1
|
Machiraju P, Srinivas R, Kannan R, George R, Heymans S, Mukhopadhyay R, Ghosh A. Paired Transcriptomic Analyses of Atheromatous and Control Vessels Reveal Novel Autophagy and Immunoregulatory Genes in Peripheral Artery Disease. Cells 2024; 13:1269. [PMID: 39120300 PMCID: PMC11312159 DOI: 10.3390/cells13151269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Peripheral artery disease (PAD), a significant health burden worldwide, affects lower extremities due to atherosclerosis in peripheral vessels. Although the mechanisms of PAD have been well studied, the molecular milieu of the plaques localized within peripheral arteries are not well understood. Thus, to identify PAD-lesion-specific gene expression profiles precluding genetic, environmental, and dietary biases, we studied the transcriptomic profile of nine plaque tissues normalized to non-plaque tissues from the same donors. A total of 296 upregulated genes, 274 downregulated genes, and 186 non-coding RNAs were identified. STAG1, SPCC3, FOXQ1, and E2F3 were key downregulated genes, and CD93 was the top upregulated gene. Autophagosome assembly, cellular response to UV, cytoskeletal organization, TCR signaling, and phosphatase activity were the key dysregulated pathways identified. Telomerase regulation and autophagy were identified as novel interacting pathways using network analysis. The plaque tissue was predominantly composed of immune cells and dedifferentiated cell populations indicated by cell-specific marker-imputed gene expression analysis. This study identifies novel genes, non-coding RNAs, associated regulatory pathways, and the cell composition of the plaque tissue in PAD patients. The autophagy and immunoregulatory genes may drive novel mechanisms, resulting in atheroma. These novel interacting networks and genes have potential for PAD-specific therapeutic applications.
Collapse
Affiliation(s)
- Praveen Machiraju
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, India; (P.M.); (R.K.)
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Rajesh Srinivas
- Department of Vascular and Endovascular Surgery, Narayana Health, Bangalore 560099, India; (R.S.); (R.G.)
| | - Ramaraj Kannan
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, India; (P.M.); (R.K.)
| | - Robbie George
- Department of Vascular and Endovascular Surgery, Narayana Health, Bangalore 560099, India; (R.S.); (R.G.)
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, bus911, 3000 Leuven, Belgium
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, India; (P.M.); (R.K.)
| |
Collapse
|
2
|
Lin H, Bei Y, Shen Z, Wei T, Ge Y, Yu L, Xu H, He W, Dai Y, Yao D, Dai H. HDAC9 Deficiency Upregulates cGMP-dependent Kinase II to Mitigate Neuronal Apoptosis in Ischemic Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01272-7. [PMID: 38940872 DOI: 10.1007/s12975-024-01272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Histone deacetylase 9 (HDAC9) is implicated in ischemic stroke by genome-wide association studies. We conducted a series of experiments using a mouse model of ischemic stroke (middle cerebral artery occlusion followed by reperfusion) to examine the potential role of HDAC9. Briefly, HDAC9 was upregulated in the penumbra. Deletion of HDAC9 from neurons reduced infarction volume, inhibited neuronal apoptosis in the penumbra, and improved neurological outcomes. HDAC9 knockout from neurons in the penumbra upregulated cGMP-dependent kinase II (cGK II), blocking which abrogated the protective effects of HDAC9 deletion. Mechanistically, HDAC9 interacts with the transcription factor MEF2, thereby inhibiting MEF2's binding to the promoter region of the cGK II gene, which results in the suppression of cGK II expression. Inhibiting the interaction between HDAC9 and MEF2 by BML210 upregulated cGK II and attenuated ischemic injury in mice. These results encourage targeting the HDAC9-MEF2 interaction in developing novel therapy against ischemic stroke.
Collapse
Affiliation(s)
- Haoran Lin
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China
| | - Yun Bei
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China
| | - Zexu Shen
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China
| | - Taofeng Wei
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China
| | - Yuyang Ge
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lingyan Yu
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China
| | - Huimin Xu
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China
| | - Wei He
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China
| | - Yunjian Dai
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China
| | - Difei Yao
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China
| | - Haibin Dai
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.
- Clinical Pharmacy Research Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Liu R, Li L, Wang Z, Zhu J, Ji Y. Acetylated Histone Modifications: Intersection of Diabetes and Atherosclerosis. J Cardiovasc Pharmacol 2024; 83:207-219. [PMID: 37989137 DOI: 10.1097/fjc.0000000000001516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
ABSTRACT Worldwide, type 2 diabetes is predominant form of diabetes, and it is mainly affected by the environment. Furthermore, the offspring of patients with type 2 diabetes and metabolic disorder syndrome may have a higher risk of diabetes and cardiovascular disease, which indicates that the environmental impact on diabetes prevalence can be transmitted across generations. In the process of diabetes onset and intergenerational transmission, the genetic structure of the individual is not directly changed but is regulated by epigenetics. In this process, genes or histones are modified, resulting in selective expression of proteins. This modification will affect not only the onset of diabetes but also the related onset of atherosclerosis. Acetylation and deacetylation may be important regulatory factors for the above lesions. Therefore, in this review, based on the whole process of atherosclerosis evolution, we explored the possible existence of acetylation/deacetylation caused by diabetes. However, because of the lack of atherosclerosis-related acetylation studies directly based on diabetic models, we also used a small number of experiments involving nondiabetic models of related molecular mechanisms.
Collapse
Affiliation(s)
| | | | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; and
| | - Jie Zhu
- Department of Cardiology, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu' an People's Hospital, Lu'an, China
| | | |
Collapse
|
4
|
Das T, Khatun S, Jha T, Gayen S. HDAC9 as a Privileged Target: Reviewing its Role in Different Diseases and Structure-activity Relationships (SARs) of its Inhibitors. Mini Rev Med Chem 2024; 24:767-784. [PMID: 37818566 DOI: 10.2174/0113895575267301230919165827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 08/11/2023] [Indexed: 10/12/2023]
Abstract
HDAC9 is a histone deacetylase enzyme belonging to the class IIa of HDACs which catalyses histone deacetylation. HDAC9 inhibit cell proliferation by repairing DNA, arresting the cell cycle, inducing apoptosis, and altering genetic expression. HDAC9 plays a significant part in human physiological system and are involved in various type of diseases like cancer, diabetes, atherosclerosis and CVD, autoimmune response, inflammatory disease, osteoporosis and liver fibrosis. This review discusses the role of HDAC9 in different diseases and structure-activity relationships (SARs) of various hydroxamate and non-hydroxamate-based inhibitors. SAR of compounds containing several scaffolds have been discussed in detail. Moreover, structural requirements regarding the various components of HDAC9 inhibitor (cap group, linker and zinc-binding group) has been highlighted in this review. Though, HDAC9 is a promising target for the treatment of a number of diseases including cancer, a very few research are available. Thus, this review may provide useful information for designing novel HDAC9 inhibitors to fight against different diseases in the future.
Collapse
Affiliation(s)
- Totan Das
- Department of Pharmaceutical Technology, Laboratory of Drug Design and Discovery, Jadavpur University, Kolkata, 700032, India
| | - Samima Khatun
- Department of Pharmaceutical Technology, Laboratory of Drug Design and Discovery, Jadavpur University, Kolkata, 700032, India
| | - Tarun Jha
- Department of Pharmaceutical Technology, Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Shovanlal Gayen
- Department of Pharmaceutical Technology, Laboratory of Drug Design and Discovery, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
5
|
Liu D, Jing Y, Peng G, Wei L, Zheng L, Chang G, Wang M. MiR-199a-5p Deficiency Promotes Artery Restenosis in Peripheral Artery Disease by Regulating ASMCs Function via Targeting HIF-1α and E2F3. Curr Vasc Pharmacol 2024; 22:342-354. [PMID: 38910413 DOI: 10.2174/0115701611280634240616062413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/12/2024] [Accepted: 05/15/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Restenosis (RS) poses a significant concern, leading to recurrent ischemia and the potential for amputation following intraluminal angioplasty in the treatment of Peripheral Artery Disease (PAD). Through microRNA microarray analysis, the study detected a significant downregulation of miR-199a-5p within arterial smooth muscle cells (ASMCs) associated with RS. OBJECTIVE This research aims to explore the possible function and the underlying mechanisms of miR-199a-5p in the context of RS. METHODS Primary ASMCs were extracted from the femoral arteries of both healthy individuals and patients with PAD or RS. The expression levels of miR-199a-5p were assessed using both qRT-PCR and in situ hybridization techniques. To examine the impacts of miR-199a-5p, a series of experiments were performed, including flow cytometry, TUNEL assay, EdU assay, CCK8 assay, Transwell assay, and wound closure assay. A rat carotid balloon injury model was employed to elucidate the mechanism through which miR-199a-5p mitigated neointimal hyperplasia. RESULTS MiR-199a-5p exhibited downregulation in RS patients and was predominantly expressed within ASMCs. Elevated the expression of miR-199a-5p resulted in an inhibitory effect of proliferation and migration in ASMCs. Immunohistochemistry and a dual-luciferase reporter assay uncovered that RS exhibited elevated expression levels of both HIF-1α and E2F3, and they were identified as target genes regulated by miR-199a-5p. The co-transfection of lentiviruses carrying HIF-1α and E2F3 alongside miR-199a-5p further elucidated their role in the cellular responses mediated by miR-199a-5p. In vivo, the delivery of miR-199a-5p via lentivirus led to the mitigation of neointimal formation following angioplasty, achieved by targeting HIF-1α and E2F3. CONCLUSION MiR-199a-5p exhibits promise as a prospective therapeutic target for RS since it alleviates the condition by inhibiting the proliferation and migration of ASMCs via its regulation of HIF-1α and E2F3.
Collapse
MESH Headings
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Animals
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Cell Proliferation
- Peripheral Arterial Disease/genetics
- Peripheral Arterial Disease/pathology
- Peripheral Arterial Disease/metabolism
- Peripheral Arterial Disease/therapy
- Disease Models, Animal
- Male
- Cell Movement
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Rats, Sprague-Dawley
- Cells, Cultured
- E2F3 Transcription Factor/genetics
- E2F3 Transcription Factor/metabolism
- Middle Aged
- Signal Transduction
- Case-Control Studies
- Femoral Artery/pathology
- Femoral Artery/metabolism
- Femoral Artery/surgery
- Femoral Artery/physiopathology
- Neointima
- Female
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/metabolism
- Aged
- Angioplasty, Balloon/adverse effects
- Apoptosis/genetics
Collapse
Affiliation(s)
- Duan Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Division of Vascular Surgery, Xuanwu Hospital, Capital Medical University and Institute of Vascular Surgery, Capital Medical University, Beijing, 100053, China
| | - Yexiang Jing
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Guiyan Peng
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Litai Wei
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Liang Zheng
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Guangqi Chang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Mian Wang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
6
|
Ma Y, Zhang J, Li D, Tang L, Li Y, Cui F, Wang J, Wen C, Yang J, Tian Y. Genetic Susceptibility Modifies Relationships Between Air Pollutants and Stroke Risk: A Large Cohort Study. Stroke 2024; 55:113-121. [PMID: 38134266 DOI: 10.1161/strokeaha.123.044284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND The extent to which genetic susceptibility modifies the associations between air pollutants and the risk of incident stroke is still unclear. This study was designed to investigate the separate and joint associations of long-term exposure to air pollutants and genetic susceptibility on stroke risk. METHODS The participants of this study were recruited by the UK Biobank between 2006 and 2010. These participants were followed up from the enrollment until the occurrence of stroke events or censoring of data. Hazard ratios (HRs) and 95% CIs for stroke events associated with long-term exposure to air pollutants were estimated by fitting both crude and adjusted Cox proportional hazards models. Additionally, the polygenic risk score was calculated to estimate whether the polygenic risk score modifies the associations between exposure to air pollutants and incident stroke. RESULTS A total of 502 480 subjects were included in this study. After exclusion, 452 196 participants were taken into the final analysis. During a median follow-up time of 11.7 years, 11 334 stroke events were observed, with a mean age of 61.60 years, and men accounted for 56.2% of the total cases. Long-term exposures to particulate matter with an aerodynamic diameter smaller than 2.5 µm (adjusted HR, 1.70 [95% CI, 1.43-2.03]) or particulate matter with an aerodynamic diameter smaller than 10 µm (adjusted HR, 1.50 [95% CI, 1.36-1.66]), nitrogen dioxide (adjusted HR, 1.10 [95% CI, 1.07-1.12]), and nitrogen oxide (adjusted HR, 1.04 [95% CI, 1.02-1.05]) were pronouncedly associated with increased risk of stroke. Meanwhile, participants with high genetic risk and exposure to high air pollutants had ≈45% (31%, 61%; particulate matter with an aerodynamic diameter smaller than 2.5 µm), 48% (33%, 65%; particulate matter with an aerodynamic diameter smaller than 10 µm), 51% (35%, 69%; nitrogen dioxide), and 39% (25%, 55%; nitrogen oxide) higher risk of stroke compared with those with low genetic risk and exposure to low air pollutants, respectively. Of note, we observed additive and multiplicative interactions between genetic susceptibility and air pollutants on stroke events. CONCLUSIONS Chronic exposure to air pollutants was associated with an increased risk of stroke, especially in populations at high genetic risk.
Collapse
Affiliation(s)
- Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating) (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University and Yichang Central People's Hospital (J.Z., J.Y.)
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang (J.Z., J.Y.)
- Hubei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China (J.Z., J.Y.)
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating) (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating) (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimeng Li
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating) (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT (Y.L.)
| | - Feipeng Cui
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating) (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianing Wang
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating) (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Wen
- School of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan, China (C.W.)
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University and Yichang Central People's Hospital (J.Z., J.Y.)
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang (J.Z., J.Y.)
- Hubei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China (J.Z., J.Y.)
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating) (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Abstract
The identification of a variant in the HDAC9 gene as a risk factor for large-artery atherosclerotic stroke, and subsequently coronary artery disease, has opened novel treatment pathways for stroke and more widely atherosclerotic disease. This article describes the pathway from gene discovery to novel therapeutic approaches that are now entering man. HDAC9 expression is elevated in human atherosclerotic plaque, while in animal and cellular models, reducing HDAC9 (histone deacetylase 9) protein is associated with reduced disease. Several mechanisms have been proposed to account for the association between HDAC9 and atherosclerosis including alterations in the inflammatory response and cholesterol efflux and endothelial-mesenchymal transition. The association raises the possibility that inhibiting HDAC9 may provide a novel treatment approach for atherosclerotic cardiovascular disease. This is supported by intervention studies demonstrating HDAC9 inhibition reduces atherosclerosis in animal and cellular models. Indirect data support such an approach in man. The antiseizure drug sodium valproate, which has nonspecific HDAC inhibitory properties, both inhibits atherosclerosis in animal models and is epidemiologically associated with reduced stroke and myocardial infarction risk in man. It is now being trailed in phase 2 studies in large-artery stroke, while more specific HDAC9 inhibitors are being developed.
Collapse
Affiliation(s)
- Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| |
Collapse
|
8
|
Monisha K, Mahema S, Chokkalingam M, Ahmad SF, Emran TB, Prabu P, Ahmed SSSJ. Elucidating the Histone Deacetylase Gene Expression Signatures in Peripheral Blood Mononuclear Cells That Correlate Essential Cardiac Function and Aid in Classifying Coronary Artery Disease through a Logistic Regression Model. Biomedicines 2023; 11:2952. [PMID: 38001953 PMCID: PMC10669643 DOI: 10.3390/biomedicines11112952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
A proinflammatory role of HDACs has been implicated in the pathogenesis of atherosclerosis as an emerging novel epigenetic diagnostic biomarker. However, its association with the clinical and cardiovascular function in coronary artery disease is largely unknown. The study aimed to profile the gene expression of HDAC1-11 in human peripheral blood mononuclear cells and to evaluate their influence on hematological, biochemical, and two-dimensional echocardiographic indices in CAD. The HDAC gene expression profiles were assessed in 62 angioproven CAD patients and compared with 62 healthy controls. Among the HDACs, upregulated HDACs 1,2, 4, 6, 8, 9, and 11 were upregulated, and HDAC3 was downregulated, which was significantly (p ≤ 0.05) linked with the hematological (basophils, lymphocytes, monocytes, and neutrophils), biochemical (LDL, HDL, and TGL), and echocardiographic parameters (cardiac function: biplane LVEF, GLS, MV E/A, IVRT, and PV S/D) in CAD. Furthermore, our constructed diagnostic model with the crucial HDACs establishes the most crucial HDACs in the classification of CAD from control with an excellent accuracy of 88.6%. Conclusively, our study has provided a novel perspective on the HDAC gene expression underlying cardiac function that is useful in developing molecular methods for CAD diagnosis.
Collapse
Affiliation(s)
- K. Monisha
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, India
| | - S. Mahema
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, India
| | - M. Chokkalingam
- Department of Cardiology, Chettinad Hospital and Research Institute, Chettinad Health City, Kelambakkam 603103, India
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Paramasivam Prabu
- Madras Diabetes Research Foundation, Chennai 600086, India
- Department of Neurology, University of New Mexico Albuquerque, Albuquerque, NM 87131, USA
| | - Shiek S. S. J. Ahmed
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, India
| |
Collapse
|
9
|
Luo S, Chen Y, Zhao R, Ma D, Zhao Y, Zhang Y, Jiang J, Yu W. Application of omics technology to investigate the mechanism underlying the role of San Hua Tang in regulating microglia polarization and blood-brain barrier protection following ischemic stroke. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116640. [PMID: 37196812 DOI: 10.1016/j.jep.2023.116640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE San Hua Tang (SHT) was first mentioned in the book "The Collection of Plain Questions about Pathogenesis, Qi, and Life." SHT has the effect of dispelling wind and dredging collaterals, dredging viscera, and guiding stagnation, and is used in the treatment of ischemic stroke (IS). SHT is composed of Rheum palmatum L., Magnolia officinalis Rehder & E.H.Wilson, Citrus assamensis S.Dutta & S.C.Bhattacharya, and Notopterygium tenuifolium M.L.Sheh & F.T.Pu, which is the traditional prescription of the Tongxia method for the treatment of stroke. Tongxia is one of the "eight methods" used in traditional Chinese medicine, which plays a role in treating diseases by promoting gastrointestinal peristalsis and defecation. Studies have demonstrated a close relationship between gut microbiota metabolism and cerebral stroke; however, the role of SHT in IS treatment through gut microbiota or intestinal metabolites is unclear. AIM OF THE STUDY To explore the connotation of the Xuanfu theory and clarify the mechanism underlying SHT-mediated opening Xuanfu methods. Through metabolomics, 16S rRNA gene sequencing, and molecular biology techniques, research on the changes in the gut microbiota and blood-brain barrier (BBB) will highlight greater strategies for the treatment of stroke. MATERIALS AND METHODS We used pseudo-germ-free (PGF) rats combined with an ischemia/reperfusion (I/R) rat model for the follow-up experimental research. PGF rats were prepared by the intragastric administration of an antibiotic cocktail for 6 days, following which SHT was administered for 5 consecutive days. The I/R model was performed 1 day following the concluding administration of SHT. We detected the neurological deficit score, cerebral infarct volume, serum inflammatory factor levels (interleukin IL-6, IL-10, IL-17, and tumor necrosis factor alpha), tight junction-related proteins (Zonula occludens-1, Occludin, and Claudin-5), and small glue plasma cell-associated proteins (Cluster of Differentiation 16/Cluster of Differentiation 206, Matrix metalloproteinase, ionized calcium-binding adapter molecule 1, and C-X3-C Motif Chemokine Ligand 1) 24 h following I/R. Using 16S rRNA gene sequencing and non-targeted metabolomics analysis, we explored the relationship between fecal microecology and serum metabolites. Eventually, we analyzed the correlation between the gut microbiota and plasma metabolic profile as well as the mechanism underlying the SHT-mediated regulation of gut microbiota to protect the BBB following stroke. RESULTS In IS treatment, SHT is principally involved in reducing neurological injury and the volume of cerebral infarction; protecting the intestinal mucosal barrier; increasing the levels of acetic acid, butyric acid, and propionic acid; promoting the transformation of microglia to the M2 state; reducing inflammatory reactions; and enhancing tight junctions. These therapeutic effects were not observed in the group treated with antibiotics alone or that treated with SHT in combination with antibiotics, thereby indicating SHT plays a therapeutic role through the gut microbiota. CONCLUSION SHT regulates the gut microbiota, inhibits pro-inflammatory factors in rats with IS, alleviates an inflammatory injury of the BBB, and plays a protective role in the brain.
Collapse
Affiliation(s)
- Shan Luo
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China; Hebei Province Hospital of Chinese Medicine, Shijiazhuang, 050011, China.
| | - Yuanchun Chen
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China.
| | - Ruoxi Zhao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China.
| | - Donglai Ma
- College of Pharmacy, Hebei University of Chinese Medicine, 050200, Shijiazhuang, Hebei, China.
| | - Yanmeng Zhao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Diseases, Shijiazhuang, 050000, China.
| | - Ying Zhang
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Diseases, Shijiazhuang, 050000, China; The Basic Medicine College, Hebei University of Chinese Medicine, 050200, Shijiazhuang, Hebei, China.
| | - Jianming Jiang
- College of Pharmacy, Hebei University of Chinese Medicine, 050200, Shijiazhuang, Hebei, China.
| | - Wentao Yu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Diseases, Shijiazhuang, 050000, China; College of Acupuncture and Massage, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China; Hebei International Joint Research Centre for Acupuncture and Moxibustion of Traditional Chinese Medicine, Shijiazhuang, 050020, China.
| |
Collapse
|
10
|
Antontseva EV, Degtyareva AO, Korbolina EE, Damarov IS, Merkulova TI. Human-genome single nucleotide polymorphisms affecting transcription factor binding and their role in pathogenesis. Vavilovskii Zhurnal Genet Selektsii 2023; 27:662-675. [PMID: 37965371 PMCID: PMC10641029 DOI: 10.18699/vjgb-23-77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 11/16/2023] Open
Abstract
Single nucleotide polymorphisms (SNPs) are the most common type of variation in the human genome. The vast majority of SNPs identified in the human genome do not have any effect on the phenotype; however, some can lead to changes in the function of a gene or the level of its expression. Most SNPs associated with certain traits or pathologies are mapped to regulatory regions of the genome and affect gene expression by changing transcription factor binding sites. In recent decades, substantial effort has been invested in searching for such regulatory SNPs (rSNPs) and understanding the mechanisms by which they lead to phenotypic differences, primarily to individual differences in susceptibility to diseases and in sensitivity to drugs. The development of the NGS (next-generation sequencing) technology has contributed not only to the identification of a huge number of SNPs and to the search for their association (genome-wide association studies, GWASs) with certain diseases or phenotypic manifestations, but also to the development of more productive approaches to their functional annotation. It should be noted that the presence of an association does not allow one to identify a functional, truly disease-associated DNA sequence variant among multiple marker SNPs that are detected due to linkage disequilibrium. Moreover, determination of associations of genetic variants with a disease does not provide information about the functionality of these variants, which is necessary to elucidate the molecular mechanisms of the development of pathology and to design effective methods for its treatment and prevention. In this regard, the functional analysis of SNPs annotated in the GWAS catalog, both at the genome-wide level and at the level of individual SNPs, became especially relevant in recent years. A genome-wide search for potential rSNPs is possible without any prior knowledge of their association with a trait. Thus, mapping expression quantitative trait loci (eQTLs) makes it possible to identify an SNP for which - among transcriptomes of homozygotes and heterozygotes for its various alleles - there are differences in the expression level of certain genes, which can be located at various distances from the SNP. To predict rSNPs, approaches based on searches for allele-specific events in RNA-seq, ChIP-seq, DNase-seq, ATAC-seq, MPRA, and other data are also used. Nonetheless, for a more complete functional annotation of such rSNPs, it is necessary to establish their association with a trait, in particular, with a predisposition to a certain pathology or sensitivity to drugs. Thus, approaches to finding SNPs important for the development of a trait can be categorized into two groups: (1) starting from data on an association of SNPs with a certain trait, (2) starting from the determination of allele-specific changes at the molecular level (in a transcriptome or regulome). Only comprehensive use of strategically different approaches can considerably enrich our knowledge about the role of genetic determinants in the molecular mechanisms of trait formation, including predisposition to multifactorial diseases.
Collapse
Affiliation(s)
- E V Antontseva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A O Degtyareva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E E Korbolina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I S Damarov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - T I Merkulova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
11
|
López Rodríguez M, Arasu UT, Kaikkonen MU. Exploring the genetic basis of coronary artery disease using functional genomics. Atherosclerosis 2023; 374:87-98. [PMID: 36801133 DOI: 10.1016/j.atherosclerosis.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Genome-wide Association Studies (GWAS) have identified more than 300 loci associated with coronary artery disease (CAD), defining the genetic risk map of the disease. However, the translation of the association signals into biological-pathophysiological mechanisms constitute a major challenge. Through a group of examples of studies focused on CAD, we discuss the rationale, basic principles and outcomes of the main methodologies implemented to prioritize and characterize causal variants and their target genes. Additionally, we highlight the strategies as well as the current methods that integrate association and functional genomics data to dissect the cellular specificity underlying the complexity of disease mechanisms. Despite the limitations of existing approaches, the increasing knowledge generated through functional studies helps interpret GWAS maps and opens novel avenues for the clinical usability of association data.
Collapse
Affiliation(s)
- Maykel López Rodríguez
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland; Department of Pathology and Laboratory Medicine, University of California, UCLA, Los Angeles, USA.
| | - Uma Thanigai Arasu
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland.
| |
Collapse
|
12
|
Reolizo LM, Williams H, Wadey K, Frankow A, Li Z, Gaston K, Jayaraman PS, Johnson JL, George SJ. Inhibition of Intimal Thickening By PRH (Proline-Rich Homeodomain) in Mice. Arterioscler Thromb Vasc Biol 2023; 43:456-473. [PMID: 36700427 PMCID: PMC9944393 DOI: 10.1161/atvbaha.122.318367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Late vein graft failure is caused by intimal thickening resulting from endothelial cell (EC) damage and inflammation which promotes vascular smooth muscle cell (VSMC) dedifferentiation, migration, and proliferation. Nonphosphorylatable PRH (proline-rich homeodomain) S163C:S177C offers enhanced stability and sustained antimitotic effect. Therefore, we investigated whether adenovirus-delivered PRH S163C:S177C protein attenuates intimal thickening via VSMC phenotype modification without detrimental effects on ECs. METHODS PRH S163C:S177C was expressed in vitro (human saphenous vein-VSMCs and human saphenous vein-ECs) and in vivo (ligated mouse carotid arteries) by adenoviruses. Proliferation, migration, and apoptosis were quantified and phenotype was assessed using Western blotting for contractile filament proteins and collagen gel contraction. EC inflammation was quantified using VCAM (vascular cell adhesion protein)-1, ICAM (intercellular adhesion molecule)-1, interleukin-6, and monocyte chemotactic factor-1 measurement and monocyte adhesion. Next Generation Sequencing was utilized to identify novel downstream mediators of PRH action and these and intimal thickening were investigated in vivo. RESULTS PRH S163C:S177C inhibited proliferation, migration, and apoptosis and promoted contractile phenotype (enhanced contractile filament proteins and collagen gel contraction) compared with virus control in human saphenous vein-VSMCs. PRH S163C:S177C expression in human saphenous vein-ECs significantly reduced apoptosis, without affecting cell proliferation and migration, while reducing TNF (tumor necrosis factor)-α-induced VCAM-1 and ICAM-1 and monocyte adhesion and suppressing interleukin-6 and monocyte chemotactic factor-1 protein levels. PRH S163C:S177C expression in ligated murine carotid arteries significantly impaired carotid artery ligation-induced neointimal proliferation and thickening without reducing endothelial coverage. Next Generation Sequencing revealed STAT-1 (signal transducer and activator of transcription 1) and HDAC-9 (histone deacetylase 9) as mediators of PRH action and was supported by in vitro and in vivo analyses. CONCLUSIONS We observed PRH S163C:S177C attenuated VSMC proliferation, and migration and enhanced VSMC differentiation at least in part via STAT-1 and HDAC-9 signaling while promoting endothelial repair and anti-inflammatory properties. These findings highlight the potential for PRH S163C:S177C to preserve endothelial function whilst suppressing intimal thickening, and reducing late vein graft failure.
Collapse
Affiliation(s)
- Lien M. Reolizo
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Helen Williams
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Kerry Wadey
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Aleksandra Frankow
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Ze Li
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Kevin Gaston
- School of Medicine and Biodiscovery Institute, Faculty of Medicine & Health Sciences, University of Nottingham, UK (K.G., P.-S.J.)
| | - Padma-Sheela Jayaraman
- School of Medicine and Biodiscovery Institute, Faculty of Medicine & Health Sciences, University of Nottingham, UK (K.G., P.-S.J.)
| | - Jason L. Johnson
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Sarah J. George
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| |
Collapse
|
13
|
Dong W, Huang Y. Common Genetic Factors and Pathways in Alzheimer's Disease and Ischemic Stroke: Evidences from GWAS. Genes (Basel) 2023; 14:353. [PMID: 36833280 PMCID: PMC9957001 DOI: 10.3390/genes14020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's disease (AD) and ischemic stroke (IS) are common neurological disorders, and the comorbidity of these two brain diseases is often seen. Although AD and IS were regarded as two distinct disease entities, in terms of different etiologies and clinical presentation, recent genome-wide association studies (GWASs) revealed that there were common risk genes between AD and IS, indicating common molecular pathways and their common pathophysiology. In this review, we summarize AD and IS risk single nucleotide polymorphisms (SNPs) and their representative genes from the GWAS Catalog database, and find thirteen common risk genes, but no common risk SNPs. Furthermore, the common molecular pathways associated with these risk gene products are summarized from the GeneCards database and clustered into inflammation and immunity, G protein-coupled receptor, and signal transduction. At least seven of these thirteen genes can be regulated by 23 microRNAs identified from the TargetScan database. Taken together, the imbalance of these molecular pathways may give rise to these two common brain disorders. This review sheds light on the pathogenesis of comorbidity of AD and IS, and provides molecular targets for disease prevention, manipulation, and brain health maintenance.
Collapse
Affiliation(s)
- Wei Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yue Huang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine & Health, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
14
|
Aragam KG, Jiang T, Goel A, Kanoni S, Wolford BN, Atri DS, Weeks EM, Wang M, Hindy G, Zhou W, Grace C, Roselli C, Marston NA, Kamanu FK, Surakka I, Venegas LM, Sherliker P, Koyama S, Ishigaki K, Åsvold BO, Brown MR, Brumpton B, de Vries PS, Giannakopoulou O, Giardoglou P, Gudbjartsson DF, Güldener U, Haider SMI, Helgadottir A, Ibrahim M, Kastrati A, Kessler T, Kyriakou T, Konopka T, Li L, Ma L, Meitinger T, Mucha S, Munz M, Murgia F, Nielsen JB, Nöthen MM, Pang S, Reinberger T, Schnitzler G, Smedley D, Thorleifsson G, von Scheidt M, Ulirsch JC, Arnar DO, Burtt NP, Costanzo MC, Flannick J, Ito K, Jang DK, Kamatani Y, Khera AV, Komuro I, Kullo IJ, Lotta LA, Nelson CP, Roberts R, Thorgeirsson G, Thorsteinsdottir U, Webb TR, Baras A, Björkegren JLM, Boerwinkle E, Dedoussis G, Holm H, Hveem K, Melander O, Morrison AC, Orho-Melander M, Rallidis LS, Ruusalepp A, Sabatine MS, Stefansson K, Zalloua P, Ellinor PT, Farrall M, Danesh J, Ruff CT, Finucane HK, Hopewell JC, Clarke R, Gupta RM, Erdmann J, Samani NJ, Schunkert H, Watkins H, Willer CJ, Deloukas P, Kathiresan S, Butterworth AS. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nat Genet 2022; 54:1803-1815. [PMID: 36474045 PMCID: PMC9729111 DOI: 10.1038/s41588-022-01233-6] [Citation(s) in RCA: 226] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/17/2022] [Indexed: 12/12/2022]
Abstract
The discovery of genetic loci associated with complex diseases has outpaced the elucidation of mechanisms of disease pathogenesis. Here we conducted a genome-wide association study (GWAS) for coronary artery disease (CAD) comprising 181,522 cases among 1,165,690 participants of predominantly European ancestry. We detected 241 associations, including 30 new loci. Cross-ancestry meta-analysis with a Japanese GWAS yielded 38 additional new loci. We prioritized likely causal variants using functionally informed fine-mapping, yielding 42 associations with less than five variants in the 95% credible set. Similarity-based clustering suggested roles for early developmental processes, cell cycle signaling and vascular cell migration and proliferation in the pathogenesis of CAD. We prioritized 220 candidate causal genes, combining eight complementary approaches, including 123 supported by three or more approaches. Using CRISPR-Cas9, we experimentally validated the effect of an enhancer in MYO9B, which appears to mediate CAD risk by regulating vascular cell motility. Our analysis identifies and systematically characterizes >250 risk loci for CAD to inform experimental interrogation of putative causal mechanisms for CAD.
Collapse
Grants
- MR/L003120/1 Medical Research Council
- BRC-1215-20014 Department of Health
- R01 HL125863 NHLBI NIH HHS
- UL1 RR025005 NCRR NIH HHS
- R01 HL059367 NHLBI NIH HHS
- U01 HG004402 NHGRI NIH HHS
- RG/14/5/30893 British Heart Foundation
- SP/13/2/30111 British Heart Foundation
- SP/16/4/32697 British Heart Foundation
- HHSN268201700001I NHLBI NIH HHS
- FS/14/55/30806 British Heart Foundation
- R01 HL087641 NHLBI NIH HHS
- MC_PC_17228 Medical Research Council
- MR/S502443/1 Medical Research Council
- R01 HL109946 NHLBI NIH HHS
- UM1 DK105554 NIDDK NIH HHS
- KL2 TR002542 NCATS NIH HHS
- 203141/Z/16/Z Wellcome Trust
- Department of Health
- FS/14/66/3129 British Heart Foundation
- R01 HL086694 NHLBI NIH HHS
- R35 HL135824 NHLBI NIH HHS
- RG/18/13/33946 British Heart Foundation
- T32 HG000040 NHGRI NIH HHS
- R01 HL146860 NHLBI NIH HHS
- HHSN268201700002C NHLBI NIH HHS
- SP/19/2/34462 British Heart Foundation
- HHSN268201700004I NHLBI NIH HHS
- RE/13/1/30181 British Heart Foundation
- K08 HL153950 NHLBI NIH HHS
- HHSN268201700005C NHLBI NIH HHS
- HHSN268201700001C NHLBI NIH HHS
- HHSN268201700003C NHLBI NIH HHS
- HHSN268201700004C NHLBI NIH HHS
- Wellcome Trust
- HHSN268201700002I NHLBI NIH HHS
- HHSN268201700005I NHLBI NIH HHS
- K08 HL153937 NHLBI NIH HHS
- HHSN268201700003I NHLBI NIH HHS
- RG/13/13/30194 British Heart Foundation
- T32 HL007604 NHLBI NIH HHS
- SP/09/002 British Heart Foundation
- G0800270 Medical Research Council
- K08 HG010155 NHGRI NIH HHS
- MC_QA137853 Medical Research Council
- K.G.A. has received support from the American Heart Association Institute for Precision Cardiovascular Medicine (17IFUNP3384001), a KL2/Catalyst Medical Research Investigator Training (CMeRIT) award from the Harvard Catalyst (KL2 TR002542), and the NIH (1K08HL153937).
- B.N.W is supported by the National Science Foundation Graduate Research Program (DGE 1256260).
- I.S. is supported by a Precision Health Scholars Award from the University of Michigan Medical School.
- I.K., S.Ko., and K.It. are funded by the Japan Agency for Medical Research and Development, AMED, under Grant Numbers JP16ek0109070h0003, JP18kk0205008h0003, JP18kk0205001s0703, JP20km0405209, and JP20ek0109487. The BioBank Japan is supported by AMED under Grant Number JP20km0605001.
- J.L.M.B. acknowledges research support from NIH R01HL125863, American Heart Association (A14SFRN20840000), the Swedish Research Council (2018-02529) and Heart Lung Foundation (20170265) and the Foundation Leducq (PlaqueOmics: Novel Roles of Smooth Muscle and Other Matrix Producing Cells in Atherosclerotic Plaque Stability and Rupture, 18CVD02.
- P.S.dV was supported by American Heart Association grant number 18CDA34110116 and National Heart, Lung, and Blood Institute grant R01HL146860. The Atherosclerosis Risk in Communities study has been funded in whole or in part with Federal funds from the National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services (contract numbers HHSN268201700001I, HHSN268201700002I, HHSN268201700003I, HHSN268201700004I and HHSN268201700005I), R01HL087641, R01HL059367 and R01HL086694; National Human Genome Research Institute contract U01HG004402; and National Institutes of Health contract HHSN268200625226C. The authors thank the staff and participants of the ARIC study for their important contributions. Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of Health and NIH Roadmap for Medical Research.
- O.G. has received funding from the British Heart Foundation (BHF) (FS/14/66/3129).
- T.K. is supported by the Corona-Foundation (Junior Research Group Translational Cardiovascular Genomics) and the German Research Foundation (DFG) as part of the Sonderforschungsbereich SFB 1123 (B02).
- D.S.A. has received support from a training grant from the NIH (T32HL007604).
- N.P.B., M.C.C., J.F., and D.-K.J. have been funded by the National Institute of Diabetes and Digestive and Kidney Diseases (2UM1DK105554).
- A.V.K. has been funded by 1K08HG010155 from the National Human Genome Research Institute.
- C.P.N. and T.R.W received funding from the British Heart Foundation (SP/16/4/32697).
- The Trøndelag Health Study (The HUNT Study) is a collaboration between HUNT Research Centre (Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology), Trøndelag County Council, Central Norway Regional Health Authority, and the Norwegian Institute of Public Health. The K.G. Jebsen Center for Genetic Epidemiology is financed by Stiftelsen Kristian Gerhard Jebsen; Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology; and Central Norway Regional Health Authority. Whole genome sequencing for the HUNT study was funded by HL109946.
- O.M. was funded by the Swedish Heart- and Lung Foundation, the Swedish Research Council, the European Research Council ERC-AdG-2019-885003 and Lund University Infrastructure grant ”Malmö population-based cohorts” (STYR 2019/2046).
- This work was supported by the European Commission (HEALTH-F2–2013-601456) and the TriPartite Immunometabolism Consortium [TrIC]- NovoNordisk Foundation (NNF15CC0018486), VIAgenomics (SP/19/2/344612), the British Heart Foundation, a Wellcome Trust core award (M.F., H.W., 203141/Z/16/Z) and support from the NIHR Oxford Biomedical Research Centre. M.F. and H.W. are members of the Oxford BHF Centre of Research Excellence (RE/13/1/30181). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.
- J.D. is a British Heart Foundation Professor, European Research Council Senior Investigator, and National Institute for Health Research (NIHR) Senior Investigator.
- J.C.H. acknowledges personal funding from the British Heart Foundation (FS/14/55/30806) and is a member of the Oxford BHF Centre of Research Excellence (RE/13/1/30181).
- R.C. has received funding from the British Heart Foundation and British Heart Foundation Centre of Research Excellence.
- This research was supported by BHF (SP/13/2/30111) and conducted using the UK Biobank Resource (application number 9922).
- The GerMIFs gratefully acknowledge the support of the Bavarian State Ministry of Health and Care, furthermore founded this work within its framework of DigiMed Bayern (grant No: DMB-1805-0001), the German Federal Ministry of Education and Research (BMBF) within the framework of ERA-NET on Cardiovascular Disease (Druggable-MI-genes: 01KL1802), within the scheme of target validation (BlockCAD: 16GW0198K), within the framework of the e:Med research and funding concept (AbCD-Net: 01ZX1706C), the British Heart Foundation (BHF)/German Centre of Cardiovascular Research (DZHK)-collaboration (VIAgenomics) and the German Research Foundation (DFG) as part of the Sonderforschungsbereich SFB 1123 (B02) and the Sonderforschungsbereich SFB TRR 267 (B05).
- C.J.W. is funded by NIH grant R35-HL135824.
- This work was supported by the British Heart Foundation (BHF) grant RG/14/5/30893 (P.D.) and forms part of the research themes contributing to the translational research portfolios of the Barts Biomedical Research Centre funded by the UK National Institute for Health Research (NIHR).
Collapse
Affiliation(s)
- Krishna G Aragam
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Tao Jiang
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Anuj Goel
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Brooke N Wolford
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Deepak S Atri
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Cardiovascular Medicine and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elle M Weeks
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Minxian Wang
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - George Hindy
- Department of Population Medicine, Qatar University College of Medicine, Doha, Qatar
| | - Wei Zhou
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher Grace
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Carolina Roselli
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicholas A Marston
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Frederick K Kamanu
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ida Surakka
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Loreto Muñoz Venegas
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- German Research Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Paul Sherliker
- Medical Research Council Population Health Research Unit, CTSU-Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Satoshi Koyama
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Japan
| | - Bjørn O Åsvold
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
- HUNT Research Centre, Norwegian University of Science and Technology, Levanger, Norway
- Department of Endocrinology, Clinic of Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ben Brumpton
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
- HUNT Research Centre, Norwegian University of Science and Technology, Levanger, Norway
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Olga Giannakopoulou
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Panagiota Giardoglou
- Department of Nutrition-Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Ulrich Güldener
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
| | - Syed M Ijlal Haider
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- German Research Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | | | - Maysson Ibrahim
- CTSU-Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Adnan Kastrati
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Research Center for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Research Center for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | | | - Tomasz Konopka
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ling Li
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
| | - Lijiang Ma
- Department of Genetics and Genomic Science, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Meitinger
- German Research Center for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Klinikum Rechts der Isar, Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Sören Mucha
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- German Research Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Matthias Munz
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- German Research Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Federico Murgia
- CTSU-Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Jonas B Nielsen
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Markus M Nöthen
- School of Medicine and University Hospital Bonn, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Shichao Pang
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
| | - Tobias Reinberger
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- German Research Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Gavin Schnitzler
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Damian Smedley
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Moritz von Scheidt
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Research Center for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Jacob C Ulirsch
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - David O Arnar
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Internal Medicine, Division of Cardiology, Landspitali-National University Hospital of Iceland, Hringbraut, Reykjavik, Iceland
| | - Noël P Burtt
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maria C Costanzo
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jason Flannick
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Japan
| | - Dong-Keun Jang
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yoichiro Kamatani
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Amit V Khera
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Luca A Lotta
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Christopher P Nelson
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Robert Roberts
- Cardiovascular Genomics and Genetics, University of Arizona College of Medicin, Phoenix, AZ, USA
| | - Gudmundur Thorgeirsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Internal Medicine, Division of Cardiology, Landspitali-National University Hospital of Iceland, Hringbraut, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Thomas R Webb
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Aris Baras
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Integrated Cardio Metabolic Centre, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
- Clinical Gene Networks AB, Stockholm, Sweden
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - George Dedoussis
- Department of Nutrition-Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Hilma Holm
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
| | - Kristian Hveem
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
- HUNT Research Centre, Norwegian University of Science and Technology, Levanger, Norway
| | - Olle Melander
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Loukianos S Rallidis
- Second Department of Cardiology, Medical School, National and Kapodistrian University of Athens, University General Hospital Attikon, Athens, Greece
| | - Arno Ruusalepp
- Department of Cardiac Surgery, Tartu University Hospital and Institute of Clinical Medicine, Tartu University, Tartu, Estonia
| | - Marc S Sabatine
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Pierre Zalloua
- Harvard T.H.Chan School of Public Health, Boston, MA, USA
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, UAE
| | - Patrick T Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martin Farrall
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - John Danesh
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Cambridge Biomedical Research Centre, Cambridge University Hospitals, Cambridge, UK
- The National Institute for Health and Care Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- Human Genetics, Wellcome Sanger Institute, Saffron Walden, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Christian T Ruff
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hilary K Finucane
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jemma C Hopewell
- CTSU-Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Robert Clarke
- CTSU-Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Rajat M Gupta
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Cardiovascular Medicine and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- German Research Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Nilesh J Samani
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Heribert Schunkert
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Research Center for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Hugh Watkins
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Cristen J Willer
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Panos Deloukas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Adam S Butterworth
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- National Institute for Health and Care Research Cambridge Biomedical Research Centre, Cambridge University Hospitals, Cambridge, UK.
- The National Institute for Health and Care Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Cambridge, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK.
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
15
|
Cheng R, Xu X, Yang S, Mi Z, Zhao Y, Gao J, Yu F, Ren X. The underlying molecular mechanisms and biomarkers of plaque vulnerability based on bioinformatics analysis. Eur J Med Res 2022; 27:212. [PMID: 36303246 PMCID: PMC9615401 DOI: 10.1186/s40001-022-00840-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Aim The study aimed to identify the underlying differentially expressed genes (DEGs) and mechanism of unstable atherosclerotic plaque using bioinformatics methods. Methods GSE120521, which includes four unstable samples and four stable atherosclerotic samples, was downloaded from the GEO database. DEGs were identified using LIMMA. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of DEGs were performed using the Database for metascape Visualization online tool. Based on the STRING database, protein–protein interactions (PPIs) network among DEGs were constructed. Regulatory networks were visualized using Cytoscape. We use the xCell to analyze the different immune cell subtypes. Results A total of 1626 DEGs (1034 up-regulated and 592 down-regulated DEGs) were identified between unstable and stable samples. I pulled 62 transcription factors (34 up-regulated TFs and 28 down-regulated TFs) from the Trust database. The up-regulated TFs were mainly enrichment in positive regulation of myeloid leukocyte differentiation, and the down-regulated TFs were mainly enrichment in connective tissue development. In the PPI network, RB1, CEBPA, PPARG, BATF was the most significantly up-regulated gene in ruptured atherosclerotic samples. The immune cell composition enriched in CD cells and macrophages in the unstable carotid plaque. Conclusions Upregulated RB1, CEBPA, PPARG, BATF and down-regulated SRF, MYOCD, HEY2, GATA6 might perform critical promotional roles in atherosclerotic plaque rupture, furthermore, number and polarization of macrophages may play an important role in vulnerable plaques. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-022-00840-7.
Collapse
Affiliation(s)
- Rui Cheng
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Department of Endocrinology, the Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Xiaojiang Xu
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Shanxi Medical University School and Hospital of Stomatology, 63# Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Shurong Yang
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Shanxi Medical University School and Hospital of Stomatology, 63# Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Zhongqian Mi
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Shanxi Medical University School and Hospital of Stomatology, 63# Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yong Zhao
- Shanxi Medical University School and Hospital of Stomatology, 63# Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Jinhua Gao
- Shanxi Medical University School and Hospital of Stomatology, 63# Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Feiyan Yu
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China. .,Shanxi Medical University School and Hospital of Stomatology, 63# Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China. .,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China.
| | - Xiuyun Ren
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China. .,Shanxi Medical University School and Hospital of Stomatology, 63# Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China. .,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China.
| |
Collapse
|
16
|
Zhang Z, Qian H, Tao Z, Xie Y, Zhi S, Sheng L, He W, Zhang L. Circulating circular RNAs as biomarkers for the diagnosis of essential hypertension with carotid plaque. Clin Exp Hypertens 2022; 44:601-609. [PMID: 35787223 DOI: 10.1080/10641963.2022.2093894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND At present, no early diagnostic markers for essential hypertension (EH)-induced subclinical target organs damage (such as carotid plaque) are available. This study aimed to identify the circular RNAs (circRNAs) in EH with carotid plaques, and assess their utility as biomarkers. METHODS First, circRNAs were identified through microarry analysis and database prediction. Second, a case-control study of EH patients with carotid plaque (n = 100) and healthy controls (n = 100) was performed to evaluate circRNAs expression in peripheral blood. Finally, receiver operating characteristic (ROC) curve was established to evaluate the diagnostic value. RESULTS Five circRNAs (hsa_circ_0105130, hsa_circ_0109569, hsa_circ_0072659, hsa_circ_0079586 and hsa_circ_0064684) were identified as the candidate circRNAs. We found that circRNAs were increased in case group compared with controls (P < .05). The results of ROC shown that these five circRNAs, especially hsa_circ_0109569 (AUC = 0.741), all had the moderate predictive value. CONCLUSIONS Our study revealed circulating circRNAs may act as promising noninvasive biomarkers for early detection and population screening of EH-induced subclinical target organ injury.
Collapse
Affiliation(s)
- Zebo Zhang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, ZJ, China
| | - Haiyan Qian
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, ZJ, China
| | - Zhenbo Tao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, ZJ, China
| | - Yanqing Xie
- Institute of Geriatrics, the Affiliated Hospital of Medical School, Ningbo University, Ningbo, ZJ, China
| | - Shuai Zhi
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, ZJ, China
| | - Liufang Sheng
- Department of Anesthesiology, The Affiliated People's Hospital of Ningbo University, Ningbo, ZJ, China
| | - Wenming He
- Institute of Geriatrics, the Affiliated Hospital of Medical School, Ningbo University, Ningbo, ZJ, China
| | - Lina Zhang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, ZJ, China.,Institute of Geriatrics, the Affiliated Hospital of Medical School, Ningbo University, Ningbo, ZJ, China
| |
Collapse
|
17
|
Ma L, Bryce NS, Turner AW, Di Narzo AF, Rahman K, Xu Y, Ermel R, Sukhavasi K, d’Escamard V, Chandel N, V’Gangula B, Wolhuter K, Kadian-Dodov D, Franzen O, Ruusalepp A, Hao K, Miller CL, Björkegren JLM, Kovacic JC. The HDAC9-associated risk locus promotes coronary artery disease by governing TWIST1. PLoS Genet 2022; 18:e1010261. [PMID: 35714152 PMCID: PMC9246173 DOI: 10.1371/journal.pgen.1010261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/30/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Genome wide association studies (GWAS) have identified thousands of single nucleotide polymorphisms (SNPs) associated with the risk of common disorders. However, since the large majority of these risk SNPs reside outside gene-coding regions, GWAS generally provide no information about causal mechanisms regarding the specific gene(s) that are affected or the tissue(s) in which these candidate gene(s) exert their effect. The 'gold standard' method for understanding causal genes and their mechanisms of action are laborious basic science studies often involving sophisticated knockin or knockout mouse lines, however, these types of studies are impractical as a high-throughput means to understand the many risk variants that cause complex diseases like coronary artery disease (CAD). As a solution, we developed a streamlined, data-driven informatics pipeline to gain mechanistic insights on complex genetic loci. The pipeline begins by understanding the SNPs in a given locus in terms of their relative location and linkage disequilibrium relationships, and then identifies nearby expression quantitative trait loci (eQTLs) to determine their relative independence and the likely tissues that mediate their disease-causal effects. The pipeline then seeks to understand associations with other disease-relevant genes, disease sub-phenotypes, potential causality (Mendelian randomization), and the regulatory and functional involvement of these genes in gene regulatory co-expression networks (GRNs). Here, we applied this pipeline to understand a cluster of SNPs associated with CAD within and immediately adjacent to the gene encoding HDAC9. Our pipeline demonstrated, and validated, that this locus is causal for CAD by modulation of TWIST1 expression levels in the arterial wall, and by also governing a GRN related to metabolic function in skeletal muscle. Our results reconciled numerous prior studies, and also provided clear evidence that this locus does not govern HDAC9 expression, structure or function. This pipeline should be considered as a powerful and efficient way to understand GWAS risk loci in a manner that better reflects the highly complex nature of genetic risk associated with common disorders.
Collapse
Affiliation(s)
- Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Nicole S. Bryce
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia; St Vincent’s Clinical School, University of NSW, Sydney, Australia
| | - Adam W. Turner
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, Unites States of America
| | - Antonio F. Di Narzo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Karishma Rahman
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Yang Xu
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Raili Ermel
- Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital, Tartu, Estonia
| | - Katyayani Sukhavasi
- Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital, Tartu, Estonia
| | - Valentina d’Escamard
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Nirupama Chandel
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Bhargavi V’Gangula
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kathryn Wolhuter
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia; St Vincent’s Clinical School, University of NSW, Sydney, Australia
| | - Daniella Kadian-Dodov
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R, Kravis Center for Cardiovascular Health Icahn School of Medicine at Mount Sinai, New York, New York, Unites States of America
| | - Oscar Franzen
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Arno Ruusalepp
- Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital, Tartu, Estonia
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Clint L. Miller
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, Unites States of America
| | - Johan L. M. Björkegren
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Jason C. Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia; St Vincent’s Clinical School, University of NSW, Sydney, Australia
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R, Kravis Center for Cardiovascular Health Icahn School of Medicine at Mount Sinai, New York, New York, Unites States of America
| |
Collapse
|
18
|
Wang X, Zhao DX, Kan JM, Wang J, Chen X, Yu ZQ, Zhao WS, Han MX, Li J. Uncovering the Mechanism of Chuanhong Stroke Capsule in the Treatment of Stroke Based on Network Pharmacology and Molecular Docking Technology. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221075988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background and Objective: Chuanhong Stroke Capsule (CHSC) has good clinical efficacy in the treatment of cerebral ischemic stroke (CIS) patients. This study aimed to investigate the pharmacological mechanisms of CHSC in treating CIS using bioinformatics. Methods: The active compounds of CHSC were screened by searching Traditional Chinese Medicine System Pharmacological Database and Analysis Platform (TCMSP), Swiss absorption, distribution, metabolism, and excretion (ADME), PubMed, and China National Knowledge Infrastructure (CNKI) databases. Besides, the potential targets of active compounds were obtained through TCMSP and Swiss Target Prediction databases. CIS targets were obtained from GeneCards, Online Mendelian Inheritance in Man (OMIM), and Gene Expression Omnibus (GEO) databases. CHSC-CIS intersection targets were identified by matching the two, and prediction and analysis of biological functions and pathways of intersection targets was used the enrichments of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Furthermore, protein–protein interaction (PPI) network, herb-target, and compound-target network of CHSC-CIS were constructed by Cytoscape3.7.2, and herb-compound-pathway network was drawn with Sankey diagram. Finally, AutoDock was used for molecular docking verification, and identifying the active binding sites in target proteins. Results: A total of 293 putative targets were obtained from 62 active compounds in CHSC. Among them, 209 targets were related to CIS. PPI network showed that the top 16 key targets were RELA, JUN, FOS, MAPK1, AKT1, etc. KEGG pathway enrichment analysis demonstrated that CHSC was enriched in PI3K-Akt, MAPK, and TNF signaling pathways. In addition, GO enrichment analysis showed the significant enrichment of CHSC in the following categories: kinase binding, cellular response to nitrogen compound, etc. Network topology analysis showed that quercetin, luteolin, kaempferol, etc., were the key components in CHSC. Finally, molecular docking studies suggested that the active components in CHSC had a good binding ability with the key targets. Conclusions: Our study demonstrated that CHSC exerted the effect in treating CIS by the characteristics of multi-target and multi-pathway, thereby providing a theoretical basis for further study of the effective components and mechanism of CHSC in the treatment of CIS.
Collapse
Affiliation(s)
- Xu Wang
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
- Jilin University, Changchun, Jilin, China
| | - De-xi Zhao
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Jun-Ming Kan
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Jun Wang
- Jilin University, Changchun, Jilin, China
| | - Xin Chen
- Jilin University, Changchun, Jilin, China
| | - Zi-Qiao Yu
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | | | - Mo-Xuan Han
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Jinhua Li
- Jilin University, Changchun, Jilin, China
| |
Collapse
|
19
|
Luan Y, Liu H, Luan Y, Yang Y, Yang J, Ren KD. New Insight in HDACs: Potential Therapeutic Targets for the Treatment of Atherosclerosis. Front Pharmacol 2022; 13:863677. [PMID: 35529430 PMCID: PMC9068932 DOI: 10.3389/fphar.2022.863677] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis (AS) features include progressive hardening and reduced elasticity of arteries. AS is the leading cause of morbidity and mortality. An increasing amount of evidence showed that epigenetic modifications on genes serve are a main cause of several diseases, including AS. Histone deacetylases (HDACs) promote the deacetylation at lysine residues, thereby condensing the chromatin structures and further inhibiting the transcription of downstream genes. HDACs widely affect various physiological and pathological processes through transcriptional regulation or deacetylation of other non-histone proteins. In recent years, the role of HDACs in vascular systems has been revealed, and their effects on atherosclerosis have been widely reported. In this review, we discuss the members of HDACs in vascular systems, determine the diverse roles of HDACs in AS, and reveal the effects of HDAC inhibitors on AS progression. We provide new insights into the potential of HDAC inhibitors as drugs for AS treatment.
Collapse
Affiliation(s)
- Yi Luan
- Research Center for Clinical System Biology, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Ying Luan
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Yang Yang
- Research Center for Clinical System Biology, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yang Yang, ; Jing Yang, ; Kai-Di Ren,
| | - Jing Yang
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yang Yang, ; Jing Yang, ; Kai-Di Ren,
| | - Kai-Di Ren
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yang Yang, ; Jing Yang, ; Kai-Di Ren,
| |
Collapse
|
20
|
Alsheikh AJ, Wollenhaupt S, King EA, Reeb J, Ghosh S, Stolzenburg LR, Tamim S, Lazar J, Davis JW, Jacob HJ. The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases. BMC Med Genomics 2022; 15:74. [PMID: 35365203 PMCID: PMC8973751 DOI: 10.1186/s12920-022-01216-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Background The remarkable growth of genome-wide association studies (GWAS) has created a critical need to experimentally validate the disease-associated variants, 90% of which involve non-coding variants. Methods To determine how the field is addressing this urgent need, we performed a comprehensive literature review identifying 36,676 articles. These were reduced to 1454 articles through a set of filters using natural language processing and ontology-based text-mining. This was followed by manual curation and cross-referencing against the GWAS catalog, yielding a final set of 286 articles. Results We identified 309 experimentally validated non-coding GWAS variants, regulating 252 genes across 130 human disease traits. These variants covered a variety of regulatory mechanisms. Interestingly, 70% (215/309) acted through cis-regulatory elements, with the remaining through promoters (22%, 70/309) or non-coding RNAs (8%, 24/309). Several validation approaches were utilized in these studies, including gene expression (n = 272), transcription factor binding (n = 175), reporter assays (n = 171), in vivo models (n = 104), genome editing (n = 96) and chromatin interaction (n = 33). Conclusions This review of the literature is the first to systematically evaluate the status and the landscape of experimentation being used to validate non-coding GWAS-identified variants. Our results clearly underscore the multifaceted approach needed for experimental validation, have practical implications on variant prioritization and considerations of target gene nomination. While the field has a long way to go to validate the thousands of GWAS associations, we show that progress is being made and provide exemplars of validation studies covering a wide variety of mechanisms, target genes, and disease areas. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01216-w.
Collapse
Affiliation(s)
- Ammar J Alsheikh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA.
| | - Sabrina Wollenhaupt
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Emily A King
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jonas Reeb
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Sujana Ghosh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | | | - Saleh Tamim
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jozef Lazar
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - J Wade Davis
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Howard J Jacob
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| |
Collapse
|
21
|
Granata A, Kasioulis I, Serrano F, Cooper JD, Traylor M, Sinha S, Markus HS. The Histone Deacetylase 9 Stroke-Risk Variant Promotes Apoptosis and Inflammation in a Human iPSC-Derived Smooth Muscle Cells Model. Front Cardiovasc Med 2022; 9:849664. [PMID: 35433850 PMCID: PMC9005977 DOI: 10.3389/fcvm.2022.849664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/04/2022] [Indexed: 12/02/2022] Open
Abstract
A common variant in the Histone Deacetylase 9 (HDAC9) gene is the strongest genetic risk for large-vessel stroke, and HDAC9 offers a novel target for therapeutic modulation. However, the mechanisms linking the HDAC9 variant with increased stroke risk is still unclear due to the lack of relevant models to study the underlying molecular mechanisms. We generated vascular smooth muscle cells using human induced pluripotent stem cells with the HDAC9 stroke risk variant to assess HDAC9-mediated phenotypic changes in a relevant cells model and test the efficacy of HDAC inhibitors for potential therapeutic strategies. Our human induced pluripotent stem cells derived vascular smooth muscle cells show enhanced HDAC9 expression and allow us to assess HDAC9-mediated effects on promoting smooth muscle cell dysfunction, including proliferation, migration, apoptosis and response to inflammation. These phenotypes could be reverted by treatment with HDAC inhibitors, including sodium valproate and small molecules inhibitors. By demonstrating the relevance of the model and the efficacy of HDAC inhibitors, our model provides a robust phenotypic screening platform, which could be applied to other stroke-associated genetic variants.
Collapse
Affiliation(s)
- Alessandra Granata
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Ioannis Kasioulis
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Felipe Serrano
- Anne McLaren Laboratory, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - James D Cooper
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Sanjay Sinha
- Department of Medicine, Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
22
|
Li F, Chen Y, He Z, Wang C, Wang X, Pan G, Peng JY, Chen Q, Wang X. Hsa_circ_0001879 promotes the progression of atherosclerosis by regulating the proliferation and migration of oxidation of low density lipoprotein (ox-LDL)-induced vascular endothelial cells via the miR-6873-5p-HDAC9 axis. Bioengineered 2021; 12:10420-10429. [PMID: 34872444 PMCID: PMC8809926 DOI: 10.1080/21655979.2021.1997224] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Atherosclerosis (AS) is a typical vascular disease. Emerging evidence has shown that circRNAs play key roles in the progression of AS, but the potential function and underlying mechanism of hsa_circ_0001879 remains unknown. We detected the expression level of hsa_circ_0001879 was determined by qRT-PCR, and the proliferation rate and migration ability of HUVECs were measured by CCK-8 assay and Transwell assay, respectively. Proliferative markers and epithelium mesenchymal transition (EMT) markers were measured through immunoblotting. A dual luciferase activity assay was performed to detect the interaction between circRNAs, miRNAs, and mRNAs. Hsa_circ_0001879 was upregulated in AS patients. Hsa_circ_0001879 inhibited the proliferation and migration ability of Human umbilical vein endothelial cells (HUVECs). Hsa_circ_0001879 directly bound to miR-6873-5p and acted as a sponge. miR-6873-5p-induced HDAC9 mRNA degradation was inhibited by hsa_circ_0001879. Hsa_circ_0001879 decreased the proliferation and migration of HUVECs by inhibiting miR-6873-5p-induced HDAC9 degradation.
Collapse
Affiliation(s)
- Feifei Li
- Department of Cardiology, Guangdong Provincial Hospital of Traditional Chinese Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yahui Chen
- Department of Cardiology, Guangdong Provincial Hospital of Traditional Chinese Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhiling He
- Department of Cardiology, Guangdong Provincial Hospital of Traditional Chinese Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chuangchang Wang
- Department of Cardiology, Guangdong Provincial Hospital of Traditional Chinese Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoli Wang
- Department of Cardiology, Guangdong Provincial Hospital of Traditional Chinese Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Guangming Pan
- Department of Cardiology, Guangdong Provincial Hospital of Traditional Chinese Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiang Yang Peng
- Department of Cardiology, Guangdong Provincial Hospital of Traditional Chinese Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qiuxiong Chen
- Department of Cardiology, Guangdong Provincial Hospital of Traditional Chinese Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xia Wang
- Department of Cardiology, Guangdong Provincial Hospital of Traditional Chinese Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Chou EL, Lino Cardenas CL, Chaffin M, Arduini AD, Juric D, Stone JR, LaMuraglia GM, Eagleton MJ, Conrad MF, Isselbacher EM, Ellinor PT, Lindsay ME. Vascular smooth muscle cell phenotype switching in carotid atherosclerosis. JVS Vasc Sci 2021; 3:41-47. [PMID: 35128489 PMCID: PMC8802874 DOI: 10.1016/j.jvssci.2021.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022] Open
Abstract
Carotid plaque instability contributes to large vessel ischemic stroke. Although vascular smooth muscle cells (VSMCs) affect atherosclerotic growth and instability, no treatments aimed at improving VSMC function are available. Large genetic studies investigating atherosclerosis and carotid disease in relation to the risk of stroke have implicated polymorphisms at the HDAC9 locus. The HDAC9 protein has been shown to affect the VSMC phenotype; however, how this might affect carotid disease is unknown. We conducted a pilot investigation using single nuclei RNA sequencing of human carotid tissue to identify cells expressing HDAC9 and specifically investigate the role of the HDAC9 in carotid atherosclerosis. We found that carotid VSMCs express HDAC9 and genes typically associated with immune characteristics. Using cellular assays, we have demonstrated that recruitment of macrophages can be modulated by HDAC9 expression. HDAC9 expression might affect carotid plaque stability and progression through its effects on the VSMC phenotype and recruitment of immune cells.
Collapse
Affiliation(s)
- Elizabeth L. Chou
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, Boston, Mass
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Mass
| | - Christian L. Lino Cardenas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Mass
- Division of Cardiology, Massachusetts General Hospital, Boston, Mass
| | - Mark Chaffin
- Cardiovascular Disease Initiative, The Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, Mass
- Precision Cardiology Laboratory, The Eli and Edythe L. Broad Institute of MIT and Harvard and Bayer US LLC, Cambridge, Mass
| | - Alessandro D. Arduini
- Cardiovascular Disease Initiative, The Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, Mass
- Precision Cardiology Laboratory, The Eli and Edythe L. Broad Institute of MIT and Harvard and Bayer US LLC, Cambridge, Mass
| | - Dejan Juric
- Cancer Center, Massachusetts General Hospital, Boston, Mass
- Harvard Medical School, Boston, Mass
| | - James R. Stone
- Department of Pathology, Massachusetts General Hospital, Boston, Mass
- Harvard Medical School, Boston, Mass
| | - Glenn M. LaMuraglia
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, Boston, Mass
- Thoracic Aortic Center, Massachusetts General Hospital, Boston, Mass
- Harvard Medical School, Boston, Mass
| | - Matthew J. Eagleton
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, Boston, Mass
- Thoracic Aortic Center, Massachusetts General Hospital, Boston, Mass
- Harvard Medical School, Boston, Mass
| | - Mark F. Conrad
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, Boston, Mass
- Thoracic Aortic Center, Massachusetts General Hospital, Boston, Mass
- Harvard Medical School, Boston, Mass
| | - Eric M. Isselbacher
- Division of Cardiology, Massachusetts General Hospital, Boston, Mass
- Thoracic Aortic Center, Massachusetts General Hospital, Boston, Mass
| | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Mass
- Cardiovascular Disease Initiative, The Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, Mass
- Precision Cardiology Laboratory, The Eli and Edythe L. Broad Institute of MIT and Harvard and Bayer US LLC, Cambridge, Mass
| | - Mark E. Lindsay
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Mass
- Division of Cardiology, Massachusetts General Hospital, Boston, Mass
- Thoracic Aortic Center, Massachusetts General Hospital, Boston, Mass
- Cardiovascular Disease Initiative, The Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, Mass
- Precision Cardiology Laboratory, The Eli and Edythe L. Broad Institute of MIT and Harvard and Bayer US LLC, Cambridge, Mass
- Harvard Medical School, Boston, Mass
| |
Collapse
|
24
|
Yang C, Croteau S, Hardy P. Histone deacetylase (HDAC) 9: versatile biological functions and emerging roles in human cancer. Cell Oncol (Dordr) 2021; 44:997-1017. [PMID: 34318404 PMCID: PMC8516780 DOI: 10.1007/s13402-021-00626-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND HDAC9 (histone deacetylase 9) belongs to the class IIa family of histone deacetylases. This enzyme can shuttle freely between the nucleus and cytoplasm and promotes tissue-specific transcriptional regulation by interacting with histone and non-histone substrates. HDAC9 plays an essential role in diverse physiological processes including cardiac muscle development, bone formation, adipocyte differentiation and innate immunity. HDAC9 inhibition or activation is therefore a promising avenue for therapeutic intervention in several diseases. HDAC9 overexpression is also common in cancer cells, where HDAC9 alters the expression and activity of numerous relevant proteins involved in carcinogenesis. CONCLUSIONS This review summarizes the most recent discoveries regarding HDAC9 as a crucial regulator of specific physiological systems and, more importantly, highlights the diverse spectrum of HDAC9-mediated posttranslational modifications and their contributions to cancer pathogenesis. HDAC9 is a potential novel therapeutic target, and the restoration of aberrant expression patterns observed among HDAC9 target genes and their related signaling pathways may provide opportunities to the design of novel anticancer therapeutic strategies.
Collapse
Affiliation(s)
- Chun Yang
- Research Center of CHU Sainte-Justine, University of Montréal, 3175 Côte-Sainte-Catherine, Room 2.17.004, Montréal, Québec H3T 1C5 Canada
| | - Stéphane Croteau
- Departments of Medicine, Pediatrics, Pharmacology and Physiology, University of Montréal, Montréal, QC Canada
| | - Pierre Hardy
- Research Center of CHU Sainte-Justine, University of Montréal, 3175 Côte-Sainte-Catherine, Room 2.17.004, Montréal, Québec H3T 1C5 Canada
- Departments of Medicine, Pediatrics, Pharmacology and Physiology, University of Montréal, Montréal, QC Canada
| |
Collapse
|
25
|
Abstract
The field of medical and population genetics in stroke is moving at a rapid pace and has led to unanticipated opportunities for discovery and clinical applications. Genome-wide association studies have highlighted the role of specific pathways relevant to etiologically defined subtypes of stroke and to stroke as a whole. They have further offered starting points for the exploration of novel pathways and pharmacological strategies in experimental systems. Mendelian randomization studies continue to provide insights in the causal relationships between exposures and outcomes and have become a useful tool for predicting the efficacy and side effects of drugs. Additional applications that have emerged from recent discoveries include risk prediction based on polygenic risk scores and pharmacogenomics. Among the topics currently moving into focus is the genetics of stroke outcome. While still at its infancy, this field is expected to boost the development of neuroprotective agents. We provide a brief overview on recent progress in these areas.
Collapse
Affiliation(s)
- Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Nathalie Beaufort
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Stephanie Debette
- University of Bordeaux, INSERM, Bordeaux Population Health Center, UMR1219, Team VINTAGE, F-33000 Bordeaux, France
- Bordeaux University Hospital, Department of Neurology, Institute of Neurodegenerative Diseases, F-33000 Bordeaux, France
| | - Christopher D. Anderson
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| |
Collapse
|
26
|
Korbolina EE, Bryzgalov LO, Ustrokhanova DZ, Postovalov SN, Poverin DV, Damarov IS, Merkulova TI. A Panel of rSNPs Demonstrating Allelic Asymmetry in Both ChIP-seq and RNA-seq Data and the Search for Their Phenotypic Outcomes through Analysis of DEGs. Int J Mol Sci 2021; 22:ijms22147240. [PMID: 34298860 PMCID: PMC8303726 DOI: 10.3390/ijms22147240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Currently, the detection of the allele asymmetry of gene expression from RNA-seq data or the transcription factor binding from ChIP-seq data is one of the approaches used to identify the functional genetic variants that can affect gene expression (regulatory SNPs or rSNPs). In this study, we searched for rSNPs using the data for human pulmonary arterial endothelial cells (PAECs) available from the Sequence Read Archive (SRA). Allele-asymmetric binding and expression events are analyzed in paired ChIP-seq data for H3K4me3 mark and RNA-seq data obtained for 19 individuals. Two statistical approaches, weighted z-scores and predicted probabilities, were used to improve the efficiency of finding rSNPs. In total, we identified 14,266 rSNPs associated with both allele-specific binding and expression. Among them, 645 rSNPs were associated with GWAS phenotypes; 4746 rSNPs were reported as eQTLs by GTEx, and 11,536 rSNPs were located in 374 candidate transcription factor binding motifs. Additionally, we searched for the rSNPs associated with gene expression using an SRA RNA-seq dataset for 281 clinically annotated human postmortem brain samples and detected eQTLs for 2505 rSNPs. Based on these results, we conducted Gene Ontology (GO), Disease Ontology (DO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and constructed the protein-protein interaction networks to represent the top-ranked biological processes with a possible contribution to the phenotypic outcome.
Collapse
Affiliation(s)
- Elena E. Korbolina
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 LavrentyevaProspekt, 630090 Novosibirsk, Russia; (L.O.B.); (I.S.D.); (T.I.M.)
- Correspondence:
| | - Leonid O. Bryzgalov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 LavrentyevaProspekt, 630090 Novosibirsk, Russia; (L.O.B.); (I.S.D.); (T.I.M.)
- VECTOR-BEST, PO BOX 492, 630117 Novosibirsk, Russia
| | - Diana Z. Ustrokhanova
- Department of Information Biology, The Novosibirsk State University, 1 Pirogovast, 630090 Novosibirsk, Russia;
| | - Sergey N. Postovalov
- Department of Theoretical and Applied Informatics, The Novosibirsk State Technical University, 630073 Novosibirsk, Russia; (S.N.P.); (D.V.P.)
| | - Dmitry V. Poverin
- Department of Theoretical and Applied Informatics, The Novosibirsk State Technical University, 630073 Novosibirsk, Russia; (S.N.P.); (D.V.P.)
| | - Igor S. Damarov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 LavrentyevaProspekt, 630090 Novosibirsk, Russia; (L.O.B.); (I.S.D.); (T.I.M.)
| | - Tatiana I. Merkulova
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 LavrentyevaProspekt, 630090 Novosibirsk, Russia; (L.O.B.); (I.S.D.); (T.I.M.)
- Department of Information Biology, The Novosibirsk State University, 1 Pirogovast, 630090 Novosibirsk, Russia;
| |
Collapse
|
27
|
Degtyareva AO, Antontseva EV, Merkulova TI. Regulatory SNPs: Altered Transcription Factor Binding Sites Implicated in Complex Traits and Diseases. Int J Mol Sci 2021; 22:6454. [PMID: 34208629 PMCID: PMC8235176 DOI: 10.3390/ijms22126454] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
The vast majority of the genetic variants (mainly SNPs) associated with various human traits and diseases map to a noncoding part of the genome and are enriched in its regulatory compartment, suggesting that many causal variants may affect gene expression. The leading mechanism of action of these SNPs consists in the alterations in the transcription factor binding via creation or disruption of transcription factor binding sites (TFBSs) or some change in the affinity of these regulatory proteins to their cognate sites. In this review, we first focus on the history of the discovery of regulatory SNPs (rSNPs) and systematized description of the existing methodical approaches to their study. Then, we brief the recent comprehensive examples of rSNPs studied from the discovery of the changes in the TFBS sequence as a result of a nucleotide substitution to identification of its effect on the target gene expression and, eventually, to phenotype. We also describe state-of-the-art genome-wide approaches to identification of regulatory variants, including both making molecular sense of genome-wide association studies (GWAS) and the alternative approaches the primary goal of which is to determine the functionality of genetic variants. Among these approaches, special attention is paid to expression quantitative trait loci (eQTLs) analysis and the search for allele-specific events in RNA-seq (ASE events) as well as in ChIP-seq, DNase-seq, and ATAC-seq (ASB events) data.
Collapse
Affiliation(s)
- Arina O. Degtyareva
- Department of Molecular Genetic, Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.O.D.); (E.V.A.)
| | - Elena V. Antontseva
- Department of Molecular Genetic, Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.O.D.); (E.V.A.)
| | - Tatiana I. Merkulova
- Department of Molecular Genetic, Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.O.D.); (E.V.A.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
28
|
Song L, Li H, Suo M, Sun Y, Su M, Song Y, Xiao N, Hui R, Qin C, Chen J. A functional variant of the long noncoding RNA AL110200 is associated with the risk of ischaemic stroke recurrence. Eur J Neurol 2021; 28:2708-2715. [PMID: 33934454 DOI: 10.1111/ene.14895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE This study aimed to test the hypothesis that long noncoding RNA (lncRNA) AL110200 exerts a proinflammatory effect on atherosclerosis and that the variant rs901681 contributes to ischaemic stroke incidence and recurrence. METHODS The expression of AL110200 was analyzed in THP-1 cells treated with oxidized low-density lipoprotein and in human peripheral blood in a coronary heart disease and control population to determine the role of AL110200 in atherosclerosis. The effect of AL110200 on cell adhesion and invasion was tested. The plasma level of leukotriene B4 and rs901681 genotype distribution were assessed in 220 participants. In 1004 ischaemic stroke patients and 1434 controls, the association between rs901681 and stroke incidence was analyzed by logistic regression, and the association of rs901681 and stroke prognosis was analyzed using Kaplan-Meier analysis and the Cox proportional hazards model. RESULTS Increased expression of AL110200 was observed in THP-1 cells under oxidized low-density lipoprotein treatment. Knockdown of AL110200 reduced the adhesive and invasive ability of THP-1 cells. AL110200 expression in peripheral blood was significantly higher in the coronary heart disease group than in the controls. The GG genotype of rs901681 is associated with reduced plasma leukotriene B4. In the ischaemic stroke population, rs901681 was not associated with ischaemic stroke incidence (p = 0.686). Patients carrying rs901681 GG had a lower risk for stroke recurrence at age ≥60 years (p = 0.001), cardiovascular stroke death (p = 0.022) and all-cause mortality (p = 0.034) in the all-age group. CONCLUSIONS AL110200 might exert a proinflammatory effect on atherosclerosis, and the variant rs901681 might be a strong predictor of stroke prognosis in ischaemic stroke patients.
Collapse
Affiliation(s)
- Li Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miaomiao Suo
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Su
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yan Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Xiao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunchang Qin
- Department of Cardiology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingzhou Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Stielow B, Simon C, Liefke R. Making fundamental scientific discoveries by combining information from literature, databases, and computational tools - An example. Comput Struct Biotechnol J 2021; 19:3027-3033. [PMID: 34136100 PMCID: PMC8175269 DOI: 10.1016/j.csbj.2021.04.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/18/2022] Open
Abstract
In recent years, the amount of available literature, data and computational tools has increased exponentially, providing opportunities and challenges to make use of this vast amount of material. Here, we describe how we utilized publicly available information to identify the previously hardly characterized protein SAMD1 (SAM domain-containing protein 1) as a novel unmethylated CpG island-binding protein. This discovery is an example, how the richness of material and tools on the internet can be used to make scientific breakthroughs, but also the hurdles that may occur. Specifically, we discuss how the misrepresentation of SAMD1 in literature and databases may have prevented an earlier characterization of this protein and we address what can be learned from this example.
Collapse
Affiliation(s)
- Bastian Stielow
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany
| | - Clara Simon
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, 35043 Marburg, Germany
- Corresponding author at: Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany.
| |
Collapse
|
30
|
Pang M, Li Y, Gu W, Sun Z, Wang Z, Li L. Recent Advances in Epigenetics of Macrovascular Complications in Diabetes Mellitus. Heart Lung Circ 2021; 30:186-196. [PMID: 32873490 DOI: 10.1016/j.hlc.2020.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/19/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus is a metabolic and endocrine disorder characterised by hyperglycaemia. Type 2 diabetes mellitus accounts for >90% of people with diabetes. Disorders of blood glucose metabolism and a series of adverse reactions triggered by hyperglycaemia-such as oxidative stress and inflammation-are conducive to the occurrence of diabetic macrovascular complications, which pose severe challenges to the quality of life and life expectancy of people with diabetes. In recent years, epigenetics has attracted more and more researchers' attention as they explore the causes and treatment of diabetes. Epigenetics refers to the regulation of gene expression without changes in gene content. Research focusses on DNA methylation, histone post-translational modification and non-coding RNA. A series of studies have shown that epigenetic regulation accelerates the development of atherosclerosis by interfering with the physiological activities of macrophages, endothelial cells and smooth muscle cells, such as inflammation, lipid deposition and apoptosis. Therefore, it is particularly important to explore new epigenetic discoveries to reduce the severity and harmfulness of diabetes. This study reviewed recent advances in epigenetics in the pathogenesis of diabetes mellitus and its macrovascular complications.
Collapse
Affiliation(s)
- Mingchang Pang
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yalan Li
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wen Gu
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
31
|
Brancolini C, Di Giorgio E, Formisano L, Gagliano T. Quis Custodiet Ipsos Custodes (Who Controls the Controllers)? Two Decades of Studies on HDAC9. Life (Basel) 2021; 11:life11020090. [PMID: 33513699 PMCID: PMC7912504 DOI: 10.3390/life11020090] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 12/21/2022] Open
Abstract
Understanding how an epigenetic regulator drives different cellular responses can be a tricky task. Very often, their activities are modulated by large multiprotein complexes, the composition of which is context- and time-dependent. As a consequence, experiments aimed to unveil the functions of an epigenetic regulator can provide different outcomes and conclusions, depending on the circumstances. HDAC9 (histone deacetylase), an epigenetic regulator that influences different differentiating and adaptive responses, makes no exception. Since its discovery, different phenotypes and/or dysfunctions have been observed after the artificial manipulation of its expression. The cells and the microenvironment use multiple strategies to control and monitor HDAC9 activities. To date, some of the genes under HDAC9 control have been identified. However, the exact mechanisms through which HDAC9 can achieve all the different tasks so far described, remain mysterious. Whether it can assemble into different multiprotein complexes and how the cells modulate these complexes is not clearly defined. In summary, despite several cellular responses are known to be affected by HDAC9, many aspects of its network of interactions still remain to be defined.
Collapse
Affiliation(s)
- Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy; (E.D.G.); (T.G.)
- Correspondence:
| | - Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy; (E.D.G.); (T.G.)
| | - Luigi Formisano
- Department of Neuroscience, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples, Italy;
| | - Teresa Gagliano
- Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy; (E.D.G.); (T.G.)
| |
Collapse
|
32
|
Colpaert RMW, Calore M. Epigenetics and microRNAs in cardiovascular diseases. Genomics 2021; 113:540-551. [PMID: 33482325 DOI: 10.1016/j.ygeno.2020.12.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/12/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases are among the leading causes of mortality worldwide. Besides environmental and genetic changes, these disorders can be influenced by processes which do not affect DNA sequence yet still play an important role in gene expression and which can be inherited. These so-called 'epigenetic' changes include DNA methylation, histone modifications, and ATP-dependent chromatin remodeling enzymes, which influence chromatin remodeling and gene expression. Next to these, microRNAs are non-coding RNA molecules that silence genes post-transcriptionally. Both epigenetic factors and microRNAs are known to influence cardiac development and homeostasis, in an individual fashion but also in a complex regulatory network. In this review, we will discuss how epigenetic factors and microRNAs interact with each other and how together they can influence cardiovascular diseases.
Collapse
Affiliation(s)
- Robin M W Colpaert
- Department of Molecular Genetics, Faculty of Health, Medicine and Life Sciences, Faculty of Science and Engineering, Maastricht University, the Netherlands
| | - Martina Calore
- Department of Molecular Genetics, Faculty of Health, Medicine and Life Sciences, Faculty of Science and Engineering, Maastricht University, the Netherlands.
| |
Collapse
|
33
|
Yang X, Xu H, Liu D, Ma R, Zhang Y, Wang G. Association between Histone Deacetylase 9 Gene Polymorphism and Stroke in Chinese Han Population. J Korean Neurosurg Soc 2020; 64:309-315. [PMID: 33227180 PMCID: PMC7969036 DOI: 10.3340/jkns.2020.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/14/2020] [Indexed: 11/27/2022] Open
Abstract
Objective To explore the correlation between the polymorphism of histone deacetylase 9 gene (rs1060499865, rs723296, rs957960) and ischemic stroke (IS) in Chinese Han population in Dali region.
Methods This study included 155 IS patients and 128 healthy physical examinees. TaqMan-polymerase chain reaction technology and multivariate logistic regression were performed.
Results In the case group, there was no polymorphism of rs1060499865 observed in the two groups; whereas on the rs723296 locus the frequencies of C allele and TC genotype were significantly higher than that in the control group, alleles C and T were associated with a 2.158-fold increase in IS risk, and genotypes TC and TT were associated with a 2.269-fold increase in IS risk. The locus rs957960 exhibited no significant difference between the two groups.
Conclusion An association between rs723296 and the risk of IS was found in the Chinese Han population in Dali region. No significant association was found between rs1060499865, rs957960 and IS in the Chinese Han population in Dali region.
Collapse
Affiliation(s)
- Xitong Yang
- Genetic Testing Center, The First Affiliated hospital of Dali University, Dali, China
| | - Hongyang Xu
- Deparment of Encephalopathy, Hospital of Traditional Chinese Medicine, Guangde, China
| | - Dan Liu
- Genetic Testing Center, The First Affiliated hospital of Dali University, Dali, China
| | - Rong Ma
- Genetic Testing Center, The First Affiliated hospital of Dali University, Dali, China
| | - Yuanyuan Zhang
- Genetic Testing Center, The First Affiliated hospital of Dali University, Dali, China
| | - Guangming Wang
- Genetic Testing Center, The First Affiliated hospital of Dali University, Dali, China
| |
Collapse
|
34
|
Chen X, He Y, Fu W, Sahebkar A, Tan Y, Xu S, Li H. Histone Deacetylases (HDACs) and Atherosclerosis: A Mechanistic and Pharmacological Review. Front Cell Dev Biol 2020; 8:581015. [PMID: 33282862 PMCID: PMC7688915 DOI: 10.3389/fcell.2020.581015] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis (AS), the most common underlying pathology for coronary artery disease, is a chronic inflammatory, proliferative disease in large- and medium-sized arteries. The vascular endothelium is important for maintaining vascular health. Endothelial dysfunction is a critical early event leading to AS, which is a major risk factor for stroke and myocardial infarction. Accumulating evidence has suggested the critical roles of histone deacetylases (HDACs) in regulating vascular cell homeostasis and AS. The purpose of this review is to present an updated view on the roles of HDACs (Class I, Class II, Class IV) and HDAC inhibitors in vascular dysfunction and AS. We also elaborate on the novel therapeutic targets and agents in atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaona Chen
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanhong He
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjun Fu
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute, Łódź, Poland
| | - Yuhui Tan
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Suowen Xu
- Department of Endocrinology, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hong Li
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
35
|
Chiou HY, Bai CH, Lien LM, Hu CJ, Jeng JS, Tang SC, Lin HJ, Hsieh YC. Interactive Effects of a Combination of the HDAC3 and HDAC9 Genes with Diabetes Mellitus on the Risk of Ischemic Stroke. Thromb Haemost 2020; 121:396-404. [PMID: 32961570 DOI: 10.1055/s-0040-1717116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIM Previous studies indicated that the HDAC3 and HDAC9 genes play critical roles in atherosclerosis and ischemic stroke (IS). The purpose of this study was to investigate the association of combined single-nucleotide polymorphisms in the HDAC3 and HDAC9 genes with the susceptibility to IS. METHODS A case-control study was conducted including 863 IS patients and 863 age- and gender-matched healthy participants. A polygenic score was developed to estimate the contribution of a combination of the HDAC3 and HDAC9 genes to the risk of IS. The interactive effects of traditional risk factors of stroke and the polygenic score on the risk of IS were explored. Additionally, the association between the polygenic score and the progression of atherosclerosis, a potential risk factor of IS, was examined in our healthy controls. RESULTS Subjects with a higher polygenic score had an increased risk of IS (odds ratio: 1.83; 95% confidence interval: 1.38-2.43) after adjusting for covariates compared with individuals with a lower polygenic score. An interactive effect of diabetes mellitus and the polygenic score on the risk of IS was observed. A significant positive correlation between the polygenic score and a change in the plaque score (standardized β = 0.42, p = 0.0235) in healthy controls with diabetes mellitus was found. CONCLUSION Our results suggested that the combination of the HDAC3 and HDAC9 genes with a history of diabetes mellitus could exacerbate the deterioration of atherosclerosis, thereby increasing the risk of IS. Further studies are warranted to explore our results in other populations.
Collapse
Affiliation(s)
- Hung-Yi Chiou
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan.,Master Program in Applied Molecular Epidemiology, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Chyi-Huey Bai
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Li-Ming Lien
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chaur-Jong Hu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Stroke Center, Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Jiann-Shing Jeng
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Chun Tang
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Huey-Juan Lin
- Department of Emergency Medicine, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Yi-Chen Hsieh
- Master Program in Applied Molecular Epidemiology, College of Public Health, Taipei Medical University, Taipei, Taiwan.,PhD Program of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
36
|
Affiliation(s)
- Sadhan Das
- From the Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope Medical Center, Duarte, CA
| | - Rama Natarajan
- From the Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope Medical Center, Duarte, CA
| |
Collapse
|
37
|
He P, Yu H, Jiang L, Chen Z, Wang S, Macrae VE, Fu X, Zhu D. Hdac9 inhibits medial artery calcification through down-regulation of Osterix. Vascul Pharmacol 2020; 132:106775. [PMID: 32702412 DOI: 10.1016/j.vph.2020.106775] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/15/2020] [Accepted: 07/15/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUNDS Medial artery calcification (MAC) significantly contributes to the increased cardiovascular death in patients with chronic kidney disease (CKD). Previous genome-wide association studies have shown that various genetic variants of the histone deacetylase Hdac9 are associated with cardiovascular disease, but the role of Hdac9 in MAC under CKD conditions remains unclear. METHODS High phosphate-induced vascular smooth muscle cell (VSMC) calcification and MAC in mice administered with vitamin D3 (vD) were used in the present study. Alizarin red staining, calcium quantitative assay, qPCR, western blotting and histology were performed. RESULTS Hdac9 expression was significantly down-regulated during high phosphate-induced vascular smooth muscle cell (VSMC) calcification and MAC in mice administered with vitamin D3 (vD). Furthermore, high phosphate treatment inhibited phosphorylation of Akt, and pharmacological inhibition of Akt signaling reduced Hdac9 expression in cultured VSMCs. Knockdown of Hdac9 significantly enhanced calcium deposition in VSMCs. Conversely, adenovirus mediated-overexpression of Hdac9 inhibited high phosphate induced VSMC in vitro calcification. Our subsequent mechanistic studies revealed that the anti-calcific effect of Hdac9 was mediated through down-regulation of osteoblast-specific transcription factor Osterix. CONCLUSION These data suggest that Hdac9 is a novel inhibitor of MAC and may represent a potential therapeutic target for MAC in CKD patients.
Collapse
Affiliation(s)
- Pengcheng He
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
| | - Hongjiao Yu
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Forester hill, Aberdeen AB25 2ZD, UK
| | - Lei Jiang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
| | - Ziying Chen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Siying Wang
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Vicky E Macrae
- The Roslin Institute, RDSVS, Easter Bush Campus, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Xiaodong Fu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, China.
| | - Dongxing Zhu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, China.
| |
Collapse
|
38
|
Tonomura S, Ihara M, Friedland RP. Microbiota in cerebrovascular disease: A key player and future therapeutic target. J Cereb Blood Flow Metab 2020; 40:1368-1380. [PMID: 32312168 PMCID: PMC7308516 DOI: 10.1177/0271678x20918031] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stroke is the second leading cause of death and a significant cause of disability worldwide. Recent advances in DNA sequencing, proteomics, metabolomics, and computational tools are dramatically increasing access to the identification of host-microbiota interactions in systemic diseases. In this review, we describe the accumulating evidence showing how human microbiota plays an essential role in cerebrovascular diseases. We introduce the symbiotic relationships between microbiota and the mucosal immune system, focusing on differences by anatomical sites. Microbiota directly or indirectly contributes to the pathogenesis of traditional vascular risk factors including age, obesity, diabetes mellitus, dyslipidemia, and hypertension. Moreover, recent studies proposed independent effects of the microbiome on the progression of various subtypes of stroke through direct microbial invasion, exotoxins, functional amyloids, inflammation, and microbe-derived metabolites. We propose the critical concept of gene-microbial interaction to elucidate the heterogeneity of stroke and provide possible therapeutic avenues. We suggest ways to resolve the vast inter-individual diversity of cerebrovascular disease and mechanisms for personalized prevention and treatment.
Collapse
Affiliation(s)
- Shuichi Tonomura
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.,Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Robert P Friedland
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
39
|
Asare Y, Campbell-James TA, Bokov Y, Yu LL, Prestel M, El Bounkari O, Roth S, Megens RTA, Straub T, Thomas K, Yan G, Schneider M, Ziesch N, Tiedt S, Silvestre-Roig C, Braster Q, Huang Y, Schneider M, Malik R, Haffner C, Liesz A, Soehnlein O, Bernhagen J, Dichgans M. Histone Deacetylase 9 Activates IKK to Regulate Atherosclerotic Plaque Vulnerability. Circ Res 2020; 127:811-823. [PMID: 32546048 DOI: 10.1161/circresaha.120.316743] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RATIONALE Arterial inflammation manifested as atherosclerosis is the leading cause of mortality worldwide. Genome-wide association studies have identified a prominent role of HDAC (histone deacetylase)-9 in atherosclerosis and its clinical complications including stroke and myocardial infarction. OBJECTIVE To determine the mechanisms linking HDAC9 to these vascular pathologies and explore its therapeutic potential for atheroprotection. METHODS AND RESULTS We studied the effects of Hdac9 on features of plaque vulnerability using bone marrow reconstitution experiments and pharmacological targeting with a small molecule inhibitor in hyperlipidemic mice. We further used 2-photon and intravital microscopy to study endothelial activation and leukocyte-endothelial interactions. We show that hematopoietic Hdac9 deficiency reduces lesional macrophage content while increasing fibrous cap thickness thus conferring plaque stability. We demonstrate that HDAC9 binds to IKK (inhibitory kappa B kinase)-α and β, resulting in their deacetylation and subsequent activation, which drives inflammatory responses in both macrophages and endothelial cells. Pharmacological inhibition of HDAC9 with the class IIa HDAC inhibitor TMP195 attenuates lesion formation by reducing endothelial activation and leukocyte recruitment along with limiting proinflammatory responses in macrophages. Transcriptional profiling using RNA sequencing revealed that TMP195 downregulates key inflammatory pathways consistent with inhibitory effects on IKKβ. TMP195 mitigates the progression of established lesions and inhibits the infiltration of inflammatory cells. Moreover, TMP195 diminishes features of plaque vulnerability and thereby enhances plaque stability in advanced lesions. Ex vivo treatment of monocytes from patients with established atherosclerosis reduced the production of inflammatory cytokines including IL (interleukin)-1β and IL-6. CONCLUSIONS Our findings identify HDAC9 as a regulator of atherosclerotic plaque stability and IKK activation thus providing a mechanistic explanation for the prominence of HDAC9 as a vascular risk locus in genome-wide association studies. Its therapeutic inhibition may provide a potent lever to alleviate vascular inflammation. Graphical Abstract: A graphical abstract is available for this article.
Collapse
Affiliation(s)
- Yaw Asare
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Thomas A Campbell-James
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Yury Bokov
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Lydia Luya Yu
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Matthias Prestel
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Omar El Bounkari
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Stefan Roth
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (R.T.A.M., C.S.-R., Q.B., O.S.), Ludwig-Maximilians-University, Munich, Germany.,Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands (R.T.A.M.)
| | - Tobias Straub
- BMC, Core Facility Bioinformatics Munich, Germany (T.S.)
| | - Kyra Thomas
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Guangyao Yan
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Melanie Schneider
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Natalie Ziesch
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Steffen Tiedt
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Carlos Silvestre-Roig
- Institute for Cardiovascular Prevention (R.T.A.M., C.S.-R., Q.B., O.S.), Ludwig-Maximilians-University, Munich, Germany
| | - Quinte Braster
- Institute for Cardiovascular Prevention (R.T.A.M., C.S.-R., Q.B., O.S.), Ludwig-Maximilians-University, Munich, Germany
| | - Yishu Huang
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Manuela Schneider
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Rainer Malik
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Christof Haffner
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Arthur Liesz
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology, Germany (A.L., J.B., M.D.)
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (R.T.A.M., C.S.-R., Q.B., O.S.), Ludwig-Maximilians-University, Munich, Germany.,German Center for Cardiovascular Research, Partner Site Munich Heart Alliance (O.S., J.B.).,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (O.S.)
| | - Jürgen Bernhagen
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology, Germany (A.L., J.B., M.D.).,German Center for Cardiovascular Research, Partner Site Munich Heart Alliance (O.S., J.B.)
| | - Martin Dichgans
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology, Germany (A.L., J.B., M.D.)
| |
Collapse
|