Moro
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Irene Puig-Parnau
- Cellular and Molecular Neurobiology Research Group, Department of Biology, University of Girona (UdG), Aulari Comú building, C/Maria Aurèlia Capmany 40, 17003, Girona, Spain
| | - Juan Manuel Sánchez
- Cerebrovascular Pathology Research Group, Department of Neurology, Girona Biomedical Research Institute (IDIBGI), Parc Hospitalari Martí i Julià, C/Dr. Castany s/n, M2 Building, 17190, Salt, Girona, Spain.,Analytical and Environmental Chemistry Research Group, Department of Chemistry, University of Girona (UdG), C/Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - Joaquín Serena
- Cerebrovascular Pathology Research Group, Department of Neurology, Girona Biomedical Research Institute (IDIBGI), Parc Hospitalari Martí i Julià, C/Dr. Castany s/n, M2 Building, 17190, Salt, Girona, Spain.,Cellular and Molecular Neurobiology Research Group, Department of Biology, University of Girona (UdG), Aulari Comú building, C/Maria Aurèlia Capmany 40, 17003, Girona, Spain
| | - Elisabet Kádár
- Cerebrovascular Pathology Research Group, Department of Neurology, Girona Biomedical Research Institute (IDIBGI), Parc Hospitalari Martí i Julià, C/Dr. Castany s/n, M2 Building, 17190, Salt, Girona, Spain. .,Cellular and Molecular Neurobiology Research Group, Department of Biology, University of Girona (UdG), Aulari Comú building, C/Maria Aurèlia Capmany 40, 17003, Girona, Spain.
| | - Mar Castellanos
- Department of Neurology, A Coruña University Hospital/A Coruña Biomedical Research Institute, Xubias de Arriba 84, 15006A, Coruña, Spain.
| |
Collapse
|
17
|
Conti E, Piccardi B, Sodero A, Tudisco L, Lombardo I, Fainardi E, Nencini P, Sarti C, Allegra Mascaro AL, Baldereschi M. Translational Stroke Research Review: Using the Mouse to Model Human Futile Recanalization and Reperfusion Injury in Ischemic Brain Tissue. Cells 2021; 10:3308. [PMID: 34943816 PMCID: PMC8699609 DOI: 10.3390/cells10123308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
The approach to reperfusion therapies in stroke patients is rapidly evolving, but there is still no explanation why a substantial proportion of patients have a poor clinical prognosis despite successful flow restoration. This issue of futile recanalization is explained here by three clinical cases, which, despite complete recanalization, have very different outcomes. Preclinical research is particularly suited to characterize the highly dynamic changes in acute ischemic stroke and identify potential treatment targets useful for clinical translation. This review surveys the efforts taken so far to achieve mouse models capable of investigating the neurovascular underpinnings of futile recanalization. We highlight the translational potential of targeting tissue reperfusion in fully recanalized mouse models and of investigating the underlying pathophysiological mechanisms from subcellular to tissue scale. We suggest that stroke preclinical research should increasingly drive forward a continuous and circular dialogue with clinical research. When the preclinical and the clinical stroke research are consistent, translational success will follow.
Collapse
Affiliation(s)
- Emilia Conti
- Neuroscience Institute, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.C.); (A.L.A.M.)
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Benedetta Piccardi
- Neurofarba Department, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy; (A.S.); (L.T.); (C.S.)
| | - Alessandro Sodero
- Neurofarba Department, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy; (A.S.); (L.T.); (C.S.)
| | - Laura Tudisco
- Neurofarba Department, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy; (A.S.); (L.T.); (C.S.)
| | - Ivano Lombardo
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (I.L.); (E.F.)
| | - Enrico Fainardi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (I.L.); (E.F.)
| | - Patrizia Nencini
- Stroke Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy;
| | - Cristina Sarti
- Neurofarba Department, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy; (A.S.); (L.T.); (C.S.)
| | - Anna Letizia Allegra Mascaro
- Neuroscience Institute, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.C.); (A.L.A.M.)
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Marzia Baldereschi
- Neuroscience Institute, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
18
|
Fragas MG, Cândido VB, Davanzo GG, Rocha-Santos C, Ceroni A, Michelini LC. Transcytosis within PVN capillaries: a mechanism determining both hypertension-induced blood-brain barrier dysfunction and exercise-induced correction. Am J Physiol Regul Integr Comp Physiol 2021; 321:R732-R741. [PMID: 34549626 DOI: 10.1152/ajpregu.00154.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/17/2021] [Indexed: 11/22/2022]
Abstract
Although hypertension disrupts the blood-brain barrier (BBB) integrity within the paraventricular nucleus of hypothalamus (PVN) and increases the leakage into the brain parenchyma, exercise training (T) was shown to correct it. Since there is scarce and contradictory information on the mechanism(s) determining hypertension-induced BBB deficit and nothing is known about T-induced improvement, we sought to evaluate the paracellular and transcellular transport across the BBB within the PVN in both conditions. Spontaneously hypertensive rats (SHR) and WKY submitted to 4-wk aerobic T or sedentary (S) protocol were chronically catheterized for hemodynamic recordings at rest and intra-arterial administration of dyes (Rhodamine-dextran 70 kDa + FITC-dextran 10 kDa). Brains were harvesting for FITC leakage examination, qPCR evaluation of different BBB constituents and protein expression of caveolin-1 and claudin-5, the main markers of transcytosis and paracellular transport, respectively. Hypertension was characterized by increased arterial pressure and heart rate, augmented sympathetic modulation of heart and vessels, and reduced cardiac parasympathetic control, marked FITC extravasation into the PVN which was accompanied by increased caveolin-1 gene and protein expression, without changes in claudin-5 and others tight junctions' components. SHR-T vs. SHR-S showed a partial pressure reduction, resting bradycardia, improvement of autonomic control of the circulation simultaneously with correction of both FITC leakage and caveolin-1 expression; there was a significant increase in claudin-5 expression. Caveolin-1 content was strongly correlated with improved autonomic control after exercise. Data indicated that within the PVN the transcytosis is the main mechanism governing both hypertension-induced BBB leakage, as well as the exercise-induced correction.
Collapse
Affiliation(s)
- Matheus Garcia Fragas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Vanessa Brito Cândido
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Gustavo Gastão Davanzo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Carla Rocha-Santos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Alexandre Ceroni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Lisete C Michelini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Liu B, Li Y, Han Y, Wang S, Yang H, Zhao Y, Li P, Wang Y. Notoginsenoside R1 intervenes degradation and redistribution of tight junctions to ameliorate blood-brain barrier permeability by Caveolin-1/MMP2/9 pathway after acute ischemic stroke. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153660. [PMID: 34344565 DOI: 10.1016/j.phymed.2021.153660] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The leakage of blood-brain barrier (BBB) is main pathophysiological change in acute stage of ischemic stroke, which not only deteriorates neurological function, but also increases the risk of hemorrhagic transformation after thrombolysis. PURPOSE/STUDY DESIGN This article investigates the efficacy of Notoginsenoside R1, an active ingredient of Panax notoginseng, on BBB permeability and explores related mechanisms after acute ischemic stroke. METHODS In vivo, male Sprague-Dawley rats (260-280 g) were selected and randomly divided into 6 groups: sham group, model group, low, middle and high doses of Notoginsenoside R1 groups and positive drug Dl-3-n-Butylphthalide group. Except for sham group, rats were performed with permanent middle cerebral artery occlusion model in each group. Twelve hours later, rats were evaluated for Bederson neurological function, and BBB integrity by Evans blue leak imaging; Triphenyltetrazolium chloride staining was used to detect the volume of cerebral infarction. Frozen sections of rats' brain tissue were prepared for detection of MMPs activity in situ zymography. Peripheral tissue of cerebral infarction was collected and tested the expression of MMP2, 9 and tight junction proteins (zo1, claudin5, occludin) by western blot. In vitro, transwell endothelial barrier model was established by bEnd.3 cells. Oxygen glucose deprivation (OGD) was chosen to simulate the hypoxic environment. Suitable OGD stimulation time as well as Notoginsenoside R1 and Dl-3-n-Butylphthalide optimal dose concentrations were determined through transwell leakage and CCK8 assay. Furthermore, endothelial subcellular component proteins were extracted. The change of zo1, claudin5, occludin and caveolin1 was detected by western blot. RESULTS Notoginsenoside R1 treatment significantly reduced BBB leakage and cerebral infarction volume, weakened neurological deficits in post-stroke rats. Moreover, it inhibited the activity of MMPs in infarcted cortex and striatum, down-regulated MMP2, 9 and up-regulated zo1 and claudin5 expressions in penumbra. In vitro, Notoginsenoside R1 treatment decreased OGD-induced endothelial barrier permeability, restored expressions of zo1, claudin5 on cellular membrane and cytoplasm, as well as mediated membrane redistribution of occludin and caveolin1 from actin cytoskeletal fraction. CONCLUSIONS Notoginsenoside R1 treatment attenuates BBB permeability, cerebral infarction volume and neurological impairments in rats with acute cerebral ischemia. The mechanisms might be related to intervening degradation and redistribution of zo1, caludin5 and occludin by caveolin1/ MMP2/9 pathway. More effects and mechanisms of Notoginsenoside R1 on rehabilitation of stroke are worthy to be explored in the future.
Collapse
Affiliation(s)
- Bowen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yiyang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yan Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
20
|
Yildirim F, Foddis M, Blumenau S, Müller S, Kajetan B, Holtgrewe M, Kola V, Beule D, Sassi C. Shared and oppositely regulated transcriptomic signatures in Huntington's disease and brain ischemia confirm known and unveil novel potential neuroprotective genes. Neurobiol Aging 2021; 104:122.e1-122.e17. [PMID: 33875290 DOI: 10.1016/j.neurobiolaging.2021.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 02/13/2021] [Accepted: 03/02/2021] [Indexed: 11/20/2022]
Abstract
Huntington's disease and subcortical vascular dementia display similar dementing features, shaped by different degrees of striatal atrophy, deep white matter degeneration and tau pathology. To investigate the hypothesis that Huntington's disease transcriptomic hallmarks may provide a window into potential protective genes upregulated during brain acute and subacute ischemia, we compared RNA sequencing signatures in the most affected brain areas of 2 widely used experimental mouse models: Huntington's disease, (R6/2, striatum and cortex and Q175, hippocampus) and brain ischemia-subcortical vascular dementia (BCCAS, striatum, cortex and hippocampus). We identified a cluster of 55 shared genes significantly differentially regulated in both models and we screened these in 2 different mouse models of Alzheimer's disease, and 96 early-onset familial and apparently sporadic small vessel ischemic disease patients. Our data support the prevalent role of transcriptional regulation upon genetic coding variability of known neuroprotective genes (Egr2, Fos, Ptgs2, Itga5, Cdkn1a, Gsn, Npas4, Btg2, Cebpb) and provide a list of potential additional ones likely implicated in different dementing disorders and worth further investigation.
Collapse
Affiliation(s)
- Ferah Yildirim
- Department of Neuropsychiatry, Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marco Foddis
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sonja Blumenau
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susanne Müller
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Bentele Kajetan
- Berlin Institute of Health, BIH, Core Unit Bioinformatics, Berlin, Germany
| | - Manuel Holtgrewe
- Berlin Institute of Health, BIH, Core Unit Bioinformatics, Berlin, Germany
| | - Vasilis Kola
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dieter Beule
- Berlin Institute of Health, BIH, Core Unit Bioinformatics, Berlin, Germany
| | - Celeste Sassi
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
21
|
Caveolin-1, a novel player in cognitive decline. Neurosci Biobehav Rev 2021; 129:95-106. [PMID: 34237390 DOI: 10.1016/j.neubiorev.2021.06.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
Cognitive decline (CD), which related to vascular dementia, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and diabetes mellitus, is a growing health concern that has a great impact on the patients' quality of life. Although extensive efforts, the mechanisms of CD are still far from being clarified, not to mention the effective treatment and prevention strategies. Caveolin-1 (Cav-1), a trans-membrane protein, is a major component of the caveolae structure and scaffolding proteins. Recently, ample evidence depicts a strong correlation between Cav-1 and CD, however, the specific role of Cav-1 in CD has not been clearly examined and how they might be connected have yet to be identified. This review seeks to provide a comprehensive overview about how Cav-1 modulates pathogeneses of CD-associated diseases. In summary, Cav-1 can promote structural and functional plasticity of neurons, improve neurogenesis, relieve mitochondrial dysfunction, inhibit inflammation and suppress oxidative stress, which have shed light on the idea that Cav-1 may be an efficacious therapeutic target to treat CD.
Collapse
|
22
|
Saad MAE, Fahmy MIM, Sayed RH, El-Yamany MF, El-Naggar R, Hegazy AAE, Al-Shorbagy M. Eprosartan: A closer insight into its neuroprotective activity in rats with focal cerebral ischemia-reperfusion injury. J Biochem Mol Toxicol 2021; 35:e22796. [PMID: 33942446 DOI: 10.1002/jbt.22796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022]
Abstract
Eprosartan (EPRO), an angiotensin receptor type-1 (AT-1) blocker, exhibited neuroprotective activities in ischemic stroke resulting from focal cerebral ischemia in rats. The current study aimed to clarify the neuroprotective role of EPRO in middle carotid artery occlusion (MCAO)-induced ischemic stroke in rats. Fifty-six male Wistar rats were divided into four groups (n = 14 per group): sham-operated group, sham receiving EPRO (60 mg/kg/day, po) group, ischemia-reperfusion (IR) group, and IR receiving EPRO (60 mg/kg/day, po) group. MCAO led to a remarkable impairment in motor function together with stimulation of inflammatory and apoptotic pathways in the hippocampus of rats. After MCAO, the AT1 receptor in the brain was stimulated, resulting in activation of Janus kinase 2/signal transducers and activators of transcription 3 signaling generating more neuroinflammatory milieu and destructive actions on the hippocampus. Augmentation of caspase-3 level by MCAO enhanced neuronal apoptosis synchronized with neurodegenerative effects of oxidative stress biomarkers. Pretreatment with EPRO opposed motor impairment and decreased oxidative and apoptotic mediators in the hippocampus of rats. The anti-inflammatory activity of EPRO was revealed by downregulation of nuclear factor-kappa B and tumor necrosis factor-β levels and (C-X-C motif) ligand 1 messenger RNA (mRNA) expression. Moreover, the study confirmed the role of EPRO against a unique pathway of hypoxia-inducible factor-1α and its subsequent inflammatory mediators. Furthermore, upregulation of caveolin-1 mRNA level was also observed along with decreased oxidative stress marker levels and brain edema. Therefore, EPRO showed neuroprotective effects in MCAO-induced cerebral ischemia in rats via attenuation of oxidative, apoptotic, and inflammatory pathways.
Collapse
Affiliation(s)
- Muhammad A E Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt.,School of Pharmacy, New Giza University, Giza, Egypt
| | - Mohamed I M Fahmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Muhammad F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Reham El-Naggar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Ahmed A E Hegazy
- Department of Neurosurgery, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Muhammad Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt.,School of Pharmacy, New Giza University, Giza, Egypt
| |
Collapse
|
23
|
Nian K, Harding IC, Herman IM, Ebong EE. Blood-Brain Barrier Damage in Ischemic Stroke and Its Regulation by Endothelial Mechanotransduction. Front Physiol 2020; 11:605398. [PMID: 33424628 PMCID: PMC7793645 DOI: 10.3389/fphys.2020.605398] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022] Open
Abstract
Ischemic stroke, a major cause of mortality in the United States, often contributes to disruption of the blood-brain barrier (BBB). The BBB along with its supportive cells, collectively referred to as the “neurovascular unit,” is the brain’s multicellular microvasculature that bi-directionally regulates the transport of blood, ions, oxygen, and cells from the circulation into the brain. It is thus vital for the maintenance of central nervous system homeostasis. BBB disruption, which is associated with the altered expression of tight junction proteins and BBB transporters, is believed to exacerbate brain injury caused by ischemic stroke and limits the therapeutic potential of current clinical therapies, such as recombinant tissue plasminogen activator. Accumulating evidence suggests that endothelial mechanobiology, the conversion of mechanical forces into biochemical signals, helps regulate function of the peripheral vasculature and may similarly maintain BBB integrity. For example, the endothelial glycocalyx (GCX), a glycoprotein-proteoglycan layer extending into the lumen of bloods vessel, is abundantly expressed on endothelial cells of the BBB and has been shown to regulate BBB permeability. In this review, we will focus on our understanding of the mechanisms underlying BBB damage after ischemic stroke, highlighting current and potential future novel pharmacological strategies for BBB protection and recovery. Finally, we will address the current knowledge of endothelial mechanotransduction in BBB maintenance, specifically focusing on a potential role of the endothelial GCX.
Collapse
Affiliation(s)
- Keqing Nian
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Ian C Harding
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Ira M Herman
- Department of Development, Molecular, and Chemical Biology, Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA, United States.,Center for Innovations in Wound Healing Research, Tufts University School of Medicine, Boston, MA, United States
| | - Eno E Ebong
- Department of Bioengineering, Northeastern University, Boston, MA, United States.,Department of Chemical Engineering, Northeastern University, Boston, MA, United States.,Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
24
|
Freitas-Andrade M, Raman-Nair J, Lacoste B. Structural and Functional Remodeling of the Brain Vasculature Following Stroke. Front Physiol 2020; 11:948. [PMID: 32848875 PMCID: PMC7433746 DOI: 10.3389/fphys.2020.00948] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Maintenance of cerebral blood vessel integrity and regulation of cerebral blood flow ensure proper brain function. The adult human brain represents only a small portion of the body mass, yet about a quarter of the cardiac output is dedicated to energy consumption by brain cells at rest. Due to a low capacity to store energy, brain health is heavily reliant on a steady supply of oxygen and nutrients from the bloodstream, and is thus particularly vulnerable to stroke. Stroke is a leading cause of disability and mortality worldwide. By transiently or permanently limiting tissue perfusion, stroke alters vascular integrity and function, compromising brain homeostasis and leading to widespread consequences from early-onset motor deficits to long-term cognitive decline. While numerous lines of investigation have been undertaken to develop new pharmacological therapies for stroke, only few advances have been made and most clinical trials have failed. Overall, our understanding of the acute and chronic vascular responses to stroke is insufficient, yet a better comprehension of cerebrovascular remodeling following stroke is an essential prerequisite for developing novel therapeutic options. In this review, we present a comprehensive update on post-stroke cerebrovascular remodeling, an important and growing field in neuroscience, by discussing cellular and molecular mechanisms involved, sex differences, limitations of preclinical research design and future directions.
Collapse
Affiliation(s)
| | - Joanna Raman-Nair
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
25
|
Lochhead JJ, Yang J, Ronaldson PT, Davis TP. Structure, Function, and Regulation of the Blood-Brain Barrier Tight Junction in Central Nervous System Disorders. Front Physiol 2020; 11:914. [PMID: 32848858 PMCID: PMC7424030 DOI: 10.3389/fphys.2020.00914] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
The blood-brain barrier (BBB) allows the brain to selectively import nutrients and energy critical to neuronal function while simultaneously excluding neurotoxic substances from the peripheral circulation. In contrast to the highly permeable vasculature present in most organs that reside outside of the central nervous system (CNS), the BBB exhibits a high transendothelial electrical resistance (TEER) along with a low rate of transcytosis and greatly restricted paracellular permeability. The property of low paracellular permeability is controlled by tight junction (TJ) protein complexes that seal the paracellular route between apposing brain microvascular endothelial cells. Although tight junction protein complexes are principal contributors to physical barrier properties, they are not static in nature. Rather, tight junction protein complexes are highly dynamic structures, where expression and/or localization of individual constituent proteins can be modified in response to pathophysiological stressors. These stressors induce modifications to tight junction protein complexes that involve de novo synthesis of new protein or discrete trafficking mechanisms. Such responsiveness of BBB tight junctions to diseases indicates that these protein complexes are critical for maintenance of CNS homeostasis. In fulfillment of this vital role, BBB tight junctions are also a major obstacle to therapeutic drug delivery to the brain. There is an opportunity to overcome this substantial obstacle and optimize neuropharmacology via acquisition of a detailed understanding of BBB tight junction structure, function, and regulation. In this review, we discuss physiological characteristics of tight junction protein complexes and how these properties regulate delivery of therapeutics to the CNS for treatment of neurological diseases. Specifically, we will discuss modulation of tight junction structure, function, and regulation both in the context of disease states and in the setting of pharmacotherapy. In particular, we will highlight how these properties can be potentially manipulated at the molecular level to increase CNS drug levels via paracellular transport to the brain.
Collapse
|
26
|
Eser Ocak P, Ocak U, Sherchan P, Gamdzyk M, Tang J, Zhang JH. Overexpression of Mfsd2a attenuates blood brain barrier dysfunction via Cav-1/Keap-1/Nrf-2/HO-1 pathway in a rat model of surgical brain injury. Exp Neurol 2020; 326:113203. [PMID: 31954682 PMCID: PMC7038791 DOI: 10.1016/j.expneurol.2020.113203] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Disruption of the blood brain barrier (BBB) and subsequent cerebral edema formation is one of the major adverse effects of brain surgery, leading to postoperative neurological dysfunction. Recently, Mfsd2a has been shown to have a crucial role for the maintenance of BBB functions. In this study, we aimed to evaluate the role of Mfsd2a on BBB disruption following surgical brain injury (SBI) in rats. MATERIALS AND METHODS Rats were subjected to SBI by partial resection of the right frontal lobe. To evaluate the effect of Mfsd2a on BBB permeability and neurobehavior outcome following SBI, Mfsd2a was either overexpressed or downregulated in the brain by administering Mfsd2a CRISPR activation or knockout plasmids, respectively. The potential mechanism of Mfsd2a-mediated BBB protection through the cav-1/Nrf-2/HO-1 signaling pathway was evaluated. RESULTS Mfsd2a levels were significantly decreased while cav-1, Nrf-2 and HO-1 levels were increased in the right frontal perisurgical area following SBI. When overexpressed, Mfsd2a attenuated brain edema and abolished neurologic impairment caused by SBI while downregulation of Mfsd2a expression further deteriorated BBB functions and worsened neurologic performance following SBI. The beneficial effect of Mfsd2a overexpression on BBB functions was associated with diminished expression of cav-1, increased Keap-1/Nrf-2 dissociation and further augmented levels of Nrf-2 and HO-1 in the right frontal perisurgical area, leading to enhanced levels of tight junction proteins following SBI. The BBB protective effect of Mfsd2a was blocked by selective inhibitors of Nrf-2 and HO-1. CONCLUSIONS Mfsd2a attenuates BBB disruption through cav-1/Nrf-2/HO-1 signaling pathway in rats subjected to experimental SBI.
Collapse
Affiliation(s)
- Pinar Eser Ocak
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA; Department of Neurosurgery, Uludag University School of Medicine, Bursa 16120, Turkey
| | - Umut Ocak
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA; Department of Emergency Medicine, Bursa Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, Bursa 16310, Turkey; Department of Emergency Medicine, Bursa City Hospital, Bursa 16110, Turkey
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Marcin Gamdzyk
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA; Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA; Department of Neurology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
27
|
Wang S, Head BP. Caveolin-1 in Stroke Neuropathology and Neuroprotection: A Novel Molecular Therapeutic Target for Ischemic-Related Injury. Curr Vasc Pharmacol 2020; 17:41-49. [PMID: 29412114 DOI: 10.2174/1570161116666180206112215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/18/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease and associated cerebral stroke are a global epidemic attributed to genetic and epigenetic factors, such as diet, life style and an increasingly sedentary existence due to technological advances in both the developing and developed world. There are approximately 5.9 million stroke-related deaths worldwide annually. Current epidemiological data indicate that nearly 16.9 million people worldwide suffer a new or recurrent stroke yearly. In 2014 alone, 2.4% of adults in the United States (US) were estimated to experience stroke, which is the leading cause of adult disability and the fifth leading cause of death in the US There are 2 main types of stroke: Hemorrhagic (HS) and ischemic stroke (IS), with IS occurring more frequently. HS is caused by intra-cerebral hemorrhage mainly due to high blood pressure, while IS is caused by either embolic or thrombotic stroke. Both result in motor impairments, numbness or abnormal sensations, cognitive deficits, and mood disorders (e.g. depression). This review focuses on the 1) pathophysiology of stroke (neuronal cell loss, defective blood brain barrier, microglia activation, and inflammation), 2) the role of the membrane protein caveolin- 1 (Cav-1) in normal brain physiology and stroke-induced changes, and, 3) we briefly discussed the potential therapeutic role of Cav-1 in recovery following stroke.
Collapse
Affiliation(s)
- Shanshan Wang
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, United States.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Brian P Head
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, United States.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
28
|
Blochet C, Buscemi L, Clément T, Gehri S, Badaut J, Hirt L. Involvement of caveolin-1 in neurovascular unit remodeling after stroke: Effects on neovascularization and astrogliosis. J Cereb Blood Flow Metab 2020; 40:163-176. [PMID: 30354902 PMCID: PMC6928561 DOI: 10.1177/0271678x18806893] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Complex cellular and molecular events occur in the neurovascular unit after stroke, such as blood-brain barrier (BBB) dysfunction and inflammation that contribute to neuronal death, neurological deterioration and mortality. Caveolin-1 (Cav-1) has distinct physiological functions such as caveolae formation associated with endocytosis and transcytosis as well as in signaling pathways. Cav-1 has been proposed to be involved in BBB dysfunction after brain injury; however, its precise role is poorly understood. The goal of this study was to characterize the expression and effect of Cav-1 deletion on outcome in the first week in a transient Middle Cerebral Artery Occlusion stroke model. We found increased Cav-1 expression in new blood vessels in the lesion and in reactive astrocytes in the peri-lesion areas. In Cav-1 KO mice, the lesion volume was larger and the behavioral outcome worse than in WT mice. Cav-1 KO mice exhibited reduced neovascularization and modified astrogliosis, without formation of a proper glial scar around the lesion at three days post injury, coinciding with aggravated outcomes. Altogether, these results point towards a potential protective role of endogenous Cav-1 in the first days after ischemia by promoting neovascularization, astrogliosis and scar formation.
Collapse
Affiliation(s)
- Camille Blochet
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland.,Brain Molecular Imaging Lab, CNRS UMR 5287, INCIA, University of Bordeaux, Bordeaux, France
| | - Lara Buscemi
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland
| | - Tifenn Clément
- Brain Molecular Imaging Lab, CNRS UMR 5287, INCIA, University of Bordeaux, Bordeaux, France
| | - Sabrina Gehri
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland
| | - Jérôme Badaut
- Brain Molecular Imaging Lab, CNRS UMR 5287, INCIA, University of Bordeaux, Bordeaux, France.,Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lorenz Hirt
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland
| |
Collapse
|
29
|
Yang B, Xu J, Chang L, Miao Z, Heang D, Pu Y, Zhou X, Zhang L, Xie H. Cystatin C improves blood-brain barrier integrity after ischemic brain injury in mice. J Neurochem 2019; 153:413-425. [PMID: 31603990 DOI: 10.1111/jnc.14894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/29/2019] [Accepted: 10/09/2019] [Indexed: 11/29/2022]
Abstract
Cystatin C, a well-established biomarker of renal function, has been associated with a protective effect against stroke. However, the potential neuroprotective mechanism of cystatin C in ischemic brain injury remains unclear. Our study hypothesized that cystatin C can ameliorate blood-brain barrier (BBB) disruption by up-regulating caveolin-1 expression, thereby improving neurological outcomes in cerebral ischemic injury. Western blotting, immunohistochemistry, immunofluorescence staining, and immunoprecipitation were performed to investigate target proteins. Evans Blue and gelatin zymography were used to examine the effect of cystatin C on BBB disruption. Plasmid and small interfering RNA transfection was used to observe alterations in caveolin-1 and occludin expression induced by changes in cystatin C expression. Intriguingly, our study showed that the expression of both cystatin C and caveolin-1 was increased in middle cerebral artery occlusion-injured mice, and pretreatment with exogenous cystatin C significantly increased caveolin-1 expression, reduced Evans Blue leakage in the injured brain region, and decreased the enzymatic activity of matrix metallopeptidase-9. Meanwhile, our study also showed that the over-expression of cystatin C greatly enhanced caveolin-1 expression, which later increased occludin expression in oxygen-glucose deprivation-exposed brain microvascular endothelial cells. The knockdown of cystatin C induced the opposite outcomes. These experimental results indicate a positive role for cystatin C in the regulation of caveolin-1 and occludin expression in cerebral ischemic injury. Taken together, these data unveil a new mechanism of the regulation of caveolin-1 expression by cystatin C in the maintenance of BBB integrity after ischemic brain injury and provide new clues for the identification of potential therapeutic strategies for stroke.
Collapse
Affiliation(s)
- Bo Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | - Junjie Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | - Liuhui Chang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province, China
| | - Dara Heang
- Department of Medicine, Soochow University, Suzhou City, Jiangsu Province, China
| | - Yuwei Pu
- Department of General Surgery, Soochow University, Suzhou City, Jiangsu Province, China
| | - Xun Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | - Lingwei Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | - Hong Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| |
Collapse
|
30
|
Effect of chronic methylphenidate treatment on hippocampal neurovascular unit and memory performance in late adolescent rats. Eur Neuropsychopharmacol 2019; 29:195-210. [PMID: 30554860 DOI: 10.1016/j.euroneuro.2018.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/13/2018] [Accepted: 12/01/2018] [Indexed: 12/21/2022]
Abstract
Methylphenidate (MPH) is the classic treatment for attention deficit hyperactivity disorder (ADHD) among children and adults. Despite its beneficial effects, non-medical use of MPH is nowadays a problem with high impact on society. Thus, our goal was to uncover the neurovascular and cognitive effects of MPH chronic use during a critical period of development in control conditions. For that, male Wistar Kyoto rats were treated with MPH (1.5 or 5 mg/kg/day at weekdays, per os) from P28 to P55. We concluded that the higher dose of MPH caused hippocampal blood-brain barrier (BBB) hyperpermeability by vesicular transport (transcytosis) concomitantly with the presence of peripheral immune cells in the brain parenchyma. These observations were confirmed by in vitro studies, in which the knockdown of caveolin-1 in human brain endothelial cells prevented the increased permeability and leukocytes transmigration triggered by MPH (100 µM, 24 h). Furthermore, MPH led to astrocytic atrophy and to a decrease in the levels of several synaptic proteins and impairment of AKT/CREB signaling, together with working memory deficit assessed in the Y-maze test. On the contrary, we verified that the lower dose of MPH (1.5 mg/kg/day) increased astrocytic processes and upregulated several neuronal proteins as well as signaling pathways involved in synaptic plasticity culminating in working memory improvement. In conclusion, the present study reveals that a lower dose of MPH in normal rats improves memory performance being associated with the modulation of astrocytic morphology and synaptic machinery. However, a higher dose of MPH leads to BBB dysfunction and memory impairment.
Collapse
|
31
|
Neurons can upregulate Cav-1 to increase intake of endothelial cells-derived extracellular vesicles that attenuate apoptosis via miR-1290. Cell Death Dis 2019; 10:869. [PMID: 31740664 PMCID: PMC6861259 DOI: 10.1038/s41419-019-2100-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/02/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) including exosomes can serve as mediators of cell–cell communication under physiological and pathological conditions. However, cargo molecules carried by EVs to exert their functions, as well as mechanisms for their regulated release and intake, have been poorly understood. In this study, we examined the effects of endothelial cells-derived EVs on neurons suffering from oxygen-glucose deprivation (OGD), which mimics neuronal ischemia-reperfusion injury in human diseases. In a human umbilical endothelial cell (HUVEC)–neuron coculture assay, we found that HUVECs reduced apoptosis of neurons under OGD, and this effect was compromised by GW4869, a blocker of exosome release. Purified EVs could be internalized by neurons and alleviate neuronal apoptosis under OGD. A miRNA, miR-1290, was highly enriched in HUVECs-derived EVs and was responsible for EV-mediated neuronal protection under OGD. Interestingly, we found that OGD enhanced intake of EVs by neurons cultured in vitro. We examined the expression of several potential receptors for EV intake and found that caveolin-1 (Cav-1) was upregulated in OGD-treated neurons and mice suffering from middle cerebral artery occlusion (MCAO). Knock-down of Cav-1 in neurons reduced EV intake, and canceled EV-mediated neuronal protection under OGD. HUVEC-derived EVs alleviated MCAO-induced neuronal apoptosis in vivo. These findings suggested that ischemia likely upregulates Cav-1 expression in neurons to increase EV intake, which protects neurons by attenuating apoptosis via miR-1290.
Collapse
|
32
|
Chung JW, Kim DH, Oh MJ, Cho YH, Kim EH, Moon GJ, Ki CS, Cha J, Kim KH, Jeon P, Yeon JY, Kim GM, Kim JS, Hong SC, Bang OY. Cav-1 (Caveolin-1) and Arterial Remodeling in Adult Moyamoya Disease. Stroke 2019; 49:2597-2604. [PMID: 30355208 DOI: 10.1161/strokeaha.118.021888] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- Moyamoya disease (MMD) is a unique cerebrovascular occlusive disease characterized by progressive stenosis and negative remodeling of the distal internal carotid artery (ICA). We hypothesized that cav-1 (caveolin-1)-a protein that controls the regulation of endothelial vesicular trafficking and signal transduction-is associated with negative remodeling in MMD. Methods- We prospectively recruited 77 consecutive patients with MMD diagnosed via conventional angiography. Seventeen patients with intracranial atherosclerotic stroke and no RNF213 mutation served as controls. The outer distal ICA diameters were examined using high-resolution magnetic resonance imaging. We evaluated whether the degree of negative remodeling in the patients with MMD was associated with RNF213 polymorphism, cav-1 levels, or various clinical and vascular risk factors. We also investigated whether the derived factor was associated with negative remodeling at the cellular level using the tube formation and apoptosis assays. Results- The serum cav-1 level was lower in the patients with MMD than in the controls (0.47±0.29 versus 0.86±0.68 ng/mL; P=0.034). The mean ICA diameter was 2.48±0.98 mm for the 126 affected distal ICAs in patients with MMD and 3.84±0.42 mm for the asymptomatic ICAs in the controls ( P<0.001). After adjusting for confounders, cav-1 levels (coefficient, 1.018; P<0.001) were independently associated with the distal ICA diameter in patients with MMD. In vitro analysis showed that cav-1 downregulation suppressed angiogenesis in the endothelial cells and induced apoptosis in the smooth muscle cells. Conclusions- Our findings suggest that cav-1 may play a major role in negative arterial remodeling in MMD.
Collapse
Affiliation(s)
- Jong-Won Chung
- From the Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., D.H.K., M.J.O.,Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurology (J.-W.C., G.-M.K., O.Y.B.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Hee Kim
- From the Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., D.H.K., M.J.O.,Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea (D.H.K., O.Y.B.)
| | - Mi Jeong Oh
- From the Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., D.H.K., M.J.O.,Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea.,Stem Cell and Regenerative Medicine Institute (M.J.O., Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea
| | - Yeon Hee Cho
- From the Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., D.H.K., M.J.O.,Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea.,Stem Cell and Regenerative Medicine Institute (M.J.O., Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea
| | - Eun Hee Kim
- From the Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., D.H.K., M.J.O.,Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea.,Stem Cell and Regenerative Medicine Institute (M.J.O., Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea
| | - Gyeong Joon Moon
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea (G.J.M.)
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics (C.-S.K.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jihoon Cha
- Department of Radiology, Yonsei University Medical Center, Yonsei University College of Medicine, Seoul, Republic of Korea (J.C.)
| | - Keon Ha Kim
- Department of Radiology (K.H.K., P.J.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Pyoung Jeon
- Department of Radiology (K.H.K., P.J.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Je Young Yeon
- Department of Neurosurgery (J.Y.Y., J.-S.K., S.C.H.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Gyeong-Moon Kim
- Department of Neurology (J.-W.C., G.-M.K., O.Y.B.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong-Soo Kim
- Department of Neurosurgery (J.Y.Y., J.-S.K., S.C.H.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seung Chyul Hong
- Department of Neurosurgery (J.Y.Y., J.-S.K., S.C.H.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Oh Young Bang
- From the Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., D.H.K., M.J.O.,Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea.,Stem Cell and Regenerative Medicine Institute (M.J.O., Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurology (J.-W.C., G.-M.K., O.Y.B.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea (D.H.K., O.Y.B.)
| |
Collapse
|
33
|
Rui Q, Ni H, Lin X, Zhu X, Li D, Liu H, Chen G. Astrocyte-derived fatty acid-binding protein 7 protects blood-brain barrier integrity through a caveolin-1/MMP signaling pathway following traumatic brain injury. Exp Neurol 2019; 322:113044. [PMID: 31454490 DOI: 10.1016/j.expneurol.2019.113044] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/15/2019] [Accepted: 08/23/2019] [Indexed: 11/19/2022]
Abstract
The astrocyte-endothelial cell interaction is crucial for normal brain homeostasis and blood-brain barrier (BBB) disruption in pathological conditions. However, the mechanism by which astrocytes control BBB integrity, especially after traumatic brain injury (TBI), remains unclear. Here, we present evidence that astrocyte-derived fatty acid-binding protein 7 (FABP7), a differentiation- and migration-associated molecule, may function as a modulator of BBB permeability in a rat weight-drop model of TBI. Immunohistochemical analysis revealed that TBI induced increased expression of FABP7 in astrocytes, accompanied by caveolin-1 (Cav-1) upregulation in endothelial cells. Administration of recombinant FABP7 significantly ameliorated TBI-induced neurological deficits, brain edema, and BBB permeability, concomitant with upregulation of endothelial Cav-1 and tight junction protein expression, while FABP7 knockdown resulted in the opposite effects. Furthermore, pretreatment with daidzein, a specific inhibitor of Cav-1, reversed the inhibitory effects of recombinant FABP7 on matrix metalloproteinase (MMP)-2/9 expression and abolished its BBB protection after TBI. Altogether, these findings suggest that astrocyte-derived FABP7 upregulation may represent an endogenous protective response to BBB disruption partly mediated through a Cav-1/MMP signaling pathway following TBI.
Collapse
Affiliation(s)
- Qin Rui
- Department of Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou 215006, China
| | - Haibo Ni
- Department of Neurosurgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou 215006, China
| | - Xiaolong Lin
- Department of Orthopaedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou 215006, China
| | - Xiaojue Zhu
- Department of Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou 215006, China
| | - Di Li
- Department of Translational Medicine Center, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou 215006, China
| | - Huixiang Liu
- Department of Neurosurgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
34
|
Cruz D, Pinto R, Freitas-Silva M, Nunes JP, Medeiros R. GWAS contribution to atrial fibrillation and atrial fibrillation-related stroke: pathophysiological implications. Pharmacogenomics 2019; 20:765-780. [PMID: 31368859 DOI: 10.2217/pgs-2019-0054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Atrial fibrillation (AF) and stroke are included in a group of complex traits that have been approached regarding of their study by susceptibility genetic determinants. Since 2007, several genome-wide association studies (GWAS) aiming to identify genetic variants modulating AF risk have been conducted. Thus, 11 GWAS have identified 26 SNPs (p < 5 × 10-2), of which 19 reached genome-wide significance (p < 5 × 10-8). From those variants, seven were also associated with cardioembolic stroke and three reached genome-wide significance in stroke GWAS. These associations may shed a light on putative shared etiologic mechanisms between AF and cardioembolic stroke. Additionally, some of these identified variants have been incorporated in genetic risk scores in order to elucidate new approaches of stroke prediction, prevention and treatment.
Collapse
Affiliation(s)
- Diana Cruz
- Molecular Oncology & Viral Pathology Group-Research Center, Portuguese Institute of Oncology, Edifício Laboratórios. 4° piso, Rua Dr António Bernardino de Almeida, 4200-4072 Porto, Portugal.,FMUP, Faculty of Medicine, Porto University, Alameda Prof Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ricardo Pinto
- Molecular Oncology & Viral Pathology Group-Research Center, Portuguese Institute of Oncology, Edifício Laboratórios. 4° piso, Rua Dr António Bernardino de Almeida, 4200-4072 Porto, Portugal
| | - Margarida Freitas-Silva
- FMUP, Faculty of Medicine, Porto University, Alameda Prof Hernâni Monteiro, 4200-319 Porto, Portugal.,Department of Medicine, Centro Hospitalar São João, Porto, Portugal
| | - José Pedro Nunes
- FMUP, Faculty of Medicine, Porto University, Alameda Prof Hernâni Monteiro, 4200-319 Porto, Portugal.,Department of Medicine, Centro Hospitalar São João, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology & Viral Pathology Group-Research Center, Portuguese Institute of Oncology, Edifício Laboratórios. 4° piso, Rua Dr António Bernardino de Almeida, 4200-4072 Porto, Portugal.,FMUP, Faculty of Medicine, Porto University, Alameda Prof Hernâni Monteiro, 4200-319 Porto, Portugal.,Research Department, Portuguese League Against Cancer (NRNorte), Estrada Interior da Circunvalação, 6657, 4200-172 Porto, Portugal.,CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
| |
Collapse
|
35
|
Caveolin-1 enhances brain metastasis of non-small cell lung cancer, potentially in association with the epithelial-mesenchymal transition marker SNAIL. Cancer Cell Int 2019; 19:171. [PMID: 31297035 PMCID: PMC6599320 DOI: 10.1186/s12935-019-0892-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/25/2019] [Indexed: 02/08/2023] Open
Abstract
Background Caveolin-1 (Cav-1) plays an important role in the development of various human cancers. We investigated the relationship between Cav-1 expression and non-small cell lung cancer (NSCLC) progression in the context of brain metastasis (BM). Methods Cav-1 expression was investigated in a series of 102 BM samples and 49 paired primary NSCLC samples, as well as 162 unpaired primary NSCLC samples with (63 cases) or without (99 cases) metastasis to distant organs. Human lung cancer cell lines were used for in vitro functional analysis. Results High Cav-1 expression in tumor cells was observed in 52% (38/73) of squamous cell carcinomas (SQCs) and 33% (45/138) of non-SQCs. In SQC, high Cav-1 expression was increased after BM in both paired and unpaired samples of lung primary tumors and BM (53% vs. 84% in paired samples, P = 0.034; 52% vs. 78% in unpaired samples, P = 0.020). Although the difference in median overall survival in patients NSCLC was not statistically significant, high Cav-1 expression in tumor cells (P = 0.005, hazard ratio 1.715, 95% confidence index 1.175–2.502) was independent prognostic factors of overall survival on multivariate Cox regression analyses, in addition to the presence of BM and non-SQC type. In vitro assays revealed that Cav-1 knockdown inhibited the invasion and migration of lung cancer cells. Genetic modulation of Cav-1 was consistently associated with SNAIL up- and down-regulation. These findings were supported by increased SNAIL and Cav-1 expression in BM samples of SQC. Conclusions Cav-1 plays an important role in the BM of NSCLC, especially in SQC. The mechanism may be linked to SNAIL regulation. Electronic supplementary material The online version of this article (10.1186/s12935-019-0892-0) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Wan JJ, Wang PY, Zhang Y, Qin Z, Sun Y, Hu BH, Su DF, Xu DP, Liu X. Role of acute-phase protein ORM in a mice model of ischemic stroke. J Cell Physiol 2019; 234:20533-20545. [PMID: 31026065 DOI: 10.1002/jcp.28653] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
Abstract
The only Food and Drug Administration-approved treatment for acute ischemic stroke is tissue plasminogen activator, and the discovery of novel therapeutic targets is critical. Here, we found orosomucoid (ORM), an acute-phase protein mainly produced by the liver, might act as a treatment candidate for an ischemic stroke. The results showed that ORM2 is the dominant subtype in mice normal brain tissue. After middle cerebral artery occlusion (MCAO), the level of ORM2 is significantly increased in the ischemic penumbra compared with the contralateral normal brain tissue, whereas ORM1 knockout did not affect the infarct size. Exogenous ORM could significantly decrease infarct size and neurological deficit score. Inspiringly, the best administration time point was at 4.5 and 6 hr after MCAO. ORM could markedly decrease the Evans blue extravasation, and improve blood-brain barrier-associated proteins expression in the ischemic penumbra of MACO mice and oxygen-glucose deprivation (OGD)-treated bEnd3 cells. Meanwhile, ORM could significantly alleviate inflammation by inhibiting the production of interleukin 1β (IL-1β), IL-6, and tumor necrosis factor α (TNF-α), reduce oxidative stress by improving the balance of malondialdehyde (MDA) and superoxide dismutase (SOD), inhibit apoptosis by decreasing caspase-3 activity in ischemic penumbra of MCAO mice and OGD-treated bEnd.3 cells. Because of its protective role at multiple levels, ORM might be a promising therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Jing-Jing Wan
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.,Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Peng-Yuan Wang
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yu Zhang
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Zhen Qin
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.,Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yang Sun
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.,Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Bo-Han Hu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Ding-Feng Su
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Dong-Ping Xu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.,Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
37
|
Kunze R, Marti HH. Angioneurins - Key regulators of blood-brain barrier integrity during hypoxic and ischemic brain injury. Prog Neurobiol 2019; 178:101611. [PMID: 30970273 DOI: 10.1016/j.pneurobio.2019.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
The loss of blood-brain barrier (BBB) integrity leading to vasogenic edema and brain swelling is a common feature of hypoxic/ischemic brain diseases such as stroke, but is also central to the etiology of other CNS disorders. In the past decades, numerous proteins, belonging to the family of angioneurins, have gained increasing attention as potential therapeutic targets for ischemic stroke, but also other CNS diseases attributed to BBB dysfunction. Angioneurins encompass mediators that affect both neuronal and vascular function. Recently, increasing evidence has been accumulated that certain angioneurins critically determine disease progression and outcome in stroke among others through multifaceted effects on the compromised BBB. Here, we will give a concise overview about the family of angioneurins. We further describe the most important cellular and molecular components that contribute to structural integrity and low permeability of the BBB under steady-state conditions. We then discuss BBB alterations in ischemic stroke, and highlight underlying cellular and molecular mechanisms. For the most prominent angioneurin family members including vascular endothelial growth factors, angiopoietins, platelet-derived growth factors and erythropoietin, we will summarize current scientific literature from experimental studies in animal models, and if available from clinical trials, on the following points: (i) spatiotemporal expression of these factors in the healthy and hypoxic/ischemic CNS, (ii) impact of loss- or gain-of-function during cerebral hypoxia/ischemia for BBB integrity and beyond, and (iii) potential underlying molecular mechanisms. Moreover, we will highlight novel therapeutic strategies based on the activation of endogenous angioneurins that might improve BBB dysfuntion during ischemic stroke.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany.
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| |
Collapse
|
38
|
Oxygen-Glucose Deprivation/Reoxygenation-Induced Barrier Disruption at the Human Blood–Brain Barrier is Partially Mediated Through the HIF-1 Pathway. Neuromolecular Med 2019; 21:414-431. [DOI: 10.1007/s12017-019-08531-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
|
39
|
Yang S, Jin H, Zhao ZG. Epidermal growth factor treatment has protective effects on the integrity of the blood-brain barrier against cerebral ischemia injury in bEnd3 cells. Exp Ther Med 2019; 17:2397-2402. [PMID: 30867725 DOI: 10.3892/etm.2019.7186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
Abstract
Tight junctions (TJs) serve an important role in maintaining the integrity of the blood-brain barrier (BBB), while neurological disorders, including ischemic stroke, induce TJ disruption and increase BBB permeability; results include edema formation and hemorrhage transformation. Cerebral endothelium protection presents a promising approach in ischemic stroke therapy. In the current study, protective effects of the epidermal growth factor (EGF) on ischemia-induced disruption of BBB integrity were examined using an oxygen-glucose deprivation (OGD) model in bEnd3 cells. Expression levels of claudin-5 and TJ protein-1 (ZO-1) were determined by reverse transcription-quantitative polymerase chain reaction and western blot analysis. Cell viability was evaluated by cell counting kit-8 assay and the endothelial permeability of Lucifer yellow (LY) was assessed using Transwell assays. The results revealed that post-ischemia administration of EGF (250 ng/ml) significantly attenuated the decrease in mRNA (P<0.05) and protein (P<0.01) expression levels of claudin-5 and ZO-1, and the increase in endothelial permeability of LY (P<0.05) induced by 4 h OGD exposure followed by 24 h reoxygenation. In addition, EGF did not significant affect cell viability. The current study suggested a potential of EGF to improve BBB integrity against ischemic injury by upregulating the expression of TJ proteins and reducing endothelial permeability.
Collapse
Affiliation(s)
- Shu Yang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Hong Jin
- Disinfection Evaluation Research Center, Institute of Disease Prevention and Control of PLA, Beijing 100071, P.R. China
| | - Zhi-Gang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| |
Collapse
|
40
|
Huang Q, Zhong W, Hu Z, Tang X. A review of the role of cav-1 in neuropathology and neural recovery after ischemic stroke. J Neuroinflammation 2018; 15:348. [PMID: 30572925 PMCID: PMC6302517 DOI: 10.1186/s12974-018-1387-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke starts a series of pathophysiological processes that cause brain injury. Caveolin-1 (cav-1) is an integrated protein and locates at the caveolar membrane. It has been demonstrated that cav-1 can protect blood–brain barrier (BBB) integrity by inhibiting matrix metalloproteases (MMPs) which degrade tight junction proteins. This article reviews recent developments in understanding the mechanisms underlying BBB dysfunction, neuroinflammation, and oxidative stress after ischemic stroke, and focuses on how cav-1 modulates a series of activities after ischemic stroke. In general, cav-1 reduces BBB permeability mainly by downregulating MMP9, reduces neuroinflammation through influencing cytokines and inflammatory cells, promotes nerve regeneration and angiogenesis via cav-1/VEGF pathway, reduces apoptosis, and reduces the damage mediated by oxidative stress. In addition, we also summarize some experimental results that are contrary to the above and explore possible reasons for these differences.
Collapse
Affiliation(s)
- Qianyi Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Wei Zhong
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China.
| |
Collapse
|
41
|
Wang F, Cao Y, Ma L, Pei H, Rausch WD, Li H. Dysfunction of Cerebrovascular Endothelial Cells: Prelude to Vascular Dementia. Front Aging Neurosci 2018; 10:376. [PMID: 30505270 PMCID: PMC6250852 DOI: 10.3389/fnagi.2018.00376] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022] Open
Abstract
Vascular dementia (VaD) is the second most common type of dementia after Alzheimer's disease (AD), characterized by progressive cognitive impairment, memory loss, and thinking or speech problems. VaD is usually caused by cerebrovascular disease, during which, cerebrovascular endothelial cells (CECs) are vulnerable. CEC dysfunction occurs before the onset of VaD and can eventually lead to dysregulation of cerebral blood flow and blood-brain barrier damage, followed by the activation of glia and inflammatory environment in the brain. White matter, neuronal axons, and synapses are compromised in this process, leading to cognitive impairment. The present review summarizes the mechanisms underlying CEC impairment during hypoperfusion and pathological role of CECs in VaD. Through the comprehensive examination and summarization, endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) signaling pathway, Ras homolog gene family member A (RhoA) signaling pathway, and CEC-derived caveolin-1 (CAV-1) are proposed to serve as targets of new drugs for the treatment of VaD.
Collapse
Affiliation(s)
- Feixue Wang
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Ma
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wolf Dieter Rausch
- Department for Biomedical Sciences, Institute of Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
42
|
Ju F, Ran Y, Zhu L, Cheng X, Gao H, Xi X, Yang Z, Zhang S. Increased BBB Permeability Enhances Activation of Microglia and Exacerbates Loss of Dendritic Spines After Transient Global Cerebral Ischemia. Front Cell Neurosci 2018; 12:236. [PMID: 30123113 PMCID: PMC6085918 DOI: 10.3389/fncel.2018.00236] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/16/2018] [Indexed: 12/02/2022] Open
Abstract
Ischemic stroke can induce rapid disruption of blood-brain barrier (BBB). It has been suggested that increased BBB permeability can affect the pathological progression of ischemic tissue. However, the impact of increased BBB permeability on microglial activation and synaptic structures following reperfusion after ischemia remains unclear. In this study, we investigated microglial activation, dendritic damage and plasticity of dendritic spines after increasing BBB permeability following transient global cerebral ischemia in the somatosensory cortices in mice. Bilateral common carotid artery ligation (BCAL) was used to induce transient global cerebral ischemia. Mannitol was used to increase the BBB permeability. Intravital two-photon imaging was performed to image the dendritic structures and BBB extravasation. Microglial morphology was quantitated using a skeletonization analysis method. To evaluate inflammation of cerebral cortex, the mRNA expression levels of integrin alpha M (CD11b), CD68, chemokine (C-X-C motif) ligand 10 (IP10) and tumor necrosis factor alpha (TNF-α) were measured by fluorescent quantitative PCR. Intravital two-photon imaging revealed that mannitol caused a drastic increase in BBB extravasation during reperfusion after transient global ischemia. Increased BBB permeability induced by mannitol had no significant effect on inflammation and dendritic spines in healthy mice but triggered a marked de-ramification of microglia; importantly, in ischemic animals, mannitol accelerated de-ramification of microglia and aggravated inflammation at 3 h but not at 3 days following reperfusion after ischemia. Although mannitol did not cause significant change in the percentage of blebbed dendrites and did not affect the reversible recovery of the dendritic structures, excessive extravasation was accompanied with significant decrease in spine formation and increase in spine elimination during reperfusion in ischemic mice. These findings suggest that increased BBB permeability induced by mannitol can lead to acute activation of microglia and cause excessive loss of dendritic spines after transient global cerebral ischemia.
Collapse
Affiliation(s)
- Furong Ju
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yanli Ran
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lirui Zhu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiaofeng Cheng
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hao Gao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiaoxia Xi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zhanli Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
43
|
Abdullahi W, Tripathi D, Ronaldson PT. Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am J Physiol Cell Physiol 2018; 315:C343-C356. [PMID: 29949404 DOI: 10.1152/ajpcell.00095.2018] [Citation(s) in RCA: 362] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier (BBB) is a physical and biochemical barrier that precisely controls cerebral homeostasis. It also plays a central role in the regulation of blood-to-brain flux of endogenous and exogenous xenobiotics and associated metabolites. This is accomplished by molecular characteristics of brain microvessel endothelial cells such as tight junction protein complexes and functional expression of influx and efflux transporters. One of the pathophysiological features of ischemic stroke is disruption of the BBB, which significantly contributes to development of brain injury and subsequent neurological impairment. Biochemical characteristics of BBB damage include decreased expression and altered organization of tight junction constituent proteins as well as modulation of functional expression of endogenous BBB transporters. Therefore, there is a critical need for development of novel therapeutic strategies that can protect against BBB dysfunction (i.e., vascular protection) in the setting of ischemic stroke. Such strategies include targeting tight junctions to ensure that they maintain their correct structure or targeting transporters to control flux of physiological substrates for protection of endothelial homeostasis. In this review, we will describe the pathophysiological mechanisms in cerebral microvascular endothelial cells that lead to BBB dysfunction following onset of stroke. Additionally, we will utilize this state-of-the-art knowledge to provide insights on novel pharmacological strategies that can be developed to confer BBB protection in the setting of ischemic stroke.
Collapse
Affiliation(s)
- Wazir Abdullahi
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Dinesh Tripathi
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| |
Collapse
|
44
|
Chen HS, Chen X, Li WT, Shen JG. Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: potential application for drug discovery. Acta Pharmacol Sin 2018; 39:669-682. [PMID: 29595191 PMCID: PMC5943912 DOI: 10.1038/aps.2018.27] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/26/2018] [Indexed: 02/07/2023] Open
Abstract
Reactive nitrogen species (RNS) play important roles in mediating cerebral ischemia-reperfusion injury. RNS activate multiple signaling pathways and participate in different cellular events in cerebral ischemia-reperfusion injury. Recent studies have indicated that caveolin-1 and matrix metalloproteinase (MMP) are important signaling molecules in the pathological process of ischemic brain injury. During cerebral ischemia-reperfusion, the production of nitric oxide (NO) and peroxynitrite (ONOO−), two representative RNS, down-regulates the expression of caveolin-1 (Cav-1) and, in turn, further activates nitric oxide synthase (NOS) to promote RNS generation. The increased RNS further induce MMP activation and mediate disruption of the blood-brain barrier (BBB), aggravating the brain damage in cerebral ischemia-reperfusion injury. Therefore, the feedback interaction among RNS/Cav-1/MMPs provides an amplified mechanism for aggravating ischemic brain damage during cerebral ischemia-reperfusion injury. Targeting the RNS/Cav-1/MMP pathway could be a promising therapeutic strategy for protecting against cerebral ischemia-reperfusion injury. In this mini-review article, we highlight the important role of the RNS/Cav-1/MMP signaling cascades in ischemic stroke injury and review the current progress of studies seeking therapeutic compounds targeting the RNS/Cav-1/MMP signaling cascades to attenuate cerebral ischemia-reperfusion injury. Several representative natural compounds, including calycosin-7-O-β-D-glucoside, baicalin, Momordica charantia polysaccharide (MCP), chlorogenic acid, lutein and lycopene, have shown potential for targeting the RNS/Cav-1/MMP signaling pathway to protect the brain in ischemic stroke. Therefore, the RNS/Cav-1/MMP pathway is an important therapeutic target in ischemic stroke treatment.
Collapse
|
45
|
Baek BH, Kim HS, Yoon W, Lee YY, Baek JM, Kim EH, Kim SK. Inflammatory mediator expression within retrieved clots in acute ischemic stroke. Ann Clin Transl Neurol 2018; 5:273-279. [PMID: 29560373 PMCID: PMC5846392 DOI: 10.1002/acn3.529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022] Open
Abstract
Objective In this study we investigate the association between the expression of inflammatory mediators measured in clots retrieved by mechanical thrombectomy, stroke etiology, and the susceptibility vessel sign (SVS) on gradient-echo (GRE) MR imaging in acute ischemic stroke patients. Methods We performed molecular analysis of intracranial clots retrieved by mechanical thrombectomy from 82 patients with acute stroke. Seventy-two of these patients underwent GRE imaging before endovascular therapy. We measured the relative expression of inflammatory mediators by performing the quantitative real-time polymerase chain reaction on the retrieved clots and assessed associations between the expression of inflammatory mediators and stroke subtypes as well as with GRE SVS. Results Classifications of stroke etiology for the cohort were as follows: cardioembolism (51, 62.2%), large artery atherosclerosis (9, 11%), and undetermined etiology (22, 26.8%). Clots associated with large artery atherosclerosis showed significantly higher interleukin (IL)-1β expression than clots from both cardioembolism and undetermined etiology (P = 0.008). A positive SVS was identified in 48 of 72 patients (66.7%) who had GRE imaging. IL-1β, tumor necrosis factor-α, and matrix metalloproteinase-9 expressions were significantly higher in clots with a negative SVS than in those with a positive SVS (P = 0.010, 0.049, and 0.004, respectively). Interpretation Expression of inflammatory mediators in intracranial clots differs significantly based on stroke etiology or presence or the absence of SVS on GRE imaging. This study suggests that molecular analysis of inflammatory mediators in retrieved clots is a promising tool for determining stroke mechanism in acute ischemic stroke patients.
Collapse
Affiliation(s)
- Byung Hyun Baek
- Department of Radiology Chonnam National University Medical School Chonnam National University Hospital Gwangju Korea
| | - Hyung Seok Kim
- Department of Forensic Medicine Chonnam National University Medical School Chonnam National University Hospital Gwangju Korea
| | - Woong Yoon
- Department of Radiology Chonnam National University Medical School Chonnam National University Hospital Gwangju Korea
| | - Yun Young Lee
- Department of Radiology Chonnam National University Medical School Chonnam National University Hospital Gwangju Korea
| | - Jang Mi Baek
- Department of Radiology Chonnam National University Medical School Chonnam National University Hospital Gwangju Korea
| | - Eun Hee Kim
- Department of Forensic Medicine Chonnam National University Medical School Chonnam National University Hospital Gwangju Korea
| | - Seul Kee Kim
- Department of Radiology Chonnam National University Medical School Chonnam National University Hospital Gwangju Korea
| |
Collapse
|
46
|
Ryu HW, Lim W, Jo D, Kim S, Park JT, Min JJ, Hyun H, Kim HS. Low-Dose Evans Blue Dye for Near-Infrared Fluorescence Imaging in Photothrombotic Stroke Model. Int J Med Sci 2018; 15:696-702. [PMID: 29910674 PMCID: PMC6001419 DOI: 10.7150/ijms.24257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/09/2018] [Indexed: 12/23/2022] Open
Abstract
Background: Evans blue dye (EBD) is the most common indicator to analyze the extent of blood-brain barrier (BBB) breakdown in several neurological disease models. However, the high-dose of EBD (51.9 mg/kg) is usually required for visualization of blue color by the human eye that brings potential safety issues. Methods: To solve this problem, low-dose of EBD was applied for the near-infrared (NIR) fluorescence-assisted quantitation of BBB breakdown in photothrombotic stoke model. Animals were allocated to seven dose groups ranging from 1.35 nmol (5.19 μg/kg) to 13.5 μmol (51.9 mg/kg) EBD. Results: EBD was undetectable in the non-ischemic brain tissue, and the fluorescence signals in the infarcted hemisphere seemed proportional to the injected dose in the dose range. Although the maximum fluorescence signals in brain tissue were obtained with the injections of 1.35 nmol ~ 13.5 μmol EBD, the background signals in the neighboring brain tissues were significantly increased as well. Since the high concentration of EBD is necessary for color-based identification of the infarcted lesion in brain tissues, even 10-fold diluted could not be distinguished visually by naked eye. Conclusions: NIR fluorescence-assisted method could potentially provide new opportunities to study BBB leakage just using small amount of EBD in different pathological conditions and to test the efficacy of various therapeutic strategies to protect the BBB.
Collapse
Affiliation(s)
| | - Wonbong Lim
- Department of Premedical Program, School of Medicine, Chosun University, Gwangju 61452, South Korea
| | - Danbi Jo
- Department of Biomedical Sciences and
| | - Subin Kim
- Department of Biomedical Sciences and
| | | | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Hoon Hyun
- Department of Biomedical Sciences and.,Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine.,Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, South Korea
| |
Collapse
|
47
|
Aehling C, Weber NC, Zuurbier CJ, Preckel B, Galmbacher R, Stefan K, Hollmann MW, Popp E, Knapp J. Effects of combined helium pre/post-conditioning on the brain and heart in a rat resuscitation model. Acta Anaesthesiol Scand 2018; 62:63-74. [PMID: 29159800 DOI: 10.1111/aas.13041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/20/2017] [Accepted: 11/01/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND The noble gas helium induces cardio- and neuroprotection by pre- and post-conditioning. We investigated the effects of helium pre- and post-conditioning on the brain and heart in a rat resuscitation model. METHODS After approval by the Animal Care Committee, 96 Wistar rats underwent cardiac arrest for 6 min induced by ventricular fibrillation. Animals received 70% helium and 30% oxygen for 5 min before cardiac arrest and for 30 min after restoration of spontaneous circulation (ROSC). Control animals received 70% nitrogen and 30% oxygen. Hearts and brains were excised after 2, 4 h or 7 days. Neurological degeneration was evaluated using TUNEL and Nissl staining in the hippocampal CA-1 sector. Cognitive function after 7 days was detected with the tape removal test. Molecular targets were measured by infrared western blot. Data are shown as median [Interquartile range]. RESULTS Helium treatment resulted in significantly less apoptosis (TUNEL positive cells/100 pixel 73.5 [60.3-78.6] vs.78.2 [70.4-92.9] P = 0.023). Changes in Caveolin-3 expression in the membrane fraction and Hexokinase-II in the mitochondrial fraction were observed in the heart. Caveolin-1 expression of treated animals significantly differed from control animals in the membrane fraction of the heart and brain after ROSC. CONCLUSION Treatment with helium reduced apoptosis in our resuscitation model. Differential expression levels of Caveolin-1, Caveolin-3 and Hexokinase II in the heart were found after helium pre- and post-conditioning. No beneficial effects were seen on neurofunctional outcome.
Collapse
Affiliation(s)
- C. Aehling
- Department of Anesthesiology; Laboratory of Experimental Anesthesiology and Intensive Care; Academic Medical Center; Amsterdam The Netherlands
- Department of Anesthesiology; University Hospital of Heidelberg; Heidelberg Germany
| | - N. C. Weber
- Department of Anesthesiology; Laboratory of Experimental Anesthesiology and Intensive Care; Academic Medical Center; Amsterdam The Netherlands
| | - C. J. Zuurbier
- Department of Anesthesiology; Laboratory of Experimental Anesthesiology and Intensive Care; Academic Medical Center; Amsterdam The Netherlands
| | - B. Preckel
- Department of Anesthesiology; Laboratory of Experimental Anesthesiology and Intensive Care; Academic Medical Center; Amsterdam The Netherlands
| | - R. Galmbacher
- Department of Anesthesiology; University Hospital of Heidelberg; Heidelberg Germany
| | - K. Stefan
- Department of Anesthesiology; University Hospital of Heidelberg; Heidelberg Germany
| | - M. W. Hollmann
- Department of Anesthesiology; Laboratory of Experimental Anesthesiology and Intensive Care; Academic Medical Center; Amsterdam The Netherlands
| | - E. Popp
- Department of Anesthesiology; University Hospital of Heidelberg; Heidelberg Germany
| | - J. Knapp
- Department of Anesthesiology; University Hospital of Heidelberg; Heidelberg Germany
- Department of Anesthesiology and Pain Medicine; University Hospital of Bern; Bern Switzerland
| |
Collapse
|
48
|
Photothrombotic Stroke as a Model of Ischemic Stroke. Transl Stroke Res 2017; 9:437-451. [DOI: 10.1007/s12975-017-0593-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/14/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022]
|
49
|
Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, Keep RF, Shi Y. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 2017; 163-164:144-171. [PMID: 28987927 DOI: 10.1016/j.pneurobio.2017.10.001] [Citation(s) in RCA: 591] [Impact Index Per Article: 73.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/30/2017] [Accepted: 10/02/2017] [Indexed: 01/06/2023]
Abstract
The blood-brain barrier (BBB) plays a vital role in regulating the trafficking of fluid, solutes and cells at the blood-brain interface and maintaining the homeostatic microenvironment of the CNS. Under pathological conditions, such as ischemic stroke, the BBB can be disrupted, followed by the extravasation of blood components into the brain and compromise of normal neuronal function. This article reviews recent advances in our knowledge of the mechanisms underlying BBB dysfunction and recovery after ischemic stroke. CNS cells in the neurovascular unit, as well as blood-borne peripheral cells constantly modulate the BBB and influence its breakdown and repair after ischemic stroke. The involvement of stroke risk factors and comorbid conditions further complicate the pathogenesis of neurovascular injury by predisposing the BBB to anatomical and functional changes that can exacerbate BBB dysfunction. Emphasis is also given to the process of long-term structural and functional restoration of the BBB after ischemic injury. With the development of novel research tools, future research on the BBB is likely to reveal promising potential therapeutic targets for protecting the BBB and improving patient outcome after ischemic stroke.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | | | - Ling Zhu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael V L Bennett
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
50
|
Lee S, Lim W, Ryu HW, Jo D, Min JJ, Kim HS, Hyun H. ZW800-1 for Assessment of Blood-Brain Barrier Disruption in a Photothrombotic Stroke Model. Int J Med Sci 2017; 14:1430-1435. [PMID: 29200957 PMCID: PMC5707760 DOI: 10.7150/ijms.22294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023] Open
Abstract
Background: Since it is known that serum albumin-bound dyes can cross the blood-brain barrier (BBB) after ischemia, Evans Blue dye is commonly used to assess BBB disruption because of its rapid binding to serum albumin. In addition, indocyanine green (ICG), a clinically available dye, binds to serum proteins that could also be used for assessment of BBB impairment. Unlike these near-infrared (NIR) dyes, zwitterionic NIR fluorophore (ZW800-1) shows no serum binding, ultralow non-specific tissue uptake, and rapid elimination from the body via renal filtration. In this study, we report the use of ZW800-1 as a NIR fluorescence imaging agent for detecting BBB disruption in rat stroke models. Methods: Three types of NIR fluorophores, Evans Blue, ICG, and ZW800-1, were administered intraperitoneally into rat photothrombotic stroke models by using 4% concentration of each NIR dye. The NIR fluorescence signals in the infarcted brain tissue and biodistribution were observed in real-time using the Mini-FLARE® imaging system up to 24 h post-injection. Results: ZW800-1 provided successful visualization of the ischemic injury site in the brain tissue, while the remaining injected dye was clearly excreted from the body within a certain period of time. Although Evans Blue and ICG provided mapping of the infarcted brain lesions, they exhibited high non-specific uptake in most of the tissues and organs and persisted in the body over 24 h post-injection. Conclusion: Our results suggest the promising application of ZW800-1 as a new strategy in BBB experiments and future therapeutic development.
Collapse
Affiliation(s)
- Sungsu Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Wonbong Lim
- Department of Premedical Program, School of Medicine, Chosun University, Gwangju 61452, South Korea
| | - Hye-Won Ryu
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Danbi Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, South Korea
| |
Collapse
|