1
|
Obrig H, Regenbrecht F, Pino D, Krause CD. Verbal short term memory contribution to sentence comprehension decreases with increasing syntactic complexity in people with aphasia. Neuroimage 2024; 297:120730. [PMID: 39009249 DOI: 10.1016/j.neuroimage.2024.120730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024] Open
Abstract
Sentence comprehension requires the integration of linguistic units presented in a temporal sequence based on a non-linear underlying syntactic structure. While it is uncontroversial that storage is mandatory for this process, there are opposing views regarding the relevance of general short-term-/working-memory capacities (STM/WM) versus language specific resources. Here we report results from 43 participants with an acquired brain lesion in the extended left hemispheric language network and resulting language deficits, who performed a sentence-to-picture matching task and an experimental task assessing phonological short-term memory. The sentence task systematically varied syntactic complexity (embedding depth and argument order) while lengths, number of propositions and plausibility were kept constant. Clinical data including digit-/ block-spans and lesion size and site were additionally used in the analyses. Correlational analyses confirm that performance on STM/WM-tasks (experimental task and digit-span) are the only two relevant predictors for correct sentence-picture-matching, while reaction times only depended on age and lesion size. Notably increasing syntactic complexity reduced the correlational strength speaking for the additional recruitment of language specific resources independent of more general verbal STM/WM capacities, when resolving complex syntactic structure. The complementary lesion-behaviour analysis yielded different lesion volumes correlating with either the sentence-task or the STM-task. Factoring out STM measures lesions in the anterior temporal lobe correlated with a larger decrease in accuracy with increasing syntactic complexity. We conclude that overall sentence comprehension depends on STM/WM capacity, while increases in syntactic complexity tax another independent cognitive resource.
Collapse
Affiliation(s)
- Hellmuth Obrig
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology & Department of Neurology, 04103 Leipzig, Germany; Clinic for Cognitive Neurology, University Hospital & Faculty of Medicine, 04103 Leipzig, Germany.
| | - Frank Regenbrecht
- Clinic for Cognitive Neurology, University Hospital & Faculty of Medicine, 04103 Leipzig, Germany
| | - Danièle Pino
- Clinic for Cognitive Neurology, University Hospital & Faculty of Medicine, 04103 Leipzig, Germany
| | - Carina D Krause
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology & Department of Neurology, 04103 Leipzig, Germany; International Max Planck Research School on Neuroscience of Communication, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany(#)
| |
Collapse
|
2
|
Musa L, Yan X, Crawford JD. Instruction alters the influence of allocentric landmarks in a reach task. J Vis 2024; 24:17. [PMID: 39073800 PMCID: PMC11290568 DOI: 10.1167/jov.24.7.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/06/2024] [Indexed: 07/30/2024] Open
Abstract
Allocentric landmarks have an implicit influence on aiming movements, but it is not clear how an explicit instruction (to aim relative to a landmark) influences reach accuracy and precision. Here, 12 participants performed a task with two instruction conditions (egocentric vs. allocentric) but with similar sensory and motor conditions. Participants fixated gaze near the center of a display aligned with their right shoulder while a target stimulus briefly appeared alongside a visual landmark in one visual field. After a brief mask/memory delay the landmark then reappeared at a different location (same or opposite visual field), creating an ego/allocentric conflict. In the egocentric condition, participants were instructed to ignore the landmark and point toward the remembered location of the target. In the allocentric condition, participants were instructed to remember the initial target location relative to the landmark and then reach relative to the shifted landmark (same or opposite visual field). To equalize motor execution between tasks, participants were instructed to anti-point (point to the visual field opposite to the remembered target) on 50% of the egocentric trials. Participants were more accurate and precise and quicker to react in the allocentric condition, especially when pointing to the opposite field. We also observed a visual field effect, where performance was worse overall in the right visual field. These results suggest that, when egocentric and allocentric cues conflict, explicit use of the visual landmark provides better reach performance than reliance on noisy egocentric signals. Such instructions might aid rehabilitation when the egocentric system is compromised by disease or injury.
Collapse
Affiliation(s)
- Lina Musa
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
- Department of Psychology, York University, Toronto, ON, Canada
| | - Xiaogang Yan
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
| | - J Douglas Crawford
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
- Department of Psychology, York University, Toronto, ON, Canada
- Departments of Biology and Kinesiology & Health Sciences, York University, Toronto, ON, Canada
| |
Collapse
|
3
|
Gerchen MF, Glock C, Weiss F, Kirsch P. The truth is in there: Belief processes in the human brain. Psychophysiology 2024; 61:e14561. [PMID: 38459783 DOI: 10.1111/psyp.14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/28/2023] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
Belief, defined by William James as the mental state or function of cognizing reality, is a core psychological function with strong influence on emotion and behavior. Furthermore, strong and aberrant beliefs about the world and oneself play important roles in mental disorders. The underlying processes of belief have been the matter of a long debate in philosophy and psychology, and modern neuroimaging techniques can provide insight into the underlying neural processes. Here, we conducted a functional magnetic resonance imaging study with N = 30 healthy participants in which we presented statements about facts, politics, religion, conspiracy theories, and superstition. Participants judged whether they considered them as true (belief) or not (disbelief) and reported their certainty in the decision. We found belief-associated activations in bilateral dorsolateral prefrontal cortex, left superior parietal cortex, and left lateral frontopolar cortex. Disbelief-associated activations were found in an anterior temporal cluster extending into the amygdala. We found a larger deactivation for disbelief than belief in the ventromedial prefrontal cortex that was most pronounced during decisions, suggesting a role of the vmPFC in belief-related decision-making. As a category-specific effect, we found disbelief-associated activation in retrosplenial cortex and parahippocampal gyrus for conspiracy theory statements. Exploratory analyses identified networks centered at anterior cingulate cortex for certainty, and dorsomedial prefrontal cortex for uncertainty. The uncertainty effect identifies a neural substrate for Alexander Bain's notion from 1859 of uncertainty as the real opposite of belief. Taken together, our results suggest a two-factor neural process model of belief with falsehood/veracity and uncertainty/certainty factors.
Collapse
Affiliation(s)
- Martin Fungisai Gerchen
- Department of Clinical Psychology, Central Institute of Mental Health, Heidelberg University/Medical Faculty Mannheim, Mannheim, Germany
- Department of Psychology, Heidelberg University, Heidelberg, Germany
- Bernstein Center for Computational Neuroscience Heidelberg/Mannheim, Mannheim, Germany
- Heidelberg Academy of Sciences and Humanities, Heidelberg, Germany
| | - Carina Glock
- Department of Clinical Psychology, Central Institute of Mental Health, Heidelberg University/Medical Faculty Mannheim, Mannheim, Germany
- Department of Psychology, Heidelberg University, Heidelberg, Germany
| | - Franziska Weiss
- Department of Clinical Psychology, Central Institute of Mental Health, Heidelberg University/Medical Faculty Mannheim, Mannheim, Germany
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, Heidelberg University/Medical Faculty Mannheim, Mannheim, Germany
- Department of Psychology, Heidelberg University, Heidelberg, Germany
- Bernstein Center for Computational Neuroscience Heidelberg/Mannheim, Mannheim, Germany
| |
Collapse
|
4
|
Kumar S, Sumers TR, Yamakoshi T, Goldstein A, Hasson U, Norman KA, Griffiths TL, Hawkins RD, Nastase SA. Shared functional specialization in transformer-based language models and the human brain. Nat Commun 2024; 15:5523. [PMID: 38951520 PMCID: PMC11217339 DOI: 10.1038/s41467-024-49173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 05/24/2024] [Indexed: 07/03/2024] Open
Abstract
When processing language, the brain is thought to deploy specialized computations to construct meaning from complex linguistic structures. Recently, artificial neural networks based on the Transformer architecture have revolutionized the field of natural language processing. Transformers integrate contextual information across words via structured circuit computations. Prior work has focused on the internal representations ("embeddings") generated by these circuits. In this paper, we instead analyze the circuit computations directly: we deconstruct these computations into the functionally-specialized "transformations" that integrate contextual information across words. Using functional MRI data acquired while participants listened to naturalistic stories, we first verify that the transformations account for considerable variance in brain activity across the cortical language network. We then demonstrate that the emergent computations performed by individual, functionally-specialized "attention heads" differentially predict brain activity in specific cortical regions. These heads fall along gradients corresponding to different layers and context lengths in a low-dimensional cortical space.
Collapse
Affiliation(s)
- Sreejan Kumar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08540, USA.
| | - Theodore R Sumers
- Department of Computer Science, Princeton University, Princeton, NJ, 08540, USA.
| | - Takateru Yamakoshi
- Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ariel Goldstein
- Department of Cognitive and Brain Sciences and Business School, Hebrew University, Jerusalem, 9190401, Israel
| | - Uri Hasson
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08540, USA
- Department of Psychology, Princeton University, Princeton, NJ, 08540, USA
| | - Kenneth A Norman
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08540, USA
- Department of Psychology, Princeton University, Princeton, NJ, 08540, USA
| | - Thomas L Griffiths
- Department of Computer Science, Princeton University, Princeton, NJ, 08540, USA
- Department of Psychology, Princeton University, Princeton, NJ, 08540, USA
| | - Robert D Hawkins
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08540, USA
- Department of Psychology, Princeton University, Princeton, NJ, 08540, USA
| | - Samuel A Nastase
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08540, USA.
| |
Collapse
|
5
|
Shain C, Kean H, Casto C, Lipkin B, Affourtit J, Siegelman M, Mollica F, Fedorenko E. Distributed Sensitivity to Syntax and Semantics throughout the Language Network. J Cogn Neurosci 2024; 36:1427-1471. [PMID: 38683732 DOI: 10.1162/jocn_a_02164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Human language is expressive because it is compositional: The meaning of a sentence (semantics) can be inferred from its structure (syntax). It is commonly believed that language syntax and semantics are processed by distinct brain regions. Here, we revisit this claim using precision fMRI methods to capture separation or overlap of function in the brains of individual participants. Contrary to prior claims, we find distributed sensitivity to both syntax and semantics throughout a broad frontotemporal brain network. Our results join a growing body of evidence for an integrated network for language in the human brain within which internal specialization is primarily a matter of degree rather than kind, in contrast with influential proposals that advocate distinct specialization of different brain areas for different types of linguistic functions.
Collapse
Affiliation(s)
| | - Hope Kean
- Massachusetts Institute of Technology
| | | | | | | | | | | | | |
Collapse
|
6
|
Graessner A, Duchow C, Zaccarella E, Friederici AD, Obrig H, Hartwigsen G. Electrophysiological correlates of basic semantic composition in people with aphasia. Neuroimage Clin 2023; 40:103516. [PMID: 37769366 PMCID: PMC10540050 DOI: 10.1016/j.nicl.2023.103516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023]
Abstract
The neuroanatomical correlates of basic semantic composition have been investigated in previous neuroimaging and lesion studies, but research on the electrophysiology of the involved processes is scarce. A large literature on sentence-level event-related potentials (ERPs) during semantic processing has identified at least two relevant components - the N400 and the P600. Other studies demonstrated that these components are reduced and/or delayed in people with aphasia (PWA). However, it remains to be shown if these findings generalize beyond the sentence level. Specifically, it is an open question if an alteration in ERP responses in PWA can also be observed during basic semantic composition, providing a potential future diagnostic tool. The present study aimed to elucidate the electrophysiological dynamics of basic semantic composition in a group of post-stroke PWA. We included 20 PWA and 20 age-matched controls (mean age 58 years) and measured ERP responses while they performed a plausibility judgment task on two-word phrases that were either meaningful ("anxious horse"), anomalous ("anxious wood") or had the noun replaced by a pseudoword ("anxious gufel"). The N400 effect for anomalous versus meaningful phrases was similar in both groups. In contrast, unlike the control group, PWA did not show an N400 effect between pseudoword and meaningful phrases. Moreover, both groups exhibited a parietal P600 effect towards pseudoword phrases, while PWA showed an additional P600 over frontal electrodes. Finally, PWA showed an inverse correlation between the magnitude of the N400 and P600 effects: PWA exhibiting no or even reversed N400 effects towards anomalous and pseudoword phrases showed a stronger P600 effect. These results may reflect a compensatory mechanism which allows PWA to arrive at the correct interpretation of the phrase. When compositional processing capacities are impaired in the early N400 time-window, PWA may make use of a more elaborate re-analysis process reflected in the P600.
Collapse
Affiliation(s)
- Astrid Graessner
- Wilhelm Wundt Institute for Psychology, Leipzig University, Germany; Lise-Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Caroline Duchow
- Lise-Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Hellmuth Obrig
- Clinic for Cognitive Neurology, University Hospital Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gesa Hartwigsen
- Wilhelm Wundt Institute for Psychology, Leipzig University, Germany; Lise-Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
7
|
Zhu H, Fitzhugh MC, Keator LM, Johnson L, Rorden C, Bonilha L, Fridriksson J, Rogalsky C. How can graph theory inform the dual-stream model of speech processing? a resting-state fMRI study of post-stroke aphasia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537216. [PMID: 37131756 PMCID: PMC10153155 DOI: 10.1101/2023.04.17.537216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The dual-stream model of speech processing has been proposed to represent the cortical networks involved in speech comprehension and production. Although it is arguably the prominent neuroanatomical model of speech processing, it is not yet known if the dual-stream model represents actual intrinsic functional brain networks. Furthermore, it is unclear how disruptions after a stroke to the functional connectivity of the dual-stream model's regions are related to specific types of speech production and comprehension impairments seen in aphasia. To address these questions, in the present study, we examined two independent resting-state fMRI datasets: (1) 28 neurotypical matched controls and (2) 28 chronic left-hemisphere stroke survivors with aphasia collected at another site. Structural MRI, as well as language and cognitive behavioral assessments, were collected. Using standard functional connectivity measures, we successfully identified an intrinsic resting-state network amongst the dual-stream model's regions in the control group. We then used both standard functional connectivity analyses and graph theory approaches to determine how the functional connectivity of the dual-stream network differs in individuals with post-stroke aphasia, and how this connectivity may predict performance on clinical aphasia assessments. Our findings provide strong evidence that the dual-stream model is an intrinsic network as measured via resting-state MRI, and that weaker functional connectivity of the hub nodes of the dual-stream network defined by graph theory methods, but not overall average network connectivity, is weaker in the stroke group than in the control participants. Also, the functional connectivity of the hub nodes predicted specific types of impairments on clinical assessments. In particular, the relative strength of connectivity of the right hemisphere's homologues of the left dorsal stream hubs to the left dorsal hubs versus right ventral stream hubs is a particularly strong predictor of post-stroke aphasia severity and symptomology.
Collapse
|
8
|
Prat CS, Gallée J, Yamasaki BL. Getting language right: Relating individual differences in right hemisphere contributions to language learning and relearning. BRAIN AND LANGUAGE 2023; 239:105242. [PMID: 36931111 DOI: 10.1016/j.bandl.2023.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 05/10/2023]
Abstract
Language, or the diverse set of dynamic processes through which symbolic, perceptual codes are linked to meaning representations in memory, has long been assumed to be lateralized to the left hemisphere (LH). However, after over 150 years of investigation, we still lack a unifying account of when, and for whom, a particular linguistic process relies upon LH or right hemisphere (RH) computations, or both. With a focus on individual differences, this article integrates existing theories of hemispheric contributions to language and cognition into a novel proposed framework for understanding how, when, and for whom the RH contributes to linguistic processes. We use evidence from first and second language learning and language relearning following focal brain damage to highlight the critical contributions of the RH.
Collapse
Affiliation(s)
- Chantel S Prat
- Department of Psychology, Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, USA.
| | - Jeanne Gallée
- Department of Psychology, Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
9
|
Sugimoto H, Abe MS, Otake-Matsuura M. Word-producing brain: Contribution of the left anterior middle temporal gyrus to word production patterns in spoken language. BRAIN AND LANGUAGE 2023; 238:105233. [PMID: 36842390 DOI: 10.1016/j.bandl.2023.105233] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/27/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Vocabulary is based on semantic knowledge. The anterior temporal lobe (ATL) has been considered an essential region for processing semantic knowledge; nonetheless, the association between word production patterns and the structural and functional characteristics of the ATL remains unclear. To examine this, we analyzed over one million words from group conversations among community-dwelling older adults and their multimodal magnetic resonance imaging data. A quantitative index for the word production patterns, namely the exponent β of Heaps' law, positively correlated with the left anterior middle temporal gyrus volume. Moreover, β negatively correlated with its resting-state functional connectivity with the precuneus. There was no significant correlation with the diffusion tensor imaging metrics in any fiber. These findings suggest that the vocabulary richness in spoken language depends on the brain status characterized by the semantic knowledge-related brain structure and its activation dissimilarity with the precuneus, a core region of the default mode network.
Collapse
Affiliation(s)
- Hikaru Sugimoto
- RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.
| | - Masato S Abe
- RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; Faculty of Culture and Information Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto-fu 610-0394, Japan.
| | - Mihoko Otake-Matsuura
- RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.
| |
Collapse
|
10
|
Krause CD, Fengler A, Pino D, Sehm B, Friederici AD, Obrig H. The role of left temporo-parietal and inferior frontal cortex in comprehending syntactically complex sentences: A brain stimulation study. Neuropsychologia 2023; 180:108465. [PMID: 36586718 DOI: 10.1016/j.neuropsychologia.2022.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Syntactic competence relies on a left-lateralized network converging on hubs in inferior-frontal and posterior-temporal cortices. We address the question whether anodal transcranial direct current stimulation (a-tDCS) over these hubs can modulate comprehension of sentences, whose syntactic complexity systematically varied along the factors embedding depths and canonicity. Semantic content and length of the sentences were kept identical and forced choice picture matching was required after the full sentence had been presented. METHODS We used a single-blind, within-subject, sham-controlled design, applying a-tDCS targeting left posterior tempo-parietal (TP) and left inferior frontal cortex (FC). Stimulation sites were determined by individual neuro-navigation. 20 participants were included of whom 19 entered the analysis. Results were analysed using (generalized) mixed models. In a pilot-experiment in another group of 20 participants we validated the manipulation of syntactic complexity by the two factors embedding depth and argument-order. RESULTS Reaction times increased and accuracy decreased with higher embedding depth and non-canonical argument order in both experiments. Notably a-tDCS over TP enhanced sentence-to-picture matching, while FC-stimulation showed no consistent effect. Moreover, the analysis disclosed a session effect, indicating improvements of task performance especially regarding speed. CONCLUSIONS We conclude that the posterior 'hub' of the neuronal network affording syntactic analysis represents a 'bottleneck', likely due to working-memory capacity and the challenges of mapping semantic to syntactic information allowing for role assignment. While this does not challenge the role of left inferior-frontal cortex for syntax processing and novel-grammar learning, the application of highly established syntactic rules during sentence comprehension may be considered optimized, thus not augmentable by a-tDCS in the uncompromised network. SIGNIFICANCE STATEMENT Anodal transcranial direct current stimulation (a-tDCS) over left temporo-parietal cortex enhances comprehension of complex sentences in uncompromised young speakers. Since a-tDCS over left frontal cortex did not elicit any change, the 'bottleneck' for the understanding of complex sentences seems to be the posterior, temporo-parietal rather than the anterior inferior-frontal 'hub' of language processing. Regarding the attested role of inferior-frontal cortex in syntax processing, we suggest that its function is optimized in competent young speakers, preventing further enhancement by (facilitatory) tDCS. Results shed light on the functional anatomy of syntax processing during sentence comprehension; moreover, they open perspectives for research in the lesioned language network of people with syntactic deficits due to aphasia.
Collapse
Affiliation(s)
- Carina D Krause
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology & Department of Neurology, 04103 Leipzig, Germany; Clinic for Cognitive Neurology, University Hospital & Faculty of Medicine, 04103 Leipzig, Germany.
| | - Anja Fengler
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology & Department of Neurology, 04103 Leipzig, Germany; Martin Luther University Halle-Wittenberg, Department of Special and Inclusive Education, Speech and Language Pedagogy and Pathology, 06110 Halle, Germany
| | - Danièle Pino
- Clinic for Cognitive Neurology, University Hospital & Faculty of Medicine, 04103 Leipzig, Germany
| | - Bernhard Sehm
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology & Department of Neurology, 04103 Leipzig, Germany; Clinic for Neurology, University Medicine Halle, 06120, Halle (Saale), Germany
| | - Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology & Department of Neurology, 04103 Leipzig, Germany
| | - Hellmuth Obrig
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology & Department of Neurology, 04103 Leipzig, Germany; Clinic for Cognitive Neurology, University Hospital & Faculty of Medicine, 04103 Leipzig, Germany.
| |
Collapse
|
11
|
Youssofzadeh V, Conant L, Stout J, Ustine C, Humphries C, Gross WL, Shah-Basak P, Mathis J, Awe E, Allen L, DeYoe EA, Carlson C, Anderson CT, Maganti R, Hermann B, Nair VA, Prabhakaran V, Meyerand B, Binder JR, Raghavan M. Late dominance of the right hemisphere during narrative comprehension. Neuroimage 2022; 264:119749. [PMID: 36379420 PMCID: PMC9772156 DOI: 10.1016/j.neuroimage.2022.119749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/12/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022] Open
Abstract
PET and fMRI studies suggest that auditory narrative comprehension is supported by a bilateral multilobar cortical network. The superior temporal resolution of magnetoencephalography (MEG) makes it an attractive tool to investigate the dynamics of how different neuroanatomic substrates engage during narrative comprehension. Using beta-band power changes as a marker of cortical engagement, we studied MEG responses during an auditory story comprehension task in 31 healthy adults. The protocol consisted of two runs, each interleaving 7 blocks of the story comprehension task with 15 blocks of an auditorily presented math task as a control for phonological processing, working memory, and attention processes. Sources at the cortical surface were estimated with a frequency-resolved beamformer. Beta-band power was estimated in the frequency range of 16-24 Hz over 1-sec epochs starting from 400 msec after stimulus onset until the end of a story or math problem presentation. These power estimates were compared to 1-second epochs of data before the stimulus block onset. The task-related cortical engagement was inferred from beta-band power decrements. Group-level source activations were statistically compared using non-parametric permutation testing. A story-math contrast of beta-band power changes showed greater bilateral cortical engagement within the fusiform gyrus, inferior and middle temporal gyri, parahippocampal gyrus, and left inferior frontal gyrus (IFG) during story comprehension. A math-story contrast of beta power decrements showed greater bilateral but left-lateralized engagement of the middle frontal gyrus and superior parietal lobule. The evolution of cortical engagement during five temporal windows across the presentation of stories showed significant involvement during the first interval of the narrative of bilateral opercular and insular regions as well as the ventral and lateral temporal cortex, extending more posteriorly on the left and medially on the right. Over time, there continued to be sustained right anterior ventral temporal engagement, with increasing involvement of the right anterior parahippocampal gyrus, STG, MTG, posterior superior temporal sulcus, inferior parietal lobule, frontal operculum, and insula, while left hemisphere engagement decreased. Our findings are consistent with prior imaging studies of narrative comprehension, but in addition, they demonstrate increasing right-lateralized engagement over the course of narratives, suggesting an important role for these right-hemispheric regions in semantic integration as well as social and pragmatic inference processing.
Collapse
Affiliation(s)
- Vahab Youssofzadeh
- Neurology, Medical College of Wisconsin, Milwaukee, WI, USA,Corresponding author. (V. Youssofzadeh)
| | - Lisa Conant
- Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jeffrey Stout
- Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Candida Ustine
- Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - William L. Gross
- Neurology, Medical College of Wisconsin, Milwaukee, WI, USA,Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Jed Mathis
- Neurology, Medical College of Wisconsin, Milwaukee, WI, USA,Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Elizabeth Awe
- Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Linda Allen
- Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Edgar A. DeYoe
- Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chad Carlson
- Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Rama Maganti
- Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Bruce Hermann
- Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Veena A. Nair
- Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Vivek Prabhakaran
- Radiology, University of Wisconsin-Madison, Madison, WI, USA,Medical Physics, University of Wisconsin-Madison, Madison, WI, USA,Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Beth Meyerand
- Radiology, University of Wisconsin-Madison, Madison, WI, USA,Medical Physics, University of Wisconsin-Madison, Madison, WI, USA,Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Manoj Raghavan
- Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
12
|
Maran M, Numssen O, Hartwigsen G, Zaccarella E. Online neurostimulation of Broca's area does not interfere with syntactic predictions: A combined TMS-EEG approach to basic linguistic combination. Front Psychol 2022; 13:968836. [PMID: 36619118 PMCID: PMC9815778 DOI: 10.3389/fpsyg.2022.968836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/13/2022] [Indexed: 01/11/2023] Open
Abstract
Categorical predictions have been proposed as the key mechanism supporting the fast pace of syntactic composition in language. Accordingly, grammar-based expectations are formed-e.g., the determiner "a" triggers the prediction for a noun-and facilitate the analysis of incoming syntactic information, which is then checked against a single or few other word categories. Previous functional neuroimaging studies point towards Broca's area in the left inferior frontal gyrus (IFG) as one fundamental cortical region involved in categorical prediction during incremental language processing. Causal evidence for this hypothesis is however still missing. In this study, we combined Electroencephalography (EEG) and Transcranial Magnetic Stimulation (TMS) to test whether Broca's area is functionally relevant in predictive mechanisms for language. We transiently perturbed Broca's area during the first word in a two-word construction, while simultaneously measuring the Event-Related Potential (ERP) correlates of syntactic composition. We reasoned that if Broca's area is involved in predictive mechanisms for syntax, disruptive TMS during the first word would mitigate the difference in the ERP responses for predicted and unpredicted categories in basic two-word constructions. Contrary to this hypothesis, perturbation of Broca's area at the predictive stage did not affect the ERP correlates of basic composition. The correlation strength between the electrical field induced by TMS and the ERP responses further confirmed this pattern. We discuss the present results considering an alternative account of the role of Broca's area in syntactic composition, namely the bottom-up integration of words into constituents, and of compensatory mechanisms within the language predictive network.
Collapse
Affiliation(s)
- Matteo Maran
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany,International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany,*Correspondence: Matteo Maran,
| | - Ole Numssen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
13
|
Morese R, Brasso C, Stanziano M, Parola A, Valentini MC, Bosco FM, Rocca P. Efforts for the Correct Comprehension of Deceitful and Ironic Communicative Intentions in Schizophrenia: A Functional Magnetic Resonance Imaging Study on the Role of the Left Middle Temporal Gyrus. Front Psychol 2022; 13:866160. [PMID: 35774960 PMCID: PMC9237627 DOI: 10.3389/fpsyg.2022.866160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Deficits in social cognition and more specifically in communication have an important impact on the real-life functioning of people with schizophrenia (SZ). In particular, patients have severe problems in communicative-pragmatics, for example, in correctly inferring the speaker's communicative intention in everyday conversational interactions. This limit is associated with morphological and functional alteration of the left middle temporal gyrus (L-MTG), a cerebral area involved in various communicative processes, in particular in the distinction of ironic communicative intention from sincere and deceitful ones. We performed an fMRI study on 20 patients with SZ and 20 matched healthy controls (HCs) while performing a pragmatic task testing the comprehension of sincere, deceitful, and ironic communicative intentions. We considered the L-MTG as the region of interest. SZ patients showed difficulties in the correct comprehension of all types of communicative intentions and, when correctly answering to the task, they exhibited a higher activation of the L-MTG, as compared to HC, under all experimental conditions. This greater involvement of the L-MTG in the group of patients could depend on different factors, such as the increasing inferential effort required in correctly understanding the speaker's communicative intentions, and the higher integrative semantic processes involved in sentence processing. Future studies with a larger sample size and functional connectivity analysis are needed to study deeper the specific role of the L-MTG in pragmatic processes in SZ, also in relation to other brain areas.
Collapse
Affiliation(s)
- R. Morese
- Faculty of Communication, Culture and Society, Università della Svizzera italiana, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| | - C. Brasso
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
- Struttura Complessa di Psichiatria Universitaria, Dipartimento di Neuroscienze e Salute Mentale, Azienda Ospedaliera Universitaria “Città della Salute e della Scienza di Torino”, Turin, Italy
| | - M. Stanziano
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - A. Parola
- Research Group on Inferential Processes in Social Interaction (GIPSI), Department of Psychology, University of Turin, Turin, Italy
| | - M. C. Valentini
- Struttura Complessa di Neuroradiologia, Dipartimento Diagnostica per Immagini e Radiologia interventistica, Azienda Ospedaliera Universitaria “Città della Salute e della Scienza di Torino”, Turin, Italy
| | - F. M. Bosco
- Research Group on Inferential Processes in Social Interaction (GIPSI), Department of Psychology, University of Turin, Turin, Italy
| | - P. Rocca
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
- Struttura Complessa di Psichiatria Universitaria, Dipartimento di Neuroscienze e Salute Mentale, Azienda Ospedaliera Universitaria “Città della Salute e della Scienza di Torino”, Turin, Italy
| |
Collapse
|
14
|
Foster PH, Russell LL, Peakman G, Convery RS, Bouzigues A, Greaves CV, Bocchetta M, Cash DM, van Swieten JC, Jiskoot LC, Moreno F, Sanchez-Valle R, Laforce R, Graff C, Masellis M, Tartaglia C, Rowe JB, Borroni B, Finger E, Synofzik M, Galimberti D, Vandenberghe R, de Mendonça A, Butler CR, Gerhard A, Ducharme S, Le Ber I, Tagliavini F, Santana I, Pasquier F, Levin J, Danek A, Otto M, Sorbi S, Rohrer JD. Examining empathy deficits across familial forms of frontotemporal dementia within the GENFI cohort. Cortex 2022; 150:12-28. [PMID: 35325762 PMCID: PMC9067453 DOI: 10.1016/j.cortex.2022.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/14/2021] [Accepted: 01/09/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Reduced empathy is a common symptom in frontotemporal dementia (FTD). Although empathy deficits have been extensively researched in sporadic cases, few studies have explored the differences in familial forms of FTD. METHODS Empathy was examined using a modified version of the Interpersonal Reactivity Index (mIRI) in 676 participants from the Genetic FTD Initiative: 216 mutation-negative controls, 192 C9orf72 expansion carriers, 193 GRN mutation carriers and 75 MAPT mutation carriers. Using global scores from the CDR® plus NACC FTLD, mutation carriers were divided into three groups, asymptomatic (0), very mildly symptomatic/prodromal (.5), or fully symptomatic (1 or more). The mIRI Total score, as well as the subscores of Empathic Concern (EC) and Perspective Taking (PT) were assessed. Linear regression models with bootstrapping were used to assess empathy ratings across genetic groups, as well as across phenotypes in the symptomatic carriers. Neural correlates of empathy deficits were examined using a voxel-based morphometry (VBM) analysis. RESULTS All fully symptomatic groups scored lower on the mIRI Total, EC, and PT when compared to controls and their asymptomatic or prodromal counterparts (all p < .001). Prodromal C9orf72 expansion carriers also scored significantly lower than controls on the mIRI Total score (p = .046). In the phenotype analysis, all groups (behavioural variant FTD, primary progressive aphasia and FTD with amyotrophic lateral sclerosis) scored significantly lower than controls (all p < .007). VBM revealed an overlapping neural correlate of the mIRI Total score across genetic groups in the orbitofrontal lobe but with additional involvement in the temporal lobe, insula and basal ganglia in both the GRN and MAPT groups, and uniquely more posterior regions such as the parietal lobe and thalamus in the GRN group, and medial temporal structures in the MAPT group. CONCLUSIONS Significant empathy deficits present in genetic FTD, particularly in symptomatic individuals and those with a bvFTD phenotype, while prodromal deficits are only seen using the mIRI in C9orf72 expansion carriers.
Collapse
Affiliation(s)
- Phoebe H Foster
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Georgia Peakman
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Rhian S Convery
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Arabella Bouzigues
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Caroline V Greaves
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Centre for Medical Image Computing, University College London, London, UK
| | | | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia Universitary Hospital, San Sebastian, Spain; Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, QC, Canada
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden; Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - James B Rowe
- University of Cambridge Department of Clinical Neurosciences, and University of Cambridge Hospitals NHS Trust, University of Cambridge, UK
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany; Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Daniela Galimberti
- Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy; University of Milan, Centro Dino Ferrari, Milan, Italy
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium; Neurology Service, University Hospitals Leuven, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK; Department of Brain Sciences, Imperial College London, UK
| | - Alex Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK; Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Germany
| | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Québec, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Reference Network for Rare Neurological Diseases (ERN-RND)
| | | | - Isabel Santana
- University Hospital of Coimbra (HUC), Neurology Service, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Florence Pasquier
- Univ Lille, France; Inserm 1172, Lille, France; CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, France
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians Universität München, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians Universität München, Munich, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
15
|
Giampiccolo D, Duffau H. Controversy over the temporal cortical terminations of the left arcuate fasciculus: a reappraisal. Brain 2022; 145:1242-1256. [PMID: 35142842 DOI: 10.1093/brain/awac057] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/19/2021] [Accepted: 01/20/2022] [Indexed: 11/12/2022] Open
Abstract
The arcuate fasciculus has been considered a major dorsal fronto-temporal white matter pathway linking frontal language production regions with auditory perception in the superior temporal gyrus, the so-called Wernicke's area. In line with this tradition, both historical and contemporary models of language function have assigned primacy to superior temporal projections of the arcuate fasciculus. However, classical anatomical descriptions and emerging behavioural data are at odds with this assumption. On one hand, fronto-temporal projections to Wernicke's area may not be unique to the arcuate fasciculus. On the other hand, dorsal stream language deficits have been reported also for damage to middle, inferior and basal temporal gyri which may be linked to arcuate disconnection. These findings point to a reappraisal of arcuate projections in the temporal lobe. Here, we review anatomical and functional evidence regarding the temporal cortical terminations of the left arcuate fasciculus by incorporating dissection and tractography findings with stimulation data using cortico-cortical evoked potentials and direct electrical stimulation mapping in awake patients. Firstly, we discuss the fibers of the arcuate fasciculus projecting to the superior temporal gyrus and the functional rostro-caudal gradient in this region where both phonological encoding and auditory-motor transformation may be performed. Caudal regions within the temporoparietal junction may be involved in articulation and associated with temporoparietal projections of the third branch of the superior longitudinal fasciculus, while more rostral regions may support encoding of acoustic phonetic features, supported by arcuate fibres. We then move to examine clinical data showing that multimodal phonological encoding is facilitated by projections of the arcuate fasciculus to superior, but also middle, inferior and basal temporal regions. Hence, we discuss how projections of the arcuate fasciculus may contribute to acoustic (middle-posterior superior and middle temporal gyri), visual (posterior inferior temporal/fusiform gyri comprising the visual word form area) and lexical (anterior-middle inferior temporal/fusiform gyri in the basal temporal language area) information in the temporal lobe to be processed, encoded and translated into a dorsal phonological route to the frontal lobe. Finally, we point out surgical implications for this model in terms of the prediction and avoidance of neurological deficit.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy.,Institute of Neuroscience, Cleveland Clinic London, Grosvenor Place, London, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.,Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Neuroplasticity, Stem Cells and Low-grade Gliomas," INSERM U1191, Institute of Genomics of Montpellier, University of Montpellier, Montpellier, France
| |
Collapse
|
16
|
Matchin W, İlkbaşaran D, Hatrak M, Roth A, Villwock A, Halgren E, Mayberry RI. The Cortical Organization of Syntactic Processing Is Supramodal: Evidence from American Sign Language. J Cogn Neurosci 2022; 34:224-235. [PMID: 34964898 PMCID: PMC8764739 DOI: 10.1162/jocn_a_01790] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Areas within the left-lateralized neural network for language have been found to be sensitive to syntactic complexity in spoken and written language. Previous research has revealed that these areas are active for sign language as well, but whether these areas are specifically responsive to syntactic complexity in sign language independent of lexical processing has yet to be found. To investigate the question, we used fMRI to neuroimage deaf native signers' comprehension of 180 sign strings in American Sign Language (ASL) with a picture-probe recognition task. The ASL strings were all six signs in length but varied at three levels of syntactic complexity: sign lists, two-word sentences, and complex sentences. Syntactic complexity significantly affected comprehension and memory, both behaviorally and neurally, by facilitating accuracy and response time on the picture-probe recognition task and eliciting a left lateralized activation response pattern in anterior and posterior superior temporal sulcus (aSTS and pSTS). Minimal or absent syntactic structure reduced picture-probe recognition and elicited activation in bilateral pSTS and occipital-temporal cortex. These results provide evidence from a sign language, ASL, that the combinatorial processing of anterior STS and pSTS is supramodal in nature. The results further suggest that the neurolinguistic processing of ASL is characterized by overlapping and separable neural systems for syntactic and lexical processing.
Collapse
Affiliation(s)
- William Matchin
- University of California San Diego
- University of South Carolina, Columbia
| | | | | | | | - Agnes Villwock
- University of California San Diego
- Humboldt University of Berlin
| | | | | |
Collapse
|
17
|
Hierarchical cortical networks of "voice patches" for processing voices in human brain. Proc Natl Acad Sci U S A 2021; 118:2113887118. [PMID: 34930846 DOI: 10.1073/pnas.2113887118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 12/26/2022] Open
Abstract
Humans have an extraordinary ability to recognize and differentiate voices. It is yet unclear whether voices are uniquely processed in the human brain. To explore the underlying neural mechanisms of voice processing, we recorded electrocorticographic signals from intracranial electrodes in epilepsy patients while they listened to six different categories of voice and nonvoice sounds. Subregions in the temporal lobe exhibited preferences for distinct voice stimuli, which were defined as "voice patches." Latency analyses suggested a dual hierarchical organization of the voice patches. We also found that voice patches were functionally connected under both task-engaged and resting states. Furthermore, the left motor areas were coactivated and correlated with the temporal voice patches during the sound-listening task. Taken together, this work reveals hierarchical cortical networks in the human brain for processing human voices.
Collapse
|
18
|
Nastase SA, Liu YF, Hillman H, Zadbood A, Hasenfratz L, Keshavarzian N, Chen J, Honey CJ, Yeshurun Y, Regev M, Nguyen M, Chang CHC, Baldassano C, Lositsky O, Simony E, Chow MA, Leong YC, Brooks PP, Micciche E, Choe G, Goldstein A, Vanderwal T, Halchenko YO, Norman KA, Hasson U. The "Narratives" fMRI dataset for evaluating models of naturalistic language comprehension. Sci Data 2021; 8:250. [PMID: 34584100 PMCID: PMC8479122 DOI: 10.1038/s41597-021-01033-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023] Open
Abstract
The "Narratives" collection aggregates a variety of functional MRI datasets collected while human subjects listened to naturalistic spoken stories. The current release includes 345 subjects, 891 functional scans, and 27 diverse stories of varying duration totaling ~4.6 hours of unique stimuli (~43,000 words). This data collection is well-suited for naturalistic neuroimaging analysis, and is intended to serve as a benchmark for models of language and narrative comprehension. We provide standardized MRI data accompanied by rich metadata, preprocessed versions of the data ready for immediate use, and the spoken story stimuli with time-stamped phoneme- and word-level transcripts. All code and data are publicly available with full provenance in keeping with current best practices in transparent and reproducible neuroimaging.
Collapse
Affiliation(s)
- Samuel A Nastase
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA.
| | - Yun-Fei Liu
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Hanna Hillman
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Asieh Zadbood
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Liat Hasenfratz
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Neggin Keshavarzian
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Janice Chen
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Christopher J Honey
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Yaara Yeshurun
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Mor Regev
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mai Nguyen
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Claire H C Chang
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| | | | - Olga Lositsky
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI, USA
| | - Erez Simony
- Faculty of Electrical Engineering, Holon Institute of Technology, Holon, Israel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Yuan Chang Leong
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Paula P Brooks
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Emily Micciche
- Peabody College, Vanderbilt University, Nashville, TN, USA
| | - Gina Choe
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Ariel Goldstein
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Tamara Vanderwal
- Department of Psychiatry, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Yaroslav O Halchenko
- Department of Psychological and Brain Sciences and Department of Computer Science, Dartmouth College, Hanover, NH, USA
| | - Kenneth A Norman
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Uri Hasson
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
19
|
Wehbe L, Blank IA, Shain C, Futrell R, Levy R, von der Malsburg T, Smith N, Gibson E, Fedorenko E. Incremental Language Comprehension Difficulty Predicts Activity in the Language Network but Not the Multiple Demand Network. Cereb Cortex 2021. [PMID: 33895807 DOI: 10.1101/2020.04.15.043844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
What role do domain-general executive functions play in human language comprehension? To address this question, we examine the relationship between behavioral measures of comprehension and neural activity in the domain-general "multiple demand" (MD) network, which has been linked to constructs like attention, working memory, inhibitory control, and selection, and implicated in diverse goal-directed behaviors. Specifically, functional magnetic resonance imaging data collected during naturalistic story listening are compared with theory-neutral measures of online comprehension difficulty and incremental processing load (reading times and eye-fixation durations). Critically, to ensure that variance in these measures is driven by features of the linguistic stimulus rather than reflecting participant- or trial-level variability, the neuroimaging and behavioral datasets were collected in nonoverlapping samples. We find no behavioral-neural link in functionally localized MD regions; instead, this link is found in the domain-specific, fronto-temporal "core language network," in both left-hemispheric areas and their right hemispheric homotopic areas. These results argue against strong involvement of domain-general executive circuits in language comprehension.
Collapse
Affiliation(s)
- Leila Wehbe
- Carnegie Mellon University, Machine Learning Department PA 15213, USA
| | - Idan Asher Blank
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- University of California Los Angeles, Department of Psychology CA 90095, USA
| | - Cory Shain
- Ohio State University, Department of Linguistics OH 43210, USA
| | - Richard Futrell
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- University of California Irvine, Department of Linguistics CA 92697, USA
| | - Roger Levy
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- University of California San Diego, Department of Linguistics CA 92161, USA
| | - Titus von der Malsburg
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- University of Stuttgart, Institute of Linguistics, 70049 Stuttgart, Germany
| | - Nathaniel Smith
- University of California San Diego, Department of Linguistics CA 92161, USA
| | - Edward Gibson
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
| | - Evelina Fedorenko
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- Massachusetts Institute of Technology, McGovern Institute for Brain ResearchMA 02139, USA
| |
Collapse
|
20
|
Wehbe L, Blank IA, Shain C, Futrell R, Levy R, von der Malsburg T, Smith N, Gibson E, Fedorenko E. Incremental Language Comprehension Difficulty Predicts Activity in the Language Network but Not the Multiple Demand Network. Cereb Cortex 2021; 31:4006-4023. [PMID: 33895807 PMCID: PMC8328211 DOI: 10.1093/cercor/bhab065] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 01/15/2021] [Accepted: 02/21/2021] [Indexed: 12/28/2022] Open
Abstract
What role do domain-general executive functions play in human language comprehension? To address this question, we examine the relationship between behavioral measures of comprehension and neural activity in the domain-general "multiple demand" (MD) network, which has been linked to constructs like attention, working memory, inhibitory control, and selection, and implicated in diverse goal-directed behaviors. Specifically, functional magnetic resonance imaging data collected during naturalistic story listening are compared with theory-neutral measures of online comprehension difficulty and incremental processing load (reading times and eye-fixation durations). Critically, to ensure that variance in these measures is driven by features of the linguistic stimulus rather than reflecting participant- or trial-level variability, the neuroimaging and behavioral datasets were collected in nonoverlapping samples. We find no behavioral-neural link in functionally localized MD regions; instead, this link is found in the domain-specific, fronto-temporal "core language network," in both left-hemispheric areas and their right hemispheric homotopic areas. These results argue against strong involvement of domain-general executive circuits in language comprehension.
Collapse
Affiliation(s)
- Leila Wehbe
- Carnegie Mellon University, Machine Learning Department PA 15213, USA
| | - Idan Asher Blank
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- University of California Los Angeles, Department of Psychology CA 90095, USA
| | - Cory Shain
- Ohio State University, Department of Linguistics OH 43210, USA
| | - Richard Futrell
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- University of California Irvine, Department of Linguistics CA 92697, USA
| | - Roger Levy
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- University of California San Diego, Department of Linguistics CA 92161, USA
| | - Titus von der Malsburg
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- University of Stuttgart, Institute of Linguistics, 70049 Stuttgart, Germany
| | - Nathaniel Smith
- University of California San Diego, Department of Linguistics CA 92161, USA
| | - Edward Gibson
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
| | - Evelina Fedorenko
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- Massachusetts Institute of Technology, McGovern Institute for Brain ResearchMA 02139, USA
| |
Collapse
|
21
|
Wang Y, Jin C, Yin Z, Wang H, Ji M, Dong M, Liang J. Visual experience modulates whole-brain connectivity dynamics: A resting-state fMRI study using the model of radiologists. Hum Brain Mapp 2021; 42:4538-4554. [PMID: 34156138 PMCID: PMC8410580 DOI: 10.1002/hbm.25563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/18/2021] [Accepted: 06/02/2021] [Indexed: 01/01/2023] Open
Abstract
Visual expertise refers to proficiency in visual recognition. It is attributed to accumulated visual experience in a specific domain and manifests in widespread neural activities that extend well beyond the visual cortex to multiple high‐level brain areas. An extensive body of studies has centered on the neural mechanisms underlying a distinctive domain of visual expertise, while few studies elucidated how visual experience modulates resting‐state whole‐brain connectivity dynamics. The current study bridged this gap by modeling the subtle alterations in interregional spontaneous connectivity patterns with a group of superior radiological interns. Functional connectivity analysis was based on functional brain segmentation, which was derived from a data‐driven clustering approach to discriminate subtle changes in connectivity dynamics. Our results showed there was radiographic visual experience accompanied with integration within brain circuits supporting visual processing and decision making, integration across brain circuits supporting high‐order functions, and segregation between high‐order and low‐order brain functions. Also, most of these alterations were significantly correlated with individual nodule identification performance. Our results implied that visual expertise is a controlled, interactive process that develops from reciprocal interactions between the visual system and multiple top‐down factors, including semantic knowledge, top‐down attentional control, and task relevance, which may enhance participants' local brain functional integration to promote their acquisition of specific visual information and modulate the activity of some regions for lower‐order visual feature processing to filter out nonrelevant visual details. The current findings may provide new ideas for understanding the central mechanism underlying the formation of visual expertise.
Collapse
Affiliation(s)
- Yue Wang
- School of Electronic Engineering, Xidian University, Shaanxi, China
| | - Chenwang Jin
- Department of Medical Imaging, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Shaanxi, China
| | - Zhongliang Yin
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Shaanxi, China
| | - Hongmei Wang
- Department of Medical Imaging, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Shaanxi, China
| | - Ming Ji
- School of Psychology, Shaanxi Normal University, Shaanxi, China
| | - Minghao Dong
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Shaanxi, China
| | - Jimin Liang
- School of Electronic Engineering, Xidian University, Shaanxi, China
| |
Collapse
|
22
|
Assari S, Boyce S, Bazargan M, Thomas A, Cobb RJ, Hudson D, Curry TJ, Nicholson HL, Cuevas AG, Mistry R, Chavous TM, Caldwell CH, Zimmerman MA. Parental Educational Attainment, the Superior Temporal Cortical Surface Area, and Reading Ability among American Children: A Test of Marginalization-Related Diminished Returns. CHILDREN-BASEL 2021; 8:children8050412. [PMID: 34070118 PMCID: PMC8158386 DOI: 10.3390/children8050412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Recent studies have shown that parental educational attainment is associated with a larger superior temporal cortical surface area associated with higher reading ability in children. Simultaneously, the marginalization-related diminished returns (MDRs) framework suggests that, due to structural racism and social stratification, returns of parental education are smaller for black and other racial/ethnic minority children compared to their white counterparts. PURPOSE This study used a large national sample of 9-10-year-old American children to investigate associations between parental educational attainment, the right and left superior temporal cortical surface area, and reading ability across diverse racial/ethnic groups. METHODS This was a cross-sectional analysis that included 10,817 9-10-year-old children from the Adolescent Brain Cognitive Development (ABCD) study. Parental educational attainment was treated as a five-level categorical variable. Children's right and left superior temporal cortical surface area and reading ability were continuous variables. Race/ethnicity was the moderator. To adjust for the nested nature of the ABCD data, mixed-effects regression models were used to test the associations between parental education, superior temporal cortical surface area, and reading ability overall and by race/ethnicity. RESULTS Overall, high parental educational attainment was associated with greater superior temporal cortical surface area and reading ability in children. In the pooled sample, we found statistically significant interactions between race/ethnicity and parental educational attainment on children's right and left superior temporal cortical surface area, suggesting that high parental educational attainment has a smaller boosting effect on children's superior temporal cortical surface area for black than white children. We also found a significant interaction between race and the left superior temporal surface area on reading ability, indicating weaker associations for Alaskan Natives, Native Hawaiians, and Pacific Islanders (AIAN/NHPI) than white children. We also found interactions between race and parental educational attainment on reading ability, indicating more potent effects for black children than white children. CONCLUSION While parental educational attainment may improve children's superior temporal cortical surface area, promoting reading ability, this effect may be unequal across racial/ethnic groups. To minimize the racial/ethnic gap in children's brain development and school achievement, we need to address societal barriers that diminish parental educational attainment's marginal returns for middle-class minority families. Social and public policies need to go beyond equal access and address structural and societal barriers that hinder middle-class families of color and their children. Future research should test how racism, social stratification, segregation, and discrimination, which shape the daily lives of non-white individuals, take a toll on children's brains and academic development.
Collapse
Affiliation(s)
- Shervin Assari
- Minorities’ Diminished Returns (MDRs) Center, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (S.B.); (M.B.)
- Department of Urban Public Health, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Department of Family Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Correspondence:
| | - Shanika Boyce
- Minorities’ Diminished Returns (MDRs) Center, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (S.B.); (M.B.)
- Department of Pediatrics, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Mohsen Bazargan
- Minorities’ Diminished Returns (MDRs) Center, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (S.B.); (M.B.)
- Department of Family Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Department of Family Medicine, University of California-Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Alvin Thomas
- Human Development and Family Studies Department, School of Human Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Ryon J. Cobb
- Department of Sociology, University of Georgia, Athens, GA 30602, USA;
| | - Darrell Hudson
- Brown School, Washington University, St. Louis, MO 63130, USA;
| | - Tommy J. Curry
- Department of Philosophy, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh EH8 9JS, UK;
| | - Harvey L. Nicholson
- Department of Sociology and Criminology & Law, University of Florida, Gainesville, FL 32611-7330, USA;
| | - Adolfo G. Cuevas
- Psychosocial Determinants of Health (PSDH) Lab, Tufts University, Boston, MA 02155, USA;
- Department of Community Health, Tufts University, Boston, MA 02155, USA
| | - Ritesh Mistry
- Department of Health Behavior and Health Education, University of Michigan School of Public Health, Ann Arbor, MI 48109-2029, USA; (R.M.); (C.H.C.); (M.A.Z.)
| | - Tabbye M. Chavous
- School of Education, University of Michigan, Ann Arbor, MI 48109-2029, USA;
- National Center for Institutional Diversity, University of Michigan, Ann Arbor, MI 48109-2029, USA
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109-2029, USA
| | - Cleopatra H. Caldwell
- Department of Health Behavior and Health Education, University of Michigan School of Public Health, Ann Arbor, MI 48109-2029, USA; (R.M.); (C.H.C.); (M.A.Z.)
- Center for Research on Ethnicity, Culture, and Health (CRECH), University of Michigan School of Public Health, Ann Arbor, MI 48109-2029, USA
| | - Marc A. Zimmerman
- Department of Health Behavior and Health Education, University of Michigan School of Public Health, Ann Arbor, MI 48109-2029, USA; (R.M.); (C.H.C.); (M.A.Z.)
- Prevention Research Center, University of Michigan School of Public Health, Ann Arbor, MI 48109-2029, USA
| |
Collapse
|
23
|
Har-shai Yahav P, Zion Golumbic E. Linguistic processing of task-irrelevant speech at a cocktail party. eLife 2021; 10:e65096. [PMID: 33942722 PMCID: PMC8163500 DOI: 10.7554/elife.65096] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/26/2021] [Indexed: 01/05/2023] Open
Abstract
Paying attention to one speaker in a noisy place can be extremely difficult, because to-be-attended and task-irrelevant speech compete for processing resources. We tested whether this competition is restricted to acoustic-phonetic interference or if it extends to competition for linguistic processing as well. Neural activity was recorded using Magnetoencephalography as human participants were instructed to attend to natural speech presented to one ear, and task-irrelevant stimuli were presented to the other. Task-irrelevant stimuli consisted either of random sequences of syllables, or syllables structured to form coherent sentences, using hierarchical frequency-tagging. We find that the phrasal structure of structured task-irrelevant stimuli was represented in the neural response in left inferior frontal and posterior parietal regions, indicating that selective attention does not fully eliminate linguistic processing of task-irrelevant speech. Additionally, neural tracking of to-be-attended speech in left inferior frontal regions was enhanced when competing with structured task-irrelevant stimuli, suggesting inherent competition between them for linguistic processing.
Collapse
Affiliation(s)
- Paz Har-shai Yahav
- The Gonda Center for Multidisciplinary Brain Research, Bar Ilan UniversityRamat GanIsrael
| | - Elana Zion Golumbic
- The Gonda Center for Multidisciplinary Brain Research, Bar Ilan UniversityRamat GanIsrael
| |
Collapse
|
24
|
Graessner A, Zaccarella E, Friederici AD, Obrig H, Hartwigsen G. Dissociable contributions of frontal and temporal brain regions to basic semantic composition. Brain Commun 2021; 3:fcab090. [PMID: 34159319 PMCID: PMC8212833 DOI: 10.1093/braincomms/fcab090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/16/2021] [Accepted: 04/08/2021] [Indexed: 11/26/2022] Open
Abstract
Semantic composition is the ability to combine single words to form complex meanings and is an essential component for successful communication. Evidence from neuroimaging studies suggests that semantic composition engages a widely distributed left-hemispheric network, including the anterior temporal lobe, the inferior frontal gyrus and the angular gyrus. To date, the functional relevance of these regions remains unclear. Here, we investigate the impact of lesions to key regions in the semantic network on basic semantic composition. We conducted a multivariate lesion-behaviour mapping study in 36 native German speaking participants with chronic lesions to the language network after left-hemispheric stroke. During the experiment, participants performed a plausibility judgement task on auditorily presented adjective-noun phrases that were either meaningful (‘anxious horse’), anomalous (‘anxious salad’) or had the noun replaced by a pseudoword (‘anxious gufel’), as well as a single-word control condition (‘horse’). We observed that reduced accuracy for anomalous phrases is associated with lesions in left anterior inferior frontal gyrus, whereas increased reaction times for anomalous phrases correlates with lesions in anterior-to-mid temporal lobe. These results indicate that anterior inferior frontal gyrus is relevant for accurate semantic decisions, while anterior-to-mid temporal lobe lesions lead to slowing of the decision for anomalous two-word phrases. These differential effects of lesion location support the notion that anterior inferior frontal gyrus affords executive control for decisions on semantic composition while anterior-to-mid temporal lobe lesions slow the semantic processing of the individual constituents of the phrase.
Collapse
Affiliation(s)
- Astrid Graessner
- Lise-Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Hellmuth Obrig
- Clinic for Cognitive Neurology, University Leipzig, 04103 Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Gesa Hartwigsen
- Lise-Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| |
Collapse
|
25
|
Álvarez CG, Torres Morales F, Culcay LC, Bascuñán Vidal JA. Cavernomas cerebrales en la infancia y desarrollo atípico de la comunicación y el lenguaje. REVISTA DE INVESTIGACIÓN EN LOGOPEDIA 2021. [DOI: 10.5209/rlog.70738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Los cavernomas cerebrales corresponden a malformaciones vasculares del sistema nervioso central, con baja prevalencia en la población pediátrica. Estas malformaciones pueden aparecer como lesiones únicas o múltiples. La manifestación sintomatológica de los cavernomas se ha asociado, principalmente, a la ubicación topográfica de las lesiones. En este artículo se reportan las habilidades de comunicación y lenguaje de un niño de 3 años 10 meses, diagnosticado con cavernomatosis cerebral múltiple, y se discute la posible relación entre las habilidades evidenciadas y el cuadro neurológico de base. La indagatoria se efectuó mediante la aplicación de los siguientes tres procedimientos: 1. compilación y análisis de antecedentes clínicos en ficha médica, 2. elaboración y análisis de muestra naturalista de comunicación y lenguaje, 3. aplicación y análisis de instrumento Inventario de Desarrollo Comunicativo MacArthur. El análisis cualitativo de los antecedentes recabados permite sugerir una asociación entre las habilidades atípicas de comunicación y lenguaje observadas y el diagnóstico de cavernomatosis cerebral múltiple, en particular, debido a la ubicación topográfica de las lesiones. A nuestro entender, este artículo representa la primera descripción de habilidades atípicas de comunicación y lenguaje, asociadas al diagnóstico de cavernomatosis cerebral múltiple en edad pediátrica.
Collapse
|
26
|
Law R, Pylkkänen L. Lists with and without Syntax: A New Approach to Measuring the Neural Processing of Syntax. J Neurosci 2021; 41:2186-2196. [PMID: 33500276 PMCID: PMC8018759 DOI: 10.1523/jneurosci.1179-20.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/06/2023] Open
Abstract
In the neurobiology of syntax, a methodological challenge is to vary syntax while holding semantics constant. Changes in syntactic structure usually correlate with changes in meaning. We approached this challenge from a new angle. We deployed word lists-typically, the unstructured control in studies of syntax-as both test and control stimuli. Three-noun lists ("lamps, dolls, guitars") were embedded in sentences ("The eccentric man hoarded lamps, dolls, guitars…") and in longer lists ("forks, pen, toilet, rodeo, lamps, dolls, guitars…"). This allowed us to minimize contributions from lexical semantics and local phrasal combinatorics: the same words occurred in both conditions, and in neither case did the list items locally compose into phrases (e.g., "lamps" and "dolls" do not form a phrase). Crucially, the list partakes in a syntactic tree in one case but not the other. Lists-in-sentences increased source-localized MEG activity at ∼250-300 ms from each of the list item onsets in the left inferior frontal cortex, at ∼300-350 ms in the left anterior temporal lobe and, most reliably, at ∼330-400 ms in left posterior temporal cortex. In contrast, the main effects of semantic association strength, which we also varied, localized in the left temporoparietal cortex, with high associations increasing activity at ∼400 ms. This dissociation offers a novel characterization of the structure versus word meaning contrast in the brain: the frontotemporal network that is familiar from studies of sentence processing can be driven by the sheer presence of global sentence structure, while associative semantics has a more posterior neural signature.SIGNIFICANCE STATEMENT Human languages all have a syntax, which both enables the infinitude of linguistic creativity and determines what is grammatical in a language. The neurobiology of syntactic processing has, however, been challenging to characterize despite decades of study. One reason is pure manipulations of syntax are difficult to design. The approach here offers a novel control of two variables that are notoriously hard to keep constant when syntax is manipulated: word meaning and phrasal combinatorics. The same noun lists occurred inside longer lists and sentences, while semantic associations also varied. Our MEG results show that classic frontotemporal language regions can be driven by sentence structure even when local semantic contributions are absent. In contrast, the left temporoparietal junction tracks associative relationships.
Collapse
Affiliation(s)
- Ryan Law
- NYUAD Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Liina Pylkkänen
- NYUAD Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Psychology, New York University, New York, New York 10003
- Department of Linguistics, New York University, New York, New York 10003
| |
Collapse
|
27
|
Slivkoff S, Gallant JL. Design of complex neuroscience experiments using mixed-integer linear programming. Neuron 2021; 109:1433-1448. [PMID: 33689687 DOI: 10.1016/j.neuron.2021.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 11/29/2022]
Abstract
Over the past few decades, neuroscience experiments have become increasingly complex and naturalistic. Experimental design has in turn become more challenging, as experiments must conform to an ever-increasing diversity of design constraints. In this article, we demonstrate how this design process can be greatly assisted using an optimization tool known as mixed-integer linear programming (MILP). MILP provides a rich framework for incorporating many types of real-world design constraints into a neuroscience experiment. We introduce the mathematical foundations of MILP, compare MILP to other experimental design techniques, and provide four case studies of how MILP can be used to solve complex experimental design challenges.
Collapse
Affiliation(s)
- Storm Slivkoff
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jack L Gallant
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
28
|
Graessner A, Zaccarella E, Hartwigsen G. Differential contributions of left-hemispheric language regions to basic semantic composition. Brain Struct Funct 2021; 226:501-518. [PMID: 33515279 PMCID: PMC7910266 DOI: 10.1007/s00429-020-02196-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
Semantic composition, the ability to combine single words to form complex meanings, is a core feature of human language. Despite growing interest in the basis of semantic composition, the neural correlates and the interaction of regions within this network remain a matter of debate. We designed a well-controlled two-word fMRI paradigm in which phrases only differed along the semantic dimension while keeping syntactic information alike. Healthy participants listened to meaningful ("fresh apple"), anomalous ("awake apple") and pseudoword phrases ("awake gufel") while performing an implicit and an explicit semantic task. We identified neural signatures for distinct processes during basic semantic composition. When lexical information is kept constant across conditions and the evaluation of phrasal plausibility is examined (meaningful vs. anomalous phrases), a small set of mostly left-hemispheric semantic regions, including the anterior part of the left angular gyrus, is found active. Conversely, when the load of lexical information-independently of phrasal plausibility-is varied (meaningful or anomalous vs. pseudoword phrases), conceptual combination involves a wide-spread left-hemispheric network comprising executive semantic control regions and general conceptual representation regions. Within this network, the functional coupling between the left anterior inferior frontal gyrus, the bilateral pre-supplementary motor area and the posterior angular gyrus specifically increases for meaningful phrases relative to pseudoword phrases. Stronger effects in the explicit task further suggest task-dependent neural recruitment. Overall, we provide a separation between distinct nodes of the semantic network, whose functional contributions depend on the type of compositional process under analysis.
Collapse
Affiliation(s)
- Astrid Graessner
- Lise-Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103, Leipzig, Germany.
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103, Leipzig, Germany
| | - Gesa Hartwigsen
- Lise-Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103, Leipzig, Germany
| |
Collapse
|
29
|
Lukic S, Thompson CK, Barbieri E, Chiappetta B, Bonakdarpour B, Kiran S, Rapp B, Parrish TB, Caplan D. Common and distinct neural substrates of sentence production and comprehension. Neuroimage 2021; 224:117374. [PMID: 32949711 PMCID: PMC10134242 DOI: 10.1016/j.neuroimage.2020.117374] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 01/08/2023] Open
Abstract
Functional neuroimaging and lesion-symptom mapping investigations implicate a left frontal-temporal-parietal network for sentence processing. The majority of studies have focused on sentence comprehension, with fewer in the domain of sentence production, which have not fully elucidated overlapping and/or unique brain structures associated with the two domains, particularly for sentences with noncanonical word order. Using voxel-based lesion symptom mapping (VLSM) we examined the relationship between lesions within the left hemisphere language network and both sentence comprehension and production of simple and complex syntactic structures in 76 participants with chronic stroke-induced aphasia. Results revealed shared regions across domains in the anterior and posterior superior temporal gyri (aSTG, pSTG), and the temporal pole (adjusted for verb production/comprehension). Additionally, comprehension was associated with lesions in the anterior and posterior middle temporal gyri (aMTG, pMTG), the MTG temporooccipital regions, SMG/AG, central and parietal operculum, and the insula. Subsequent VLSM analyses (production versus comprehension) revealed critical regions associated with each domain: anterior temporal lesions were associated with production; posterior temporo-parietal lesions were associated with comprehension, implicating important roles for regions within the ventral and dorsal stream processing routes, respectively. Processing of syntactically complex, noncanonical (adjusted for canonical), sentences was associated with damage to the pSTG across domains, with additional damage to the pMTG and IPL associated with impaired sentence comprehension, suggesting that the pSTG is crucial for computing noncanonical sentences across domains and that the pMTG, and IPL are necessary for re-analysis of thematic roles as required for resolution of long-distance dependencies. These findings converge with previous studies and extend our knowledge of the neural mechanisms of sentence comprehension to production, highlighting critical regions associated with both domains, and further address the mechanism engaged for syntactic computation, controlled for the contribution of verb processing.
Collapse
|
30
|
Words have a weight: language as a source of inner grounding and flexibility in abstract concepts. PSYCHOLOGICAL RESEARCH 2020; 86:2451-2467. [DOI: 10.1007/s00426-020-01438-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Iwabuchi T, Makuuchi M. When a sentence loses semantics: Selective involvement of a left anterior temporal subregion in semantic processing. Eur J Neurosci 2020; 53:929-942. [PMID: 33103315 DOI: 10.1111/ejn.15022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 11/28/2022]
Abstract
Although the left anterior temporal lobe (ATL) has been associated with semantic processing, the role of this region in syntactic structure building of sentences remains a subject of debate. Functional neuroimaging studies contrasting well-formed sentences with word lists lacking syntactic structure have produced mixed results. The current functional magnetic resonance imaging study examined whether the left ATL is selectively involved in semantic processing or also plays a role in syntactic structure building by manipulating syntactic complexity and meaningfulness in a novel way. To deprive semantic/pragmatic information from a sentence, we replaced all content words with pronounceable meaningless placeholders. We conducted an experiment with a 2 × 2 factorial design with factors of SEMANTICS (natural sentences [NAT]; sentences with placeholders [SPH]) and SYNTAX (the basic Japanese Subject-Object-Verb [SOV] word order; a changed Object-Subject-Verb [OSV] word order). A main effect of SEMANTICS (NAT > SPH) was found in the left ATL, as well as in the ventral occipitotemporal regions. The opposite contrast (SPH > NAT) revealed activation in the dorsal regions encompassing Brodmann area 44, the premotor area, and the parietal cortex in the left hemisphere. We found no main effect of SYNTAX (OSV > SOV) in a subregion of the left ATL that was more responsive to natural sentences than meaningless sentences. These results indicate selective involvement of a subregion of the left ATL in semantic/pragmatic processing.
Collapse
Affiliation(s)
- Toshiki Iwabuchi
- Section of Neuropsychology, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Michiru Makuuchi
- Section of Neuropsychology, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| |
Collapse
|
32
|
Shpurov IY, Vlasova RM, Rumshiskaya AD, Rozovskaya RI, Mershina EA, Sinitsyn VE, Pechenkova EV. Neural Correlates of Group Versus Individual Problem Solving Revealed by fMRI. Front Hum Neurosci 2020; 14:290. [PMID: 33005135 PMCID: PMC7483667 DOI: 10.3389/fnhum.2020.00290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/29/2020] [Indexed: 11/13/2022] Open
Abstract
Group problem solving is a prototypical complex collective intellectual activity. Psychological research provides compelling evidence that problem solving in groups is both qualitatively and quantitatively different from doing so alone. However, the question of whether individual and collective problem solving involve the same neural substrate has not yet been addressed, mainly due to methodological limitations. In the current study, functional magnetic resonance imaging was performed to compare brain activation when participants solved Raven-like matrix problems in a small group and individually. In the group condition, the participant in the scanner was able to discuss the problem with other team members using a special communication device. In the individual condition, the participant was required to think aloud while solving the problem in the silent presence of the other team members. Greater activation was found in several brain regions during group problem solving, including the medial prefrontal cortex; lateral parietal, cingulate, precuneus and retrosplenial cortices; frontal and temporal poles. These areas have been identified as potential components of the so-called "social brain" on the basis of research using offline judgments of material related to socializing. Therefore, this study demonstrated the actual involvement of these regions in real-time social interactions, such as group problem solving. However, further connectivity analysis revealed that the social brain components are co-activated, but do not increase their coupling during cooperation as would be suggested for a holistic network. We suggest that the social mode of the brain may be described instead as a re-configuration of connectivity between basic networks, and we found decreased connectivity between the language and salience networks in the group compared to the individual condition. A control experiment showed that the findings from the main experiment cannot be entirely accounted for by discourse comprehension. Thus, the study demonstrates affordances provided by the presented new technique for neuroimaging the "group mind," implementing the single-brain version of the second-person neuroscience approach.
Collapse
Affiliation(s)
- Ilya Yu Shpurov
- Research Institute of Neuropsychology of Speech and Writing, Moscow, Russia
| | - Roza M Vlasova
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alena D Rumshiskaya
- Davydovsky City Clinical Hospital, Moscow, Russia.,Radiology Department, Federal Center of Treatment and Rehabilitation, Moscow, Russia
| | - Renata I Rozovskaya
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Elena A Mershina
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Valentin E Sinitsyn
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina V Pechenkova
- Research Institute of Neuropsychology of Speech and Writing, Moscow, Russia.,Laboratory for Cognitive Research, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
33
|
Blank IA, Fedorenko E. No evidence for differences among language regions in their temporal receptive windows. Neuroimage 2020; 219:116925. [PMID: 32407994 PMCID: PMC9392830 DOI: 10.1016/j.neuroimage.2020.116925] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 03/20/2020] [Accepted: 05/06/2020] [Indexed: 10/24/2022] Open
Abstract
The "core language network" consists of left frontal and temporal regions that are selectively engaged in linguistic processing. Whereas functional differences among these regions have long been debated, many accounts propose distinctions in terms of representational grain-size-e.g., words vs. phrases/sentences-or processing time-scale, i.e., operating on local linguistic features vs. larger spans of input. Indeed, the topography of language regions appears to overlap with a cortical hierarchy reported by Lerner et al. (2011) wherein mid-posterior temporal regions are sensitive to low-level features of speech, surrounding areas-to word-level information, and inferior frontal areas-to sentence-level information and beyond. However, the correspondence between the language network and this hierarchy of "temporal receptive windows" (TRWs) is difficult to establish because the precise anatomical locations of language regions vary across individuals. To directly test this correspondence, we first identified language regions in each participant with a well-validated task-based localizer, which confers high functional resolution to the study of TRWs (traditionally based on stereotactic coordinates); then, we characterized regional TRWs with the naturalistic story listening paradigm of Lerner et al. (2011), which augments task-based characterizations of the language network by more closely resembling comprehension "in the wild". We find no region-by-TRW interactions across temporal and inferior frontal regions, which are all sensitive to both word-level and sentence-level information. Therefore, the language network as a whole constitutes a unique stage of information integration within a broader cortical hierarchy.
Collapse
Affiliation(s)
- Idan A Blank
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
34
|
Hoffman P, Tamm A. Barking up the right tree: Univariate and multivariate fMRI analyses of homonym comprehension. Neuroimage 2020; 219:117050. [PMID: 32534964 PMCID: PMC7443701 DOI: 10.1016/j.neuroimage.2020.117050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 11/21/2022] Open
Abstract
Homonyms are a critical test case for investigating how the brain resolves ambiguity in language and, more generally, how context influences semantic processing. Previous neuroimaging studies have associated processing of homonyms with greater engagement of regions involved in executive control of semantic processing. However, the precise role of these areas and the involvement of semantic representational regions in homonym comprehension remain elusive. We addressed this by combining univariate and multivariate fMRI analyses of homonym processing. We tested whether multi-voxel activation patterns could discriminate between presentations of the same homonym in different contexts (e.g., bark following tree vs. bark following dog). The ventral anterior temporal lobe, implicated in semantic representation but not previously in homonym comprehension, showed this meaning-specific coding, despite not showing increased mean activation for homonyms. Within inferior frontal gyrus (IFG), a key site for semantic control, there was a dissociation between pars orbitalis, which also showed meaning-specific coding, and pars triangularis, which discriminated more generally between semantically related and unrelated word pairs. IFG effects were goal-dependent, only occurring when the task required semantic decisions, in line with a top-down control function. Finally, posterior middle temporal cortex showed a hybrid pattern of responses, supporting the idea that it acts as an interface between semantic representations and the control system. The study provides new evidence for context-dependent coding in the semantic system and clarifies the role of control regions in processing ambiguity. It also highlights the importance of combining univariate and multivariate neuroimaging data to fully elucidate the role of a brain region in semantic cognition.
Collapse
Affiliation(s)
- Paul Hoffman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, UK.
| | - Andres Tamm
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, UK
| |
Collapse
|
35
|
Fedorenko E, Blank IA, Siegelman M, Mineroff Z. Lack of selectivity for syntax relative to word meanings throughout the language network. Cognition 2020; 203:104348. [PMID: 32569894 DOI: 10.1101/477851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 05/14/2020] [Accepted: 05/31/2020] [Indexed: 05/25/2023]
Abstract
To understand what you are reading now, your mind retrieves the meanings of words and constructions from a linguistic knowledge store (lexico-semantic processing) and identifies the relationships among them to construct a complex meaning (syntactic or combinatorial processing). Do these two sets of processes rely on distinct, specialized mechanisms or, rather, share a common pool of resources? Linguistic theorizing, empirical evidence from language acquisition and processing, and computational modeling have jointly painted a picture whereby lexico-semantic and syntactic processing are deeply inter-connected and perhaps not separable. In contrast, many current proposals of the neural architecture of language continue to endorse a view whereby certain brain regions selectively support syntactic/combinatorial processing, although the locus of such "syntactic hub", and its nature, vary across proposals. Here, we searched for selectivity for syntactic over lexico-semantic processing using a powerful individual-subjects fMRI approach across three sentence comprehension paradigms that have been used in prior work to argue for such selectivity: responses to lexico-semantic vs. morpho-syntactic violations (Experiment 1); recovery from neural suppression across pairs of sentences differing in only lexical items vs. only syntactic structure (Experiment 2); and same/different meaning judgments on such sentence pairs (Experiment 3). Across experiments, both lexico-semantic and syntactic conditions elicited robust responses throughout the left fronto-temporal language network. Critically, however, no regions were more strongly engaged by syntactic than lexico-semantic processing, although some regions showed the opposite pattern. Thus, contra many current proposals of the neural architecture of language, syntactic/combinatorial processing is not separable from lexico-semantic processing at the level of brain regions-or even voxel subsets-within the language network, in line with strong integration between these two processes that has been consistently observed in behavioral and computational language research. The results further suggest that the language network may be generally more strongly concerned with meaning than syntactic form, in line with the primary function of language-to share meanings across minds.
Collapse
Affiliation(s)
- Evelina Fedorenko
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA.
| | - Idan Asher Blank
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Department of Psychology, UCLA, Los Angeles, CA 90095, USA
| | - Matthew Siegelman
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Department of Psychology, Columbia University, New York, NY 10027, USA
| | - Zachary Mineroff
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Eberly Center for Teaching Excellence & Educational Innovation, CMU, Pittsburgh, PA 15213, USA
| |
Collapse
|
36
|
Fedorenko E, Blank IA, Siegelman M, Mineroff Z. Lack of selectivity for syntax relative to word meanings throughout the language network. Cognition 2020; 203:104348. [PMID: 32569894 PMCID: PMC7483589 DOI: 10.1016/j.cognition.2020.104348] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 05/14/2020] [Accepted: 05/31/2020] [Indexed: 12/31/2022]
Abstract
To understand what you are reading now, your mind retrieves the meanings of words and constructions from a linguistic knowledge store (lexico-semantic processing) and identifies the relationships among them to construct a complex meaning (syntactic or combinatorial processing). Do these two sets of processes rely on distinct, specialized mechanisms or, rather, share a common pool of resources? Linguistic theorizing, empirical evidence from language acquisition and processing, and computational modeling have jointly painted a picture whereby lexico-semantic and syntactic processing are deeply inter-connected and perhaps not separable. In contrast, many current proposals of the neural architecture of language continue to endorse a view whereby certain brain regions selectively support syntactic/combinatorial processing, although the locus of such "syntactic hub", and its nature, vary across proposals. Here, we searched for selectivity for syntactic over lexico-semantic processing using a powerful individual-subjects fMRI approach across three sentence comprehension paradigms that have been used in prior work to argue for such selectivity: responses to lexico-semantic vs. morpho-syntactic violations (Experiment 1); recovery from neural suppression across pairs of sentences differing in only lexical items vs. only syntactic structure (Experiment 2); and same/different meaning judgments on such sentence pairs (Experiment 3). Across experiments, both lexico-semantic and syntactic conditions elicited robust responses throughout the left fronto-temporal language network. Critically, however, no regions were more strongly engaged by syntactic than lexico-semantic processing, although some regions showed the opposite pattern. Thus, contra many current proposals of the neural architecture of language, syntactic/combinatorial processing is not separable from lexico-semantic processing at the level of brain regions-or even voxel subsets-within the language network, in line with strong integration between these two processes that has been consistently observed in behavioral and computational language research. The results further suggest that the language network may be generally more strongly concerned with meaning than syntactic form, in line with the primary function of language-to share meanings across minds.
Collapse
Affiliation(s)
- Evelina Fedorenko
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA.
| | - Idan Asher Blank
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Department of Psychology, UCLA, Los Angeles, CA 90095, USA
| | - Matthew Siegelman
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Department of Psychology, Columbia University, New York, NY 10027, USA
| | - Zachary Mineroff
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Eberly Center for Teaching Excellence & Educational Innovation, CMU, Pittsburgh, PA 15213, USA
| |
Collapse
|
37
|
Sheng J, Zheng L, Lyu B, Cen Z, Qin L, Tan LH, Huang MX, Ding N, Gao JH. The Cortical Maps of Hierarchical Linguistic Structures during Speech Perception. Cereb Cortex 2020; 29:3232-3240. [PMID: 30137249 DOI: 10.1093/cercor/bhy191] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/27/2018] [Accepted: 07/20/2018] [Indexed: 11/14/2022] Open
Abstract
The hierarchical nature of language requires human brain to internally parse connected-speech and incrementally construct abstract linguistic structures. Recent research revealed multiple neural processing timescales underlying grammar-based configuration of linguistic hierarchies. However, little is known about where in the whole cerebral cortex such temporally scaled neural processes occur. This study used novel magnetoencephalography source imaging techniques combined with a unique language stimulation paradigm to segregate cortical maps synchronized to 3 levels of linguistic units (i.e., words, phrases, and sentences). Notably, distinct ensembles of cortical loci were identified to feature structures at different levels. The superior temporal gyrus was found to be involved in processing all 3 linguistic levels while distinct ensembles of other brain regions were recruited to encode each linguistic level. Neural activities in the right motor cortex only followed the rhythm of monosyllabic words which have clear acoustic boundaries, whereas the left anterior temporal lobe and the left inferior frontal gyrus were selectively recruited in processing phrases or sentences. Our results ground a multi-timescale hierarchical neural processing of speech in neuroanatomical reality with specific sets of cortices responsible for different levels of linguistic units.
Collapse
Affiliation(s)
- Jingwei Sheng
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Li Zheng
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,McGovern Institute for Brain Research, Peking University, Beijing, China.,Department of Biomedical Engineering, Peking University, Beijing, China
| | - Bingjiang Lyu
- Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Zhehang Cen
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Lang Qin
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Department of Linguistics, The University of Hong Kong, Hong Kong, China
| | - Li Hai Tan
- Center for Brain Disorders and Cognitive Science, Shenzhen University, Shenzhen, Guangdong, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, Guangdong, China
| | - Ming-Xiong Huang
- Department of Radiology, University of California, San Diego, CA, USA.,Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA
| | - Nai Ding
- College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,McGovern Institute for Brain Research, Peking University, Beijing, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, Guangdong, China.,Shenzhen Key Laboratory of Affective and Social Cognitive Science, Institute of Affective and Social Neuroscience, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
38
|
Weber S, Hausmann M, Kane P, Weis S. The relationship between language ability and brain activity across language processes and modalities. Neuropsychologia 2020; 146:107536. [PMID: 32590019 DOI: 10.1016/j.neuropsychologia.2020.107536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/03/2020] [Accepted: 06/12/2020] [Indexed: 01/22/2023]
Abstract
Existing neuroimaging studies on the relationship between language ability and brain activity have found contradictory evidence: On the one hand, increased activity with higher language ability has been interpreted as deeper or more adaptive language processing. On the other hand, decreased activity with higher language ability has been interpreted as more efficient language processing. In contrast to previous studies, the current study investigated the relationship between language ability and neural activity across different language processes and modalities while keeping non-linguistic cognitive task demands to a minimum. fMRI data were collected from 22 healthy adults performing a sentence listening task, a sentence reading task and a phonological production task. Outside the MRI scanner, language ability was assessed with the verbal scale of the Wechsler Abbreviated Scale of Intelligence (WASI-II) and a verbal fluency task. As expected, sentence comprehension activated the left anterior temporal lobe while phonological processing activated the left inferior frontal gyrus. Higher language ability was associated with increased activity in the left temporal lobe during auditory sentence processing and with increased activity in the left frontal lobe during phonological processing, reflected in both, higher intensity and greater extent of activations. Evidence for decreased activity with higher language ability was less consistent and restricted to verbal fluency. Together, the results predominantly support the hypothesis of deeper language processing in individuals with higher language ability. The consistency of results across language processes, modalities, and brain regions suggests a general positive link between language abilities and brain activity within the core language network. However, a negative relationship seems to exist for non-linguistic cognitive functions located outside the language network.
Collapse
Affiliation(s)
- Sarah Weber
- Department of Psychology, Durham University, UK; Department of Biological and Medical Psychology, University of Bergen, Norway.
| | | | | | - Susanne Weis
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
39
|
Isolating syntax in natural language: MEG evidence for an early contribution of left posterior temporal cortex. Cortex 2020; 127:42-57. [DOI: 10.1016/j.cortex.2020.01.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/29/2019] [Accepted: 01/31/2020] [Indexed: 01/09/2023]
|
40
|
Brennan JR, Dyer C, Kuncoro A, Hale JT. Localizing syntactic predictions using recurrent neural network grammars. Neuropsychologia 2020; 146:107479. [PMID: 32428530 DOI: 10.1016/j.neuropsychologia.2020.107479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/03/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
Brain activity in numerous perisylvian brain regions is modulated by the expectedness of linguistic stimuli. We leverage recent advances in computational parsing models to test what representations guide the processes reflected by this activity. Recurrent Neural Network Grammars (RNNGs) are generative models of (tree, string) pairs that use neural networks to drive derivational choices. Parsing with them yields a variety of incremental complexity metrics that we evaluate against a publicly available fMRI data-set recorded while participants simply listen to an audiobook story. Surprisal, which captures a word's un-expectedness, correlates with a wide range of temporal and frontal regions when it is calculated based on word-sequence information using a top-performing LSTM neural network language model. The explicit encoding of hierarchy afforded by the RNNG additionally captures activity in left posterior temporal areas. A separate metric tracking the number of derivational steps taken between words correlates with activity in the left temporal lobe and inferior frontal gyrus. This pattern of results narrows down the kinds of linguistic representations at play during predictive processing across the brain's language network.
Collapse
|
41
|
Branzi FM, Humphreys GF, Hoffman P, Lambon Ralph MA. Revealing the neural networks that extract conceptual gestalts from continuously evolving or changing semantic contexts. Neuroimage 2020; 220:116802. [PMID: 32283276 PMCID: PMC7573538 DOI: 10.1016/j.neuroimage.2020.116802] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/16/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
Reading a book, understanding the news reports or any other behaviour involving the processing of meaningful stimuli requires the semantic system to have two main features: being active during an extended period of time and flexibly adapting the internal representation according to the changing environment. Despite being key features of many everyday tasks, formation and updating of the semantic “gestalt” are still poorly understood. In this fMRI study we used naturalistic stimuli and task manipulations to identify the neural network that forms and updates conceptual gestalts during time-extended integration of meaningful stimuli. Univariate and multivariate techniques allowed us to draw a distinction between networks that are crucial for the formation of a semantic gestalt (meaning integration) and those that instead are important for linking incoming cues about the current context (e.g., time and space cues) into a schema representation. Specifically, we revealed that time-extended formation of the conceptual gestalt was reflected in the neuro-computations of the anterior temporal lobe accompanied by multi-demand areas and hippocampus, with a key role of brain structures in the right hemisphere. This “semantic gestalt network” was strongly recruited when an update of the current semantic representation was required during narrative processing. A distinct fronto-parietal network, instead, was recruited for context integration, independently from the meaning associations between words (semantic coherence). Finally, in contrast with accounts positing that the default mode network (DMN) may have a crucial role in semantic cognition, our findings revealed that DMN activity was sensitive to task difficulty, but not to semantic integration. The implications of these findings for neurocognitive models of semantic cognition and the literature on narrative processing are discussed. fMRI revealed areas and networks for semantic integration during narrative reading. ATL has a key role in the formation of the conceptual gestalt. IFG, pMTG and dAG support the update of the conceptual gestalt. Left AG (mid-PGp) has a key role in context integration.
Collapse
Affiliation(s)
- Francesca M Branzi
- MRC Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| | - Gina F Humphreys
- MRC Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Paul Hoffman
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Matthew A Lambon Ralph
- MRC Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| |
Collapse
|
42
|
Frankland SM, Greene JD. Two Ways to Build a Thought: Distinct Forms of Compositional Semantic Representation across Brain Regions. Cereb Cortex 2020; 30:3838-3855. [PMID: 32279078 DOI: 10.1093/cercor/bhaa001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 11/30/2019] [Accepted: 01/02/2020] [Indexed: 12/23/2022] Open
Abstract
To understand a simple sentence such as "the woman chased the dog", the human mind must dynamically organize the relevant concepts to represent who did what to whom. This structured recombination of concepts (woman, dog, chased) enables the representation of novel events, and is thus a central feature of intelligence. Here, we use functional magnetic resonance (fMRI) and encoding models to delineate the contributions of three brain regions to the representation of relational combinations. We identify a region of anterior-medial prefrontal cortex (amPFC) that shares representations of noun-verb conjunctions across sentences: for example, a combination of "woman" and "chased" to encode woman-as-chaser, distinct from woman-as-chasee. This PFC region differs from the left-mid superior temporal cortex (lmSTC) and hippocampus, two regions previously implicated in representing relations. lmSTC represents broad role combinations that are shared across verbs (e.g., woman-as-agent), rather than narrow roles, limited to specific actions (woman-as-chaser). By contrast, a hippocampal sub-region represents events sharing narrow conjunctions as dissimilar. The success of the hippocampal conjunctive encoding model is anti-correlated with generalization performance in amPFC on a trial-by-trial basis, consistent with a pattern separation mechanism. Thus, these three regions appear to play distinct, but complementary, roles in encoding compositional event structure.
Collapse
Affiliation(s)
- Steven M Frankland
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540
| | - Joshua D Greene
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138
| |
Collapse
|
43
|
Abstract
Syntax, the structure of sentences, enables humans to express an infinite range of meanings through finite means. The neurobiology of syntax has been intensely studied but with little consensus. Two main candidate regions have been identified: the posterior inferior frontal gyrus (pIFG) and the posterior middle temporal gyrus (pMTG). Integrating research in linguistics, psycholinguistics, and neuroscience, we propose a neuroanatomical framework for syntax that attributes distinct syntactic computations to these regions in a unified model. The key theoretical advances are adopting a modern lexicalized view of syntax in which the lexicon and syntactic rules are intertwined, and recognizing a computational asymmetry in the role of syntax during comprehension and production. Our model postulates a hierarchical lexical-syntactic function to the pMTG, which interconnects previously identified speech perception and conceptual-semantic systems in the temporal and inferior parietal lobes, crucial for both sentence production and comprehension. These relational hierarchies are transformed via the pIFG into morpho-syntactic sequences, primarily tied to production. We show how this architecture provides a better account of the full range of data and is consistent with recent proposals regarding the organization of phonological processes in the brain.
Collapse
Affiliation(s)
- William Matchin
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, 29208, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Language Science, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
44
|
Lin N, Xu Y, Yang H, Zhang G, Zhang M, Wang S, Hua H, Li X. Dissociating the neural correlates of the sociality and plausibility effects in simple conceptual combination. Brain Struct Funct 2020; 225:995-1008. [PMID: 32140848 DOI: 10.1007/s00429-020-02052-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 02/19/2020] [Indexed: 10/24/2022]
Abstract
Neuroimaging studies have indicated that a brain network distributed in the supramodal cortical regions of the frontal, temporal, and parietal lobes plays a central role in conceptual processing. The activation of this network is modulated by two orthogonal dimensions in conceptual processing-the semantic features of individual concepts and the meaningfulness of conceptual combinations-but it remains unclear how the network is functionally organized along these two dimensions. In this fMRI study, we focused on two specific factors, i.e. the social semantic richness of words and the semantic plausibility of word combinations, along the two dimensions. In literature, the distributions of the effects of the two factors are very similar, but have not been rigorously compared in one study. We orthogonally manipulated the two factors in a phrase comprehension task and found a clear dissociation between their effects. The combination of these results with our previous findings reveals three adjacently distributed subnetworks of the supramodal semantic network, associated with the sociality effect, imageability effect, and semantic plausibility effect, respectively. Further analysis of the resting-state functional connectivity data indicated that the functional dissociation among the three subnetworks is associated with their underlying intrinsic connectivity structures.
Collapse
Affiliation(s)
- Nan Lin
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China. .,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yangwen Xu
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38123, Trento, Italy.,International School for Advanced Studies (SISSA), 34136, Trieste, Italy
| | - Huichao Yang
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Guangyao Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meimei Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Shaonan Wang
- National Laboratory of Pattern Recognition, CASIA, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huimin Hua
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingshan Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
45
|
Shain C, Blank IA, van Schijndel M, Schuler W, Fedorenko E. fMRI reveals language-specific predictive coding during naturalistic sentence comprehension. Neuropsychologia 2020; 138:107307. [PMID: 31874149 PMCID: PMC7140726 DOI: 10.1016/j.neuropsychologia.2019.107307] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 12/02/2019] [Accepted: 12/13/2019] [Indexed: 11/19/2022]
Abstract
Much research in cognitive neuroscience supports prediction as a canonical computation of cognition across domains. Is such predictive coding implemented by feedback from higher-order domain-general circuits, or is it locally implemented in domain-specific circuits? What information sources are used to generate these predictions? This study addresses these two questions in the context of language processing. We present fMRI evidence from a naturalistic comprehension paradigm (1) that predictive coding in the brain's response to language is domain-specific, and (2) that these predictions are sensitive both to local word co-occurrence patterns and to hierarchical structure. Using a recently developed continuous-time deconvolutional regression technique that supports data-driven hemodynamic response function discovery from continuous BOLD signal fluctuations in response to naturalistic stimuli, we found effects of prediction measures in the language network but not in the domain-general multiple-demand network, which supports executive control processes and has been previously implicated in language comprehension. Moreover, within the language network, surface-level and structural prediction effects were separable. The predictability effects in the language network were substantial, with the model capturing over 37% of explainable variance on held-out data. These findings indicate that human sentence processing mechanisms generate predictions about upcoming words using cognitive processes that are sensitive to hierarchical structure and specialized for language processing, rather than via feedback from high-level executive control mechanisms.
Collapse
Affiliation(s)
| | - Idan Asher Blank
- University of California Los Angeles, 90024, USA; Massachusetts Institute of Technology, 02139, USA.
| | | | - William Schuler
- The Ohio State University, 43210, USA; Massachusetts General Hospital, Program in Speech and Hearing Bioscience and Technology, 02115, USA.
| | - Evelina Fedorenko
- Massachusetts General Hospital, Program in Speech and Hearing Bioscience and Technology, 02115, USA.
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW To better understand the shared basis of language and mental health, this review examines the behavioral and neurobiological features of aberrant language in five major neuropsychiatric conditions. Special attention is paid to genes implicated in both language and neuropsychiatric disorders, as they reveal biological domains likely to underpin the processes controlling both. RECENT FINDINGS Abnormal language and communication are common manifestations of neuropsychiatric conditions, and children with impaired language are more likely to develop psychiatric disorders than their peers. Major themes in the genetics of both language and psychiatry include master transcriptional regulators, like FOXP2; key developmental regulators, like AUTS2; and mediators of neurotransmission, like GRIN2A and CACNA1C.
Collapse
|
47
|
Guediche S, Zhu Y, Minicucci D, Blumstein SE. Written sentence context effects on acoustic-phonetic perception: fMRI reveals cross-modal semantic-perceptual interactions. BRAIN AND LANGUAGE 2019; 199:104698. [PMID: 31586792 DOI: 10.1016/j.bandl.2019.104698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/15/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
This study examines cross-modality effects of a semantically-biased written sentence context on the perception of an acoustically-ambiguous word target identifying neural areas sensitive to interactions between sentential bias and phonetic ambiguity. Of interest is whether the locus or nature of the interactions resembles those previously demonstrated for auditory-only effects. FMRI results show significant interaction effects in right mid-middle temporal gyrus (RmMTG) and bilateral anterior superior temporal gyri (aSTG), regions along the ventral language comprehension stream that map sound onto meaning. These regions are more anterior than those previously identified for auditory-only effects; however, the same cross-over interaction pattern emerged implying similar underlying computations at play. The findings suggest that the mechanisms that integrate information across modality and across sentence and phonetic levels of processing recruit amodal areas where reading and spoken lexical and semantic access converge. Taken together, results support interactive accounts of speech and language processing.
Collapse
Affiliation(s)
- Sara Guediche
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, United States; BCBL - Basque Center on Cognition, Brain and Language, Donostia-San Sebastian, Spain.
| | - Yuli Zhu
- Neuroscience Department, Brown University, United States
| | - Domenic Minicucci
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, United States
| | - Sheila E Blumstein
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, United States; Brown Institute for Brain Science, Brown University, United States
| |
Collapse
|
48
|
Abstract
What role does language play in our thoughts? A longstanding proposal that has gained traction among supporters of embodied or grounded cognition suggests that it serves as a cognitive scaffold. This idea turns on the fact that language-with its ability to capture statistical regularities, leverage culturally acquired information, and engage grounded metaphors-is an effective and readily available support for our thinking. In this essay, I argue that language should be viewed as more than this; it should be viewed as a neuroenhancement. The neurologically realized language system is an important subcomponent of a flexible, multimodal, and multilevel conceptual system. It is not merely a source for information about the world but also a computational add-on that extends our conceptual reach. This approach provides a compelling explanation of the course of development, our facility with abstract concepts, and even the scope of language-specific influences on cognition.
Collapse
Affiliation(s)
- Guy Dove
- Department of Philosophy, University of Louisville, Louisville, KY, USA
| |
Collapse
|
49
|
Yang T, Kim SP. Group-Level Neural Responses to Service-to-Service Brand Extension. Front Neurosci 2019; 13:676. [PMID: 31316343 PMCID: PMC6610219 DOI: 10.3389/fnins.2019.00676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/13/2019] [Indexed: 11/26/2022] Open
Abstract
Brand extension is a marketing strategy leveraging well-established brand to promote new offerings provided as goods or service. The previous neurophysiological studies on goods-to-goods brand extension have proposed that categorization and semantic memory processes are involved in brand extension evaluation. However, it is unknown whether these same processes also underlie service-to-service brand extension. The present study, therefore, aims to investigate neural processes in consumers underlying their judgment of service-to-service brand extension. Specifically, we investigated human electroencephalographic responses to extended services that were commonly considered to fit well or badly with parent brand among consumers. For this purpose, we proposed a new stimulus grouping method to find commonly acceptable or unacceptable service extensions. In the experiment, participants reported the acceptability of 56 brand extension pairs, consisting of parent brand name (S1) and extended service name (S2). From individual acceptability responses, we assigned each pair to one of the three fit levels: high- (i.e., highly acceptable), low-, and mid-fit. Next, we selected stimuli that received high/low-fit evaluations from a majority of participants (i.e., >85%) and assigned them to a high/low population-fit group. A comparison of event-related potentials (ERPs) between population-fit groups through a paired t-test showed significant differences in the fronto-central N2 and fronto-parietal P300 amplitudes. We further evaluated inter-subject variability of these ERP components by a decoding analysis that classified N2 and/or P300 amplitudes into a high, or low population-fit class using a support vector machine. Leave-one-subject-out validation revealed classification accuracy of 60.35% with N2 amplitudes, 78.95% with P300, and 73.68% with both, indicating a relatively high inter-subject variability of N2 but low for P300. This validation showed that fronto-parietal P300 reflected neural processes more consistent across subjects in service-to-service brand extension. We further observed that the left frontal P300 amplitude was increased as fit-level increased across stimuli, indicating a semantic retrieval process to evaluate a semantic link between S1 and S2. Parietal P300 showed a higher amplitude in the high population-fit group, reflecting a similarity-based categorization process. In sum, our results suggest that service-to-service brand extension evaluation may share similar neural processes with goods-to-goods brand extension.
Collapse
Affiliation(s)
- Taeyang Yang
- Brain-Computer Interface Laboratory, Department of Human Factors Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Sung-Phil Kim
- Brain-Computer Interface Laboratory, Department of Human Factors Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| |
Collapse
|
50
|
Bernal B, Guillen M, Korman B. Nontask-Related Brain Lateralization Biomarkers in Children: The Asymmetry of Language Areas on Functional Connectivity Functional Magnetic Resonance Imaging. Brain Connect 2019; 8:321-332. [PMID: 30124344 DOI: 10.1089/brain.2017.0553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this work, we will test the hypothesis that the connectivity of language areas in normal children is asymmetric between the hemispheres. Intrahemispheric region of interest (ROI)-to-ROI connectivity was assessed in 40 normal right-handed children. Asymmetries were assessed (1) between the hemispheres (global language connectivity); (2) between Brodmann areas (BAs) pairs (pairwise connectivity); and (3) between two homotopic BA (Global BA connectivity). Sixteen BAs were selected: 6, 7, 9, 19, 21, 22, 37, 38, 39, 40, 41, 42, 44, 45, 46, and 47. T scores for connectivity of each BA pair were ascertained using the MATLAB toolbox CONN. Lateralization index (LI) scores based on T-values were obtained. Only LIs with 2SD above the mean were considered as significant. Comparisons between T-value groups (per side and per BA) were performed utilizing double-sided T-tests. Null hypothesis was rejected for p < 0.05. There was not a statistical difference between global left and right connectivity strength (p = 0.40). There was significant pairwise connectivity asymmetry for the following pairs: BA7-BA44 (LI = 0.662); BA21-BA42 (LI = -0.616); BA21-BA40 (LI = -0.595); BA38-BA44 (LI = 0.470); BA39-BA44 (LI = -0.903); and BA42-BA47 (LI = -0.445). Language-related brain connectivity asymmetries have been demonstrated in a group of children and young adolescents. Two pairs related to Broca's area were left dominant (BA44-BA38 and BA44-BA7) and four pairs right dominant (BA42-BA47, BA39-BA44, BA21-BA40, and BA21-BA42).
Collapse
Affiliation(s)
- Byron Bernal
- 1 Brain Institute , Nicklaus Children's Hospital, Miami, Florida.,2 Department of Radiology, Florida International University , Miami, Florida.,3 Nicklaus Children's Hospital and Florida International University , Miami, Florida
| | - Magno Guillen
- 2 Department of Radiology, Florida International University , Miami, Florida.,3 Nicklaus Children's Hospital and Florida International University , Miami, Florida
| | - Brandon Korman
- 1 Brain Institute , Nicklaus Children's Hospital, Miami, Florida.,3 Nicklaus Children's Hospital and Florida International University , Miami, Florida
| |
Collapse
|