1
|
Wang T, de Graaf T, Tanner L, Schuhmann T, Duecker F, Sack AT. Hemispheric Asymmetry in TMS-Induced Effects on Spatial Attention: A Meta-Analysis. Neuropsychol Rev 2024; 34:838-849. [PMID: 37736863 PMCID: PMC11473452 DOI: 10.1007/s11065-023-09614-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/14/2023] [Indexed: 09/23/2023]
Abstract
Hemispheric asymmetry is a fundamental principle in the functional architecture of the brain. It plays an important role in attention research where right hemisphere dominance is core to many attention theories. Lesion studies seem to confirm such hemispheric dominance with patients being more likely to develop left hemineglect after right hemispheric stroke than vice versa. However, the underlying concept of hemispheric dominance is still not entirely clear. Brain stimulation studies using transcranial magnetic stimulation (TMS) might be able to illuminate this concept. To examine the putative hemispheric asymmetry in spatial attention, we conducted a meta-analysis of studies applying inhibitory TMS protocols to the left or right posterior parietal cortices (PPC), assessing effects on attention biases with the landmark and line bisection task. A total of 18 studies including 222 participants from 1994 to February 2022 were identified. The analysis revealed a significant shift of the perceived midpoint towards the ipsilateral hemifield after right PPC suppression (Cohen's d = 0.52), but no significant effect after left PPC suppression (Cohen's d = 0.26), suggesting a hemispheric asymmetry even though the subgroup difference does not reach significance (p = .06). A complementary Bayesian meta-analysis revealed a high probability of at least a medium effect size after right PPC disruption versus a low probability after left PPC disruption. This is the first quantitative meta-analysis supporting right hemisphere-specific TMS-induced spatial attention deficits, mimicking hemineglect in healthy participants. We discuss the result in the light of prominent attention theories, ultimately concluding how difficult it remains to differentiate between these theories based on attentional bias scores alone.
Collapse
Affiliation(s)
- Ting Wang
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, the Netherlands.
- Maastricht Brain Imaging Centre, Maastricht, the Netherlands.
| | - Tom de Graaf
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, the Netherlands
- Maastricht Brain Imaging Centre, Maastricht, the Netherlands
| | - Lisabel Tanner
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, the Netherlands
| | - Teresa Schuhmann
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, the Netherlands
- Maastricht Brain Imaging Centre, Maastricht, the Netherlands
| | - Felix Duecker
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, the Netherlands
- Maastricht Brain Imaging Centre, Maastricht, the Netherlands
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, the Netherlands
- Maastricht Brain Imaging Centre, Maastricht, the Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre+, Brain+Nerve Centre, Maastricht, the Netherlands
- Centre for Integrative Neuroscience, Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
2
|
Bonfanti D, Mazzi C, Savazzi S. Mapping the routes of perception: Hemispheric asymmetries in signal propagation dynamics. Psychophysiology 2024; 61:e14529. [PMID: 38279560 DOI: 10.1111/psyp.14529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/14/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
The visual system has long been considered equivalent across hemispheres. However, an increasing amount of data shows that functional differences may exist in this regard. We therefore tried to characterize the emergence of visual perception and the spatiotemporal dynamics resulting from the stimulation of visual cortices in order to detect possible interhemispheric asymmetries. Eighteen participants were tested. Each of them received 360 transcranial magnetic stimulation (TMS) pulses at phosphene threshold intensity over left and right early visual areas while electroencephalography was being recorded. After each single pulse, participants had to report the presence or absence of a phosphene. Local mean field power analysis of TMS-evoked potentials showed an effect of both site (left vs. right TMS) of stimulation and hemisphere (ipsilateral vs. contralateral to the TMS): while right TMS determined early stronger activations, left TMS determined later stronger activity in contralateral electrodes. The interhemispheric signal propagation index revealed differences in how TMS-evoked activity spreads: left TMS-induced activity diffused contralaterally more than right stimulation. With regard to phosphenes perception, distinct electrophysiological patterns were found to reflect similar perceptual experiences: left TMS-evoked phosphenes are associated with early occipito-parietal and frontal activity followed by late central activity; right TMS-evoked phosphenes determine only late, fronto-central, and parietal activations. Our results show that left and right occipital TMS elicits differential electrophysiological patterns in the brain, both per se and as a function of phosphene perception. These distinct activation patterns may suggest a different role of the two hemispheres in processing visual information and giving rise to perception.
Collapse
Affiliation(s)
- Davide Bonfanti
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Mazzi
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Silvia Savazzi
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
3
|
Massironi A, Lazzari G, La Rocca S, Ronconi L, Daini R, Lega C. Transcranial magnetic stimulation on the right dorsal attention network modulates the center-surround profile of the attentional focus. Cereb Cortex 2024; 34:bhae015. [PMID: 38300180 DOI: 10.1093/cercor/bhae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 02/02/2024] Open
Abstract
Psychophysical observations indicate that the spatial profile of visuospatial attention includes a central enhancement around the attentional focus, encircled by a narrow zone of reduced excitability in the immediate surround. This inhibitory ring optimally amplifies relevant target information, likely stemming from top-down frontoparietal recurrent activity modulating early visual cortex activations. However, the mechanisms through which neural suppression gives rise to the surrounding attenuation and any potential hemispheric specialization remain unclear. We used transcranial magnetic stimulation to evaluate the role of two regions of the dorsal attention network in the center-surround profile: the frontal eye field and the intraparietal sulcus. Participants performed a psychophysical task that mapped the entire spatial attentional profile, while transcranial magnetic stimulation was delivered either to intraparietal sulcus or frontal eye field on the right (Experiment 1) and left (Experiment 2) hemisphere. Results showed that stimulation of right frontal eye field and right intraparietal sulcus significantly changed the center-surround profile, by widening the inhibitory ring around the attentional focus. The stimulation on the left frontal eye field, but not left intraparietal sulcus, induced a general decrease in performance but did not alter the center-surround profile. Results point to a pivotal role of the right dorsal attention network in orchestrating inhibitory spatial mechanisms required to limit interference by surrounding distractors.
Collapse
Affiliation(s)
- Andrea Massironi
- Department of Psychology, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126 Milan, Italy
| | - Giorgio Lazzari
- Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy
| | - Stefania La Rocca
- Department of Psychology, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126 Milan, Italy
| | - Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Roberta Daini
- Department of Psychology, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126 Milan, Italy
| | - Carlotta Lega
- Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy
| |
Collapse
|
4
|
Wards Y, Ehrhardt SE, Filmer HL, Mattingley JB, Garner KG, Dux PE. Neural substrates of individual differences in learning generalization via combined brain stimulation and multitasking training. Cereb Cortex 2023; 33:11679-11694. [PMID: 37930735 DOI: 10.1093/cercor/bhad406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
A pervasive limitation in cognition is reflected by the performance costs we experience when attempting to undertake two tasks simultaneously. While training can overcome these multitasking costs, the more elusive objective of training interventions is to induce persistent gains that transfer across tasks. Combined brain stimulation and cognitive training protocols have been employed to improve a range of psychological processes and facilitate such transfer, with consistent gains demonstrated in multitasking and decision-making. Neural activity in frontal, parietal, and subcortical regions has been implicated in multitasking training gains, but how the brain supports training transfer is poorly understood. To investigate this, we combined transcranial direct current stimulation of the prefrontal cortex and multitasking training, with functional magnetic resonance imaging in 178 participants. We observed transfer to a visual search task, following 1 mA left or right prefrontal cortex transcranial direct current stimulation and multitasking training. These gains persisted for 1-month post-training. Notably, improvements in visual search performance for the right hemisphere stimulation group were associated with activity changes in the right hemisphere dorsolateral prefrontal cortex, intraparietal sulcus, and cerebellum. Thus, functional dynamics in these task-general regions determine how individuals respond to paired stimulation and training, resulting in enhanced performance on an untrained task.
Collapse
Affiliation(s)
- Yohan Wards
- School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia
| | - Shane E Ehrhardt
- School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia
| | - Jason B Mattingley
- School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Queensland 4072, Australia
- Canadian Institute for Advanced Research, MaRS Centre, West tower, 661 University Ave., Suite 505, Toronto, Ontario M5G 1M1, Canada
| | - Kelly G Garner
- School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Queensland 4072, Australia
- School of Psychology, University of New South Wales, Mathews Building, Gate 11, Botany Street, Randwick, New South Wales 2052, Australia
- School of Psychology, University of Birmingham, Hills Building, Edgbaston Park Rd, Birmingham B15 2TT, United Kingdom
| | - Paul E Dux
- School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia
| |
Collapse
|
5
|
Guidali G, Bagattini C, De Matola M, Brignani D. Influence of frontal-to-parietal connectivity in pseudoneglect: A cortico-cortical paired associative stimulation study. Cortex 2023; 169:50-64. [PMID: 37862830 DOI: 10.1016/j.cortex.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 08/23/2023] [Indexed: 10/22/2023]
Abstract
Pseudoneglect is a set of visuospatial biases that entails a behavioral advantage for stimuli appearing in the left hemifield compared to the right one. Although right hemisphere dominance for visuospatial processing has been invoked to explain this phenomenon, its neurophysiological mechanisms are still debated, and the role of intra- and inter-hemispheric connectivity is yet to be defined. The present study explored the possibility of modulating pseudoneglect in healthy participants through a cortico-cortical paired associative stimulation protocol (ccPAS): a non-invasive brain stimulation protocol that manipulates the interplay between brain regions through the repeated, time-locked coupling of two transcranial magnetic stimulation (TMS) pulses. In the first experiment, healthy participants underwent a frontal-to-parietal (FP) and a parietal-to-frontal (PF) ccPAS. In the FP protocol, the first TMS pulse targeted the right frontal eye field (FEF), and the second pulse the right inferior parietal lobule (IPL), two critical areas for visuospatial and attentional processing. In the PF condition, the order of the pulses was reversed. In both protocols, the inter-stimulus interval (ISI) was 10 ms. Before and after stimulation, pseudoneglect was assessed with a landmark task and a manual line bisection task. A second experiment controlled for ccPAS timing dependency by testing FP-ccPAS with a longer ISI of 100 ms. Results showed that after administering the FP-ccPAS with the ISI of 10 ms, participants' leftward bias in the landmark task increased significantly, with no effects in the manual line bisection task. The other two protocols tested were ineffective. Our findings showed that ccPAS could be used to modulate pseudoneglect by exploiting frontal-to-parietal connectivity, possibly through increased top-down attentional control. FP-ccPAS could represent a promising tool to investigate connectivity properties within visuospatial and attentional networks in the healthy and as a potential rehabilitation protocol in patients suffering from severe visuospatial pathologies.
Collapse
Affiliation(s)
- Giacomo Guidali
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Chiara Bagattini
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Matteo De Matola
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Debora Brignani
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| |
Collapse
|
6
|
Fei N, Wang Y, Yang B, Zhang C, Chang D, Liu Z, Cheng L, Fu T, Xian J. Structural and spontaneous functional brain changes in visual and oculomotor areas identified by functional localization task in intermittent exotropia children. Brain Res 2023; 1819:148543. [PMID: 37611887 DOI: 10.1016/j.brainres.2023.148543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Intermittent exotropia (IXT) is characterizedby an intermittent outward deviation of the eyes. Yet, the neural substrates associated with IXT are not fully understood. This study investigated brain structure and spontaneous functional activity changes in children with IXT. All participants underwent detailed ophthalmological examinations and multimodal magnetic resonance imaging (MRI) scanning. During functional scanning, binocular visual stimuli were presented to subjects to determine brain areas involved in visual and oculomotor processing. Regions of interest(ROI) were subsequently selected based on functional activation to investigate brain structural and spontaneous functional differences between IXT children and healthy controls (HCs) using small volume correction (SVC). Reduced gray matter density (GMD) was found in the right frontal eye field (FEF) and bilateral inferior parietal lobe (IPL) in IXT children compared with HCs. Besides, reduced fractional amplitude of low-frequency fluctuations (fALFF) values were observed in the left lingual gyrus, right inferior occipital gyrus (IOG), bilateral IPL, and bilateral cerebellum in the IXT children compared to the HCs. IXT children with worse eye position control ability exhibited lower GMD and fALFF values in these areas. Finally, resting state functional connectivity (RSFC) was reduced in frontoparietal oculomotor processing areas in IXT children compared to HCs. In addition, increased cortical thickness was found in the right visual areas and bilateral IPL. These results showed that IXT-related structural and functional brain abnormalities occurred in childhood and may be related to underlying neuropathological mechanisms.
Collapse
Affiliation(s)
- Nanxi Fei
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, 100730 Beijing, China
| | - Yachen Wang
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, 100730 Beijing, China; Beijing Ophthalmology & Visual Sciences Key Laboratory, 100730 Beijing, China
| | - Bingbing Yang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, 100730 Beijing, China
| | - Chen Zhang
- MR Scientific Marketing, Siemens Healthineers Ltd, 7, Wangjing Zhonghuan South Road, Chaoyang District, 100102 Beijing, China
| | - Di Chang
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, 100730 Beijing, China; Beijing Ophthalmology & Visual Sciences Key Laboratory, 100730 Beijing, China
| | - Zhihan Liu
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, 100730 Beijing, China; Beijing Ophthalmology & Visual Sciences Key Laboratory, 100730 Beijing, China
| | - Luyao Cheng
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, 100730 Beijing, China; Beijing Ophthalmology & Visual Sciences Key Laboratory, 100730 Beijing, China
| | - Tao Fu
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, 100730 Beijing, China; Beijing Ophthalmology & Visual Sciences Key Laboratory, 100730 Beijing, China.
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, 100730 Beijing, China.
| |
Collapse
|
7
|
Siviero I, Bonfanti D, Menegaz G, Savazzi S, Mazzi C, Storti SF. Graph Analysis of TMS-EEG Connectivity Reveals Hemispheric Differences following Occipital Stimulation. SENSORS (BASEL, SWITZERLAND) 2023; 23:8833. [PMID: 37960532 PMCID: PMC10650175 DOI: 10.3390/s23218833] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023]
Abstract
(1) Background: Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) provides a unique opportunity to investigate brain connectivity. However, possible hemispheric asymmetries in signal propagation dynamics following occipital TMS have not been investigated. (2) Methods: Eighteen healthy participants underwent occipital single-pulse TMS at two different EEG sites, corresponding to early visual areas. We used a state-of-the-art Bayesian estimation approach to accurately estimate TMS-evoked potentials (TEPs) from EEG data, which has not been previously used in this context. To capture the rapid dynamics of information flow patterns, we implemented a self-tuning optimized Kalman (STOK) filter in conjunction with the information partial directed coherence (iPDC) measure, enabling us to derive time-varying connectivity matrices. Subsequently, graph analysis was conducted to assess key network properties, providing insight into the overall network organization of the brain network. (3) Results: Our findings revealed distinct lateralized effects on effective brain connectivity and graph networks after TMS stimulation, with left stimulation facilitating enhanced communication between contralateral frontal regions and right stimulation promoting increased intra-hemispheric ipsilateral connectivity, as evidenced by statistical test (p < 0.001). (4) Conclusions: The identified hemispheric differences in terms of connectivity provide novel insights into brain networks involved in visual information processing, revealing the hemispheric specificity of neural responses to occipital stimulation.
Collapse
Affiliation(s)
- Ilaria Siviero
- Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Davide Bonfanti
- Perception and Awareness (PandA) Lab., Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Piazzale Ludovico Antonio Scuro 10, 37124 Verona, Italy; (D.B.); (S.S.); (C.M.)
| | - Gloria Menegaz
- Department of Engineering for Innovation Medicine, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Silvia Savazzi
- Perception and Awareness (PandA) Lab., Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Piazzale Ludovico Antonio Scuro 10, 37124 Verona, Italy; (D.B.); (S.S.); (C.M.)
| | - Chiara Mazzi
- Perception and Awareness (PandA) Lab., Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Piazzale Ludovico Antonio Scuro 10, 37124 Verona, Italy; (D.B.); (S.S.); (C.M.)
| | - Silvia Francesca Storti
- Department of Engineering for Innovation Medicine, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| |
Collapse
|
8
|
Tosoni A, Capotosto P, Baldassarre A, Spadone S, Sestieri C. Neuroimaging evidence supporting a dual-network architecture for the control of visuospatial attention in the human brain: a mini review. Front Hum Neurosci 2023; 17:1250096. [PMID: 37841074 PMCID: PMC10571720 DOI: 10.3389/fnhum.2023.1250096] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Neuroimaging studies conducted in the last three decades have distinguished two frontoparietal networks responsible for the control of visuospatial attention. The present review summarizes recent findings on the neurophysiological mechanisms implemented in both networks and describes the evolution from a model centered on the distinction between top-down and bottom-up attention to a model that emphasizes the dynamic interplay between the two networks based on attentional demands. The role of the dorsal attention network (DAN) in attentional orienting, by boosting behavioral performance, has been investigated with multiple experimental approaches. This research effort allowed us to trace a distinction between DAN regions involved in shifting vs. maintenance of attention, gather evidence for the modulatory influence exerted by the DAN over sensory cortices, and identify the electrophysiological correlates of the orienting function. Simultaneously, other studies have contributed to reframing our understanding of the functions of the ventral attention network (VAN) and its relevance for behavior. The VAN is not simply involved in bottom-up attentional capture but interacts with the DAN during reorienting to behaviorally relevant targets, exhibiting a general resetting function. Further studies have confirmed the selective rightward asymmetry of the VAN, proposed a functional dissociation along the anteroposterior axis, and suggested hypotheses about its emergence during the evolution of the primate brain. Finally, novel models of network interactions explain the expression of complex attentional functions and the emergence and restorations of symptoms characterizing unilateral spatial neglect. These latter studies emphasize the importance of considering patterns of network interactions for understanding the consequences of brain lesions.
Collapse
Affiliation(s)
- Annalisa Tosoni
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC) and ITAB, Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | | | | | | | | |
Collapse
|
9
|
Levakov G, Sporns O, Avidan G. Fine-scale dynamics of functional connectivity in the face-processing network during movie watching. Cell Rep 2023; 42:112585. [PMID: 37285265 DOI: 10.1016/j.celrep.2023.112585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/02/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023] Open
Abstract
Mapping the human face-processing network is typically done during rest or using isolated, static face images, overlooking widespread cortical interactions obtained in response to naturalistic face dynamics and context. To determine how inter-subject functional correlation (ISFC) relates to face recognition scores, we measure cortical connectivity patterns in response to a dynamic movie in typical adults (N = 517). We find a positive correlation with recognition scores in edges connecting the occipital visual and anterior temporal regions and a negative correlation in edges connecting the attentional dorsal, frontal default, and occipital visual regions. We measure the inter-subject stimulus-evoked response at a single TR resolution and demonstrate that co-fluctuations in face-selective edges are related to activity in core face-selective regions and that the ISFC patterns peak during boundaries between movie segments rather than during the presence of faces. Our approach demonstrates how face processing is linked to fine-scale dynamics in attentional, memory, and perceptual neural circuitry.
Collapse
Affiliation(s)
- Gidon Levakov
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Galia Avidan
- Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
10
|
Riddle J, Scimeca JM, Pagnotta MF, Inglis B, Sheltraw D, Muse-Fisher C, D’Esposito M. A guide for concurrent TMS-fMRI to investigate functional brain networks. Front Hum Neurosci 2022; 16:1050605. [PMID: 36590069 PMCID: PMC9799237 DOI: 10.3389/fnhum.2022.1050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Transcranial Magnetic Stimulation (TMS) allows for the direct activation of neurons in the human neocortex and has proven to be fundamental for causal hypothesis testing in cognitive neuroscience. By administering TMS concurrently with functional Magnetic Resonance Imaging (fMRI), the effect of cortical TMS on activity in distant cortical and subcortical structures can be quantified by varying the levels of TMS output intensity. However, TMS generates significant fluctuations in the fMRI time series, and their complex interaction warrants caution before interpreting findings. We present the methodological challenges of concurrent TMS-fMRI and a guide to minimize induced artifacts in experimental design and post-processing. Our study targeted two frontal-striatal circuits: primary motor cortex (M1) projections to the putamen and lateral prefrontal cortex (PFC) projections to the caudate in healthy human participants. We found that TMS parametrically increased the BOLD signal in the targeted region and subcortical projections as a function of stimulation intensity. Together, this work provides practical steps to overcome common challenges with concurrent TMS-fMRI and demonstrates how TMS-fMRI can be used to investigate functional brain networks.
Collapse
Affiliation(s)
- Justin Riddle
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Jason M. Scimeca
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Mattia F. Pagnotta
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Ben Inglis
- Henry H. Wheeler Jr. Brain Imaging Center, University of California, Berkeley, Berkeley, CA, United States
| | - Daniel Sheltraw
- Henry H. Wheeler Jr. Brain Imaging Center, University of California, Berkeley, Berkeley, CA, United States
| | - Chris Muse-Fisher
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Mark D’Esposito
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Henry H. Wheeler Jr. Brain Imaging Center, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
11
|
Wang M, Yang P, Zhang T, Li W, Zhang J, Jin Z, Li L. Working memory biases early object discrimination and parietal activity during attentional selection. Cortex 2022; 157:53-64. [PMID: 36272331 DOI: 10.1016/j.cortex.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/12/2022] [Accepted: 08/28/2022] [Indexed: 12/15/2022]
Abstract
The contents of working memory (WM) guide visual attention, but the neural mechanisms underlying WM biases remains unclear. Here, we used simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) approaches to characterize the timing and location of the neural response underlying WM guidance during a visual search task. Behaviorally, we observed faster search performance when the WM contents matching targets (valid) compared to when WM contents did not reappear (neutral). The EEG data showed similar benefit effects of posterior N1 component, in which targets induced larger N1 amplitudes in the valid condition than in the neutral condition. Interestingly, the fMRI activation in left supramarginal gyrus (SMG)/inferior parietal lobule (IPL) and bilateral occipital cortex was lower in the valid compared to neutral conditions. Importantly, the magnitude of the increased N1 activity and the decreased fMRI activity in the left SMG/IPL predicted the extent of search improvement at an individual subject level. These results suggest that information held in WM enhances early object discrimination during attentional selection, and the left SMG/IPL may be a critical region in mediating goal-directed processing under WM biases in human visual attention.
Collapse
Affiliation(s)
- Min Wang
- Bioinformatics and BioMedical Bigdata Mining Laboratory, School of Big Health, Guizhou Medical University, Guiyang, China; Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Yang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Key Laboratory of Basic Psychological and Cognitive Neuroscience, School of Psychology, Guizhou Normal University, Guiyang, China
| | - Tingting Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenjuan Li
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Junjun Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenlan Jin
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Li
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
12
|
Luber B, Davis SW, Deng ZD, Murphy D, Martella A, Peterchev AV, Lisanby SH. Using diffusion tensor imaging to effectively target TMS to deep brain structures. Neuroimage 2022; 249:118863. [PMID: 34974116 PMCID: PMC8851689 DOI: 10.1016/j.neuroimage.2021.118863] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 09/08/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022] Open
Abstract
TMS has become a powerful tool to explore cortical function, and in parallel has proven promising in the development of therapies for various psychiatric and neurological disorders. Unfortunately, much of the inference of the direct effects of TMS has been assumed to be limited to the area a few centimeters beneath the scalp, though clearly more distant regions are likely to be influenced by structurally connected stimulation sites. In this study, we sought to develop a novel paradigm to individualize TMS coil placement to non-invasively achieve activation of specific deep brain targets of relevance to the treatment of psychiatric disorders. In ten subjects, structural diffusion imaging tractography data were used to identify an accessible cortical target in the right frontal pole that demonstrated both anatomic and functional connectivity to right Brodmann area 25 (BA25). Concurrent TMS-fMRI interleaving was used with a series of single, interleaved TMS pulses applied to the right frontal pole at four intensity levels ranging from 80% to 140% of motor threshold. In nine of ten subjects, TMS to the individualized frontal pole sites resulted in significant linear increase in BOLD activation of BA25 with increasing TMS intensity. The reliable activation of BA25 in a dosage-dependent manner suggests the possibility that the careful combination of imaging with TMS can make use of network properties to help overcome depth limitations and allow noninvasive brain stimulation to influence deep brain structures.
Collapse
Affiliation(s)
- Bruce Luber
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.
| | - Simon W Davis
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States; Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - David Murphy
- Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Andrew Martella
- Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Angel V Peterchev
- Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States; Department of Biomedical Engineering, Duke University, Durham, NC, United States; Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States; Department of Neurosurgery, Duke University School of Medicine, Durham, NC, United States
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States; Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
13
|
Concurrent frontal and parietal network TMS for modulating attention. iScience 2022; 25:103962. [PMID: 35295814 PMCID: PMC8919227 DOI: 10.1016/j.isci.2022.103962] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 06/17/2021] [Accepted: 02/17/2022] [Indexed: 11/22/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) has been applied to frontal eye field (FEF) and intraparietal sulcus (IPS) in isolation, to study their role in attention. However, these nodes closely interact in a "dorsal attention network". Here, we compared effects of inhibitory TMS applied to individually fMRI-localized FEF or IPS (single-node TMS), to effects of simultaneously inhibiting both regions ("network TMS"), and sham. We assessed attention performance using the lateralized attention network test, which captures multiple facets of attention: spatial orienting, alerting, and executive control. TMS showed no effects on alerting and executive control. For spatial orienting, only network TMS showed a reduction of the orienting effect in the right hemifield compared to the left hemifield, irrespective of the order of TMS application (IPS→FEF or FEF→IPS). Network TMS might prevent compensatory mechanisms within a brain network, which is promising for both research and clinical applications to achieve superior neuromodulation effects.
Collapse
|
14
|
Kawagoe T. Overview of (f)MRI Studies of Cognitive Aging for Non-Experts: Looking through the Lens of Neuroimaging. Life (Basel) 2022; 12:416. [PMID: 35330167 PMCID: PMC8953678 DOI: 10.3390/life12030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
This special issue concerning Brain Functional and Structural Connectivity and Cognition aims to expand our understanding of brain connectivity. Herein, I review related topics including the principle and concepts of functional MRI, brain activation, and functional/structural connectivity in aging for uninitiated readers. Visuospatial attention, one of the well-studied functions in aging, is discussed from the perspective of neuroimaging.
Collapse
Affiliation(s)
- Toshikazu Kawagoe
- Liberal Arts Education Centre, Kyushu Campus, Tokai University, Toroku 9-1-1, Kumamoto-City 862-8652, Kumamoto, Japan
| |
Collapse
|
15
|
Mizutani-Tiebel Y, Tik M, Chang KY, Padberg F, Soldini A, Wilkinson Z, Voon CC, Bulubas L, Windischberger C, Keeser D. Concurrent TMS-fMRI: Technical Challenges, Developments, and Overview of Previous Studies. Front Psychiatry 2022; 13:825205. [PMID: 35530029 PMCID: PMC9069063 DOI: 10.3389/fpsyt.2022.825205] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a promising treatment modality for psychiatric and neurological disorders. Repetitive TMS (rTMS) is widely used for the treatment of psychiatric and neurological diseases, such as depression, motor stroke, and neuropathic pain. However, the underlying mechanisms of rTMS-mediated neuronal modulation are not fully understood. In this respect, concurrent or simultaneous TMS-fMRI, in which TMS is applied during functional magnetic resonance imaging (fMRI), is a viable tool to gain insights, as it enables an investigation of the immediate effects of TMS. Concurrent application of TMS during neuroimaging usually causes severe artifacts due to magnetic field inhomogeneities induced by TMS. However, by carefully interleaving the TMS pulses with MR signal acquisition in the way that these are far enough apart, we can avoid any image distortions. While the very first feasibility studies date back to the 1990s, recent developments in coil hardware and acquisition techniques have boosted the number of TMS-fMRI applications. As such, a concurrent application requires expertise in both TMS and MRI mechanisms and sequencing, and the hurdle of initial technical set up and maintenance remains high. This review gives a comprehensive overview of concurrent TMS-fMRI techniques by collecting (1) basic information, (2) technical challenges and developments, (3) an overview of findings reported so far using concurrent TMS-fMRI, and (4) current limitations and our suggestions for improvement. By sharing this review, we hope to attract the interest of researchers from various backgrounds and create an educational knowledge base.
Collapse
Affiliation(s)
- Yuki Mizutani-Tiebel
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany.,Neuroimaging Core Unit Munich - NICUM, University Hospital LMU, Munich, Germany
| | - Martin Tik
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Kai-Yen Chang
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany.,Neuroimaging Core Unit Munich - NICUM, University Hospital LMU, Munich, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany.,Neuroimaging Core Unit Munich - NICUM, University Hospital LMU, Munich, Germany
| | - Aldo Soldini
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany.,Neuroimaging Core Unit Munich - NICUM, University Hospital LMU, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Zane Wilkinson
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany.,Neuroimaging Core Unit Munich - NICUM, University Hospital LMU, Munich, Germany
| | - Cui Ci Voon
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany.,Neuroimaging Core Unit Munich - NICUM, University Hospital LMU, Munich, Germany
| | - Lucia Bulubas
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany.,Neuroimaging Core Unit Munich - NICUM, University Hospital LMU, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Christian Windischberger
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany.,Neuroimaging Core Unit Munich - NICUM, University Hospital LMU, Munich, Germany.,Department of Radiology, University Hospital LMU, Munich, Germany
| |
Collapse
|
16
|
Wang L, Huang L, Li M, Wang X, Wang S, Lin Y, Zhang X. An awareness-dependent mapping of saliency in the human visual system. Neuroimage 2021; 247:118864. [PMID: 34965453 DOI: 10.1016/j.neuroimage.2021.118864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 11/25/2022] Open
Abstract
The allocation of exogenously cued spatial attention is governed by a saliency map. Yet, how salience is mapped when multiple salient stimuli are present simultaneously, and how this mapping interacts with awareness remains unclear. These questions were addressed here using either visible or invisible displays presenting two foreground stimuli (whose bars were oriented differently from the bars in the otherwise uniform background): a high salience target and a distractor of varied, lesser salience. Interference, or not, by the distractor with the effective salience of the target served to index a graded or non-graded nature of salience mapping, respectively. The invisible and visible displays were empirically validated by a two-alternative forced choice test (detecting the quadrant of the target) demonstrating subjects' performance at or above chance level, respectively. By combining psychophysics, fMRI, and effective connectivity analysis, we found a graded distribution of salience with awareness, changing to a non-graded distribution without awareness. Crucially, we further revealed that the graded distribution was contingent upon feedback from the posterior intraparietal sulcus (pIPS, especially from the right pIPS), whereas the non-graded distribution was innate to V1. Together, this awareness-dependent mapping of saliency reconciles several previous, seemingly contradictory findings regarding the nature of the saliency map.
Collapse
Affiliation(s)
- Lijuan Wang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Ling Huang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Mengsha Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Xiaotong Wang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Shiyu Wang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Yuefa Lin
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Xilin Zhang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, Guangdong 510631, China; Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China.
| |
Collapse
|
17
|
Pini L, Wennberg AM, Salvalaggio A, Vallesi A, Pievani M, Corbetta M. Breakdown of specific functional brain networks in clinical variants of Alzheimer's disease. Ageing Res Rev 2021; 72:101482. [PMID: 34606986 DOI: 10.1016/j.arr.2021.101482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is characterized by different clinical entities. Although AD phenotypes share a common molecular substrate (i.e., amyloid beta and tau accumulation), several clinicopathological differences exist. Brain functional networks might provide a macro-scale scaffolding to explain this heterogeneity. In this review, we summarize the evidence linking different large-scale functional network abnormalities to distinct AD phenotypes. Specifically, executive deficits in early-onset AD link with the dysfunction of networks that support sustained attention and executive functions. Posterior cortical atrophy relates to the breakdown of visual and dorsal attentional circuits, while the primary progressive aphasia variant of AD may be associated with the dysfunction of the left-lateralized language network. Additionally, network abnormalities might provide in vivo signatures for distinguishing proteinopathies that mimic AD, such as TAR DNA binding protein 43 related pathologies. These network differences vis-a-vis clinical syndromes are more evident in the earliest stage of AD. Finally, we discuss how these findings might pave the way for new tailored interventions targeting the most vulnerable brain circuit at the optimal time window to maximize clinical benefits.
Collapse
|
18
|
Krajbich I, Mitsumasu A, Polania R, Ruff CC, Fehr E. A causal role for the right frontal eye fields in value comparison. eLife 2021; 10:e67477. [PMID: 34779767 PMCID: PMC8592572 DOI: 10.7554/elife.67477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Recent studies have suggested close functional links between overt visual attention and decision making. This suggests that the corresponding mechanisms may interface in brain regions known to be crucial for guiding visual attention - such as the frontal eye field (FEF). Here, we combined brain stimulation, eye tracking, and computational approaches to explore this possibility. We show that inhibitory transcranial magnetic stimulation (TMS) over the right FEF has a causal impact on decision making, reducing the effect of gaze dwell time on choice while also increasing reaction times. We computationally characterize this putative mechanism by using the attentional drift diffusion model (aDDM), which reveals that FEF inhibition reduces the relative discounting of the non-fixated option in the comparison process. Our findings establish an important causal role of the right FEF in choice, elucidate the underlying mechanism, and provide support for one of the key causal hypotheses associated with the aDDM.
Collapse
Affiliation(s)
- Ian Krajbich
- Departments of Psychology, Economics, The Ohio State UniversityColumbusUnited States
| | - Andres Mitsumasu
- Zurich Center for Neuroeconomics, Department of Economics, University of ZurichZurichSwitzerland
| | - Rafael Polania
- Zurich Center for Neuroeconomics, Department of Economics, University of ZurichZurichSwitzerland
- Decision Neuroscience Lab, Depterment of Heatlh Sciences and Technology, ETH ZurichZurichSwitzerland
| | - Christian C Ruff
- Zurich Center for Neuroeconomics, Department of Economics, University of ZurichZurichSwitzerland
| | - Ernst Fehr
- Zurich Center for Neuroeconomics, Department of Economics, University of ZurichZurichSwitzerland
| |
Collapse
|
19
|
Bergmann TO, Varatheeswaran R, Hanlon CA, Madsen KH, Thielscher A, Siebner HR. Concurrent TMS-fMRI for causal network perturbation and proof of target engagement. Neuroimage 2021; 237:118093. [PMID: 33940146 DOI: 10.1016/j.neuroimage.2021.118093] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
The experimental manipulation of neural activity by neurostimulation techniques overcomes the inherent limitations of correlative recordings, enabling the researcher to investigate causal brain-behavior relationships. But only when stimulation and recordings are combined, the direct impact of the stimulation on neural activity can be evaluated. In humans, this can be achieved non-invasively through the concurrent combination of transcranial magnetic stimulation (TMS) with functional magnetic resonance imaging (fMRI). Concurrent TMS-fMRI allows the assessment of the neurovascular responses evoked by TMS with excellent spatial resolution and full-brain coverage. This enables the functional mapping of both local and remote network effects of TMS in cortical as well as deep subcortical structures, offering unique opportunities for basic research and clinical applications. The purpose of this review is to introduce the reader to this powerful tool. We will introduce the technical challenges and state-of-the art solutions and provide a comprehensive overview of the existing literature and the available experimental approaches. We will highlight the unique insights that can be gained from concurrent TMS-fMRI, including the state-dependent assessment of neural responsiveness and inter-regional effective connectivity, the demonstration of functional target engagement, and the systematic evaluation of stimulation parameters. We will also discuss how concurrent TMS-fMRI during a behavioral task can help to link behavioral TMS effects to changes in neural network activity and to identify peripheral co-stimulation confounds. Finally, we will review the use of concurrent TMS-fMRI for developing TMS treatments of psychiatric and neurological disorders and suggest future improvements for further advancing the application of concurrent TMS-fMRI.
Collapse
Affiliation(s)
- Til Ole Bergmann
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; Leibniz Institute for Resilience Research, Wallstraße 7-9, 55122, Mainz, Germany.
| | - Rathiga Varatheeswaran
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; Leibniz Institute for Resilience Research, Wallstraße 7-9, 55122, Mainz, Germany
| | - Colleen A Hanlon
- Department of Cancer Biology, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Kristoffer H Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650, Hvidovre, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650, Hvidovre, Denmark; Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København NV, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
20
|
Wang T, Peeters R, Mantini D, Gillebert CR. Modulating the interhemispheric activity balance in the intraparietal sulcus using real-time fMRI neurofeedback: Development and proof-of-concept. NEUROIMAGE-CLINICAL 2021; 28:102513. [PMID: 33396000 PMCID: PMC7941162 DOI: 10.1016/j.nicl.2020.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/15/2020] [Accepted: 11/20/2020] [Indexed: 10/31/2022]
Abstract
The intraparietal sulcus (IPS) plays a key role in the distribution of attention across the visual field. In stroke patients, an imbalance between left and right IPS activity has been related to a spatial bias in visual attention characteristic of hemispatial neglect. In this study, we describe the development and implementation of a real-time functional magnetic resonance imaging neurofeedback protocol to noninvasively and volitionally control the interhemispheric IPS activity balance in neurologically healthy participants. Six participants performed three neurofeedback training sessions across three weeks. Half of them trained to voluntarily increase brain activity in left relative to right IPS, while the other half trained to regulate the IPS activity balance in the opposite direction. Before and after the training, we estimated the distribution of attention across the visual field using a whole and partial report task. Over the course of the training, two of the three participants in the left-IPS group increased the activity in the left relative to the right IPS, while the participants in the right-IPS group were not able to regulate the interhemispheric IPS activity balance. We found no evidence for a decrease in resting-state functional connectivity between left and right IPS, and the spatial distribution of attention did not change over the course of the experiment. This study indicates the possibility to voluntarily modulate the interhemispheric IPS activity balance. Further research is warranted to examine the effectiveness of this technique in the rehabilitation of post-stroke hemispatial neglect.
Collapse
Affiliation(s)
- Tianlu Wang
- Brain and Cognition, KU Leuven, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Ronald Peeters
- Radiology Department, University Hospitals Leuven, Leuven, Belgium
| | - Dante Mantini
- Research Centre for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium; Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Céline R Gillebert
- Brain and Cognition, KU Leuven, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
21
|
Abstract
The development of the use of transcranial magnetic stimulation (TMS) in the study of psychological functions has entered a new phase of sophistication. This is largely due to an increasing physiological knowledge of its effects and to its being used in combination with other experimental techniques. This review presents the current state of our understanding of the mechanisms of TMS in the context of designing and interpreting psychological experiments. We discuss the major conceptual advances in behavioral studies using TMS. There are meaningful physiological and technical achievements to review, as well as a wealth of new perceptual and cognitive experiments. In doing so we summarize the different uses and challenges of TMS in mental chronometry, perception, awareness, learning, and memory.
Collapse
Affiliation(s)
- David Pitcher
- Department of Psychology, University of York, York YO10 5DD, United Kingdom;
| | - Beth Parkin
- Department of Psychology, University of Westminster, London W1W 6UW, United Kingdom;
| | - Vincent Walsh
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom;
| |
Collapse
|
22
|
Mengotti P, Käsbauer AS, Fink GR, Vossel S. Lateralization, functional specialization, and dysfunction of attentional networks. Cortex 2020; 132:206-222. [PMID: 32998061 DOI: 10.1016/j.cortex.2020.08.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/20/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022]
Abstract
The present review covers the latest findings on the lateralization of the dorsal and ventral attention systems, their functional specialization, and their clinical relevance for stroke-induced attentional dysfunction. First, the original assumption of a bilateral dorsal system for top-down attention and a right-lateralized ventral system for stimulus-driven attention is critically reviewed. The evidence for the involvement of the left parietal cortex in attentional functions is discussed and findings on putative pathways linking the dorsal and ventral network are presented. In the second part of the review, we focus on the different attentional subsystems and their lateralization, discussing the differences between spatial, feature- and object-based attention, and motor attention. We also review studies based on predictive coding frameworks of attentional functions. Finally, in the third section, we provide an overview of the consequences of specific disruption within the attention networks after stroke. The role of the interhemispheric (im)balance is discussed, and the results of new promising therapeutic approaches employing brain stimulation techniques such as transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) are presented.
Collapse
Affiliation(s)
- Paola Mengotti
- Cognitive Neuroscience, Institute of Neuroscience & Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany.
| | - Anne-Sophie Käsbauer
- Cognitive Neuroscience, Institute of Neuroscience & Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience & Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Simone Vossel
- Cognitive Neuroscience, Institute of Neuroscience & Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; Department of Psychology, Faculty of Human Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
23
|
Evaluating the causal contribution of fronto-parietal cortices to the control of the bottom-up and top-down visual attention using fMRI-guided TMS. Cortex 2020; 126:200-212. [DOI: 10.1016/j.cortex.2020.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/28/2019] [Accepted: 01/14/2020] [Indexed: 01/22/2023]
|
24
|
Elkin-Frankston S, Rushmore RJ, Valero-Cabré A. Low frequency transcranial magnetic stimulation of right posterior parietal cortex reduces reaction time to perithreshold low spatial frequency visual stimuli. Sci Rep 2020; 10:3162. [PMID: 32081939 PMCID: PMC7035391 DOI: 10.1038/s41598-020-59662-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/14/2020] [Indexed: 11/26/2022] Open
Abstract
Research in humans and animal models suggests that visual responses in early visual cortical areas may be modulated by top-down influences from distant cortical areas, particularly in the frontal and parietal regions. The right posterior parietal cortex is part of a broad cortical network involved in aspects of visual search and attention, but its role in modulating activity in early visual cortical areas is less well understood. This study evaluated the influence of right posterior parietal cortex (PPC) on a direct measure of visual processing in humans. Contrast sensitivity (CS) and detection response times were recorded using a visual detection paradigm to two types of centrally-presented stimuli. Participants were tested on the detection task before, after, and 1 hour after low-frequency repetitive transcranial magnetic stimulation (rTMS) to the right PPC or to the scalp vertex. Low-frequency rTMS to the right PPC did not significantly change measures of contrast sensitivity, but increased the speed at which participants responded to visual stimuli of low spatial frequency. Response times returned to baseline 1-hour after rTMS. These data indicate that low frequency rTMS to the right PPC speeds up aspects of early visual processing, likely due to a disinhibition of the homotopic left posterior parietal cortex.
Collapse
Affiliation(s)
- Seth Elkin-Frankston
- Laboratory of Cerebral Dynamics, Plasticity and Rehabilitation, Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States.,U.S. Army Combat Capabilities Development Command Soldier Center, Natick, MA, United States
| | - Richard J Rushmore
- Laboratory of Cerebral Dynamics, Plasticity and Rehabilitation, Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States. .,Psychiatric Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, United States. .,Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, United States.
| | - Antoni Valero-Cabré
- Laboratory of Cerebral Dynamics, Plasticity and Rehabilitation, Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States. .,Cerebral Dynamics Plasticity and Rehabilitation Group, FRONTLAB Team ICM & CNRS UMR 7225, INSERM UMR 1127, Sorbone Universtité & LPNC CNRS UMR 5105-TREAT vision, Service de Neurologie, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France. .,Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain.
| |
Collapse
|
25
|
Jung J, Bungert A, Bowtell R, Jackson SR. Modulating Brain Networks With Transcranial Magnetic Stimulation Over the Primary Motor Cortex: A Concurrent TMS/fMRI Study. Front Hum Neurosci 2020; 14:31. [PMID: 32116612 PMCID: PMC7033446 DOI: 10.3389/fnhum.2020.00031] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/23/2020] [Indexed: 01/20/2023] Open
Abstract
Stimulating the primary motor cortex (M1) using transcranial magnetic stimulation (TMS) causes unique multisensory experience such as the targeted muscle activity, afferent/reafferent sensory feedback, tactile sensation over the scalp and “click” sound. Although the human M1 has been intensively investigated using TMS, the experience of the M1 stimulation has not been elucidated at the whole brain. Here, using concurrent TMS/fMRI, we investigated the acute effect of the M1 stimulation of functional brain networks during task and at rest. A short train of 1 Hz TMS pulses applied to individuals’ hand area in the M1 during motor execution or at rest. Employing the independent component analysis (ICA), we showed the M1 stimulation decreased the motor networks activity when the networks were engaged in the task and increased the deactivation of networks when the networks were not involved in the ongoing task. The M1 stimulation induced the activation in the key networks involved in bodily self-consciousness (BSC) including the insular and rolandic operculum systems regardless of states. The degree of activation in these networks was prominent at rest compared to task conditions, showing the state-dependent TMS effect. Furthermore, we demonstrated that the M1 stimulation modulated other domain-general networks such as the default mode network (DMN) and attention network and the inter-network connectivity between these networks. Our results showed that the M1 stimulation induced the widespread changes in the brain at the targeted system as well as non-motor, remote brain networks, specifically related to the BSC. Our findings shed light on understanding the neural mechanism of the complex and multisensory experience of the M1 stimulation.
Collapse
Affiliation(s)
- JeYoung Jung
- School of Psychology, University of Nottingham, Nottingham, United Kingdom.,Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Andreas Bungert
- Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, Nottingham, United Kingdom
| | - Richard Bowtell
- Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, Nottingham, United Kingdom
| | - Stephen R Jackson
- School of Psychology, University of Nottingham, Nottingham, United Kingdom.,Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
26
|
Navarro de Lara LI, Golestanirad L, Makarov SN, Stockmann JP, Wald LL, Nummenmaa A. Evaluation of RF interactions between a 3T birdcage transmit coil and transcranial magnetic stimulation coils using a realistically shaped head phantom. Magn Reson Med 2020; 84:1061-1075. [PMID: 31971632 DOI: 10.1002/mrm.28162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Multichannel transcranial magnetic stimulation (TMS)1 is an emerging technology that allows multiple sites to be stimulated simultaneously or sequentially under electronic control without movement of the coils. A multichannel TMS/MRI head coil array for 3 Tesla is currently under development to mitigate challenges of concurrent TMS/fMRI as well as enable potential new applications. The influence of the multichannel TMS system on the MR image quality and safety must be carefully investigated. METHODS A standard birdcage volume coil for 3 Tesla systems was simulated using a commercial numerical electromagnetic solver. Two setups, consisting of 1) a MR-compatible TMS coil, and 2) a 3-axis TMS coil array, were simulated to quantify changes in the transmit field B 1 + and the SAR. A realistically shaped homogeneous head model was used in the computations. RESULTS The stimulation coils produced enhancements and attenuations on the transmit field with effects greater than 5% up to 2.4 cm and 3.3 cm under the scalp for the MR-compatible TMS coil and 3-axis TMS coil array, respectively. The 10 g-SAR distribution did not change significantly in either of the cases; however, the nominal SAR maximum locus was shifted between existing hot spots. CONCLUSION The simulated B 1 + variations found near the TMS coils indicate the possibility of inducing sequence-dependent image artefacts predominatly limited to the vicinity of the coil(s). However, we conclude that neither the MR-compatible commercial TMS coil nor the 3-axis TMS coil array siginificantly elevate SAR in the head or neck beyond accepted safety limits.
Collapse
Affiliation(s)
- Lucia I Navarro de Lara
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Laleh Golestanirad
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois
| | - Sergey N Makarov
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts.,Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Jason P Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
27
|
Spagna A, Kim TH, Wu T, Fan J. Right hemisphere superiority for executive control of attention. Cortex 2020; 122:263-276. [DOI: 10.1016/j.cortex.2018.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/01/2018] [Accepted: 12/11/2018] [Indexed: 11/25/2022]
|
28
|
Nicolas J, Bidet-Caulet A, Pélisson D. Inducing oculomotor plasticity to disclose the functional link between voluntary saccades and endogenous attention deployed perifoveally. Sci Rep 2019; 9:17770. [PMID: 31780727 PMCID: PMC6882914 DOI: 10.1038/s41598-019-54256-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 11/04/2019] [Indexed: 11/26/2022] Open
Abstract
To what extent oculomotor and attention systems are linked remains strongly debated. Previous studies suggested that saccadic adaptation, a well-studied model of oculomotor plasticity, and orienting of attention rely on overlapping networks in the parietal cortex and can functionally interact. Using a Posner-like paradigm in healthy human subjects, we demonstrate for the first time that saccadic adaptation boosts endogenous attention orienting. Indeed, the discrimination of perifoveal targets benefits more from central cues after backward adaptation of leftward voluntary saccades than after a control saccade task. We propose that the overlap of underlying neural networks actually consists of neuronal populations co-activated by oculomotor plasticity and endogenous attention deployed perifoveally. The functional coupling demonstrated here plaids for conceptual models not belonging to the framework of the premotor theory of attention as the latter has been rejected precisely for this voluntary/endogenous modality. These results also open new perspective for rehabilitation of visuo-attentional deficits.
Collapse
Affiliation(s)
- Judith Nicolas
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, 69500, Bron, France. .,Brain Dynamics and Cognition (Dycog Team), Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, 69500, Bron, France. .,University Claude Bernard Lyon 1, Université de Lyon, 69000, Lyon, France.
| | - Aurélie Bidet-Caulet
- Brain Dynamics and Cognition (Dycog Team), Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, 69500, Bron, France.,University Claude Bernard Lyon 1, Université de Lyon, 69000, Lyon, France
| | - Denis Pélisson
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, 69500, Bron, France.,University Claude Bernard Lyon 1, Université de Lyon, 69000, Lyon, France
| |
Collapse
|
29
|
Morita T, Asada M, Naito E. Developmental Changes in Task-Induced Brain Deactivation in Humans Revealed by a Motor Task. Dev Neurobiol 2019; 79:536-558. [PMID: 31136084 PMCID: PMC6771882 DOI: 10.1002/dneu.22701] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/09/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
Abstract
Performing tasks activates relevant brain regions in adults while deactivating task-irrelevant regions. Here, using a well-controlled motor task, we explored how deactivation is shaped during typical human development and whether deactivation is related to task performance. Healthy right-handed children (8-11 years), adolescents (12-15 years), and young adults (20-24 years; 20 per group) underwent functional magnetic resonance imaging with their eyes closed while performing a repetitive button-press task with their right index finger in synchronization with a 1-Hz sound. Deactivation in the ipsilateral sensorimotor cortex (SM1), bilateral visual and auditory (cross-modal) areas, and bilateral default mode network (DMN) progressed with development. Specifically, ipsilateral SM1 and lateral occipital deactivation progressed prominently between childhood and adolescence, while medial occipital (including primary visual) and DMN deactivation progressed from adolescence to adulthood. In adults, greater cross-modal deactivation in the bilateral primary visual cortices was associated with higher button-press timing accuracy relative to the sound. The region-specific deactivation progression in a developmental period may underlie the gradual promotion of sensorimotor function segregation required in the task. Task-induced deactivation might have physiological significance regarding suppressed activity in task-irrelevant regions. Furthermore, cross-modal deactivation develops to benefit some aspects of task performance in adults.
Collapse
Affiliation(s)
- Tomoyo Morita
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Minoru Asada
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Graduate School of Frontier Biosciences, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
30
|
Mancuso L, Costa T, Nani A, Manuello J, Liloia D, Gelmini G, Panero M, Duca S, Cauda F. The homotopic connectivity of the functional brain: a meta-analytic approach. Sci Rep 2019; 9:3346. [PMID: 30833662 PMCID: PMC6399443 DOI: 10.1038/s41598-019-40188-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/05/2019] [Indexed: 01/21/2023] Open
Abstract
Homotopic connectivity (HC) is the connectivity between mirror areas of the brain hemispheres. It can exhibit a marked and functionally relevant spatial variability, and can be perturbed by several pathological conditions. The voxel-mirrored homotopic connectivity (VMHC) is a technique devised to enquire this pattern of brain organization, based on resting state functional connectivity. Since functional connectivity can be revealed also in a meta-analytical fashion using co-activations, here we propose to calculate the meta-analytic homotopic connectivity (MHC) as the meta-analytic counterpart of the VMHC. The comparison between the two techniques reveals their general similarity, but also highlights regional differences associated with how HC varies from task to rest. Two main differences were found from rest to task: (i) regions known to be characterized by global hubness are more similar than regions displaying local hubness; and (ii) medial areas are characterized by a higher degree of homotopic connectivity, while lateral areas appear to decrease their degree of homotopic connectivity during task performance. These findings show that MHC can be an insightful tool to study how the hemispheres functionally interact during task and rest conditions.
Collapse
Affiliation(s)
- Lorenzo Mancuso
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy.
| | - Andrea Nani
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Gabriele Gelmini
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Melissa Panero
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
31
|
Spread of activity following TMS is related to intrinsic resting connectivity to the salience network: A concurrent TMS-fMRI study. Cortex 2018; 108:160-172. [DOI: 10.1016/j.cortex.2018.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/23/2018] [Accepted: 07/17/2018] [Indexed: 01/14/2023]
|
32
|
Rosenthal G, Sporns O, Avidan G. Stimulus Dependent Dynamic Reorganization of the Human Face Processing Network. Cereb Cortex 2018; 27:4823-4834. [PMID: 27620978 DOI: 10.1093/cercor/bhw279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 08/16/2016] [Indexed: 11/12/2022] Open
Abstract
Using the "face inversion effect", a hallmark of face perception, we examined network mechanisms supporting face representation by tracking functional magnetic resonance imaging (fMRI) stimulus-dependent dynamic functional connectivity within and between brain networks associated with the processing of upright and inverted faces. We developed a novel approach adapting the general linear model (GLM) framework classically used for univariate fMRI analysis to capture stimulus-dependent fMRI dynamic connectivity of the face network. We show that under the face inversion manipulation, the face and non-face networks have complementary roles that are evident in their stimulus-dependent dynamic connectivity patterns as assessed by network decomposition into components or communities. Moreover, we show that connectivity patterns are associated with the behavioral face inversion effect. Thus, we establish "a network-level signature" of the face inversion effect and demonstrate how a simple physical transformation of the face stimulus induces a dramatic functional reorganization across related brain networks. Finally, we suggest that the dynamic GLM network analysis approach, developed here for the face network, provides a general framework for modeling the dynamics of blocked stimulus-dependent connectivity experimental designs and hence can be applied to a host of neuroimaging studies.
Collapse
Affiliation(s)
- Gideon Rosenthal
- Department of Brain and Cognitive Sciences, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Galia Avidan
- Department of Brain and Cognitive Sciences, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Psychology, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
| |
Collapse
|
33
|
Wang M, Yang P, Wan C, Jin Z, Zhang J, Li L. Evaluating the Role of the Dorsolateral Prefrontal Cortex and Posterior Parietal Cortex in Memory-Guided Attention With Repetitive Transcranial Magnetic Stimulation. Front Hum Neurosci 2018; 12:236. [PMID: 29930501 PMCID: PMC5999747 DOI: 10.3389/fnhum.2018.00236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/22/2018] [Indexed: 11/13/2022] Open
Abstract
The contents of working memory (WM) can affect the subsequent visual search performance, resulting in either beneficial or cost effects, when the visual search target is included in or spatially dissociated from the memorized contents, respectively. The right dorsolateral prefrontal cortex (rDLPFC) and the right posterior parietal cortex (rPPC) have been suggested to be associated with the congruence/incongruence effects of the WM content and the visual search target. Thus, in the present study, we investigated the role of the dorsolateral prefrontal cortex and the PPC in controlling the interaction between WM and attention during a visual search, using repetitive transcranial magnetic stimulation (rTMS). Subjects maintained a color in WM while performing a search task. The color cue contained the target (valid), the distractor (invalid) or did not reappear in the search display (neutral). Concurrent stimulation with the search onset showed that relative to rTMS over the vertex, rTMS over rPPC and rDLPFC further decreased the search reaction time, when the memory cue contained the search target. The results suggest that the rDLPFC and the rPPC are critical for controlling WM biases in human visual attention.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Yang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chaoyang Wan
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenlan Jin
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Junjun Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Li
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
34
|
Binocular rivalry transitions predict inattention symptom severity in adult ADHD. Eur Arch Psychiatry Clin Neurosci 2018; 268:373-382. [PMID: 28409230 DOI: 10.1007/s00406-017-0790-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/20/2017] [Indexed: 12/13/2022]
Abstract
Attention deficit and hyperactivity disorder (ADHD) is a prevalent childhood disorder that is often maintained throughout the development and persists into adulthood. Established etiology models suggest that deficient inhibition underlies the core ADHD symptoms. While experimental evidence for impaired motor inhibition is overwhelming, little is known about the sensory inhibition processes, their changes throughout the development, and the relationship to ADHD symptoms. Here, we used the well-established binocular rivalry (BR) paradigm to investigate for the very first time the inhibitory processes related to visual perception in adults with ADHD. In BR, perception alternates between two dichoptically presented images throughout the viewing period, with shorter dominant percept durations and longer transition periods indicating poorer suppression/inhibition. Healthy controls (N = 28) and patients with ADHD (N = 32) were presented with two dissimilar images (orthogonal gratings) separately to each eye through a mirror stereoscope and asked to report their perceptual experiences. There were no differences between groups in any of the BR markers. However, an association between transition durations and symptom severity emerged in the ADHD group. Importantly, an exploratory multiple regression analysis revealed that inattention symptoms were the sole predictor for the duration of transition periods. The lack of impairments to sensory inhibition in adult, but not pediatric ADHD may reflect compensatory changes associated with development, while a correlation between inhibition and inattention symptoms may reveal an invariant core of the disorder.
Collapse
|
35
|
Krol A, Wimmer RD, Halassa MM, Feng G. Thalamic Reticular Dysfunction as a Circuit Endophenotype in Neurodevelopmental Disorders. Neuron 2018; 98:282-295. [PMID: 29673480 PMCID: PMC6886707 DOI: 10.1016/j.neuron.2018.03.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 01/30/2018] [Accepted: 03/12/2018] [Indexed: 02/06/2023]
Abstract
Diagnoses of behavioral disorders such as autism spectrum disorder and schizophrenia are based on symptomatic descriptions that have been difficult to connect to mechanism. Although psychiatric genetics provide insight into the genetic underpinning of such disorders, with a majority of cases explained by polygenic factors, it remains difficult to design rational treatments. In this review, we highlight the value of understanding neural circuit function both as an intermediate level of explanatory description that links gene to behavior and as a pathway for developing rational diagnostics and therapeutics for behavioral disorders. As neural circuits perform hierarchically organized computational functions and give rise to network-level processes (e.g., macroscopic rhythms and goal-directed or homeostatic behaviors), correlated network-level deficits may indicate perturbation of a specific circuit. Therefore, identifying such correlated deficits or a circuit endophenotype would provide a mechanistic point of entry, enhancing both diagnosis and treatment of a given behavioral disorder. We focus on a circuit endophenotype of the thalamic reticular nucleus (TRN) and how its impairment in neurodevelopmental disorders gives rise to a correlated set of readouts across sleep and attention. Because TRN neurons express several disorder-relevant genes identified through genome-wide association studies, exploring the consequences of different TRN disruptions may be of broad translational significance.
Collapse
Affiliation(s)
- Alexandra Krol
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ralf D Wimmer
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael M Halassa
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
36
|
Koivisto M, Grassini S, Hurme M, Salminen-Vaparanta N, Railo H, Vorobyev V, Tallus J, Paavilainen T, Revonsuo A. TMS-EEG reveals hemispheric asymmetries in top-down influences of posterior intraparietal cortex on behavior and visual event-related potentials. Neuropsychologia 2017; 107:94-101. [PMID: 29137988 DOI: 10.1016/j.neuropsychologia.2017.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/02/2017] [Accepted: 11/09/2017] [Indexed: 12/25/2022]
Abstract
Clinical data and behavioral studies using transcranial magnetic stimulation (TMS) suggest right-hemisphere dominance for top-down modulation of visual processing in humans. We used concurrent TMS-EEG to directly test for hemispheric differences in causal influences of the right and left intraparietal cortex on visual event-related potentials (ERPs). We stimulated the left and right posterior part of intraparietal sulcus (IPS1) while the participants were viewing and rating the visibility of bilaterally presented Gabor patches. Subjective visibility ratings showed that TMS of right IPS shifted the visibility toward the right hemifield, while TMS of left IPS did not have any behavioral effect. TMS of right IPS, but not left one, reduced the amplitude of posterior N1 potential, 180-220ms after stimulus-onset. The attenuation of N1 occurred bilaterally over the posterior areas of both hemispheres. Consistent with previous TMS-fMRI studies, this finding suggests that the right IPS has top-down control on the neural processing in visual cortex. As N1 most probably reflects reactivation of early visual areas, the current findings support the view that the posterior parietal cortex in the right hemisphere amplifies recurrent interactions in ventral visual areas during the time-window that is critical for conscious perception.
Collapse
Affiliation(s)
- Mika Koivisto
- Department of Psychology, University of Turku, 20014 Turun yliopisto, Finland; Centre for Cognitive Neuroscience, University of Turku, 20014 Turun yliopisto, Finland.
| | - Simone Grassini
- Department of Psychology, University of Turku, 20014 Turun yliopisto, Finland; Centre for Cognitive Neuroscience, University of Turku, 20014 Turun yliopisto, Finland
| | - Mikko Hurme
- Department of Psychology, University of Turku, 20014 Turun yliopisto, Finland; Centre for Cognitive Neuroscience, University of Turku, 20014 Turun yliopisto, Finland
| | - Niina Salminen-Vaparanta
- Department of Psychology, University of Turku, 20014 Turun yliopisto, Finland; Centre for Cognitive Neuroscience, University of Turku, 20014 Turun yliopisto, Finland
| | - Henry Railo
- Department of Psychology, University of Turku, 20014 Turun yliopisto, Finland; Centre for Cognitive Neuroscience, University of Turku, 20014 Turun yliopisto, Finland
| | - Victor Vorobyev
- Department of Psychology, University of Turku, 20014 Turun yliopisto, Finland; Centre for Cognitive Neuroscience, University of Turku, 20014 Turun yliopisto, Finland
| | - Jussi Tallus
- Department of Radiology, Turku University Hospital, 20014 Turun yliopisto, Finland
| | - Teemu Paavilainen
- Department of Radiology, Turku University Hospital, 20014 Turun yliopisto, Finland
| | - Antti Revonsuo
- Department of Psychology, University of Turku, 20014 Turun yliopisto, Finland; School of Bioscience, Department of Cognitive Neuroscience and Philosophy, University of Skövde, Sweden; Centre for Cognitive Neuroscience, University of Turku, 20014 Turun yliopisto, Finland
| |
Collapse
|
37
|
Leitão J, Thielscher A, Lee H, Tuennerhoff J, Noppeney U. Transcranial magnetic stimulation of right inferior parietal cortex causally influences prefrontal activation for visual detection. Eur J Neurosci 2017; 46:2807-2816. [DOI: 10.1111/ejn.13743] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Joana Leitão
- Max Planck Institute for Biological Cybernetics Tübingen Germany
- Computational Neuroscience and Cognitive Robotics Centre University of Birmingham B15 2TT Birmingham UK
- Laboratory for Behavioral Neurology and Imaging of Cognition Department of Neuroscience University of Geneva Geneva Switzerland
| | - Axel Thielscher
- Max Planck Institute for Biological Cybernetics Tübingen Germany
- Department of Electrical Engineering Technical University of Denmark Lyngby Denmark
- DRCMR Copenhagen University Hospital Hvidovre Hvidovre Denmark
| | - Hweeling Lee
- Max Planck Institute for Biological Cybernetics Tübingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Bonn Germany
| | - Johannes Tuennerhoff
- Max Planck Institute for Biological Cybernetics Tübingen Germany
- University Clinic of Neurology Tübingen Germany
| | - Uta Noppeney
- Max Planck Institute for Biological Cybernetics Tübingen Germany
- Computational Neuroscience and Cognitive Robotics Centre University of Birmingham B15 2TT Birmingham UK
| |
Collapse
|
38
|
Leitão J, Thielscher A, Tuennerhoff J, Noppeney U. Comparing TMS perturbations to occipital and parietal cortices in concurrent TMS-fMRI studies-Methodological considerations. PLoS One 2017; 12:e0181438. [PMID: 28767670 PMCID: PMC5540584 DOI: 10.1371/journal.pone.0181438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023] Open
Abstract
Neglect and hemianopia are two neuropsychological syndromes that are associated with reduced awareness for visual signals in patients’ contralesional hemifield. They offer the unique possibility to dissociate the contributions of retino-geniculate and retino-colliculo circuitries in visual perception. Yet, insights from patient fMRI studies are limited by heterogeneity in lesion location and extent, long-term functional reorganization and behavioural compensation after stroke. Transcranial magnetic stimulation (TMS) has therefore been proposed as a complementary method to investigate the effect of transient perturbations on functional brain organization. This concurrent TMS-fMRI study applied TMS perturbation to occipital and parietal cortices with the aim to ‘mimick’ neglect and hemianopia. Based on the challenges and interpretational limitations of our own study we aim to provide tutorial guidance on how future studies should compare TMS to primary sensory and association areas that are governed by distinct computational principles, neural dynamics and functional architecture.
Collapse
Affiliation(s)
- Joana Leitão
- Max Planck Institute for biological Cybernetics, Tübingen, Germany
- Computational Neuroscience and Cognitive Robotics Centre, University of Birmingham, Birmingham, United Kingdom
- Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neuroscience, University of Geneva, Geneva, Switzerland
- * E-mail:
| | - Axel Thielscher
- Max Planck Institute for biological Cybernetics, Tübingen, Germany
- Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
- DRCMR, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Johannes Tuennerhoff
- Max Planck Institute for biological Cybernetics, Tübingen, Germany
- University Clinic of Neurology, Tübingen, Germany
| | - Uta Noppeney
- Max Planck Institute for biological Cybernetics, Tübingen, Germany
- Computational Neuroscience and Cognitive Robotics Centre, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
39
|
Duecker F, Schuhmann T, Bien N, Jacobs C, Sack AT. Moving Beyond Attentional Biases: Shifting the Interhemispheric Balance between Left and Right Posterior Parietal Cortex Modulates Attentional Control Processes. J Cogn Neurosci 2017; 29:1267-1278. [DOI: 10.1162/jocn_a_01119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
The concept of interhemispheric competition has been very influential in attention research, and the occurrence of biased attention due to an imbalance in posterior parietal cortex (PPC) is well documented. In this context, the vast majority of studies have assessed attentional performance with tasks that did not include an explicit experimental manipulation of attention, and, as a consequence, it remains largely unknown how these findings relate to core attentional constructs such as endogenous and exogenous control and spatial orienting and reorienting. We here addressed this open question by creating an imbalance between left and right PPC with transcranial direct current stimulation, resulting in right-hemispheric dominance, and assessed performance on three experimental paradigms that isolate distinct attentional processes. The comparison between active and sham transcranial direct current stimulations revealed a highly informative pattern of results with differential effects across tasks. Our results demonstrate the functional necessity of PPC for endogenous and exogenous attentional control and, importantly, link the concept of interhemispheric competition to core attentional processes, thus moving beyond the notion of biased attention after noninvasive brain stimulation over PPC.
Collapse
|
40
|
Zuanazzi A, Cattaneo L. The right hemisphere is independent from the left hemisphere in allocating visuospatial attention. Neuropsychologia 2017; 102:197-205. [PMID: 28602998 DOI: 10.1016/j.neuropsychologia.2017.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 01/17/2023]
Abstract
The capacity to allocate visuospatial attention is traditionally considered right-lateralized according to the effects of unilateral cerebral lesions. Contralateral hemi-spatial neglect occurs much more frequently after lesions of the right hemisphere, which has therefore been dubbed as 'dominant'. This pattern of symptoms is supported by functional models that postulate either independence or reciprocal influences between the two hemispheres. Here we specifically explored the dependency of the right hemisphere (RH) from the left hemisphere (LH) in spatial attention. We capitalized on the well-known effect of online transcranial magnetic stimulation (TMS) on the RH in healthy individuals, consisting in transient neglect-like manifestations in the left hemi-space. We assessed whether prior stimulation of the left posterior parietal cortex with a long-lasting neuromodulatory procedure (transcranial direct current stimulation - tDCS) affected the acute effects of TMS on the right posterior parietal cortex. We performed a within-subjects factorial study with two factors: LH tDCS (sham or real) and RH TMS (sham or real), resulting in a 2×2 design. The effects on spatial attention were examined separately for the two hemi-spaces by means of a modified line-bisection task. The results indicated that TMS over the RH produced a spatial attention deficit in the left hemi-space alone and the behavioural effects of TMS were not modulated by prior stimulation of the LH. Interestingly, additional analyses showed that tDCS over the LH alone produced a deficit in spatial attention to the right hemi-space. We interpret the current results as evidence for a largely independent contribution of each hemisphere to the allocation of visuospatial attention limited to the contralateral hemi-space.
Collapse
Affiliation(s)
| | - Luigi Cattaneo
- Department of Neurosciences, Biomedicine and Movement, University of Verona, Verona, Italy.
| |
Collapse
|
41
|
Predictive position computations mediated by parietal areas: TMS evidence. Neuroimage 2017; 153:49-57. [PMID: 28341161 DOI: 10.1016/j.neuroimage.2017.03.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/24/2017] [Accepted: 03/20/2017] [Indexed: 11/24/2022] Open
Abstract
When objects move or the eyes move, the visual system can predict the consequence and generate a percept of the target at its new position. This predictive localization may depend on eye movement control in the frontal eye fields (FEF) and the intraparietal sulcus (IPS) and on motion analysis in the medial temporal area (MT). Across two experiments we examined whether repetitive transcranial magnetic stimulation (rTMS) over right FEF, right IPS, right MT, and a control site, peripheral V1/V2, diminished participants' perception of two cases of predictive position perception: trans-saccadic fusion, and the flash grab illusion, both presented in the contralateral visual field. In trans-saccadic fusion trials, participants saccade toward a stimulus that is replaced with another stimulus during the saccade. Frequently, predictive position mechanisms lead to a fused percept of pre- and post-saccade stimuli (Paeye et al., 2017). We found that rTMS to IPS significantly decreased the frequency of perceiving trans-saccadic fusion within the first 10min after stimulation. In the flash grab illusion, a target is flashed on a moving background leading to the percept that the target has shifted in the direction of the motion after the flash (Cavanagh and Anstis, 2013). In the first experiment, the reduction in the flash grab illusion after rTMS to IPS and FEF did not reach significance. In the second experiment, using a stronger version of the flash grab, the illusory shift did decrease significantly after rTMS to IPS although not after rTMS to FEF or to MT. These findings suggest that right IPS contributes to predictive position perception during saccades and motion processing in the contralateral visual field.
Collapse
|
42
|
Navarro de Lara LI, Tik M, Woletz M, Frass-Kriegl R, Moser E, Laistler E, Windischberger C. High-sensitivity TMS/fMRI of the Human Motor Cortex Using a Dedicated Multichannel MR Coil. Neuroimage 2017; 150:262-269. [PMID: 28254457 DOI: 10.1016/j.neuroimage.2017.02.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 02/03/2017] [Accepted: 02/21/2017] [Indexed: 11/19/2022] Open
Abstract
PURPOSE To validate a novel setup for concurrent TMS/fMRI in the human motor cortex based on a dedicated, ultra-thin, multichannel receive MR coil positioned between scalp and TMS system providing greatly enhanced sensitivity compared to the standard birdcage coil setting. METHODS A combined TMS/fMRI design was applied over the primary motor cortex based on 1Hz stimulation with stimulation levels of 80%, 90%, 100%, and 110% of the individual active motor threshold, respectively. Due to the use of a multichannel receive coil we were able to use multiband-accelerated (MB=2) EPI sequences for the acquisition of functional images. Data were analysed with SPM12 and BOLD-weighted signal intensity time courses were extracted in each subject from two local maxima (individual functional finger tapping localiser, fixed MNI coordinate of the hand knob) next to the hand area of the primary motor cortex (M1) and from the global maximum. RESULTS We report excellent image quality without noticeable signal dropouts or image distortions. Parameter estimates in the three peak voxels showed monotonically ascending activation levels over increasing stimulation intensities. Across all subjects, mean BOLD signal changes for 80%, 90%, 100%, 110% of the individual active motor threshold were 0.43%, 0.63%, 1.01%, 2.01% next to the individual functional finger tapping maximum, 0.73%, 0.91%, 1.34%, 2.21% next to the MNI-defined hand knob and 0.88%, 1.09%, 1.65%, 2.77% for the global maximum, respectively. CONCLUSION Our results show that the new setup for concurrent TMS/fMRI experiments using a dedicated MR coil array allows for high-sensitivity fMRI particularly at the site of stimulation. Contrary to the standard birdcage approach, the results also demonstrate that the new coil can be successfully used for multiband-accelerated EPI acquisition. The gain in flexibility due to the new coil can be easily combined with neuronavigation within the MR scanner to allow for accurate targeting in TMS/fMRI experiments.
Collapse
Affiliation(s)
- Lucia I Navarro de Lara
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Guertel 18-20, A-1090 Wien, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria
| | - Martin Tik
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Guertel 18-20, A-1090 Wien, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria
| | - Michael Woletz
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Guertel 18-20, A-1090 Wien, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria
| | - Roberta Frass-Kriegl
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Guertel 18-20, A-1090 Wien, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria
| | - Ewald Moser
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Guertel 18-20, A-1090 Wien, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria
| | - Elmar Laistler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Guertel 18-20, A-1090 Wien, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria
| | - Christian Windischberger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Guertel 18-20, A-1090 Wien, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
43
|
Cazzoli D, Chechlacz M. A matter of hand: Causal links between hand dominance, structural organization of fronto-parietal attention networks, and variability in behavioural responses to transcranial magnetic stimulation. Cortex 2017; 86:230-246. [DOI: 10.1016/j.cortex.2016.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/24/2016] [Accepted: 06/16/2016] [Indexed: 01/15/2023]
|
44
|
Structural Organization of the Corpus Callosum Predicts Attentional Shifts after Continuous Theta Burst Stimulation. J Neurosci 2016; 35:15353-68. [PMID: 26586822 DOI: 10.1523/jneurosci.2610-15.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Repetitive transcranial magnetic stimulation (rTMS) applied over the right posterior parietal cortex (PPC) in healthy participants has been shown to trigger a significant rightward shift in the spatial allocation of visual attention, temporarily mimicking spatial deficits observed in neglect. In contrast, rTMS applied over the left PPC triggers a weaker or null attentional shift. However, large interindividual differences in responses to rTMS have been reported. Studies measuring changes in brain activation suggest that the effects of rTMS may depend on both interhemispheric and intrahemispheric interactions between cortical loci controlling visual attention. Here, we investigated whether variability in the structural organization of human white matter pathways subserving visual attention, as assessed by diffusion magnetic resonance imaging and tractography, could explain interindividual differences in the effects of rTMS. Most participants showed a rightward shift in the allocation of spatial attention after rTMS over the right intraparietal sulcus (IPS), but the size of this effect varied largely across participants. Conversely, rTMS over the left IPS resulted in strikingly opposed individual responses, with some participants responding with rightward and some with leftward attentional shifts. We demonstrate that microstructural and macrostructural variability within the corpus callosum, consistent with differential effects on cross-hemispheric interactions, predicts both the extent and the direction of the response to rTMS. Together, our findings suggest that the corpus callosum may have a dual inhibitory and excitatory function in maintaining the interhemispheric dynamics that underlie the allocation of spatial attention. SIGNIFICANCE STATEMENT The posterior parietal cortex (PPC) controls allocation of attention across left versus right visual fields. Damage to this area results in neglect, characterized by a lack of spatial awareness of the side of space contralateral to the brain injury. Transcranial magnetic stimulation over the PPC is used to study cognitive mechanisms of spatial attention and to examine the potential of this technique to treat neglect. However, large individual differences in behavioral responses to stimulation have been reported. We demonstrate that the variability in the structural organization of the corpus callosum accounts for these differences. Our findings suggest novel dual mechanism of the corpus callosum function in spatial attention and have broader implications for the use of stimulation in neglect rehabilitation.
Collapse
|
45
|
Wang C, Rajagovindan R, Han SM, Ding M. Top-Down Control of Visual Alpha Oscillations: Sources of Control Signals and Their Mechanisms of Action. Front Hum Neurosci 2016; 10:15. [PMID: 26834601 PMCID: PMC4718979 DOI: 10.3389/fnhum.2016.00015] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/11/2016] [Indexed: 11/13/2022] Open
Abstract
Alpha oscillations (8-12 Hz) are thought to inversely correlate with cortical excitability. Goal-oriented modulation of alpha has been studied extensively. In visual spatial attention, alpha over the region of visual cortex corresponding to the attended location decreases, signifying increased excitability to facilitate the processing of impending stimuli. In contrast, in retention of verbal working memory, alpha over visual cortex increases, signifying decreased excitability to gate out stimulus input to protect the information held online from sensory interference. According to the prevailing model, this goal-oriented biasing of sensory cortex is effected by top-down control signals from frontal and parietal cortices. The present study tests and substantiates this hypothesis by (a) identifying the signals that mediate the top-down biasing influence, (b) examining whether the cortical areas issuing these signals are task-specific or task-independent, and (c) establishing the possible mechanism of the biasing action. High-density human EEG data were recorded in two experimental paradigms: a trial-by-trial cued visual spatial attention task and a modified Sternberg working memory task. Applying Granger causality to both sensor-level and source-level data we report the following findings. In covert visual spatial attention, the regions exerting top-down control over visual activity are lateralized to the right hemisphere, with the dipoles located at the right frontal eye field (FEF) and the right inferior frontal gyrus (IFG) being the main sources of top-down influences. During retention of verbal working memory, the regions exerting top-down control over visual activity are lateralized to the left hemisphere, with the dipoles located at the left middle frontal gyrus (MFG) being the main source of top-down influences. In both experiments, top-down influences are mediated by alpha oscillations, and the biasing effect is likely achieved via an inhibition-disinhibition mechanism.
Collapse
Affiliation(s)
- Chao Wang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida Gainesville, FL, USA
| | - Rajasimhan Rajagovindan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida Gainesville, FL, USA
| | - Sahng-Min Han
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida Gainesville, FL, USA
| | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida Gainesville, FL, USA
| |
Collapse
|
46
|
Bartrés-Faz D, Vidal-Piñeiro D. Noninvasive Brain Stimulation for the Study of Memory Enhancement in Aging. EUROPEAN PSYCHOLOGIST 2016. [DOI: 10.1027/1016-9040/a000241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abstract. Noninvasive brain stimulation (NIBS) techniques have recently attracted interest due to their potential for transiently improving cognition. This may prove particularly valuable in aging, given the known impact of age-related cognitive dysfunction on quality of life. The present review summarizes the currently available evidence of working and episodic memory enhancements achieved using NIBS in healthy elderly people. The evidence reviewed indicates that research is still at an early stage and that there is a need to define the best procedures for operating and performing multicentre characterization of protocols. However, a limited number of sham-controlled studies have reported improvements in both cognitive domains. Furthermore, evidences of long-term beneficial effects opens up the possibility of using NIBS as an adjuvant therapeutic strategy. However, the relevance of certain variables involved and approaches used remains to be elucidated, including the potential benefits of single versus multiple NIBS sessions, the putative synergistic effects of using NIBS in combination with cognitive training, and the importance of individual differences. Overall, NIBS techniques represent a promising opportunity for psychologists seeking strategies to improve memory functions in the elderly. Nevertheless, their use requires appropriate technical knowledge coupled with a clear understanding of the neurophysiology and cognitive neuroscience of aging.
Collapse
Affiliation(s)
| | - Didac Vidal-Piñeiro
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway
| |
Collapse
|
47
|
Cameron IGM, Riddle JM, D'Esposito M. Dissociable Roles of Dorsolateral Prefrontal Cortex and Frontal Eye Fields During Saccadic Eye Movements. Front Hum Neurosci 2015; 9:613. [PMID: 26635572 PMCID: PMC4644787 DOI: 10.3389/fnhum.2015.00613] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/26/2015] [Indexed: 11/18/2022] Open
Abstract
The dorsolateral prefrontal cortex (DLPFC) and the frontal eye fields (FEF) have both been implicated in the executive control of saccades, yet possible dissociable roles of each region have not been established. Specifically, both establishing a “task set” as well as suppressing an inappropriate response have been linked to DLPFC and FEF activity, with behavioral outcome measures of these mechanisms mainly being the percentage of pro-saccade errors made on anti-saccade trials. We used continuous theta-burst stimulation (cTBS) to disrupt FEF or DLPFC function in humans during an anti-saccade task to assess the causal role of these regions in these executive control processes, and in programming saccades towards (pro-saccade) or away (anti-saccade) from visual targets. After right FEF cTBS, as compared to control cTBS to the right primary somatosensory cortex (rS1), anti-saccade amplitude of the first saccade decreased and the number of anti-saccades to acquire final position increased; however direction errors to the visual target were not different. In contrast, after left DLPFC cTBS, as compared to left S1 cTBS, subjects displayed greater direction errors for contralateral anti-saccades; however, there were no impairments on the number of saccades or the saccade amplitude. These results are consistent with the notion that DLPFC is necessary for executive control of saccades, whereas FEF is necessary for visuo-motor aspects of anti-saccade programming.
Collapse
Affiliation(s)
- Ian G M Cameron
- Helen Wills Neuroscience Institute, University of California, Berkeley Berkeley, CA, USA
| | - Justin M Riddle
- Helen Wills Neuroscience Institute, University of California, Berkeley Berkeley, CA, USA ; Department of Psychology, University of California, Berkeley Berkeley, CA, USA
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley Berkeley, CA, USA ; Department of Psychology, University of California, Berkeley Berkeley, CA, USA
| |
Collapse
|
48
|
Abstract
UNLABELLED The deployment of visuospatial attention and the programming of saccades are governed by the inferred likelihood of events. In the present study, we combined computational modeling of psychophysical data with fMRI to characterize the computational and neural mechanisms underlying this flexible attentional control. Sixteen healthy human subjects performed a modified version of Posner's location-cueing paradigm in which the percentage of cue validity varied in time and the targets required saccadic responses. Trialwise estimates of the certainty (precision) of the prediction that the target would appear at the cued location were derived from a hierarchical Bayesian model fitted to individual trialwise saccadic response speeds. Trial-specific model parameters then entered analyses of fMRI data as parametric regressors. Moreover, dynamic causal modeling (DCM) was performed to identify the most likely functional architecture of the attentional reorienting network and its modulation by (Bayes-optimal) precision-dependent attention. While the frontal eye fields (FEFs), intraparietal sulcus, and temporoparietal junction (TPJ) of both hemispheres showed higher activity on invalid relative to valid trials, reorienting responses in right FEF, TPJ, and the putamen were significantly modulated by precision-dependent attention. Our DCM results suggested that the precision of predictability underlies the attentional modulation of the coupling of TPJ with FEF and the putamen. Our results shed new light on the computational architecture and neuronal network dynamics underlying the context-sensitive deployment of visuospatial attention. SIGNIFICANCE STATEMENT Spatial attention and its neural correlates in the human brain have been studied extensively with the help of fMRI and cueing paradigms in which the location of targets is pre-cued on a trial-by-trial basis. One aspect that has so far been neglected concerns the question of how the brain forms attentional expectancies when no a priori probability information is available but needs to be inferred from observations. This study elucidates the computational and neural mechanisms under which probabilistic inference governs attentional deployment. Our results show that Bayesian belief updating explains changes in cortical connectivity; in that directional influences from the temporoparietal junction on the frontal eye fields and the putamen were modulated by (Bayes-optimal) updates.
Collapse
|
49
|
Abstract
UNLABELLED Adaptive behavior relies on combining bottom-up sensory inputs with top-down control signals to guide responses in line with current goals and task demands. Over the past decade, accumulating evidence has suggested that the dorsal and ventral frontoparietal attentional systems are recruited interactively in this process. This fMRI study used concurrent transcranial magnetic stimulation (TMS) as a causal perturbation approach to investigate the interactions between dorsal and ventral attentional systems and sensory processing areas. In a sustained spatial attention paradigm, human participants detected weak visual targets that were presented in the lower-left visual field on 50% of the trials. Further, we manipulated the presence/absence of task-irrelevant auditory signals. Critically, on each trial we applied 10 Hz bursts of four TMS (or Sham) pulses to the intraparietal sulcus (IPS). IPS-TMS relative to Sham-TMS increased activation in the parietal cortex regardless of sensory stimulation, confirming the neural effectiveness of TMS stimulation. Visual targets increased activations in the anterior insula, a component of the ventral attentional system responsible for salience detection. Conversely, they decreased activations in the ventral visual areas. Importantly, IPS-TMS abolished target-evoked activation increases in the right temporoparietal junction (TPJ) of the ventral attentional system, whereas it eliminated target-evoked activation decreases in the right fusiform. Our results demonstrate that IPS-TMS exerts profound directional causal influences not only on visual areas but also on the TPJ as a critical component of the ventral attentional system. They reveal a complex interplay between dorsal and ventral attentional systems during target detection under sustained spatial attention. SIGNIFICANCE STATEMENT Adaptive behavior relies on combining bottom-up sensory inputs with top-down attentional control. Although the dorsal and ventral frontoparietal systems are key players in attentional control, their distinct contributions remain unclear. In this TMS-fMRI study, participants attended to the left visual field to detect weak visual targets presented on half of the trials. We applied brief TMS bursts (or Sham-TMS) to the dorsal intraparietal sulcus (IPS) 100 ms after visual stimulus onset. IPS-TMS abolished the visual induced response suppression in the ventral occipitotemporal cortex and the response enhancement to visual targets in the temporoparietal junction. Our results demonstrate that IPS causally influences neural activity in the ventral attentional system 100 ms poststimulus. They have important implications for our understanding of the neural mechanisms underlying attentional control.
Collapse
|
50
|
Parks NA, Mazzi C, Tapia E, Savazzi S, Fabiani M, Gratton G, Beck DM. The influence of posterior parietal cortex on extrastriate visual activity: A concurrent TMS and fast optical imaging study. Neuropsychologia 2015; 78:153-8. [PMID: 26449990 PMCID: PMC4734125 DOI: 10.1016/j.neuropsychologia.2015.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/14/2015] [Accepted: 10/02/2015] [Indexed: 11/18/2022]
Abstract
The posterior parietal cortex (PPC) is a critical node in attentional and saccadic eye movement networks of the cerebral cortex, exerting top-down control over activity in visual cortex. Here, we sought to further elucidate the properties of PPC feedback by providing a time-resolved map of functional connectivity between parietal and occipital cortex using single-pulse TMS to stimulate the left PPC while concurrently recording fast optical imaging data from bilateral occipital cortex. Magnetic stimulation of the PPC induced transient ipsilateral occipital activations (BA 18) 24-48ms post-TMS. Concurrent TMS and fast optical imaging results demonstrate a clear influence of PPC stimulation on activity within human extrastriate visual cortex and further extend this time- and space-resolved method for examining functional connectivity.
Collapse
Affiliation(s)
| | | | - Evelina Tapia
- University of Illinois, Urbana-Champaign, United States; Beckman Institute for Advanced Science and Technology, United States
| | | | - Monica Fabiani
- University of Illinois, Urbana-Champaign, United States; Beckman Institute for Advanced Science and Technology, United States
| | - Gabriele Gratton
- University of Illinois, Urbana-Champaign, United States; Beckman Institute for Advanced Science and Technology, United States
| | - Diane M Beck
- University of Illinois, Urbana-Champaign, United States; Beckman Institute for Advanced Science and Technology, United States
| |
Collapse
|