1
|
Wang J, Turesky T, Loh M, Barber J, Hue V, Escalante E, Medina A, Zuk J, Gaab N. Lateralization of activation within the superior temporal gyrus during speech perception in sleeping infants is associated with subsequent language skills in kindergarten: A passive listening task-fMRI study. BRAIN AND LANGUAGE 2024; 257:105461. [PMID: 39278185 DOI: 10.1016/j.bandl.2024.105461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 06/30/2024] [Accepted: 08/29/2024] [Indexed: 09/18/2024]
Abstract
Brain asymmetries are hypothesized to reduce functional duplication and thus have evolutionary advantages. The goal of this study was to examine whether early brain lateralization contributes to skill development within the speech-language domain. To achieve this goal, 25 infants (2-13 months old) underwent behavioral language examination and fMRI during sleep while listening to forward and backward speech, and then were assessed on various language skills at 55-69 months old. We observed that infant functional lateralization of the superior temporal gyrus (STG) for forward > backward speech was associated with phonological, vocabulary, and expressive language skills 4 to 5 years later. However, we failed to observe that infant language skills or the anatomical lateralization of STG were related to subsequent language skills. Overall, our findings suggest that infant functional lateralization of STG for speech perception may scaffold subsequent language acquisition, supporting the hypothesis that functional hemisphere asymmetries are advantageous.
Collapse
Affiliation(s)
- Jin Wang
- School of Education and Information Studies, University of California, Los Angeles, CA, USA.
| | - Ted Turesky
- Graduate School of Education, Harvard University, Cambridge, MA, USA
| | - Megan Loh
- Graduate School of Education, Harvard University, Cambridge, MA, USA
| | - Ja'Kala Barber
- Graduate School of Education, Harvard University, Cambridge, MA, USA
| | - Victoria Hue
- Graduate School of Education, Harvard University, Cambridge, MA, USA
| | | | - Adrian Medina
- Graduate School of Education, Harvard University, Cambridge, MA, USA
| | - Jennifer Zuk
- Department of Speech, Language, & Hearing Sciences, Boston University, Boston, MA, USA
| | - Nadine Gaab
- Graduate School of Education, Harvard University, Cambridge, MA, USA
| |
Collapse
|
2
|
Mizrachi N, Eviatar Z, Peleg O, Bitan T. Inter- and intra- hemispheric interactions in reading ambiguous words. Cortex 2024; 171:257-271. [PMID: 38048664 DOI: 10.1016/j.cortex.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 06/29/2023] [Accepted: 09/20/2023] [Indexed: 12/06/2023]
Abstract
The present study investigated how the brain processes words with multiple meanings. Specifically, we examined the inter- and intra-hemispheric connectivity of unambiguous words compared to two types of ambiguous words: homophonic homographs, which have multiple meanings mapped to a single phonological representation and orthography, and heterophonic homographs, which have multiple meanings mapped to different phonological representations but the same orthography. Using a semantic relatedness judgment task and effective connectivity analysis via Dynamic Causal Modeling (DCM) on previously published fMRI data (Bitan et al., 2017), we found that the two hemispheres compete in orthographic processing during the reading of unambiguous words. For heterophonic homographs, we observed increased connectivity within the left hemisphere, highlighting the importance of top-down re-activation of orthographic representations by phonological ones for considering alternative meanings. For homophonic homographs, we found a flow of information from the left to the right hemisphere and from the right to the left, indicating that the brain retrieves different meanings using different pathways. These findings provide novel insights into the complex mechanisms involved in language processing and shed light on the different communication patterns within and between hemispheres during the processing of ambiguous and unambiguous words.
Collapse
Affiliation(s)
- Nofar Mizrachi
- Psychology Department, Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel.
| | - Zohar Eviatar
- Psychology Department, Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel.
| | - Orna Peleg
- The Program of Cognitive Studies of Language and Its Uses, and Sagol School of Neuroscience, Tel-Aviv University, Israel.
| | - Tali Bitan
- Psychology Department, Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel; Department of Speech Language Pathology and Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada.
| |
Collapse
|
3
|
Di Pietro SV, Karipidis II, Pleisch G, Brem S. Neurodevelopmental trajectories of letter and speech sound processing from preschool to the end of elementary school. Dev Cogn Neurosci 2023; 61:101255. [PMID: 37196374 DOI: 10.1016/j.dcn.2023.101255] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/20/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023] Open
Abstract
Learning to read alphabetic languages starts with learning letter-speech-sound associations. How this process changes brain function during development is still largely unknown. We followed 102 children with varying reading skills in a mixed-longitudinal/cross-sectional design from the prereading stage to the end of elementary school over five time points (n = 46 with two and more time points, of which n = 16 fully-longitudinal) to investigate the neural trajectories of letter and speech sound processing using fMRI. Children were presented with letters and speech sounds visually, auditorily, and audiovisually in kindergarten (6.7yo), at the middle (7.3yo) and end of first grade (7.6yo), and in second (8.4yo) and fifth grades (11.5yo). Activation of the ventral occipitotemporal cortex for visual and audiovisual processing followed a complex trajectory, with two peaks in first and fifth grades. The superior temporal gyrus (STG) showed an inverted U-shaped trajectory for audiovisual letter processing, a development that in poor readers was attenuated in middle STG and absent in posterior STG. Finally, the trajectories for letter-speech-sound integration were modulated by reading skills and showed differing directionality in the congruency effect depending on the time point. This unprecedented study captures the development of letter processing across elementary school and its neural trajectories in children with varying reading skills.
Collapse
Affiliation(s)
- S V Di Pietro
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| | - I I Karipidis
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - G Pleisch
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland
| | - S Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Yee J, Yap NT, Mahmud R, Saripan MI. Effects of orthographic transparency on rhyme judgement. Front Psychol 2023; 14:1038630. [PMID: 36949909 PMCID: PMC10026565 DOI: 10.3389/fpsyg.2023.1038630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
This study investigated the influence of multiliteracy in opaque orthographies on phonological awareness. Using a visual rhyme judgement task in English, we assessed phonological processing in three multilingual and multiliterate populations who were distinguished by the transparency of the orthographies they can read in (N = 135; ages 18-40). The first group consisted of 45 multilinguals literate in English and a transparent Latin orthography like Malay; the second group consisted of 45 multilinguals literate in English and transparent orthographies like Malay and Arabic; and the third group consisted of 45 multilinguals literate in English, transparent orthographies, and Mandarin Chinese, an opaque orthography. Results showed that all groups had poorer performance in the two opaque conditions: rhyming pairs with different orthographic endings and non-rhyming pairs with similar orthographic endings, with the latter posing the greatest difficulty. Subjects whose languages consisted of half or more opaque orthographies performed significantly better than subjects who knew more transparent orthographies than opaque orthographies. The findings are consistent with past studies that used the visual rhyme judgement paradigm and suggest that literacy experience acquired over time relating to orthographic transparency may influence performance on phonological awareness tasks.
Collapse
Affiliation(s)
- Jia’en Yee
- Faculty of Modern Languages and Communication, Universiti Putra Malaysia, Selangor, Malaysia
| | - Ngee Thai Yap
- Faculty of Modern Languages and Communication, Universiti Putra Malaysia, Selangor, Malaysia
- *Correspondence: Yap Ngee Thai,
| | - Rozi Mahmud
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - M. Iqbal Saripan
- Faculty of Engineering, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
5
|
Barouch B, Weiss Y, Katzir T, Bitan T. Neural Processing of Morphology During Reading in Children. Neuroscience 2022; 485:37-52. [PMID: 35026319 DOI: 10.1016/j.neuroscience.2021.12.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 11/17/2022]
Abstract
The importance of morphological segmentation for reading has been shown in numerous behavioral studies in children and adults. However, little is known about developmental changes in the neural basis of morphological processing. In addition to effects of age and reading skill, morphological processing during reading may be affected by the morphological structure of the language and the transparency of its orthography. Hebrew provides a unique opportunity to study these factors, with its rich morphological structure, and two versions of script that differ in orthographic transparency. Two groups of children (2nd-3rd and 5th-6th graders) were scanned using fMRI while reading aloud Hebrew nouns. Half of the words were composed of roots and templates (bi-morphemic) and half were mono-morphemic. The words were presented at two levels of transparency: with or without diacritics. ROI analyses showed greater activation for mono over bi-morphemic words across groups in the anterior portions of bilateral middle and superior temporal gyri, especially for the transparent script. These results diverge from previous finding in adults, showing left frontal activation in the non-transparent script with the same stimuli. These results support the early sensitivity of young Hebrew readers to the rich morphological structure of their language but suggest a developmental change in the role of morphological processes during reading. While in adults morpho-phonological segmentation during reading may compensate for orthographic opacity, morphological processes in children may rely more on semantic aspects, and are enhanced by orthographic transparency.
Collapse
Affiliation(s)
- Bechor Barouch
- Psychology Department and Institute for Information Processing and Decision Making, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel.
| | - Yael Weiss
- Institute for Learning and Brain Sciences, University of Washington, 1715 NE Columbia Road, Portage Bay Building, Box 357988, Seattle, WA 98195-7988 USA
| | - Tami Katzir
- Department of Learning Disabilities, The E.J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel
| | - Tali Bitan
- Psychology Department and Institute for Information Processing and Decision Making, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel; Department of Speech Language Pathology, University of Toronto, Toronto, Canada.
| |
Collapse
|
6
|
Wang J, Lytle MN, Weiss Y, Yamasaki BL, Booth JR. A longitudinal neuroimaging dataset on language processing in children ages 5, 7, and 9 years old. Sci Data 2022; 9:4. [PMID: 35013348 PMCID: PMC8748964 DOI: 10.1038/s41597-021-01106-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/08/2021] [Indexed: 11/09/2022] Open
Abstract
This dataset examines language development with a longitudinal design and includes diffusion- and T1-weighted structural magnetic resonance imaging (MRI), task-based functional MRI (fMRI), and a battery of psycho-educational assessments and parental questionnaires. We collected data from 5.5-6.5-year-old children (ses-5) and followed them up when they were 7-8 years old (ses-7) and then again at 8.5-10 years old (ses-9). To increase the sample size at the older time points, another cohort of 7-8-year-old children (ses-7) were recruited and followed up when they were 8.5-10 years old (ses-9). In total, 322 children who completed at least one structural and functional scan were included. Children performed four fMRI tasks consisting of two word-level tasks examining phonological and semantic processing and two sentence-level tasks investigating semantic and syntactic processing. The MRI data is valuable for examining changes over time in interactive specialization due to the use of multiple imaging modalities and tasks in this longitudinal design. In addition, the extensive psycho-educational assessments and questionnaires provide opportunities to explore brain-behavior and brain-environment associations.
Collapse
Affiliation(s)
- Jin Wang
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, 37212, USA.
| | - Marisa N Lytle
- Department of Psychology, The Pennsylvania State University, University Park, PA, 16801, USA
| | - Yael Weiss
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Brianna L Yamasaki
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, 37212, USA
| | - James R Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, 37212, USA.
| |
Collapse
|
7
|
Truzman T, Rochon E, Meltzer J, Leonard C, Bitan T. Simultaneous Normalization and Compensatory Changes in Right Hemisphere Connectivity during Aphasia Therapy. Brain Sci 2021; 11:1330. [PMID: 34679395 PMCID: PMC8534113 DOI: 10.3390/brainsci11101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022] Open
Abstract
Changes in brain connectivity during language therapy were examined among participants with aphasia (PWA), aiming to shed light on neural reorganization in the language network. Four PWA with anomia following left hemisphere stroke and eight healthy controls (HC) participated in the study. Two fMRI scans were administered to all participants with a 3.5-month interval. The fMRI scans included phonological and semantic tasks, each consisting of linguistic and perceptual matching conditions. Between the two fMRI scans, PWA underwent Phonological Components Analysis treatment. Changes in effective connectivity during the treatment were examined within right hemisphere (RH) architecture. The results illustrate that following the treatment, the averaged connectivity of PWA across all perceptual and linguistic conditions in both tasks increased resemblance to HC, reflecting the normalization of neural processes associated with silent object name retrieval. In contrast, connections that were specifically enhanced by the phonological condition in PWA decreased in their resemblance to HC, reflecting emerging compensatory reorganization in RH connectivity to support phonological processing. These findings suggest that both normalization and compensation play a role in neural language reorganization at the chronic stage, occurring simultaneously in the same brain.
Collapse
Affiliation(s)
- Tammar Truzman
- Communication Sciences and Disorders Department and IIPDM, University of Haifa, Haifa 3498838, Israel
- The Integrated Brain and Behavior Research Center, University of Haifa, Haifa 3498838, Israel
| | - Elizabeth Rochon
- Department of Speech Language Pathology and Rehabilitation Sciences Institute, University of Toronto, Toronto, ON M5G 1V7, Canada; (E.R.); (J.M.); (C.L.); (T.B.)
- KITE Research Institute, Toronto Rehab, University Health Network (UHN), Toronto, ON M5G 2A2, Canada
| | - Jed Meltzer
- Department of Speech Language Pathology and Rehabilitation Sciences Institute, University of Toronto, Toronto, ON M5G 1V7, Canada; (E.R.); (J.M.); (C.L.); (T.B.)
- Psychology Department, University of Toronto, Toronto, ON M5S 1A1, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON M6A 2E1, Canada
| | - Carol Leonard
- Department of Speech Language Pathology and Rehabilitation Sciences Institute, University of Toronto, Toronto, ON M5G 1V7, Canada; (E.R.); (J.M.); (C.L.); (T.B.)
- School of Rehabilitation Sciences, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Tali Bitan
- The Integrated Brain and Behavior Research Center, University of Haifa, Haifa 3498838, Israel
- Department of Speech Language Pathology and Rehabilitation Sciences Institute, University of Toronto, Toronto, ON M5G 1V7, Canada; (E.R.); (J.M.); (C.L.); (T.B.)
- Psychology Department and IIPDM, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
8
|
Sasisekaran J, Basu S. Rhyming abilities in a dual-task in school-age children who stutter. JOURNAL OF FLUENCY DISORDERS 2021; 69:105864. [PMID: 34325231 DOI: 10.1016/j.jfludis.2021.105864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 05/04/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE We compared school-age children who stutter (CWS) and age and gender matched control participants (CWNS) in a dual-task involving a word-level rhyming task and a tone task involving pitch decisions. METHODS Participants were 30 children (CWS, n = 15) between 7 and 16 years. Auditory word - picture stimuli pairs from the rhyme task were categorized into nonrhyme (e.g., bear-cart), rhyme (e.g., bear-pear), and replica (e.g., bear-bear) categories. The effort associated with managing resources in the dual-task was varied through the manipulation of stimulus onset asynchrony (SOA) between the stimuli of the two tasks. Mixed methods analyses of the response time (RT, ms) and error (%) data were conducted with Group, Category, and SOA as the fixed effects and participants as the random effect. Age and phoneme awareness skills were included in the analyses. RESULTS More rhyming errors and a significant positive correlation between rhyming errors and age was observed in the CWS compared to the CWNS. Compared to the CWNS, a higher percentage of rhyming errors was observed in the rhyme than the nonrhyme and replica categories in the CWS in both the SOA conditions, and this effect was influenced by age and phoneme awareness skills. Analysis of the tone task data indicated that a subgroup of CWNS with higher phoneme awareness skills showed reduced RT difference between the long and the short SOA conditions thereby suggesting higher efficiency with resource allocation for dual tasking. Task-specific differences between the CWS and CWNS are interpreted to suggest limitations in the encoding of the phonological aspects of covert speech in a dual-task.
Collapse
Affiliation(s)
- Jayanthi Sasisekaran
- Shevlin Hall, 164 Pillsbury Drive SE, Department of Speech-Language-Hearing Sciences, University of Minnesota, 55455, USA.
| | - Shriya Basu
- 1250 Bellflower Boulevard, Department of Speech-Language Pathology, California State University, Long Beach, CA, 90840, USA
| |
Collapse
|
9
|
Sasisekaran J, Lei X. Developmental Differences in the Availability of Cognitive Resources Supporting Rhyming and Dual Tasking. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:1316-1330. [PMID: 33784198 DOI: 10.1044/2020_jslhr-20-00407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Purpose We investigated developmental differences in a dual task involving rhyming and tone judgment/decisions and the effects of varying cognitive demands on task performance. Method Participants were 7- to 11-year-olds, 12- to 15-year-olds, and adults between 18 and 40 years (n = 19 per group). The rhyming task consisted of three stimuli categories (nonrhyme, rhyme, and replica), and the tone task stimuli were presented at short (100 ms) versus long (900 ms) stimulus onset asynchrony (SOA) from the onset of the rhyme task to vary cognitive demands. Response time (RT) and error data were analyzed using linear and binomial mixed-methods analysis, respectively. Results and Conclusions Adults did not show an SOA-based effect in rhyming RT, while the 12- to 15-year-olds showed the most effect (RT, long > short SOA). Response to the replica category was significantly faster than for the other categories in all age groups. A reverse SOA effect was evident in the tone task (RT, short > long SOA) in all age groups. The 7- to 11-year-olds showed twice the task switch cost effect in the tone task RT. Age grouping and phoneme awareness were significant predictors of performance in both tasks, and additionally, SOA was a significant predictor of performance in the secondary task. The findings have implications for (a) understanding maturational differences in rhyming and executive control for dual tasking and the cognitive mechanisms supporting such effects and (b) identifying variables contributing to the developmental differences.
Collapse
Affiliation(s)
- Jayanthi Sasisekaran
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Minneapolis
| | - Xiaofan Lei
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Minneapolis
| |
Collapse
|
10
|
Cao F, Yan X, Yan X, Zhou H, Booth JR. Reading Disability in Chinese Children Learning English as an L2. Child Dev 2020; 92:e126-e142. [PMID: 32864778 DOI: 10.1111/cdev.13452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To examine whether there are common or specific deficits of reading disability (RD) in first (L1) and second languages (L2), Chinese children (9-11 years, N = 76) with or without RD who learn English as an L2 were studied during a visual word rhyming judgment task. Evidence was found for common deficits in L1 and L2 in visuo-orthographic processes in left inferior temporal gyrus and left precuneus, as well as in phonological processes in left dorsal inferior frontal gyrus as children with RD showed less activation than controls in both languages. Furthermore, the visuo-orthographic deficit appears to be a RD effect, whereas the phonological deficit appears to be a reading/performance effect. Some weak evidence for language specific effects was also found.
Collapse
|
11
|
Fan LY, Lo YC, Hsu YC, Chen YJ, Tseng WYI, Chou TL. Developmental Differences of Structural Connectivity and Effective Connectivity in Semantic Judgments of Chinese Characters. Front Hum Neurosci 2020; 14:233. [PMID: 32714169 PMCID: PMC7344167 DOI: 10.3389/fnhum.2020.00233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/28/2020] [Indexed: 11/30/2022] Open
Abstract
Previous studies have investigated the developmental differences of semantic processing regarding brain activation between adults and children. However, little is known about whether the patterns of structural connectivity and effective connectivity differ between adults and children during semantic processing. Functional magnetic resonance imaging (fMRI), diffusion spectrum imaging (DSI), and dynamic causal modeling (DCM) were used to study the developmental differences of brain activation, structural connectivity, and effective connectivity during semantic judgments. Twenty-six children (8- to 12-year-olds) and 26 adults were asked to indicate if character pairs were related in meaning. Compared to children, adults showed greater activation in the left ventral inferior frontal gyrus (IFG) and left middle temporal gyrus (MTG). Also, adults had significantly greater structural connectivity in the left ventral pathway (inferior frontal occipital fasciculus, IFOF) than children. Moreover, adults showed significantly stronger bottom-up effects from left fusiform gyrus (FG) to ventral IFG than children in the related condition. In conclusion, our findings suggest that age-related increases in brain activation (ventral IFG and MTG), IFOF, and effective connectivity (from FG to ventral IFG) might be associated with the bottom-up influence of orthographic representations on retrieving semantic representations for processing Chinese characters.
Collapse
Affiliation(s)
- Li-Ying Fan
- Department of Education, National Taipei University of Education, Taipei, Taiwan.,Department of Psychology, National Taiwan University, Taipei, Taiwan.,Department of Thanatology and Health Counseling, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Yu-Chun Lo
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan.,The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Research Center of Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
| | - Yung-Chin Hsu
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Jen Chen
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Yih Isaac Tseng
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.,Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Tai-Li Chou
- Department of Psychology, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.,Center for Advanced Study in the Behavioral Sciences, Stanford University, Stanford, CA, United States
| |
Collapse
|
12
|
Krieger V, Amador-Campos JA, Guàrdia-Olmos J. Executive functions, Personality traits and ADHD symptoms in adolescents: A mediation analysis. PLoS One 2020; 15:e0232470. [PMID: 32374779 PMCID: PMC7202790 DOI: 10.1371/journal.pone.0232470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/15/2020] [Indexed: 11/18/2022] Open
Abstract
Certain personality traits and cognitive domains of executive functions (EF) are differentially related to attention deficit hyperactivity disorder (ADHD) symptoms in adolescents. This study aimed to analyze the five-factor model (FFM) personality characteristics in adolescents with ADHD, and to examine whether EF mediate the relationships between FFM personality traits and ADHD symptoms. A comprehensive diagnostic assessment, including ADHD clinical interviews, ADHD rating scales, neuropsychological EF testing (i.e., working memory, flexibility and inhibition) and a personality assessment was carried out in a sample of 118 adolescents (75 ADHD and 43 control participants, 68% males), aged 12 to 16 years, and their parents and teachers. Adolescents with ADHD had lower scores than control participants on Conscientiousness and Agreeableness, and higher scores on Neuroticism. Structural equation models (SEM) showed that Conscientiousness directly influenced inattentive and hyperactive-impulsive symptoms, while Neuroticism, Agreeableness, and Extraversion directly affected hyperactive-impulsive symptoms. Only Conscientiousness exerted indirect effects on inattention, but not on hyperactivity-impulsivity symptoms, via EF; higher scores on Conscientiousness were related to higher scores on EF, which in turn were related to lower scores on inattentive symptoms. These findings corroborate the relationships between ADHD symptoms, FFM personality traits and EF and indicate the mediating effect of EF on the relationship between Conscientiousness and inattention.
Collapse
Affiliation(s)
- Virginia Krieger
- Department of Clinical Psychology and Psychobiology, Faculty of Psychology, University of Barcelona, Barcelona, Spain
| | - Juan Antonio Amador-Campos
- Department of Clinical Psychology and Psychobiology, Faculty of Psychology, University of Barcelona, Barcelona, Spain
- Institute of Neuroscience, University of Barcelona (UBneuro), Barcelona, Spain
- * E-mail:
| | - Joan Guàrdia-Olmos
- Institute of Neuroscience, University of Barcelona (UBneuro), Barcelona, Spain
- Department of Social Psychology and Quantitative Psychology, Faculty of Psychology, University of Barcelona, Barcelona, Spain
- UB institute of Complex Systems, University of Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Study of functional magnetic resonance imaging (fMRI) in children and adolescents with specific learning disorder (dyslexia). Asian J Psychiatr 2020; 50:101945. [PMID: 32086175 DOI: 10.1016/j.ajp.2020.101945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/29/2019] [Accepted: 02/08/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND Dyslexia is a type of specific learning disability (SLD) which has neurobiological origin. It is characterized by difficulties with accurate and/or fluent word recognition and by poor spelling and decoding abilities. The impaired reading in dyslexia is associated with inability to process the sensory input that enters the nervous system. Functional magnetic resonance imaging (fMRI) has emerged as a potential source in understanding the neurobiology and to identify the brain basis of sensory stimuli processed in dyslexic patients. METHODOLOGY The present study was conducted to assess the difference in neural changes using fMRI in children and adolescents with SLD compared with normal children and also the correlation of clinical parameters with BOLD - fMRI changes. Sixteen children and adolescents diagnosed as dyslexia were assessed with All India Institute of Medical Sciences (AIIMS) SLD Battery, Mini-International Neuropsychiatric Interview for Children and Adolescents (MINI KID) and Aggregated Neurobehavioral Student Health and Educational Review (ANSER) system and compared with 15 controls matched with age and sex. Participants of both groups were asked to perform 3 tasks during the fMRI acquisition (phonological, picture-naming and semantic tasks). RESULT As compared to control group, the participants with dyslexia show phonological decoding problem. During picture task, the participants with dyslexia use more areas of brain involve in recalling the memory events while during semantic tasks processing the occipito-temporal (fusiform) gyrus was less activated when in contrast to control. CONCLUSION This study shows that participants with dyslexia fail to use normal brain regions specialized in language processing, but rather use different areas.
Collapse
|
14
|
Li Y, Yang Y, Tang AC, Liu N, Wang X, Du Y, Hu W. English spoken word segmentation activates the prefrontal cortex and temporo-parietal junction in Chinese ESL learners: A functional near-infrared spectroscopy (fNIRS) study. Brain Res 2020; 1733:146693. [PMID: 32006554 DOI: 10.1016/j.brainres.2020.146693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 11/26/2022]
Abstract
A direct measure of spoken lexical processing based on neuroimaging technology would provide us useful information to understand the neural mechanisms underlying speech or auditory language processing. The neural mechanisms of spoken word segmentation for English as a second language (ESL) learners remain elusive. The present study, using functional near-infrared spectroscopy (fNIRS), addresses this issue by measuring hemodynamic responses in the temporo-parietal junction (TPJ) and the prefrontal cortex (PFC) in a word-spotting task, designed with two task conditions (easy vs. difficult). Thirty participants, divided into a high listening proficiency group (HLG) and a low listening proficiency group (LLG), were tested. Results revealed significantly less TPJ activation in the HLG than in the LLG. Further analyses supported this result by showing that activation in the TPJ was in a negative correlation with listening proficiency. This association appears to be related to the more efficient use of processing resources in a bottom-up fashion for accurate and efficient sensory representations in high proficient language learners. In contrast, cortical activation in the PFC increased with listening proficiency and was stronger in the difficult task condition than in the easy task condition, implying that recruitment of top-down cognitive control functions might play a role in word segmentation. Our results suggest that the combination of the functions mediated via bottom-up sensory input processing (demonstrated in the TPJ activation) and top-down cognitive processing (demonstrated in the PFC activation) are crucial for ESL listeners' spoken word segmentation.
Collapse
Affiliation(s)
- Yadan Li
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Yilong Yang
- Research Center for Linguistics and Applied Linguistics, Xi'an International Studies University, Xi'an, China; School of English Studies, Xi'an International Studies University, Xi'an, China; Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Xi'an, China.
| | - Akaysha C Tang
- The Laboratory of Neuroscience for Education, University of Hong Kong, Hong Kong, China; The Mind Research Network, Albuquerque, NM, USA
| | - Nian Liu
- Department of Modern Languages, Literatures, and Linguistics, University of Oklahoma, Norman, USA
| | - Xuewei Wang
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Ying Du
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Weiping Hu
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China; Shaanxi Normal University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Xi'an, China.
| |
Collapse
|
15
|
Abstract
Reading is a complex, multifactorial, and dynamic skill. Most of what we currently know about neural correlates underlying reading comes from studies carried out with adults. However, considering that adults are skilled readers, findings from these studies cannot be generalized to children who are still learning to read. The advancement of neuroimaging techniques allowed researchers to investigate the developmental fingerprints and neurocircuitry involved in reading in children. To highlight the contribution of neuroimaging in understanding reading development, we look at both reading components, namely, word identification and reading comprehension. This chapter covers the three literacy periods-emergent, early, and conventional literacy-to better understand how reading acquisition affects neural networks. Further, we discuss our findings in light of different cognitive reading models. Although it is important to consider both spatial and temporal measurements to provide a holistic account of reading-related brain activity, the current chapter focuses on the functional activation and connectivity of reading-related areas in typically developing children.
Collapse
|
16
|
L1 Reading Experience Influences L2 Lexical Learning: Spanish Learning in Chinese Speakers and English Speakers. Neuroscience 2019; 416:255-267. [DOI: 10.1016/j.neuroscience.2019.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022]
|
17
|
Yu X, Raney T, Perdue MV, Zuk J, Ozernov‐Palchik O, Becker BLC, Raschle NM, Gaab N. Emergence of the neural network underlying phonological processing from the prereading to the emergent reading stage: A longitudinal study. Hum Brain Mapp 2018; 39:2047-2063. [PMID: 29380469 PMCID: PMC5895515 DOI: 10.1002/hbm.23985] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/22/2017] [Accepted: 01/17/2018] [Indexed: 01/14/2023] Open
Abstract
Numerous studies have shown that phonological skills are critical for successful reading acquisition. However, how the brain network supporting phonological processing evolves and how it supports the initial course of learning to read is largely unknown. Here, for the first time, we characterized the emergence of the phonological network in 28 children over three stages (prereading, beginning reading, and emergent reading) longitudinally. Across these three time points, decreases in neural activation in the left inferior parietal cortex (LIPC) were observed during an audiovisual phonological processing task, suggesting a specialization process in response to reading instruction/experience. Furthermore, using the LIPC as the seed, a functional network consisting of the left inferior frontal, left posterior occipitotemporal, and right angular gyri was identified. The connection strength in this network co-developed with the growth of phonological skills. Moreover, children with above-average gains in phonological processing showed a significant developmental increase in connection strength in this network longitudinally, while children with below-average gains in phonological processing exhibited the opposite trajectory. Finally, the connection strength between the LIPC and the left posterior occipitotemporal cortex at the prereading level significantly predicted reading performance at the emergent reading stage. Our findings highlight the importance of the early emerging phonological network for reading development, providing direct evidence for the Interactive Specialization Theory and neurodevelopmental models of reading.
Collapse
Affiliation(s)
- Xi Yu
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children's HospitalBostonMassachusetts
- Harvard Medical SchoolBostonMassachusetts
| | - Talia Raney
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children's HospitalBostonMassachusetts
| | - Meaghan V. Perdue
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children's HospitalBostonMassachusetts
| | - Jennifer Zuk
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children's HospitalBostonMassachusetts
- Harvard UniversityCambridgeMassachusetts
| | - Ola Ozernov‐Palchik
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children's HospitalBostonMassachusetts
- Eliot‐Pearson Department of Child Study and Human DevelopmentTufts UniversityMedfordMassachusetts
| | - Bryce L. C. Becker
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children's HospitalBostonMassachusetts
| | - Nora M. Raschle
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children's HospitalBostonMassachusetts
- Department of Child and Adolescent PsychiatryUniversity of Basel, Psychiatric University HospitalBaselSwitzerland
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children's HospitalBostonMassachusetts
- Harvard Medical SchoolBostonMassachusetts
- Harvard Graduate School of EducationCambridgeMassachusetts
| |
Collapse
|
18
|
Pollack C, Ashby NC. Where arithmetic and phonology meet: The meta-analytic convergence of arithmetic and phonological processing in the brain. Dev Cogn Neurosci 2018; 30:251-264. [PMID: 28533112 PMCID: PMC6969128 DOI: 10.1016/j.dcn.2017.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 05/06/2017] [Accepted: 05/06/2017] [Indexed: 12/27/2022] Open
Abstract
Arithmetic facts can be solved using different strategies. Research suggests that some arithmetic problems, particularly those solved by fact retrieval, are related to phonological processing ability and elicit activity in left-lateralized brain regions that support phonological processing. However, it is unclear whether common brain regions support both retrieval-based arithmetic and phonological processing, and if these regions differ across children and adults. This study used activation likelihood estimation to investigate functional neural overlap between arithmetic and phonological processing, separately for children and adults. The meta-analyses in children showed six clusters of overlapping activation concentrated in bilateral frontal regions and in the left fusiform gyrus. The meta-analyses in adults yielded two clusters of concordant activity, one in the left inferior frontal gyrus and one in the left inferior parietal lobule. A qualitative comparison across the two age groups suggests that children show more bilateral and diffuse activation than adults, which may reflect attentional processes that support more effortful processing in children. The present meta-analyses contribute novel insights into the relationship between retrieval-based arithmetic and phonological processing in the brain across children and adults, and brain regions that may support processing of more complex symbolic representations, such as arithmetic facts and words.
Collapse
Affiliation(s)
- Courtney Pollack
- Harvard Graduate School of Education, Appian Way, Cambridge, MA 02138, United States.
| | - Nicole C Ashby
- Harvard Graduate School of Education, Appian Way, Cambridge, MA 02138, United States
| |
Collapse
|
19
|
Daucourt MC, Schatschneider C, Connor CM, Al Otaiba S, Hart SA. Inhibition, Updating Working Memory, and Shifting Predict Reading Disability Symptoms in a Hybrid Model: Project KIDS. Front Psychol 2018; 9:238. [PMID: 29662458 PMCID: PMC5890166 DOI: 10.3389/fpsyg.2018.00238] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 02/12/2018] [Indexed: 11/13/2022] Open
Abstract
Recent achievement research suggests that executive function (EF), a set of regulatory processes that control both thought and action necessary for goal-directed behavior, is related to typical and atypical reading performance. This project examines the relation of EF, as measured by its components, Inhibition, Updating Working Memory, and Shifting, with a hybrid model of reading disability (RD). Our sample included 420 children who participated in a broader intervention project when they were in KG-third grade (age M = 6.63 years, SD = 1.04 years, range = 4.79-10.40 years). At the time their EF was assessed, using a parent-report Behavior Rating Inventory of Executive Function (BRIEF), they had a mean age of 13.21 years (SD = 1.54 years; range = 10.47-16.63 years). The hybrid model of RD was operationalized as a composite consisting of four symptoms, and set so that any child could have any one, any two, any three, any four, or none of the symptoms included in the hybrid model. The four symptoms include low word reading achievement, unexpected low word reading achievement, poorer reading comprehension compared to listening comprehension, and dual-discrepancy response-to-intervention, requiring both low achievement and low growth in word reading. The results of our multilevel ordinal logistic regression analyses showed a significant relation between all three components of EF (Inhibition, Updating Working Memory, and Shifting) and the hybrid model of RD, and that the strength of EF's predictive power for RD classification was the highest when RD was modeled as having at least one or more symptoms. Importantly, the chances of being classified as having RD increased as EF performance worsened and decreased as EF performance improved. The question of whether any one EF component would emerge as a superior predictor was also examined and results showed that Inhibition, Updating Working Memory, and Shifting were equally valuable as predictors of the hybrid model of RD. In total, all EF components were significant and equally effective predictors of RD when RD was operationalized using the hybrid model.
Collapse
Affiliation(s)
- Mia C. Daucourt
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Christopher Schatschneider
- Department of Psychology, Florida State University, Tallahassee, FL, United States
- Florida Center for Reading Research, Florida State University, Tallahassee, FL, United States
| | - Carol M. Connor
- School of Education, University of California, Irvine, Irvine, CA, United States
| | - Stephanie Al Otaiba
- Department of Teaching and Learning, Southern Methodist University, Dallas, TX, United States
| | - Sara A. Hart
- Department of Psychology, Florida State University, Tallahassee, FL, United States
- Florida Center for Reading Research, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
20
|
Liu X, Gao Y, Di Q, Hu J, Lu C, Nan Y, Booth JR, Liu L. Differences between child and adult large-scale functional brain networks for reading tasks. Hum Brain Mapp 2017; 39:662-679. [PMID: 29124823 DOI: 10.1002/hbm.23871] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 01/19/2023] Open
Abstract
Reading is an important high-level cognitive function of the human brain, requiring interaction among multiple brain regions. Revealing differences between children's large-scale functional brain networks for reading tasks and those of adults helps us to understand how the functional network changes over reading development. Here we used functional magnetic resonance imaging data of 17 adults (19-28 years old) and 16 children (11-13 years old), and graph theoretical analyses to investigate age-related changes in large-scale functional networks during rhyming and meaning judgment tasks on pairs of visually presented Chinese characters. We found that: (1) adults had stronger inter-regional connectivity and nodal degree in occipital regions, while children had stronger inter-regional connectivity in temporal regions, suggesting that adults rely more on visual orthographic processing whereas children rely more on auditory phonological processing during reading. (2) Only adults showed between-task differences in inter-regional connectivity and nodal degree, whereas children showed no task differences, suggesting the topological organization of adults' reading network is more specialized. (3) Children showed greater inter-regional connectivity and nodal degree than adults in multiple subcortical regions; the hubs in children were more distributed in subcortical regions while the hubs in adults were more distributed in cortical regions. These findings suggest that reading development is manifested by a shift from reliance on subcortical to cortical regions. Taken together, our study suggests that Chinese reading development is supported by developmental changes in brain connectivity properties, and some of these changes may be domain-general while others may be specific to the reading domain.
Collapse
Affiliation(s)
- Xin Liu
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yue Gao
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Qiqi Di
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Jiali Hu
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Chunming Lu
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yun Nan
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - James R Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tennessee, 37203
| | - Li Liu
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
21
|
Wise Younger J, Tucker-Drob E, Booth JR. Longitudinal changes in reading network connectivity related to skill improvement. Neuroimage 2017. [PMID: 28645843 DOI: 10.1016/j.neuroimage.2017.06.044] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Attempts to characterize the neural differences between individuals with and without dyslexia generally point to reduced activation in and connectivity between brain areas in a reading network composed of the inferior frontal gyrus, the ventral occipito-temporal cortex, and the dorsal temporo-parietal circuit. However, developmental work on brain activity during reading has indicated that some brain areas show developmental decreases in activation with age. Thus, reading network connectivity may also show decreases that are positively associated with increases in reading ability. However, the developmental trajectory of reading network connectivity in typically developing readers is not yet well established. In the current study, we use a longitudinal design to determine how connectivity changes over time, and how these changes relate to changes in reading skill. We find that longitudinal increases in reading ability are associated with higher initial connectivity in the dorsal stream between fusiform and inferior parietal cortex, implicated in phonological decoding, followed by decreases in connectivity in this stream over time. We further find that increases in reading ability are supported by maintenance of connectivity in the ventral stream between inferior occipital and fusiform cortex, suggesting a more mature automatic orthographic recognition strategy. Readers who show little reading improvement over time do not attain high levels of connectivity in the dorsal stream at any time point, and their ventral stream connectivity decreases over time. These results together suggest that superior reading ability is initially supported by phonological decoding, with a decreased reliance on this strategy as reading becomes more automated. Our results indicate that development of the dorsal and ventral streams are closely linked, and support the hypothesis that a decrease in the dorsal stream is important for ventral stream development.
Collapse
Affiliation(s)
- Jessica Wise Younger
- Department of Communication Sciences and Disorders, The University of Texas at Austin, Austin, TX, USA.
| | - Elliot Tucker-Drob
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - James R Booth
- Department of Communication Sciences and Disorders, The University of Texas at Austin, Austin, TX, USA; Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
22
|
Gaspers J, Cimiano P, Rohlfing K, Wrede B. Constructing a Language From Scratch: Combining Bottom–Up and Top–Down Learning Processes in a Computational Model of Language Acquisition. IEEE Trans Cogn Dev Syst 2017. [DOI: 10.1109/tcds.2016.2614958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Morken F, Helland T, Hugdahl K, Specht K. Reading in dyslexia across literacy development: A longitudinal study of effective connectivity. Neuroimage 2017; 144:92-100. [DOI: 10.1016/j.neuroimage.2016.09.060] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 08/24/2016] [Accepted: 09/25/2016] [Indexed: 10/20/2022] Open
|
24
|
The contributions of resting state and task-based functional connectivity studies to our understanding of adolescent brain network maturation. Neurosci Biobehav Rev 2016; 70:13-32. [DOI: 10.1016/j.neubiorev.2016.07.027] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 12/18/2022]
|
25
|
Zhu L, Niu Z, Nie Y, Yang Y, Li K, Jin Z, Wei J. The Brain Effective Connectivity of Chinese during Rhyming Task. PLoS One 2016; 11:e0162158. [PMID: 27583349 PMCID: PMC5008726 DOI: 10.1371/journal.pone.0162158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 08/18/2016] [Indexed: 11/21/2022] Open
Abstract
With regard to brain language processing, the activation patterns have been well studied, and recently there are great interest in the connectivity models. The crucial brain areas for phonological processing involves left inferior frontal gyrus (LIFG), left inferior parietal lobule (LIPL) and left posterior middle temporal gyrus (LpMTG). Specially in Chinese processing, the left middle frontal gyrus (LMFG) is considered as an essential region. However, the connectivity pattern among these brain areas is not well understood. In this study, a rhyming experiment of Chinese was conducted, and the Dynamic causal modeling (DCM) and the Bayesian model selection (BMS) were used to examine the interaction between brain regions and choose the best model for rhyming task of Chinese. By examining the interactions, it was found that LMFG exerted inhibitory modulation on LIPL and LIFG; the phonological processing enhanced the connection from LIPL to LIFG and LMFG, which suggested the important roles of these connections for the increased phonological load; And LpMTG modulated LIFG and LMFG negatively, and LIPL positively under rhyming judgment task.
Collapse
Affiliation(s)
- Linlin Zhu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Zhendong Niu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
- * E-mail:
| | - Yaoxin Nie
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Yang Yang
- Department of Linguistics, University of Hong Kong, Hong Kong
| | - Ke Li
- The 306th Hospital of PLA, Beijing, China
| | - Zhen Jin
- The 306th Hospital of PLA, Beijing, China
| | - Jieyao Wei
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
26
|
Functional organization of the language network in three- and six-year-old children. Neuropsychologia 2016; 98:24-33. [PMID: 27542319 PMCID: PMC5407357 DOI: 10.1016/j.neuropsychologia.2016.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 08/02/2016] [Accepted: 08/14/2016] [Indexed: 11/08/2022]
Abstract
The organization of the language network undergoes continuous changes during development as children learn to understand sentences. In the present study, functional magnetic resonance imaging and behavioral measures were utilized to investigate functional activation and functional connectivity (FC) in three-year-old (3yo) and six-year-old (6yo) children during sentence comprehension. Transitive German sentences varying the word order (subject-initial and object-initial) with case marking were presented auditorily. We selected children who were capable of processing the subject-initial sentences above chance level accuracy from each age group to ensure that we were tapping real comprehension. Both age groups showed a main effect of word order in the left posterior superior temporal gyrus (pSTG), with greater activation for object-initial compared to subject-initial sentences. However, age differences were observed in the FC between left pSTG and the left inferior frontal gyrus (IFG). The 6yo group showed stronger FC between the left pSTG and Brodmann area (BA) 44 of the left IFG compared to the 3yo group. For the 3yo group, in turn, the FC between left pSTG and left BA 45 was stronger than with left BA 44. Our study demonstrates that while task-related activation was comparable, the small behavioral differences between age groups were reflected in the underlying functional organization revealing the ongoing development of the neural language network. We examined functional connectivity of sentence processing in 3- and 6-year-olds. Performance-matched age groups activated left pSTG for processing complex syntax. 6-year-olds had stronger connectivity between left BA44 and pSTG than 3-year-olds. 3-year-olds had greater connectivity between left BA45 and pSTG than BA44 and pSTG. Functional connectivity results could be related to behavioral performance.
Collapse
|
27
|
Malins JG, Gao D, Tao R, Booth JR, Shu H, Joanisse MF, Liu L, Desroches AS. Developmental differences in the influence of phonological similarity on spoken word processing in Mandarin Chinese. BRAIN AND LANGUAGE 2014; 138:38-50. [PMID: 25278419 PMCID: PMC4252245 DOI: 10.1016/j.bandl.2014.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 08/02/2014] [Accepted: 09/02/2014] [Indexed: 06/03/2023]
Abstract
The developmental trajectory of spoken word recognition has been well established in Indo-European languages, but to date remains poorly characterized in Mandarin Chinese. In this study, typically developing children (N=17; mean age 10; 5) and adults (N=17; mean age 24) performed a picture-word matching task in Mandarin while we recorded ERPs. Mismatches diverged from expectations in different components of the Mandarin syllable; namely, word-initial phonemes, word-final phonemes, and tone. By comparing responses to different mismatch types, we uncovered evidence suggesting that both children and adults process words incrementally. However, we also observed key developmental differences in how subjects treated onset and rime mismatches. This was taken as evidence for a stronger influence of top-down processing on spoken word recognition in adults compared to children. This work therefore offers an important developmental component to theories of Mandarin spoken word recognition.
Collapse
Affiliation(s)
- Jeffrey G Malins
- Brain and Mind Institute, The University of Western Ontario, London N6A 5B7, Canada; Haskins Laboratories, New Haven 06511, USA
| | - Danqi Gao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Ran Tao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - James R Booth
- Department of Communication Sciences and Disorders, Northwestern University, Evanston 60208, USA
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China
| | - Marc F Joanisse
- Brain and Mind Institute, The University of Western Ontario, London N6A 5B7, Canada
| | - Li Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China.
| | - Amy S Desroches
- Department of Psychology, University of Winnipeg, Winnipeg R3B 2E9, Canada.
| |
Collapse
|
28
|
Wang J, Gao D, Li D, Desroches AS, Liu L, Li X. Theta–gamma coupling reflects the interaction of bottom-up and top-down processes in speech perception in children. Neuroimage 2014; 102 Pt 2:637-45. [DOI: 10.1016/j.neuroimage.2014.08.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 07/04/2014] [Accepted: 08/20/2014] [Indexed: 01/22/2023] Open
|
29
|
Similarities and differences in brain activation and functional connectivity in first and second language reading: Evidence from Chinese learners of English. Neuropsychologia 2014; 63:275-84. [DOI: 10.1016/j.neuropsychologia.2014.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 07/17/2014] [Accepted: 09/01/2014] [Indexed: 11/22/2022]
|
30
|
Bazargani N, Hillebrandt H, Christoff K, Dumontheil I. Developmental changes in effective connectivity associated with relational reasoning. Hum Brain Mapp 2014; 35:3262-76. [PMID: 25050424 PMCID: PMC6869537 DOI: 10.1002/hbm.22400] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 07/19/2013] [Accepted: 08/19/2013] [Indexed: 01/22/2023] Open
Abstract
Rostrolateral prefrontal cortex (RLPFC) is part of a frontoparietal network of regions involved in relational reasoning, the mental process of working with relationships between multiple mental representations. RLPFC has shown functional and structural changes with age, with increasing specificity of left RLPFC activation for relational integration during development. Here, we used dynamic causal modeling (DCM) to investigate changes in effective connectivity during a relational reasoning task through the transition from adolescence into adulthood. We examined fMRI data of 37 healthy female participants (11–30 years old) performing a relational reasoning paradigm. Comparing relational integration to the manipulation of single relations revealed activation in five regions: the RLPFC, anterior insula, dorsolateral PFC, inferior parietal lobe, and medial superior frontal gyrus. We used a new exhaustive search approach and identified a full DCM model, which included all reciprocal connections between the five clusters in the left hemisphere, as the optimal model. In line with previous resting state fMRI results, we showed distinct developmental effects on the strength of long-range frontoparietal versus frontoinsular short-range fixed connections. The modulatory connections associated with relational integration increased with age. Gray matter volume in left RLPFC, which decreased with age, partly accounted for changes in fixed PFC connectivity. Finally, improvements in relational integration performance were associated with greater modulatory and weaker fixed PFC connectivity. This pattern provides further evidence of increasing specificity of left PFC function for relational integration compared to the manipulation of single relations, and demonstrates an association between effective connectivity and performance during development.
Collapse
Affiliation(s)
- Narges Bazargani
- Institute of Cognitive NeuroscienceUniversity College LondonLondonWC1N 3ARUnited Kingdom
| | - Hauke Hillebrandt
- Institute of Cognitive NeuroscienceUniversity College LondonLondonWC1N 3ARUnited Kingdom
| | - Kalina Christoff
- Department of PsychologyUniversity of British ColumbiaVancouverV6T 1Z4Canada
| | - Iroise Dumontheil
- Institute of Cognitive NeuroscienceUniversity College LondonLondonWC1N 3ARUnited Kingdom
- Department of Psychological SciencesBirkbeck, University of LondonLondonWC1E 7HXUnited Kingdom
| |
Collapse
|
31
|
Dissociation of preparatory attention and response monitoring maturation during adolescence. Clin Neurophysiol 2013; 125:962-70. [PMID: 24211003 DOI: 10.1016/j.clinph.2013.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 08/14/2013] [Accepted: 10/13/2013] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Substantial brain development occurs during adolescence providing the foundation for functional advancement from stimulus-bound "bottom-up" to more mature executive-driven "top-down" processing strategies. The objective was to assess development of EEG markers of these strategies and their role in both preparatory attention (contingent negative variation, CNV) and response monitoring (Error Related Negativity, ERN, and Correct Related Negativity, CRN). METHODS CNV, ERN and CRN were assessed in 38 adolescents (18 girls), age 11-18 years, using a variation of a letter discrimination task. RESULTS Accuracy increased with age and developmental stage. Younger adolescents used a posterior attention network involved in inhibiting irrelevant information. Activity in this juvenile network, as indexed by a posteriorly-biased CNV and CRN decreased with age and advancing pubertal development. Although enhanced frontal CNV, known to be predictive of accuracy in adults, was not detected even in the older adolescents, top-down medial frontal response monitoring processes (ERN) showed evidence of development within the age-range studied. CONCLUSIONS The data revealed a dissociation of developmental progress, marked by relatively delayed onset of frontal preparatory attention relative to error monitoring. SIGNIFICANCE This dissociation may render adolescents vulnerable to excessive risk-taking and disinhibited behavior imposed by asynchronous development of component cognitive control processes.
Collapse
|
32
|
Zhu L, Nie Y, Chang C, Gao JH, Niu Z. Different patterns and development characteristics of processing written logographic characters and alphabetic words: an ALE meta-analysis. Hum Brain Mapp 2013; 35:2607-18. [PMID: 24105858 DOI: 10.1002/hbm.22354] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 05/31/2013] [Accepted: 05/31/2013] [Indexed: 11/10/2022] Open
Abstract
The neural systems for phonological processing of written language have been well identified now, while models based on these neural systems are different for different language systems or age groups. Although each of such models is mostly concordant across different experiments, the results are sensitive to the experiment design and intersubject variability. Activation likelihood estimation (ALE) meta-analysis can quantitatively synthesize the data from multiple studies and minimize the interstudy or intersubject differences. In this study, we performed two ALE meta-analysis experiments: one was to examine the neural activation patterns of the phonological processing of two different types of written languages and the other was to examine the development characteristics of such neural activation patterns based on both alphabetic language and logographic language data. The results of our first meta-analysis experiment were consistent with the meta-analysis which was based on the studies published before 2005. And there were new findings in our second meta-analysis experiment, where both adults and children groups showed great activation in the left frontal lobe, the left superior/middle temporal gyrus, and the bilateral middle/superior occipital gyrus. However, the activation of the left middle/inferior frontal gyrus was found increase with the development, and the activation was found decrease in the following areas: the right claustrum and inferior frontal gyrus, the left inferior/medial frontal gyrus, the left middle/superior temporal gyrus, the right cerebellum, and the bilateral fusiform gyrus. It seems that adults involve more phonological areas, whereas children involve more orthographic areas and semantic areas.
Collapse
Affiliation(s)
- Linlin Zhu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | | | | | | | | |
Collapse
|
33
|
Radulescu E, Minati L, Ganeshan B, Harrison NA, Gray MA, Beacher FDCC, Chatwin C, Young RCD, Critchley HD. Abnormalities in fronto-striatal connectivity within language networks relate to differences in grey-matter heterogeneity in Asperger syndrome. NEUROIMAGE-CLINICAL 2013; 2:716-26. [PMID: 24179823 PMCID: PMC3777793 DOI: 10.1016/j.nicl.2013.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 12/14/2022]
Abstract
Asperger syndrome (AS) is an Autism Spectrum Disorder (ASD) characterised by qualitative impairment in the development of emotional and social skills with relative preservation of general intellectual abilities, including verbal language. People with AS may nevertheless show atypical language, including rate and frequency of speech production. We previously observed that abnormalities in grey matter homogeneity (measured with texture analysis of structural MR images) in AS individuals when compared with controls are also correlated with the volume of caudate nucleus. Here, we tested a prediction that these distributed abnormalities in grey matter compromise the functional integrity of brain networks supporting verbal communication skills. We therefore measured the functional connectivity between caudate nucleus and cortex during a functional neuroimaging study of language generation (verbal fluency), applying psycho-physiological interaction (PPI) methods to test specifically for differences attributable to grey matter heterogeneity in AS participants. Furthermore, we used dynamic causal modelling (DCM) to characterise the causal directionality of these differences in interregional connectivity during word production. Our results revealed a diagnosis-dependent influence of grey matter heterogeneity on the functional connectivity of the caudate nuclei with right insula/inferior frontal gyrus and anterior cingulate, respectively with the left superior frontal gyrus and right precuneus. Moreover, causal modelling of interactions between inferior frontal gyri, caudate and precuneus, revealed a reliance on bottom-up (stimulus-driven) connections in AS participants that contrasted with a dominance of top-down (cognitive control) connections from prefrontal cortex observed in control participants. These results provide detailed support for previously hypothesised central disconnectivity in ASD and specify discrete brain network targets for diagnosis and therapy in ASD. We used MRI techniques to assess the connectivity in language networks in AS. Grey-matter heterogeneity of MR images correlated with volume of caudate in AS. Hence, caudate nuclei were used as seed ROIs in connectivity analyses: PPI, DCM. Grey-matter heterogeneity differently tuned caudate connectivity in AS, controls. DCM of language circuitry featured bottom-up models in AS and top-down in controls.
Collapse
Affiliation(s)
- Eugenia Radulescu
- Psychiatry, Brighton & Sussex Medical School (BSMS), Brighton, BN1 9RY, UK ; Sackler Centre for Consciousness Science, University of Sussex, Brighton, BN1 9RY, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Schurz M, Kronbichler M, Crone J, Richlan F, Klackl J, Wimmer H. Top-down and bottom-up influences on the left ventral occipito-temporal cortex during visual word recognition: an analysis of effective connectivity. Hum Brain Mapp 2013; 35:1668-80. [PMID: 23670980 DOI: 10.1002/hbm.22281] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/06/2013] [Accepted: 02/12/2013] [Indexed: 11/09/2022] Open
Abstract
The functional role of the left ventral occipito-temporal cortex (vOT) in visual word processing has been studied extensively. A prominent observation is higher activation for unfamiliar but pronounceable letter strings compared to regular words in this region. Some functional accounts have interpreted this finding as driven by top-down influences (e.g., Dehaene and Cohen [2011]: Trends Cogn Sci 15:254-262; Price and Devlin [2011]: Trends Cogn Sci 15:246-253), while others have suggested a difference in bottom-up processing (e.g., Glezer et al. [2009]: Neuron 62:199-204; Kronbichler et al. [2007]: J Cogn Neurosci 19:1584-1594). We used dynamic causal modeling for fMRI data to test bottom-up and top-down influences on the left vOT during visual processing of regular words and unfamiliar letter strings. Regular words (e.g., taxi) and unfamiliar letter strings of pseudohomophones (e.g., taksi) were presented in the context of a phonological lexical decision task (i.e., "Does the item sound like a word?"). We found no differences in top-down signaling, but a strong increase in bottom-up signaling from the occipital cortex to the left vOT for pseudohomophones compared to words. This finding can be linked to functional accounts which assume that the left vOT contains neurons tuned to complex orthographic features such as morphemes or words [e.g., Dehaene and Cohen [2011]: Trends Cogn Sci 15:254-262; Kronbichler et al. [2007]: J Cogn Neurosci 19:1584-1594]: For words, bottom-up signals converge onto a matching orthographic representation in the left vOT. For pseudohomophones, the propagated signals do not converge, but (partially) activate multiple orthographic word representations, reflected in increased effective connectivity.
Collapse
Affiliation(s)
- Matthias Schurz
- Department of Psychology and Center for Neurocognitive Research, University of Salzburg, Salzburg, Austria
| | | | | | | | | | | |
Collapse
|
35
|
Effects of reverberation on speech recognition in stationary and modulated noise by school-aged children and young adults. Ear Hear 2013; 33:731-44. [PMID: 22732772 DOI: 10.1097/aud.0b013e31825aecad] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The purpose of this study was to determine how combinations of reverberation and noise, typical of environments in many elementary school classrooms, affect normal-hearing school-aged children's speech recognition in stationary and amplitude-modulated noise, and to compare their performance with that of normal-hearing young adults. In addition, the magnitude of release from masking in the modulated noise relative to that in stationary noise was compared across age groups in nonreverberant and reverberant listening conditions. Last, for all noise and reverberation combinations the degree of change in predicted performance at 70% correct was obtained for all age groups using a best-fit cubic polynomial. DESIGN Bamford-Kowal-Bench sentences and noise were convolved with binaural room impulse responses representing nonreverberant and reverberant environments to create test materials representative of both audiology clinics and school classroom environments. Speech recognition of 48 school-aged children and 12 adults was measured in speech-shaped and amplitude-modulated speech-shaped noise, in the following three virtual listening environments: nonreverberant, reverberant at 2 m, and reverberant at 6 m. RESULTS Speech recognition decreased in the reverberant conditions and with decreasing age. Release from masking in modulated noise relative to stationary noise decreased with age and was reduced by reverberation. In the nonreverberant condition, participants showed similar amounts of masking release across ages. The slopes of performance-intensity functions increased with age, with the exception of the nonreverberant modulated masker condition. The slopes were steeper in the stationary masker conditions, where they also decreased with reverberation and distance. In the presence of a modulated masker, the slopes did not differ between the two reverberant conditions. CONCLUSIONS The results of this study reveal systematic developmental changes in speech recognition in noisy and reverberant environments for elementary-school-aged children. The overall pattern suggests that younger children require better acoustic conditions to achieve sentence recognition equivalent to their older peers and adults. In addition, this is the first study to report a reduction of masking release in children as a result of reverberation. Results support the importance of minimizing noise and reverberation in classrooms, and highlight the need to incorporate noise and reverberation into audiological speech-recognition testing to improve predictions of performance in the real world.
Collapse
|
36
|
Simos PG, Rezaie R, Fletcher JM, Papanicolaou AC. Time-constrained functional connectivity analysis of cortical networks underlying phonological decoding in typically developing school-aged children: a magnetoencephalography study. BRAIN AND LANGUAGE 2013; 125:156-64. [PMID: 22901793 PMCID: PMC3505242 DOI: 10.1016/j.bandl.2012.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 07/01/2012] [Accepted: 07/08/2012] [Indexed: 05/16/2023]
Abstract
The study investigated functional associations between left hemisphere occipitotemporal, temporoparietal, and inferior frontal regions during oral pseudoword reading in 58 school-aged children with typical reading skills (aged 10.4±1.6, range 7.5-12.5years). Event-related neuromagnetic data were used to compute source-current density waveforms using a minimum norm algorithm. Temporally-constrained contributions were established for four ROIs (STG, SMG, ANG, and IFG) by controlling for the autoregressive effects of activity in each ROI. Unique contributions made by activity in one ROI to subsequent activity in a second ROI were assessed through multiple regression analyses. Forward associations between lateral (LOC) and ventral occipitotemporal cortices (fusiform gyrus) to each of the four main ROIs were also examined. The earliest significant contributions to SMG and ANG activation (at 200-250ms) were made by preceding activity in the fusiform gyrus. The degree of activity in IFG appeared to be determined by earlier activity in ANG and STG.
Collapse
Affiliation(s)
- Panagiotis G Simos
- Department of Psychology, University of Crete, Rethymno, Crete 74100, Greece.
| | | | | | | |
Collapse
|
37
|
Raschle NM, Stering PL, Meissner SN, Gaab N. Altered neuronal response during rapid auditory processing and its relation to phonological processing in prereading children at familial risk for dyslexia. ACTA ACUST UNITED AC 2013; 24:2489-501. [PMID: 23599167 DOI: 10.1093/cercor/bht104] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Developmental dyslexia (DD) is a learning disability affecting 5-17% of children. Although researchers agree that DD is characterized by deficient phonological processing (PP), its cause is debated. It has been suggested that altered rapid auditory processing (RAP) may lead to deficient PP in DD and studies have shown deficient RAP in individuals with DD. Functional neuroimaging (fMRI) studies have implicated hypoactivations in left prefrontal brain regions during RAP in individuals with DD. When and how these neuronal alterations evolve remains unknown. In this article, we investigate functional networks during RAP in 28 children with (n = 14) and without (n = 14) a familial risk for DD before reading onset (mean: 5.6 years). Results reveal functional alterations in left-hemispheric prefrontal regions during RAP in prereading children at risk for DD, similar to findings in individuals with DD. Furthermore, activation during RAP in left prefrontal regions positively correlates with prereading measures of PP and with neuronal activation during PP in posterior dorsal and ventral brain areas. Our results suggest that neuronal differences during RAP predate reading instruction and thus are not due to experience-dependent brain changes resulting from DD itself and that there is a functional relationship between neuronal networks for RAP and PP within the prereading brain.
Collapse
Affiliation(s)
- Nora M Raschle
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA Harvard Medical School, Boston, MA 02115, USA and
| | - Patrice L Stering
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sarah N Meissner
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA Harvard Medical School, Boston, MA 02115, USA and Harvard Graduate School of Education, Cambridge, MA 02138, USA
| |
Collapse
|
38
|
Luna B, Paulsen DJ, Padmanabhan A, Geier C. Cognitive Control and Motivation. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2013; 22:94-100. [PMID: 25574074 DOI: 10.1177/0963721413478416] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Adolescence is associated with heightened mortality rates due in large measure to negative consequences from risky behaviors. Theories of adolescent risk taking posit that immature cognitive control coupled with heightened reward reactivity drive adolescent risk-taking, yet surprisingly few empirical studies have examined these neurobiological systems together. In this paper, we describe a related series of studies from our laboratory aimed at further delineating the maturation of cognitive control through adolescence, as well as how rewards influence a key aspect of cognitive control, response inhibition. Our findings indicate that adolescents can exert adult-like control over their behavior, but that they have limitations regarding the consistency with which they can generate optimal responses compared to adults. Moreover, we demonstrate that the brain circuitry supporting mature cognitive (inhibitory) control is still undergoing development. Our work using the rewarded antisaccade task, a paradigm that enables concurrent assessment of rewards and inhibitory control, indicates that adolescents show delayed but heightened responses in key reward regions along with concurrent activation in brain systems that support behaviors leading to reward acquisition. Considered together, our results highlight adolescent-specific differences in the integration of basic brain processes that may underlie decision-making and more complex risk taking in adolescence.
Collapse
Affiliation(s)
- Beatriz Luna
- Deparment of Psychiatry, University of Pittsburgh ; Deparment of Psychology, University of Pittsburgh
| | | | | | - Charles Geier
- Department of Human Development and Family Studies, Pennsylvania State University
| |
Collapse
|
39
|
Vuontela V, Jiang P, Tokariev M, Savolainen P, Ma Y, Aronen ET, Fontell T, Liiri T, Ahlström M, Salonen O, Carlson S. Regulation of brain activity in the fusiform face and parahippocampal place areas in 7–11-year-old children. Brain Cogn 2013; 81:203-14. [DOI: 10.1016/j.bandc.2012.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 11/08/2012] [Accepted: 11/13/2012] [Indexed: 12/01/2022]
|
40
|
Kikuchi M, Yoshimura Y, Shitamichi K, Ueno S, Hirosawa T, Munesue T, Ono Y, Tsubokawa T, Haruta Y, Oi M, Niida Y, Remijn GB, Takahashi T, Suzuki M, Higashida H, Minabe Y. A custom magnetoencephalography device reveals brain connectivity and high reading/decoding ability in children with autism. Sci Rep 2013; 3:1139. [PMID: 23355952 PMCID: PMC3555087 DOI: 10.1038/srep01139] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/03/2013] [Indexed: 01/28/2023] Open
Abstract
A subset of individuals with autism spectrum disorder (ASD) performs more proficiently on certain visual tasks than may be predicted by their general cognitive performances. However, in younger children with ASD (aged 5 to 7), preserved ability in these tasks and the neurophysiological correlates of their ability are not well documented. In the present study, we used a custom child-sized magnetoencephalography system and demonstrated that preserved ability in the visual reasoning task was associated with rightward lateralisation of the neurophysiological connectivity between the parietal and temporal regions in children with ASD. In addition, we demonstrated that higher reading/decoding ability was also associated with the same lateralisation in children with ASD. These neurophysiological correlates of visual tasks are considerably different from those that are observed in typically developing children. These findings indicate that children with ASD have inherently different neural pathways that contribute to their relatively preserved ability in visual tasks.
Collapse
Affiliation(s)
- Mitsuru Kikuchi
- Research Centre for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Brennan C, Cao F, Pedroarena-Leal N, McNorgan C, Booth JR. Reading acquisition reorganizes the phonological awareness network only in alphabetic writing systems. Hum Brain Mapp 2012; 34:3354-68. [PMID: 22815229 DOI: 10.1002/hbm.22147] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 05/23/2012] [Accepted: 05/24/2012] [Indexed: 11/11/2022] Open
Abstract
It is unknown how experience with different types of orthographies influences the neural basis of oral language processing. In order to determine the effects of alphabetic and nonalphabetic writing systems, the current study examined the influence of learning to read on oral language in English and Chinese speakers. Children (8-12 years olds) and adults made rhyming judgments to pairs of spoken words during functional magnetic resonance imaging (fMRI). Developmental increases were seen only for English speakers in the left hemisphere phonological network (superior temporal gyrus (STG), inferior parietal lobule, and inferior frontal gyrus). The increase in the STG was more pronounced for words with conflicting orthography (e.g. pint-mint; jazz-has) even though access to orthography was irrelevant to the task. Moreover, higher reading skill was correlated with greater activation in the STG only for English speaking children. The effects suggest that learning to read reorganizes the phonological awareness network only for alphabetic and not logographic writing systems because of differences in the principles for mapping between orthographic and phonological representations. The reorganization of the auditory cortex may result in better phonological awareness skills in alphabetic readers.
Collapse
Affiliation(s)
- Christine Brennan
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois
| | | | | | | | | |
Collapse
|
42
|
Yang J, Wang X, Shu H, Zevin JD. Brain networks associated with sublexical properties of Chinese characters. BRAIN AND LANGUAGE 2011; 119:68-79. [PMID: 21600637 PMCID: PMC3508435 DOI: 10.1016/j.bandl.2011.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/01/2011] [Accepted: 03/21/2011] [Indexed: 05/30/2023]
Abstract
Cognitive models of reading all assume some division of labor among processing pathways in mapping among print, sound and meaning. Many studies of the neural basis of reading have used task manipulations such as rhyme or synonym judgment to tap these processes independently. Here we take advantage of specific properties of the Chinese writing system to test how differential availability of sublexical information about sound and meaning, as well as the orthographic structure of characters, pseudo-characters and "artificial" control stimuli influence brain activation in the context of the same one-back task. Analyses combine a data-driven approach that identifies temporally coherent patterns of activity over the course of the entire experiment with hypothesis-testing based on the correlation of these patterns with predictors for different stimulus classes. The results reveal a large network of task-related activity. Both the extent of this network and activity in regions commonly observed in studies of Chinese reading are apparently related to task difficulty. Other regions, including temporo-parietal cortex, were sensitive to particular sublexical functional units in mapping among print, sound, and meaning.
Collapse
Affiliation(s)
- Jianfeng Yang
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, China
| | - Xiaojuan Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, China
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, China
| | - Jason D. Zevin
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, USA
| |
Collapse
|
43
|
Frye RE, Liederman J, McGraw Fisher J, Wu MH. Laterality of temporoparietal causal connectivity during the prestimulus period correlates with phonological decoding task performance in dyslexic and typical readers. Cereb Cortex 2011; 22:1923-34. [PMID: 21980019 PMCID: PMC3394369 DOI: 10.1093/cercor/bhr265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We examined how effective connectivity into and out of the left and right temporoparietal areas (TPAs) to/from other key cortical areas affected phonological decoding in 7 dyslexic readers (DRs) and 10 typical readers (TRs) who were young adults. Granger causality was used to compute the effective connectivity of the preparatory network 500 ms prior to presentation of nonwords that required phonological decoding. Neuromagnetic activity was analyzed within the low, medium, and high beta and gamma subbands. A mixed-model analysis determined whether connectivity to or from the left and right TPAs differed across connectivity direction (in vs. out), brain areas (right and left inferior frontal and ventral occipital–temporal and the contralateral TPA), reading group (DR vs. TR), and/or task performance. Within the low beta subband, better performance was associated with increased influence of the left TPA on other brain areas across both reading groups and poorer performance was associated with increased influence of the right TPA on other brain areas for DRs only. DRs were also found to have an increase in high gamma connectivity between the left TPA and other brain areas. This study suggests that hierarchal network structure rather than connectivity per se is important in determining phonological decoding performance.
Collapse
Affiliation(s)
- Richard E Frye
- Division of Child Neurology, Arkansas Children's Hospital, Little Rock, AR 72202, USA.
| | | | | | | |
Collapse
|
44
|
Lidzba K, Schwilling E, Grodd W, Krägeloh-Mann I, Wilke M. Language comprehension vs. language production: age effects on fMRI activation. BRAIN AND LANGUAGE 2011; 119:6-15. [PMID: 21450336 DOI: 10.1016/j.bandl.2011.02.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 02/09/2011] [Accepted: 02/12/2011] [Indexed: 05/26/2023]
Abstract
Normal language acquisition is a process that unfolds with amazing speed primarily in the first years of life. However, the refinement of linguistic proficiency is an ongoing process, extending well into childhood and adolescence. An increase in lateralization and a more focussed productive language network have been suggested to be the neural correlates of this process. However, the processes underlying the refinement of language comprehension are less clear. Using a language comprehension (Beep Stories) and a language production (Vowel Identification) task in fMRI, we studied language representation and lateralization in 36 children, adolescents, and young adults (age 6-24 years). For the language comprehension network, we found a more focal activation with age in the bilateral superior temporal gyri. No significant increase of lateralization with age could be observed, so the neural basis of language comprehension as assessed with the Beep Stories task seems to be established in a bilateral network by late childhood. For the productive network, however, we could confirm an increase with age both in focus and lateralization. Only in the language comprehension task did verbal IQ correlate with lateralization, with higher verbal IQ being associated with more right-hemispheric involvement. In some subjects (24%), language comprehension and language production were lateralized to opposite hemispheres.
Collapse
Affiliation(s)
- Karen Lidzba
- Pediatric Neurology & Developmental Medicine, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
45
|
Kovelman I, Norton ES, Christodoulou JA, Gaab N, Lieberman DA, Triantafyllou C, Wolf M, Whitfield-Gabrieli S, Gabrieli JDE. Brain basis of phonological awareness for spoken language in children and its disruption in dyslexia. Cereb Cortex 2011; 22:754-64. [PMID: 21693783 DOI: 10.1093/cercor/bhr094] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phonological awareness, knowledge that speech is composed of syllables and phonemes, is critical for learning to read. Phonological awareness precedes and predicts successful transition from language to literacy, and weakness in phonological awareness is a leading cause of dyslexia, but the brain basis of phonological awareness for spoken language in children is unknown. We used functional magnetic resonance imaging to identify the neural correlates of phonological awareness using an auditory word-rhyming task in children who were typical readers or who had dyslexia (ages 7-13) and a younger group of kindergarteners (ages 5-6). Typically developing children, but not children with dyslexia, recruited left dorsolateral prefrontal cortex (DLPFC) when making explicit phonological judgments. Kindergarteners, who were matched to the older children with dyslexia on standardized tests of phonological awareness, also recruited left DLPFC. Left DLPFC may play a critical role in the development of phonological awareness for spoken language critical for reading and in the etiology of dyslexia.
Collapse
Affiliation(s)
- Ioulia Kovelman
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Twomey T, Kawabata Duncan KJ, Price CJ, Devlin JT. Top-down modulation of ventral occipito-temporal responses during visual word recognition. Neuroimage 2011; 55:1242-51. [PMID: 21232615 PMCID: PMC3221051 DOI: 10.1016/j.neuroimage.2011.01.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/14/2010] [Accepted: 01/03/2011] [Indexed: 11/17/2022] Open
Abstract
Although interactivity is considered a fundamental principle of cognitive (and computational) models of reading, it has received far less attention in neural models of reading that instead focus on serial stages of feed-forward processing from visual input to orthographic processing to accessing the corresponding phonological and semantic information. In particular, the left ventral occipito-temporal (vOT) cortex is proposed to be the first stage where visual word recognition occurs prior to accessing nonvisual information such as semantics and phonology. We used functional magnetic resonance imaging (fMRI) to investigate whether there is evidence that activation in vOT is influenced top-down by the interaction of visual and nonvisual properties of the stimuli during visual word recognition tasks. Participants performed two different types of lexical decision tasks that focused on either visual or nonvisual properties of the word or word-like stimuli. The design allowed us to investigate how vOT activation during visual word recognition was influenced by a task change to the same stimuli and by a stimulus change during the same task. We found both stimulus- and task-driven modulation of vOT activation that can only be explained by top-down processing of nonvisual aspects of the task and stimuli. Our results are consistent with the hypothesis that vOT acts as an interface linking visual form with nonvisual processing in both bottom up and top down directions. Such interactive processing at the neural level is in agreement with cognitive and computational models of reading but challenges some of the assumptions made by current neuro-anatomical models of reading.
Collapse
Affiliation(s)
- Tae Twomey
- Cognitive, Perceptual & Brain Sciences, University College London, Gower Street, London, WC1E 6BT, UK.
| | | | | | | |
Collapse
|
47
|
van der Mark S, Klaver P, Bucher K, Maurer U, Schulz E, Brem S, Martin E, Brandeis D. The left occipitotemporal system in reading: Disruption of focal fMRI connectivity to left inferior frontal and inferior parietal language areas in children with dyslexia. Neuroimage 2011; 54:2426-36. [PMID: 20934519 DOI: 10.1016/j.neuroimage.2010.10.002] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 09/26/2010] [Accepted: 10/01/2010] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sanne van der Mark
- MR-Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Frye RE, Wu MH, Liederman J, Fisher JM. Greater Pre-Stimulus Effective Connectivity from the Left Inferior Frontal Area to other Areas is Associated with Better Phonological Decoding in Dyslexic Readers. Front Syst Neurosci 2010; 4:156. [PMID: 21160549 PMCID: PMC3001755 DOI: 10.3389/fnsys.2010.00156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 11/08/2010] [Indexed: 11/13/2022] Open
Abstract
Functional neuroimaging studies suggest that neural networks that subserve reading are organized differently in dyslexic readers (DRs) and typical readers (TRs), yet the hierarchical structure of these networks has not been well studied. We used Granger causality to examine the effective connectivity of the preparatory network that occurs prior to viewing a non-word stimulus that requires phonological decoding in 7 DRs and 10 TRs who were young adults. The neuromagnetic activity that occurred 500 ms prior to each rhyme trial was analyzed from sensors overlying the left and right inferior frontal areas (IFA), temporoparietal areas, and ventral occipital-temporal areas within the low, medium, and high beta and gamma sub-bands. A mixed-model analysis determined whether connectivity to or from the left and right IFAs differed across connectivity direction (into vs. out of the IFAs), brain areas, reading group, and/or performance. Results indicated that greater connectivity in the low beta sub-band from the left IFA to other cortical areas was significantly related to better non-word rhyme discrimination in DRs but not TRs. This suggests that the left IFA is an important cortical area involved in compensating for poor phonological function in DRs. We suggest that the left IFA activates a wider-than usual network prior to each trial in the service of supporting otherwise effortful phonological decoding in DRs. The fact that the left IFA provides top-down activation to both posterior left hemispheres areas used by TRs for phonological decoding and homologous right hemisphere areas is discussed. In contrast, within the high gamma sub-band, better performance was associated with decreased connectivity between the left IFA and other brain areas, in both reading groups. Overly strong gamma connectivity during the pre-stimulus period may interfere with subsequent transient activation and deactivation of sub-networks once the non-word appears.
Collapse
Affiliation(s)
- Richard E Frye
- Department of Pediatrics, Division of Child and Adolescent Neurology and the Children's Learning Institute, University of Texas Health Science Center Houston, TX, USA
| | | | | | | |
Collapse
|
49
|
Hwang K, Velanova K, Luna B. Strengthening of top-down frontal cognitive control networks underlying the development of inhibitory control: a functional magnetic resonance imaging effective connectivity study. J Neurosci 2010; 30:15535-45. [PMID: 21084608 PMCID: PMC2995693 DOI: 10.1523/jneurosci.2825-10.2010] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 09/14/2010] [Accepted: 09/20/2010] [Indexed: 11/21/2022] Open
Abstract
The ability to voluntarily inhibit responses to task-irrelevant stimuli, which is a fundamental component of cognitive control, has a protracted development through adolescence. Previous human developmental imaging studies have found immaturities in localized brain activity in children and adolescents. However, little is known about how these regions integrate with age to form the distributed networks known to support cognitive control. In the present study, we used Granger causality analysis to characterize developmental changes in effective connectivity underlying inhibitory control (antisaccade task) compared with reflexive responses (prosaccade task) in human participants. By childhood, few top-down connectivities were evident with increased parietal interconnectivity. By adolescence, connections from prefrontal cortex increased and parietal interconnectivity decreased. From adolescence to adulthood, there was evidence of increased number and strength of frontal connections to cortical regions as well as subcortical regions. Together, results suggest that developmental improvements in inhibitory control may be supported by age-related enhancements in top-down effective connectivity between frontal, oculomotor, and subcortical regions.
Collapse
Affiliation(s)
- Kai Hwang
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | |
Collapse
|
50
|
Cao F, Khalid K, Lee R, Brennan C, Yang Y, Li K, Bolger DJ, Booth JR. Development of brain networks involved in spoken word processing of Mandarin Chinese. Neuroimage 2010; 57:750-9. [PMID: 20884355 DOI: 10.1016/j.neuroimage.2010.09.047] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 09/16/2010] [Accepted: 09/18/2010] [Indexed: 11/15/2022] Open
Abstract
Developmental differences in phonological and orthographic processing of Chinese spoken words were examined in 9-year-olds, 11-year-olds and adults using functional magnetic resonance imaging (fMRI). Rhyming and spelling judgments were made to two-character words presented sequentially in the auditory modality. Developmental comparisons between adults and both groups of children combined showed that age-related changes in activation in visuo-orthographic regions depended on a task. There were developmental increases in the left inferior temporal gyrus and the right inferior occipital gyrus in the spelling task, suggesting more extensive visuo-orthographic processing in a task that required access to these representations. Conversely, there were developmental decreases in activation in the left fusiform gyrus and left middle occipital gyrus in the rhyming task, suggesting that the development of reading is marked by reduced involvement of orthography in a spoken language task that does not require access to these orthographic representations. Developmental decreases may arise from the existence of extensive homophony (auditory words that have multiple spellings) in Chinese. In addition, we found that 11-year-olds and adults showed similar activation in the left superior temporal gyrus across tasks, with both groups showing greater activation than 9-year-olds. This pattern suggests early development of perceptual representations of phonology. In contrast, 11-year-olds and 9-year-olds showed similar activation in the left inferior frontal gyrus across tasks, with both groups showing weaker activation than adults. This pattern suggests late development of controlled retrieval and selection of lexical representations. Altogether, this study suggests differential effects of character acquisition on development of components of the language network in Chinese as compared to previous reports on alphabetic languages.
Collapse
Affiliation(s)
- Fan Cao
- Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, USA.
| | | | | | | | | | | | | | | |
Collapse
|