1
|
Krause J, van Rij J, Borst JP. Word Type and Frequency Effects on Lexical Decisions Are Process-dependent and Start Early. J Cogn Neurosci 2024; 36:2227-2250. [PMID: 38991140 DOI: 10.1162/jocn_a_02214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
When encountering letter strings, we rapidly determine whether they are words. The speed of such lexical decisions (LDs) is affected by word frequency. Apart from influencing late, decision-related, processing stages, frequency has also been shown to affect very early stages, and even the processing of nonwords. We developed a detailed account of the different frequency effects involved in LDs by (1) dividing LDs into processing stages using a combination of hidden semi-Markov models and multivariate pattern analysis applied to EEG data and (2) using generalized additive mixed models to investigate how the effect of continuous word and nonword frequency differs between these stages. We discovered six stages shared between word types, with the fifth stage consisting of two substages for pseudowords only. In the earliest stages, visual processing was completed faster for frequent words, but took longer for word-like nonwords. Later stages involved an orthographic familiarity assessment followed by an elaborate decision process, both affected differently by frequency. We therefore conclude that frequency indeed affects all processes involved in LDs and that the magnitude and direction of these effects differ both by process and word type.
Collapse
|
2
|
Chen S, Reichle ED, Liu Y. Direct lexical control of eye movements in Chinese reading: Evidence from the co-registration of EEG and eye tracking. Cogn Psychol 2024; 153:101683. [PMID: 39217858 DOI: 10.1016/j.cogpsych.2024.101683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/10/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The direct-lexical-control hypothesis stipulates that some aspect of a word's processing determines the duration of the fixation on that word and/or the next. Although the direct lexical control is incorporated into most current models of eye-movement control in reading, the precise implementation varies and the assumptions of the hypothesis may not be feasible given that lexical processing must occur rapidly enough to influence fixation durations. Conclusive empirical evidence supporting this hypothesis is therefore lacking. In this article, we report the results of an eye-tracking experiment using the boundary paradigm in which native speakers of Chinese read sentences in which target words were either high- or low-frequency and preceded by a valid or invalid preview. Eye movements were co-registered with electroencephalography, allowing standard analyses of eye-movement measures, divergence point analyses of fixation-duration distributions, and fixated-related potentials on the target words. These analyses collectively provide strong behavioral and neural evidence of early lexical processing and thus strong support for the direct-lexical-control hypothesis. We discuss the implications of the findings for our understanding of how the hypothesis might be implemented, the neural systems that support skilled reading, and the nature of eye-movement control in the reading of Chinese versus alphabetic scripts.
Collapse
Affiliation(s)
- Shuyuan Chen
- Department of Psychology, Sun Yat-sen University, China
| | - Erik D Reichle
- School of Psychological Sciences, Macquarie University, Australia
| | - Yanping Liu
- Department of Psychology, Sun Yat-sen University, China.
| |
Collapse
|
3
|
Hao Y, Guo J, Zhu H, Bai B. The left-lateralized N170 for visual specialization in advanced L2 Chinese learners. Front Hum Neurosci 2024; 18:1392788. [PMID: 39268218 PMCID: PMC11390388 DOI: 10.3389/fnhum.2024.1392788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Visual word recognition is crucial for improving reading skills in second language learners (L2Ls). It is unclear whether L2Ls who are native speakers of languages that use alphabetic scripts can recognize Chinese characters at an early stage of visual processing and if their visual specialization can reach a level of word recognition comparable to that of native Chinese speakers. This study aims to uncover the visual specialization mechanism of Chinese L2Ls. A delayed-color matching task was carried out with participants who were Chinese first language speakers (L1Ss) and advanced Chinese L2Ls with Indonesian as their first language. The results of the event-related potentials (ERPs) indicated that L2Ls exhibited significant visual specialization with a predominant distribution of the left-lateralized N170, along with some activation in the right hemisphere. These findings suggest that the early processing stage of Chinese characters by advanced L2Ls is similar to that of adult native speakers, although it is still influenced by their first language and its writing system.
Collapse
Affiliation(s)
- Yuxin Hao
- Institute of Chinese Language and Culture Education, Huaqiao University, Xiamen, China
| | - Jiawen Guo
- Chinese Language and Culture College, Huaqiao University, Xiamen, China
| | - Hong Zhu
- Jilin Railway Technology College, Jilin, China
| | - Bing Bai
- College of Foreign Languages and Cultures, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Maurer U, Rometsch S, Song B, Zhao J, Zhao P, Li S. Repetition Suppression for Familiar Visual Words Through Acceleration of Early Processing. Brain Topogr 2024; 37:608-620. [PMID: 37971687 DOI: 10.1007/s10548-023-01014-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
The visual N1 (N170) component with occipito-temporal negativity and fronto-central positivity is sensitive to visual expertise for print. Slightly later, an N200 component with an increase after stimulus repetition was reported to be specific for Chinese, but found at centro-parietal electrodes against a mastoid reference. Given the unusual location, temporal proximity to the N1, and atypical repetition behavior, we aimed at clarifying the relation between the two components. We collected 128-channel EEG data from 18 native Chinese readers during a script decision experiment. Familiar Chinese one- and two-character words were presented among unfamiliar Korean control stimuli with half of the stimuli immediately repeated. Stimulus repetition led to a focal increase in the N1 onset and to a wide-spread decrease in the N1 offset, especially for familiar Chinese and also prominently near the mastoids. A TANOVA analysis corroborated robust repetition effects in the N1 offset across ERP maps with a modulation by script familiarity around 300 ms. Microstate analyses revealed a shorter N1 microstate duration after repetitions, especially for Chinese. The results demonstrate that the previously reported centro-parietal N200 effects after repetitions reflect changes during the N1 offset at occipito-temporal electrodes including the mastoids. Although larger for Chinese, repetition effects could also be found for two-character Korean words, suggesting that they are not specific for Chinese. While the decrease of the N1 offset after repetition is in agreement with a repetition suppression effect, the microstate findings suggest that at least part of the facilitation is due to accelerated processing after repetition.
Collapse
Affiliation(s)
- Urs Maurer
- Department of Psychology, The Chinese University of Hong Kong, Sino Building 3/F, Shatin, New Territories, Hong Kong SAR, China.
- Centre for Developmental Psychology, The Chinese University of Hong Kong, Hong Kong, China.
- Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China.
| | - Sarah Rometsch
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Bingbing Song
- Department of Psychology, The Chinese University of Hong Kong, Sino Building 3/F, Shatin, New Territories, Hong Kong SAR, China
| | - Jing Zhao
- Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Pei Zhao
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, No. 16, Lincui Road, Chaoyang District, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Faculty of Education, Beijing City University, Beijing, China
| | - Su Li
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, No. 16, Lincui Road, Chaoyang District, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Navarrete-Arroyo S, Virtala P, Nie P, Kailaheimo-Lönnqvist L, Salonen S, Kujala T. Infant mismatch responses to speech-sound changes predict language development in preschoolers at risk for dyslexia. Clin Neurophysiol 2024; 162:248-261. [PMID: 38492973 DOI: 10.1016/j.clinph.2024.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE We investigated how infant mismatch responses (MMRs), which have the potential for providing information on auditory discrimination abilities, could predict subsequent development of pre-reading skills and the risk for familial dyslexia. METHODS We recorded MMRs to vowel, duration, and frequency deviants in pseudo-words at birth and 28 months in a sample over-represented by infants with dyslexia risk. We examined MMRs' associations with pre-reading skills at 28 months and 4-5 years and compared the results in subgroups with vs. without dyslexia risk. RESULTS Larger positive MMR (P-MMR) at birth was found to be associated with better serial naming. In addition, increased mismatch negativity (MMN) and late discriminative negativity (LDN), and decreased P-MMR at 28 months overall, were shown to be related to better pre-reading skills. The associations were influenced by dyslexia risk, which was also linked to poor pre-reading skills. CONCLUSIONS Infant MMRs, providing information about the maturity of the auditory system, are associated with the development of pre-reading skills. Speech-processing deficits may contribute to deficits in language acquisition observed in dyslexia. SIGNIFICANCE Infant MMRs could work as predictive markers of atypical linguistic development during early childhood. Results may help in planning preventive and rehabilitation interventions in children at risk of learning impairments.
Collapse
Affiliation(s)
- Sergio Navarrete-Arroyo
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland; Finnish Centre of Excellence in Music, Mind, Body and Brain, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland.
| | - Paula Virtala
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland; Finnish Centre of Excellence in Music, Mind, Body and Brain, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - Peixin Nie
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland; Finnish Centre of Excellence in Music, Mind, Body and Brain, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - Linda Kailaheimo-Lönnqvist
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - Satu Salonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - Teija Kujala
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland; Finnish Centre of Excellence in Music, Mind, Body and Brain, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
6
|
Lutz CG, Coraj S, Fraga-González G, Brem S. The odd one out - Orthographic oddball processing in children with poor versus typical reading skills in a fast periodic visual stimulation EEG paradigm. Cortex 2024; 172:185-203. [PMID: 38354469 DOI: 10.1016/j.cortex.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/17/2023] [Accepted: 12/12/2023] [Indexed: 02/16/2024]
Abstract
The specialization of left ventral occipitotemporal brain regions to automatically process word forms develops with reading acquisition and is diminished in children with poor reading skills (PR). Using a fast periodic visual oddball stimulation (FPVS) design during electroencephalography (EEG), we examined the level of sensitivity and familiarity to word form processing in ninety-two children in 2nd and 3rd grade with varying reading skills (n = 35 for PR, n = 40 for typical reading skills; TR). To test children's level of "sensitivity", false font (FF) and consonant string (CS) oddballs were embedded in base presentations of word (W) stimuli. "Familiarity" was examined by presenting letter string oddballs with increasing familiarity (CS, pseudoword - PW, W) in FF base stimuli. Overall, our results revealed stronger left-hemispheric coarse sensitivity effects ("FF in W" > "CS in W") in TR than in PR in both topographic and oddball frequency analyses. Further, children distinguished between orthographically legal and illegal ("W/PW in FF" > "CS in FF") but not yet between lexical and non-lexical ("W in FF" vs "PW in FF") word forms. Although both TR and PR exhibit visual sensitivity and can distinguish between orthographically legal and illegal letter strings, they still struggle with nuanced lexical distinctions. Moreover, the strength of sensitivity is linked to reading proficiency. Our work adds to established knowledge in the field to characterize the relationship between print tuning and reading skills and suggests differences in the developmental progress to automatically process word forms.
Collapse
Affiliation(s)
- Christina G Lutz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Seline Coraj
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; Family Larsson-Rosenquist Foundation Center for Neurodevelopment, Growth, and Nutrition of the Newborn, Department of Neonatology, University Hospital Zurich, University of Zurich, Switzerland
| | - Gorka Fraga-González
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Switzerland
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Switzerland.
| |
Collapse
|
7
|
Wang T, Xu H, Li C, Zhang F, Wang J. Dynamic insights into research trends and trajectories in early reading: an analytical exploration via dynamic topic modeling. Front Psychol 2024; 15:1326494. [PMID: 38384349 PMCID: PMC10879438 DOI: 10.3389/fpsyg.2024.1326494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction Early reading has gained significant attention in the academic community. With the increasing volume of literature on this subject, it has become crucial to assess the current research landscape and identify emerging trends. Methods This study utilized the dynamic topic model to analyze a corpus of 1,638 articles obtained from the Web of Science Core Collection to furnish a lucid understanding of the prevailing research and forecast possible future directions. Results Our in-depth assessment discerned 11 cardinal topics, among which notable ones were interventions' impacts on early reading competencies; foundational elements of early reading: phonological awareness, letters, and, spelling; and early literacy proficiencies in children with autism spectrum disorder. Although most topics have received consistent research attention, there has been a marked increase in some topics' popularity, such as foundational elements of early reading and early literary proficiencies in children with autism spectrum disorder. Conversely, other topics exhibited a downturn. Discussion This analytical endeavor has yielded indispensable insights for scholars, decision-makers, and field practitioners, steering them toward pivotal research interrogatives, focal interest zones, and prospective research avenues. As per our extensive survey, this paper is a pioneering holistic purview of the seminal areas of early reading that highlights expected scholarly directions.
Collapse
Affiliation(s)
- Ting Wang
- College of Science and Technology, Ningbo University, Cixi, China
| | - Hanqing Xu
- College of Science and Technology, Ningbo University, Cixi, China
| | - Chenyuan Li
- College of Science and Technology, Ningbo University, Cixi, China
| | - Fan Zhang
- College of Science and Technology, Ningbo University, Cixi, China
| | | |
Collapse
|
8
|
van der Molen MW, Snellings P, Aravena S, Fraga González G, Zeguers MHT, Verwimp C, Tijms J. Dyslexia, the Amsterdam Way. Behav Sci (Basel) 2024; 14:72. [PMID: 38275355 PMCID: PMC10813111 DOI: 10.3390/bs14010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
The current aim is to illustrate our research on dyslexia conducted at the Developmental Psychology section of the Department of Psychology, University of Amsterdam, in collaboration with the nationwide IWAL institute for learning disabilities (now RID). The collaborative efforts are institutionalized in the Rudolf Berlin Center. The first series of studies aimed at furthering the understanding of dyslexia using a gamified tool based on an artificial script. Behavioral measures were augmented with diffusion modeling in one study, and indices derived from the electroencephalogram were used in others. Next, we illustrated a series of studies aiming to assess individuals who struggle with reading and spelling using similar research strategies. In one study, we used methodology derived from the machine learning literature. The third series of studies involved intervention targeting the phonics of language. These studies included a network analysis that is now rapidly gaining prominence in the psychopathology literature. Collectively, the studies demonstrate the importance of letter-speech sound mapping and word decoding in the acquisition of reading. It was demonstrated that focusing on these abilities may inform the prediction, classification, and intervention of reading difficulties and their neural underpinnings. A final section examined dyslexia, conceived as a neurobiological disorder. This analysis converged on the conclusion that recent developments in the psychopathology literature inspired by the focus on research domain criteria and network analysis might further the field by staying away from longstanding debates in the dyslexia literature (single vs. a multiple deficit, category vs. dimension, disorder vs. lack of skill).
Collapse
Affiliation(s)
- Maurits W. van der Molen
- Developmental Psychology, Department of Psychology, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
- Rudolf Berlin Center for Learning Disabilities, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
| | - Patrick Snellings
- Developmental Psychology, Department of Psychology, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
- Rudolf Berlin Center for Learning Disabilities, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
| | | | | | - Maaike H. T. Zeguers
- Samenwerkingsverband VO Amsterdam-Diemen, Bijlmermeerdreef 1289, 1103 TV Amsterdam, The Netherlands
| | - Cara Verwimp
- Developmental Psychology, Department of Psychology, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
- Rudolf Berlin Center for Learning Disabilities, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
| | - Jurgen Tijms
- Developmental Psychology, Department of Psychology, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
- Rudolf Berlin Center for Learning Disabilities, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
| |
Collapse
|
9
|
Arbel R, Heimler B, Amedi A. Rapid plasticity in the ventral visual stream elicited by a newly learnt auditory script in congenitally blind adults. Neuropsychologia 2023; 190:108685. [PMID: 37741551 DOI: 10.1016/j.neuropsychologia.2023.108685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Accumulating evidence in the last decades has given rise to a new theory of brain organization, positing that cortical regions are recruited for specific tasks irrespective of the sensory modality via which information is channeled. For instance, the visual reading network has been shown to be recruited for reading via the tactile Braille code in congenitally blind adults. Yet, how rapidly non-typical sensory input modulates activity in typically visual regions is yet to be explored. To this aim, we developed a novel reading orthography, termed OVAL, enabling congenitally blind adults to quickly acquire reading via the auditory modality. OVAL uses the EyeMusic, a visual-to-auditory sensory-substitution-device (SSD) to transform visually presented letters optimized for auditory transformation into sound. Using fMRI, we show modulation in the right ventral visual stream following 2-h of same-day training. Crucially, following more extensive training (i.e., ∼12 h) we show that OVAL reading recruits the left ventral visual stream including the location of the Visual Word Form Area, a key graphene-responsive region within the visual reading network. Our results show that while after 2 h of SSD training we can already observe the recruitment of the deprived ventral visual stream by auditory stimuli, computation-selective cross-modal recruitment requires longer training to establish.
Collapse
Affiliation(s)
- Roni Arbel
- Department of Medical Neurobiology, Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, Israel; Department of Pediatrics, Hadassah Mount Scopus Hospital, Jerusalem, Israel.
| | - Benedetta Heimler
- Department of Medical Neurobiology, Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, Israel; The Institute for Brain, Mind and Technology, Ivcher School of Psychology, Reichman University, Herzeliya, Israel; Center of Advanced Technologies in Rehabilitation (CATR), The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Amir Amedi
- Department of Medical Neurobiology, Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, Israel; The Institute for Brain, Mind and Technology, Ivcher School of Psychology, Reichman University, Herzeliya, Israel
| |
Collapse
|
10
|
Wan S, Sun Y, Ye Q, Gu Y, Sommer W, Cao X. Processing objects of perceptual expertise: Differential interhemispheric transmission efficiency but similar transmission direction advantages. Neuropsychologia 2023; 188:108568. [PMID: 37150438 DOI: 10.1016/j.neuropsychologia.2023.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/31/2022] [Accepted: 04/20/2023] [Indexed: 05/09/2023]
Abstract
Faces and Chinese characters are both objects of perceptual expertise. In this study, we investigated the characteristics of interhemispheric transmission times (IHTTs) in both transmission direction and transmission efficiency during the processing of objects of perceptual expertise. A total of 112 participants engaged in a divided visual field paradigm for faces, Chinese characters, and houses in both upright and inverted orientations. The N170 amplitudes elicited by the objects of perceptual expertise (faces and Chinese characters) involved in this study were larger than those elicited by the non-perceptual expertise objects (houses). We used the latencies of the N170 component of the event-related potential (ERP) recorded in the left and right hemispheres to calculate the IHTTs. For all objects, the N170-related IHTTs from the right to the left hemispheres were shorter than those in the opposite direction. Essentially, the N170-related IHTTs for faces were shorter, that is, more efficient than those for Chinese characters and houses. This result indicates that the IHTTs during perceptual expertise and non-perceptual expertise object processing share a common transmission direction advantage, but transmission efficiency is face-specific.
Collapse
Affiliation(s)
- Simin Wan
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Yini Sun
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Qing Ye
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Yu Gu
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Werner Sommer
- Department of Psychology, Zhejiang Normal University, Jinhua, China; Institut für Psychologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Xiaohua Cao
- Department of Psychology, Zhejiang Normal University, Jinhua, China; Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China.
| |
Collapse
|
11
|
Wang F, Nguyen QTH, Kaneshiro B, Hasak L, Wang AM, Toomarian EY, Norcia AM, McCandliss BD. Lexical and sublexical cortical tuning for print revealed by Steady-State Visual Evoked Potentials (SSVEPs) in early readers. Dev Sci 2023; 26:e13352. [PMID: 36413170 PMCID: PMC10881121 DOI: 10.1111/desc.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 10/27/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
There are multiple levels of processing relevant to reading that vary in their visual, sublexical, and lexical orthographic processing demands. Segregating distinct cortical sources for each of these levels has been challenging in EEG studies of early readers. To address this challenge, we applied recent advances in analyzing high-density EEG using Steady-State Visual Evoked Potentials (SSVEPs) via data-driven Reliable Components Analysis (RCA) in a group of early readers spanning from kindergarten to second grade. Three controlled stimulus contrasts-familiar words versus unfamiliar pseudofonts, familiar words versus pseudowords, and pseudowords versus nonwords-were used to isolate coarse print tuning, lexical processing, and sublexical orthography-related processing, respectively. First, three overlapping yet distinct neural sources-left vOT, dorsal parietal, and primary visual cortex were revealed underlying coarse print tuning. Second, we segregated distinct cortical sources for the other two levels of processing: lexical fine tuning over occipito-temporal/parietal regions; sublexical orthographic fine tuning over left occipital regions. Finally, exploratory group analyses based on children's reading fluency suggested that coarse print tuning emerges early even in children with limited reading knowledge, while sublexical and higher-level lexical processing emerge only in children with sufficient reading knowledge. RESEARCH HIGHLIGHTS: Cognitive processes underlying coarse print tuning, sublexical, and lexical fine tuning were examined in beginning readers. Three overlapping yet distinct neural sources-left ventral occipito-temporal (vOT), left temporo-parietal, and primary visual cortex-were revealed underlying coarse print tuning. Responses to sublexical orthographic fine tuning were found over left occipital regions, while responses to higher-level linguistic fine tuning were found over occipito-temporal/parietal regions. Exploratory group analyses suggested that coarse print tuning emerges in children with limited reading knowledge, while sublexical and higher-level linguistic fine tuning effects emerge in children with sufficient reading knowledge.
Collapse
Affiliation(s)
- Fang Wang
- Graduate School of Education, Stanford University, Stanford, California, USA
| | | | - Blair Kaneshiro
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Lindsey Hasak
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Angie M. Wang
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Elizabeth Y. Toomarian
- Graduate School of Education, Stanford University, Stanford, California, USA
- Synapse School, Menlo Park, California, USA
| | - Anthony M. Norcia
- Department of Psychology, Stanford University, Stanford, California, USA
- Wu Tsai Neurosciences Institute, Stanford, California, USA
| | - Bruce D. McCandliss
- Graduate School of Education, Stanford University, Stanford, California, USA
| |
Collapse
|
12
|
Christoforou C, Theodorou M, Fella A, Papadopoulos TC. RAN-related neural-congruency: a machine learning approach toward the study of the neural underpinnings of naming speed. Front Psychol 2023; 14:1076501. [PMID: 37408955 PMCID: PMC10319123 DOI: 10.3389/fpsyg.2023.1076501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Objective Naming speed, behaviorally measured via the serial Rapid automatized naming (RAN) test, is one of the most examined underlying cognitive factors of reading development and reading difficulties (RD). However, the unconstrained-reading format of serial RAN has made it challenging for traditional EEG analysis methods to extract neural components for studying the neural underpinnings of naming speed. The present study aims to explore a novel approach to isolate neural components during the serial RAN task that are (a) informative of group differences between children with dyslexia (DYS) and chronological age controls (CAC), (b) improve the power of analysis, and (c) are suitable for deciphering the neural underpinnings of naming speed. Methods We propose a novel machine-learning-based algorithm that extracts spatiotemporal neural components during serial RAN, termed RAN-related neural-congruency components. We demonstrate our approach on EEG and eye-tracking recordings from 60 children (30 DYS and 30 CAC), under phonologically or visually similar, and dissimilar control tasks. Results Results reveal significant differences in the RAN-related neural-congruency components between DYS and CAC groups in all four conditions. Conclusion Rapid automatized naming-related neural-congruency components capture the neural activity of cognitive processes associated with naming speed and are informative of group differences between children with dyslexia and typically developing children. Significance We propose the resulting RAN-related neural-components as a methodological framework to facilitate studying the neural underpinnings of naming speed and their association with reading performance and related difficulties.
Collapse
Affiliation(s)
- Christoforos Christoforou
- Division of Computer Science, Mathematics and Science, St. John’s University, New York, NY, United States
| | | | - Argyro Fella
- Department of Education, University of Nicosia, Nicosia, Cyprus
| | - Timothy C. Papadopoulos
- Department of Psychology and Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
13
|
Cocquyt EM, Depuydt E, Santens P, van Mierlo P, Duyck W, Szmalec A, De Letter M. Effects of Healthy Aging and Gender on the Electrophysiological Correlates of Semantic Sentence Comprehension: The Development of Dutch Normative Data. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:1694-1717. [PMID: 37093923 DOI: 10.1044/2023_jslhr-22-00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
PURPOSE The clinical use of event-related potentials in patients with language disorders is increasingly acknowledged. For this purpose, normative data should be available. Within this context, healthy aging and gender effects on the electrophysiological correlates of semantic sentence comprehension were investigated. METHOD One hundred and ten healthy subjects (55 men and 55 women), divided among three age groups (young, middle aged, and elderly), performed a semantic sentence congruity task in the visual modality during electroencephalographic recording. RESULTS The early visual complex was affected by increasing age as shown by smaller P2 amplitudes in the elderly compared to the young. Moreover, the N400 effect in the elderly was smaller than in the young and was delayed compared to latency measures in both middle-aged and young subjects. The topography of age-related amplitude changes of the N400 effect appeared to be gender specific. The late positive complex effect was increased at frontal electrode sites from middle age on, but this was not statistically significant. No gender effects were detected regarding the early P1, N1, and P2, or the late positive complex effect. CONCLUSION Especially aging effects were found during semantic sentence comprehension, and this from the level of perceptual processing on. Normative data are now available for clinical use.
Collapse
Affiliation(s)
| | - Emma Depuydt
- Medical Image and Signal Processing Group, Department of Electronics and Information Systems, Ghent University, Belgium
| | | | - Pieter van Mierlo
- Medical Image and Signal Processing Group, Department of Electronics and Information Systems, Ghent University, Belgium
| | - Wouter Duyck
- Department of Experimental Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Belgium
| | - Arnaud Szmalec
- Department of Experimental Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Belgium
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Miet De Letter
- Department of Rehabilitation Sciences, Ghent University, Belgium
| |
Collapse
|
14
|
Lin P, Zhou X, Zang S, Zhu Y, Zhang L, Bai Y, Wang H. Early neural markers for individual difference in mathematical achievement determined from rational number processing. Neuropsychologia 2023; 181:108493. [PMID: 36707024 DOI: 10.1016/j.neuropsychologia.2023.108493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
The neural markers for individual differences in mathematical achievement have been studied extensively using magnetic resonance imaging; however, high temporal resolution electrophysiological evidence for individual differences in mathematical achievement require further elucidation. This study evaluated the event-related potential (ERP) when 48 college students with high or low mathematical achievement (HA vs. LA) matched non-symbolic and symbolic rational numbers. Behavioral results indicated that HA students had better performance in the discretized non-symbolic matching, although the two groups showed similar performances in the continuous matching. ERP data revealed that even before non-symbolic stimulus presentation, HA students had greater Bereitschaftspotential (BP) amplitudes over posterior central electrodes. After the presentation of non-symbolic numbers, HA students had larger N1 amplitudes at 160 ms post-stimulus, over left-lateralized parieto-occipital electrodes. After the presentation of symbolic numbers, HA students displayed more profound P1 amplitudes at 100 ms post-stimulus, over left parietal electrodes. Furthermore, larger BP and N1 amplitudes were associated with the shorter reaction times, and larger P1 amplitudes corresponded to lower error rates. The BP effect could indicate preparation processing, and early left-lateralized N1 and P1 effects could reflect the non-symbolic and symbolic number processing along the dorsal neural pathways. These results suggest that the left-lateralized P1 and N1 components elicited by matching non-symbolic and symbolic rational numbers can be considered as neurocognitive markers for individual differences in mathematical achievement.
Collapse
Affiliation(s)
- Pingting Lin
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, PR China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, 210096, Jiangsu, PR China; Research Center for Learning Science, Southeast University, Nanjing, 210096, Jiangsu, PR China
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, PR China
| | - Shiyi Zang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, PR China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, 210096, Jiangsu, PR China; Research Center for Learning Science, Southeast University, Nanjing, 210096, Jiangsu, PR China
| | - Yanmei Zhu
- School for Early-Childhood Education, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, PR China
| | - Li Zhang
- School for Early-Childhood Education, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, PR China
| | - Yi Bai
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, PR China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, 210096, Jiangsu, PR China; Research Center for Learning Science, Southeast University, Nanjing, 210096, Jiangsu, PR China
| | - Haixian Wang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, PR China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, 210096, Jiangsu, PR China; Research Center for Learning Science, Southeast University, Nanjing, 210096, Jiangsu, PR China.
| |
Collapse
|
15
|
Yao Y, Zhou H, Xu T, Ge X, Du F, Wang C, Chen F. Different impacts of long-term abacus training on symbolic and non-symbolic numerical magnitude processing in children. Biol Psychol 2023; 178:108514. [PMID: 36740009 DOI: 10.1016/j.biopsycho.2023.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Abacus-based mental calculation (AMC) has been shown to be effective in promoting math ability in children. Given that AMC relies on a visuospatial strategy to perform rapid and precise arithmetic, previous studies mostly focused on the promotion of AMC training on arithmetic ability and mathematical visual-spatial ability, as well as its transfer of advanced cognitive ability. However, little attention has been given to its impact on basic numerical comparison ability. Here, we aim to examine whether and how long-term AMC training impacts symbolic and non-symbolic numerical comparisons. The distance effect (DE) was utilized as a marker, indicating that the comparison between two numbers becomes faster as their numerical distance enlarges. In the current study, forty-one children matched for age and sex were recruited at primary school entry and randomly assigned to the AMC group and the control group. After three years of training, the event-related potential (ERP) recording technique was used to explore the temporal dynamics of number comparison, of which tasks were given in symbolic (Arabic number) or non-symbolic (dot array) format. In the symbolic task, the children in the AMC group showed a smaller DE than those in the control group. Two ERP components, N1 and P2p, located in parietal areas (PO7, PO8) were selected as neural markers of numerical processing. Both groups showed DE in the P2p component in both tasks, but only the children in the AMC group showed DE in the N1 component in the non-symbolic task. In addition, the DE size calculated from reaction times and ERP amplitudes was correlated with higher cognitive capacities, such as coding ability. Taken together, the present results provide evidence that long-term AMC training may be beneficial for numerical processing in children, which may be associated with neurocognitive indices of parietal brain regions.
Collapse
Affiliation(s)
- Yuan Yao
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, China; Department of Psychology, Suzhou University of Science and Technology, Suzhou, China
| | - Hui Zhou
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Tianyong Xu
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, China
| | - Xuelian Ge
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, China
| | - Fenglei Du
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, China; Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Chunjie Wang
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, China; Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Feiyan Chen
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, China.
| |
Collapse
|
16
|
On letter-specific crowding and reading: Evidence from ERPs. Neuropsychologia 2022; 176:108396. [DOI: 10.1016/j.neuropsychologia.2022.108396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022]
|
17
|
Cheviet A, Bonnefond A, Bertrand F, Maumy-Bertrand M, Doignon-Camus N. How visual attention span and phonological skills contribute to N170 print tuning: An EEG study in French dyslexic students. BRAIN AND LANGUAGE 2022; 234:105176. [PMID: 36063725 DOI: 10.1016/j.bandl.2022.105176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Developmental dyslexia is a disorder characterized by a sustainable learning deficit in reading. Based on ERP-driven approaches focusing on the visual word form area, electrophysiological studies have pointed a lack of visual expertise for written word recognition in dyslexic readers by contrasting the left-lateralized N170 amplitudes elicited by alphabetic versus non-alphabetic stimuli. Here, we investigated in 22 dyslexic participants and 22 age-matched control subjects how two behavioural abilities potentially affected in dyslexic readers (phonological and visual attention skills) contributed to the N170 expertise during a word detection task. Consistent with literature, dyslexic participants exhibited poorer performance in these both abilities as compared to healthy subjects. At the brain level, we observed (1) an unexpected preservation of the N170 expertise in the dyslexic group suggesting a possible compensatory mechanism and (2) a modulation of this expertise only by phonological skills, providing evidence for the phonological mapping deficit hypothesis.
Collapse
Affiliation(s)
- Alexis Cheviet
- Department of Psychology, Durham University, South Road, Durham DH1 3LE, United Kingdom.
| | - Anne Bonnefond
- Department of Psychiatry, University of Strasbourg, INSERM U1114, Strasbourg, France
| | - Frédéric Bertrand
- LIST3N, Université de Technologie de Troyes, Troyes, France; Institut de Recherche Mathématique Avancée, CNRS UMR 7501, Labex IRMIA, Université de Strasbourg, Strasbourg, France
| | - Myriam Maumy-Bertrand
- LIST3N, Université de Technologie de Troyes, Troyes, France; Institut de Recherche Mathématique Avancée, CNRS UMR 7501, Labex IRMIA, Université de Strasbourg, Strasbourg, France
| | - Nadège Doignon-Camus
- LISEC UR 2310, University of Strasbourg, University of Haute-Alsace, University of Lorraine, Strasbourg, France
| |
Collapse
|
18
|
Verhoeven L, Voeten M, Keuning J. Modeling developmental changes in print tuning in a transparent alphabetic orthography. Front Neurosci 2022; 16:934590. [PMID: 36161149 PMCID: PMC9495936 DOI: 10.3389/fnins.2022.934590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
The development of print tuning involves the increased specificity and redundancy for orthographic representations. However, it is by no means clear how decoding accuracy and efficiency are related over the years and how it affects reading disability. In the present study, we monitored the development of accuracy and efficiency of decoding in Dutch as a relatively transparent orthography as a function of orthographic complexity and lexical status throughout the primary grades. There was clear evidence that development of decoding accuracy preceded development of decoding efficiency and that a certain threshold of accuracy is needed for decoding efficiency to evolve. Furthermore, it was shown that pseudoword decoding efficiency predicted growth in word decoding efficiency, especially for the higher levels of orthographic complexity. There was also evidence that accuracy precedes efficiency across different profiles of readers and that decoding strength can be defined as a function of orthographic complexity and lexicality.
Collapse
Affiliation(s)
- Ludo Verhoeven
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
- Faculty of Arts, University of Curaçao Moises Da Costa Gomez, Willemstad, Curaçao
- *Correspondence: Ludo Verhoeven,
| | - Marinus Voeten
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | | |
Collapse
|
19
|
Azaiez N, Loberg O, Hämäläinen JA, Leppänen PHT. Brain Source Correlates of Speech Perception and Reading Processes in Children With and Without Reading Difficulties. Front Neurosci 2022; 16:921977. [PMID: 35928008 PMCID: PMC9344064 DOI: 10.3389/fnins.2022.921977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Neural correlates in reading and speech processing have been addressed extensively in the literature. While reading skills and speech perception have been shown to be associated with each other, their relationship remains debatable. In this study, we investigated reading skills, speech perception, reading, and their correlates with brain source activity in auditory and visual modalities. We used high-density event-related potentials (ERPs), fixation-related potentials (FRPs), and the source reconstruction method. The analysis was conducted on 12–13-year-old schoolchildren who had different reading levels. Brain ERP source indices were computed from frequently repeated Finnish speech stimuli presented in an auditory oddball paradigm. Brain FRP source indices were also computed for words within sentences presented in a reading task. The results showed significant correlations between speech ERP sources and reading scores at the P100 (P1) time range in the left hemisphere and the N250 time range in both hemispheres, and a weaker correlation for visual word processing N170 FRP source(s) in the posterior occipital areas, in the vicinity of the visual word form areas (VWFA). Furthermore, significant brain-to-brain correlations were found between the two modalities, where the speech brain sources of the P1 and N250 responses correlated with the reading N170 response. The results suggest that speech processes are linked to reading fluency and that brain activations to speech are linked to visual brain processes of reading. These results indicate that a relationship between language and reading systems is present even after several years of exposure to print.
Collapse
Affiliation(s)
- Najla Azaiez
- Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
- *Correspondence: Najla Azaiez ; orcid.org/0000-0002-7525-3745
| | - Otto Loberg
- Department of Psychology, Faculty of Science and Technology, Bournemouth University, Bournemouth, United Kingdom
| | - Jarmo A. Hämäläinen
- Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
- Department of Psychology, Jyväskylä Center for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Paavo H. T. Leppänen
- Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
- Department of Psychology, Jyväskylä Center for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
20
|
Fernández-López M, Perea M, Vergara-Martínez M. On the time course of the tolerance of letter detectors to rotations: A masked priming ERP investigation. Neuropsychologia 2022; 172:108259. [DOI: 10.1016/j.neuropsychologia.2022.108259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
|
21
|
Amora KK, Tretow A, Verwimp C, Tijms J, Leppänen PHT, Csépe V. Typical and Atypical Development of Visual Expertise for Print as Indexed by the Visual Word N1 (N170w): A Systematic Review. Front Neurosci 2022; 16:898800. [PMID: 35844207 PMCID: PMC9279737 DOI: 10.3389/fnins.2022.898800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
The visual word N1 (N170w) is an early brain ERP component that has been found to be a neurophysiological marker for print expertise, which is a prelexical requirement associated with reading development. To date, no other review has assimilated existing research on reading difficulties and atypical development of processes reflected in the N170w response. Hence, this systematic review synthesized results and evaluated neurophysiological and experimental procedures across different studies about visual print expertise in reading development. Literature databases were examined for relevant studies from 1995 to 2020 investigating the N170w response in individuals with or without reading disorders. To capture the development of the N170w related to reading, results were compared between three different age groups: pre-literate children, school-aged children, and young adults. The majority of available N170w studies (N = 69) investigated adults (n = 31) followed by children (school-aged: n = 21; pre-literate: n = 4) and adolescents (n = 1) while some studies investigated a combination of these age groups (n = 12). Most studies were conducted with German-speaking populations (n = 17), followed by English (n = 15) and Chinese (n = 14) speaking participants. The N170w was primarily investigated using a combination of words, pseudowords, and symbols (n = 20) and mostly used repetition-detection (n = 16) or lexical-decision tasks (n = 16). Different studies posed huge variability in selecting electrode sites for analysis; however, most focused on P7, P8, and O1 sites of the international 10–20 system. Most of the studies in adults have found a more negative N170w in controls than poor readers, whereas in children, the results have been mixed. In typical readers, N170w ranged from having a bilateral distribution to a left-hemispheric dominance throughout development, whereas in young, poor readers, the response was mainly right-lateralized and then remained in a bilateral distribution. Moreover, the N170w latency has varied according to age group, with adults having an earlier onset yet with shorter latency than school-aged and pre-literate children. This systematic review provides a comprehensive picture of the development of print expertise as indexed by the N170w across age groups and reading abilities and discusses theoretical and methodological differences and challenges in the field, aiming to guide future research.
Collapse
Affiliation(s)
- Kathleen Kay Amora
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Modern Philology and Social Sciences, Multilingualism Doctoral School, University of Pannonia, Veszprém, Hungary
- *Correspondence: Kathleen Kay Amora ;
| | - Ariane Tretow
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Cara Verwimp
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, Netherlands
- Rudolf Berlin Center, Amsterdam, Netherlands
| | - Jurgen Tijms
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, Netherlands
- Rudolf Berlin Center, Amsterdam, Netherlands
| | | | - Valéria Csépe
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, Hungary
- Institute for Hungarian and Applied Linguistics, University of Pannonia, Veszprém, Hungary
| |
Collapse
|
22
|
Li C, Kovács G. Repetition Probability Effects for Chinese Characters and German Words in the Visual Word Form Area. Brain Res 2022; 1780:147812. [PMID: 35120904 DOI: 10.1016/j.brainres.2022.147812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 11/29/2022]
Abstract
The magnitude of repetition suppression (RS), measured by fMRI, is modulated by the probability of repetitions (P(rep)) for various sensory stimulus categories. It has been suggested that for visually presented simple letters this P(rep) effect depends on the prior practices of the participants with the stimuli. Here we tested further if previous experiences affect the neural mechanisms of RS, leading to the modulatory effects of stimulus P(rep), for more complex lexical stimuli as well. We measured the BOLD signal in the Visual Word Form Area (VWFA) of native Chinese and German participants and estimated the P(rep) effects for Chinese characters and German words. The results showed a significant P(rep) effect for stimuli of the mother tongue in both participant groups. Interestingly, Chinese participants, learning German as a second language, also showed a significant P(rep) modulation of RS for German words while the German participants who had no prior experiences with the Chinese characters showed no such effects. Our findings suggest that P(rep) effects on RS are manifest for visual word processing as well, but only for words of a language with which participants are highly familiar. These results support further the idea that predictive processes, estimated by P(rep) modulations of RS, require prior experiences.
Collapse
Affiliation(s)
- Chenglin Li
- Department of Biological Psychology and Cognitive Neurosciences, Institute of Psychology, University of Jena, Jena, Germany
| | - Gyula Kovács
- Department of Biological Psychology and Cognitive Neurosciences, Institute of Psychology, University of Jena, Jena, Germany
| |
Collapse
|
23
|
Yu R, Chen J, Peng Y, Gu F. Visual event-related potentials reveal the early lexical processing of Chinese characters. Neuropsychologia 2021; 165:108132. [PMID: 34933038 DOI: 10.1016/j.neuropsychologia.2021.108132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022]
Abstract
Logographic scripts such as Chinese differ markedly from alphabetic scripts. The time-course of the lexical processing of alphabetic words was widely studied by recording event-related potentials (ERPs), and the results indicated that alphabetic words are rapidly and automatically processed. This study investigated whether there is also rapid and automatic lexical processing of Chinese characters by recording ERPs. High-frequency (HF) characters and orthographically similar low-frequency (LF) characters were pseudo-randomly presented to proficient Chinese readers. The color of half of the characters was blue and the color of the other half was black. In the color decision task, participants were asked to determine the color of each character. In the lexical recognition task, participants were asked to report whether s/he knew each character (the LF characters in this study were very rare characters which were usually not recognized by proficient Chinese readers). In both tasks, the N170 elicited by HF characters peaked earlier than the N170 elicited by LF characters in the right parieto-occipital area (PO8), and the ERPs to HF characters diverged from the ERPs to LF characters around 210-222 ms after the stimulus onset. These results reflected the rapid and automatic lexical processing of Chinese characters. Source analysis results suggested that the left and the right occipitotemporal cortices and the right visual cortex were the neural origins of the early lexical processing of Chinese characters, and the peak activation was in the right visual cortex.
Collapse
Affiliation(s)
- Ruifeng Yu
- Neurocognitive Laboratory for Linguistics and Semiotics, College of Literature and Journalism, Sichuan University, Chengdu, China
| | - Jingyu Chen
- Neurocognitive Laboratory for Linguistics and Semiotics, College of Literature and Journalism, Sichuan University, Chengdu, China
| | - Yang Peng
- Neurocognitive Laboratory for Linguistics and Semiotics, College of Literature and Journalism, Sichuan University, Chengdu, China
| | - Feng Gu
- Neurocognitive Laboratory for Linguistics and Semiotics, College of Literature and Journalism, Sichuan University, Chengdu, China.
| |
Collapse
|
24
|
Uno T, Kasai T, Seki A. The Developmental Change of Print‐Tuned
N170
in Highly Transparent Writing Systems
1. JAPANESE PSYCHOLOGICAL RESEARCH 2021. [DOI: 10.1111/jpr.12397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Eberhard-Moscicka AK, Jost LB, Daum MM, Maurer U. Predicting Reading From Behavioral and Neural Measures - A Longitudinal Event-Related Potential Study. Front Psychol 2021; 12:733494. [PMID: 34916991 PMCID: PMC8669350 DOI: 10.3389/fpsyg.2021.733494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Fluent reading is characterized by fast and effortless decoding of visual and phonological information. Here we used event-related potentials (ERPs) and neuropsychological testing to probe the neurocognitive basis of reading in a sample of children with a wide range of reading skills. We report data of 51 children who were measured at two time points, i.e., at the end of first grade (mean age 7.6 years) and at the end of fourth grade (mean age 10.5 years). The aim of this study was to clarify whether next to behavioral measures also basic unimodal and bimodal neural measures help explaining the variance in the later reading outcome. Specifically, we addressed the question of whether next to the so far investigated unimodal measures of N1 print tuning and mismatch negativity (MMN), a bimodal measure of audiovisual integration (AV) contributes and possibly enhances prediction of the later reading outcome. We found that the largest variance in reading was explained by the behavioral measures of rapid automatized naming (RAN), block design and vocabulary (46%). Furthermore, we demonstrated that both unimodal measures of N1 print tuning (16%) and filtered MMN (7%) predicted reading, suggesting that N1 print tuning at the early stage of reading acquisition is a particularly good predictor of the later reading outcome. Beyond the behavioral measures, the two unimodal neural measures explained 7.2% additional variance in reading, indicating that basic neural measures can improve prediction of the later reading outcome over behavioral measures alone. In this study, the AV congruency effect did not significantly predict reading. It is therefore possible that audiovisual congruency effects reflect higher levels of multisensory integration that may be less important for reading acquisition in the first year of learning to read, and that they may potentially gain on relevance later on.
Collapse
Affiliation(s)
- Aleksandra K. Eberhard-Moscicka
- Department of Psychology, University of Zurich, Zurich, Switzerland
- Perception and Eye Movement Laboratory, Department of Neurology and BioMedical Research, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Lea B. Jost
- Department of Psychology, University of Zurich, Zurich, Switzerland
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Moritz M. Daum
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Urs Maurer
- Department of Psychology, University of Zurich, Zurich, Switzerland
- Department of Psychology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
26
|
Varga V, Tóth D, Amora KK, Czikora D, Csépe V. ERP Correlates of Altered Orthographic-Phonological Processing in Dyslexia. Front Psychol 2021; 12:723404. [PMID: 34721182 PMCID: PMC8548581 DOI: 10.3389/fpsyg.2021.723404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Automatic visual word recognition requires not only well-established phonological and orthographic representations but also efficient audio-visual integration of these representations. One possibility is that in developmental dyslexia, inefficient orthographic processing might underlie poor reading. Alternatively, reading deficit could be due to inefficient phonological processing or inefficient integration of orthographic and phonological information. In this event-related potential study, participants with dyslexia (N = 25) and control readers (N = 27) were presented with pairs of words and pseudowords in an implicit same-different task. The reference-target pairs could be identical, or different in the identity or the position of the letters. To test the orthographic-phonological processing, target stimuli were presented in visual-only and audiovisual conditions. Participants with and without dyslexia processed the reference stimuli similarly; however, group differences emerged in the processing of target stimuli, especially in the audiovisual condition where control readers showed greater N1 responses for words than for pseudowords, but readers with dyslexia did not show such difference. Moreover, after 300 ms lexicality effect exhibited a more focused frontal topographic distribution in readers with dyslexia. Our results suggest that in developmental dyslexia, phonological processing and audiovisual processing deficits are more pronounced than orthographic processing deficits.
Collapse
Affiliation(s)
- Vera Varga
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, Hungary.,Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Dénes Tóth
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, Hungary
| | - Kathleen Kay Amora
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, Hungary.,Multilingualism Doctoral School, Faculty of Modern Philology and Social Sciences, University of Pannonia, Veszprém, Hungary
| | - Dávid Czikora
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, Hungary
| | - Valéria Csépe
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, Hungary.,Institute for Hungarian and Applied Linguistics, Pannon University, Veszprém, Hungary
| |
Collapse
|
27
|
Distinct neural sources underlying visual word form processing as revealed by steady state visual evoked potentials (SSVEP). Sci Rep 2021; 11:18229. [PMID: 34521874 PMCID: PMC8440525 DOI: 10.1038/s41598-021-95627-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022] Open
Abstract
EEG has been central to investigations of the time course of various neural functions underpinning visual word recognition. Recently the steady-state visual evoked potential (SSVEP) paradigm has been increasingly adopted for word recognition studies due to its high signal-to-noise ratio. Such studies, however, have been typically framed around a single source in the left ventral occipitotemporal cortex (vOT). Here, we combine SSVEP recorded from 16 adult native English speakers with a data-driven spatial filtering approach—Reliable Components Analysis (RCA)—to elucidate distinct functional sources with overlapping yet separable time courses and topographies that emerge when contrasting words with pseudofont visual controls. The first component topography was maximal over left vOT regions with a shorter latency (approximately 180 ms). A second component was maximal over more dorsal parietal regions with a longer latency (approximately 260 ms). Both components consistently emerged across a range of parameter manipulations including changes in the spatial overlap between successive stimuli, and changes in both base and deviation frequency. We then contrasted word-in-nonword and word-in-pseudoword to test the hierarchical processing mechanisms underlying visual word recognition. Results suggest that these hierarchical contrasts fail to evoke a unitary component that might be reasonably associated with lexical access.
Collapse
|
28
|
Bugden S, Park A, Mackey A, Brannon E. The neural basis of number word processing in children and adults. Dev Cogn Neurosci 2021; 51:101011. [PMID: 34562794 PMCID: PMC8476348 DOI: 10.1016/j.dcn.2021.101011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 01/28/2023] Open
Abstract
The ability to map number words to their corresponding quantity representations is a gatekeeper for children's future math success (Spaepen et al., 2018). Without number word knowledge at school entry, children are at greater risk for developing math learning difficulties (Chu et al., 2019). In the present study, we used functional magnetic resonance imaging (fMRI) to examine the neural basis for processing the meaning of spoken number words and its developmental trajectory in 4- to 10-year-old children, and in adults. In a number word-quantity mapping paradigm, participants listened to number words while simultaneously viewing quantities that were congruent or incongruent to the number word they heard. Whole brain analyses revealed that adults showed a neural congruity effect with greater neural activation for incongruent relative to congruent trials in anterior cingulate cortex (ACC) and left intraparietal sulcus (LIPS). In contrast, children did not show a significant neural congruity effect. However, a region of interest analysis in the child sample demonstrated age-related increases in the neural congruity effect, specifically in the LIPS. The positive correlation between neural congruity in LIPS and age was stronger in children who were already attending school, suggesting that developmental changes in LIPS function are experience-dependent.
Collapse
Affiliation(s)
- S. Bugden
- Department of Psychology, University of Winnipeg, 515 Portage Ave, Manitoba, R3B 2E9, Canada,Department of Psychology, University of Pennsylvania, 425 S. University Ave, Philadelphia, PA 19104, USA,Corresponding author at: Department of Psychology, University of Winnipeg, 515 Portage Ave, Manitoba, R3B 2E9, Canada.
| | - A.T. Park
- Department of Psychology, University of Pennsylvania, 425 S. University Ave, Philadelphia, PA 19104, USA
| | - A.P. Mackey
- Department of Psychology, University of Pennsylvania, 425 S. University Ave, Philadelphia, PA 19104, USA
| | - E.M. Brannon
- Department of Psychology, University of Pennsylvania, 425 S. University Ave, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Fernández-López M, Gómez P, Perea M. Which Factors Modulate Letter Position Coding in Pre-literate Children? Front Psychol 2021; 12:708274. [PMID: 34421758 PMCID: PMC8375292 DOI: 10.3389/fpsyg.2021.708274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/13/2021] [Indexed: 12/03/2022] Open
Abstract
One of the central landmarks of learning to read is the emergence of orthographic processing (i.e., the encoding of letter identity and letter order): it constitutes the necessary link between the low-level stages of visual processing and the higher-level processing of words. Regarding the processing of letter position, many experiments have shown worse performance in various tasks for the transposed-letter pair judge-JUDGE than for the orthographic control jupte-JUDGE. Importantly, 4-y.o. pre-literate children also show letter transposition effects in a same-different task: TZ-ZT is more error-prone than TZ-PH. Here, we examined whether this effect with pre-literate children is related to the cognitive and linguistic skills required to learn to read. Specifically, we examined the relation of the transposed-letter in a same-different task with the scores of these children in phonological, alphabetic and metalinguistic awareness, linguistic skills, and basic cognitive processes. To that end, we used a standardized battery to assess the abilities related with early reading acquisition. Results showed that the size of the transposed-letter effect in pre-literate children was strongly associated with the sub-test on basic cognitive processes (i.e., memory and perception) but not with the other sub-tests. Importantly, identifying children who may need a pre-literacy intervention is crucial to minimize eventual reading difficulties. We discuss how this marker can be used as a tool to anticipate reading difficulties in beginning readers.
Collapse
Affiliation(s)
- María Fernández-López
- Department of Methodology of Behavioral Sciences and ERI-Lectura, Universitat de València, València, Spain
| | - Pablo Gómez
- Department of Psychology, California State University, San Bernardino, Palm Desert, CA, United States
| | - Manuel Perea
- Department of Methodology of Behavioral Sciences and ERI-Lectura, Universitat de València, València, Spain.,Center of Research in Cognition, Universidad Antonio de Nebrija, Madrid, Spain
| |
Collapse
|
30
|
The loci of Stroop effects: a critical review of methods and evidence for levels of processing contributing to color-word Stroop effects and the implications for the loci of attentional selection. PSYCHOLOGICAL RESEARCH 2021; 86:1029-1053. [PMID: 34389901 PMCID: PMC9090875 DOI: 10.1007/s00426-021-01554-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 06/27/2021] [Indexed: 12/02/2022]
Abstract
Despite instructions to ignore the irrelevant word in the Stroop task, it robustly influences the time it takes to identify the color, leading to performance decrements (interference) or enhancements (facilitation). The present review addresses two questions: (1) What levels of processing contribute to Stroop effects; and (2) Where does attentional selection occur? The methods that are used in the Stroop literature to measure the candidate varieties of interference and facilitation are critically evaluated and the processing levels that contribute to Stroop effects are discussed. It is concluded that the literature does not provide clear evidence for a distinction between conflicting and facilitating representations at phonological, semantic and response levels (together referred to as informational conflict), because the methods do not currently permit their isolated measurement. In contrast, it is argued that the evidence for task conflict as being distinct from informational conflict is strong and, thus, that there are at least two loci of attentional selection in the Stroop task. Evidence suggests that task conflict occurs earlier, has a different developmental trajectory and is independently controlled which supports the notion of a separate mechanism of attentional selection. The modifying effects of response modes and evidence for Stroop effects at the level of response execution are also discussed. It is argued that multiple studies claiming to have distinguished response and semantic conflict have not done so unambiguously and that models of Stroop task performance need to be modified to more effectively account for the loci of Stroop effects.
Collapse
|
31
|
Vergara-Martínez M, Gutierrez-Sigut E, Perea M, Gil-López C, Carreiras M. The time course of processing handwritten words: An ERP investigation. Neuropsychologia 2021; 159:107924. [PMID: 34175372 DOI: 10.1016/j.neuropsychologia.2021.107924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022]
Abstract
Behavioral studies have shown that the legibility of handwritten script hinders visual word recognition. Furthermore, when compared with printed words, lexical effects (e.g., word-frequency effect) are magnified for less intelligible (difficult) handwriting (Barnhart and Goldinger, 2010; Perea et al., 2016). This boost has been interpreted in terms of greater influence of top-down mechanisms during visual word recognition. In the present experiment, we registered the participants' ERPs to uncover top-down processing effects on early perceptual encoding. Participants' behavioral and EEG responses were recorded to high- and low-frequency words that varied in script's legibility (printed, easy handwritten, difficult handwritten) in a lexical decision experiment. Behavioral results replicated previous findings: word-frequency effects were larger in difficult handwriting than in easy handwritten or printed conditions. Critically, the ERP data showed an early effect of word-frequency in the N170 that was restricted to the difficult-to-read handwritten condition. These results are interpreted in terms of increased attentional deployment when the bottom-up signal is weak (difficult handwritten stimuli). This attentional boost would enhance top-down effects (e.g., lexical effects) in the early stages of visual word processing.
Collapse
Affiliation(s)
| | | | - Manuel Perea
- ERI-Lectura, Universitat de València, Valencia, Spain; Universidad Nebrija, Madrid, Spain; Basque Center of Cognition, Brain, and Language, Donostia, Spain
| | | | - Manuel Carreiras
- Basque Center of Cognition, Brain, and Language, Donostia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
32
|
Guan CQ, Smolen ER, Meng W, Booth JR. Effect of Handwriting on Visual Word Recognition in Chinese Bilingual Children and Adults. Front Psychol 2021; 12:628160. [PMID: 34122220 PMCID: PMC8194694 DOI: 10.3389/fpsyg.2021.628160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/12/2021] [Indexed: 12/02/2022] Open
Abstract
In a digital era that neglects handwriting, the current study is significant because it examines the mechanisms underlying this process. We recruited 9- to 10-year-old Chinese children (n = 24), who were at an important period of handwriting development, and adult college students (n = 24), for both behavioral and electroencephalogram (EEG) experiments. We designed four learning conditions: handwriting Chinese (HC), viewing Chinese (VC), drawing shapes followed by Chinese recognition (DC), and drawing shapes followed by English recognition (DE). Both behavioral and EEG results showed that HC facilitated visual word recognition compared to VC, and behavioral results showed that HC facilitated visual word recognition compared to drawing shapes. HC and VC resulted in a lateralization of the N170 in adults, but not in children. Taken together, the results of the study suggest benefits of handwriting on the neural processing and behavioral performance in response to Chinese characters. The study results argue for maintaining handwriting practices to promote the perception of visual word forms in the digital age.
Collapse
Affiliation(s)
- Connie Qun Guan
- Faculty of Foreign Studies, Beijing Language and Culture University, Beijing, China.,Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Elaine R Smolen
- Teachers College, Columbia University, New York City, NY, United States
| | - Wanjin Meng
- Institute of Psychology, Moral and Special Education, National Institute for Education Sciences, Beijing, China
| | - James R Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
33
|
Coch D, Mahoney MR. When two vowels go walking: An ERP study of the vowel team rule. Psychophysiology 2021; 58:e13870. [PMID: 34086295 DOI: 10.1111/psyp.13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/31/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
In an event-related potential (ERP) study of the vowel team rule in American English ("when two vowels go walking, the first does the talking"), we used a visual lexical decision task to determine whether words that do (e.g., braid) and do not (e.g., cloud) follow the rule elicit different processing, and to determine if this extends to nonwords (e.g., braip, cloup). In 32 young adults, N1 amplitude distinguished between rule-following and rule-breaking items: N1 amplitude was more negative to rule-breaking words and nonwords. In contrast, there were no significant effects of vowel team rule adherence on N400 amplitude. Behaviorally, participants responded more quickly and accurately to rule-following words, a pattern not observed for nonwords. These findings demonstrate that adherence to the vowel team rule can be indexed by both neural and behavioral measures in fluently reading young adults.
Collapse
Affiliation(s)
- Donna Coch
- Department of Education, Reading Brains Lab, Dartmouth College, Hanover, NH, USA
| | | |
Collapse
|
34
|
Dębska A, Banfi C, Chyl K, Dzięgiel-Fivet G, Kacprzak A, Łuniewska M, Plewko J, Grabowska A, Landerl K, Jednoróg K. Neural patterns of word processing differ in children with dyslexia and isolated spelling deficit. Brain Struct Funct 2021; 226:1467-1478. [PMID: 33761000 PMCID: PMC8096730 DOI: 10.1007/s00429-021-02255-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/07/2021] [Indexed: 02/07/2023]
Abstract
There is an ongoing debate concerning the extent to which deficits in reading and spelling share cognitive components and whether they rely, in a similar fashion, on sublexical and lexical pathways of word processing. The present study investigates whether the neural substrates of word processing differ in children with various patterns of reading and spelling deficits. Using functional magnetic resonance imaging, we compared written and auditory processing in three groups of 9-13-year olds (N = 104): (1) with age-adequate reading and spelling skills; (2) with reading and spelling deficits (i.e., dyslexia); (3) with isolated spelling deficits but without reading deficits. In visual word processing, both deficit groups showed hypoactivations in the posterior superior temporal cortex compared to typical readers and spellers. Only children with dyslexia exhibited hypoactivations in the ventral occipito-temporal cortex compared to the two groups of typical readers. This is the result of an atypical pattern of higher activity in the occipito-temporal cortex for non-linguistic visual stimuli than for words, indicating lower selectivity. The print-speech convergence was reduced in the two deficit groups. Impairments in lexico-orthographic regions in a reading-based task were associated primarily with reading deficits, whereas alterations in the sublexical word processing route could be considered common for both reading and spelling deficits. These findings highlight the partly distinct alterations of the language network related to reading and spelling deficits.
Collapse
Affiliation(s)
- Agnieszka Dębska
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Chiara Banfi
- Institute of Psychology, University of Graz, Graz, Austria
| | - Katarzyna Chyl
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Gabriela Dzięgiel-Fivet
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Kacprzak
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Psychology, Warsaw University, Warsaw, Poland
| | - Magdalena Łuniewska
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Plewko
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Grabowska
- Faculty of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | - Karin Landerl
- Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
35
|
Vágvölgyi R, Bergström K, Bulajić A, Klatte M, Fernandes T, Grosche M, Huettig F, Rüsseler J, Lachmann T. Functional illiteracy and developmental dyslexia: looking for common roots. A systematic review. JOURNAL OF CULTURAL COGNITIVE SCIENCE 2021. [DOI: 10.1007/s41809-021-00074-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
AbstractA considerable amount of the population in more economically developed countries are functionally illiterate (i.e., low literate). Despite some years of schooling and basic reading skills, these individuals cannot properly read and write and, as a consequence have problems to understand even short texts. An often-discussed approach (Greenberg et al. 1997) assumes weak phonological processing skills coupled with untreated developmental dyslexia as possible causes of functional illiteracy. Although there is some data suggesting commonalities between low literacy and developmental dyslexia, it is still not clear, whether these reflect shared consequences (i.e., cognitive and behavioral profile) or shared causes. The present systematic review aims at exploring the similarities and differences identified in empirical studies investigating both functional illiterate and developmental dyslexic samples. Nine electronic databases were searched in order to identify all quantitative studies published in English or German. Although a broad search strategy and few limitations were applied, only 5 studies have been identified adequate from the resulting 9269 references. The results point to the lack of studies directly comparing functional illiterate with developmental dyslexic samples. Moreover, a huge variance has been identified between the studies in how they approached the concept of functional illiteracy, particularly when it came to critical categories such the applied definition, terminology, criteria for inclusion in the sample, research focus, and outcome measures. The available data highlight the need for more direct comparisons in order to understand what extent functional illiteracy and dyslexia share common characteristics.
Collapse
|
36
|
van de Walle de Ghelcke A, Rossion B, Schiltz C, Lochy A. Developmental changes in neural letter-selectivity: A 1-year follow-up of beginning readers. Dev Sci 2021; 24:e12999. [PMID: 32452594 PMCID: PMC7816260 DOI: 10.1111/desc.12999] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 03/23/2020] [Accepted: 04/29/2020] [Indexed: 01/23/2023]
Abstract
The developmental course of neural tuning to visual letter strings is unclear. Here we tested 39 children longitudinally, at the beginning of grade 1 (6.45 ± 0.33 years old) and 1 year after, with fast periodic visual stimulation in electroencephalography to assess the evolution of selective neural responses to letter strings and their relationship with emerging reading abilities. At both grades, frequency-tagged letter strings were discriminated from pseudofont strings (i.e. letter-selectivity) over the left occipito-temporal cortex, with effects observed at the individual level in 62% of children. However, visual words were not discriminated from pseudowords (lexical access) at either grade. Following 1 year of schooling, letter-selective responses showed a specific increase in amplitude, a more complex pattern of harmonics, and were located more anteriorly over the left occipito-temporal cortex. Remarkably, at both grades, neural responses were highly significant at the individual level and correlated with individual reading scores. The amplitude increase in letter-selective responses between grades was not found for discrimination responses of familiar keyboard symbols from pseudosymbols, and was not related to a general increase in visual stimulation responses. These findings demonstrate a rapid onset of left hemispheric letter selectivity, with 1 year of reading instruction resulting in increased emerging reading abilities and a clear quantitative and qualitative evolution within left hemispheric neural circuits for reading.
Collapse
Affiliation(s)
- Alice van de Walle de Ghelcke
- Psychological Sciences Research Institute and Institute of NeuroscienceUniversité Catholique de LouvainLouvain‐la‐NeuveBelgium
| | - Bruno Rossion
- Psychological Sciences Research Institute and Institute of NeuroscienceUniversité Catholique de LouvainLouvain‐la‐NeuveBelgium
- CNRS‐CRANUniversité de LorraineNancyFrance
- Service de NeurologieCHRU‐NancyUniversité de LorraineNancyFrance
| | - Christine Schiltz
- Department of Behavioral and Cognitive SciencesInstitute of Cognitive Science and AssessmentUniversité du LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Aliette Lochy
- Department of Behavioral and Cognitive SciencesInstitute of Cognitive Science and AssessmentUniversité du LuxembourgEsch‐sur‐AlzetteLuxembourg
| |
Collapse
|
37
|
Li M, Cheng D, Lu Y, Zhou X. Neural association between non-verbal number sense and arithmetic fluency. Hum Brain Mapp 2020; 41:5128-5140. [PMID: 32937010 PMCID: PMC7670642 DOI: 10.1002/hbm.25179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/18/2020] [Accepted: 08/04/2020] [Indexed: 11/29/2022] Open
Abstract
Non‐verbal number sense has been shown to significantly correlate with arithmetic fluency. Accumulated behavioral evidence indicates that the cognitive mechanism relies on visual perception. However, few studies have investigated the neural mechanism underlying this association. Following the visual perception account, we hypothesized that there would be a neural association in occipital areas of the brain between non‐verbal number sense, arithmetic fluency, and visual perception. We analyzed event‐related potentials that are sensitive to neural responses while participants performed five cognitive tasks: simple addition, simple subtraction, numerosity comparison, figure matching, and character rhyming. The single‐trial ERP‐behavior correlation approach was used to enhance the statistical power. The results showed that the N1 component significantly correlated with reaction time at occipital electrodes on all tasks except for character rhyming. The N1 component for arithmetic fluency (simple addition and subtraction) and character rhyming correlated with the reaction time for numerosity comparison and figure matching. The results suggest that there are neural associations between arithmetic fluency, non‐verbal number sense, and visual perception in the occipital cortex, and that visual perception is the shared mechanism for both non‐verbal number sense and arithmetic fluency.
Collapse
Affiliation(s)
- Mengyi Li
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, China.,Siegler Center for Innovative Learning, Beijing Normal University, Beijing, China
| | - Dazhi Cheng
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, China.,Department of Pediatric Neurology, Capital Institute of Pediatrics, Beijing, China
| | - Yujie Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, China.,Siegler Center for Innovative Learning, Beijing Normal University, Beijing, China
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, China.,Siegler Center for Innovative Learning, Beijing Normal University, Beijing, China
| |
Collapse
|
38
|
Cui X, Xia Z, McBride C, Li P, Pan J, Shu H. Shared Neural Substrates Underlying Reading and Visual Matching: A Longitudinal Investigation. Front Hum Neurosci 2020; 14:567541. [PMID: 33192396 PMCID: PMC7642616 DOI: 10.3389/fnhum.2020.567541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
The role of visual skills in reading acquisition has long been debated and whether there is shared neurobiological basis between visual skills and reading is not clear. This study investigated the relationship between Visual Matching and reading and their shared neuroanatomical basis. Two hundred and ninety-three typically developing Mandarin-speaking children were followed in a longitudinal study from ages 4 to 11 years old. A subsample of 79 children was further followed up at 14 years old when the MRI data were collected. Results showed that the development of Visual Matching from ages 6 to 8 predicted reading accuracy at age 11. In addition, both the development of Visual Matching and reading accuracy were associated with cortical surface area of a cluster located in fusiform gyrus. These findings suggested that the mapping from visual codes to phonological codes is important in learning to read and that left fusiform gyrus provided neural basis for such mapping. Implications of these findings in light of a new approach toward the neurocognitive mechanisms underlying reading development are discussed.
Collapse
Affiliation(s)
- Xin Cui
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Zhichao Xia
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,School of Systems Science, Beijing Normal University, Beijing, China
| | - Catherine McBride
- Department of Psychology, Brain Mind Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping Li
- Department of Chinese and Bilingual Studies, Faculty of Humanities, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jinger Pan
- Department of Psychology, The Education University of Hong Kong, Hong Kong, China
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
39
|
ERP evidence for asymmetric orthographic transfer between traditional and simplified Chinese. Exp Brain Res 2020; 239:365-379. [PMID: 33184689 DOI: 10.1007/s00221-020-05976-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
Transferring orthographic processing skills from one language to new languages is important for language learning. However, the specific orthography hypothesis and condition-based transfer hypothesis have debated orthographic transfer. No study has ever examined these debates in a logographic language, and the neural correlates of orthographic transfer in a logographic language remain unknown. Therefore, the present study uses event-related potentials to examine orthographic transfer with Hong Kong (Experiment 1) and mainland China (Experiment 2) participants who only use traditional or simplified Chinese, respectively. The participants sequentially read two of the same (repetition) or different (nonrepetition) traditional or simplified Chinese characters and judged whether they were identical. The results showed that the orthography-related N200 component was smaller in the repetition condition than in the nonrepetition condition. Importantly, for traditional Chinses users, this effect was more salient in traditional Chinese than in simplified Chinese, suggesting limited transfer from traditional to simplified Chinese. For simplified Chinese users, this effect was comparable in traditional and simplified Chinese, suggesting a smooth transfer from simplified to traditional Chinese. The results supported the condition-based transfer hypothesis, and showed asymmetric transfer between simple orthographic rules and complex ones. That is, simple orthographic rules can be transferred to complex ones smoothly, but not vice versa.
Collapse
|
40
|
Ching ASM, Kim J, Davis C. Time course of the unmasked attentional blink. Psychophysiology 2020; 58:e13686. [PMID: 33141450 DOI: 10.1111/psyp.13686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/27/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022]
Abstract
The Attentional Blink (AB) usually refers to the impaired report of a second target (T2) if it appears within 200-500 ms after a first target within a rapid sequence of distractors. The present study focused on a less studied AB variant known as the unmasked AB, where T2 is the last item of the sequence and T2 report is unaffected. This aspect of the unmasked AB holds promise for an experimental paradigm in which measures of on-going event-related processing are unconfounded by differences in late-stage processing. To fully characterize the unmasked AB paradigm, we used a randomization statistics approach to comprehensively examine the electroencephalographic signature of the unmasked AB. We examined the unmasked AB with auditory and visual T2s-participants attended to either the auditory or visual information within a sequence of paired auditory-visual stimuli, and reported targets within the attended modality stream while ignoring the other. As predicted, T2 report was unaffected by the unmasked AB. The visual AB was associated with delayed but intact N2 and P3 components, and a suppressed N1. We suggest that this N1 is linked to auditory processing of the distractor stream, and reflects the cognitive system prioritizing the processing of visual targets over auditory distractors in response to AB-related processing load. The auditory AB only indicated a delayed but intact P3. Collectively, these findings support the view that the AB limits the entry of information into consciousness via a late-stage modal bottleneck, and suggest an ongoing compensatory response at early latencies.
Collapse
Affiliation(s)
| | - Jeesun Kim
- The MARCS Institute, University of Western Sydney, Sydney, Australia
| | - Chris Davis
- The MARCS Institute, University of Western Sydney, Sydney, Australia
| |
Collapse
|
41
|
Torre GA, Matejko AA, Eden GF. The relationship between brain structure and proficiency in reading and mathematics in children, adolescents, and emerging adults. Dev Cogn Neurosci 2020; 45:100856. [PMID: 32949854 PMCID: PMC7502824 DOI: 10.1016/j.dcn.2020.100856] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 11/18/2022] Open
Abstract
Behavioral and brain imaging studies speak to commonalities between reading and math. Here, we investigated relationships between individual differences in reading and math ability (single word reading and calculation) with brain anatomy (cortical thickness and surface area) in 342 participants between 6-22 years of age from the NIH Pediatric MRI Database. We found no brain-behavioral correlations in the full sample. When dividing the dataset into three age-specific subgroups, cortical thickness of the left supramarginal gyrus (SMG) and fusiform gyrus (FG) correlated with reading ability in the oldest subgroup (15-22 years) only. Next, we tested unique contributions of these educational measures to neuroanatomy. Single word reading ability, age, and their interaction all contributed unique variance to cortical thickness in the left SMG and intraparietal sulcus (IPS). Age, and the interaction between age and reading, predicted cortical thickness in the left FG. However, regression analyses for math ability showed no relationships with cortical thickness; nor for math or reading ability with surface area. Overall, our results demonstrate relationships between cortical thickness and reading ability in emerging adults, but not in younger age groups. Surprisingly, there were no such relationships with math, and hence no convergence between the reading and math results.
Collapse
Affiliation(s)
- G A Torre
- Center for the Study of Learning, Georgetown University Medical Center, Washington DC, United States; Department of Pediatrics, Georgetown University Medical Center, Washington DC, United States.
| | - A A Matejko
- Center for the Study of Learning, Georgetown University Medical Center, Washington DC, United States; Department of Pediatrics, Georgetown University Medical Center, Washington DC, United States
| | - G F Eden
- Center for the Study of Learning, Georgetown University Medical Center, Washington DC, United States; Department of Pediatrics, Georgetown University Medical Center, Washington DC, United States.
| |
Collapse
|
42
|
The time course of the lowercase advantage in visual word recognition: An ERP investigation. Neuropsychologia 2020; 146:107556. [DOI: 10.1016/j.neuropsychologia.2020.107556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 11/18/2022]
|
43
|
Fernández-López M, Marcet A, Perea M. Does orthographic processing emerge rapidly after learning a new script? Br J Psychol 2020; 112:52-91. [PMID: 32780425 DOI: 10.1111/bjop.12469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 06/18/2020] [Indexed: 11/28/2022]
Abstract
Orthographic processing is characterized by location-invariant and location-specific processing (Grainger, 2018): (1) strings of letters are more vulnerable to transposition effects than the strings of symbols in same-different tasks (location-invariant processing); and (2) strings of letters, but not strings of symbols, show an initial position advantage in target-in-string identification tasks (location-specific processing). To examine the emergence of these two markers of orthographic processing, we conducted a same-different task and a target-in-string identification task with two unfamiliar scripts (pre-training experiments). Across six training sessions, participants learned to fluently read and write one of these scripts. The post-training experiments were parallel to the pre-training experiments. Results showed that the magnitude of the transposed-letter effect in the same-different task and the serial function in the target-in-string identification tasks were remarkably similar for the trained and untrained scripts. Thus, location-invariant and location-specific processing does not emerge rapidly after learning a new script; instead, they may require thorough experience with specific orthographic structures.
Collapse
Affiliation(s)
| | | | - Manuel Perea
- Universitat de València, Spain.,Basque Center on Brain, Cognition, and Language, Donostia, Spain.,Universidad Nebrija, Spain
| |
Collapse
|
44
|
Mehlhase H, Bakos S, Bartling J, Schulte-Körne G, Moll K. Word processing deficits in children with isolated and combined reading and spelling deficits: An ERP-study. Brain Res 2020; 1738:146811. [PMID: 32234513 DOI: 10.1016/j.brainres.2020.146811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 10/24/2022]
Abstract
Dissociations between reading and spelling deficits are likely to be associated with distinct deficits in orthographic word processing. To specify differences in automatic visual word recognition, the current ERP-study compared children with isolated reading fluency deficits (iRD), isolated spelling deficits (iSD), and combined reading fluency and spelling deficits (cRSD) as well as typically developing (TD) 10-year-olds while performing a variant of the Reicher-Wheeler paradigm: children had to indicate which of two letters occurred at a given position in a previously presented word, legal pseudoword, illegal pseudoword or nonword. Event-related potentials (N200 and N400) associated with sublexical orthographic and lexical orthographic processing as well as phonological word processing were analyzed. All groups showed a word superiority effect, both on the behavioral and the neurophysiological level. Group differences occurred for phonological word processing. TD and iRD groups showed a higher N400 activation for illegal pseudowords than for nonwords, while the two spelling deficit groups showed no activation differences between these two stimuli conditions. The findings suggest that differences in phonological word processing are associated with spelling problems: children with iSD showed reduced sensitivity for phonological word processing, while these deficits were not evident in children with iRD.
Collapse
Affiliation(s)
- Heike Mehlhase
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-University Munich, Nußbaumstr. 5a, 80336 Munich, Germany.
| | - Sarolta Bakos
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-University Munich, Nußbaumstr. 5a, 80336 Munich, Germany
| | - Jürgen Bartling
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-University Munich, Nußbaumstr. 5a, 80336 Munich, Germany
| | - Gerd Schulte-Körne
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-University Munich, Nußbaumstr. 5a, 80336 Munich, Germany
| | - Kristina Moll
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-University Munich, Nußbaumstr. 5a, 80336 Munich, Germany
| |
Collapse
|
45
|
Xu W, Kolozsvari OB, Oostenveld R, Hämäläinen JA. Rapid changes in brain activity during learning of grapheme-phoneme associations in adults. Neuroimage 2020; 220:117058. [PMID: 32561476 DOI: 10.1016/j.neuroimage.2020.117058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Learning to associate written letters with speech sounds is crucial for the initial phase of acquiring reading skills. However, little is known about the cortical reorganization for supporting letter-speech sound learning, particularly the brain dynamics during the learning of grapheme-phoneme associations. In the present study, we trained 30 Finnish participants (mean age: 24.33 years, SD: 3.50 years) to associate novel foreign letters with familiar Finnish speech sounds on two consecutive days (first day ~ 50 min; second day ~ 25 min), while neural activity was measured using magnetoencephalography (MEG). Two sets of audiovisual stimuli were used for the training in which the grapheme-phoneme association in one set (Learnable) could be learned based on the different learning cues provided, but not in the other set (Control). The learning progress was tracked at a trial-by-trial basis and used to segment different learning stages for the MEG source analysis. The learning-related changes were examined by comparing the brain responses to Learnable and Control uni/multi-sensory stimuli, as well as the brain responses to learning cues at different learning stages over the two days. We found dynamic changes in brain responses related to multi-sensory processing when grapheme-phoneme associations were learned. Further, changes were observed in the brain responses to the novel letters during the learning process. We also found that some of these learning effects were observed only after memory consolidation the following day. Overall, the learning process modulated the activity in a large network of brain regions, including the superior temporal cortex and the dorsal (parietal) pathway. Most interestingly, middle- and inferior-temporal regions were engaged during multi-sensory memory encoding after the cross-modal relationship was extracted from the learning cues. Our findings highlight the brain dynamics and plasticity related to the learning of letter-speech sound associations and provide a more refined model of grapheme-phoneme learning in reading acquisition.
Collapse
Affiliation(s)
- Weiyong Xu
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland; Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland.
| | - Orsolya Beatrix Kolozsvari
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland; Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland.
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands; NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Jarmo Arvid Hämäläinen
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland; Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland.
| |
Collapse
|
46
|
Interaction of top-down category-level expectation and bottom-up sensory input in early stages of visual-orthographic processing. Neuropsychologia 2020; 137:107299. [PMID: 31821829 DOI: 10.1016/j.neuropsychologia.2019.107299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 11/23/2022]
Abstract
How and when top-down information modulates visual-orthographic processing is an essential question in reading research. In a previous study, we showed that task modulation of print-tuning started at around 170 ms after stimulus presentation in the N1 offset of the ERP, while the N1 onset was yet unaffected. Here we test how prior category-level expectation affects visual-orthographic processing. Familiar, left/right-structured Chinese characters and stroke number matched, unfamiliar Korean characters were presented, while expectation about the upcoming stimuli was manipulated with green and blue colored frames (high Chinese vs. high Korean expectation). EEG data of 18 native Chinese speakers were recorded while participants performed an expectation judgment task. Results from occipito-temporal and whole map analyses revealed that effects of prior expectation changed throughout the N1. Accordingly in the N1 onset, a print tuning main effect was found, with a stronger N1 to Chinese characters than Korean characters, irrespective of expectation. In the N1 offset, an expectation-by-character interaction was observed at the whole map level, with a more negative N1 to Korean characters than Chinese characters when expecting a Chinese character, but no such difference when expecting a Korean character. Moreover, the expectation-by-character interaction continued to the N250, with similar responses to Chinese and Korean characters under the Chinese expectation condition, while less negative N250 to Korean than Chinese under the Korean expectation condition. Taken together, the current study provides evidence that prior category-level expectation starts to take effect at an early stage even within 200 ms by facilitating the processing of expected stimuli, suggesting that category-level expectation can influence early visual-orthographic processing during word recognition.
Collapse
|
47
|
Ríos-López P, Molinaro N, Lallier M. Tapping to a beat in synchrony predicts brain print sensitivity in pre-readers. BRAIN AND LANGUAGE 2019; 199:104693. [PMID: 31539633 DOI: 10.1016/j.bandl.2019.104693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
This longitudinal study was aimed at testing the relation between rhythm sensitivity and behavioural and neural orthographic sensitivity in pre-reading stages. Basque-speaking children performed several behavioural and EEG tasks at two time points prior to formal reading acquisition (T1: 4 years old; T2: 5 years old). Neural sensitivity to print was measured via a novel child friendly N170-elicitation paradigm. Our results highlight a transversal and longitudinal relation between rhythm sensitivity and letter name knowledge in pre-reading children. Moreover, they show that children's rhythm sensitivity predicts a significant part of the variance of their N170 response one year later, highlighting the potential of rhythm tasks to predict future orthographic sensitivity in pre-reading stages. Interestingly, the relation between rhythmic skills and print sensitivity was not mediated by the children's phonological short-term memory. Our results provide novel evidence on the importance of rhythm sensitivity for the development of early orthographic sensitivity.
Collapse
Affiliation(s)
- Paula Ríos-López
- BCBL, Basque Center on Cognition, Brain and Language, Paseo Mikeletegi, 69, 20009 Donostia-San Sebastián, Spain.
| | - Nicola Molinaro
- BCBL, Basque Center on Cognition, Brain and Language, Paseo Mikeletegi, 69, 20009 Donostia-San Sebastián, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Marie Lallier
- BCBL, Basque Center on Cognition, Brain and Language, Paseo Mikeletegi, 69, 20009 Donostia-San Sebastián, Spain
| |
Collapse
|
48
|
Li C, Ma X, Zhu C, Cao X. The recovery speed of category sensitive N170 responses to faces and Chinese characters. Brain Res 2019; 1723:146384. [PMID: 31421129 DOI: 10.1016/j.brainres.2019.146384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
Abstract
Neural selectivity of N170 responses is important for understanding face, word, and object processing in the brain. However, the recovery times of neural selective responses remain unclear. In the present study, we used an adaptation paradigm to test the recovery speed of N170 responses to faces and Chinese characters. The findings revealed that recovery of N170 responses elicited by faces occurred between 1400 and 1800 ms after stimulus onset, whereas those elicited by Chinese characters occurred between 600 and 800 ms. These results demonstrate that N170 responses involved in the processing of faces and Chinese characters exhibit category sensitive recovery speeds.
Collapse
Affiliation(s)
- Chenglin Li
- Department of Psychology, Zhejiang Normal University, 321001 Jinhua, China; Department of Biological Psychology and Cognitive Neurosciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Xiaoli Ma
- Department of Psychology, Zhejiang Normal University, 321001 Jinhua, China; Institut für Psychologie, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Cuiyin Zhu
- Department of Psychology, Zhejiang Normal University, 321001 Jinhua, China
| | - Xiaohua Cao
- Department of Psychology, Zhejiang Normal University, 321001 Jinhua, China.
| |
Collapse
|
49
|
Stefanac N, Spencer-Smith M, Brosnan M, Vangkilde S, Castles A, Bellgrove M. Visual processing speed as a marker of immaturity in lexical but not sublexical dyslexia. Cortex 2019; 120:567-581. [DOI: 10.1016/j.cortex.2019.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/12/2019] [Accepted: 08/06/2019] [Indexed: 01/04/2023]
|
50
|
Pleisch G, Karipidis II, Brem A, Röthlisberger M, Roth A, Brandeis D, Walitza S, Brem S. Simultaneous EEG and fMRI reveals stronger sensitivity to orthographic strings in the left occipito-temporal cortex of typical versus poor beginning readers. Dev Cogn Neurosci 2019; 40:100717. [PMID: 31704655 PMCID: PMC6974919 DOI: 10.1016/j.dcn.2019.100717] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/23/2019] [Accepted: 10/01/2019] [Indexed: 01/18/2023] Open
Abstract
The level of reading skills in children and adults is reflected in the strength of preferential neural activation to print. Such preferential activation appears in the N1 event-related potential (ERP) over the occipitotemporal scalp after around 150–250 ms and the corresponding blood oxygen level dependent (BOLD) signal in the ventral occipitotemporal (vOT) cortex. Here, orthography-sensitive (print vs. false font) processing was examined using simultaneous EEG-fMRI in 38 first grade children with poor and typical reading skills, and at varying familial risk for developmental dyslexia. Coarse orthographic sensitivity was observed as an increased activation to print in the N1 ERP and in the BOLD signal of individually varying vOT regions in 57% of beginning readers. Finer differentiation in processing orthographic strings (words vs. nonwords) further occurred in specific vOT clusters. Neither method alone showed robust differences in orthography-sensitive processing between typical and poor reading children. Importantly, using single-trial N1 ERP-informed fMRI analysis, we found differential modulation of the orthography-sensitive BOLD response in the left vOT for typical readers only. This result, thus, confirms subtle functional alterations in a brain structure known to be critical for fluent reading at the very beginning of reading instruction.
Collapse
Affiliation(s)
- Georgette Pleisch
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Iliana I Karipidis
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandra Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland
| | - Martina Röthlisberger
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland
| | - Alexander Roth
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany; Center for Integrative Human Physiology Zurich, University of Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; Center for Integrative Human Physiology Zurich, University of Zurich, Switzerland
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; MR-Center of the University Hospital of Psychiatry and the Department of Child and Adolescent Psychiatry and Psychotherapy, University of Zurich, Switzerland.
| |
Collapse
|