1
|
Frieske J, Van Hoornweder S, Nuyts M, Verstraelen S, Swinnen SP, Meesen RLJ. Continuous theta burst stimulation at 30 hz does not modulate cortical excitability in a sham-controlled study. Sci Rep 2024; 14:30324. [PMID: 39638841 PMCID: PMC11621764 DOI: 10.1038/s41598-024-81399-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Theta burst stimulation (TBS) can modulate cortical excitability but suffers from high inter-subject variability. Modified TBS frequency patterns (30 Hz) showed consistent inhibitory aftereffects, but further research into the time course of these effects is needed. This study aimed to investigate the efficacy of a 30 Hz continuous TBS (cTBS) protocol. Participants (n = 20) underwent an experimental session (real cTBS) and a control session (sham cTBS). To assess cortical excitability, Transcranial Magnetic Stimulation was applied over the primary motor cortex before cTBS, and at five timepoints after cTBS. Percentage change (PC) to baseline was analysed using a Linear Mixed Model. No difference in PC was found between real and sham cTBS (p = 0.696). Our results demonstrate a significant increase in PC over time (p = 0.006) at 30, (p = 0.01), 45 (p = 0.027), and 55 min (p = 0.024) post cTBS, irrespective of condition. Secondary analysis dividing the sample into responders and paradox-responders showed no significant predictors for cTBS responsiveness. We could not replicate previously reported suppressive effects of 30 Hz cTBS. Increases in MEP amplitudes over a 60-minute time window were independent of stimulation condition and marked by high inter-subject variability. Validations of modified TBS protocols are further needed to replicate findings and understand mechanisms underlying individuals' responsiveness.
Collapse
Affiliation(s)
- Joana Frieske
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt - Campus Diepenbeek, Wetenschapspark 7, Diepenbeek, B-3590, Belgium.
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium.
| | - Sybren Van Hoornweder
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt - Campus Diepenbeek, Wetenschapspark 7, Diepenbeek, B-3590, Belgium
| | - Marten Nuyts
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt - Campus Diepenbeek, Wetenschapspark 7, Diepenbeek, B-3590, Belgium
| | - Stefanie Verstraelen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt - Campus Diepenbeek, Wetenschapspark 7, Diepenbeek, B-3590, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Raf L J Meesen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt - Campus Diepenbeek, Wetenschapspark 7, Diepenbeek, B-3590, Belgium
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Wilkins EW, Young RJ, Houston D, Kawana E, Lopez Mora E, Sunkara MS, Riley ZA, Poston B. Non-Dominant Hemisphere Excitability Is Unaffected during and after Transcranial Direct Current Stimulation of the Dominant Hemisphere. Brain Sci 2024; 14:694. [PMID: 39061434 PMCID: PMC11274959 DOI: 10.3390/brainsci14070694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) increases primary motor cortex (M1) excitability and improves motor performance when applied unilaterally to the dominant hemisphere. However, the influence of tDCS on contralateral M1 excitability both during and after application has not been quantified. The purpose was to determine the influence of tDCS applied to the dominant M1 on the excitability of the contralateral non-dominant M1. This study employed a double-blind, randomized, SHAM-controlled, within-subject crossover experimental design. Eighteen young adults performed two experimental sessions (tDCS, SHAM) in counterbalanced order separated by a one-week washout. Transcranial magnetic stimulation (TMS) was used to quantify the excitability of the contralateral M1 to which anodal tDCS was applied for 20 min with a current strength of 1 mA. Motor evoked potential (MEP) amplitudes were assessed in 5 TMS test blocks (Pre, D5, D10, D15, and Post). The Pre and Post TMS test blocks were performed immediately before and after tDCS application, whereas the TMS test blocks performed during tDCS were completed at the 5, 10, and 15 min stimulation timepoints. MEPs were analyzed with a 2 condition (tDCS, SHAM) × 5 test (Pre, D5, D10, D15, Post) within-subject ANOVA. The main effect for condition (p = 0.213), the main effect for test (p = 0.502), and the condition × test interaction (p = 0.860) were all not statistically significant. These results indicate that tDCS does not modulate contralateral M1 excitability during or immediately after application, at least under the current set of common tDCS parameters of stimulation.
Collapse
Affiliation(s)
- Erik W. Wilkins
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV 89154, USA;
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada, Las Vegas, NV 89154, USA;
| | - Richard J. Young
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada, Las Vegas, NV 89154, USA;
| | - Daniel Houston
- School of Medicine, University of Nevada, Las Vegas, NV 89154, USA; (D.H.); (E.K.); (E.L.M.)
| | - Eric Kawana
- School of Medicine, University of Nevada, Las Vegas, NV 89154, USA; (D.H.); (E.K.); (E.L.M.)
| | - Edgar Lopez Mora
- School of Medicine, University of Nevada, Las Vegas, NV 89154, USA; (D.H.); (E.K.); (E.L.M.)
| | - Meghana S. Sunkara
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Zachary A. Riley
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV 89154, USA;
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada, Las Vegas, NV 89154, USA;
| |
Collapse
|
3
|
Fernandes LA, Apolinário-Souza T, Castellano G, Fortuna BC, Lage GM. Hand differences in aiming task: A complementary spatial approach and analysis of dynamic brain networks with EEG. Behav Brain Res 2024; 469:114973. [PMID: 38641177 DOI: 10.1016/j.bbr.2024.114973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/21/2024]
Abstract
Left and right-hand exhibit differences in the execution of movements. Particularly, it has been shown that manual goal-directed aiming is more accurate with the right hand than with the left, which has been explained through the shorter time spent by the right hand in the feedback phase (FB). This explanation makes sense for the temporal aspects of the task; however, there is a lack of explanations for the spatial aspects. The present study hypothesizes that the right hand is more associated with the FB, while the left hand is more strongly associated with the pre-programming phase (PP). In addition, the present study aims to investigate differences between hands in functional brain connectivity (FBC). We hypothesize an increase in FBC of the right hand compared to the left hand. Twenty-two participants performed 20 trials of the goal-directed aiming task with both hands. Overall, the results confirm the study's hypotheses. Although the right hand stopped far from the target at the PP, it exhibited a lower final position error than the left hand. These findings imply that during the FB, the right hand compensates for the higher error observed in the PP, using the visual feedback to approach the target more closely than the left hand. Conversely, the left hand displayed a lower error at the PP than the right. Also, the right hand displayed greater FBC within and between brain hemispheres. This heightened connectivity in the right hand might be associated with inhibitory mechanisms between hemispheres.
Collapse
Affiliation(s)
| | | | - Gabriela Castellano
- Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN-FAPESP), Campinas, Brazil
| | | | | |
Collapse
|
4
|
Britton K, Price KM, Caballero A, Ahmed A, Bolin J, Simon-Dack SL. The relationship between neural processing efficiency during inter-hemispheric transfer, alcohol consumption, and sleep quality in college students: an ERP study. JOURNAL OF AMERICAN COLLEGE HEALTH : J OF ACH 2024:1-12. [PMID: 38917359 DOI: 10.1080/07448481.2024.2369900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
Objective: To examine relationships between sleep, alcohol consumption, and a physiological and behavioral marker of cognitive function in college students. College students are in a high risk category for high alcohol consumption and poor sleep quality, two unhealthful behaviors which can lead to poor mental health outcomes and compromised academic performance. Participants: Thirty college students from a large midwestern institution. Methods: Participants performed an interhemispheric transfer task while their electroencephalography was recorded for later examination of event-related potentials. They were also administered the Pittsburgh Sleep Quality Index, the Alcohol Use Disorders Identification Test, and the Alcohol Timeline Follow-Back. Results: Results demonstrate that increased alcohol consumption is associated with poor right-to-left interhemispheric transfer performance, and increased frontal P1 ERP amplitudes to neuro-ipsilateral targets requiring an interhemispheric-transfer. Conclusions: These findings assist in furthering explorations into the impacts of unhealthy behaviors in college students and underlying markers of simple cognitive and behavioral function.
Collapse
|
5
|
Jiang Y, Chen S, Wu D, He W, Ma X, Zhang L, Zhang Q. Case report: Symmetrical and increased lateral sway-based walking training for patients with corpus callosum infarction: a case series. Front Neurol 2024; 15:1330975. [PMID: 38978808 PMCID: PMC11228249 DOI: 10.3389/fneur.2024.1330975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/31/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction Corpus callosum injury is a rare type of injury that occurs after a stroke and can cause lower limb dysfunction and a decrease in activities of daily living ability. Furthermore, there are no studies that focus on the progress in rehabilitation of the lower limb dysfunction caused by infarction in the corpus callosum and the effective treatment plans for this condition. We aimed to present a report of two patients with lower limb dysfunction caused by corpus callosum infarction after a stroke and a walking training method. Methods We implemented a walking training method that prioritizes bilateral symmetry and increases lateral swaying before the patients established sitting/standing balance. The plan is a rapid and effective method for improving walking dysfunction caused by corpus callosum infarction. Case characteristics Following sudden corpus callosum infarction, both patients experienced a significant reduction in lower limb motor function scores and exhibited evident gait disorders. Scale evaluations confirmed that walking training based on symmetrical and increased lateral sway for patients with lower limb motor dysfunction after corpus callosum infarction led to significant symptom improvement. Conclusion We report two cases of sudden motor dysfunction in patients with corpus callosum infarction. Symmetrical and increased lateral sway-based walking training resulted in substantial symptom improvement, as confirmed by scale assessments.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Rehabilitation, Jiangsu Zhongshan Geriatric Rehabilitation Hospital, Nanjing, Jiangsu, China
| | - Sijing Chen
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dan Wu
- Department of Rehabilitation, The Second People's Hospital of Lishui, Lishui, Zhejiang, China
| | - Wei He
- Department of Rehabilitation, Rehabilitation Hospital Affiliated to Nanjing Institute of Physical Education, Wuxi, Jiangsu, China
| | - Xiaoqing Ma
- Department of Rehabilitation, Rehabilitation Hospital Affiliated to Nanjing Institute of Physical Education, Wuxi, Jiangsu, China
| | - Lixia Zhang
- Department of Rehabilitation, The Geriatric Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Zhang
- Department of Rehabilitation, The Geriatric Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Esht V, Alshehri MM, Balasubramanian K, Sanjeevi RR, Shaphe MA, Alhowimel A, Alenazi AM, Alqahtani BA, Alhwoaimel N. Transcranial direct current stimulation (tDCS) for neurological disability among subacute stroke survivors to improve multiple domains in health-related quality of life: Randomized controlled trial protocol. Neurophysiol Clin 2024; 54:102976. [PMID: 38663043 DOI: 10.1016/j.neucli.2024.102976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/23/2024] [Accepted: 03/23/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVES The primary goal of the current proposal is to fill the gaps in the literature by studying the effectiveness of transcranial direct current stimulation (tDCS) on lifestyle parameters, and physical, behavioral, and cognitive functions among stroke survivors, and understanding the factors that mediate the effects of various domains related to Health-related Quality of life (HRQoL) improvements. METHODS Anticipated 64 volunteer subacute stroke survivors (>7 days to 3 months post stroke) aged 40-75 years with National Institutes of Health stroke scale (NIHSS) score of >10 and Mini-Mental State Examination (MMSE) score between 18 and 23 will be randomly assigned at a ratio of 1:1 to receive either: (1) 20 sessions of anodal tDCS or (2) sham tDCS in addition to conventional rehabilitation. Battery driven tDCS will be applied at 2 mA intensity to the dorsolateral prefrontal cortex and primary motor cortex for 20 minutes. The primary endpoints of study will be 36-Item Short Form Survey (SF-36) post intervention at 4 weeks. The secondary outcomes will include Stroke Specific Quality of Life Scale (SS_QOL), Montreal cognitive assessment (MCA), Beck Anxiety Inventory (BAI), Fugl-Meyer Assessment (FMA), 10 m walk test and Modified Barthel Activities of daily living (ADL) Index. At 0.05 level of significance, data normality, within group and between group actual differences will be analyzed with a moderate scope software. DISCUSSION Our knowledge of this technique and its use is expanding daily as tDCS motor recovery studies-mostly single-center studies-in either single session or many sessions have been completed and shown positive results. The field is prepared for a multi-center, carefully planned, sham-controlled, double-blinded tDCS study to comprehensively examine its feasibility and effectiveness in enhancing outcomes in stroke population. CONCLUSION The function of Transcranial Direct Current Stimulation in aiding stroke recuperation will be ascertained.
Collapse
Affiliation(s)
- Vandana Esht
- Physical Therapy Department, College of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia.
| | - Mohammed M Alshehri
- Physical Therapy Department, College of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Karthick Balasubramanian
- Physical Therapy Department, College of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Ramya R Sanjeevi
- Physical Therapy Department, College of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Mohammed A Shaphe
- Physical Therapy Department, College of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Ahmed Alhowimel
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin University, Jazan 45142, Kingdom of Saudi Arabia
| | - Aqeel M Alenazi
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin University, Jazan 45142, Kingdom of Saudi Arabia
| | - Bader A Alqahtani
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin University, Jazan 45142, Kingdom of Saudi Arabia
| | - Norah Alhwoaimel
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin University, Jazan 45142, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Bundt C, Huster RJ. Corticospinal excitability reductions during action preparation and action stopping in humans: Different sides of the same inhibitory coin? Neuropsychologia 2024; 195:108799. [PMID: 38218313 DOI: 10.1016/j.neuropsychologia.2024.108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Motor functions and cognitive processes are closely associated with each other. In humans, this linkage is reflected in motor system state changes both when an action must be prepared and stopped. Single-pulse transcranial magnetic stimulation showed that both action preparation and action stopping are accompanied by a reduction of corticospinal excitability, referred to as preparatory and response inhibition, respectively. While previous efforts have been made to describe both phenomena extensively, an updated and comprehensive comparison of the two phenomena is lacking. To ameliorate such deficit, this review focuses on the role and interpretation of single-coil (single-pulse and paired-pulse) and dual-coil TMS outcome measures during action preparation and action stopping in humans. To that effect, it aims to identify commonalities and differences, detailing how TMS-based outcome measures are affected by states, traits, and psychopathologies in both processes. Eventually, findings will be compared, and open questions will be addressed to aid future research.
Collapse
Affiliation(s)
- Carsten Bundt
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway; Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway.
| | - René J Huster
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway; Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Denyer R, Greeley B, Greenhouse I, Boyd LA. Interhemispheric inhibition between dorsal premotor and primary motor cortices is released during preparation of unimanual but not bimanual movements. Eur J Neurosci 2024; 59:415-433. [PMID: 38145976 DOI: 10.1111/ejn.16224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023]
Abstract
Previous research applying transcranial magnetic stimulation during unimanual reaction time tasks indicates a transient change in the inhibitory influence of the dorsal premotor cortex over the contralateral primary motor cortex shortly after the presentation of an imperative stimulus. The degree of interhemispheric inhibition from the dorsal premotor cortex to the contralateral primary motor cortex shifts depending on whether the targeted effector representation in the primary motor cortex is selected for movement. Further, the timing of changes in inhibition covaries with the selection demands of the reaction time task. Less is known about modulation of dorsal premotor to primary motor cortex interhemispheric inhibition during the preparation of bimanual movements. In this study, we used a dual coil transcranial magnetic stimulation to measure dorsal premotor to primary motor cortex interhemispheric inhibition between both hemispheres during unimanual and bimanual simple reaction time trials. Interhemispheric inhibition was measured early and late in the 'pre-movement period' (defined as the period immediately after the onset of the imperative stimulus and before the beginning of voluntary muscle activity). We discovered that interhemispheric inhibition was more facilitatory early in the pre-movement period compared with late in the pre-movement period during unimanual reaction time trials. In contrast, interhemispheric inhibition was unchanged throughout the pre-movement period during symmetrical bimanual reaction time trials. These results suggest that there is greater interaction between the dorsal premotor cortex and contralateral primary motor cortex during the preparation of unimanual actions compared to bimanual actions.
Collapse
Affiliation(s)
- Ronan Denyer
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Greeley
- Fraser Health Authority, Surrey, British Columbia, Canada
| | - Ian Greenhouse
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Lara A Boyd
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Veldema J, Nowak DA, Bösl K, Gharabaghi A. Hemispheric Differences of 1 Hz rTMS over Motor and Premotor Cortex in Modulation of Neural Processing and Hand Function. Brain Sci 2023; 13:brainsci13050752. [PMID: 37239224 DOI: 10.3390/brainsci13050752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
INTRODUCTION Non-invasive brain stimulation can modulate both neural processing and behavioral performance. Its effects may be influenced by the stimulated area and hemisphere. In this study (EC no. 09083), repetitive transcranial magnetic stimulation (rTMS) was applied to the primary motor cortex (M1) or dorsal premotor cortex (dPMC) of either the right or left hemisphere, while evaluating cortical neurophysiology and hand function. METHODS Fifteen healthy subjects participated in this placebo-controlled crossover study. Four sessions of real 1 Hz rTMS (110% of rMT, 900 pulses) over (i) left M1, (ii) right M1, (iii) left dPMC, (iv) right dPMC, and one session of (v) placebo 1 Hz rTMS (0% of rMT, 900 pulses) over the left M1 were applied in randomized order. Motor function of both hands (Jebsen-Taylor Hand Function Test (JTHFT)) and neural processing within both hemispheres (motor evoked potentials (MEPs), cortical silent period (CSP), and ipsilateral silent period (ISP)) were evaluated prior and after each intervention session. RESULTS A lengthening of CSP and ISP durations within the right hemisphere was induced by 1 Hz rTMS over both areas and hemispheres. No such intervention-induced neurophysiological changes were detected within the left hemisphere. Regarding JTHFT and MEP, no intervention-induced changes ensued. Changes of hand function correlated with neurophysiological changes within both hemispheres, more often for the left than the right hand. CONCLUSIONS Effects of 1 Hz rTMS can be better captured by neurophysiological than behavioral measures. Hemispheric differences need to be considered for this intervention.
Collapse
Affiliation(s)
- Jitka Veldema
- Department of Sport Science, Bielefeld University, 33615 Bielefeld, Germany
| | - Dennis Alexander Nowak
- Department of Neurology, VAMED Hospital Kipfenberg, 85110 Kipfenberg, Germany
- Department of Neurology, University Hospital Marburg, 35043 Marburg, Germany
| | - Kathrin Bösl
- Department of Neurology, VAMED Hospital Kipfenberg, 85110 Kipfenberg, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
10
|
Recovery of Patients With Upper Limb Paralysis Due to Stroke Who Underwent Intervention Using Low-Frequency Repetitive Transcranial Magnetic Stimulation Combined With Occupational Therapy: A Retrospective Cohort Study. Neuromodulation 2023:S1094-7159(23)00104-6. [PMID: 36932028 DOI: 10.1016/j.neurom.2023.02.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVES The combination of repetitive transcranial magnetic stimulation (rTMS) and motor practice is based on the theory of neuromodulation and use-dependent plasticity. Predictive planning of occupational therapy (OT) is important for patients with rTMS conditioning. Recovery characteristics based on the severity of pretreatment upper extremity paralysis can guide the patient's practice plan for using the paretic hand. Therefore, we evaluated the recovery of patients with upper limb paralysis due to stroke who underwent a novel intervention of rTMS combined with OT (NEURO) according to the severity of upper limb paralysis based on the scores of the Fugl-Meyer assessment for upper extremity (FMA-UE) with recovery in proximal upper extremity, wrist, hand, and coordination. MATERIALS AND METHODS In this multicenter retrospective cohort study, the recovery of 1397 patients with upper limb paralysis was analyzed by severity at six hospitals that were accredited by the Japanese Stimulation Therapy Society for treatment. The delta values of the FMA-UE scores before and after NEURO were compared among the groups with severe, moderate, and mild paralysis using the generalized linear model. RESULTS NEURO significantly improved the FMA-UE total score according to the severity of paralysis (severe = 5.3, moderate = 6.0, and mild = 2.9). However, when the FMA-UE subscores were analyzed separately, the results indicated specific improvements in shoulder/elbow, wrist, fingers, and coordination movements, depending on the severity. CONCLUSIONS This study had enough patients who were divided according to severity and stratified by lesion location and handedness parameters. Our results suggest that independently of these factors, the extent of recovery of upper limb motor parts after NEURO varies according to the severity of paralysis.
Collapse
|
11
|
Champagne PL, Blanchette AK, Schneider C. Continuous, and not intermittent, theta-burst stimulation of the unlesioned hemisphere improved brain and hand function in chronic stroke: A case study. BRAIN DISORDERS 2023. [DOI: 10.1016/j.dscb.2022.100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
12
|
Van Malderen S, Hehl M, Verstraelen S, Swinnen SP, Cuypers K. Dual-site TMS as a tool to probe effective interactions within the motor network: a review. Rev Neurosci 2023; 34:129-221. [PMID: 36065080 DOI: 10.1515/revneuro-2022-0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/02/2022] [Indexed: 02/07/2023]
Abstract
Dual-site transcranial magnetic stimulation (ds-TMS) is well suited to investigate the causal effect of distant brain regions on the primary motor cortex, both at rest and during motor performance and learning. However, given the broad set of stimulation parameters, clarity about which parameters are most effective for identifying particular interactions is lacking. Here, evidence describing inter- and intra-hemispheric interactions during rest and in the context of motor tasks is reviewed. Our aims are threefold: (1) provide a detailed overview of ds-TMS literature regarding inter- and intra-hemispheric connectivity; (2) describe the applicability and contributions of these interactions to motor control, and; (3) discuss the practical implications and future directions. Of the 3659 studies screened, 109 were included and discussed. Overall, there is remarkable variability in the experimental context for assessing ds-TMS interactions, as well as in the use and reporting of stimulation parameters, hindering a quantitative comparison of results across studies. Further studies examining ds-TMS interactions in a systematic manner, and in which all critical parameters are carefully reported, are needed.
Collapse
Affiliation(s)
- Shanti Van Malderen
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Melina Hehl
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Stefanie Verstraelen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Koen Cuypers
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| |
Collapse
|
13
|
Hayashi M, Okuyama K, Mizuguchi N, Hirose R, Okamoto T, Kawakami M, Ushiba J. Spatially bivariate EEG-neurofeedback can manipulate interhemispheric inhibition. eLife 2022; 11:76411. [PMID: 35796537 PMCID: PMC9302968 DOI: 10.7554/elife.76411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
Human behavior requires inter-regional crosstalk to employ the sensorimotor processes in the brain. Although external neuromodulation techniques have been used to manipulate interhemispheric sensorimotor activity, a central controversy concerns whether this activity can be volitionally controlled. Experimental tools lack the power to up- or down-regulate the state of the targeted hemisphere over a large dynamic range and, therefore, cannot evaluate the possible volitional control of the activity. We addressed this difficulty by using the recently developed method of spatially bivariate electroencephalography (EEG)-neurofeedback to systematically enable the participants to modulate their bilateral sensorimotor activities. Here, we report that participants learn to up- and down-regulate the ipsilateral excitability to the imagined hand while maintaining constant contralateral excitability; this modulates the magnitude of interhemispheric inhibition (IHI) assessed by the paired-pulse transcranial magnetic stimulation (TMS) paradigm. Further physiological analyses revealed that the manipulation capability of IHI magnitude reflected interhemispheric connectivity in EEG and TMS, which was accompanied by intrinsic bilateral cortical oscillatory activities. Our results show an interesting approach for neuromodulation, which might identify new treatment opportunities, e.g., in patients suffering from a stroke.
Collapse
Affiliation(s)
- Masaaki Hayashi
- Graduate School of Science and Technology, Keio University, Kanagawa, Japan
| | - Kohei Okuyama
- Department of Rehabilitation Medicine, Keio University, Tokyo, Japan
| | - Nobuaki Mizuguchi
- Research Organization of Science and Technology, Ritsumeikan University, Shiga, Japan
| | - Ryotaro Hirose
- Graduate School of Science and Technology, Keio University, Kanagawa, Japan
| | - Taisuke Okamoto
- Graduate School of Science and Technology, Keio University, Kanagawa, Japan
| | | | - Junichi Ushiba
- Faculty of Science and Technology, Keio University, Kanagawa, Japan
| |
Collapse
|
14
|
Tecilla M, Guerra A, Rocchi L, Määttä S, Bologna M, Herrojo Ruiz M, Biundo R, Antonini A, Ferreri F. Action Selection and Motor Decision Making: Insights from Transcranial Magnetic Stimulation. Brain Sci 2022; 12:639. [PMID: 35625025 PMCID: PMC9139261 DOI: 10.3390/brainsci12050639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/07/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
Abstract
In everyday life, goal-oriented motor behaviour relies on the estimation of the rewards/costs associated with alternative actions and on the appropriate selection of movements. Motor decision making is defined as the process by which a motor plan is chosen among a set of competing actions based on the expected value. In the present literature review we discuss evidence from transcranial magnetic stimulation (TMS) studies of motor control. We focus primarily on studies of action selection for instructed movements and motor decision making. In the first section, we delve into the usefulness of various TMS paradigms to characterise the contribution of motor areas and distributed brain networks to cued action selection. Then, we address the influence of motivational information (e.g., reward and biomechanical cost) in guiding action choices based on TMS findings. Finally, we conclude that TMS represents a powerful tool for elucidating the neurophysiological mechanisms underlying action choices in humans.
Collapse
Affiliation(s)
- Margherita Tecilla
- Department of Psychology, Goldsmiths, University of London, London SE146NW, UK; (M.T.); (M.H.R.)
| | - Andrea Guerra
- IRCCS Neuromed, 86077 Pozzilli, Italy; (A.G.); (M.B.)
| | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London WC1N3BG, UK
| | - Sara Määttä
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Matteo Bologna
- IRCCS Neuromed, 86077 Pozzilli, Italy; (A.G.); (M.B.)
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Herrojo Ruiz
- Department of Psychology, Goldsmiths, University of London, London SE146NW, UK; (M.T.); (M.H.R.)
| | - Roberta Biundo
- Department of General Psychology and Study Center for Neurodegeneration (CESNE), University of Padua, 35131 Padua, Italy;
- San Camillo IRCSS Hospital, 30126 Lido di Venezia, Italy
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, 35131 Padua, Italy;
| | - Florinda Ferreri
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, 70211 Kuopio, Finland;
- Unit of Neurology, Unit of Clinical Neurophysiology and Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, 35131 Padua, Italy
| |
Collapse
|
15
|
Comeau N, Monetta L, Schneider C. Noninvasive stimulation of the unlesioned hemisphere and phonological treatment in a case of chronic anomia post-stroke. Neurocase 2022; 28:206-217. [PMID: 35580361 DOI: 10.1080/13554794.2022.2068374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chronic lexical anomia after left hemisphere (LH) stroke improves under personalized phonological treatment (PT). Cortical linking between language and hand motor areas (hand_M1) questioned whether PT-related improvement relies on the unlesioned hemisphere (UH) plasticity when LH is dysfunctional. Our 70-yo-woman case study showed that 10 sessions of excitatory stimulation of UH_hand-M1 combined with PT hastened oral picture naming improvement as compared to sham+PT and changes were maintained together with changes of untrained items andcorticomotor excitability increase. This supports a role of stimulation-induced plasticity of UH_hand M1 in language recovery, at least in the improvement of lexical anomia in chronic stroke.
Collapse
Affiliation(s)
- Noémie Comeau
- Neuroscience Division, Noninvasive Neurostimulation Laboratory, Research Center of CHU de Québec - Université Laval, Québec, Canada
| | - Laura Monetta
- Faculty of Medicine Université Laval, Quebec, Canada.,Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec, Canada.,CIRRIS Research Center, Quebec, Canada
| | - Cyril Schneider
- Neuroscience Division, Noninvasive Neurostimulation Laboratory, Research Center of CHU de Québec - Université Laval, Québec, Canada.,Faculty of Medicine Université Laval, Quebec, Canada.,Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec, Canada
| |
Collapse
|
16
|
Impact of interhemispheric inhibition on bimanual movement control in young and old. Exp Brain Res 2022; 240:687-701. [PMID: 35020040 PMCID: PMC8858275 DOI: 10.1007/s00221-021-06258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 10/23/2021] [Indexed: 12/05/2022]
Abstract
Interhemispheric interactions demonstrate a crucial role for directing bimanual movement control. In humans, a well-established paired-pulse transcranial magnetic stimulation paradigm enables to assess these interactions by means of interhemispheric inhibition (IHI). Previous studies have examined changes in IHI from the active to the resting primary motor cortex during unilateral muscle contractions; however, behavioral relevance of such changes is still inconclusive. In the present study, we evaluated two bimanual tasks, i.e., mirror activity and bimanual anti-phase tapping, to examine behavioral relevance of IHI for bimanual movement control within this behavioral framework. Two age groups (young and older) were evaluated as bimanual movement control demonstrates evident behavioral decline in older adults. Two types of IHI with differential underlying mechanisms were measured; IHI was tested at rest and during a motor task from the active to the resting primary motor cortex. Results demonstrate an association between behavior and short-latency IHI in the young group: larger short-latency IHI correlated with better bimanual movement control (i.e., less mirror activity and better bimanual anti-phase tapping). These results support the view that short-latency IHI represents a neurophysiological marker for the ability to suppress activity of the contralateral side, likely contributing to efficient bimanual movement control. This association was not observed in the older group, suggesting age-related functional changes of IHI. To determine underlying mechanisms of impaired bimanual movement control due to neurological disorders, it is crucial to have an in-depth understanding of age-related mechanisms to disentangle disorder-related mechanisms of impaired bimanual movement control from age-related ones.
Collapse
|
17
|
Luo Y, Chen C, Adamek JH, Crocetti D, Mostofsky SH, Ewen JB. Altered cortical activation associated with mirror overflow driven by non-dominant hand movement in attention-deficit/hyperactivity disorder. Prog Neuropsychopharmacol Biol Psychiatry 2022; 112:110433. [PMID: 34454990 PMCID: PMC9125807 DOI: 10.1016/j.pnpbp.2021.110433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/15/2022]
Abstract
Mirror overflow is involuntary movement that accompanies unilateral voluntary movement on the opposite side of the body, and is commonly seen in Attention-Deficit/Hyperactivity Disorder (ADHD). Children with ADHD show asymmetry in mirror overflow between dominant and non-dominant hand, yet there are competing mechanistic accounts of why this occurs. Using EEG during a sequential, unimanual finger-tapping task, we found that children with ADHD exhibited significantly more mirror overflow than typically developing (TD) controls, especially during the tapping of the non-dominant hand. Furthermore, source-level EEG oscillation analysis revealed that children with ADHD showed decreased alpha (8-12 Hz) event-related desynchronization (ERD) compared with controls in both hemispheres, but only during tapping of the non-dominant hand. Moreover, only the ERD ipsilateral to the mirror overflow during non-dominant hand movement correlated with both magnitude of overflow movements and higher ADHD symptom severity (Conners ADHD Hyperactivity/Impulsiveness scale) in children with ADHD. TD controls did not show these relationships. Our findings suggest that EEG differences in finger-tapping in ADHD are related primarily to voluntary movement in the non-dominant hand. Our results are also consistent with the Ipsilateral Corticospinal Tract (CST) Hypothesis, which posits that the atypical persistence of mirror overflow in ADHD may originate in the sensorimotor areas ipsilateral to mirror overflow and be transmitted via non-decussating CST fibers.
Collapse
Affiliation(s)
- Yu Luo
- School of Biological Science and Medical Engineering, Beihang University, Beijing, BJ, China; Kennedy Krieger Institute, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | - Stewart H Mostofsky
- Kennedy Krieger Institute, Baltimore, MD, USA,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joshua B Ewen
- Kennedy Krieger Institute, Baltimore, MD, USA,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Bange M, Gonzalez-Escamilla G, Marquardt T, Radetz A, Dresel C, Herz D, Schöllhorn WI, Groppa S, Muthuraman M. Deficient Interhemispheric Connectivity Underlies Movement Irregularities in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:381-395. [PMID: 34719510 DOI: 10.3233/jpd-212840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Movement execution is impaired in patients with Parkinson's disease. Evolving neurodegeneration leads to altered connectivity between distinct regions of the brain and altered activity at interconnected areas. How connectivity alterations influence complex movements like drawing spirals in Parkinson's disease patients remains largely unexplored. OBJECTIVE We investigated whether deteriorations in interregional connectivity relate to impaired execution of drawing. METHODS Twenty-nine patients and 31 age-matched healthy control participants drew spirals with both hands on a digital graphics tablet, and the regularity of drawing execution was evaluated by sample entropy. We recorded resting-state fMRI and task-related EEG, and calculated the time-resolved partial directed coherence to estimate effective connectivity for both imaging modalities to determine the extent and directionality of interregional interactions. RESULTS Movement performance in Parkinson's disease patients was characterized by increased sample entropy, corresponding to enhanced irregularities in task execution. Effective connectivity between the motor cortices of both hemispheres, derived from resting-state fMRI, was significantly reduced in Parkinson's disease patients in comparison to controls. The connectivity strength in the nondominant to dominant hemisphere direction in both modalities was inversely correlated with irregularities during drawing, but not with the clinical state. CONCLUSION Our findings suggest that interhemispheric connections are affected both at rest and during drawing movements by Parkinson's disease. This provides novel evidence that disruptions of interhemispheric information exchange play a pivotal role for impairments of complex movement execution in Parkinson's disease patients.
Collapse
Affiliation(s)
- Manuel Bange
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Gabriel Gonzalez-Escamilla
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tabea Marquardt
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Angela Radetz
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Christian Dresel
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Damian Herz
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, UK
| | | | - Sergiu Groppa
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Muthuraman Muthuraman
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
19
|
Yun R, Bogaard AR, Richardson AG, Zanos S, Perlmutter SI, Fetz EE. Cortical Stimulation Paired With Volitional Unimanual Movement Affects Interhemispheric Communication. Front Neurosci 2021; 15:782188. [PMID: 35002605 PMCID: PMC8739774 DOI: 10.3389/fnins.2021.782188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022] Open
Abstract
Cortical stimulation (CS) of the motor cortex can cause excitability changes in both hemispheres, showing potential to be a technique for clinical rehabilitation of motor function. However, previous studies that have investigated the effects of delivering CS during movement typically focus on a single hemisphere. On the other hand, studies exploring interhemispheric interactions typically deliver CS at rest. We sought to bridge these two approaches by documenting the consequences of delivering CS to a single motor cortex during different phases of contralateral and ipsilateral limb movement, and simultaneously assessing changes in interactions within and between the hemispheres via local field potential (LFP) recordings. Three macaques were trained in a unimanual reaction time (RT) task and implanted with epidural or intracortical electrodes over bilateral motor cortices. During a given session CS was delivered to one hemisphere with respect to movements of either the contralateral or ipsilateral limb. Stimulation delivered before contralateral limb movement onset shortened the contralateral limb RT. In contrast, stimulation delivered after the end of contralateral movement increased contralateral RT but decreased ipsilateral RT. Stimulation delivered before ipsilateral limb movement decreased ipsilateral RT. All other stimulus conditions as well as random stimulation and periodic stimulation did not have consistently significant effects on either limb. Simultaneous LFP recordings from one animal revealed correlations between changes in interhemispheric alpha band coherence and changes in RT, suggesting that alpha activity may be indicative of interhemispheric communication. These results show that changes caused by CS to the functional coupling within and between precentral cortices is contingent on the timing of CS relative to movement.
Collapse
Affiliation(s)
- Richy Yun
- Department of Bioengineering, University of Washington, Seattle, WA, United States
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Andrew R. Bogaard
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Andrew G. Richardson
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, New York, NY, United States
| | - Steve I. Perlmutter
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Eberhard E. Fetz
- Department of Bioengineering, University of Washington, Seattle, WA, United States
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| |
Collapse
|
20
|
Verstraelen S, Cuypers K, Maes C, Hehl M, Van Malderen S, Levin O, Mikkelsen M, Meesen RLJ, Swinnen SP. Neurophysiological modulations in the (pre)motor-motor network underlying age-related increases in reaction time and the role of GABA levels - a bimodal TMS-MRS study. Neuroimage 2021; 243:118500. [PMID: 34428570 PMCID: PMC8547554 DOI: 10.1016/j.neuroimage.2021.118500] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 01/10/2023] Open
Abstract
It has been argued that age-related changes in the neurochemical and neurophysiological properties of the GABAergic system may underlie increases in reaction time (RT) in older adults. However, the role of GABA levels within the sensorimotor cortices (SMC) in mediating interhemispheric interactions (IHi) during the processing stage of a fast motor response, as well as how both properties explain interindividual differences in RT, are not yet fully understood. In this study, edited magnetic resonance spectroscopy (MRS) was combined with dual-site transcranial magnetic stimulation (dsTMS) for probing GABA+ levels in bilateral SMC and task-related neurophysiological modulations in corticospinal excitability (CSE), and primary motor cortex (M1)-M1 and dorsal premotor cortex (PMd)-M1 IHi, respectively. Both CSE and IHi were assessed during the preparatory and premotor period of a delayed choice RT task. Data were collected from 25 young (aged 18-33 years) and 28 older (aged 60-74 years) healthy adults. Our results demonstrated that older as compared to younger adults exhibited a reduced bilateral CSE suppression, as well as a reduced magnitude of long latency M1-M1 and PMd-M1 disinhibition during the preparatory period, irrespective of the direction of the IHi. Importantly, in older adults, the GABA+ levels in bilateral SMC partially accounted for task-related neurophysiological modulations as well as individual differences in RT. In contrast, in young adults, neither task-related neurophysiological modulations, nor individual differences in RT were associated with SMC GABA+ levels. In conclusion, this study contributes to a comprehensive initial understanding of how age-related differences in neurochemical properties and neurophysiological processes are related to increases in RT.
Collapse
Affiliation(s)
- Stefanie Verstraelen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, 3590 Diepenbeek, Belgium
| | - Koen Cuypers
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, 3590 Diepenbeek, Belgium; Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium.
| | - Celine Maes
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium; KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Melina Hehl
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, 3590 Diepenbeek, Belgium; Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium
| | - Shanti Van Malderen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium
| | - Oron Levin
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium
| | - Mark Mikkelsen
- Russel H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Raf L J Meesen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, 3590 Diepenbeek, Belgium; Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium
| | - Stephan P Swinnen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium; KU Leuven Brain Institute (LBI), Leuven, Belgium
| |
Collapse
|
21
|
Xia X, Fomenko A, Nankoo JF, Zeng K, Wang Y, Zhang J, Lozano AM, Chen R. Time course of the effects of low-intensity transcranial ultrasound on the excitability of ipsilateral and contralateral human primary motor cortex. Neuroimage 2021; 243:118557. [PMID: 34487826 DOI: 10.1016/j.neuroimage.2021.118557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 01/10/2023] Open
Abstract
Low-intensity transcranial ultrasound stimulation (TUS) is a promising non-invasive brain stimulation technique that can modulate the excitability of cortical and deep brain structures with a high degree of focality. Previous human studies showed that TUS decreases motor cortex (M1) excitability measured by transcranial magnetic stimulation (TMS), but whether the effects appear beyond sonication and whether TUS affects the excitability of other interconnected cortical areas is not known. The time course of M1 TUS on ipsilateral and contralateral M1 excitability was investigated in 22 healthy human subjects via TMS-induced motor-evoked potentials. With sonication duration of 500 ms, we found suppression of M1 excitability from 10 ms before to 20 ms after the end of sonication, and the effects were stronger with blocked design compared to interleaved design. There was no significant effect on contralateral M1 excitability. Using ex-vivo measurements, we showed that the ultrasound transducer did not affect the magnitude or time course of the TMS-induced electromagnetic field. We conclude that the online-suppressive effects of TUS on ipsilateral M1 cortical excitability slightly outlast the sonication but did not produce long-lasting effects. The absence of contralateral effects may suggest that there are little tonic interhemispheric interactions in the resting state, or the intensity of TUS was too low to induce transcallosal inhibition.
Collapse
Affiliation(s)
- Xue Xia
- School of Psychology, Shanghai University of Sport, Shanghai, China; Krembil Research Institute, University Health Network, Toronto, ON, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Anton Fomenko
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | | | - Ke Zeng
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Yanqiu Wang
- School of Psychology, Shanghai University of Sport, Shanghai, China; Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Jian Zhang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Andres M Lozano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
22
|
Neige C, Rannaud Monany D, Lebon F. Exploring cortico-cortical interactions during action preparation by means of dual-coil transcranial magnetic stimulation: A systematic review. Neurosci Biobehav Rev 2021; 128:678-692. [PMID: 34274404 DOI: 10.1016/j.neubiorev.2021.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 05/31/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Action preparation is characterized by a set of complex and distributed processes that occur in multiple brain areas. Interestingly, dual-coil transcranial magnetic stimulation (TMS) is a relevant technique to probe effective connectivity between cortical areas, with a high temporal resolution. In the current systematic review, we aimed at providing a detailed picture of the cortico-cortical interactions underlying action preparation focusing on dual-coil TMS studies. We considered four theoretical processes (impulse control, action selection, movement initiation and action reprogramming) and one task modulator (movement complexity). The main findings highlight 1) the interplay between primary motor cortex (M1) and premotor, prefrontal and parietal cortices during action preparation, 2) the varying (facilitatory or inhibitory) cortico-cortical influence depending on the theoretical processes and the TMS timing, and 3) the key role of the supplementary motor area-M1 interactions that shape the preparation of simple and complex movements. These findings are of particular interest for clinical perspectives, with a need to better characterize functional connectivity deficiency in clinical population with altered action preparation.
Collapse
Affiliation(s)
- Cécilia Neige
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Dylan Rannaud Monany
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Florent Lebon
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France.
| |
Collapse
|
23
|
Ishibashi K, Ishii D, Yamamoto S, Okamoto Y, Wakatabi M, Kohno Y. Asymmetry of Interhemispheric Connectivity during Rapid Movements of Right and Left Hands: A TMS-EEG Study. J Mot Behav 2021; 54:135-145. [PMID: 34180775 DOI: 10.1080/00222895.2021.1930993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The interhemispheric signal propagation (ISP) obtained by electroencephalography during transcranial magnetic stimulation (TMS) allows for the assessment of the interhemispheric connectivity involved in inhibitory processes. To investigate the functional asymmetry of hemispheres during rapid movement, we compared ISP in the left and right hemispheres during rapid hand movements. In 11 healthy right-handed adults, we delivered TMS to the M1 and recorded ISP from the M1 to the contralateral hemisphere. We found that ISP from the left to right hemisphere during right-hand rapid movement was higher than ISP from the right to left hemisphere during the left-hand rapid movement. These results indicate that the left M1 strongly inhibits the right M1, and that the left hemisphere is dominant for rapid movements as well as sequential movements.
Collapse
Affiliation(s)
- Kiyoshige Ishibashi
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Ibaraki, Japan.,Graduate School of Health Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Daisuke Ishii
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan.,Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Satoshi Yamamoto
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Yoshitaka Okamoto
- Department of Rehabilitation, University of Tsukuba Hospital, Ibaraki, Japan
| | - Masahiro Wakatabi
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Ibaraki, Japan
| | - Yutaka Kohno
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| |
Collapse
|
24
|
Turco CV, Nelson AJ. Transcranial Magnetic Stimulation to Assess Exercise-Induced Neuroplasticity. FRONTIERS IN NEUROERGONOMICS 2021; 2:679033. [PMID: 38235229 PMCID: PMC10790852 DOI: 10.3389/fnrgo.2021.679033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/06/2021] [Indexed: 01/19/2024]
Abstract
Aerobic exercise facilitates neuroplasticity and has been linked to improvements in cognitive and motor function. Transcranial magnetic stimulation (TMS) is a non-invasive technique that can be used to quantify changes in neurophysiology induced by exercise. The present review summarizes the single- and paired-pulse TMS paradigms that can be used to probe exercise-induced neuroplasticity, the optimal stimulation parameters and the current understanding of the neurophysiology underlying each paradigm. Further, this review amalgamates previous research exploring the modulation of these paradigms with exercise-induced neuroplasticity in healthy and clinical populations and highlights important considerations for future TMS-exercise research.
Collapse
Affiliation(s)
| | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
25
|
Tian D, Izumi SI, Suzuki E. Modulation of Interhemispheric Inhibition between Primary Motor Cortices Induced by Manual Motor Imitation: A Transcranial Magnetic Stimulation Study. Brain Sci 2021; 11:brainsci11020266. [PMID: 33669827 PMCID: PMC7923080 DOI: 10.3390/brainsci11020266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 11/18/2022] Open
Abstract
Imitation has been proven effective in motor development and neurorehabilitation. However, the relationship between imitation and interhemispheric inhibition (IHI) remains unclear. Transcranial magnetic stimulation (TMS) can be used to investigate IHI. In this study, the modification effects of IHI resulting from mirror neuron system (MNS) activation during different imitations are addressed. We measured IHI between homologous primary motor cortex (M1) by analyzing the ipsilateral silent period (iSP) evoked by single-pulse focal TMS during imitation and analyzed the respective IHI modulation during and after different patterns of imitation. Our main results showed that throughout anatomical imitation, significant time-course changes of iSP duration through the experiment were observed in both directions. iSP duration declined from the pre-imitation time point to the post-imitation time point and did not return to baseline after 30 min rest. We also observed significant iSP reduction from the right hemisphere to the left hemisphere during anatomical and specular imitation, compared with non-imitative movement. Our findings indicate that using anatomical imitation in action observation and execution therapy promotes functional recovery in neurorehabilitation by regulating IHI.
Collapse
Affiliation(s)
- Dongting Tian
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.-i.I.); (E.S.)
- Correspondence:
| | - Shin-ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.-i.I.); (E.S.)
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Biomedical Engineering, Sendai 980-8575, Japan
| | - Eizaburo Suzuki
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.-i.I.); (E.S.)
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata 990-2212, Japan
| |
Collapse
|
26
|
MacDonald HJ, Laksanaphuk C, Day A, Byblow WD, Jenkinson N. The role of interhemispheric communication during complete and partial cancellation of bimanual responses. J Neurophysiol 2021; 125:875-886. [PMID: 33567982 DOI: 10.1152/jn.00688.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Precise control of upper limb movements in response to external stimuli is vital to effectively interact with the environment. Accurate execution of bimanual movement is known to rely on finely orchestrated interhemispheric communication between the primary motor cortices (M1s). However, relatively little is known about the role of interhemispheric communication during sudden cancellation of prepared bimanual movement. The current study investigated the role of interhemispheric interactions during complete and partial cancellation of bimanual movement. In two experiments, healthy young human participants received transcranial magnetic stimulation to both M1s during a bimanual response inhibition task. The increased corticomotor excitability in anticipation of bimanual movement was accompanied by a release of inhibition from both M1s. After a stop cue, inhibition was reengaged onto both hemispheres to successfully cancel the complete bimanual response. However, when the stop cue signaled partial cancellation (stopping of one digit only), inhibition was reengaged with regard to the cancelled digit, but the responding digit representation was facilitated. This bifurcation in interhemispheric communication between M1s occurred 75 ms later in the more difficult condition when the nondominant, as opposed to dominant, hand was still responding. Our results demonstrate that interhemispheric communication is integral to response inhibition once a bimanual response has been prepared. Interestingly, M1-M1 interhemispheric circuitry does not appear to be responsible for the nonselective suppression of all movement components that has been observed during partial cancellation. Instead such interhemispheric communication enables uncoupling of bimanual response components and facilitates the selective initiation of just the required unimanual movement.NEW & NOTEWORTHY We provide the first evidence that interhemispheric communication plays an important role during sudden movement cancellation of two-handed responses. Simultaneously increased inhibition onto both hemispheres assists with two-handed movement cancellation. However, this network is not responsible for the widespread suppression of motor activity observed when only one of the two hands is cancelled. Instead, communication between hemispheres enables the separation of motor activity for the two hands and helps to execute the required one-handed response.
Collapse
Affiliation(s)
- Hayley J MacDonald
- School of Sport, Exercise and Rehabilitation Sciences, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Chotica Laksanaphuk
- Faculty of Physical Therapy and Sports Medicine, Rangsit University, Pathumthani, Thailand
| | - Alice Day
- School of Sport, Exercise and Rehabilitation Sciences, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Winston D Byblow
- Department of Exercise Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Ned Jenkinson
- School of Sport, Exercise and Rehabilitation Sciences, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
27
|
Jongsma MLA, Steenbergen B, Baas CM, Aarts PB, van Rijn CM. Lateralized EEG mu power during action observation and motor imagery in typically developing children and children with unilateral Cerebral Palsy. Clin Neurophysiol 2020; 131:2829-2840. [PMID: 33152523 DOI: 10.1016/j.clinph.2020.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE During motor execution (ME), mu power is diminished over the contralateral hemisphere and increased over the ipsilateral hemisphere, which has been associated with cortical activation of the contralateral motor areas and inhibition of the ipsilateral motor areas respectively. The influence of action observation (AO) and motor imagery (MI) on mu power is less clear, especially in children, and remains to be studied in children with unilateral cerebral palsy (uCP). METHODS We determined mu power during ME, AO, and MI of 45 typically developing (TD) children and 15 children with uCP over both hemispheres, for each hand. RESULTS In TD children, over the left hemisphere mu power was lowered during ME when the right hand was used. In line, over the right hemisphere mu power was lowered when the left hand was addressed. In addition, during AO and MI increased mu power was observed when the right hand was addressed. In children with uCP, over the spared hemisphere mu power was diminished during ME when the less-affected hand was used. However, over the lesioned hemisphere, no mu changes were observed. CONCLUSIONS The results of TD children fit the activation/inhibition model of mu power. SIGNIFICANCE The results of children with uCP suggest that the lesioned hemisphere is unresponsive to the motor tasks.
Collapse
Affiliation(s)
| | - Bert Steenbergen
- Behavioural Science Institute, Radboud University Nijmegen, the Netherlands; CeDDR, Australian Catholic University, Melbourne, Australia
| | - C Marjolein Baas
- Behavioural Science Institute, Radboud University Nijmegen, the Netherlands
| | | | - Clementina M van Rijn
- Donders Institute for Brain, Cognition, and Behaviour, Donders Centre for Cognition, Radboud University Nijmegen, the Netherlands
| |
Collapse
|
28
|
Xia X, Wang D, Song Y, Zhu M, Li Y, Chen R, Zhang J. Involvement of the primary motor cortex in the early processing stage of the affective stimulus-response compatibility effect in a manikin task. Neuroimage 2020; 225:117485. [PMID: 33132186 DOI: 10.1016/j.neuroimage.2020.117485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 11/18/2022] Open
Abstract
Compatible (positive approaching and negative avoiding) and incompatible (positive avoiding and negative approaching) behavior are of great significance for biological adaptation and survival. Previous research has found that reaction times of compatible behavior are shorter than the incompatible behavior, which is termed the stimulus-response compatibility (SRC) effect. However, the underlying neurophysiological mechanisms of the SRC effect applied to affective stimuli is still unclear. Here, we investigated preparatory activities in both the left and right primary motor cortex (M1) before the execution of an approaching-avoiding behavior using the right index finger in a manikin task based on self-identity. The results showed significantly shorter reaction times for compatible than incompatible behavior. Most importantly, motor-evoked potential (MEP) amplitudes from left M1 stimulation were significantly higher during compatible behavior than incompatible behavior at 150 and 200 ms after stimulus presentation, whereas the reversed was observed for right M1 stimulation with lower MEP amplitude in compatible compared to incompatible behavior at 150 ms. The current findings revealed the compatibility effect at both behavioral and neurophysiological levels, indicating that the affective SRC effect occurs early in the motor cortices during stimulus processing, and MEP modulation at this early processing stage could be a physiological marker of the affective SRC effect.
Collapse
Affiliation(s)
- Xue Xia
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Dandan Wang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yuyu Song
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Mengyan Zhu
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yansong Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Jian Zhang
- School of Psychology, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
29
|
Quoilin C, Dricot L, Genon S, de Timary P, Duque J. Neural bases of inhibitory control: Combining transcranial magnetic stimulation and magnetic resonance imaging in alcohol-use disorder patients. Neuroimage 2020; 224:117435. [PMID: 33039622 DOI: 10.1016/j.neuroimage.2020.117435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/28/2020] [Accepted: 10/04/2020] [Indexed: 12/22/2022] Open
Abstract
Inhibitory control underlies the ability to inhibit inappropriate responses and involves processes that suppress motor excitability. Such motor modulatory effect has been largely described during action preparation but very little is known about the neural circuit responsible for its implementation. Here, we addressed this point by studying the degree to which the extent of preparatory suppression relates to brain morphometry. We investigated this relationship in patients suffering from severe alcohol use disorder (AUD) because this population displays an inconsistent level of preparatory suppression and major structural brain damage, making it a suitable sample to measure such link. To do so, 45 detoxified patients underwent a structural magnetic resonance imaging (MRI) and performed a transcranial magnetic stimulation (TMS) experiment, in which the degree of preparatory suppression was quantified. Besides, behavioral inhibition and trait impulsivity were evaluated in all participants. Overall, whole-brain analyses revealed that a weaker preparatory suppression was associated with a decrease in cortical thickness of a medial prefrontal cluster, encompassing parts of the anterior cingulate cortex and superior-frontal gyrus. In addition, a negative association was observed between the thickness of the supplementary area (SMA)/pre-SMA and behavioral inhibition abilities. Finally, we did not find any significant correlation between preparatory suppression, behavioral inhibition and trait impulsivity, indicating that they represent different facets of inhibitory control. Altogether, the current study provides important insight on the neural regions underlying preparatory suppression and allows highlighting that the excitability of the motor system represents a valuable read-out of upstream cognitive processes.
Collapse
Affiliation(s)
- Caroline Quoilin
- Institute of Neuroscience, Université catholique de Louvain, Ave Mounier, 53 - Bte B1.53.04, 1200 Brussels, Belgium.
| | - Laurence Dricot
- Institute of Neuroscience, Université catholique de Louvain, Ave Mounier, 53 - Bte B1.53.04, 1200 Brussels, Belgium
| | - Sarah Genon
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Jülich Forschungszentrum, Germany
| | - Philippe de Timary
- Institute of Neuroscience, Université catholique de Louvain, Ave Mounier, 53 - Bte B1.53.04, 1200 Brussels, Belgium; Department of adult psychiatry, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Julie Duque
- Institute of Neuroscience, Université catholique de Louvain, Ave Mounier, 53 - Bte B1.53.04, 1200 Brussels, Belgium
| |
Collapse
|
30
|
Yang CL, Lim SB, Peters S, Eng JJ. Cortical Activation During Shoulder and Finger Movements in Healthy Adults: A Functional Near-Infrared Spectroscopy (fNIRS) Study. Front Hum Neurosci 2020; 14:260. [PMID: 32733221 PMCID: PMC7362764 DOI: 10.3389/fnhum.2020.00260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/12/2020] [Indexed: 02/03/2023] Open
Abstract
Characterization of cortical activation patterns during movement of the upper extremity in healthy adults is helpful in understanding recovery mechanisms following neurological disorders. This study explores cortical activation patterns associated with movements of the shoulder and fingers in healthy adults using functional near-infrared spectroscopy (fNIRS). Twelve healthy right-handed participants were recruited. Two motor tasks (shoulder abduction and finger extension) with two different trial lengths (10 s and 20 s) were performed in a sitting position at a rate of 0.5 Hz. The hemodynamic response, as indicated by oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR), over both hemispheres was acquired using a 54-channel fNIRS system. We found a generalized bilateral cortical activation during both motor tasks with greater activation in the contralateral compared to the ipsilateral primary motor cortex. Particularly in the more medial part of the contralateral hemisphere, significant higher activation was found during the shoulder compared to finger movements. Furthermore, cortical activation patterns are affected not only by motor tasks but also by trial lengths. HbO is more sensitive to detect cortical activation during finger movements in longer trials, while HbR is a better surrogate to capture active areas during shoulder movement in shorter trials. Based on these findings, reporting both HbO and HbR is strongly recommended for future fNIRS studies, and trial lengths should be taken into account when designing experiments and explaining results. Our findings demonstrating distinct cortical activation patterns associated with shoulder and finger movements in healthy adults provide a foundation for future research to study recovery mechanisms following neurological disorders.
Collapse
Affiliation(s)
- Chieh-Ling Yang
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver, BC, Canada
| | - Shannon B Lim
- Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver, BC, Canada.,Graduate Programs in Rehabilitation Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sue Peters
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver, BC, Canada
| | - Janice J Eng
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver, BC, Canada
| |
Collapse
|
31
|
Yamaguchi A, Sasaki A, Masugi Y, Milosevic M, Nakazawa K. Changes in corticospinal excitability during bilateral and unilateral lower-limb force control tasks. Exp Brain Res 2020; 238:1977-1987. [PMID: 32591958 DOI: 10.1007/s00221-020-05857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 06/17/2020] [Indexed: 10/24/2022]
Abstract
Ankle dorsiflexion force control is essential for performing daily living activities. However, the involvement of the corticospinal pathway during different ankle dorsiflexion tasks is not well understood. The objective of this study was to compare the corticospinal excitability during: (1) unilateral and bilateral; and (2) ballistic and tonic ankle dorsiflexion force control. Fifteen healthy young adults (age: 25.2 ± 2.8 years) participated in this study. Participants performed unilateral and bilateral isometric ankle dorsiflexion force-control tasks, which required matching a visual target (10% of maximal effort) as quickly and precisely as possible during ballistic and tonic contractions. Transcranial magnetic stimulation (TMS) was applied over the primary motor cortex to elicit motor-evoked potentials (MEPs) from the right tibialis anterior during: (i) pre-contraction phase; (ii) ascending contraction phase; (iii) plateau phase (tonic tasks only); and (iv) resting phase (control). Peak-to-peak MEP amplitude was computed to compare the corticospinal excitability during each experimental condition. MEP amplitudes significantly increased during unilateral contraction compared to bilateral contraction in the pre-contraction phase. There were no significant differences in the MEP amplitudes between the ballistic tasks and tonic tasks in any parts of the contraction phase. Although different strategies are required during ballistic and tonic contractions, the extent of corticospinal involvement appears to be similar. This could be because both tasks enhance the preparation for precise force control. Furthermore, our results suggest that unilateral muscle contractions may largely facilitate the central nervous system during movement preparation for unilateral force control compared to bilateral muscle contractions.
Collapse
Affiliation(s)
- Akiko Yamaguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Yohei Masugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Institute of Sports Medicine and Science, Tokyo International University, 2509 Matoba, Kawagoe-shi, Saitama, 350-1198, Japan
| | - Matija Milosevic
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
32
|
Advanced TMS approaches to probe corticospinal excitability during action preparation. Neuroimage 2020; 213:116746. [DOI: 10.1016/j.neuroimage.2020.116746] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
|
33
|
Chettouf S, Rueda-Delgado LM, de Vries R, Ritter P, Daffertshofer A. Are unimanual movements bilateral? Neurosci Biobehav Rev 2020; 113:39-50. [DOI: 10.1016/j.neubiorev.2020.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/07/2020] [Accepted: 03/02/2020] [Indexed: 12/31/2022]
|
34
|
Verstraelen S, van Dun K, Duque J, Fujiyama H, Levin O, Swinnen SP, Cuypers K, Meesen RLJ. Induced Suppression of the Left Dorsolateral Prefrontal Cortex Favorably Changes Interhemispheric Communication During Bimanual Coordination in Older Adults-A Neuronavigated rTMS Study. Front Aging Neurosci 2020; 12:149. [PMID: 32547388 PMCID: PMC7272719 DOI: 10.3389/fnagi.2020.00149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Recent transcranial magnetic stimulation (TMS) research indicated that the ability of the dorsolateral prefrontal cortex (DLPFC) to disinhibit the contralateral primary motor cortex (M1) during motor preparation is an important predictor for bimanual motor performance in both young and older healthy adults. However, this DLPFC-M1 disinhibition is reduced in older adults. Here, we transiently suppressed left DLPFC using repetitive TMS (rTMS) during a cyclical bimanual task and investigated the effect of left DLPFC suppression: (1) on the projection from left DLPFC to the contralateral M1; and (2) on motor performance in 21 young (mean age ± SD = 21.57 ± 1.83) and 20 older (mean age ± SD = 69.05 ± 4.48) healthy adults. As predicted, without rTMS, older adults showed compromised DLPFC-M1 disinhibition as compared to younger adults and less preparatory DLPFC-M1 disinhibition was related to less accurate performance, irrespective of age. Notably, rTMS-induced DLPFC suppression restored DLPFC-M1 disinhibition in older adults and improved performance accuracy right after the local suppression in both age groups. However, the rTMS-induced gain in disinhibition was not correlated with the gain in performance. In sum, this novel rTMS approach advanced our mechanistic understanding of how left DLPFC regulates right M1 and allowed us to establish the causal role of left DLPFC in bimanual coordination.
Collapse
Affiliation(s)
- Stefanie Verstraelen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Kim van Dun
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Julie Duque
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Hakuei Fujiyama
- Discipline of Psychology, Exercise Science, Chiropractic and Counselling College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Oron Levin
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Koen Cuypers
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium.,Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Raf L J Meesen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium.,Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Transcranial Direct Current Stimulation for Motor Recovery Following Brain Injury. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020. [DOI: 10.1007/s40141-020-00262-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
36
|
Cabibel V, Hordacre B, Perrey S. Implication of the ipsilateral motor network in unilateral voluntary muscle contraction: the cross-activation phenomenon. J Neurophysiol 2020; 123:2090-2098. [DOI: 10.1152/jn.00064.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Voluntary force production requires that the brain produces and transmits a motor command to the muscles. It is widely acknowledged that motor commands are executed from the primary motor cortex (M1) located in the contralateral hemisphere. However, involvement of M1 located in the ipsilateral hemisphere during moderate to high levels of unilateral muscle contractions (>30% of the maximum) has been disclosed in recent years. This phenomenon has been termed cross-activation. The activation of the ipsilateral M1 relies on complex inhibitory and excitatory interhemispheric interactions mediated via the corpus callosum and modulated according to the contraction level. The regulatory mechanisms underlying these interhemispheric interactions, especially excitatory ones, remain vague, and contradictions exist in the literature. In addition, very little is known regarding the possibility that other pathways could also mediate the cross-activation. In the present review, we will therefore summarize the concept of cross-activation during unilateral voluntary muscle contraction and explore the associated mechanisms and other nervous system pathways underpinning this response. A broader knowledge of these mechanisms would consequently allow a better comprehension of the motor system as a whole, as distant brain networks working together to produce the motor command.
Collapse
Affiliation(s)
- Vincent Cabibel
- EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, Montpellier, France
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| | - Stéphane Perrey
- EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, Montpellier, France
| |
Collapse
|
37
|
Caria A, da Rocha JLD, Gallitto G, Birbaumer N, Sitaram R, Murguialday AR. Brain-Machine Interface Induced Morpho-Functional Remodeling of the Neural Motor System in Severe Chronic Stroke. Neurotherapeutics 2020; 17:635-650. [PMID: 31802435 PMCID: PMC7283440 DOI: 10.1007/s13311-019-00816-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Brain-machine interfaces (BMI) permit bypass motor system disruption by coupling contingent neuroelectric signals related to motor activity with prosthetic devices that enhance afferent and proprioceptive feedback to the somatosensory cortex. In this study, we investigated neural plasticity in the motor network of severely impaired chronic stroke patients after an EEG-BMI-based treatment reinforcing sensorimotor contingency of ipsilesional motor commands. Our structural connectivity analysis revealed decreased fractional anisotropy in the splenium and body of the corpus callosum, and in the contralesional hemisphere in the posterior limb of the internal capsule, the posterior thalamic radiation, and the superior corona radiata. Functional connectivity analysis showed decreased negative interhemispheric coupling between contralesional and ipsilesional sensorimotor regions, and decreased positive intrahemispheric coupling among contralesional sensorimotor regions. These findings indicate that BMI reinforcing ipsilesional brain activity and enhancing proprioceptive function of the affected hand elicits reorganization of contralesional and ipsilesional somatosensory and motor-assemblies as well as afferent and efferent connection-related motor circuits that support the partial re-establishment of the original neurophysiology of the motor system even in severe chronic stroke.
Collapse
Affiliation(s)
- Andrea Caria
- Department of Psychology and Cognitive Sciences, University of Trento, Corso Bettini 33, 38068, Rovereto, Italy.
- Istituto di Ricovero e Cura a Carattere Scientifico, Fondazione Ospedale San Camillo, Venice, Italy.
- Institut für Medizinische Psychologie und Verhaltensneurobiologie, Universität Tübingen, Tübingen, Germany.
| | - Josué Luiz Dalboni da Rocha
- Brain and Language Laboratory, Department of Clinical Neuroscience, University of Geneva, Geneva, Switzerland
| | - Giuseppe Gallitto
- Department of Psychology and Cognitive Sciences, University of Trento, Corso Bettini 33, 38068, Rovereto, Italy
| | - Niels Birbaumer
- Institut für Medizinische Psychologie und Verhaltensneurobiologie, Universität Tübingen, Tübingen, Germany
| | - Ranganatha Sitaram
- Institute of Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Psychiatry, Section of Neuroscience, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Brain-Machine Interfaces and Neuromodulation, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ander Ramos Murguialday
- Institut für Medizinische Psychologie und Verhaltensneurobiologie, Universität Tübingen, Tübingen, Germany
- Health Technologies Department, TECNALIA, San Sebastian, Spain
| |
Collapse
|
38
|
On the Neurocircuitry of Grasping: The influence of action intent on kinematic asymmetries in reach-to-grasp actions. Atten Percept Psychophys 2020; 81:2217-2236. [PMID: 31290131 DOI: 10.3758/s13414-019-01805-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Evidence from electrophysiology suggests that nonhuman primates produce reach-to-grasp movements based on their functional end goal rather than on the biomechanical requirements of the movement. However, the invasiveness of direct-electrical stimulation and single-neuron recording largely precludes analogous investigations in humans. In this review, we present behavioural evidence in the form of kinematic analyses suggesting that the cortical circuits responsible for reach-to-grasp actions in humans are organized in a similar fashion. Grasp-to-eat movements are produced with significantly smaller and more precise maximum grip apertures (MGAs) than are grasp-to-place movements directed toward the same objects, despite near identical mechanical requirements of the two subsequent (i.e., grasp-to-eat and grasp-to-place) movements. Furthermore, the fact that this distinction is limited to right-handed movements suggests that the system governing reach-to-grasp movements is asymmetric. We contend that this asymmetry may be responsible, at least in part, for the preponderance of right-hand dominance among the global population.
Collapse
|
39
|
Tuning the Corticospinal System: How Distributed Brain Circuits Shape Human Actions. Neuroscientist 2020; 26:359-379. [DOI: 10.1177/1073858419896751] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Interactive behaviors rely on the operation of several processes allowing the control of actions, including their selection, withholding, and cancellation. The corticospinal system provides a unique route through which multiple brain circuits can exert control over bodily motor acts. In humans, the influence of these modulatory circuits on the corticospinal system can be probed using various transcranial magnetic stimulation (TMS) protocols. Here, we review neural data from TMS studies at the basis of our current understanding of how diverse pathways—including intra-cortical, trans-cortical, and subcortico-cortical circuits—contribute to action control by tuning the activity of the corticospinal system. Critically, when doing so, we point out important caveats in the field that arise from the fact that these circuits, and their impact on the corticospinal system, have not been considered equivalently for action selection, withholding, and cancellation. This has led to the misleading view that some circuits or regions are specialized in specific control processes and that they produce particular modulatory changes in corticospinal excitability (e.g., generic vs. specific modulation of corticospinal excitability). Hence, we point to the need for more transversal research approaches in the field of action control.
Collapse
|
40
|
Johnson B, Jobst C, Al-Loos R, He W, Cheyne D. Individual differences in motor development during early childhood: An MEG study. Dev Sci 2020; 23:e12935. [PMID: 31869490 DOI: 10.1111/desc.12935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 11/28/2022]
Abstract
In a previous study, we reported the first measurements of pre-movement and sensorimotor cortex activity in preschool age children (ages 3-5 years) using a customized pediatric magnetoencephalographic system. Movement-related activity in the sensorimotor cortex differed from that typically observed in adults, suggesting that maturation of cortical motor networks was still incomplete by late preschool age. Here we compare these earlier results to a group of school age children (ages 6-8 years) including seven children from the original study measured again two years later, and a group of adults (mean age 31.1 years) performing the same task. Differences in movement-related brain activity were observed both longitudinally within children in which repeated measurements were made, and cross-sectionally between preschool age children, school age children, and adults. Movement-related mu (8-12 Hz) and beta (15-30 Hz) oscillations demonstrated linear increases in amplitude and mean frequency with age. In contrast, movement-evoked gamma synchronization demonstrated a step-like transition from low (30-50 Hz) to high (70-90 Hz) narrow-band oscillations, and this occurred at different ages in different children. Notably, pre-movement activity ('readiness fields') observed in adults was absent in even the oldest children. These are the first direct observations of brain activity accompanying motor responses throughout early childhood, confirming that maturation of this activity is still incomplete by mid-childhood. In addition, individual children demonstrated markedly different developmental trajectories in movement-related brain activity, suggesting that individual differences need to be taken into account when studying motor development across age groups.
Collapse
Affiliation(s)
- Blake Johnson
- Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| | - Cecilia Jobst
- Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Rita Al-Loos
- Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Wei He
- Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| | - Douglas Cheyne
- Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
He JL, Fuelscher I, Coxon J, Chowdhury N, Teo WP, Barhoun P, Enticott P, Hyde C. Individual differences in intracortical inhibition predict motor-inhibitory performance. Exp Brain Res 2019; 237:2715-2727. [DOI: 10.1007/s00221-019-05622-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
|
42
|
Picelli A, Brugnera A, Filippetti M, Mattiuz N, Chemello E, Modenese A, Gandolfi M, Waldner A, Saltuari L, Smania N. Effects of two different protocols of cerebellar transcranial direct current stimulation combined with transcutaneous spinal direct current stimulation on robot-assisted gait training in patients with chronic supratentorial stroke: A single blind, randomized controlled trial. Restor Neurol Neurosci 2019; 37:97-107. [PMID: 30958319 DOI: 10.3233/rnn-180895] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The neural organization of locomotion involves motor patterns generated by spinal interneuronal networks and supraspinal structures, which are approachable by noninvasive stimulation techniques. Recent evidences supported the hypothesis that transcranial direct current stimulation (combined with transcutaneous spinal direct current stimulation) may actually enhance the effects of robot-assisted gait training in chronic stroke patients. The cerebellum has many connections to interact with neocortical areas and may provide some peculiar plasticity mechanisms. So, it has been proposed as "non-lesioned entry" to the motor or cognitive system for the application of noninvasive stimulation techniques in patients with supratentorial stroke. OBJECTIVE To compare the effects of two different protocols of cerebellar transcranial direct current stimulation combined with transcutaneous spinal direct current stimulation on robotic gait training in patients with chronic supratentorial stroke. METHODS Forty patients with chronic supratentorial stroke were randomly assigned into two groups. All patients received ten, 20-minute robotic gait training sessions, five days a week, for two consecutive weeks. Group 1 underwent cathodal transcranial direct current stimulation over the contralesional cerebellar hemisphere + cathodal transcutaneous spinal direct current stimulation in combination with robotic training. Group 2 underwent cathodal transcranial direct current stimulation over the ipsilesional cerebellar hemisphere + cathodal transcutaneous spinal direct current stimulation in combination with robotic training. The primary outcome was the 6-minute walk test performed before, after, and at follow-up at 2 and 4 weeks post-treatment. RESULTS No significant difference in the 6-minute walk test between groups was found at the first post-treatment evaluation (P = 0.976), as well as at the 2-week (P = 0.178) and the 4-week (P = 0.069) follow-up evaluations. Both groups showed significant within-group improvements in the 6-minute walk test at all time points.∥Conclusions: Our findings support the hypothesis that cathodal transcranial direct current stimulation over the contralesional or ipsilesional cerebellar hemisphere in combination with cathodal transcutaneous spinal direct current stimulation may lead to similar effects on robotic gait training in chronic supratentorial stroke patients.
Collapse
Affiliation(s)
- Alessandro Picelli
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy.,Department of Neurosciences, Neurorehabilitation Unit, Hospital Trust of Verona, Verona, Italy
| | - Annalisa Brugnera
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Mirko Filippetti
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Nicola Mattiuz
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Elena Chemello
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Angela Modenese
- Department of Neurosciences, Neurorehabilitation Unit, Hospital Trust of Verona, Verona, Italy
| | - Marialuisa Gandolfi
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy.,Department of Neurosciences, Neurorehabilitation Unit, Hospital Trust of Verona, Verona, Italy
| | - Andreas Waldner
- Villa Melitta Rehabilitation Clinic, Bolzano, Italy.,Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Leopold Saltuari
- Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy.,Department of Neurology, Hochzirl Hospital, Zirl, Austria
| | - Nicola Smania
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy.,Department of Neurosciences, Neurorehabilitation Unit, Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
43
|
Al-Wasity SMH, Pollick F, Sosnowska A, Vuckovic A. Cortical Functional Domains Show Distinctive Oscillatory Dynamic in Bimanual and Mirror Visual Feedback Tasks. Front Comput Neurosci 2019; 13:30. [PMID: 31143108 PMCID: PMC6521734 DOI: 10.3389/fncom.2019.00030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 04/24/2019] [Indexed: 11/13/2022] Open
Abstract
It is believed that Mirror Visual Feedback (MVF) increases the interlimb transfer but the exact mechanism is still a matter of debate. The aim of this study was to compare between a bimanual task (BM) and a MVF task, within functionally rather than geometrically defined cortical domains. Measure Projection Analysis (MPA) approach was applied to compare the dynamic oscillatory activity (event-related synchronization/desynchronization ERS/ERD) between and within domains. EEG was recorded in 14 healthy participants performing a BM and an MVF task with the right hand. The MPA was applied on fitted equivalent current dipoles based on independent components to define domains containing functionally similar areas. The measure of intradomain similarity was a "signed mutual information," a parameter based on the coherence. Domain analysis was performed for joint tasks (BM and MVF) and for each task separately. MVF created 9 functional domains while MB task had only 4 functionally distinctive domains, two over the left hemispheres and two bilateraly. For all domains identified for BM task alone, similar domains could be identified in MVF and joint tasks analysis. In addition MVF had domains related to motor planning on the right hemisphere and to self-recognition of action. For joint tasks analysis, seven domains were identified, with similar functions for the left and the right hand with exception of a domain covering BA32 (self-recognition of action) of the left hand only. In joint task domain analysis, the ERD/ERS showed a larger difference between domains than between tasks. All domains which involved the sensory cortex had a visible beta ERS at the onset of movement, and post movement beta ERS. The frequency of ERD varied between domains. Largest difference between tasks existed in domains responsible for the awareness of action. In conclusion, functionally distinctive domains have different ERD/ERS patterns, similar for both tasks. MVF activates contralateral hemisphere in similar manner to BM movements, while at the same time also activating the ipsilateral hemisphere. Significance: Following stroke cortical activation and interhemispheric inhibition from the contralesional side is reduced. MVF creates stronger ipsilateral activity than BM, which is highly relevant of neurorehabilitation of movements.
Collapse
Affiliation(s)
- Salim M H Al-Wasity
- Rehabiliation Engineering Lab, Biomedical Engineering Research Division, University of Glasgow, Glasgow, United Kingdom.,Department of Computer Science, University of Wasit, Kut, Iraq
| | - Frank Pollick
- School of Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Anna Sosnowska
- Rehabiliation Engineering Lab, Biomedical Engineering Research Division, University of Glasgow, Glasgow, United Kingdom
| | - Aleksandra Vuckovic
- Rehabiliation Engineering Lab, Biomedical Engineering Research Division, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
44
|
Turco CV, Fassett HJ, Locke MB, El-Sayes J, Nelson AJ. Parallel modulation of interhemispheric inhibition and the size of a cortical hand muscle representation during active contraction. J Neurophysiol 2019; 122:368-377. [PMID: 31116626 DOI: 10.1152/jn.00030.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interhemispheric inhibition (IHI) between motor cortexes is thought to suppress unwanted mirror movements during voluntary behaviors and can be assessed using paired-pulse transcranial magnetic stimulation (TMS). The magnitude of IHI may be related to the size of the cortical representation for a given muscle as a mechanism for facilitating unimanual control. To date, the relationship between IHI and cortical muscle representations remains unknown. Fifteen healthy, right-handed individuals participated in the present study. IHI was examined in the right first dorsal interosseous (FDI) muscle by delivering conditioning TMS to ipsilateral (right) primary motor cortex (M1) followed by a test TMS pulse to contralateral (left) M1. The size of the FDI representation in M1 was determined by delivering suprathreshold TMS over a 5 × 5-cm grid centered on the FDI motor hotspot of the left M1. Both IHI and cortical territory were obtained during three conditions: rest, contralateral (right) FDI contraction, and ipsilateral (left) FDI contraction. Results indicate a significant association between IHI and the size of the FDI representation only in the context of contraction and not when the FDI muscle was relaxed. Specifically, reduced IHI corresponded to larger cortical FDI representations during both contralateral and ipsilateral contraction. These data demonstrate that, for a muscle of the hand, the magnitude of IHI and the cortical territory are associated within the context of muscle contraction. NEW & NOTEWORTHY This study provides evidence from noninvasive brain stimulation that communication between the motor cortexes of the two hemispheres plays a role in shaping the motor cortical map that outputs to a hand muscle during active contraction of that muscle. This relationship exists only when the hand muscle is contracted. The findings presented further our understanding of motor control during unilateral movement and may inform future research targeting clinical populations that exhibit impaired unilateral control.
Collapse
Affiliation(s)
- Claudia V Turco
- Department of Kinesiology, McMaster University , Hamilton, Ontario , Canada
| | - Hunter J Fassett
- Department of Kinesiology, McMaster University , Hamilton, Ontario , Canada
| | - Mitchell B Locke
- Department of Kinesiology, McMaster University , Hamilton, Ontario , Canada
| | - Jenin El-Sayes
- Department of Kinesiology, McMaster University , Hamilton, Ontario , Canada
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University , Hamilton, Ontario , Canada
| |
Collapse
|
45
|
Shared right-hemispheric representations of sensorimotor goals in dynamic task environments. Exp Brain Res 2019; 237:977-987. [PMID: 30694342 DOI: 10.1007/s00221-019-05478-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
Functional behaviour affords that we form goals to integrate sensory information about the world around us with suitable motor actions, such as when we plan to grab an object with a hand. However, much research has tested grasping in static scenarios where goals are pursued with repetitive movements, whereas dynamic contexts require goals to be pursued even when changes in the environment require a change in the actions to attain them. To study grasp goals in dynamic environments here, we employed a task where the goal remained the same but the execution of the movement changed; we primed participants to grasp objects either with their right or left hand, and occasionally they had to switch to grasping with both. Switch costs should be minimal if grasp goal representations were used continuously, for example, within the left dominant hemisphere. But remapped or re-computed goal representations should delay movements. We found that switching from right-hand grasping to bimanual grasping delayed reaction times but switching from left-hand grasping to bimanual grasping did not. Further, control experiments showed that the lateralized switch costs were not caused by asymmetric inhibition between hemispheres or switches between usual and unusual tasks. Our results show that the left hemisphere does not serve a general role of sensorimotor grasp goal representation. Instead, sensorimotor grasp goals appear to be represented at intermediate levels of abstraction, downstream from cognitive task representations, yet upstream from the control of the grasping effectors.
Collapse
|
46
|
Kuki S, Konishi Y, Okudaira M, Yoshida T, Exell T, Tanigawa S. Asymmetry of force generation and neuromuscular activity during multi-joint isometric exercise. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2019. [DOI: 10.7600/jpfsm.8.37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Seita Kuki
- Graduate School of Comprehensive Human Science, University of Tsukuba
| | - Yu Konishi
- Department of Physical Education, National Defense Academy
| | | | - Takuya Yoshida
- Faculty of Health and Sports Science, University of Tsukuba
| | - Tim Exell
- Department of Sport and Exercise Science, University of Portsmouth
| | | |
Collapse
|
47
|
Welniarz Q, Gallea C, Lamy JC, Méneret A, Popa T, Valabregue R, Béranger B, Brochard V, Flamand-Roze C, Trouillard O, Bonnet C, Brüggemann N, Bitoun P, Degos B, Hubsch C, Hainque E, Golmard JL, Vidailhet M, Lehéricy S, Dusart I, Meunier S, Roze E. The supplementary motor area modulates interhemispheric interactions during movement preparation. Hum Brain Mapp 2019; 40:2125-2142. [PMID: 30653778 DOI: 10.1002/hbm.24512] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/21/2018] [Accepted: 01/01/2019] [Indexed: 01/25/2023] Open
Abstract
The execution of coordinated hand movements requires complex interactions between premotor and primary motor areas in the two hemispheres. The supplementary motor area (SMA) is involved in movement preparation and bimanual coordination. How the SMA controls bimanual coordination remains unclear, although there is evidence suggesting that the SMA could modulate interhemispheric interactions. With a delayed-response task, we investigated interhemispheric interactions underlying normal movement preparation and the role of the SMA in these interactions during the delay period of unimanual or bimanual hand movements. We used functional MRI and transcranial magnetic stimulation in 22 healthy volunteers (HVs), and then in two models of SMA dysfunction: (a) in the same group of HVs after transient disruption of the right SMA proper by continuous transcranial magnetic theta-burst stimulation; (b) in a group of 22 patients with congenital mirror movements (CMM), whose inability to produce asymmetric hand movements is associated with SMA dysfunction. In HVs, interhemispheric connectivity during the delay period was modulated according to whether or not hand coordination was required for the forthcoming movement. In HVs following SMA disruption and in CMM patients, interhemispheric connectivity was modified during the delay period and the interhemispheric inhibition was decreased. Using two models of SMA dysfunction, we showed that the SMA modulates interhemispheric interactions during movement preparation. This unveils a new role for the SMA and highlights its importance in coordinated movement preparation.
Collapse
Affiliation(s)
- Quentin Welniarz
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Faculté des sciences, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, Sorbonne Université, Paris, France
| | - Cécile Gallea
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France
| | - Jean-Charles Lamy
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France
| | - Aurélie Méneret
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Traian Popa
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France
| | - Romain Valabregue
- Centre de NeuroImagerie de Recherche CENIR, Institut du Cerveau et de la Moelle - ICM, Paris, France
| | - Benoît Béranger
- Centre de NeuroImagerie de Recherche CENIR, Institut du Cerveau et de la Moelle - ICM, Paris, France
| | - Vanessa Brochard
- Centre d'Investigation Clinique 14-22, INSERM/AP-HP, Paris, France
| | - Constance Flamand-Roze
- IFPPC, Centre CAMKeys, 7 rue des Cordelières, Paris, France.,Service de Neurologie, Unité Cardiovasculaire, Centre Hospitalier Sud-Francilien, Université Paris-Sud, Corbeille-Essonne, France
| | - Oriane Trouillard
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France
| | - Cécilia Bonnet
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Norbert Brüggemann
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | - Bertrand Degos
- Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Cécile Hubsch
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Elodie Hainque
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Louis Golmard
- Département de biostatistiques, AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Paris, France
| | - Marie Vidailhet
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Stéphane Lehéricy
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Centre de NeuroImagerie de Recherche CENIR, Institut du Cerveau et de la Moelle - ICM, Paris, France
| | - Isabelle Dusart
- Faculté des sciences, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, Sorbonne Université, Paris, France
| | - Sabine Meunier
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France
| | - Emmanuel Roze
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
48
|
Neva J, Brown K, Wadden K, Mang C, Borich M, Meehan S, Boyd L. The effects of five sessions of continuous theta burst stimulation over contralesional sensorimotor cortex paired with paretic skilled motor practice in people with chronic stroke. Restor Neurol Neurosci 2019; 37:273-290. [PMID: 31227676 PMCID: PMC7886006 DOI: 10.3233/rnn-190916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In individuals with chronic stroke, impairment of the paretic arm may be exacerbated by increased contralesional transcallosal inhibition (TCI). Continuous theta burst stimulation (cTBS) can decrease primary motor cortex (M1) excitability and TCI. However, contralesional cTBS shows inconsistent effects after stroke. Variable effects of cTBS could stem from failure to pair stimulation with skilled motor practice or a focus of applying cTBS over M1. OBJECTIVE Here, we investigated the effects of pairing cTBS with skilled practice on motor learning and arm function. We considered the differential effects of stimulation over two different brain regions: contralesional M1 (M1c) or contralesional primary somatosensory cortex (S1c). METHODS 37 individuals with chronic stroke participated in five sessions of cTBS and paretic arm skilled practice of a serial targeting task (STT); participants received either cTBS over M1c or S1c or sham before STT practice. Changes in STT performance and Wolf Motor Function Test (WMFT) were assessed as primary outcomes. Assessment of bilateral corticospinal, intracortical excitability and TCI were secondary outcomes. RESULTS cTBS over sensorimotor cortex did not improve STT performance and paretic WMFT-rate beyond sham cTBS. TCI was reduced bi-directionally following the intervention, regardless of stimulation group. In addition, we observed an association between STT performance change and paretic WMFT-rate change in the M1c stimulation group only. CONCLUSIONS Multiple sessions of STT practice can improve paretic arm function and decrease TCI bilaterally, with no additional benefit of prior cTBS. Our results suggest that improvement in STT practice following M1c cTBS scaled with change in paretic arm function in some individuals. Our results highlight the need for a better understanding of the mechanisms of cTBS to effectively identify who may benefit from this form of brain stimulation.
Collapse
Affiliation(s)
- J.L. Neva
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - K.E. Brown
- Graduate Studies in Rehabilitation Sciences, University of British Columbia, Vancouver Canada
| | - K.P. Wadden
- Graduate Studies in Rehabilitation Sciences, University of British Columbia, Vancouver Canada
| | - C.S. Mang
- Graduate Studies in Rehabilitation Sciences, University of British Columbia, Vancouver Canada
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - M.R. Borich
- Department of Rehabilitation Medicine, Division of Physical Therapy, School of Medicine, Emory University, Atlanta, GA, USA
| | - S.K. Meehan
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - L.A. Boyd
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
49
|
Picelli A, Chemello E, Castellazzi P, Filippetti M, Brugnera A, Gandolfi M, Waldner A, Saltuari L, Smania N. Combined effects of cerebellar transcranial direct current stimulation and transcutaneous spinal direct current stimulation on robot-assisted gait training in patients with chronic brain stroke: A pilot, single blind, randomized controlled trial. Restor Neurol Neurosci 2018. [PMID: 29526857 DOI: 10.3233/rnn-170784] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Preliminary evidence showed additional effects of anodal transcranial direct current stimulation over the damaged cerebral hemisphere combined with cathodal transcutaneous spinal direct current stimulation during robot-assisted gait training in chronic stroke patients. This is consistent with the neural organization of locomotion involving cortical and spinal control. The cerebellum is crucial for locomotor control, in particular for avoidance of obstacles, and adaptation to novel conditions during walking. Despite its key role in gait control, to date the effects of transcranial direct current stimulation of the cerebellum have not been investigated on brain stroke patients treated with robot-assisted gait training. OBJECTIVE To evaluate the effects of cerebellar transcranial direct current stimulation combined with transcutaneous spinal direct current stimulation on robot-assisted gait training in patients with chronic brain stroke. METHODS After balanced randomization, 20 chronic stroke patients received ten, 20-minute robot-assisted gait training sessions (five days a week, for two consecutive weeks) combined with central nervous system stimulation. Group 1 underwent on-line cathodal transcranial direct current stimulation over the contralesional cerebellar hemisphere + cathodal transcutaneous spinal direct current stimulation. Group 2 received on-line anodal transcranial direct current stimulation over the damaged cerebral hemisphere + cathodal transcutaneous spinal direct current stimulation. The primary outcome was the 6-minute walk test performed before, after, and at follow-up at 2 and 4 weeks post-treatment. RESULTS The significant differences in the 6-minute walk test noted between groups at the first post-treatment evaluation (p = 0.041) were not maintained at either the 2-week (P = 0.650) or the 4-week (P = 0.545) follow-up evaluations. CONCLUSION Our preliminary findings support the hypothesis that cathodal transcranial direct current stimulation over the contralesional cerebellar hemisphere in combination with cathodal transcutaneous spinal direct current stimulation might be useful to boost the effects of robot-assisted gait training in chronic brain stroke patients with walking impairment.
Collapse
Affiliation(s)
- Alessandro Picelli
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,Neurorehabilitation Unit, Hospital Trust of Verona, Verona, Italy
| | - Elena Chemello
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Paola Castellazzi
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mirko Filippetti
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Annalisa Brugnera
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marialuisa Gandolfi
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,Neurorehabilitation Unit, Hospital Trust of Verona, Verona, Italy
| | - Andreas Waldner
- Villa Melitta Rehabilitation Clinic, Bolzano, Italy.,Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Leopold Saltuari
- Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy.,Department of Neurology, Hochzirl Hospital, Zirl, Austria
| | - Nicola Smania
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,Neurorehabilitation Unit, Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
50
|
Deficient inhibition in alcohol-dependence: let's consider the role of the motor system! Neuropsychopharmacology 2018; 43:1851-1858. [PMID: 29728650 PMCID: PMC6046042 DOI: 10.1038/s41386-018-0074-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/30/2018] [Accepted: 04/14/2018] [Indexed: 11/08/2022]
Abstract
Impaired inhibitory control contributes to the development, maintenance, and relapse of alcohol-dependence, but the neural correlates of this deficit are still unclear. Because inhibitory control has been labeled as an executive function, most studies have focused on prefrontal areas, overlooking the contribution of more "primary" structures, such as the motor system. Yet, appropriate neural inhibition of the motor output pathway has emerged as a central aspect of healthy behavior. Here, we tested the hypothesis that this motor inhibition is altered in alcohol-dependence. Neural inhibitory measures of motor activity were obtained in 20 detoxified alcohol-dependent (AD) patients and 20 matched healthy subjects, using a standard transcranial magnetic stimulation procedure whereby motor-evoked potentials (MEPs) are elicited in a choice reaction time task. Moreover, behavioral inhibition and trait impulsivity were evaluated in all participants. Finally, the relapse status of patients was assessed 1 year after the experiment. As expected, AD patients displayed poorer behavioral inhibition and higher trait impulsivity than controls. More importantly, the MEP data revealed a considerable shortage of neural motor inhibition in AD patients. Interestingly, this neural defect was strongest in the patients who ended up relapsing during the year following the experiment. Our data suggest a strong motor component in the neural correlates of altered inhibitory control in AD patients. They also highlight an intriguing relationship with relapse and the perspective of a new biomarker to follow strategies aiming at reducing relapse in AD patients.
Collapse
|